
HYPERELLIPTIC CURVE METHOD FOR FACTORING
INTEGERS

WENHAN WANG

1. Thoery and Algorithm

The idea of the method using hyperelliptic curves to factor integers is
similar to the elliptic curve factoring method. However, they are differ-
ent in some aspect: the algebraic group attached to hyperelliptic curve
is its Jacobian J(C), which is the quotient of the group of divisor classes
of zero degree Div0 modulo the group of principal divisors. Therefore
the elements of J(C) cannot be properly represented as coordinates,
which is the main difference of algorithm for group operations.

Usually we represent a divisor class of hyperelliptic curve over a
field k by a pair of polynomials u(x), v(x) ∈ k[x], which is called
the Mumford representation, corresponding to so-called reduced di-
visor, where u(x) and v(x) should satisfy the following conditions: (1)
deg u(x) ≤ g; (2) deg v(x) < deg u(x); (3) u(x) has no repeated roots;
(4) u | v2 + vb− f . The cantor’s algorithm shows how to add two divi-
sors and then reduce the sum so that u(x) and v(x) satisfy the above
conditions.

If k is a field, the cantor’s algorithm always give the sum of two
divisors and reduce it with no problems. But if we consider hyperelliptic
curves over the ring Z/NZ, which is not a field, as we can see later
this result in some problems, Cantor’s algorithm might fails and using
proper algorithm this might give a non-trivial factor of N .

If we are working with J(C), where the curve is C : y2+h(x)y = f(x)
over Z/NZ, then for two reduced divisor (u1, v1) and (u2, v2), Cantor’s
algorithm computes v1 +v2 +h in the second step. If the leading coeffi-
cient of v1+v2+h is not invertible, i.e., v1.leading coeffient().gcd(N) 6=

Date: 04-29-2009.
Key words and phrases. Hyperelliptic Curve, Integer factorization, Sage.

1



2 WENHAN WANG

1 we may compute the value of v1.leading coeffient().gcd(N), which
might not be invertible in the ring Z/NZ. However, the probability
that the leading coefficient of v1 + v2 + h is not so large. But we have
another chance for factor N : in the reduction part of the Cantor’s algo-
rithm, as we iterates the algorithm, at some step the leading coefficient
of v will be not invertible, and we may compute the above ”gcd” and
get a non-trivial factor.

If we set N = pq, where p, q are large odd primes, then we have
J(Z/NZ) ∼= J(Fp)× J(Fq). The above case happens if in the course of
arithmetic the result is a divisor whose image is exactly 0 in the two
components: in J(Fp) or in J(Fq). But there may be other conditions
that make the above case happen, but I don’t know yet.

There is a senior thesis[1] by a Japanese undergraduate student (writ-
ten in English) with the similar idea and similar algorithm states that
the factor of N is found by computing the gcd of the leading coefficient
of u(x) and N , but I ran the same example is SAGE, and got that
the factor is produced by the gcd of N and the leading coefficient of
v1 + v2 + h, not as the paper by Japanese. So in the algorithm, it is
necessary to check also the gcd of leading coefficient of v(x) and N .

In the papers[2] written by Lestra, et al., they pointed out that
under some reasonable conjectures, the hyperelliptic curve method is
less efficient than elliptic curves. The following theorem form there
paper illustrates the fact:

Theorem 1.1. [2] Under some reasonable hypothesis, the elliptic curve
method takes optimal maximal choice of parameters takes at most:

Lp[
1

2
+
√

2o(1)](log n)2.

The hyperelliptic curve method, under the same hypothesis, takes at
most

Lp[
1

2
+
√

2o(1)](log n)2.

Although by this theorem we may conclude that the HECM is less
fast as ECM, as Lenstra, and et al. pointed out, HECM works well
for generating smooth numbers. So I think it is still worthwhile to
implement the algorithm for factoring in SAGE.



MATH583E TERM PROJECT I 3

2. Implement in SAGE

Several function is defined in sage for the implementation:

• hecptgen(N): this function generates a point on a certain hy-
perelliptic curve over the ring Z/NZ. Such a point has small
absolute x-coordinate value. This function generates the Mum-
ford representation of a divisor corresponding to the points re-
turned by the old version of hecptgen(N). In this new version
of William Stein, he combined hecptgen and hecdivgen, so
that hecptgen can directly generate a divisor (class).

• hecadd(u1,v1,u2,v2,N): this function adds two reduced divi-
sors and return a ’raw’ divisor, not reduced. The algorithm is
the combination part of the Cantor’s algorithm.

• hecred(u,v,N): this function use the Cantor’s reduction algo-
rithm to reduce a divisor class (u, v). For factorization, this
algorithm also computes the maximum of the gcd of the lead-
ing coefficient of u with N and the gcd of the leading coefficient
of v. If the gcd is greater than 1, the function will output the
non-trivial factor and break.

• hecmul(u,v,m,N): this function computes m times (u, v), i.e.,
add (u, v) by itself and then reduce for m times.

• factor_hecm(N): this function actually factor N by the hyper-
elliptic curve method using the idea in section 1.

I will then show some examples that HECM works in sage.

Example 2.1. In this example, I did exactly the same input in the
Japanese paper and ran. However, the gcd of the leading coefficient of u
and N is 1, and the output is truncated because the leading coefficient
of v has non-trivial gcd with N , as shown in the result.

Here is the result using the code of William’s version and exactly the
same example in [1]:

sage: def hecred(u,v,N):

... while u.degree()>genus:



4 WENHAN WANG

... ur=(f-v*h-v^2)//u

... url=ur.leading_coefficient()

... g=gcd(url,N)

... if g != 1:

... print "Non-trivial factor=",g

... raise RuntimeError, g

... return u, v, g

...

... vr=(-h-v)%ur

... u=ur

... v=vr

... print "u=", u

... print "v=", v

... vl=v.leading_coefficient()

... g=gcd(vl,N)

... if g != 1:

... print "Non-trivial factor=",g

... return u, v, g

... return u,v,1

sage: def hecadd(u1,v1,u2,v2,N):

sage: # add (u1,v1) and (u2,v2)

... d1,e1,e2=xgcd(u1,u2)

... d,c1,s3=xgcd(d1,v1+v2+h)

... s1=c1*e1

... s2=c1*e2

... ui=u1*u2//d^2

... vi=((s1*u1*v2+s2*u2*v1+s3*(v1*v2+f))//d)%ui

... return hecred(ui,vi,N)

sage: def hecmul(u,v,m,N):

sage: # multiply (u,v) by m

... sumu, sumv = u,v

... for z in range(m-1):

... sumu, sumv, g = hecadd(u,v,sumu,sumv,N)

... return sumu,sumv

sage: N=77

sage: x=polygen(Zmod(N))

sage: f=x^5+3*x+40

sage: h=0

sage: genus=2

sage: u1=x+5%N

sage: v1=0*x+1%N

sage: u=hecmul(u1,v1,9,N)[0]



MATH583E TERM PROJECT I 5

sage: v=hecmul(u1,v1,9,N)[1]

sage: u,v

u= x^2 + 18*x + 18

v= x + 19

u= x^2 + 45*x + 2

v= 72*x + 29

u= x^2 + 33*x + 5

v= 15*x + 76

u= x^2 + 39*x + 42

v= 62*x + 1

u= x^2 + 74*x + 39

v= 71*x + 58

u= x^2 + 50*x + 43

v= 49*x + 76

Non-trivial factor= 7

u= x^2 + 28*x + 48

v= 20*x + 75

u= x^2 + 18*x + 18

v= x + 19

u= x^2 + 45*x + 2

v= 72*x + 29

u= x^2 + 33*x + 5

v= 15*x + 76

u= x^2 + 39*x + 42

v= 62*x + 1

u= x^2 + 74*x + 39

v= 71*x + 58

u= x^2 + 50*x + 43

v= 49*x + 76

Non-trivial factor= 7

u= x^2 + 28*x + 48

v= 20*x + 75

(x^2 + 28*x + 48, 20*x + 75)

Now we can see before the statement Non-trivial factor= 7, the
leading coefficient of v is 49, which has non-trivial gcd with 77, whereas
the leading coefficient can always scaled to be 1. Therefore in [1], they
did not consider all possible cases.

The William’s version of source code and several output is printed
below. The function hecmul() may be modified by calculating the
addition in binary partitions.



6 WENHAN WANG

sage: def hecred(u,v,N):

... while u.degree()>genus:

... ur=(f-v*h-v^2)//u

... url=ur.leading_coefficient()

... g=gcd(url,N)

... if g != 1:

... print "Non-trivial factor=",g

... raise RuntimeError, g

... return u, v, g

...

... vr=(-h-v)%ur

... u=ur

... v=vr

... vl=v.leading_coefficient()

... g=gcd(vl,N)

... if g != 1:

... print "Non-trivial factor=",g

... return u, v, g

... return u,v,1

sage: def hecadd(u1,v1,u2,v2,N):

sage: # add (u1,v1) and (u2,v2)

... d1,e1,e2=xgcd(u1,u2)

... d,c1,s3=xgcd(d1,v1+v2+h)

... s1=c1*e1

... s2=c1*e2

... ui=u1*u2//d^2

... vi=((s1*u1*v2+s2*u2*v1+s3*(v1*v2+f))//d)%ui

... return hecred(ui,vi,N)

sage: def hecmul(u,v,m,N):

sage: # multiply (u,v) by m

... sumu, sumv = u,v

... for z in range(m-1):

... sumu, sumv, g = hecadd(u,v,sumu,sumv,N)

... return sumu,sumv

sage: def hecptgen(N):

... x = polygen(Zmod(N))

... R = x.parent()

... for i in (0..(N-1)//2):

... r = Mod(f(i),N)

... if r.is_square():



MATH583E TERM PROJECT I 7

... return x-i, R(sqrt(r))

sage: f = None

sage: x = None

sage: def factor_hecm(N):

... if is_prime_power(N):

... print "N is prime"

... return N

... global f, x

... x = polygen(Integers(N))

... f = x^5+3*x+40

... u, v = hecptgen(N)

... j=1

... gc=1

... ur=u

... vr=v

... while gc==1:

... try:

... up=ur

... print "up=", up

... vp=vr

... print "vp=", vp

... upc, vpc = hecmul(up,vp,j,N)

... print "upc=", upc

... print "vpc=", vpc

... gc=hecred(up,vp,N)[2]

... print "gc=", gc

... print "j=",j

... print "======"

... j+=1

... print "j=",j

... ur=upc

... vr=vpc

... except RuntimeError, msg:

... return msg[0]

sage: a = factor_hecm(77)

up= x + 76

vp= 11

upc= x + 76

vpc= 11

gc= 1

j= 1

======



8 WENHAN WANG

j= 2

up= x + 76

vp= 11

upc= x^2 + 75*x + 1

vpc= 53*x + 68

gc= 1

j= 2

======

j= 3

up= x^2 + 75*x + 1

vp= 53*x + 68

Non-trivial factor= 11

Non-trivial factor= 7

sage: a

7

3. Conclusion

The main purpose of this project is to implement HECM in SAGE.
The result is that our code can factor a 2 decimal digits composite
number somehow effectively. But for larger composite numbers, this
algorithm is slow, because (1) the divisor multiplication step is not
clever; and the HECM, like ECM, factors a number efficiently if the
number of divisor classes on the Jacobian is smooth, otherwise it may
take longer time. Another problem of HECM is that for some small
numbers or numbers contains power of 2 or 3 could not be factored,
like in ECM.

There is also some further work to do: (1) use binary algorithm to
modify the function hecmul(); (2) if an input number is a prime or a
prime power, break the loop somewhere and output the statement: it
is prime or prime power, without check before factoring. (3) how to
choose a proper curve such that the number of divisor classes in the
Jacobian is smooth.

References

[1] Study on Elliptic Curve and Hyperelliptic Curve Methods for Integer Factor-
ization. Takayuki Yato, 2000-02.



MATH583E TERM PROJECT I 9

[2] A Hyperelliptic Smooth Text. H.W.Lenstra, J.Pila, Carl Pomerance. Phil.
Trans. R. Soc. Lond. A Novenber 15, 1993.

E-mail address: hans.cryptologiste@gmail.com


