
Introduction to Sage

William Stein
University of Washington

February 26, 2011

The Sage Project

Mission Statement

Create a viable free open source alternative to
Magma, Maple, Mathematica, and Matlab

1 Mathematical features of all of Magma, Maple,
Mathematica, and Matlab

2 A notebook interface

3 Many books (undergraduate/grad curriculum)

History

Sage Timeline

2005: I released Sage 0.1... long year of very hard work.

2006: (2 Sage Days) Sage is not just for number theory!

2007: (4 Sage Days) Win prize—tons of publicity; 100%
test requirements and peer review of all code; industry
funding (Google, Microsoft).

2008: (7 Sage Days) Release managers besides me.

2009: (8 Sage Days) Better quality; more developers.

2010: (13 Sage Days) More people; serious NSF support.

2011: Revamping web interface (due to new funding),
undergrad curriculum materials, new research tools.

What is Sage?

Sage

Python: a mainstream programming language

Distribution: over 90 open source packages

Interfaces: smoothly combine packages

New code: implements novel algorithms; over half
million lines written by several hundred people.

47,942 Website Visits this month (Feb 2011)

Sage has interest from all over, but is still relatively small...
(No advertising yet; all word of mouth/grassroots.)

The Sage Notebook

MAA talk on Sage - 20min

MAA Talk on Sage
William Stein

February 26, 2011, Santa Rosa

Factor
Factoring an integer:

factor(2012)

Factoring a symbolic expression:

var('x,y')
factor(x^8 - y^2*e^(2*x))

Graph Theory

2 03 2 · 5

x e x e (4 ! y x)(4 + y x)

set_random_seed(1); G = graphs.RandomLobster(7, .6, .3); show(G)

G.automorphism_group()

graph_editor(G)

live:
variable name: G

strength:

length:
help

Save Close

!(11, 3)(24, 5)" 2 2

G.is_planar()

 True

Symbolic Integrals

integrate(sin(x)*tan(x), x)

f = 1/sqrt(x^2 + 2*x - 1)
f.integrate(x)

Plotting Functions

plot(sin(x^2), (x,0,5))

! 2
1 log sin(x()! 1) + 2

1 log sin(x() + 1)! sin x()

log 2
!
x+ 2

"
x2 + 2x! 1 + 2

"

var('x')
@interact
def h(f=sin(x^2), grid=True, t=(1..20)):
 show(plot(f, (x, 0, 3),
 thickness=t, color='purple', fill=True,
gridlines=grid))

f sin(x^2)

grid

t 1

Plotting a Function in 3D

f(x,y) = sin(x - y)*y*cos(x)
plot3d(f, (x,-3,3), (y,-3,3), opacity=.7, color='red') +
icosahedron(color='blue')

Wake this 3-D view
Click to Sleep this
3-D view
Help for Jmol 3-D
viewer

3-D display
size:

Medium (400px)

Arbitrarily
resizable in
own window
Get static
image to
save

Spin on

An implicit 3D plot:

T = RDF(golden_ratio)
var('x,y,z')
p = (2 - (cos(x + T*y) + cos(x - T*y) + cos(y + T*z) +
 cos(y - T*z) + cos(z - T*x) + cos(z + T*x)))
r = 4.77
implicit_plot3d(p, (x, -r, r), (y, -r, r), (z, -r, r),
plot_points=40)

Applet

Functions

State

Wake this 3-D view
Click to Sleep this
3-D view
Help for Jmol 3-D
viewer

3-D display
size:

Medium (400px)

Arbitrarily
resizable in
own window
Get static
image to
save

Spin on

Image Compression

import pylab; import numpy
A_image = numpy.mean(pylab.imread(DATA + 'santarosa.png'), 2)
u,s,v = numpy.linalg.svd(A_image); S = numpy.zeros(A_image.shape
)
S[:len(s),:len(s)] = numpy.diag(s)
n = A_image.shape[0]
@interact
def svd_image(i = ("Eigenvalues (quality)",(20,
(1..A_image.shape[0]//2)))):
 A_approx = numpy.dot(numpy.dot(u[:,:i], S[:i,:i]), v[:i,:])
 g = graphics_array([matrix_plot(A_approx),
matrix_plot(A_image)])
 show(g, axes=False, figsize=(10,6))

Applet

Functions

State

 html("Compressed to %.1f%% of size using %s eigenvalues."%(
 100*(2.0*i*n+i)/(n*n), i))

Eigenvalues (quality) 20

Compressed to 14.1% of size using 20 eigenvalues.

	History and Goals

