A Short Introduction to Sage

William Stein

January 13, 2011
A Short Introduction to Sage
Mission Statement

Create a viable free open source alternative to Magma, Maple, Mathematica, and Matlab

A “viable alternative” will have...

- The *mathematical features* of Magma, Maple, Mathematica, and Matlab with *comparable speed*.
- Beautiful interactive 2d and 3d graphics.
- A notebook interface and an IDE.
- Many books (full undergraduate curriculum)
- A web application interface.

Sage ain’t Octave (=open source MATLAB clone)

Sage need *not* run programs written in the custom math-only languages of Magma, Mathematica, etc.
2005: I started Sage

SAGE
Software for Arithmetic Geometry Experimentation

- I needed an *open source* alternative to Magma. David Joyner (coding theorist) had similar concerns.
- SAGE in 2005 – number theory (PARI) and coding theory (GAP) – no symbolic calculus or numerical computation.

Number theory & Coding theory: started out very technical

```sage
sage: E = EllipticCurve('389a'); E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x
sage: E.gens()
[(-1 : 1 : 1), (0 : -1 : 1)]
sage: G = matrix(GF(5), 4, 7, [1,1,1,0,0,0,1,0,0,1,0,0,1,1,...
sage: C = LinearCode(G); C
Linear code of length 7, dimension 4 over Finite Field ...
sage: C.minimum_distance()
3
```
Why not Magma?

1. **Commercial**: Expensive for my collaborators and students ("third world discount" = 3 months salary)
2. **Closed**: Implementation of algorithms often secret
3. **Frustrating**: Too tight control of development
4. **Static**: Users can’t define their own classes (data types)
5. **Copy protection**: A pain in the arse
6. **Language**: No eval, no exception handling, no namespaces, little development of math-only language
7. **Developer community**: too small, no public mailing list
8. **Graphics**: No graphics, symbolic calculus, or GUI
9. **Bugs**: No public bug tracker or list of reported bugs
10. **Compiler**: No compiler (nothing like Cython)

(Related remarks for Maple, Mathematica, and MATLAB.)
What is Sage?

1. **A self-contained distribution** of over 90 open source packages that is easy to build from source.
2. **Interfaces** that smoothly tie together all these libraries and packages.
3. **A new library** that implements novel algorithms. About a half million lines of code written by a worldwide community of over 200 people over the last 5 years.
 http://sagemath.org/development-map.html
Demo

A Demo...
Use Sage From the Command Line

Command Line Sage

Sage Version 4.5.1, Release Date: 2010-07-19
Type notebook() for the GUI, and license() for information.

sage: factor(2010)
2 * 3 * 5 * 67
sage: f = 1/sqrt(x^2 + 2*x - 1); f
1/sqrt(x^2 + 2*x - 1)
sage: f^2
1/(x^2 + 2*x - 1)
sage: f.integrate(x)
log(2*x + 2*sqrt(x^2 + 2*x - 1) + 2)
sage:
Use Sage Via the Notebook

Welcome!
Sage is a different approach to mathematics software.

The Sage Notebook
With the Sage Notebook anyone can create, collaborate on, and publish interactive worksheets. In a worksheet, one can write code using Sage, Python, and other software included in Sage.

General and Advanced Pure and Applied Mathematics
Use Sage for studying calculus, elementary to very advanced number theory, cryptography, commutative algebra, group theory, graph theory, numerical and exact linear algebra, and more.

Use an Open Source Alternative
By using Sage you help to support a viable open source alternative to Magma, Maple, Mathematica, and MATLAB. Sage includes many high-quality open source math packages.

Use Most Mathematics Software from Within Sage
Sage makes it easy for you to use most mathematics software together. Sage includes GAP, GP/PARI, Maxima, and Singular, and dozens of other open packages.

Use a Mainstream Programming Language
You work with Sage using the highly regarded scripting language Python. You can write programs that combine serious mathematics with anything else.
Demo: Factoring

Factoring an integer:

```
factor(2012)
```

\[2^2 \cdot 503 \]

Factoring a symbolic expression:

```
x,y=var('x,y'); factor(x^3 - sin(y)^3)
```

\[(x - \sin(y))(x^2 + x\sin(y) + \sin(y)^2)\]

Factoring a polynomial over a nontrivial finite field:

```
F.<alpha> = GF(49); x = polygen(F)
factor(x^4 + x^3 - 2)
```

\[(x + \alpha + 1) \cdot (x + 6\alpha + 2) \cdot (x + 6)^2\]
Demo: Solving Equations

Solve a quadratic equation:

```python
x = var('x'); solve(x^2 + 7*x == 5, x)[0]
```

\[x = -\frac{1}{2} \sqrt{69} - \frac{7}{2} \]

Solve a system of two linear equations with one unknown coefficient \(\alpha \):

```python
var('alpha, y')
solve([3*x + 7*y == 2, alpha*x + 3*y == 8], x, y)
```

\[\begin{bmatrix} x = \frac{50}{7\alpha - 9}, & y = \frac{2(\alpha - 12)}{7\alpha - 9} \end{bmatrix} \]
Demo: Computing Symbolic Integrals

\[f = \frac{1}{\sqrt{x^2 + 2x - 1}}; \quad f.\text{integrate}(x) \]

\[\log \left(2x + 2\sqrt{x^2 + 2x - 1} + 2 \right) \]

\[g = \text{integrate}(\sin(x)\cdot\tan(x), x); \quad g \]

\[-\frac{1}{2} \log(\sin(x) - 1) + \frac{1}{2} \log(\sin(x) + 1) - \sin(x) \]

\[h = g.\text{diff}(x); \quad h \]

\[\frac{-\cos(x)}{2(\sin(x) - 1)} + \frac{\cos(x)}{2(\sin(x) + 1)} - \cos(x) \]

\[(h - \sin(x)\cdot\tan(x)).\text{simplify}_\text{full}() \]

\[0 \]
Demo: Plotting a 2D Function

```
plot(1/sqrt(x^2 + 2*x - 1), (x,.4,2), thickness=3,
color='purple', fill=True, gridlines=True)
```
Demo: Plotting a 3D Function

```python
var('x,y');plot3d(sin(x-y)*y*cos(x),(x,-3,3),(y,-3,3))
```

(x, y)
Demo: Interactive image compression

```python
import pylab; import numpy
A_image = numpy.mean(pylab.imread(DATA + 'mumbai.png'), 2)
u,s,v = numpy.linalg.svd(A_image)
S = numpy.zeros( A_image.shape )
S[:len(s),:len(s)] = numpy.diag(s)
n = A_image.shape[0]

@interact
def svd_image(i = ('Eigenvalues (quality)',(20,(1..A_image.shape[0])))�):
    A_approx = numpy.dot(numpy.dot(u[:,i], S[:,i]), v[:,i])
    g = graphics_array([matrix_plot(A_approx), matrix_plot(A_image)])
    show(g, axes=False, figsize=(8,3))
html("Compressed to %.1f%% of size using %s eigenvalues."%(100*(2.0*i+n+1)/(n*n), i))
```

Eigenvalues (quality) 20

Compressed to 12.5% of size using 20 eigenvalues.
Quick Tour of Website
Questions?