
VALLÉE’S TWO-THIRDS ALGORITHM

PAUL CARR

1. Introduction

(Brigitte) Vallée’s Two-Thirds Algorithm is an optimization of the
Dixon’s Random Squares factoring algorithm.

In Dixon’s Algorithm, the goal is to factor an integer n. We choose a factor
base B consisting of all primes less than some bound. Then we select random
integers from Zn looking for those whose square mod n is B-smooth. Once
we have enough of these, we solve a linear system to construct a congruence
of squares that can then be used to generate a factorization of n.

The essential observation of Vallée is that smaller numbers are more likely
to be B-smooth. A polynomial-time algorithm is thus developed that can
convert a random element of Zn into a number less than 4n2/3 that is still
“sufficiently random” so as to not perturb any of the results that Dixon is
based on. For large n this is a massive decrease in size, with corresponding
improvement in odds of being B-smooth.

Using this, the number of random selections that must be made to gener-
ate a set of B-smooth squares is reduced, improving the complexity results.
“Vanilla” Dixon has a time complexity of L[1/2, 2

√
2]. Vallée’s Algorithm

improves this to L[1/2,
√

4/3]. At the time of its publication in 1989 this
was the best known rigorous complexity bound for integer factorization.

2. Tools

Let n be the integer to be factored. Let h = 4n2/3. Let k = n/h = 1

4
n1/3.

Finally, let D = {x ∈ Zn : x ≤ h}.
The first goal is to develop a covering of Zn such that the distribution of

D is quasi-uniform with respect to it. The Farey covering turns out to fit
the bill. This covering consists of intervals I(p, q) centered at pn

2q of radius
h
2q , for positive integers p, q with p ≤ q ≤ k and gcd(p, q) = 1. We’ll skip

over the proofs of this (they’re in [3]).
Next, we want a decent way to find elements of D in a particular element

of a Farey covering. We will do this in a geometric way. Let Q(x) be the
squaring operation modulo n. Given a point x0 in Zn, we’re going to want a
fairly small u such that |Q(x0 + u)| ≤ h. That is, −h ≤ x2

0 + 2x0u + u2 ≤ h.
Let w = Q(x0 + u)− u2 − x2

0. Then what we’re looking for is a point (u,w)
such that −h ≤ w + u2 + x2

0 ≤ h subject to w = 2x0u, and u ∈ Zn. That

Date: April 29, 2009.

1

2 PAUL CARR

is, (u,w) should be on the lattice generated by (1, 2x0) and (0, n) (call this
lattice L(x0)).

Thus, given an interval I(p, q) in a Farey covering, we can describe all the
elements of D inside the interval as the intersection of the lattice L(x0) and
the region bounded above and below by two parabolas, and on the sides by
vertical lines determined by I(p, q). We will call this intersection P (p, q)

3. Chest, Legs, Feet

We need a better handle on this set. Assume x0 is the closest integer
to the rational point pn

2q at the center of the Faring interval I(p, q). Let

y0 = x0 − pn/2q. Then the region we wish to intersect with D is

P (p, q) = {(u,w) ∈ L(x0) : |u + y0| ≤
h

2q
, |w + u2 + x2

0| ≤ h}

This is illustrated in the included diagram (from Vallée: [3]):

Now, consider the lattice L(x0). It contains a more convenient vector to
work with: r = q(1, 2x0) − p(0, n) = (q, 2qy0). This is an approximately
horizontal line (slope is 2y0 ≤ 1), and has a small horizontal component (q).
By using lines with this slope to divide up the total region into managable
pieces (called, descriptively, the chest, legs, and feet), it becomes reasonable
to quantify with accuracy the number of lattice points contained within the
region, and enumerate them. The “chest” is sized to contain four quasi-
horizontal lines of the lattice, the “feet” contain two, and the “legs” have
the rest, but a restricted number of lattice points per line.

VALLÉE’S TWO-THIRDS ALGORITHM 3

Using this construction, it is possible to prove solid bounds on the number
of lattice points within the region, and thus in P (p, q). If the distribution
of D were exactly uniform, we would expect to find 2h2/qn points (call this
Ne). In fact, the actual number can be bounded to be between 1

5
Ne and

4Ne.

4. Example

To get a vague handle on this, a small example. Take n = 10403 =
101 · 103. Then h = 4n2/3 ≈ 1906.2, k = n/h ≈ 5.45. The Faring cover
will have values of q ranging from 1 to 5. Choose the I(3, 5) cover element
centered at 3120.9 with radius 190.62. Then x0 = 3121 and y0 = .1. Also
x2

0
= 3422 (mod n).
Then the bounding parabolas in the (u,w) plane are given by:

w = −u2+1906.2−3433 = −u2−1526.8w = −u2−1906.2−3433 = −u2−5339.2

The bounds on the left and right are u = −190.62 − .1 and u = 190.62 − .1
The lowest point in the region (where the lower parabola intersects the left
bounding line) is w = −41675.07. The region of the “legs” is bounded
between roughly w = −9151.6 and w = −37862.7

Locating the lattice points involves finding the w coordinate of the in-
tersection of each quasi-horizontal lattice line with the w axis, and then
counting off the lattice points on that line between the two parabolas.

5. Algorithm

Thus fortified, we shall lay out the algorithm explicitly.
Input: A random point x ∈ Zn

Output: A random point x0 +u ∈ D that lies in the same Farey interval
as x.

Step 1: Determine the Farey interval I(p, q) which contains x. If it is
contained in the overlap of two, determine which side of the median ((p1 +
p2)/(q1 + q2)) between the two centers x lies on and choose that interval.

Step 2: Select x0 as the nearest integer to the center of I(p, q), and
construct the two parabolas and two bounding lines delimiting the region
P (p, q). Also determine the boundaries between the “chest”, “legs”, and
“feet”. Finally, construct the lattice L(x0).

Step 3: Determine the number of lattice points contained in the inter-
section of L(x0) and P (p, q), enumerate them, select one number randomly,
and locate that lattice point. If it is in the “chest” or “feet”, simply lo-
cate all points and pick off the chosen one. If it is in the “legs”, use an
approximation to determine the quasi-horizontal lattice line desired, locate
the lattice points on it that are in the region, and choose one at random.

Step 4: The u-coordinate of the chosen lattice point gives the output
x0 + u.

4 PAUL CARR

6. Implementation

The goal was to get this algorithm going in Sage (or even just C++
or something, since there’s nothing particularly high-order in it as far as
mathematical machinery goes). After playing around with it for a while,
though, I haven’t been able to get the lattice-point locating portion to work,
from [3]. The claim is that the quasi-horizontal lattice lines will cut the
vertical axis every n/q units, but I don’t see quite where that’s coming
from, and the “lattice points” I pick up under that assumption aren’t lattice
points (nonintegral u). So clearly I’m doing something wrong, and I haven’t
been able to figure out what, heh. It’s a shame, because it would be a cute
thing to play with and time out.

7. Bottom Line

This algorithm produces a significant (asymptotic-wise) improvement on
Dixon, or any algorithm based on random squares. It can be improved fur-
ther to smaller exponents than 2/3, at the expense of turning it heuristic
(quasi-uniformity is lost on the “legs”). Ultimately, though, it’s been obso-
leted along with its whole class of algorithms by the Quadratic and Number
Field Sieves, which both have fundamentally better L function parameters.
And there’s enough overhead in the map from random x to x0 + u that
I doubt seriously it could contend against any of the current methods at
smallish integer inputs.

It’s a cute trick, though.

References

[1] R. Crandall, C. Pomerance. Prime Numbers: A computational Perspective. Springer,
2001.

[2] A. K. Lenstra, H. w. Lenstra, Jr. Algorithms in Number Theory, in Handbook of

Theoretical Computer Science, pp 673-712, MIT Press, 1990.
[3] B. Vallée. Provably fast integer factoring with quasi-uniform small quadratic residues,

in Proceedings of the Twenty-First Annual ACM Symposium on theory of Computing

(Seattle, Washington, United States, May 14-17, 1989). pp 98-106.

