
How Cython Works
A one hour guide to compiler design (sarcasm)

Josh Kantor

May 15, 2008

Josh Kantor How Cython Works

Goal for this talk

Cython is an integral part of sage, and it is useful to be able
to bend it to our will.

However, understanding out how Cython works is difficult at
first glance (and second, third, etc).

It is quite sophisticated and figuring out what pieces of
Cython do what is tricky at first.

Thus the goal of this talk is to present a roadmap to the
Cython codebase.

Also, cython is very, very well engineered, and is an excellent
example of a very sophisticated python program. I would say
cython is from a software perspective the most interesting
part of sage (this is of course an opinion).

Josh Kantor How Cython Works

< Show cython source structure in terminal >

Josh Kantor How Cython Works

Cython is a Compiler

The first thing to keep in mind when trying to understand Cython
is that it really is a compiler, and it is designed very much like a
textbook compiler. It just happens to compile to the python-C API
instead of executable machine code. It was very helpful for me to
skim over the standard compiler textbook (the dragon textbook)
to figure out why Cython was designed the way it is.

(Disclaimer: Any apperance that I know much about compilers is
purely showmanship.)

Josh Kantor How Cython Works

How do Compiler’s Work

First how do we specify a programming language. Basically we
specify the language through a grammar. A grammar tells us how
to decompose complex expressions into simple ones. Just like
english grammar tells us how to decompose sentences into nouns,
verbs, phrases, etc. Lets illustrate through some pieces of the
official python grammar

identifier ::= (letter|"_") (letter | digit | "_")*
assignment_stmt ::=(target_list "=")+

(expression_list | yield_expression)
target_list ::= target ("," target)* [","]
target ::= identifier | "(" target_list ")" |

"[" target_list "]" | attributeref
| subscription| slicing

(Note + means one or more, * means 0 or more, | means or, []
means 0 or 1.)

Josh Kantor How Cython Works

Usually (and in Cython) there are two pieces cooperating to
produce the parse tree, a Lexical analyzer and a Parser. The lexical
analyzer produces a stream of tokens that the parser uses
(together with the structure of the grammar) to produce a parse
tree representation of the code.

C code

Source Code

lexical
analyzer

tokens
Parser

parse tree Analysis

Josh Kantor How Cython Works

When we say a stream of tokens, we mean that the lexical
analyzer classifies the source code text into categories of
atomic expressions.

So for example +,−, ∗, <>=,etc, might all produce the token
BINOP for binary operator.

Note we don’t throw away the the underlying symbol we keep
track of the token BINOP and also keep track of a reference
to the exact piece of source that produced that token which
will be analyzed when necessary.

Josh Kantor How Cython Works

Simple Illustration

a=3
b=4
c=5
a=b+c

tokens
IDENT

IDENT
BINOP
IDENT

=

a +

b c

symbol table
a=3
b=4
c=5

BINOP

Josh Kantor How Cython Works

Plex

The cython code that does the lexical analysis is in the Plex
module which is a general lexical analyzer. It takes a set of regular
expressions and produces lexical analyzer from that. This is the
scanner object. I found it interesting that the implementation of
the lexical analyzer contains a very intricate use of finite automata
(totally standard though).

Josh Kantor How Cython Works

For example the regular expression

(a|b)*abb

corresponds to the automata

4

a

b

a b b
1 2 3

Josh Kantor How Cython Works

You probably don’t need to understand Plex other than to
understand what it is doing. The general Plex lexical analyzer is
specialized to the cython language in Compiler/Scanning where a
PyrexScanner class is defined. The regular expressions controlling
how the PyrexScanner tokenizes cython are contained in
Compiler/Lexicon.py. (Look at Lexicon.py now).

Josh Kantor How Cython Works

Nodes.py,ExprNodes.py

Befor we look at the parser let us discuss the building blocks
of the parse tree. These are contained in Compiler/Nodes.py
and Compiler/ExprNodes.py which are likely two of the most
important files to understand if you are going to hack Cython.

They contain a very large collection of node objects that the
parser will link together to form the parse tree.

The tree structure arises because complicated node object
contain references to simpler more atomic node objects. For
example there are binary operation nodes that contain
references to nodes that represent what they are operating on,
etc.

The node objects have methods to generate the final C source
code

The Nodes in Nodes.py are higher level than those in
ExprNodes.py which contains more atomic nodes.

Josh Kantor How Cython Works

An Example Node

class DefNode(FuncDefNode):
A Python function definition.
#
name string the Python name of the function
args [CArgDeclNode] formal arguments
star_arg PyArgDeclNode or None * argument
starstar_arg PyArgDeclNode or None ** argument
doc string or None
body StatListNode
#
The following subnode is constructed internally
when the def statement is inside a Python class

definition.
#
assmt AssignmentNode

Function construction/assignment

Josh Kantor How Cython Works

Another Node

class FloatNode(ConstNode):
type = PyrexTypes.c_double_type

def compile_time_value(self, denv):
return float(self.value)

Josh Kantor How Cython Works

Parsing.py

The second most important files for hacking cython is probably
Compiler/Parsing.py. As its name would imply this is the parser.
The entry point is p statement list, here s is a PyrexScanner lexical
analyzer object.

def p_statement_list(s, level,
cdef_flag = 0, visibility = ’private’, api = 0):

Parse a series of statements separated by newlines.
pos = s.position()
stats = []
while s.sy not in (’DEDENT’, ’EOF’):

stats.append(p_statement(s, level,
cdef_flag = cdef_flag, visibility = visibility,

api = api))
if len(stats) == 1:

return stats[0]
else:

return Nodes.StatListNode(pos, stats = stats)
Josh Kantor How Cython Works

What happens is once the parser starts it repeatedly calls the
PyrexScanner to get tokens and dispatches calls the the
appropriate p *function name* functions which eventually call
into Nodes.py to build up a tree of Node objects.

Note that s is the scanner object doing the lexical analysis.

s.sy is the current “symbol” or token name in the stream.
s.position is the exact location of this symbol in the source file.

s.systring is the actual string corresponding the the token.

s.expect just checks that the next token matches what is
expected and moves to the successive token. [[[Look at
p statement in emacs at this point]]]

Josh Kantor How Cython Works

For another example [[[Look at p list maker]]]

Josh Kantor How Cython Works

Symtab.py

Symtab is a very important file that I won’t say much about (well
I’ll say some things)

Symtab contains symbol table classes. It is used to organize
information during the parsing and code generation process.
These symbol tables are called scopes, there is a general scope
object and a ModuleScope object. The scopes are passed into
functions as the env variable.

As a simple example the nodes in parse tree corresponding to
most objects such as variables, functions, etc. each have a
reference to the symbol table entry.

The symbol table entry is created when the nodes is created
or during the analysis phase.

The symbol table keeps track of which variables correspond to
which pyx 〈 〉 number names that occur in the generated C
code

Josh Kantor How Cython Works

Code Generation

Once the parse tree is constructed code generation proceeds
by propagating calls down the tree to various methods that
perform analysis and eventually code generation. The entry
point into this part of the process is in
Compiler/ModuleNode.py in the function
process implementation

You can think of ModuleNodes as meta nodes which
correspond to whole source code files and directories
(modules).

Josh Kantor How Cython Works

def process_implementation(self, env, options, result):
self.analyse_declarations(env)
env.check_c_classes()
self.body.analyse_expressions(env)
env.return_type = PyrexTypes.c_void_type
self.referenced_modules = []
self.find_referenced_modules(env,self.referenced_modules,

{})
if self.has_imported_c_functions():

self.module_temp_cname=env.allocate_temp_pyobject()
env.release_temp(self.module_temp_cname)

self.generate_c_code(env, result)
self.generate_h_code(env, options, result)
self.generate_api_code(env, result)

Josh Kantor How Cython Works

I’m not going to say much about the code generation other than
the fact that as indicated, function calls are propogated down the
tree, prompting node objects to perform analysis, interact with the
symbol table, and eventually emit C code. I don’t really
understand this in detail, and understanding it at all requires good
understanding of the Python C api. Its best to look at some nodes
and their associated functions to get a feel for what is happening.

Josh Kantor How Cython Works

Perhaps in contradiction to the previous slide. I’d like to now look
a bit at the C code that results from cython and point out a few
things.

Josh Kantor How Cython Works

example.pyx

structure of cdef class variables

vtable

Example: List Comprehension Nodes

Josh Kantor How Cython Works

References

Aho, Sethi, Ullman - “Compilers: Principles, Techniques, and
Tools”

The Cython Source

Josh Kantor How Cython Works

