
How SAGE Works: Interfaces

William Stein (University of Washington)

May 11, 2006: UW SAGE Seminar

William Stein (University of Washington) How SAGE Works: Interfaces



Abstract

This talk will be aimed at people who want to understand the
architecture of SAGE. Today I will explain some of the details
about how SAGE interfaces with computer algebra systems
and how people interface with SAGE.

1. How SAGE interfaces with other computer algebra systems.

2. How SAGE interfaces with users via their web-browsers.

William Stein (University of Washington) How SAGE Works: Interfaces



Part I: How SAGE interfaces with other computer
algebra systems.

William Stein (University of Washington) How SAGE Works: Interfaces



Class Hierarchy

(examples)

William Stein (University of Washington) How SAGE Works: Interfaces



Pexpect and Pseudotty’s

I Pseudotty: A device which appears to an application
program as an ordinary terminal but which is in fact
connected to a different process. Pseudo-ttys have a slave half
and a control half.

I Pexpect: makes Python a better tool for controlling other
applications. (pexpect.sourceforge.net)
Pexpect is a pure Python module for spawning child
applications; controlling them; and responding to expected
patterns in their output. Pexpect works like Don Libes’
Expect. Pexpect allows your script to spawn a child
application and control it as if a human were typing
commands.

William Stein (University of Washington) How SAGE Works: Interfaces



Using pexpect: The Basic Idea

sage: import pexpect
sage: p = pexpect.spawn(’gp --emacs --fast --quiet’)
sage: p.maxread = 100000 # crucial for speed!!!
sage: p.expect(’\\? ’)
0
sage: p.sendline(’factor(2006)’)
13
sage: p.expect(’\\? ’)
0
sage: p.before
’factor(2006)\r\n\r\n[2 1]\r\n\r\n[17 1]\r\n\r\n
[59 1]\r\n\r\n’
sage: p.close()

William Stein (University of Washington) How SAGE Works: Interfaces



Difficulties

1. Getting subprocesses (and their children!) to quit when you
quit SAGE.

2. I/O Prompts: make very obscure or embed control codes.

3. Control-C: How to break out of a computation.

4. Large I/O: use files.

5. Remote servers: Use the network – will greatly improve this
summer (Yi Qiang).

6. Readline (weird formatting in server); often there are debug
modes, e.g., in Maple; or emacs modes.

7. Support for direct interaction – coding sprint at Sage Days 1.

8. Unknown number of return values – Magma.

William Stein (University of Washington) How SAGE Works: Interfaces



How to Create a New Interface

1. Decide which of the following programs is most similar to your
program: gap, gnuplot, magma, maxima, genus2reduction,
gp, mwrank, ecm, kash, maple, octave, singular, gfan,
macaulay2, mathematica

2. Copy sage/interfaces/similarsys.py and modify as
appropriate. Use the log= option to interface constructor for
debuging.

3. Figure out what the true, false, equality, etc., symbols are in
your system and code those into the interface.

4. Provide special functionality for tab completion (listing all
defined functions), help on functions, etc.

William Stein (University of Washington) How SAGE Works: Interfaces



How to Improve an Existing Interface

Let C be a computer algebra system, e.g., Maple, Macaulay2, etc.

1. Systematically work through a standard tutorial for C but
using the SAGE interface; record anything that is difficult,
impossible, or unnatural to do. Add functionality to interface
to remedy these problems.

2. Try the interface I and if I.[tab] doesn’t give all functions in
the system, figure out how to get them and tell me!

3. Write conversion functions between SAGE objects and objects
in C , e.g., matrices. We need far more of these!

William Stein (University of Washington) How SAGE Works: Interfaces



Part II: Web Browser Interfaces to SAGE

1. Simple cgi-bin script interface

2. SAJAX – an AJAX interface to SAGE

3. SAGE Web Notebook – brand new local web-server interface

William Stein (University of Washington) How SAGE Works: Interfaces



1. Simple cgi-bin script interface

This is at http://modular.math.washington.edu/calc/, but
people have copied it for Kash, MAGMA, etc.

1. Started so Keith Conrad’s student at UCONN could use PARI
easily for their number theory class.

2. Uses apache2 and some simple Python cgi-bin scripts.

3. Provided way to “try out MAGMA” (and variant is now
available at MAGMA website.)

William Stein (University of Washington) How SAGE Works: Interfaces



Date: Mon, 19 Dec 2005 16:54:09 -0800
From: "John Cannon" <john@maths.usyd.edu.au>
William,

This is to formally advise you that your permission to
run a general-purpose calculator based on Magma ends on
Dec 31, 2005. [...]

Note that this does NOT affect the use of Magma in your
modular forms site. Nor is it likely that we would
withdraw permission for this use of Magma provided that
Magma is properly acknowledged (as it has been in the
past). In fact we are encouraging the use of Magma as
part of the backend in similar servers.

Please confirm receipt of this letter.
Wishing you a happy Christmas,
John

William Stein (University of Washington) How SAGE Works: Interfaces



2. SAJAX: AJAX interface to SAGE

Aaron Klem found an AJAX terminal application at
http://antony.lesuisse.org/qweb/trac/wiki/AjaxTerm.
It’s a stand-alone webserver written with Python combined with a
javascript page.
I modified it to make
http://modular.math.washington.edu:8389/

1. No authentication – need chroot. The AJAX term web server
runs as a normal process. When a user connects, a chroot’d
SAGE session starts set to timeout after an hour.

2. Multiple connections at once are allowed.

3. Rumored to be unusably slow, though I’ve not experienced
this (i.e., it’s great if the server is in “on campus”).

4. No graphics. No scrollback. Cut and paste is very difficult.

5. Tab completion, history, etc., work well.

6. Hard to setup (because of chroot jail).

William Stein (University of Washington) How SAGE Works: Interfaces



3. The SAGE Web Notebook

Alex Clemesha and I wrote it from scratch as part of SAGE (on
Monday). It uses that Python has (as part of the standard library!)
a web server built in.

I Completely standalone.

I Python for webserver; some Javascript in the web page.

I Not done! But I already like using it more than command line!

I Saves all I/O to a disk file whenever possible (if you gave
optional name=’file’ argument).

I Multiple people connect to a single session at once.

I May become the standard SAGE interface; you start a local
server on your computer (e.g., via Cygwin or VMware under
Windows), connect to a local web address, and use SAGE. Or
connect to a university server and use SAGE; same interface!

I Completely avoids need to create GUI for SAGE.

William Stein (University of Washington) How SAGE Works: Interfaces



SAGE Web Notebook: TODO List

[] Add authentication

[] The "move to the current input box" javascript *only* works

with firefox (not opera, not konqueror); also this should

just keep the page position where it is rather than move it.

Moving to a more AJAX-ish model would alternatively fix this, maybe.

[] A. Clemesha: shrink/expand input/output blocks

[] A. Clemesha: When hit shift-enter the next text box should be made

into focus.

[] Add plain text annotation that is not evaluated

between blocks (maybe in html?)

E.g., just make ctrl-enter on a block by HTML-it.

[] Ability to interrupt running calculations directly

from the web interface (no console access)

[] Nice animation while a computation is proceeding.

[] Some way to show output as it is computed.

[] Option to delete blocks

[] Make block expand if enter a lot of text into it.

[] Evaluate the entire worksheet

[] Theme-able / skin-able

[] Embedded graphics from plots;

also embed png from latexing of math objects (so they look nice).

[] Downloading and access to exact log of IO to client SAGE process

[] Save session objects as to log objects so don’t have to re-eval?

[] The entire page is resent/updated every time you hit shift-enter;

using ’AJAX’ this flicker/lag could be completely eliminated.

[] When pressing shift-enter a line feed is inserted temporarily

into the inbox, which is unnerving.

Try it and send me some ideas!

William Stein (University of Washington) How SAGE Works: Interfaces


