Computing Bernoulli Numbers

William Stein

(joint work with Kevin McGown of UCSD)

February 16, 2006
Bernoulli Numbers

Defined by Jacques Bernoulli in posthumous work *Ars conjectandi* Bale, 1713.

\[
\frac{x}{e^x - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n
\]

\[
B_0 = 1, \quad B_1 = -\frac{1}{2}, \quad B_2 = \frac{1}{6}, \quad B_3 = 0, \quad B_4 = -\frac{1}{30},
\]

\[
B_5 = 0, \quad B_6 = \frac{1}{42}, \quad B_7 = 0, \quad B_8 = -\frac{1}{30}, \quad B_9 = 0,
\]
Connection with Riemann Zeta Function

For integers \(n \geq 2 \) we have

\[
\zeta(2n) = \frac{(-1)^{n+1}(2\pi)^{2n}}{2 \cdot (2n)!} B_{2n}
\]

\[
\zeta(1 - n) = -\frac{B_n}{n}
\]

So for \(n \geq 2 \) even:

\[
|B_n| = \frac{2n!}{(2\pi)^n} \zeta(n) = \pm \frac{n}{\zeta(1 - n)}.
\]
Computing Bernoulli Numbers – say B_{500}

sage: a = maple('bernoulli(500)') # Wall time: 1.35
sage: a = maxima('bern(500)') # Wall time: 0.81
sage: a = maxima('burn(500)') # broken...
sage: a = magma('Bernoulli(500)') # Wall time: 0.66
sage: a = gap('Bernoulli(500)') # Wall time: 0.53
sage: a = mathematica('BernoulliB[500]') # Wall time: 0.18
 calcbn (http://www.bernoulli.org) # Time: 0.020
sage: a = gp('bernfrac(500)') # Wall time: 0.00 ?!
Computing Bernoulli Numbers – say B_{1000}

sage: a = maple('bernoulli(1000)') # Wall time: 9.27
sage: a = maxima('bern(1000)') # Wall time: 5.49
sage: a = magma('Bernoulli(1000)') # Wall time: 2.58
sage: a = gap('Bernoulli(1000)') # Wall time: 5.92
sage: a = mathematica('BernoulliB[1000]') # W time: 1.01
 calcbn (http://www.bernoulli.org) # Time: 0.06
sage: a = gp('bernfrac(1000)') # Wall time: 0.00?!

NOTE: Mathematica 5.2 is much faster than Mathematica 5.1 at computing Bernoulli numbers, and the timing is almost identical to PARI (for $n > 1000$), though amusingly Mathematica 5.2 is slow for $n < 1000$!
World Records?

Largest one ever computed was $B_{5000000}$ by O. Pavlyk, which was done in Oct. 8, 2005, and whose numerator has 27332507 digits. Computing B_{10^7} is the next obvious challenge.

Bernoulli numbers are really big!

Sloane Sequence A103233:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a(n)$</td>
<td>1</td>
<td>1</td>
<td>83</td>
<td>1779</td>
<td>27691</td>
<td>376772</td>
<td>4767554</td>
<td>???</td>
</tr>
</tbody>
</table>

Here $a(n) = $ Number of digits of numerator of B_{10^n}.
Number of Digits

Clausen and von Staudt: \(d_n = \text{denom}(B_n) = \prod_{\text{p-1|m}} p. \)

Number of digits of numerator is

\[
\left\lceil \log_{10}(d_n \cdot |B_n|) \right\rceil
\]

But

\[
\log(|B_n|) = \log\left(\frac{2n!}{(2\pi)^n \zeta(n)}\right)
= \log(2) + \sum_{m=1}^{n} \log(m) - \log(2) - n \log(\pi) + \log(\zeta(n)),
\]

and \(\zeta(n) \sim 1. \) In 10 minutes this gives \textit{two new entries} for Sloane's sequence:

\[
a(10^7) = 57675292 \quad \text{and} \quad a(10^8) = 676752609.
\]
Stark’s Observation (after talk)

Use Stirling’s formula, which, amusingly, involves small Bernoulli numbers:

$$\log(\Gamma(z)) = \frac{1}{\log(2\pi)} + \left(z - \frac{1}{2}\right) \log(z) - z + \sum_{n=1}^{\infty} \frac{B_{2n}}{2n(2n-1)z^{2n-1}}.$$

This would make computation of the number of digits of the numerator of B_n pretty easy. See http://mathworld.wolfram.com/StirlingsSeries.html
Tables?

I couldn’t find any interesting tables at all!

But from http://mathworld.wolfram.com/BernoulliNumber.html "The only known Bernoulli numbers B_n having prime numerators occur for $n=10, 12, 14, 16, 18, 36, \text{ and } 42$ (Sloane’s A092132) [...] with no other primes for $n \leq 55274$ (E. W. Weisstein, Apr. 17, 2005).”

So maybe 55274 is the biggest enumeration of B_k’s ever? Not anymore... since I just used SAGE to script a bunch of PARI’s on my new 64GB 16-core computer, and made a table of B_k for $k \leq 94000$. It’s very compressed but takes over 3.4GB.
Buhler et al.

Basically, compute $B_k \pmod p$ for all $k \leq p$ and p up to $16 \cdot 10^6$ using clever Newton iteration to find $1/(e^x - 1)$. In particular, “if g is an approximation to f^{-1} then ... $h = 2g - fg^2$” is twice as good. (They also gain a little using other tricks.)
Figure out why PARI is vastly faster than anything else at computing B_k and explain it to me.

Kevin McGown rose to the challenge.

```c
/* assume n even > 0. Faster than standard bernfrac for n >= 6 */
GEN bernfrac_using_zeta(long n)
{
    pari_sp av = avma;
    GEN iz, a, d, D = divisors(utoipos( n/2 ));
    long i, prec, l = lg(D);
    double t, u;

    d = utoipos(6); /* 2 * 3 */
    for (i = 2; i < l; i++) /* skip 1 */
    {
        ulong p = 2*itou(gel(D,i)) + 1;
        if (isprime(utoipos(p))) d = muliu(d, p);
    }
    /* 1.712086 = ??? */
    t = log( gtodouble(d) ) + (n + 0.5) * log(n) - n*(1+log2PI) + 1.712086;
    u = t / (LOG2*BITS_IN_LONG); prec = (long)ceil(u);
    prec += 3;
    iz = inv_szeta_euler(n, t, prec);
    a = roundr( mulir(d, bernreal_using_zeta(n, iz, prec)) );
    return gerepilecopy(av, mkfrac(a, d));
}
```
Compute $1/\zeta(n)$ to VERY high precision

/* 1/zeta(n) using Euler product. Assume n > 0.
 * if (lba != 0) it is log(bit_accuracy) we _really_ require */

GEN
inv_zeta_euler(long n, double lba, long prec)
{
 GEN z, res = cgetr(prec);
 pari_sp av0 = avma;
 byteptr d = diffptr + 2;
 double A = n / (LOG2*BITS_IN_LONG), D;
 long p, lim;

 if (!lba) lba = bit_accuracy_mul(prec, LOG2);
 D = exp((lba - log(n-1)) / (n-1));
 lim = 1 + (long)ceil(D);
 maxprime_check((ulong)lim);

 prec++;
 z = gsub(gen_1, real2n(-n, prec));
 for (p = 3; p <= lim;)
 {
 long l = prec + 1 - (long)floor(A * log(p));
 GEN h;

 if (l < 3) l = 3;
 else if (l > prec) l = prec;
 h = divrr(z, rpowuu((ulong)p, (ulong)n, l));
 z = subrr(z, h);
 NEXT_PRIME_VIADIFF(p,d);
 }
 affrr(z, res); avma = av0; return res;
}
What Does PARI Do?

Use

$$|B_n| = \frac{2^n!}{(2\pi)^n} \zeta(n)$$

and tightly bound precisions needed to compute each quantity.

> (1) Do you know who came up with or implemented the idea in PARI for computing Bernoulli numbers quickly by approximating the zeta function and using Classen and von Staudt’s identification of the denominator of the Bernoulli number?

Henri did, and wrote the initial implementation. I wrote the current one (same idea, faster details).

The idea independently came up (Bill Daly) on pari-dev as a speed up to Euler-Mac Laurin formulae for zeta or gamma/loggamma (that specific one has not been tested/implemented so far).
Bernd C. Kellner’s program at http://www.bernoulli.org/ (2002-2004) also appears to use

\[|B_n| = \frac{2n!}{(2\pi)^n} \zeta(n) \]

but Kellner’s program is closed source and noticeably slower than PARI (2.2.10.alpha). He claims his program “calculates Bernoulli numbers up to index \(n = 10^6 \) extremely quickly.”

Also: Maxima’s documentation claims to have a function `burn` that uses zeta, but it doesn’t work (for me).
Kevin McGown Project

The Algorithm: Suppose $n \geq 2$ is even.

1. $K := \frac{2n!}{(2\pi)^n}$

2. $d := \prod_{p-1 | n} p$

3. $N := \lceil (Kd)^{1/(n-1)} \rceil$

4. $z := \prod_{p \leq N} (1 - p^{-n})^{-1}$

5. $a := (-1)^{n/2+1} \lceil dKz \rceil$

6. $B_n = \frac{a}{d}$
What About Generalized Bernoulli Numbers?

> (2) Has a generalization to generalized Bernoulli numbers attached to an integer and Dirichlet character been written down or implemented?

Not to my knowledge.

Cheers,

Karim.
Generalized Bernoulli Numbers

Defined in 1958 by H. W. Leopoldt.

\[\sum_{r=1}^{f-1} \chi(r) \frac{te^{rt}}{e^{rt} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!} \]

Here \(\chi : (\mathbb{Z}/m\mathbb{Z}) \to \mathbb{C} \) is a Dirichlet character.

These give values at negative integers of associated Dirichlet \(L \)-functions:

\[L(1 - n, \chi) = -\frac{B_{n,\chi}}{n} \]

Kubota-Leopoldt \(p \)-adic \(L \)-function (\(p \)-adic interpolation)…
Very Important to Computing Modular Forms

\[E_{k, \chi, \psi}(q) = c_0 + \sum_{m \geq 1} \left(\sum_{n \mid m} \psi(n) \cdot \chi(m/n) \cdot n^{k-1} \right) q^m \in \mathbb{Q}(\chi, \psi)[[q]], \]

where

\[c_0 = \begin{cases} 0 & \text{if } L = \text{cond}(\chi) > 1, \\ -\frac{B_{k,\psi}}{2k} & \text{if } L = 1. \end{cases} \]

Theorem

The (images of) the Eisenstein series above generate the Eisenstein subspace \(E_k(N, \varepsilon) \), where \(N = L \cdot \text{cond}(\psi) \) and \(\varepsilon = \chi/\psi \).
The Torsion Subgroup of $J_1(p)$

Let $J_1(p)$ be the Jacobian of the modular curve $X_1(p)$.

Conjecture (Stein)

$$\#J_1(p)(\mathbb{Q})_{\text{tor}} = \frac{p}{2p-3} \cdot \prod_{\chi \neq 1} B_{2,\chi},$$

where the χ have modulus p. (Equivalently, the torsion subgroup is generated by the rational cuspidal subgroup—see Kubert-Lang.)

(This is a generalization of Ogg’s conjecture for $J_0(p)$, which Mazur proved.)
Compute $B_{n,\chi}$? One way.

Let $N=$ modulus of χ, assumed > 1.

1. Compute $g = x/(e^{Nx} - 1) \in \mathbb{Q}[[x]]$ to precision $O(x^{n+1})$ by computing $e^{Nx} - 1 = \sum_{m \geq 1} N^m x^m / m!$ to precision $O(x^{n+2})$, and computing the inverse $1/(e^{Nx} - 1)$, e.g., using Newton iteration as in Buhler et al.

2. For each $a = 1, \ldots, N-1$, compute $f_a = g \cdot e^{ax} \in \mathbb{Q}[[x]]$, to precision $O(x^{k+1})$. This requires computing $e^{ax} = \sum_{m \geq 0} a^m x^m / m!$ to precision $O(x^{k+1})$.

3. Then for $j \leq n$, we have $B_{j,\epsilon} = j! \cdot \sum_{a=1}^{N-1} \epsilon(a) \cdot c_j(f_a)$, where $c_j(f_a)$ is the coefficient of x^j in f_a.

This requires arithmetic only in \mathbb{Q}, except in the last easy step.
Analytic Method

Is there an analytic method to compute $B_{n,\chi}$ that is impressively fast in practice like the one Cohen/Kellner/etc. invented for B_n?

YES.
Analytic Method

Assume χ primitive now.

If

$$K_{n,\chi} := (-1)^{n-1} 2n! \left(\frac{N}{2i}\right)^n$$

then

$$B_{n,\chi} = \frac{K_{n,\chi}}{\pi^n \tau(\chi)} L(n, \overline{\chi})$$

There is a simple formula for a d such that $d \cdot B_{n,\chi}$ is an algebraic integer (analogue of Clausen and von Staudt).

For n large we can compute $L(n, \overline{\chi})$ very quickly to high precision; hence we can compute $B_{n,\chi}$ (at least if $\mathbb{Q}(\chi)$ isn’t too big, e.g., $\mathbb{Q}(\chi) = \mathbb{Q}$ wouldn’t be a problem). (Note, for small n that $L(n, \overline{\chi})$ converges slowly; but then just use the power series algorithm.)

Compute the conjugates of $d \cdot B_{n,\chi}$ approximately; compute minimal polynomial over \mathbb{Z}; factor that over $\mathbb{Q}(\chi)$, then recognize the right root from the numerical approximation to $d \cdot B_{n,\chi}$.