BSD system:sage

Nonsingular Plane Curves

$$F(X,Y) = 0$$

A rational point is $(x,y) \in \mathbf{Q}\times\mathbf{Q}$ such that $F(x,y) = 0$.

{{{id=1| /// }}}

The Congruent Number Problem

Definition: An integer $n$ is a congruent number if $n$ is the area of a right triangle with rational side lengths.

Open Problem: Give an algorithm to decide whether or not an integer $n$ is a congruent number.

This is a 1000-year old open problem, perhaps the oldest open problem in mathematics.

{{{id=3| T = line([(0,0), (3,0), (3,4), (0,0)],rgbcolor='black',thickness=2) lbl = text("3",(1.5,-.5),fontsize=28) + text("4",(3.2,1.5),fontsize=28) lbl += text("5",(1.5,2.5),fontsize=28) lbl += text("Area $n = 6$", (2.1,1.2), fontsize=28, rgbcolor='red') show(T+lbl, axes=False) /// }}}

Congruent Numbers and the BSD Conjecture

Theorem: The Birch and Swinnerton-Dyer Conjecture provides a solution to the congruent number problem.

Proof: Suppose $n$ is a positive integer.  Consider the cubic curve $y^2 = x^3 - n^2 x$.  Using algebra (see next slide), one sees that this cubic curve has infinitely many rational points if and only if there are rationals $a,b,c$ such that $n=ab/2$ and $a^2 + b^2 = c^2$.  The Birch and Swinnerton-Dyer conjecture gives an algorithm to decide whether or not any cubic curve has infinitely many solutions.

 

{{{id=13| /// }}}

Explicit Bijection

In fact, there is a bijection between

$$
 A = \left\{(a,b,c) \in \mathbf{Q}^3 \,:\, \frac{ab}{2} = n,\, a^2 + b^2 = c^2\right\}
$$
and
$$
 B = \left\{(x,y) \in \mathbf{Q}^2 \,:\, y^2 = x^3 - n^2 x, \,\,\text{with } y \neq 0\right\}
$$
given explicitly by the maps
$$
  f(a,b,c) = \left(-\frac{nb}{a+c},\,\, \frac{2n^2}{a+c}\right)
$$
and
$$
  g(x,y) = \left(\frac{n^2-x^2}{y},\,\,-\frac{2xn}{y},\,\, \frac{n^2+x^2}{y}\right).
$$

{{{id=12| /// }}}

Is 5 a Congruent Number?

{{{id=5| n = 5 x,y = var('x,y') C = EllipticCurve(y^2 == x^3 - n^2 * x) show(C) ///
y^2 = x^3 - 25x
}}} {{{id=8| P = C.gens()[0]; P [n*P for n in [1..3]] # infinitely many solutions... /// [(-4 : 6 : 1), (1681/144 : -62279/1728 : 1), (-2439844/5094049 : 39601568754/11497268593 : 1)] }}} {{{id=9| (-62279/1728)^2 == (1681/144)^3 - 25*(1681/144) /// True }}}

Find Explicit Rational Right Triangle with Area 5

{{{id=10| def f(a,b,c,n): return (-n*b/(a+c), 2*n^2/(a+c)) def g(x,y,n): return ((n^2-x^2)/y, -2*x*n/y, (n^2+x^2)/y) /// }}} {{{id=15| a,b,c = g(-4,6,5); a,b,c /// (3/2, 20/3, 41/6) }}} {{{id=17| a*b/2, a^2 + b^2 == c^2 /// (2009, True) }}} {{{id=19| E = EllipticCurve(y^2 == x^3 - 2009^2*x) E.gens() /// [(-441 : 41160 : 1), (41209 : 8355480 : 1)] }}} {{{id=20| a,b,c = g(-441,41160,2009); a,b,c /// (280/3, 861/20, 6167/60) }}} {{{id=21| a*b/2, a^2 + b^2 == c^2 /// (2009, True) }}} {{{id=22| /// }}}