Elliptic Curves over the Rational Numbers Q

An elliptic curve is a nonsingular plane cubic curve with a rational point (possibly "at infinity").

Mordell's Theorem

4

Theorem (Mordell). The group $E(\mathbb{Q})$ of rational points on an elliptic curve is a finitely generated abelian group, so

$$E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus T,$$

with $T = E(\mathbb{Q})_{tor}$ finite.

Mazur classified the possibilities for T.

Folklore conjecture: r can be arbitrary, but the biggest r ever found is (probably) 24.

This talk reports on a project to verify the Birch and Swinnerton-Dyer conjecture for many specific elliptic curves over \mathbb{Q} .

Joint Work: Grigor Grigorov, Andrei Jorza, Corina Patrascu, Stefan Patrikis

Thanks: John Cremona, Stephen Donnelly, Ralph Greenberg, Grigor Grigorov, Barry Mazur, Robert Pollack, Nick Ramsey, Tony Scholl, Micahel Stoll.

Real Graph of the L-Series of

 $y^2 + y = x^3 - x$

Conjectures Proliferated

"The subject of this lecture is rather a special one. I want to describe some computations undertaken by myself and Swinnerton-Dyer on EDSAC, by which we have calculated the zeta-functions of certain elliptic curves. As a result of these computations we have found an analogue for an elliptic curve of the Tamagawa number of an algebraic group; and conjectures have proliferated. [...] though the associated theory is both abstract and technically complicated, the objects about which I intend to talk are usually simply defined and often machine computable; experimentally we have detected certain relations between different invariants, but we have been unable to approach proofs of these relations, which must lie very deep." — Birch 1965

Graph of *L*-Series of $y^2 + y = x^3 - x$

The *L*-Function

Theorem (Wiles et al., Hecke) The following function extends to a holomorphic function on the whole complex plane:

$$L(E,s) = \prod_{p \nmid \Delta} \left(\frac{1}{1 - a_p \cdot p^{-s} + p \cdot p^{-2s}} \right) \cdot \prod_{p \mid N} L_p(E,s)$$

Here $a_p = p + 1 - \#E(\mathbb{F}_p)$ for all $p \nmid \Delta$, where Δ is divisible by the primes of bad reduction for *E*. We do not include the factors $L_p(E,s)$ at bad primes here.

5

What about Taylor series of L(E,s)

around s = 1?

Taylor Series

For $y^2 + y = x^3 - x$, the **Taylor series** about 1 is

$$L(E,s) = 0 + (s-1)0.3059997...$$

$$+(s-1)^2 0.18636...+\cdots$$

In general, it's

$$L(E,s) = c_0 + c_1 s + c_2 s^2 + \cdots$$

Big Mystery: Do these Taylor coefficients c_n have any deep arithmetic meaning?

12

The Birch and Swinnerton-Dyer Conjecture

Conjecture: Let *E* be any elliptic curve over \mathbb{Q} . The order of vanishing of L(E,s) as s = 1 equals the rank of $E(\mathbb{Q})$.

The Kolyvagin and Gross-Zagier Theorems

Theorem: If the ordering of vanishing $\operatorname{ord}_{s=1} L(E, s)$ is ≤ 1 , then the conjecture is true for E.

Motivating Problem 1

Motivating Problem 1. For specific curves, compute every quantity appearing in the BSD formula conjecture **in practice**.

NOTE:

This is **not** meant as a theoretical problem about computability, though by compute we mean "compute with proof."

Status

 When r_{an} = ord_{s=1} L(E, s) ≤ 3, then we can compute r_{an}. Open Problem: Show that r_{an} ≥ 4 for some elliptic curve.
 "Relatively easy" to compute #E(Q)_{tor}, c_p, Ω_E.
 Computing Reg_E essentially same as computing E(Q); interesting and sometimes very difficult.
 Computing #III(E) is currently very very difficult. Theorem (Kolyvagin): r_{an} ≤ 1 ⇒ III(E) is finite (with bounds) Open Problem: Prove that III(E) is finite for some E with r_{an} ≥ 2.

16

BSD Formula Conjecture

Let $r = \operatorname{ord}_{s=1} L(E, s)$. Then Birch and Swinnerton-Dyer made a famous guess for the first nonzero coefficient c_r :

$$c_r = \frac{\Omega_E \cdot \operatorname{Reg}_E \cdot \prod_{p \mid N} t_p}{\#E(\mathbb{Q})^2_{\operatorname{tor}}} \cdot \#\operatorname{III}(E)$$

- $#E(\mathbb{Q})_{tor} torsion$ order
- *t_p* Tamagawa numbers
- Ω_E real volume $\int_{E(\mathbb{R})} \omega_E$
- Reg_E regulator of E
- $\operatorname{III}(E) = \operatorname{Ker}(\operatorname{H}^1(\mathbb{Q}, E) \to \bigoplus_v \operatorname{H}^1(\mathbb{Q}_v, E))$
 - Shafarevich-Tate group

What about c_{r+1} , c_{r+2} , etc?

I think nobody has even a **wild and crazy** guess for an interpretation of these.

They are probably not "periods" like c_r is, so perhaps should not have any nice interpretation...

13

15

John Cremona

John Cremona's software and book are crucial to our project.

19

The Four Nontrivial III's

Conclusion: In light of Cremona's book and the above results, the problem is to show that III(E) is *trivial* for all but the following four optimal elliptic curves with conductor at most 1000:

1	Curve	<i>a</i> -invariants	$\operatorname{III}(E)_{?}$
	571A	[0,-1,1,-929,-105954]	4
	681B	[1,1,0,-1154,-15345]	9
	960D	[0,-1,0,-900,-10098]	4
	960N	[0,1,0,-20,-42]	4

We first deal with these four.

20

Victor Kolyvagin

Kolyvagin's work on Euler systems is crucial to our project.

Motivating Problem 2: Cremona's Book

Motivating Problem 2. Prove BSD for every elliptic curve over \mathbb{Q} of conductor at most 1000, i.e., in Cremona's book.

- 1. By Tate's isogeny invariance of BSD, it suffices to prove BSD for each **optimal** elliptic curve of conductor $N \leq 1000$.
- 2. Rank part of the conjecture has been verified by Cremona for all curves with $N \le 40000$.
- 3. All of the quantities in the conjecture, **except** for $\# III(E/\mathbb{Q})$, have been computed by Cremona for conductor ≤ 40000 .
- 4. Cremona (Ch. 4, pg. 106): We have $2 \nmid \#III(E)$ for all optimal curves with conductor ≤ 1000 except 571A, 960D, and 960N. So we can mostly ignore 2 henceforth.

23	
Divisor of Order:	Multiple of Order:
1. Using a 2-descent we see that $4 \mid \# \amalg(E)$ for 571A, 960D, 960N.	1. For $E = 681B$, the mod 3 representation is surjective, and 3 $[E(K) : y_K]$ for $K = \mathbb{Q}(\sqrt{-8})$, so Kolyvagin's theorem implies that $\# \operatorname{III}(E) = 9$, as required.
 For E = 681B: Using visibility (or a 3-descent) we see that 9 #III(E). 	2. Kolyvagin's theorem and computation $\implies \#III(E) = 4^{?}$ for 571A, 960D, 960N.
	3. Using MAGMA's FourDescent command, we compute Sel ⁽⁴⁾ (E for 571A, 960D, 960N and deduce that $\#III(E) = 4$. (Note: MAGMA Documentation currently misleading.)

SECRET MOTIVATION: Our actual motivation is to unify and extend results about BSD and algorithms for elliptic curves. Also, the computations give rise to many surprising and interesting examples.

The Eighteen Optimal Curves of Rank > 1

There are 18 curves with conductor < 1000 and rank > 1 (all have rank 2):

389A, 433A, 446D, 563A, 571B, 643A, 655A, 664A, 681C, 707A, 709A, 718B, 794A, 817A, 916C, 944E, 997B, 997C

For these *E* **nobody** currently knows how to show that III(E) is finite, let alone trivial. (But mention, e.g., *p*-adic *L*-functions.)

Motivating Problem 3: Prove the BSD Conjecture for all elliptic curve over \mathbb{Q} of conductor at most 1000 and rank < 1.

Kolyvagin Bound on $\# \amalg(E)$ **INPUT:** An elliptic curve *E* over \mathbb{Q} with $r_{an} < 1$. **OUTPUT:** Odd B > 1 such that if $p \nmid 2B$, then $p \nmid \# III(E/\mathbb{Q})$. 1. [Choose K] Choose a quadratic imaginary field $K = \mathbb{Q}(\sqrt{D})$ with certain properties, such that E/K has analytic rank 1. Assume $\mathbb{Q}(E[p])$ has degree $\# \operatorname{GL}_2(\mathbb{F}_p)$. 2. [Compute Mordell-Weil] (a) If r = 0, compute generator z for $E^D(\mathbb{Q})$ mod torsion. (b) If r = 1, compute generator z for $E(\mathbb{Q})$ mod torsion. 26 **Our Goal** • There are 2463 optimal curves of conductor at most 1000. • Of these, 18 have rank 2, which leaves 2445 curves. • Of these, 2441 are conjectured to have trivial III. Thus our **goal** is to prove that $\# \amalg(E) = 1$ for these 2441 elliptic curves. 24

- 3. [Index of Heegner point] Compute the "Heegner point" $y_K \in E(K)$ associated to K. This is a point that comes from the "modularity" map $X_0(N) \rightarrow E$.
- 4. [Finished] Output $B = I \cdot A$, where A is the product of primes such that $\mathbb{Q}(E[p])$ has degree less than $\# \operatorname{GL}_2(\mathbb{F}_p)$.

Theorem (Kolyvagin): $p \nmid 2B \implies p \nmid \# \amalg(E/\mathbb{Q}).$

Our Strategy

- 1. [Find an Algorithm] Based on deep work of Kolyvagin, Kato, et al. Input: An elliptic curve over \mathbb{Q} with $r_{an} \leq 1$. Output: $B \geq 1$ such that if $p \nmid B$, then $p \nmid \# \operatorname{III}(E)$.
- 2. [Compute] Run the algorithm on our 2441 curves.
- 3. [**Reducible**] If E[p] is reducible say nothing.