
Modular Symbols, Modular Forms and Modular Abelian Varieties in MAGMA

William Stein

http://modular.fas.harvard.edu

Two Lecture IHP Minicourse: October 4–8, 2004

Abstract

I found Magma frustrating and incomprehensible until Allan Steel vis-
ited Berkeley and intensely explained it to me for two days. Since then,
Magma has made much more sense to me. Now I will share the insights
I often tell people when discussing computing with modular forms.

Instead of just telling you how amazing these packages are, I will often
emphasize the subtle problems with my packages.

1

Background Assumptions

• You are very familiar with the basics of Magma.

• I will not assume you know about modular symbols.

• I will assume you’ve heard about modular forms, but will give a definition at some point.

Acknowledgements

• Kevin Buzzard had a major influence on how I designed the modular symbols and Dirichlet

characters code for Magma.

• David Kohel wrote an early version of the Dirichlet characters package, and had a constant

influence on the design.

• The main reason any of this code is efficient is that Allan Steel has massively optimized

the exact dense linear algebra core of Magma, partly in response to my requests.

• The algorithms owe a major debt to John Cremona’s book and Loic Merel’s modular

symbols article.

2

1 Dirichlet Characters

A Dirichlet character over an integral domain R is a map ε : Z → R such that for some

homomorphism f : (Z/NZ)∗ → R∗ we have

ε(a) =

{

0 if (a, N) 6= 1,

f(a mod N) if (a, N) = 1.

Listing 1.1 (Creation of a DirichletGroup).

> G<a,b,c> := DirichletGroup(8*13, CyclotomicField(12));

> G;

Group of Dirichlet characters of modulus 104 over Cyclotomic

Field of order 12 and degree 4

> // WARNING: The default ring is Q, not Q(zeta_n).

> DirichletGroup(8*13);

Group of Dirichlet characters of modulus 104 over Rational Field

3

The three generators of G correspond to the decomposition

(Z/104Z)∗ = 〈79〉 × 〈53〉 × 〈41〉,

where 79 ≡ −1 (mod 4) generates (Z/4Z)∗, the element 53 ≡ 5 (mod 8) generates the non-±1

factor of (Z/8Z)∗, and 41 ≡ 2 (mod 13) generates (Z/13Z)∗.

Listing 1.2 (Invariants of characters).

> G<a,b,c> := DirichletGroup(8*13, CyclotomicField(12));

> [Order(a), Order(b), Order(c)];

[2, 2, 12]

> [Conductor(a), Conductor(b), Conductor(c)];

[4, 8, 13]

> a(3);

-1

> b(3);

-1

> c(3);

zeta_12^2 - 1

4

We can also do arithmetic with Dirichlet characters.

Listing 1.3 (Arithmetic with characters).

> G<a> := DirichletGroup(5,CyclotomicField(4));

> H := DirichletGroup(7,RationalField());

> Parent(a*b);

Group of Dirichlet characters of modulus 35 over Cyclotomic Field

of order 4 and degree 2

Listing 1.4 (Extension to larger modulus).

> c := a*b;

> d := Extend(c,70); // natural extension to character of modulus 70

> Parent(d);

Group of Dirichlet characters of modulus 70 over Cyclotomic Field

of order 4 and degree 2

> Conductor(d);

35

> Modulus(AssociatedPrimitiveCharacter(d));

35

5

Listing 1.5 (Coercion to bigger base ring).

> G := DirichletGroup(35,CyclotomicField(28)); G;

Group of Dirichlet characters of modulus 35 over Cyclotomic Field

of order 28 and degree 12

> e := G!c;

> Parent(e);

Group of Dirichlet characters of modulus 35 over Cyclotomic Field

of order 28 and degree 12

> c(3);

zeta_4

> e(3);

zeta_28^7

> Parent(MinimalBaseRingCharacter(e));

Group of Dirichlet characters of modulus 35 over Cyclotomic Field

of order 4 and degree 2

6

Warnings – Inefficient When N is Large

Dirichlet characters are efficient when N is small, but currently absurdly slow for N large (e.g., 10

digits). I learned yesterday from Allan Steel that this is because “someone” implemented discrete

log in a certain context in a very inefficient way. This will presumably be fixed soon.

Source Code: Dirichlet Characters

The implementation of Dirichlet characters is completely contained in the following relatively-

short file:

package/Geometry/ModSym/dirichlet.m

Remark. Actually Nicole Sutherland did a nice job of moving much of the Dirichlet code to C,

which should be an improvement from the point of view of efficieny and memory management.

But this code hasn’t been released yet.

7

2 Modular Symbols

2.1 Motivation

Computation of spaces Mk(N, ε) of modular symbols is the heart of most of the algorithms

in Magma for computing with modular forms and modular abelian varieties:

• Computing spaces Mk(N, ε) of modular forms involves modular symbols algorithms and

enumeration of Eisenstein series.

• We view modular abelian varieties as complex vector spaces modulo lattices, where

the lattices are naturally viewed as spaces of modular symbols.

References

• My Ph.D. thesis Explicit Approaches to Modular Abelian Varieties.

• Loic Merel’s Universal Fourier Expansions of Modular Forms.

8

2.2 What Are Modular Symbols?

Fix the following:

• The Level: positive integer N

• The Weight: integer k ≥ 2

• The Character: Dirichlet character ε of modulus N .

Let Mk(N, ε) be the space of modular symbols of level N , weight k, and character ε, which we

view as being defined by the algorithm on the next slide. As motivation, there is a non-canonical

isomorphism

Mk(N, ε) ≈ Sk(N, ε)⊕2 ⊕ Ek(N, ε),

where Sk(N, ε) is the space of cusp forms of type N, k, ε, and Ek is the space of Eisenstein series

of that type. (See Merel’s article for a proof.)

9

Algorithm 2.1 (Modular Symbols Presentation). This algorithm computes a presen-

tation for the space Mk(N, ε) of modular symbols, as a vector space over K = Q(ε).

1. [Generating Manin Symbols] Create a list of the Manin symbols [X iY k−2−i, (u, v)],

where i = 0, . . . , k − 2, and u, v ∈ Z/NZ with gcd(u, v, N) = 1. Let V be the K-vector

space generated by these Manin symbols modulo the subspace generated by differences

[P, (λu, λv)] − ε(λ)[P, (u, v)]. (Compute V directly with basis [0, k − 2] × P1(Z/NZ).)

2. [Subspace of Relations] The group GL2(Z) acts on V on the right by

[P (X, Y), (u, v)]. (a b
c d) = [P (dX − bY,−cX + aY), (au + cv, bu + dv)].

Let S = (0 −1
1 0) and T =

(

0 −1
1 −1

)

, and let W be the suspace of V generated by the elements

x + xS and x + xT + xT 2 (2.1)

for all generating manin symbols x.

3. [Quotient] Using sparse linear algebra, compute and output the quotient Mk(N, ε) ∼=
V/W, This is essentially the same as finding the reduced row echelon form of the matrix

whose rows are given by the relations (2.1). The output is a list of freely generating Manin

symbols x1, . . . , xn, and all other Manin symbols written as linear combinations of x1, . . . , xn.

10

Remark. There is a star involution ∗ on Mk(N, ε), and for many computations it is

sufficient to compute in one of the quotients Mk(N, ε)/(∗ − 1) or Mk(N, ε)/(∗ + 1). We

compute this quotient directly by including the relations x+xI or x−xI in W in Step 2, where

I = (−1 0
0 1).

We illustrate modular symbols by using Magma to compute a presentation for M5(13, ε),

where ε has order 4 and K = Q(i).

Listing 2.2 (Modular symbols creation).

> G<eps> := DirichletGroup(13, CyclotomicField(4));

> eps(-1);

-1

> Order(eps);

4

> M := ModularSymbols(eps, 5); // eps determines N !!

> M;

Full modular symbols space of level 13, weight 5, character eps,

and dimension 8 over Cyclotomic Field of order 4 and degree 2

Thus M5(13, ε) has dimension 8 as a vector space over Q(i). Note that the level N = 13 is

encoded as the modulus of ε, so it is not necessary to specify N when defining Mk(N, ε).

11

Basis of Manin and Modular Symbols

The following command enumerates a basis represented as Manin symbols.

Listing 2.3 (Basis of Manin Symbols).

> [ManinSymbol(x)[1] : x in Basis(M)];

[<X^3, (0 1)>, <X^3, (1 11)>, <X^3, (1 5)>, <X^3, (1 3)>,

<X^3, (1 4)>, <X^3, (1 6)>, <X^3, (1 12)>, <X^3, (1 0)>]

Elements of Mk(N, ε) print by default as modular symbols. If [P (X, Y), (c, d)] is a Manin

symbol, and g =
(

a b
c′ d′

)

∈ SL2(Z) satisfies c ≡ c′ and d ≡ d′ (mod N), then the corresponding

modular symbol is P (dX − bY,−cX + aY){g(0), g(∞)}.

Listing 2.4 (Corresponding Modular Symbols).

> M.1;

X^3*{0, oo}

> M.2;

(1331*X^3 + 363*X^2*Y + 33*X*Y^2 + Y^3)*{-1/11, 0}

12

2.3 Efficiency of Computation of Presentation

The current implementation of computation of the presentation for modular symbols in Magma

takes way more memory than it should in some cases. However, it is extremely fast.

Listing 2.5 (Computing Presentation is Fast).

> M := ModularSymbols(2004); M; // 1.440 seconds on laptop

Full modular symbols space for Gamma_0(2004) of weight 2 and

dimension 673 over Rational Field

> GetMemoryUsage();

9306624 // about 9.3MB

> time M := ModularSymbols(10000);

Current total memory usage: 419.4MB, failed memory request: 206.0MB

System error: Out of memory.

> time M := ModularSymbols(10007); Dimension(M); // prime level, so easier

Time: 6.590

1669

> time t2 := HeckeOperator(M,2);

Time: 3.270

13

Listing 2.6 (Computing Presentations with Nontrivial Character).

> G<e> := DirichletGroup(389,CyclotomicField(97));

> Order(e);

194

> time M := ModularSymbols(e^2,2);

Time: 0.320

> M;

Full modular symbols space of level 389, weight 2, character e^2,

and dimension 64 over Cyclotomic Field of order 97 and degree 96

> G<e> := DirichletGroup(37,CyclotomicField(36));

> time M := ModularSymbols(e,7); // weight 7

Time: 3.260

> M;

Full modular symbols space of level 37, weight 7, character e,

and dimension 38 over Cyclotomic Field of order 36 and degree 12

14

2.4 Efficiency Trick: Work Mod p

For many problems (e.g., related to Galois representations), computing with modular symbols

modulo p is enough, and can be vastly more efficient. If we create a group DirichletGroup

of Dirichlet characters over a finite field R, then the corresponding space of modular symbols is

a vector space over R. In Magma this vector space is defined by Algorithm 2.1 with K = R.

15

Listing 2.7 (Modular symbols modulo p).

> G<a,b,c> := DirichletGroup(2000,GF(5));

> Conductor(c);

5

> Order(c);

4

> time M := ModularSymbols(c,3);

Time: 5.070

> M;

Full modular symbols space of level 2000, weight 3, character c,

and dimension 1200 over Finite field of size 5

Most code views the base field as generic, so is the same for finite fields and Q(ζn).

16

Spurious Torsion

BIG WARNING: These spaces need not be a “mod p reduction” of the space in character-

istic 0. In particular when p is small it is possible that there is “spurious” torsion.

Listing 2.8 (Spurious torsion).

> function f(N,k)

return Dimension(ModularSymbols(N,k,GF(2))) -

Dimension(ModularSymbols(N,k));

end function;

> [N : N in [2..100] | f(N,2) gt 0];

[5, 10, 13, 17, 25, 26, 29, 34, 37, 41, 50, 53, 58, 61, 65, 73,

74, 82, 85, 89, 97]

In each case the dimension is one bigger, except for 65 and 85, when it is off by 3.

If you want to use modular symbols mod p as computed in Magma to “prove” a theorem, you

must understand the underlying theory.

For an application of using modular symbols mod p, see Buzzard-Stein, A Mod 5 Approach to

Artin’s Conjecture, which was the paper that motivated me writing all this code in the first place.

17

2.5 Hecke Operators on Modular Symbols

The spaces Mk(N, ε) are equipped with a commuting ring of Hecke operators Tn, for all

positive integers n. Magma computes these Hecke operators using Merel’s Heilbronn matrix

formulas. For each n, Merel defines a computable set Sn (in fact various sets) of matrices of

determinant n such that

Tn(x) =
∑

g∈Sn

x.g.

The sets Sn only depend on n, not on k, N, ε, and the cardinality of Sn is about O(n log(n)).

18

Heilbronn Matrices

The command to list the set Sn for a given n, returns the matrices as a sequence whose entries

are the integer sequences corresponding to the elements of Sn.

Listing 2.9 (Heilbronn matrices).

> HeilbronnMerel(2);

[

[1, 0, 0, 2],

[1, 0, 1, 2],

[2, 0, 0, 1],

[2, 1, 0, 1]

]

> #HeilbronnMerel(29);

199

> #HeilbronnMerel(10007);

337977

> #HeilbronnCremona(10007); // in some cases these can be used...

67698

19

Computing Hecke Operators

We next compute a Hecke operator on the space M5(13, ε):

Listing 2.10 (Hecke operators on modular symbols).

> G<eps> := DirichletGroup(13, CyclotomicField(4));

> M := ModularSymbols(eps, 5);

> T2 := HeckeOperator(M,2);

> Nrows(T2);

8

> T2[1];

(zeta_4 + 16 -3/4 1/4 3/4 -3/4 0 2 -3/2)

> F := CharacteristicPolynomial(T2);

> R<X> := Parent(F);

> Factorization(F);

[<X - 16*zeta_4 - 1, 1>,

<X - zeta_4 - 16, 1>,

<X^3 + (zeta_4 + 1)*X^2 - 23*zeta_4*X - 29*zeta_4 + 29, 2>]

The characteristic polynomial has 2 factors that appear with multiplicity one, which correspond

to Eisenstein series, and a factor with multiplicity 2, which corresponds to S5(13, ε).

20

2.6 Subspaces of Modular Symbols

The spaces Mk(N, ε) have many important subspaces. Magma computes the cuspidal sub-

space Sk(N, ε) as the kernel of a natural map to a space of boundary modular symbols; this

subspace is isomorphic to Sk(N, ε)⊕2.

Listing 2.11 (Cuspidal subspace).

> G<eps> := DirichletGroup(13, CyclotomicField(4));

> M := ModularSymbols(eps, 5);

> S := CuspidalSubspace(M); S;

Modular symbols space of level 13, weight 5, character eps, and

dimension 6 over Cyclotomic Field of order 4 and degree 2

> Factorization(CharacteristicPolynomial(HeckeOperator(S,2)));

[<X^3 + (zeta_4 + 1)*X^2 - 23*zeta_4*X - 29*zeta_4 + 29, 2>]

21

New and Old Subspaces of Modular Symbols

There are other interesting subspaces of modular symbols spaces, such as the new and old

subspaces. The new subspace is the kernel of all maps to lower level, and the old subspace is the

space generated by all images of maps from lower level. In the following example we compute

the new subspace of M2(33, 1), where 1 denotes the trivial character.

Listing 2.12 (New subspace).

> M := ModularSymbols(33); M;

Full modular symbols space for Gamma_0(33) of weight 2 and

dimension 9 over Rational Field

> NewSubspace(M);

Modular symbols space for Gamma_0(33) of weight 2 and dimension 3

over Rational Field

> Complement(NewSubspace(M));

Modular symbols space for Gamma_0(33) of weight 2 and dimension 6

over Rational Field

22

2.7 Decomposition of Modular Symbols Spaces

The most important operation on spaces of modular symbols is NewformDecomposition, which

involves writing Sk(N, ε) as a sum of spaces that cannot be split further using Hecke operators

of index coprime. Since the Hecke algebra is commutative, each subspace is preserved by the

Hecke operators.

Listing 2.13 (Newform Decomposition).

> S := CuspidalSubspace(ModularSymbols(33,2));

> NewformDecomposition(S);

[

Modular symbols space for Gamma_0(33) of weight 2 and

dimension 2 over Rational Field, // new

Modular symbols space for Gamma_0(33) of weight 2 and

dimension 4 over Rational Field // old

]

23

Listing 2.14 (Newform Decomposition II).

> time M := ModularSymbols(700,2,+1);

Time: 0.270

> time S := CuspidalSubspace(M);

Time: 0.190

> time D := NewformDecomposition(S);

Time: 10.990

> #D;

34

> D;

[

Modular symbols space for Gamma_0(700) of weight 2 and

dimension 1 over Rational Field,

Modular symbols space for Gamma_0(700) of weight 2 and

dimension 1 over Rational Field,

...

Modular symbols space for Gamma_0(700) of weight 2 and

dimension 6 over Rational Field

]

24

Remarks about the complexity of NewformDecomposition

• Probably the complexity of decomposition is about O((Nk)6), the running
time being dominated by the factorization of characteristic polynomials on a
space of dimension O(Nk). No such complexity analysis has been done, as
far as I know, except that Giesbrecht has given a algorithm (with complexity
analysis) for computing the rational Jordan form, which is a problem closely
related to decomposing modular symbols spaces.

• The precise algorithm used for decomposition in Magma was created and
implemented by Allan Steel, and I don’t completely understand it and think
it’s not published anywhere. Allan and I put a lot of work into optimizing
decomposition, since it is the main bottleneck in computations.

25

Source Code: Modular Symbols

The implementation of modular symbols is in the directory magma/package/Geometry/ModSym/.

I encourage you to browse the source code, starting with modsym.m and core.m.

Listing 2.15 (Source Code).

$ ls magma/package/Geometry/ModSym/*.m

analytic.m cusps.m inner_twists.m operators.m

arith.m decomp.m intersection_pairing.m period.m

boundary.m derivative.m linalg.m qexpansion.m

calc.m dims.m maps.m representation.m

charpolyhecke.m dirichlet.m mestre.m subspace.m

compgrp.m eisenstein.m modsym.m tests.m

core.m elliptic.m multichar.m verbose.m

These files total about 19000 lines, including comments. I think the only code that is closed off

in C are some of the functions from core.m, but the Magma implementations are still in core.m,

just commented out.

26

3 Modular Forms

3.1 Definitions

• For integers N , let

Γ0(N) =

{(

a b

c d

)

∈ SL2(Z) :

(

a b

c d

)

≡

(

∗ ∗

0 ∗

)

(mod N)

}

.

• The finite-dimensional complex vector space Mk(N, ε) of modular forms of level N ,

weight k, and character ε is the set of holomorphic functions f on the extended upper half

plane

h∗ = {z ∈ C : Im(z) > 0} ∪ P1(Q)

such that for all g = (a b
c d) ∈ Γ0(N),

f |[g]k(z) := det(g)k−1(cz + d)−kf(g(z)) = ε(g)f(z),

where ε(g) = ε(a).

• A cusp form is a modular form such that f(P1(Q)) = {0}, and we denote the subspace

of cusp forms by Sk(N, ε).

27

q-Expansions and Hecke Operators

• Any f ∈ Mk(N, ε) has a q-expansion (Fourier series)

f(z) =

∞
∑

n=0

anq
n, q(z) = e2πiz.

The cusp forms all satisfy a0 = 0, but not conversely.

• The Hecke operators Tp, for p prime, act on Mk(N, ε) by

Tp(f) =

∞
∑

n=0

anpq
n + ε(p)pk−1f(qn),

and there is a similar formula for Tn for any n.

• If f ∈ Sk(N, ε) is an eigenform for Tn with a1 = 1, then Tn(f) = anf . So to give such

an f is the same as giving a system of Hecke eigenvalues.

28

3.2 Computing Modular Forms Using MAGMA

Given N, k, ε, Magma can compute a basis of power series expensions as above, modulo a

power of q. One way to compute a basis for all cusp forms is to use the qExpansionBasis

command, applied to the cuspidal subspace of a space of modular symbols.

Listing 3.1 (Basis of q-Expansions).

> G<eps> := DirichletGroup(13,CyclotomicField(6));

> M := ModularSymbols(eps,2, +1);

> S := CuspidalSubspace(M);

> S;

Modular symbols space of level 13, weight 2, character eps, and

dimension 1 over Cyclotomic Field of order 6 and degree 2

> qExpansionBasis(S,4);

[q + (-zeta_6 - 1)*q^2 + (2*zeta_6 - 2)*q^3 + O(q^4)]

The +1 in the ModularSymbols command computes the quotient

Mk(N, ε)/(∗ − 1),

which is all that is needed to compute Sk(N, ε), since M2(13, ε)/(∗−1) ∼= Sk(N, ε)⊕Ek(N, ε)′,

where Ek(N, ε)′ is a certain subspace of the Eisenstein space.

29

Listing 3.2 (More q-Expansions).

> M := ModularSymbols(33,2);

> S := CuspidalSubspace(M);

> qExpansionBasis(S,10);

[q - q^5 - 2*q^6 + 2*q^7 - 2*q^8 - q^9 + O(q^10),

q^2 - q^4 - q^5 - q^6 + 2*q^7 - q^8 + q^9 + O(q^10),

q^3 - 2*q^6 - q^9 + O(q^10)]

> qExpansionBasis(OldSubspace(S),10);

[q - 2*q^2 + 2*q^4 + q^5 - 2*q^7 - 3*q^9 + O(q^10),

q^3 - 2*q^6 - q^9 + O(q^10)]

> qExpansionBasis(NewSubspace(S),10);

[q + q^2 - q^3 - q^4 - 2*q^5 - q^6 + 4*q^7 - 3*q^8 + q^9 +

O(q^10)]

30

In this example we compute a basis of q-expansion corresponding to a simple factor of S2(389, 1).

Listing 3.3 (Basis of q-Expansions).

> M := ModularSymbols(389,2, 1);

> S := CuspidalSubspace(M);

> D := Decomposition(S,2);

> V := D[3]; V;

Modular symbols space for Gamma_0(389) of weight 2 and dimension

3 over Rational Field

> qExpansionBasis(V,10);

[q - q^5 - 2*q^6 - q^7 + 2*q^8 - q^9 + O(q^10),

q^2 - q^3 + O(q^10),

q^4 - q^5 - q^6 + q^9 + O(q^10)]

> qEigenform(V,6); // eigenform in span of above q-expansions

q + a*q^2 - a*q^3 + (a^2 - 2)*q^4 + (-a^2 + 1)*q^5 + O(q^6)

> BaseRing(Modulus(Parent($1)));

Univariate Quotient Polynomial Algebra in a over Rational Field

with modulus a^3 - 4*a - 2

31

Modular Forms Package

I wrote a package for computing with modular forms that makes no direct reference to mod-

ular symbols, but which is mostly built on the modular symbols machinery. The command

ModularForms(N,k,eps) creates the free Z module

⊕

Gal(Q/Q)-conjugates ε′

Mk(N, ε′)

⋂

Z[[q]],

where the sum is over all Gal(Q/Q)-conjugates ε′ of ε. This has rank dim(Mk(N, ε)) · d, where

d is the number of conjugates of ε.

WARNING. Defining ModularForms(N,k,eps) this way was probably a bad design de-

cision on my part(!), and I should have defined ModularForms(N,k,eps) to be Mk(N, ε) as

a Q(ε)-vector space. I might change this (while keeping the old definition as an option). The

advantage of the choice I made is that, e.g., reduction modulo p make sense.

32

Listing 3.4 (Spaces of Modular Forms).

> M := ModularForms(33,2); M;

Space of modular forms on Gamma_0(33) of weight 2 and

dimension 6 over Integer Ring.

> Basis(M);

[1 + O(q^8),

q - q^5 + 2*q^7 + O(q^8),

q^2 + 2*q^7 + O(q^8),

q^3 + O(q^8),

q^4 + q^5 + O(q^8),

q^6 + O(q^8)]

> SetPrecision(M,15);

> Basis(M);

[1 + 12*q^11 + O(q^15),

q - q^5 + 2*q^7 - 2*q^8 + q^9 - 2*q^10 - q^11 + 4*q^12 + 4*q^14 + O(q^15),

q^2 + 2*q^7 + q^8 + q^9 + 2*q^10 + q^11 + q^12 + 2*q^14 + O(q^15),

q^3 + q^9 - 2*q^11 + 4*q^12 + O(q^15),

...]

33

Newforms

A newform is an element f ∈ Sk(N, ε) that is in the kernel of the maps to all levels properly

dividing N , is an eigenvector for every Hecke operator normalized so the coefficient of q is 1.

One can compute Eisenstein series and a list of all newforms (gathered together in Gal(Q/Q)-

conjugacy classes) using the Newforms command.

In the following example, we compute the two newforms in M12(1). One newform is the Ra-

manajun ∆ function, and the other is the normalized Eisenstein series of weight 12.

Listing 3.5 (Newforms).

> M := ModularForms(1,12);

> Newforms(M);

[* [*

q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7

+ O(q^8)

], [

691/65520 + q + 2049*q^2 + 177148*q^3 + 4196353*q^4 +

48828126*q^5 + 362976252*q^6 + 1977326744*q^7 + O(q^8)

*] *]

34

In the next example, we compute S2(Γ0(23)), which is spanned by two conjugate eigenforms.

Listing 3.6 (Conjugate eigenforms).

> M := ModularForms(23,2);

> S := CuspidalSubspace(M);

> S;

Space of modular forms on Gamma_0(23) of weight 2 and dimension 2

over Integer Ring.

> Newforms(S);

[* [*

q + a*q^2 + (-2*a - 1)*q^3 + (-a - 1)*q^4 + 2*a*q^5 + (a - 2)*q^6

+ (2*a + 2)*q^7 + O(q^8),

q + b*q^2 + (-2*b - 1)*q^3 + (-b - 1)*q^4 + 2*b*q^5 + (b - 2)*q^6

+ (2*b + 2)*q^7 + O(q^8)

*] *]

> Parent($1[1][1]);

Space of modular forms on Gamma_0(23) of weight 2 and dimension 2

over Number Field with defining polynomial x^2 + x - 1 over the

Rational Field.

35

Conjugate Eigenforms??

Listing all the conjugate newforms is somewhat silly, because they all look identical; they are

just defined over different copies of the field generated by the Fourier coefficients. In particular,

adding the two newforms together is not defined in Magma (it doesn’t give the trace).

Listing 3.7 (Arithmetic Problem).

> f := Newforms(S)[1][1]; g := Newforms(S)[1][2];

> f + g;

>> f + g;

^

Runtime error in ’+’: Arguments 1 and 2 have incompatible

coefficient rings.

Given how well-developed number fields are in Magma, I could probably improve this.

36

Computation of Embeddings
For many computations that really require arithmetic with all the conjugates of a form, one should

just embed the forms in the complex numbers or a p-adic field, where p split:

Listing 3.8 (Complex and p-adic Embeddings).

> ComplexEmbeddings(f);

[* [* q - 1.618033988749894848204586834365638117720*q^2 + ...

q + 0.618033988749894848204586834365638117720*q^2 - ... *] *]

> $1[1][1] + $1[1][2];

2*q - q^2 - q^4 - 2.0...*q^5 -

> pAdicEmbeddings(f,2);

[* [* O(2^20) + (1 + O(2^20))*q + ((1 + O(2^20))*a + O(2^20))*q^2 + ...

O(2^20) + (1 + O(2^20))*q + ((1 + O(2^20))*b + O(2^20))*q^2 + ... *] *]

> pAdicEmbeddings(f,11);

[* [* O(11^20) + (1 + O(11^20))*q + (273946294811098331671 + ...

], [O(11^20) + (1 + O(11^20))*q - (273946294811098331672 + ... *] *]

> $1[1][1] + $1[2][1];

O(11^20) + (2 + O(11^20))*q - (1 + O(11^20))*q^2 + ...

The output of the embedding commands are also modular forms, so we can compute them to

higher precision, etc.

37

Computation of Reductions Modulo p

We can also reduce newforms to characteristic p. In general, this uses computation of a p-maximal

order in a number field (via Lenstra’s algorithm?).

Listing 3.9 (Reductions Modulo p).

> Reductions(f,2);

[* [* q + $.1*q^2 + q^3 + $.1^2*q^4 + $.1*q^6 + O(q^8),

q + $.1^2*q^2 + q^3 + $.1*q^4 + $.1^2*q^6 + O(q^8) *] *]

> Reductions(f,11);

[* [* q + 7*q^2 + 7*q^3 + 3*q^4 + 3*q^5 + 5*q^6 + 5*q^7 + O(q^8) *],

[* q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + q^6 + 8*q^7 + O(q^8) *] *]

> f11 := Reductions(f,11)[1][1];

> Type(f11);

ModFrmElt

> f11;

q + 7*q^2 + 7*q^3 + 3*q^4 + 3*q^5 + 5*q^6 + 5*q^7 + O(q^8)

> PowerSeries(f11,15);

q + 7*q^2 + 7*q^3 + 3*q^4 + 3*q^5 + 5*q^6 + 5*q^7 + 7*q^8 + 2*q^9

+ 10*q^10 + 4*q^11 + 10*q^12 + 3*q^13 + 2*q^14 + O(q^15)

38

Confusing Definition
This example illustrates how ModularForms(N,k,eps) is (confusingly!?) defined to be the

direct sum of spaces for the conjugates of ε.

Listing 3.10 (Modular forms are over the integers).

> G<eps> := DirichletGroup(13, CyclotomicField(6));

> M := ModularForms(eps);

> BaseRing(M);

Integer Ring

> S := CuspidalSubspace(M);

> S;

Space of modular forms on Gamma_1(13) with character all

conjugates of [eps], weight 2, and dimension 2 over Integer Ring.

> Basis(S);

[

q - 4*q^3 - q^4 + 3*q^5 + 6*q^6 + O(q^8),

q^2 - 2*q^3 - q^4 + 2*q^5 + 2*q^6 + O(q^8)

]

Recall from before though that the dimension of S2(13, ε) as a Q(ζ6)-vector space is 1, hence

the confusion.

39

Source Code: Modular Forms

The implementation of modular forms is in the directory magma/package/Geometry/ModFrm/.

I encourage you to browse the source code, starting with creation.m.

Listing 3.11 (Source Code).

$ ls magma/package/Geometry/ModFrm/*.m

abelian_varieties.m eisenstein.m modular_symbols.m relations.m

arithmetic.m elliptic_curve.m newforms.m subspaces.m

bases.m hecke_algebras.m operators.m tests.m

categories.m input_output.m p-adic.m verbose.m

congruences.m l_series.m predicates.m weight1table.m

creation.m level1.m q-expansions.m

degeneracy_maps.m misc.m qexp_mappings.m

These files total about 11000 lines, including comments. Nothing has been moved to C code.

40

4 Modular Abelian Varieties

This section is about modular abelian varieties, and some fairly general algorithms for computing

with them in Magma. Much of this is new, and hasn’t been explained anywhere, so I will focus

more on the background, the algorithms, and what is implemented, rather than on usage details.

An abelian variety is a projective variety that is equipped with an
algebraic group structure. (The group structure is necessarily abelian.)

The abelian varieties of dimension 1 are exactly the elliptic curves. Jacobians of curves of genus

> 1 are examples of abelian varieties of dimension > 1, and it is a theorem that every abelian

variety over an infinite field is a quotient of a Jacobian.

The modular Jacobians J1(N) are a special class of Jacobians that are very well understood

because of their connection with modular forms. The abelian variety J1(N) is the Jacobian of

the modular curve X1(N), which over C is the quotient of the extended upper half plane h∗ by

Γ1(N) =

{(

a b

c d

)

∈ SL2(Z) :

(

a b

c d

)

≡

(

1 ∗

0 1

)

(mod N)

}

.

An abelian variety A over a number field K is a modular abelian
variety of level N if it is a quotient of J1(N).

41

More Background

• Generalized Modularity Conjecture (Ribet): There is an analogue of the Shimura-

Taniyama-Weil conjecture for abelian varieties. Over Q, the simple modular abelian vari-

eties A are supposed to be the simple abelian varieties of GL2-type, i.e., those whose endo-

morphism ring is an order in a number field of degree dim(A). For more about this open

conjecture, see Ribet’s beautiful paper Abelian Varieties over Q and Modular Forms.

• The new quotient of J1(N) breaks up as a product
∏

Af corresponding to the Gal(Q/Q)-

conjugacy classes of newforms f . The newform abelian varieties Af are simple abelian

varieties over Q and the dimension of Af is the degree of the field generated by the coefficients

of f . For example, Wiles et al. proved that the isogeny classes of elliptic curves over Q are

in bijection with the Af with f ∈ Z[[q]].

Motivated by my research on visibility of Shafarevich-Tate groups, last summer I designed and

implemented a Magma package for doing fairly general computations with modular abelian

varieties, which builds on the modular symbols machinery described earlier in this paper. Also,

there are many functions that take spaces of modular symbols as input, and compute some

quantity associated to the corresponding modular abelian varieties.

42

What we wish we could compute...

1. (*) The modular degree, i.e., the square root of the degree of the natural map A → A∨

induced by virtual of A being modular.

2. Defining equations for A.

3. (*) The Birch and Swinnerton-Dyer quotient L(A, 1)/ΩA.

4. (*?) The order of vanishing r = ords=1 L(A, s) and leading coefficient Lr(A, 1)/r! of the

expansion of L(A, s) about s = 1.

5. The Mordell-Weil group of A and the regulator RegA.

6. The p-adic L-functions attached to A.

7. (*?) The Tamagawa numbers cp of A.

8. (*?) The torsion subgroup A(Q)tor.

9. (*) The intersection A ∩ B, where A, B ⊂ J .

10. (*) Whether A is isomorphic to A∨, and the minimal degree of a homomorphism A → A∨.

11. (?) Enumeration of the isogeny class of A over Q. (Perhaps via images of A under natural

maps into other modular Jacobians, and quotients of A by carefully chosen finite subgroups.)

43

The Situation for dim(A) = 1: Except for (4 and 6), methods to solve the above problems

are known when dim(A) = 1, and they would provably terminate if we knew finiteness of X(A).

So far the situation for modular abelian varieties isn’t nearly as complete. My impression is

that even for elliptic curves, unfortunately nobody has any clue about how to provably compute

r = ords=1 L(A, s) when r > 3; however, if we don’t care about provable correctness, then

computing r is straightforward (see, e.g., Cremona’s book).

The items in the above list indicated with a (*) are implemented in Magma for simple modular

abelian varieties over Q, and those with (*?) are partially implemented:

• Equations: Substantial work has been done on finding defining equations when dim(A)

is small and A = Jac(X) for some curve X, e.g., by the researchers in Essen. The paper

Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of

genus 2 curves then discussed methods for computing such an A when X has genus 2,

along with the Cassels-Flynn book and many other papers. In contrast to this trend, my

approach has been to compute as much as possible about A without writing down any

defining questions; instead I exploit the special structure coming from the modularity of A.

Computing the regulator and Mordell-Weil group seems to require having defining equations.

• p-adic L-functions: Nothing is implemented for p-adic L-functions, but the foundation

is there, and Robert Pollack would likely make an amazingly p-adic L-function package if

John Cannon invites him to Sydney (hint, hint).

44

• Tamagawa Numbers: The algorithm for computing component groups and Tamagawa

numbers is in my thesis. It computes the order of the component group at primes p such that

Af has multiplicative reduction and Af is a quotient of J0(N). It can find the Tamagawa

number up to a power of 2, and in many cases it can also find the exact Tamagawa number.

The reason it doesn’t find the Tamagawa number in all cases is because the algorithm finds

the order of the group, not its group structure, and the Tamagawa number is either the

order of the group or the order of the 2-torsion subgroup. When the level is not prime, this

algorithm relies on David Kohel’s Magma package for computing with ideal classes in an

Eichler order in a quaternion algebra. (Kohel’s package initially attracted me to Magma.)

• Isogenies: When A is simple, I implemented an algorithm in Magma for computing the

exact endomorphism ring of A. Then computing the minimal degree of any homomorphism

A → A∨ can be reduced to finding all solutions to a Diophantine norm equation, up to units.

Fortunately Magma contains code for solving norm equations. This summer Tseno Tselkov

did a project with me, in which he implemented an algorithm to find the minimal degree

of an isogeny between Af and A∨
f (which is not yet in the standard Magma distribution).

Very surprisingly, in all the data he computed, when f ∈ S2(Γ0(N)), the minimal degree is

a power of 2 (!!?). This work is a hopeful first step toward an algorithm to enumerate every

element of the isogeny class of any Af .

45

4.1 Modular Abelian Varieties and Modular Symbols

The following example illustrates computation of most of the starred items in the list. In each

case we create a simple space V of modular symbols; associated to V there is a newform f , and

associated to f there is an abelian variety Af , which in the examples is an optimal quotient of

J0(N). The space of modular symbols (with integral structure) “is” the homology of Af , which

is a rich object equipped with structure coming from the modularity of Af . For example, the

homology has a Hecke action.

We compute with simple factors of J0(389) using commands applied to spaces of modular symbols

(note that 389 is prime). In Section we will do the same computations but using the modular

abelian varieties package, which provides a nicer wrapper around these functions (and adds other

things that are not possible using just modular symbols). However, to most effectively use

Magma, it is best to know about both ways of doing these computations.

We have

J0(389) = A1 × A2 × A3 × A6 × A20,

where Ad is a simple abelian variety of dimension d.

46

Listing 4.1 (Modular abelian varieties via modular symbols).

> M := ModularSymbols(389);

> S := CuspidalSubspace(M);

> D := NewformDecomposition(S);

> [Dimension(A)/2 : A in D]; // dimensions of abvars A_f

[1, 2, 3, 6, 20]

> [ModularDegree(D[i]) : i in [1..#D]];

[40, 144, 992, 17856, 20480]

> [LRatio(D[i],1) : i in [1..#D]]; // BSD Ratios L(A_f,1)/Omega

[0, 0, 0, 0, 51200/97]

> Factorization(51200);

[<2, 11>, <5, 2>]

> LSeriesLeadingCoefficient(D[1],1,100);

0.75931650029224679065762600319 2

> E := EllipticCurve(A); AnalyticRank(E); // Watkin’s new code

2 0.7593000000

> LSeriesLeadingCoefficient(D[2],1,100);

1.487184621319346836916654326667 1

47

Listing 4.2 (Modular abelian varieties via modular symbols (cont)).

> TamagawaNumber(D[1],389); // c_{389} = 1 for elliptic curve

1

> TamagawaNumber(D[5],389); // c_{389} = 97 for 20-dim quotient

97

> TorsionBound(D[5],13); // multiple of order of torsion

97

> #RationalCuspidalSubgroup(D[5]); // divisor of order of torsion

97

> Invariants(IntersectionGroup(D[1],D[2]));

[2, 2]

> Invariants(IntersectionGroup(D[1],D[5]));

[20, 20]

Remark 4.3. If E is the elliptic curve factor and A is the 20-dimensional factor, then the

above computation, the BSD conjecture, and visibility theory imply that X(A) = 52 · 2?.

Assuming no conjectures I can also prove that

(Z/5Z)2 ∼= E(Q)/5E(Q) ⊂ X(A).

48

4.2 The Modular Abelian Varieties Package

Given a Dirichlet character ε of modulus N , there is an abelian variety J(N, ε) whose rational

homology corresponds to S2(N, ε) viewed as a Q-vector space; thus J(N, ε) is an abelian

variety over Q (not Q(ε)!) that is isogenous to a product of abelian varieties Af attached to

the Gal(Q/Q)-conjugacy classes of newforms of level dividing N with character ε.

If A ⊂ J(N, ε) is an abelian subvariety, then the image of H1(A,Q) in S2(N, ε) is a vector

subspace VA, and A is determined by VA.

An explicitly given modular abelian variety is a modular abelian variety B that is

specified by giving a vector subspace V ⊂ S2(N, ε) that corresponds to an abelian variety

A ⊂ J(N, ε) and a finite subgroup G ⊂ A. Then B ∼= A/G. Every modular abelian variety

can be specified in this way, though it can be a highly nontrivial problem to figure out how.

For example, Jaocbians of Shimura curves are modular abelian varieties, but determining them

explicitly in terms of abelian varieties J(N, ε) is nontrivial (cf. David Helm’s Ph.D. thesis).

The following code illustrates the computations that we did above, but instead uses the modular

abelian varieties package:

49

Listing 4.4 (Modular abelian varieties package).

> J := JZero(389); J;

Modular abelian variety JZero(389) of dimension 32 and level 389

over Q

> D := Decomposition(J);

> [Dimension(A) : A in D];

[1, 2, 3, 6, 20]

> [ModularDegree(A) : A in D];

[40, 144, 992, 17856, 20480]

> [LRatio(A,1) : A in D];

[0, 0, 0, 0, 51200/97]

> L := LSeries(D[1]); L;

L(389A,s): L-series of Modular abelian variety 389A of dimension

1, level 389 and conductor 389 over Q

> LeadingCoefficient(L,1,200); // slow, since doesn’t use Watkins (but *general*)

0.75931650029224679065762600319 2

> TamagawaNumber(D[1],389);

1 1 true

50

Listing 4.5 (Modular abelian varieties package (cont)).

> TamagawaNumber(D[5],389);

97 97 true

> TorsionLowerBound(D[5]);

97

> TorsionMultiple(D[5]);

97

> G := RationalCuspidalSubgroup(D[5]); G;

Finitely generated subgroup ... with invariants [97]

> B := D[5]/G; B; // quotients by anything are defined.

Modular abelian variety of dimension 20 and level 389 over Q

> H := D[1] meet D[5]; H; // takes a while

Finitely generated subgroup ... with invariants [20, 20]

Remark 4.6. I found (trivial-to-fix) bugs in my implementation of ModularDegree and

LeadingCoefficient functions while preparing this talk; if you try the above example in

Magma V2.11-6 you will get the wrong answers. I’ll upload a fix right after this conference.

51

The modular abelian varieties package allows for creation of much more general abelian varieties

than the modular symbols package; for example, it supports arbitrary finite direct sums and

quotients by finite subgroups. Also, it includes explicit computation of endomorphism rings and

hom rings over Q.

Listing 4.7 (Computation of endomorphism ring).

> J := JZero(22);

> [Matrix(phi) : phi in Basis(End(J))];

...

This gives the following four matrices as generators:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,

0 1 0 1

0 0 0 0

1 0 1 −1

0 1 0 1

,

0 1 0 −1

0 1 0 0

−1 2 −1 1

−1 1 0 0

,

0 1 −2 1

−1 2 −1 0

−1 0 1 −1

0 −1 1 −1

.

52

Also one can do new computations with endomorphism rings. For example, the following is a

table of the index of the Hecke algebra in its saturation in End(J0(N)), which is a quantity that

controls the relation between the modular degree and congruences (the “congruence modulus”):

Listing 4.8 (Index of Hecke Algebra in Saturation).

> function f(N)

J := JZero(N);

T := HeckeAlgebra(J);

return Index(Saturation(T),T);

end function;

> for N in [1..120] do print N, f(N); end for;

...

This results in the following table, which suggests that if p | f(N) is a prime, then p2 | 4 · N ,

a fact closely related to what Ken Ribet proved at the Raynaud birthday conference in Orsay a

few years ago. Also, Mazur proved that f(p) = 1 when p is prime.

53

N f(N)

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

13 1

14 1

15 1

16 1

17 1

18 1

19 1

20 1

N f(N)

21 1

22 1

23 1

24 1

25 1

26 1

27 1

28 1

29 1

30 1

31 1

32 1

33 1

34 1

35 1

36 1

37 1

38 1

39 1

40 1

N f(N)

41 1

42 1

43 1

44 2

45 1

46 2

47 1

48 1

49 1

50 1

51 1

52 1

53 1

54 3

55 1

56 2

57 1

58 1

59 1

60 2

N f(N)

61 1

62 2

63 1

64 2

65 1

66 1

67 1

68 2

69 1

70 1

71 1

72 2

73 1

74 1

75 1

76 2

77 1

78 2

79 1

80 4

N f(N)

81 1

82 1

83 1

84 2

85 1

86 1

87 1

88 8

89 1

90 1

91 1

92 16

93 1

94 4

95 1

96 8

97 1

98 1

99 9

100 1
54

Toward a Theory over Number Fields

These are three open problems whose solution is needed in order to have a good theory for

computing with modular abelian varieties over number fields.

1. (Endomorphism Ring) Find an efficient way to compute the endomorphism ring

End(Af/K). By explicit, we mean give generators as a subgroup of End(H1(A,Z)). This

ring can be computed using the Ribet-Shimura theory of inner twists, but the formulas they

give translated to modular symbols are very slow; one needs a direct Manin symbols formula.

2. (Simple Decomposition) Suppose A is an abelian variety over a number field K, that

we have explicit generators for End(A), and that A is isogenous to a power Bn of a simple

abelian variety B. Determine B explicitly and find an explicit isogeny between A and Bn.

This boils down to a characteristic 0 “meataxe”, which is something Allan Steel has been

working on.

3. (General Isomorphism Testing) Suppose A and B are explicitly given modular abelian

varieties. Decide whether two explicitly given modular abelian varieties are isomorphic. (I

think I know how to do this unless some simple factor occurs with multiplicity bigger than 1

in the isogeny decomposition of both A and B.)

55

Source Code: Modular Abelian Varieties

The implementation of modular abelian varieties is in the directory magma/package/Geometry/ModAbVar/.

I encourage you to browse the source code, starting with modabvar.m.

Listing 4.9 (Source Code).

$ ls magma/package/Geometry/ModAbVar/*.m

arithabvar.m elt.m homspace.m misc.m periods.m

compgrp.m endo_alg.m inner_twists.m modabvar.m rings.m

complements.m fields.m linalg.m morphisms.m subgrp.m

decomp.m heegner.m lser.m new_old.m test.m

ellcrv.m homology.m map.m operators.m torsion.m

These files total about 14000 lines, including comments. Nothing has been moved to C code.

56

