
Talk: The Birch and Swinnerton-Dyer Conjecture

The Birch and Swinnerton-Dyer Conjecture:
An Unsolved Problems with Roots in Ancient Times

Birch and Swinnerton-Dyer in 2000 in Holland

 

       

Nonsingular Plane Curves
A nonsingular plane algebraic curve is the set of solutions to a (nonsingular) polynomial:

A rational point is  such that .

Theorem (old): A curve of degree  has no rational points ( ) or infinitely many rational
points ( ), and there is a way to decide which and enumerate all solutions.

Faltings Theorem (1985): A curve of degree  has finitely many rational points.

Birch and Swinnerton-Dyer Conjecture (1960s): A curve of degree 3 has either finitely many rational

F (X; )  Y = 0
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points ( ) or infinitely many rational points . The BSD Conjecture provides a
way to decide which and enumerate all solutions.

 

       

Rational Points on Plane Curves
We find rational points on the curve you type in.

@interact
def f(F = ('0 = F(x,y) = ', 'x^2 + y^2 - 1'),
          search_bound=selector([1..10], buttons=True), box=(1..20), square=
('Square aspect ratio', False)) :
   R.<x,y> = QQ[]
   try: F = R(F.lower())
   except: print "Enter a polynomial in x, y with rational coefficients.";
return
   C = Curve(F)
   P = C.rational_points(bound=search_bound)
   show(tuple(P))
   eps = 0.1
   xmax = max([box]+[p[0] for p in P])+eps; ymax = max([box]+[p[1] for p in
P])+eps
   xmin = min([-box]+[p[0] for p in P])-eps; ymin = min([-box]+[p[1] for p in
P])-eps
   g = implicit_plot(F, (x,xmin,xmax), (y,ymin,ymax), plot_points=300)
   if len(P) > 0: g += points(P,pointsize=40)
   if square: show(g, aspect_ratio=1, figsize=5)
   else: show(g) 

       

0 = F(x,y) =  x^2 + y^2 - 1

search_bound 1  2  3  4  5  6  7  8  9  10

box 
Square aspect

ratio 

x  3 + y3 = 1 y  2 + y = x3 À x

1;  (( 0) ; À1;( 0) ; 0;( 1) ; 0; 1( À ))
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Enumerating Pythagorean Triples
Ancient Problem: Find all solutions  to the equation . Equivalently, by clearing
denominators, find all Pythagorean triples  such that .   This problem goes back
thousands of years!

 

x;  y 2 Q x  2 + y2 = 1
(a; ; ) b c a  2 + b2 = c2
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Enumerating Pythagorean Triples
There is a nice construction that completely solves this problem.  Just draw a line of rational slope through
(-1,0) and find the unique other point of intersection with the circle.  It will have to be rational, as you can
verify with some algebra.  Moreover, this gives every point!  If  is any rational solution, then the line
through  and  has rational slope , so we would find it via the above process.

G = circle((0,0),1, rgbcolor='blue', thickness=3)
G += point([(-1,0), (3/5,4/5)], pointsize=150, rgbcolor='black')
G += line([(-1-1,0-1/2), (3/5+1,4/5+1/2)], rgbcolor='red', thickness=3)

(x; ) y
(À1; ) 0 (x; ) y

y
x+1
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G += text("(3/5,4/5)", (3/5+.5,4/5), rgbcolor='black',fontsize=16)
G += text("(-1,0)", (-1.25,0.15), rgbcolor='black',fontsize=16)
G.show(aspect_ratio=1,xmin=-1.5,xmax=1, ymin=-1,ymax=1) 

       

 

       
 

       
 

       
 

       

Enumerating Pythagorean Triples: Live Demo
@interact
def __(t=('slope',1/2)):
   t = QQ(t)
   x = (1-t^2)/(1+t^2)
   y = 2*t/(1+t^2)
   r = t.numerator()
   s = t.denominator()
   a = s^2 - r^2; b = 2*r*s; c = s^2 + r^2
   html('<h1 align=center>Point (x,y) = $%s$'%latex((x,y)))
   html('Pythagorean (a,b,c) = $%s$</h1>'%latex((a,b,c)))
   G = circle((0,0),1, rgbcolor='blue', thickness=3)
   G += point([(-1,0), (x,y)], pointsize=150, rgbcolor='black')
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   G += line([(-1,0), (x,y)], rgbcolor='red', thickness=3)
   G += text("(-1,0)", (-1.25,0.15), rgbcolor='black',fontsize=12)
   try:
      G.save('a.png',aspect_ratio=1)
   except RuntimeError, msg:
       print msg
   html('<img src="cell://a.png">') 

       

slope 1/2

Point (x,y) = 

Pythagorean (a,b,c) = 

 

       
 

       
 

       

;  
À
25
24 7

25

Á

48; 4; 0  ( 1 5 )
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The Congruent Number Problem
Definition: An integer  is a congruent number if  is the area of a right triangle with rational side lengths.

Major Unsolved Problem in Mathematics: Give an algorithm to decide whether or not an integer  is a
congruent number.

This is a 1000-year old open problem; it is considered by some to be the oldest open problem in mathematics.

T = line([(0,0), (3,0), (3,4), (0,0)],rgbcolor='black',thickness=2)
lbl = text("3",(1.5,-.5),fontsize=28) + text("4",(3.2,1.5),fontsize=28)
lbl += text("5",(1.5,2.5),fontsize=28)
lbl += text("Area $n = 6$", (2.1,1.2), fontsize=28, rgbcolor='red')
show(T+lbl, axes=False) 

       

 

       
 

       

Congruent Numbers and the BSD Conjecture
Theorem: A proof of the Birch and Swinnerton-Dyer Conjecture would also solve the congruent number
problem.

n n 

n 
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Proof: Suppose  is a positive integer.  Consider the cubic curve .  Using algebra (see next
slide), one sees that this cubic curve has infinitely many rational points if and only if there are rationals 
such that  and .  The Birch and Swinnerton-Dyer conjecture gives an algorithm to
decide whether or not any cubic curve has infinitely many solutions.

 

 

       
 

       

Explicit Bijection
In fact, there is a bijection between

and

given by the maps

and

 

       

5 is a Congruent Number
n = 5; x,y = var('x,y')
C = EllipticCurve(y^2 == x^3 - n^2 * x); C 

       Elliptic Curve defined by y^2 = x^3 - 25*x over Rational Field
show(C.plot(), figsize=4) 

n y x 2 = x3 À n2

a; ;  b c
n b=2 = a a  2 + b2 = c2

 A  = (a; ; ) ;

Ú
b c 2 Q3 :

2

ab
= n a2 + b2 = c2

Û

 B  = (x; ) x; y =
n

y 2 Q2 : y2 = x3 À n2 with = 0
o

 f(a; ; )  b c = À ;

Ò
nb

a+ c

2n2

a+ c

Ó

 g(x; )  y = ; ;

Ò

y

n2 À x2 À
y

2xn

y

n2 + x2
Ó
:
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P = C.gens()[0]
print P
print "order of P = ", P.order() 

       (-4 : 6 : 1)order of P =  +Infinity

(-62279/1728)^2 == (1681/144)^3 - 25*(1681/144) 

       True
x=-4; y=6 

       
 

       
 

       

1 is Not a Congruent Number
n = 1
x,y = var('x,y')
C = EllipticCurve(y^2 == x^3 - n^2 * x)
C 

       
C.gens() 

       
 

       

Which positive integers  are congruent numbers?

for n in [1..10]:
   print n, EllipticCurve([-n^2,0]).rank() > 0 

       

1 False
2 False
3 False
4 False
5 True
6 True

n 0 Ô 1
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7 True
8 False
9 False
10 False

 

       
 

       
 

       
 

       
 

       
 

       
 

       
 

       
 

       

Finding Explicit Rational Right Triangles
@interact
def _(n=6, triangles=(1..10), maxtime=(3..30)):
   x,y = var('x,y')
   C = EllipticCurve(y^2 == x^3 - n^2*x)
   try:
       alarm(maxtime)
       t = walltime()
       G = C.gens()
       print "time = %.2f seconds"%walltime(t)
   except RuntimeError:
       print "Sage is unable to provably find generators"
       return
   except KeyboardInterrupt, msg:
       print "Too hard -- timed out after %s seconds"%maxtime
       return
   html("rank = %s\n\n"%len(G))
   if len(G) == 0: print "%s is not a congruent number"%n; return
   def g(x,y,n): return ((n^2-x^2)/y, -2*x*n/y, (n^2+x^2)/y)
   P = G[0]
   html('<h3><font color="red">Rational Right Triangles with Area %s</font>
</h3>'%n)
   for i in [1..triangles]:
       a,b,c = g((i*P)[0], (i*P)[1], n)
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       html("(a,b,c) = $%s$\n"%latex((a,b,c))) 

       

n 6

triangles 
maxtime 
time = 2.47 seconds
rank = 2

Rational Right Triangles with Area 2009

(a,b,c) = 

(a,b,c) = 

(a,b,c) = 

 

       

 

       
 

       

The -function
Let  be a cubic curve (+ a technical condition I'm not mentioning). For each prime number , let  be the number of
solutions to the cubic modulo .

Definition: For any cubic curve , let .

Theorem (Hasse): .

Theorem (Wiles et al.): The function

extends to an entire complex-analytic function on .

L = EllipticCurve([-2009^2,0])._pari_().elllseries
show(line([(i,L(i)) for i in [0,0.05,..,2]]), figsize=[7,1.5], ymax=10) 

; ;  
À

3
280

20
861

60
6167

Á

À ; ;  
À

105720
3526873 À 71977

8669040
7609408440
950998057921

Á

À ; ;  
À

5199355266237
47285754253640 À 3377553875260

1492214961410019 À 17561102528332268387596620
7760199364137915428136580247

Á

L 
C p N  p

p 

C a  p = pÀNp

ja j  p < 2
p
p

L(C; )  s =
Y

p

Ò
1

1 pÀ ap Às + p1À2s

Ó

C 
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L = EllipticCurve([-1954^2,0])._pari_().elllseries 

       

Wiles and Coates ==> curve has no rational points with , so 1954 is not the area of a rational right
triangle

L(1) 

       1.89814733216426
 

       

We use the following interact to plot the -series for many small values of  (e.g., 1,2,3,4,5,6,7,8,9,10).  For
which  does ?

@interact
def example(n=6):
   L = EllipticCurve([-n^2,0])._pari_().elllseries
   show(line([(i,L(i)) for i in [0,0.03,..,2]]), figsize=[7,1.5]) 

       

n 6

 

       
 

       
 

       

The Birch and Swinnerton-Dyer Conjecture
Heuristic Observation: If  has infinitely many rational points, then the numbers  will tend to be "large". 
Since , the number  will tend to be small.

y =  = 0

L n 
n 0 Ô 1 L(1)  = 0

C N  p
L(C; )"  1 = "

Q
p

p
Np

L(C; ) 1
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Theorem (Mordell): There is a finite set  of rational points on  so that all (non-torsion) rational
points can be generated from these using a simple geometric process (chords and tangents). 

We call the smallest  in Mordell's theorem the rank of .

Conjecture (Birch and Swinnerton-Dyer):

This problem, exactly as stated, is the Clay Math Institute Million Dollar prize problem in algebraic number
theory.  Its solution would also resolve the 1000-year old congruent number problem.

 

       
 

       

Examples of the BSD Conjecture
@interact
def _(n=6):
   x,y = var('x,y')
   C = EllipticCurve(y^2 == x^3 - n^2*x)
   show(C)
   print "rank = ", C.rank(), "\n"
   L = C.lseries()
   print "L-series = ", L.taylor_series(1,53, 4) 

       
 

       
 

       
 

       

The Kolyvagin -- Gross-Zagier Theorem
Theorem: If  then the Birch and Swinnerton-Dyer conjecture is true for .

The proof involves Heegner points, modular curves, Euler systems and Galois cohomology.

P ;  1 : : : ; Pr C 

r C 

ord L(C; ) (C) s=1 s = rank

ord L(C; )  s=1 s Ô 1 C 
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My Current Research
Study the mathematical structures (Heegner points, modular curves, Euler systems, etc.) that appear in
the proof of the Kolyvagin-Gross-Zagier theorem in order to understand how to generalize anything to
cubic curves with . 

This involves a combination of technical theory and explicit machine computation.

 

       
 

       

ord L(C; )  s=1 s Õ 2
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