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1 Introduction

Let E be an elliptic curve over Q given by a minimal Weierstrass equation and
suppose

P = (x, y) =

(

a

d2
,

b

d3

)

∈ E(Q),

with a, b, d ∈ Z and gcd(a, d) = gcd(b, d) = 1. The naive height of P is

h̃(P ) = log max{|a|, d2},

and the canonical height of P is

h(P ) = lim
n→∞

h(2nP )

4n
.

This definition is not good for computation, because 2nP gets huge very quickly,
and computing 2nP exactly, for n large, is not reasonable.
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In [Cre97, §3.4], Cremona describes an efficient method (due mostly to Silver-
man) for computing h(P ). One defines local heights ĥp : E(Q) → R, for all primes p,

and ĥ∞ : E(Q) → R such that

h(P ) = ĥ∞(P ) +
∑

ĥp(P ).

The local heights ĥp(P ) are easy to compute explicitly. For example, when p is a

prime of good reduction, ĥp(P ) = max{0,− ordp(x)} · log(p).

This talk is NOT about local heights ĥp, and we will not mention them any

further. Instead, this talk is about a canonical global p-adic height function

hp : E(Q) → Qp.

These height functions are genuine height functions; e.g., hp is a quadratic function,
i.e, hp(mP ) = m2h(P ) for all m. They appear when defining the p-adic regulators
that appear in p-adic analogues of the Birch and Swinnerton-Dyer conjecture, in
work of Mazur, Tate, Teitelbaum, Greenberg, Schneider, Perrin-Riou and many
other people.

Acknowledgement: Discussions with Mike Harrison, Nick Katz, and Christian
Wuthrich.
This is joint work with Barry Mazur and John Tate.

2 The p-Adic Cyclotomic Height Pairing

Let E be an elliptic curve over Q and suppose p ≥ 5 is a prime such that E has good
ordinary reduction at p. Suppose P ∈ E(Q) is a point that reduces to 0 ∈ E(Fp)
and to the connected component of EF`

at all bad primes `. We will define functions
logp, σ, and d below. In terms of these functions, the p-adic height of P is

hp(P ) =
1

p
· logp

(

σ(P )

d(P )

)

∈ Qp. (2.1)

The function hp satisfies hp(nP ) = n2hp(P ) for all integers n, so it extends to a
function on the full Mordell-Weil group E(Q). Setting

〈P, Q〉p =
1

2
· (hp(P + Q) − hp(P ) − hp(Q)),

we obtain a pairing on E(Q)/ tor, and the p-adic regulator is the discriminant of
this pairing (which is well defined up to sign). We have the following standard
conjecture about this height pairing.

Conjecture 2.1. The pairing 〈−,−〉p is nondegenerate.

2



Investigations into p-adic analogues of the Birch and Swinnerton-Dyer conjecture
for curves of positive rank inevitably lead to questions about this height pairings,
which motivate our interest in computing it.

We now define each of the undefined quantities in (2.1). The function logp :
Q∗

p → Qp is the unique group homomorphism with logp(p) = 0 that extends the
homomorphism logp : 1 + pZp → Qp defined by the usual power series of log(x)
about 1. Thus if x ∈ Q∗

p, we have

logp(x) =
1

p − 1
· logp(u

p−1),

where u = p− ordp(x) · x is the unit part of x, and the usual series for log converges
on up−1.

The denominator d(P ) is the positive square root of the denominator of the
x-coordinate of P .

The σ function is the most mysterious quantity in (2.1), and it turns out the
mystery is closely related to the difficulty of computing the p-adic number E2(E, ω),
where E2 is the p-adic weight 2 Eisenstein series. There are many ways to define or
characterize σ, e.g., [MT91] contains 11 different characterizations! Let

x(t) =
1

t2
+ · · · ∈ Z((t))

be the formal power series that expresses x in terms of t = −x/y locally near
0 ∈ E. Then Mazur and Tate prove there is exactly one function σ(t) ∈ tZp[[t]] and
constant c ∈ Zp that satisfy the equation

x(t) + c = −
d

ω

(

1

σ

dσ

ω

)

. (2.2)

This defines σ, and, unwinding the meaning of the expression on the right, it leads
to an algorithm to compute σ(t) to any desired precision, which we now sketch.

If we expand (2.2), we can view c as a formal variable and solve for σ(t) as a
power series with coefficients that are polynomials in c. Each coefficient of σ(t)
must be in Zp, so when there are denominators in the polynomials in c, we obtain
conditions on c modulo powers of p. Taking these together for many coefficients
eventually yields enough information to get c (mod pn), for a given n, hence σ(t)
(mod pn). However, this algorithm is extremely inefficient and its complexity is
unclear. Cristian Wuthrich, who has probably done more computations with this
method than anyone else (and has a nice PARI implementation), told me the fol-
lowing in email (Oct 2004):

“I believe that in the integrality algorithm, approximately pn coefficients
of the sigma function have to be computed to get c up to pn (which gives
the height up to pn+1). i.e. it is hopelessly ineffective for p > 100.”
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For the last 15 or 20 years, the above unsatisifactory algorithm has been the
standard one for computing p-adic heights, e.g., when investigating p-adic analogues
of the BSD conjecture.

Due to a fortuitous combination of events, the situation recently improved...

3 Using Cohomology to Compute σ

Suppose that E is an elliptic curve over Q given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Let x(t) be the formal series as before, and set

℘(t) = x(t) +
a2

1 + 4a2

12
∈ Q((t)).

One can show that the function ℘ satisfies (℘′)2 = 4℘3 − g2℘ − g3, etc.; it’s the
analogue of the usual complex ℘-function. In [MT91], Mazur and Tate prove that

x(t) + c = ℘(t) +
1

12
· E2(E, ω),

where E2(E, ω) is the value of the Katz p-adic weight 2 Eisenstein series at (E, ω),
and the equality is of elements of Qp((t)). Thus computing the mysterious c is
equivalent to computing the p-adic number E2(E, ω) ∈ Zp.

“The” weight 2 Eisenstein appears in many ways. In the context of clssical
modular forms, the function

E2(z) = 1 − 24
∞

∑

n=1

σ1(n)qn

is holomorphic on h, but is not a modular form of level 1. There exists a nonzero
constant A such that

F2(z) = E2(z) +
A

πy
y = Im(z)

is not holomorphic, but one can show that it transforms like a modular form of
level 1 and weight 2. Thus for any integer N > 1, the difference

F2(z) − NF2(Nz) = E2(z) − NE2(Nz)

is a modular form for Γ0(N). However, in the context of Katz’s p-adic modular forms
(i.e., functions on pairs (E, ω)), there is a p-adic Eisenstein series E2 of level 1. It’s
q-expansion is

E2(Tate(q), ωcan) = 1 − 24
∞

∑

n=1

σ1(n)qn,
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where Tate(q) is the Tate curve over Qp with parameter q and ωcan is the canonical
nonvanishing differential on the Tate curve.

This summer, Mazur, Tate, and I explored many ideas for computing E2(E, ω)
explicitly, where E is a curve with good ordinary reduction at p. Perhaps the
difficulty of computing E2(E, ω) is somehow intrinsic to the theory?

3.1 Katz’s Email

This section contains an email that Nick Katz sent out in response to a query from
Barry Mazur. It is the basis of the algorithm we will describe later.

Date: Thu, 8 Jul 2004 13:53:13 -0400

From: Nick Katz <nmk@Math.Princeton.EDU>

Subject: Re: convergence of the Eisenstein series of weight two

To: mazur@math.harvard.edu, nmkatz@Math.Princeton.EDU

Cc: tate@math.utexas.edu, was@math.harvard.edu

(I have edited the email below, to better fit the style of these notes.)
It seems to me you want to use the interpretation of P = E2 as the “direction of

the unit root subspace”; that should make it fast to compute. Concretely, suppose
we have a pair (E, ω) over Zp, and to fix ideas p is not 2 or 3. Then we write a
Weierstrass equation for E,

y2 = 4x3 − g2x − g3,

so that ω = dx/y, and we denote by η the differential xdx/y. Then ω and η form a
Zp basis of

H1 = H1
dR,

and the key step is to compute the matrix of absolute Frobenius. Here this map
is Zp-linear, since we are working over Zp; otherwise, if we were working over the
Witt vectors of an Fq, the map would only be σ-linear. This calculation goes fast,
because the matrix of Frobenius lives over the entire p-adic moduli space, and we
are back in the glory days of Washnitzer-Monsky cohomology (of the open
curve E −O).

Okay, now suppose we have computed the matrix of Frob in the basis ω, η. The
unit root subspace is a direct factor, call it U , of the H1, and we know that a
complimentary direct factor is the Zp span of ω. We also know that Frob(ω) lies in
p H1, and this tells us that, mod pn, the subspace U is the span of Frobn(η). What
this means concretely is that if we write, for each n,

Frobn(η) = anω + bnη,

then bn is a unit (congruent modulo p to the nth power of the Hasse invariant)
and that P is −12an/bn. See my Antwerp appendix and also my paper p-adic
interpolation of real analytic Eisenstein series.

So in terms of speed of convergence, once you have Frob, you have to iterate it
n times to calculate P (mod pn).
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3.2 The Algorithms

The following algorithms culminate in an algorithm for computing hp(P ) that in-
corporates Katz’s ideas with the discussion elsewhere in this talk. I have computed
σ and hp in numerous cases using the algorithm described below, and using my im-
plementations of the “integrality” algorithm described above and also Wuthrich’s
algorithm, and the results match. Tate has also done several computations of hp

using other methods, and again the results match. Note: The analysis of some of
the necessary precision is not complete below.

Kedlaya’s algorithm is an algorithm for computing zeta functions of hyperelliptic
curves over finite fields. An intermediate step in his algorithm is computation of the
matrix of absolute Frobenius on p-adic de Rham cohomology. In Kedlaya’s papers,
he determines the precision of various objects needed to compute this matrix to a
given precision.

The first algorithm computes the value E2(E, ω) using Kedlaya’s algorithm and
the method suggested by Katz in the email above.

Algorithm 3.1 (Evaluation of E2(E, ω)). Given an elliptic curve over Q and
prime p, this algorithm computes E2(E, ω) ∈ Qp. We assume that Kedlaya’s algorithm
is available for computing a presentation of the p-adic Monsky-Washnitzer cohomology
of E − {O} with Frobenius action.

1. Let c4 and c6 be the c-invariants of a minimal model of E. Set

a4 = −
c4

24 · 3
and a6 = −

c6

25 · 33
.

2. Apply Kedlaya’s algorithm to the hyperelliptic curve y2 = x3 + a4x + a6 (which
is isomorphic to E) to obtain the matrix M of the action of absolute Frobenius
on the basis

ω =
dx

y
, η =

xdx

y

to precision O(pn). We view M as acting from the left.

3. We know M to precision O(pn). Compute the nth power of M and let

(

a
b

)

be

the second column of Mn. Then Frobn(η) = aω + bη.

4. Output M and −12a/b (which is E2(E, ω)), then terminate.

The next algorithm uses Algorithm 3.1 to compute σ(t).

Algorithm 3.2 (The Canonical p-adic Sigma Function). Given an elliptic
curve E and a good ordinary prime p, this algorithm computes σ(t) ∈ Zp[[t]] modulo
(pn, tm) for any given positive integers n, m.

1. Using Algorithm 3.1, compute e2 = E2(E, ω) ∈ Zp to precision O(pn).
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2. Compute the formal expansion of x = x(t) ∈ Q[[t]] in terms of the local parameter
t = −x/y at infinity to precision O(tm).

3. Compute the formal logarithm z(t) = t + · · · ∈ Q((t)) to precision O(tm) using
that

z(t) =

∫

dx/dt

(2y(t) + a1x(t) + a3)
,

where x(t) = t/w(t) and y(t) = −1/w(t) are the formal x and y functions, and
w(t) is given by the explicit inductive formula in [Sil92, Ch. 7]. (Here t = −x/y
and w = −1/y and we can write w as a series in t.)

4. Using a power series “reversion” (functional inverse) algorithm, find the unique
power series F (z) ∈ Q[[z]] such that t = F (z). Here F is the reversion of z,
which exists because z(t) = t + · · · .

5. Set ℘(t) = x(t) + (a2
1 + 4a2)/12 ∈ Q[[t]] (to precision O(tm)), where the ai

are the coefficients of the Weierstrass equation of E. Then compute the series
℘(z) = ℘(F (z)) ∈ Q((z)).

6. Set g(z) =
1

z2
− ℘(z) +

e2

12
∈ Qp((z)). [Warning: The theory suggests the last

term should be −e2/12 but the calculations do not work unless I use the above
formula. There are probably two normalizations of E2 in the references.]

7. Set σ(z) = z · exp

(
∫ ∫

g(z) dz dz

)

∈ Qp[[z]].

8. Set σ(t) = σ(z(t)) ∈ t · Zp[[t]], where z(t) is the formal logarithm computed
above. Output σ(t) and terminate.

Remark 3.3. The trick of changing from ℘(t) to ℘(z) is essential so that we can
solve a certain differential equation using just operations with power series.

The final algorithm uses σ(t) to compute the p-adic height.

Algorithm 3.4 (p-adic Height). Given an elliptic curve E over Q, a good ordinary
prime p, and an element P ∈ E(Q), this algorithm computes the p-adic height hp(P ) ∈
Qp to precision O(pn).

1. [Prepare Point] Compute an integer m such that mP reduces to O ∈ E(Fp) and
to the connected component of EF`

at all bad primes `. For example, m could
be the least common multiple of the Tamagawa numbers of E and #E(Fp). Set
Q = mP and write Q = (x, y).

2. [Denominator] Let d be the positive integer square root of the denominator of x.

3. [Compute σ] Compute σ(t) using Algorithm 3.2, and set s = σ(−x/y) ∈ Qp.

4. [Logs] Compute hp(Q) =
1

p
logp

(s

d

)

, and hp(P ) =
1

m2
· hp(Q). Output hp(P )

and terminate.

7



4 Future Directions

In this section we discuss various directions for future investigation.

4.1 Log Convergence

Suppose Et is an elliptic curves over Q(t). It might be interesting to obtain formula
for E2(Et) as an element of Qp((t)). This might shed light on the analytic behavior of
the p-adic modular form E2, and on Tate’s recent experimental observations about
the behavior of the (1/j)-expansion of the weight 0 modular function E2E4/E6.
More precisely, Tate computed the expansion of E2E4/E6 in powers of 1/j for
p = 2, 3, 5, and observed very slow convergence. The rest of this section is very
closely based on an email from Tate about his observation.

Here’s a very small result concerning the p-adic nature of E2 for p = 2, 3, 5. For
the primes p ≤ 5 we can test the convergence of a weight 0 level 1 p-adic modular
function f (with poles only at infinity) by expanding in powers of z = 1/j. Say
f =

∑

∞

n=1 anzn. If f = zdg/dz for some formal series g =
∑

bnzn with p-integral
coefficients bn, then an = nbn, so for example apm = pmbpm is divisible by pm, which
is a tiny hint of f having “logarithmic” p-adic convergence.

Theorem 4.1. The form

f =
E2E4

E6
− 1

has this property, with g = 3 log(E4) divisible by 720 in Z2, Z3 and Z5.

I leave the proof as an exercise. The idea is that by well-known formulas, if
P = E2, Q = E4, and R = E6, then

q
dg

dq
= 3q

d log(Q)

dq
= 3q

dQ

Qdq
= P −

R

Q

and

q
dz

zdq
=

R

Q
.

Now divide the first equality by the second to get the result. Note that for p = 2
and 3, the result for n = pm seems just right. For f = PQ/R, it gives

v2(a2m) ≥ m + v2(720) = m + 4,

and similarly
v3(a3m) ≥ m + 2,

and those inequalities are equalities for 2m and 3m < 200.
For the record, in case it might give a clue to what is going on, experimentally

we have, for n < 200:
v2(an) = l2(n) + 3s2(n),
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where l2(n) = 1 + blog2(n)c and s(n) is the sum of the digits of n written in base 2.
Similarly for n < 200,

v3(an) = l3(n) + s3(n).

For p = 5 it seems that at least v5(an) ≥ l5(n); in fact, even

v5(an) ≥ l5(2n),

with likely equality for 2n = 5m − 1 and 5m + 1.

4.2 Connections with p-adic Birch and Swinnerton-Dyer

It would also be interesting to do many more computations in support of p-adic
analogues of the BSD conjectures of [MTT86], especially when E/Q has large rank.
Substantial theoretical work has been done toward these p-adic conjectures, and this
work may be useful to algorithms for computing information about Shafarevich-Tate
and Selmer groups of elliptic curves. For example, in [PR03], Perrin-Riou uses her
results about the p-adic BSD conjecture in the supersingular case to prove that
X(E/Q)[p] = 0 for certain p and elliptic curves E of rank > 1, for which the work
of Kolyvagin and Kato does not apply. Mazur and Rubin (with my computational
input) are also obtaining results that could be viewed as fitting into this program.

I have been involved with Andrei Jorza and Stephen Patrikas on a project to
verify the full Birch and Swinnerton-Dyer conjecture for all elliptic curves of con-
ductor ≤ 1000 and rank ≤ 1. There are many examples in which the rank is 1
and the upper bound coming from Kolyvagin’s Euler system is divisible by a prime
p ≥ 7, which also divides a Tamagawa number. The results of Kolyvagin and Kato
do not give a sufficiently tight upper bound on X(E/Q). However, discussions with
Greenberg, Pollack, Grigorov, and Perrin-Riou have convinced me that it might be
possible in many cases to do appropriate computations of p-adic heights and deriva-
tives of p-adic L-functions, combined with results of Kato and Schneider, and obtain
a sufficiently strong upper bounds on #X(E/Q).

4.3 Optimization

I would like to optimize the implementation of the algorithm. Probably the most
time-consuming step is computation of E2(E, ω) using Kedlaya’s algorithm. My
current implementation uses Michael Harrison’s implementation of Kedlaya’s algo-
rithm for y2 = f(x), with f(x) of arbitrary degree. (Michael Harrison was a Coates
student who was in industry for many years, and is now back.)

Perhaps implementing just what is needed for elliptic curves from Kedlaya’s
algorithm would be more efficient. Also, Harrison tells me his implementation isn’t
nearly as optimized as it might be.

4.4 Natural Generalizations

1. It might be possible to compute p-adic heights on Jacobians of hyperelliptic
curves.
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2. Formulate everything above over number fields, and extend to the case of
additive reduction.

3. What about when p is a prime of supersingular reduction?

5 Examples

In this section I show you examples of how to use the MAGMA package I wrote for
computing with p-adic heights, and give you a sense for how efficient it is.

> function EC(s) return EllipticCurve(CremonaDatabase(),s); end function;

> E := EC("37A");

> Attach("kedlaya.m"); // get this from me

> Attach("padic_height.m"); // get this from me

> P := good_ordinary_primes(E,100); P;

[ 5, 7, 11, 13, 23, 29, 31, 41, 43, 47, 53, 59, 61, 67, 71, 73,

79, 83, 89, 97 ]

> for p in P do time print p, regulator(E,p,10); end for;

5 22229672 + O(5^11)

Time: 0.040

7 317628041 + O(7^11)

...

89 15480467821870438719 + O(89^10)

Time: 1.190

97 -11195795337175141289 + O(97^10)

Time: 1.490

> E := EC("389A");

> P := good_ordinary_primes(E,100); P;

[ 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,

67, 71, 73, 79, 83, 89, 97 ]

> for p in P do time print p, regulator(E,p,10); end for;

5 -3871266 + O(5^11)

Time: 0.260

7 483898350 + O(7^11)

...

89 9775723521676164462 + O(89^10)

Time: 1.330

97 -13688331881071698338 + O(97^10)

Time: 1.820

> E := EC("5077A");

> P := good_ordinary_primes(E,100); P;

[ 5, 7, 11, 13, 17, 19, 23, 29, 31, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97 ]

> for p in P do time print p, regulator(E,p,10); end for;
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5 655268*5^-2 + O(5^7)

Time: 0.800

7 -933185758 + O(7^11)

...

89 -3325438607428779200 + O(89^10)

Time: 1.910

97 -5353586908063282167 + O(97^10)

Time: 2.010

--------

> E := EC("37A");

> time regulator(E,5,50);

115299522541340178416234094637464047 + O(5^51)

Time: 1.860

> Valuation(115299522541340178416234094637464047 - 22229672,5);

9

> time regulator(E,97,50);

-5019271523950156862996295340254565181870308222348277984940964806\

97957622583267105973403430183075091 + O(97^50)

Time: 31.7
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