jsMath
Slideshow Help History Text Text2 Print Evaluate Hide Show Upload Download Interrupt Restart
Worksheet: _scratch_
[12] 
cosÒ3x2Ó
cosÒ3x2Ó
[13] 
À8pÙÒ°p2p3iÀp2p3ÑerfÒ6(p2p3i+p2p3)xÓ+°p2p3i+p2p3ÑerfÒ6(p2p3iÀp2p3)xÓÓ
À8pÙÒ°p2p3iÀp2p3ÑerfÒ6(p2p3i+p2p3)xÓ+°p2p3i+p2p3ÑerfÒ6(p2p3iÀp2p3)xÓÓ
[4]  
[5]  
[-1*y + x*z^2, y^2*z - x, -1*z + x^2*y, y^3 - x^2*z, -1*z^3 + x*y^2, -1*y*z^2 + x^3, z^4 - x^2]

[-1*y + x*z^2, y^2*z - x, -1*z + x^2*y, y^3 - x^2*z, -1*z^3 + x*y^2, -1*y*z^2 + x^3, z^4 - x^2]

[6]  
[7]  
Groebner fan of the ideal:
Ideal (-1*y + x*z^2, y^2*z - x, -1*z + x^2*y) of Polynomial Ring in x, y, z over Rational Field

Groebner fan of the ideal:
Ideal (-1*y + x*z^2, y^2*z - x, -1*z + x^2*y) of Polynomial Ring in x, y, z over Rational Field

[8]  
Ideal (-1*y + x*z^2, y^2*z - x, -1*z + x^2*y) of Polynomial Ring in x, y, z over Rational Field

Ideal (-1*y + x*z^2, y^2*z - x, -1*z + x^2*y) of Polynomial Ring in x, y, z over Rational Field

[9]  
33

33

[10] 
[[-1*z + z^15, -1*z^11 + y, -1*z^9 + x], [z^11 - y, -1*z + y*z^4, -1*z^8 + y^2, -1*z^9 + x], [z^8 -
y^2, -1*z + y*z^4, -1*y + y^2*z^3, -1*z^5 + y^3, -1*y^2*z + x], [z^5 - y^3, -1*z + y*z^4, -1*y +
y^2*z^3, -1*z^2 + y^4, -1*y^2*z + x], [z^2 - y^4, -1*y + y^6*z, -1*z + y^9, -1*y^2*z + x], [z - y^9,
-1*y + y^15, -1*y^11 + x], [z - y^9, y^11 - x, -1*y + x*y^4, -1*y^8 + x^2], [z^2 - y^4, y^2*z - x,
-1*z + y^9, -1*y^6 + x*z, -1*y + x*y^4, -1*y^8 + x^2], [z^2 - y^4, y^2*z - x, y^8 - x^2, -1*y^6 +
x*z, -1*y + x*y^4, -1*z + x^2*y, -1*y^5 + x^3], [z^2 - y^4, y^2*z - x, y^6 - x*z, -1*y + x*y^4,
-1*y^3 + x^2*z, -1*z + x^2*y, -1*y^5 + x^3], [z^2 - y^4, y^2*z - x, y^5 - x^3, -1*y + x*y^4, -1*y^3
+ x^2*z, -1*z + x^2*y, -1*y^2 + x^4], [z - x^2*y, y^8 - x^2, -1*y + x*y^4, -1*x + x^2*y^3, -1*y^5 +
x^3], [z - x^2*y, y^5 - x^3, -1*y + x*y^4, -1*x + x^2*y^3, -1*y^2 + x^4], [z - x^2*y, y^2 - x^4,
-1*x + x^6*y, -1*y + x^9], [z^5 - y^3, -1*z + y*z^4, y^2*z - x, -1*z^2 + y^4, -1*y + x*z^2, -1*z^3 +
x*y^2, -1*z^4 + x^2], [z^4 - x^2, y^2*z - x, -1*z^2 + y^4, -1*y + x*z^2, -1*z^3 + x*y^2, -1*y^3 +
x^2*z, -1*z + x^2*y, -1*y*z^2 + x^3], [z^3 - x*y^2, y^2*z - x, -1*z^2 + y^4, -1*y + x*z^2, -1*y^3 +
x^2*z, -1*z + x^2*y, -1*y*z^2 + x^3], [z^3 - x*y^2, y*z^2 - x^3, y^2*z - x, -1*z^2 + y^4, -1*y +
x*z^2, -1*y^3 + x^2*z, -1*z + x^2*y, -1*y^2 + x^4], [z^3 - x*y^2, y*z^2 - x^3, y^2*z - x, y^3 -
x^2*z, -1*y + x*z^2, -1*z + x^2*y, -1*y^2 + x^4], [z^8 - y^2, -1*z + y*z^4, y^2*z - x, -1*z^5 + y^3,
-1*y + x*z^2, -1*z^6 + x*y, -1*z^4 + x^2], [z^6 - x*y, -1*z + y*z^4, y^2*z - x, -1*z^5 + y^3, -1*y +
x*z^2, -1*z^3 + x*y^2, -1*z^4 + x^2], [z^4 - x^2, y^2*z - x, y^3 - x^2*z, -1*y + x*z^2, -1*z^3 +
x*y^2, -1*z + x^2*y, -1*y*z^2 + x^3], [z^4 - x^2, y*z^2 - x^3, y^2*z - x, y^3 - x^2*z, -1*y + x*z^2,
-1*z^3 + x*y^2, -1*z + x^2*y, -1*y^2 + x^4], [z^4 - x^2, y*z^2 - x^3, y^2 - x^4, -1*y + x*z^2, -1*z
+ x^2*y, -1*x + x^4*z, -1*z^3 + x^5], [z^3 - x^5, y*z^2 - x^3, y^2 - x^4, -1*y + x*z^2, -1*z +
x^2*y, -1*x + x^4*z, -1*y*z + x^6], [z^3 - x^5, y*z - x^6, y^2 - x^4, -1*y + x*z^2, -1*z + x^2*y,
-1*x + x^4*z, -1*z^2 + x^8], [z^2 - x^8, y*z - x^6, y^2 - x^4, -1*z + x^2*y, -1*x + x^4*z, -1*y +
x^9], [z^2 - x^8, y - x^9, -1*x + x^4*z, -1*z + x^11], [z - x^11, y - x^9, -1*x + x^15], [z^9 - x,
-1*z + y*z^4, -1*z^8 + y^2, -1*y + x*z^2, -1*z^6 + x*y, -1*z^4 + x^2], [z^9 - x, y - x*z^2, -1*z +
x*z^6, -1*z^4 + x^2], [z^4 - x^2, y - x*z^2, -1*z + x^3*z^2, -1*x + x^4*z, -1*z^3 + x^5], [z^3 -
x^5, y - x*z^2, -1*z + x^3*z^2, -1*x + x^4*z, -1*z^2 + x^8]]

[[-1*z + z^15, -1*z^11 + y, -1*z^9 + x], [z^11 - y, -1*z + y*z^4, -1*z^8 + y^2, -1*z^9 + x], [z^8 - y^2, -1*z + y*z^4, -1*y + y^2*z^3, -1*z^5 + y^3, -1*y^2*z + x], [z^5 - y^3, -1*z + y*z^4, -1*y + y^2*z^3, -1*z^2 + y^4, -1*y^2*z + x], [z^2 - y^4, -1*y + y^6*z, -1*z + y^9, -1*y^2*z + x], [z - y^9, -1*y + y^15, -1*y^11 + x], [z - y^9, y^11 - x, -1*y + x*y^4, -1*y^8 + x^2], [z^2 - y^4, y^2*z - x, -1*z + y^9, -1*y^6 + x*z, -1*y + x*y^4, -1*y^8 + x^2], [z^2 - y^4, y^2*z - x, y^8 - x^2, -1*y^6 + x*z, -1*y + x*y^4, -1*z + x^2*y, -1*y^5 + x^3], [z^2 - y^4, y^2*z - x, y^6 - x*z, -1*y + x*y^4, -1*y^3 + x^2*z, -1*z + x^2*y, -1*y^5 + x^3], [z^2 - y^4, y^2*z - x, y^5 - x^3, -1*y + x*y^4, -1*y^3 + x^2*z, -1*z + x^2*y, -1*y^2 + x^4], [z - x^2*y, y^8 - x^2, -1*y + x*y^4, -1*x + x^2*y^3, -1*y^5 + x^3], [z - x^2*y, y^5 - x^3, -1*y + x*y^4, -1*x + x^2*y^3, -1*y^2 + x^4], [z - x^2*y, y^2 - x^4, -1*x + x^6*y, -1*y + x^9], [z^5 - y^3, -1*z + y*z^4, y^2*z - x, -1*z^2 + y^4, -1*y + x*z^2, -1*z^3 + x*y^2, -1*z^4 + x^2], [z^4 - x^2, y^2*z - x, -1*z^2 + y^4, -1*y + x*z^2, -1*z^3 + x*y^2, -1*y^3 + x^2*z, -1*z + x^2*y, -1*y*z^2 + x^3], [z^3 - x*y^2, y^2*z - x, -1*z^2 + y^4, -1*y + x*z^2, -1*y^3 + x^2*z, -1*z + x^2*y, -1*y*z^2 + x^3], [z^3 - x*y^2, y*z^2 - x^3, y^2*z - x, -1*z^2 + y^4, -1*y + x*z^2, -1*y^3 + x^2*z, -1*z + x^2*y, -1*y^2 + x^4], [z^3 - x*y^2, y*z^2 - x^3, y^2*z - x, y^3 - x^2*z, -1*y + x*z^2, -1*z + x^2*y, -1*y^2 + x^4], [z^8 - y^2, -1*z + y*z^4, y^2*z - x, -1*z^5 + y^3, -1*y + x*z^2, -1*z^6 + x*y, -1*z^4 + x^2], [z^6 - x*y, -1*z + y*z^4, y^2*z - x, -1*z^5 + y^3, -1*y + x*z^2, -1*z^3 + x*y^2, -1*z^4 + x^2], [z^4 - x^2, y^2*z - x, y^3 - x^2*z, -1*y + x*z^2, -1*z^3 + x*y^2, -1*z + x^2*y, -1*y*z^2 + x^3], [z^4 - x^2, y*z^2 - x^3, y^2*z - x, y^3 - x^2*z, -1*y + x*z^2, -1*z^3 + x*y^2, -1*z + x^2*y, -1*y^2 + x^4], [z^4 - x^2, y*z^2 - x^3, y^2 - x^4, -1*y + x*z^2, -1*z + x^2*y, -1*x + x^4*z, -1*z^3 + x^5], [z^3 - x^5, y*z^2 - x^3, y^2 - x^4, -1*y + x*z^2, -1*z + x^2*y, -1*x + x^4*z, -1*y*z + x^6], [z^3 - x^5, y*z - x^6, y^2 - x^4, -1*y + x*z^2, -1*z + x^2*y, -1*x + x^4*z, -1*z^2 + x^8], [z^2 - x^8, y*z - x^6, y^2 - x^4, -1*z + x^2*y, -1*x + x^4*z, -1*y + x^9], [z^2 - x^8, y - x^9, -1*x + x^4*z, -1*z + x^11], [z - x^11, y - x^9, -1*x + x^15], [z^9 - x, -1*z + y*z^4, -1*z^8 + y^2, -1*y + x*z^2, -1*z^6 + x*y, -1*z^4 + x^2], [z^9 - x, y - x*z^2, -1*z + x*z^6, -1*z^4 + x^2], [z^4 - x^2, y - x*z^2, -1*z + x^3*z^2, -1*x + x^4*z, -1*z^3 + x^5], [z^3 - x^5, y - x*z^2, -1*z + x^3*z^2, -1*x + x^4*z, -1*z^2 + x^8]]

[11] 
[[À1z+z15;À1z11+y;À1z9+x]; [z11Ày;À1z+yz4;À1z8+y2;À1z9+x]; [z8Ày2;À1z+yz4;À1y+y2z3;À1z5+y3;À1y2z+x]; [z5Ày3;À1z+yz4;À1y+y2z3;À1z2+y4;À1y2z+x]; [z2Ày4;À1y+y6z;À1z+y9;À1y2z+x]; [zÀy9;À1y+y15;À1y11+x]];  
\begin{array}{l}[\left[-1 z + z^{15}, -1 z^{11} + y, -1 z^{9} + x\right],\\ \left[z^{11} - y, -1 z + yz^{4}, -1 z^{8} + y^{2}, -1 z^{9} + x\right],\\ \left[z^{8} - y^{2}, -1 z + yz^{4}, -1 y + y^{2}z^{3}, -1 z^{5} + y^{3}, -1 y^{2}z + x\right],\\ \left[z^{5} - y^{3}, -1 z + yz^{4}, -1 y + y^{2}z^{3}, -1 z^{2} + y^{4}, -1 y^{2}z + x\right],\\ \left[z^{2} - y^{4}, -1 y + y^{6}z, -1 z + y^{9}, -1 y^{2}z + x\right],\\ \left[z - y^{9}, -1 y + y^{15}, -1 y^{11} + x\right]],\\ \end{array}
[14] 















New Delete  Worksheets
Name:
Password: X
   X
Saved Objects

Variables
G (sage.rings.groebner_fan.GroebnerFan)
I (sage.rings.multi_polynomial_ideal.MPolynomialIdeal)
R (list)
x (sage.rings.multi_polynomial_element.MPolynomial_polydict)
y (sage.rings.multi_polynomial_element.MPolynomial_polydict)
z (sage.rings.multi_polynomial_element.MPolynomial_polydict)
Attached Files