Sage

Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab

William Stein, Associate Professor, University of Washington

www.sagemath.org
History

- No existing math software good enough.

- I got very annoyed that my students and colleagues had to pay a ridiculous amount to use the code I wrote in Magma for Arithmetic Geometry (modular forms, elliptic curves, etc.).

- Sage-1.0 released February 2006 at Sage Days 1 (San Diego).

- Sage Days Workshops 1, 2, ..., 13, at UCLA, UW, Cambridge, Bristol, Austin, France, San Diego, Seattle, Georgia, etc.

- Sage won first prize in Trophees du Libre (November 2007)

- Funding from Microsoft, UW, NSF, DoD, Google, Sun, private donations, etc.
Sage is a free open-source mathematics software system licensed under the GPL. It combines the power of many existing open-source packages into a common Python-based interface.

Mission: Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab.

Donate · Acknowledgments · Browse the Code · Questions?

Download 3.2.3
Binary · Source · Packages

Sage Via the Web
Mlinix.org · KAIST

Help
Documentation · Support · Tutorial

Feature Tour
Quickstart · Research · Education

Library
Testimonials · Books · Publications

Search

Random Link: Quickstart into Sage

Each day about 1500-2000 different real human visitors each day.
Sage Devel Headquarters: Four 24-core Sun X4450's with 128GB RAM each + 1 Sun X4540 with 24TB disk
Sage is a different approach to mathematics software.

The Sage Notebook
With the Sage Notebook anyone can create, collaborate on, and publish interactive worksheets. In a worksheet, one can write code using Sage, Python, and other software included in Sage.

General and Advanced Pure and Applied Mathematics
Use Sage for studying calculus, elementary to very advanced number theory, cryptography, commutative algebra, group theory, graph theory, numerical and exact linear algebra, and more.

Use an Open Source Alternative
By using Sage you help to support a viable open source alternative to Magma, Maple, Mathematica, and MATLAB. Sage includes many high-quality open source math packages.

Use Most Mathematics Software from Within Sage
Sage makes it easy for you to use most mathematics software together. Sage includes GAP, GP/PARI, Maxima, and Singular, and dozens of other open packages.

Use a Mainstream Programming Language
You work with Sage using the highly regarded scripting language Python. You can write programs that combine serious mathematics with anything else.
Some Advantages of Sage...

1. Python-- *a general purpose* language at core of Sage; huge user base compared to Matlab, Mathematica, Maple and Magma

2. Cython -- *write fast compiled* code in Sage

3. *Free* and *Open source*

4. *Peer review* of Code: "*I do really and truly believe that the Sage refereeing model results in better code.*" -- John Cremona
Sage Is...

- Over 300,000 lines of new Python/Cython code

- Distribution of mathematical software; easy to build from source (over 5 million lines of code).

- About 150 developers: developer map

- Interfaces to most math software, including Magma, Macaulay 2, Singular, PHCpack, Polymake.

- Exact and numerical linear algebra, optimization, statistics (numpy, scipy, R, and gsl all included), group theory, combinatorics, cryptography.

- Number Theory: elliptic curves, modular forms, L-functions -- this is my research area

- 2d and 3d plotting
Sage developers around the world

This is a map of all contributors to the Sage project. There are currently 142 contributors in 85 different places from all around the world.

Map Zoom: Earth - USA (UW, West, East) - Europe - Asia - S. America - Australia

Examples: Calculus

Symbolic expressions:

```python
x, y = var('x,y')
type(x)
    <class 'sage.calculus.calculus.SymbolicVariable'>
reset('e')
```

```latex
a = 1 + \sqrt{7}^2 + \pi \cdot e + 2/3 + x \cdot y
```

```latex
\text{show}(a)
```

```latex
x^y + \pi^e + \frac{26}{3}
```

```latex
\text{show(expand}(a^2))
```

```latex
x^2y + 2\pi^e \cdot x^y + \frac{52x^y}{3} + \pi^2e + \frac{52\pi^e}{3} + \frac{676}{9}
```

```latex
\text{show(integrate}(\sin(x^2)))
```

\[
\sqrt{\pi} \left((\sqrt{2i} + \sqrt{2}) \text{erf} \left(\frac{\sqrt{2i} + \sqrt{2}}{2} \right) + (\sqrt{2i} - \sqrt{2}) \text{erf} \left(\frac{\sqrt{2i} - \sqrt{2}}{2} \right) \right)
\]

\[
\frac{8}{8}
\]
Example: Some Rings

\[
\mathbb{Q}[\sqrt{2}]
\]

Number Field in \(\sqrt{2}\) with defining polynomial \(x^2 - 2\)

\[\text{RDF}\]

Real Double Field

\[R = \text{RealIntervalField}(100); \ R\]

Real Interval Field with 100 bits of precision

\[R((1.01030,1.010332))\]

1.0103?

\[A = \text{random_matrix(QQ, 500)}; \ v = \text{random_matrix(QQ,500,1)}\]
\[\text{time}\ x = A \ \backslash \ v\]

Time: CPU 1.56 s, Wall: 1.54 s

\[\text{len(str(x[0]))}\]

1484
Example: A Huge Integer Determinant

```python
a = random_matrix(ZZ, 200, 200, x=-2^127, y=2^127)
time d = a.determinant()
len(str(d))
```

Time: CPU 3.78 s, Wall: 3.95 s
7786

We can also **copy this matrix** over to Maple and compute the same determinant there...

```python
a[0,0]
```

-91532941219663566551217034654788002094

```python
maple.with_package('LinearAlgebra')
B = maple(a)
t = maple.cputime()
time c = B.Determinant()
maple.cputime(t)
```

Time: CPU 0.00 s, Wall: 23.18 s
22.613

```python
c == d
```

True

This ability to easily move objects between math software is **unique to Sage**.

```python
B = magma(a)
t = magma.cputime()
time e = B.Determinant()
magma.cputime(t)
```

Time: CPU 0.00 s, Wall: 10.74 s
10.51
Example: Plotting a Symbolic Expression

```python
x = var('x')
f(x) = sin(3*x)*x+log(x) + 1/(x+1)**2
show(f)
```

\[x \mapsto x \sin(3x) + \log(x) + \frac{1}{(x+1)^2} \]

Plotting functions has similar syntax to Mathematica:

```python
plot(f,(0.01,2), thickness=4) + text("Mathematica-style plotting in Sage", (1,-2), rgbcolor='black')
```

Mathematica-style plotting in Sage
NOTE: Sage also has 2d plotting that is almost identical to MATLAB's 2d plotting:

```python
import pylab as p
p.figure()
t = p.arange(0.01, 2.0, 0.01)
s = p.sin(2 * p.pi * t)
s = p.array([[float(f(x)) for x in t]])
P = p.plot(t, s, linewidth=4)
p.xlabel('time (s)'); p.ylabel('voltage (mV)')
p.title('Matlab-style plotting in Sage')
p.grid(True)
p.savefig('sage.png')
```
Example: Fast Evaluation

\[f(x, y, z) = \sin(3x)x + \log(xyz)^3 + 1/(1+y)^2 \]

```python
f = f._fast_float_(x, y, z)
timeit('f(4.5r, 3.2r, 5.7r)')
```

```
625 loops, best of 3: 669 ns per loop
```

```python
import math
def g(x, y, z):
    return math.sin(3*x)*x + log(xyz)**3 + 1/(1+y)**2

timeit('g(4.5r, 3.2r, 5.7r)')
```

```
625 loops, best of 3: 7.15 Âµs per loop
```

```
7.15/669
```

```
10.6875934230194
```
Example: Interface with Maple and Mathematica

\[\frac{\sin(3x) - 3x \cos(3x)}{9} + x \log(x) - \frac{1}{x+1} - x \]

The command `maple(...)` fires up Maple (if you have it!), and creates a reference to a live object:

```python
m = maple(f); m
```

```
sin(3*x)*x+ln(x)+1/(x+1)^2
```

type(m)

```
<class 'sage.interfaces.maple.MapleElement'>
```

```python
m.parent()
```

```
Maple
```

```python
m.parent().pid()
```

```
67798
```

```python
os.system('ps ax |grep 24038')
```

```
67818 s001  S+  0:00.00  sh -c ps ax |grep 24038
67820 s001  R+  0:00.00  grep 24038
0
```
Example: Interactive Image Compression

This illustrates pylab (matplotlib + numpy), Sage plotting, html output, and @interact.

```python
# first just play
import pylab
A = pylab.imread(DATA + 'simons.png')
graphics_array([matrix_plot(A), matrix_plot(1-A[0:,0:,1]))].show(figsize=[10,4])
```

```
A[0,0,]
array([[ 0.03529412,  0.04705882,  0.01960784,  1.],
       [ 0.    ,  0.    ,  0.    ,  1.],
       [ 0.    ,  0.    ,  0.    ,  1.],
       [ 0.    ,  0.    ,  0.    ,  1.]])
```
import pylab
A_image = pylab.mean(pylab.imread('simons.png'), 2)
@interact
def svd_image(i=(20,(1..100)), display_axes=True):
 u,s,v = pylab.linalg.svd(A_image)
 A = sum(s[j]*pylab.outer(u[0:j], v[j,0:j]) for j in range(i))
 g = graphics_array([matrix_plot(A), matrix_plot(A_image)])
 show(g, axes=display_axes, figsize=(8,3))
 html('<h2>Compressed using %s eigenvalues</h2>'%i)

Compressed using 38 eigenvalues
Example: Implicit 2d Plot

```python
var("x y")
implicit_plot(y^3 + x*y - x^2 - x, (-2,3), (-3,3), plot_points=400, cmap='hsv').show(aspect_ratio=1)
```
Example: 3d Plots

```python
var('x, y')
P = plot3d(sqrt(x^2 - y^2 + 3), (x,-3,3), (y,-2,2), color='blue', opacity=0.7)
P + sphere((0,0,0),2,color='red', aspect_ratio=[1,1,1], opacity=0.6)
```
(sphere((0,0,0), opacity=0.7) + sphere((0,1,0), color='red', opacity=0.5) + icosahedron((1,1,0), color='green'))
implicit_plot3d -- not yet released
(see http://trac.sagemath.org/sage_trac/ticket/5249)

```python
var('x,y,z')
T = RDF(golden_ratio)
p = (2 - (cos(x + T*y) + cos(x - T*y) + cos(y + T*z)
    + cos(y - T*z) + cos(z - T*x) + cos(z + T*x)))
r = 4.77
implicit_plot3d(p, (-r, r), (-r, r), (-r, r), plot_points=40)
```

evaluate
3d plotting (using `jmol`) is fast even though it does not use Java3d or OpenGL or require any special signed code or drivers.

```python
# Yoda! -- over 50,000 triangles.
from scipy import io
X = io.loadmat('DATA + 'yodapose.mat')
from sage.plot.plot3d.index_face_set import IndexFaceSet
V = X['V']; F3=X['F3']-1; F4=X['F4']-1
Y = IndexFaceSet(F3,V,color='green') + IndexFaceSet(F4,V,color='green')
Y = Y.rotateX(-1)
Y.show(aspect_ratio=[1,1,1], frame=False, figsize=4)
html('"Use the source, Luke..."')
```

"Use the source, Luke..."
Example: Write Fast Code (using Cython)

to sage-support
date Sat, Jan 31, 2009 at 11:15 AM

Hi,

I received first a MemoryError, and later on Sage reported:

```python
uitkomst1=[]
uitkomst2=[]
eind=int((10**9+2)/(2*sqrt(3)))
print eind
for y in srange(1,eind):
    test1=is_square(3*y^2+1,True)
    test2=is_square(48*y^2+1,True)
    if test1[0] and test1[1]%3==2: uitkomst1.append((y,(2*test1[1]-1)/3))
    if test2[0] and test2[1]%3==1: uitkomst2.append((y,(2*test2[1]+1)/3))
print uitkomst1
een=sum([3*x-1 for (y,x) in uitkomst1 if 3*x-1<10^9])
print uitkomst2
twee=sum([3*x+1 for (y,x) in uitkomst2 if 3*x+1<10^9])
print een+twee
```

If you replace 10^9 with 10^6, the above listing works properly.

Maybe I made a mistake?

Roland

I rewrote Roland's code slightly so it wouldn't waste memory by constructing big lists... but the result was slow.
I rewrote Roland's code slightly so it wouldn't waste memory by constructing big lists... but the result was slow.

```python
def f_python(n):
    uitkomst1=[
    uitkomst2=[
    eind=int((n+2)/(2*sqrt(3)))
    print eind
    for y in (1..eind):
        test1=is_square(3*y^2+1,True)
        test2=is_square(48*y^2+1,True)
        if test1[0] and test1[1]%3==2:
            uitkomst1.append((y,(2*test1[1]-1)/3))
        if test2[0] and test2[1]%3==1:
            uitkomst2.append((y,(2*test2[1]+1)/3))
    print uitkomst1
    een=sum(3*x-1 for (y,x) in uitkomst1 if 3*x-1<10^9)
    print uitkomst2
    twee=sum(3*x+1 for (y,x) in uitkomst2 if 3*x+1<10^9)
    print een+twee
```

time f_python(10^5)

28868
[((1, 1), (15, 17), (209, 241), (2911, 3361))
[((1, 5), (14, 65), (195, 901), (2716, 12545))]
51408
Time: CPU 0.72 s, Wall: 0.77 s

time f_python(10^6)

288675
[((1, 1), (15, 17), (209, 241), (2911, 3361), (40545, 46817))
[((1, 5), (14, 65), (195, 901), (2716, 12545), (37829, 174725))]
716034
Time: CPU 7.14 s, Wall: 7.65 s
Rewrite using \textit{CYTHON}

```python
@cpython
from sage.all import is_square
cdef extern from "math.h":
    long double sqrtl(long double)
def f(n):
    uitkomst1=[]
    uitkomst2=[]
cdef long long eind=int((n+2)/(2*sqrtl(3)))
cdef long long y, t
for y in range(1,eind):
    t = sqrtl(3*y*y + 1)
    if t * t == 3*y*y + 1:
        uitkomst1.append((y, (2*t-1)/3))
    t = sqrtl(48*y*y + 1)
    if t * t == 48*y*y + 1:
        uitkomst2.append((y, (2*t+1)/3))
print uitkomst1
print sum([3*x-1 for (y,x) in uitkomst1 if 3*x-1<10^9])
print uitkomst2
print sum([3*x+1 for (y,x) in uitkomst2 if 3*x+1<10^9])
```

```
/Users ws... code sage04.spyx.c  /Users ws... de sage04.spyx.html

```

```
time f(10^6)

[(1L, 1L), (4L, 4L), (15L, 17L), (56L, 64L), (209L, 241L), (780L, 900L), (2911L, 3361L), (10864L, 12 [(1L, 5L), (14L, 65L), (195L, 901L), (2716L, 12545L), (37829L, 174725L)]
2
Time: CPU 0.03 s, Wall: 0.03 s

A speedup by a factor of 238!!
```

```
7.14/0.03
```

evaluate

238.000000000000

```
time f(10^9)

288675135
[(1L, 1L), (4L, 4L), (15L, 17L), (56L, 64L), (209L, 241L), (780L, 900L), (2911L, 3361L), (10864L, 12 [(1L, 5L), (14L, 65L), (195L, 901L), (2716L, 12545L), (37829L, 174725L), (526890L, 2433601L), (73386 2
Time: CPU 25.60 s, Wall: 26.50 s
```
Example: Multiply Polynomials

\begin{verbatim}
R.<x,y,z> = GF(997)[]; R

Multivariate Polynomial Ring in x, y, z over Finite Field of size 997

show((x+y+z+3)^2)

\(x^2 + 2xy + y^2 + 2xz + 2yz + z^2 + 6x + 6y + 6z + 9\)

f = (x+y+z+1)^20

Time g = f*(f+1)

Time: CPU 0.11 s, Wall: 0.12 s

\$magma
R<x,y,z> := PolynomialRing(GF(997),3);
f := (x+y+z+1)^20;
time g := f*(f+1);

Time: 0.280

mf = magma(f)
time g = mf*(mf+1)

Time: CPU 0.00 s, Wall: 0.30 s
\end{verbatim}
Example: Compute a Groebner Bases

\[
P.<a,b,c> = \text{PolynomialRing}(\mathbb{Q}, 3, \text{order}='\text{lex}'); \ P
\]

Multivariate Polynomial Ring in a, b, c over Rational Field

I = sage.rings.ideal.Katsura(P, 3); show(I.gens())

\[(a + 2b + 2c - 1, a^2 - a + 2b^2 + 2c^2, 2ab + 2bc - b)\]

I.groebner_basis()

\[[a - 60c^3 + 158/7c^2 + 8/7c - 1, b + 30c^3 - 79/7c^2 + 3/7c, c^4 - 10/21c^3 + 1/84c^2 + 1/84c]\]

NOTE: Sage includes Singular and is very tightly integrated with it.

sage.rings.ideal.Katsura(P, 3).groebner_basis('singular:std')

\[[a - 60c^3 + 158/7c^2 + 8/7c - 1, b + 30c^3 - 79/7c^2 + 3/7c, c^4 - 10/21c^3 + 1/84c^2 + 1/84c]\]

sage.rings.ideal.Katsura(P, 3).groebner_basis('singular:slimgb')

\[[a - 60c^3 + 158/7c^2 + 8/7c - 1, b + 30c^3 - 79/7c^2 + 3/7c, c^4 - 10/21c^3 + 1/84c^2 + 1/84c]\]

NOTE: You must have Macaulay 2 installed for this to work...

sage.rings.ideal.Katsura(P, 3).groebner_basis('macaulay2')

\[[a - 60c^3 + 158/7c^2 + 8/7c - 1, b + 30c^3 - 79/7c^2 + 3/7c, c^4 - 10/21c^3 + 1/84c^2 + 1/84c]\]

sage.rings.ideal.Katsura(P, 3).groebner_basis('magma')

\[[a - 60c^3 + 158/7c^2 + 8/7c - 1, b + 30c^3 - 79/7c^2 + 3/7c, c^4 - 10/21c^3 + 1/84c^2 + 1/84c]\]
Example: Compute a Groebner Fan

\[P.<a,b,c> = \text{PolynomialRing}(\text{QQ}, 3, \text{order='lex'}); P \]
\[I = \text{sage.rings.ideal.Katsura}(P, 3) \]

\[F = I.\text{groebner_fan}(); F \]

Groebner fan of the ideal:
*Ideal (a + 2*b + 2*c - 1, a^2 - a + 2*b^2 + 2*c^2, 2*a*b + 2*b*c - b) of Multivariate Polynomial Ring in a, b, c over Rational Field*

\[F.\text{weight_vectors}() \]

\[[(4, 4, 1), (3, 2, 1), (5, 2, 3), (2, 1, 3), (2, 3, 5), (2, 3, 1), (2, 5, 3), (1, 4, 4)] \]

\[F.\text{render}().\text{show}(\text{axes=False}) \]