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1 Notation

Let K be a number field, let OK be the ring of integers, let K be an algebraic closure of K and
let OK be the ring of integers of K. Let M 0

K be the set of finite places and let M∞K be the set
of infinite places. Let Kv be the completion of K at v and let Ov be the ring of integers of Kv.
Let ℘v, kv, qv be the maximal ideal of Ov, the residue field Ov/℘v and the size of the residue
field |kv|, respectively. The r real infinite places v correspond to embeddings ik : K ↪→ R and
the s complex infinite places v corresponds to embeddings jk : K ↪→ C. For each finite place
v, let v(x) be the valuation of x ∈ Kv at v. If v is infinite, let v = log |σ(x)|, where σ is the
embedding associated to v. For finite v, let ev and fv be the ramification and inertia index of
K at v. If v is real, let ev = fv = 1 and if v is complex, let ev = 1, fv = 2.

Theorem 1.1 (Dirichlet Unit Theorem). The unit group O×K is a rank r+ s− 1 Z-module
with

O×K ∼= µ(K)×
r+s−1⊕

i=1

Z`i.

Proof. See [?], Theorem 1.7.4.

Proposition 1.2. The regulator RK of the number field K, defined as the determinant

RK = |det(fvivi(`j))|,

where `j are the generators of the torsion-free part of the unit group and {vi} are any r+ s− 1
of the infinite places, is independent of choices.

Proof. See [?], Theorem 1.7.5.

Let Cl(K) be the class group and let hK be the class number. Let wK = |µ(K)|.

1



Definition 1.3. Let H = HK be the Hilbert class field of K, i.e., the maximal abelian unram-
ified extension of K. It can be constructed as

H = (Kab)rK(
Q
v-∞O×v ×

Q
v|∞K×v ),

where rK : A×K/K×(
∏
R×>0

∏
C×)→ Gal(K/K)

ab
is the global Artin map.

Proposition 1.4. For every ideal I of OK , the ideal IOH is principal.

Proof. See [?], Theorem 6.7.5.

Definition 1.5. The ζ-function of K is

ζK =
∑

(NI)−s,

where I runs through all the integral ideals of OK .

Let E be an elliptic curve defined over K.

Theorem 1.6 (Mordell-Weil). The group E(K) is finitely generated and

E(K) ∼= E(K)tors ×
⊕

Zei.

Proof. See [?], Theorem 1.

If ` is a prime number, let T`E be the Tate module of E, i.e., T`E = lim←−E[`n].

Definition 1.7. The global L-function is

L(E, s) =
∏

v

det(1− σvq−sv |(Hom(T`E,Z`)⊗Q`)Iv)−1,

where σv is a lift of φv : x 7→ x−qv , φv ∈ Gal(kv/kv) to Gal(Kv/Kv) and Iv is the inertia at v.

A more explicit expression for the local L-factors is

Lv(E, s) =





det(1− Frobv q
−s
v |T`E)−1, E has good reduction at v

(1− q−sv )−1, E has split multiplicative reduction at v

(1 + q−sv )−1, E has nonsplit multiplicative reduction at v

1, E has additive reduction at v

Even more explicitly, if ` is prime and a` = `+1−|E(F`)|, then Lv(E, s) = (1−a`q−sv +q1−2s
v )−1

if E has good reduction at v.

Definition 1.8. Let X(E/K) = ker(H1(K,E) → ⊕
vH

1(Kv, E)) be the Shafarevich-Tate
group of E.
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Note that a priori the restriction maps are defined into the direct product, but one can
show that the image lies in the direct sum.

Let 〈, 〉 be the Neron-Tate height pairing on E (see [?] Theorem 8.9.3).

Definition 1.9. The regulator RE of E is the determinant

RE = |det(〈ei, ej〉)|.

2 The Theorem and the Conjecture

Proposition 2.1. The function ζK converges absolutely to a holomorphic function on Res > 1.
There exists a meromorphic continuation of ζK to C \ {1}.

Proof. See [?] Corollary 5.5.11.i.

Theorem 2.2 (Analytic Class Number Formula). Let K be a number field and let n =
r + s− 1 be the rank of O×K . Then

1

n!
ζ

(n)
K (0) = −hKRK

wK
.

Proof. See [?] Corollary 5.5.11.ii. The statement here is not about the derivative, but about
the residue at 1. However, the two statements are equivalent under the functional equation
satisfied by ζK .

Theorem 2.3. There exists a holomorphic continuation of L(E, s) to all of C.

Proof. Complicated. Uses the conjecture of Shimura and Taniyama, proven by Wiles, Taylor,
Breuil, Conrad and Diamond.

Conjecture 2.4 (Birch and Swinnerton-Dyer). The order of vanishing of L(E, s) at 1 is
r, the rank of the abelian group E(K). Moreover,

1

r!
∫
E(AK) dµ

L(r)(E, 1) =
RE |X(E/K)|
|E(K)tors|2

,

where dµ is a normalized Tamagawa measure with convergence factors Lv(E, 1).
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3 Similarities

The obvious similarities are between the definitions of ζK(s) and L(E, s). Also, wK is the size
of the torsion of O×K , while the Conjecture has the torsion part squared. The regulators are
similar in definition. The important and nontrivial similarity is that each formula looks at the
derivative whose order is equal to the rank of the abelian group involved in the definitions.
Moreover, there is a similarity between Cl(K) and X(E/K), that will be made more precise
in the following.

Let X(K) = ker(H1(K,O×)→∏
v-∞H

1(Kv,O×v )).

Proposition 3.1. There exists a homomorphism Φ : Cl(K)→X(K).

Proof. For each fractional ideal I of OK , the ideal IOH is principal, where H is the Hilbert class
field of K. Therefore, there exists x ∈ H× such that IOH = xOH . For each σ ∈ Gal(H/K), we

have (IOH)σ = IOH so (xσ) = (x) which means that σ(x)/x ∈ O×L . Therefore, x ∈ K× such

that σ(x)/x ∈ O× so the map σ 7→ σ(x)/x is a cocycle in Z1(K,O×K). If y is another generator

of IOH , then y/x ∈ O×L , so σ(x/y)/(x/y) is a coboundary, so it is trivial in H1(K,O×K).
Clearly, the map Φ that takes I to the cocycle Φ(I)(σ) = σ(x)/x is a homomorphism. To

show that it induces the desired homomorphism, it is enough to check that if I = (α) for
α ∈ K×, then Φ(I) is trivial. Then, we may choose x = α so Φ(I)(σ) = σ(α)/α = α/α = 1,
since α ∈ K. Therefore, the cocycle is trivial.

Lemma 3.2. For every f ∈ X(K), there exists a finite Galois extension L/K and x ∈ L×
such that f(σ) = σ(x)/x and (x) = (xσ) as ideals of OL.

Proof. Let f ∈ H1(K,O×K) be a cocycle, such that the image of f in H1(Kv,O×v ) is trivial for

each v. The injection O×K → K× induces an map H1(K,O×K) → H1(K,K
×

) = 0 (by Hilbert
90). Therefore, there exists x ∈ K, such that f(σ) = σ(x)/x. Let L be the Galois closure
of K(x). Then f(σ) = σ(x)/x for all σ ∈ Gal(L/K). Therefore, f(σ) = σ(x)/x ∈ O×L so
(x) = (xσ) for all σ ∈ Gal(L/K).

Lemma 3.3. There exists a homomorphism X(K)→ Pic(K)⊗Q.

Proof. To f ∈X(K) we have associated a finite Galois extension L/K and x ∈ L× such that
f(σ) = σ(x)/x. For each place v of K such that v(x) > 0, the group Gal(L/K) acts tranzitively
on w | v. Therefore, all the exponents w(x) are equal to a positive integer mv. Consider the
map

f 7→
∑

v

mv

ew/v
(v),
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for some w | v, where ew/v is the ramification index of Lw/Kv. If M/L/K is a Galois tower,
and u | w | v is a tower of valuations, then mu = mweu/w so

mu

eu/v
=
mweu/w

eu/v
=

mw

ew/v
,

so the map is independent of the choice of L.
If g = f in H1(K,O×K), and (y) is the ideal associated to g (for a common Galois extension

L), then f(σ) = σ(x)/x = g(σ)σ(t)/t = σ(yt)/(yt) for some t ∈ O×L . Therefore, σ(yt/x) = yt/x
for all σ ∈ Gal(L/K). Therefore, yt/x ∈ O×K so w(y) = w(x) (mod ew/v) for an extension of
places w | v. Let πv ∈ K× be uniformizers for Kv. Then, the element of Div(K)⊗Q associated

to
∏
v π

v(yt/x)
v ∈ K× is

∑

v

v(yt/x)(v) =
∑

v

w(y)

ew/v
(v)−

∑

v

w(x)

ew/v
(v),

so the elements
∑

v
w(x)
ew/v

(v) and
∑

v
w(y)
ew/v

(v) are equal modulo the image of principal ideals in

Div(K) ⊗ Q. Therefore, the map defined is a homomorphism from X(K) → Pic(K) ⊗ Q,
which is independent of the choices of cocycle representative and trivializer of the cocycle in
H1(K,K

×
).

Lemma 3.4. There exists a homomorphism Ψ : X(K)→ Cl(K).

Proof. For each cocycle f ∈X(K) we have defined an element df ∈ Pic(K)⊗Q. For each finite

place v, the restriction resv f ∈ H1(Kv,O×v ) is trivial, so there exists a finite Galois extension
Lv/Kv and xv ∈ O×Lv , such that resv f(σ) = σ(xv)/xv for all σ ∈ Gal(L/Kv). If df =

∑
dv(v),

then resv df = dv(v) is the element of Pic(Kv) ⊗ Q associated to resv f (by definition). So
σ(x)/x = σ(xv)/xv, which implies that σ(xv/x) = xv/x for all σ ∈ Gal(Lv/Kv). Therefore,
xv/x ∈ O×v so 0 = w(xv) ∈ w(x) + ew/vZ, which means that dv ∈ ew/vZ/ew/v = Z (for all v).
Therefore, df ∈ Pic(K) = Cl(K).

Proposition 3.5. There exists an isomorphism Cl(K) ∼= X(K).

Proof. It is enough to show that the maps Φ and Ψ are inverses to each other. Clearly,
Ψ ◦ Φ is the identity, by construction. Therefore, the result would follow from the injectivity
of Ψ. Let f ∈ X(K) be a cocycle such that Ψ(f) = OK , i.e., there exists y ∈ K×, such

that df = divy =
∑

v v(y)(v). Then y =
∏
π
v(y)
v ∈ K× and we see that x/y ∈ O×K and

g(σ) = σ(x/y)/(x/y) is the trivial cocycle. But f(σ) = g(σ)σ(y)/y = g(σ) so f is the trivial
cocycle (since σ acts trivially on K×).
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There is a more sophisticated approach to showing that X(K) and Cl(K) are isomorphic.
One of Mazur’s theorems says that ker(H1(K,E)→∏

v-∞H
1(Kv, E)) is equal to the image of

H1
ét(SpecOK , E0) in H1

ét(SpecOK , E), where E is the Néron model of E over OK and E0 is the
connected component of the identity of E . Then, we can interpret Cl to use the integral model
Gm over OK , in which case X(K) would be the identified with H1(SpecOK ,Gm) = Pic(K) =
Cl(K).
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