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This talk reports on a project to verify the Birch

and Swinnerton-Dyer conjecture for many specific elliptic

curves over Q.

Joint Work: Grigor Grigorov, Andrei Jorza, Corina Patrascu,

Stefan Patrikis

Thanks: John Cremona, Stephen Donnelly, Ralph Greenberg,

Grigor Grigorov, Barry Mazur, Robert Pollack, Nick Ramsey,

Tony Scholl, Micahel Stoll.
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Elliptic Curves over the Rational

Numbers Q

An elliptic curve is a nonsingular plane cu-
bic curve with a rational point (possibly “at
infinity”).
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y2 + y = x3 − x

EXAMPLES

y2 + y = x3 − x

x3 + y3 = z3
(projective)

y2 = x3 + ax + b

3x3 + 4y3 + 5z3 = 0
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Mordell’s Theorem

Theorem (Mordell). The group E(Q) of rational points on an

elliptic curve is a finitely generated abelian group, so

E(Q) ∼= Zr ⊕ T,

with T = E(Q)tor finite.

Mazur classified the possibilities for T .

Folklore conjecture: r can be arbitrary, but the biggest r ever

found is (probably) 24.
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Conjectures Proliferated

“The subject of this lecture is rather a special one. I want to de-

scribe some computations undertaken by myself and Swinnerton-

Dyer on EDSAC, by which we have calculated the zeta-functions

of certain elliptic curves. As a result of these computations we

have found an analogue for an elliptic curve of the Tamagawa

number of an algebraic group; and conjectures have proliferated.

[...] though the associated theory is both abstract and techni-

cally complicated, the objects about which I intend to talk are

usually simply defined and often machine computable; experi-

mentally we have detected certain relations between different

invariants, but we have been unable to approach proofs of these

relations, which must lie very deep.” – Birch 1965
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The L-Function

Theorem (Wiles et al., Hecke) The following function extends

to a holomorphic function on the whole complex plane:

L(E, s) =
∏

p-∆







1

1 − ap · p−s + p · p−2s





· ∏

p|N
Lp(E, s)

Here ap = p + 1 − #E(Fp) for all p - ∆, where ∆ is divisible by

the primes of bad reduction for E. We do not include the factors

Lp(E, s) at bad primes here.
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Real Graph of the L-Series of

y2 + y = x3 − x

7

Graph of L-Series of y2 + y = x3 − x
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The Birch and Swinnerton-Dyer

Conjecture

Conjecture: Let E be any elliptic curve over Q. The order of

vanishing of L(E, s) as s = 1 equals the rank of E(Q).
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The Kolyvagin and Gross-Zagier

Theorems

Theorem: If the ordering of vanishing ords=1 L(E, s) is ≤ 1, then

the conjecture is true for E.
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What about Taylor series of L(E, s)

around s = 1?
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Taylor Series

For y2 + y = x3 − x, the Taylor series about 1 is

L(E, s) = 0 + (s − 1)0.3059997 . . .

+(s − 1)20.18636 . . . + · · ·

In general, it’s

L(E, s) = c0 + c1s + c2s2 + · · · .

Big Mystery: Do these Taylor coefficients cn have any deep arith-

metic meaning?
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BSD Formula Conjecture

Let r = ords=1 L(E, s). Then Birch and Swinnerton-Dyer made

a famous guess for the first nonzero coefficient cr:

cr =
ΩE · RegE ·∏

p|N tp

#E(Q)2tor
· #X(E)

• #E(Q)tor – torsion order

• tp – Tamagawa numbers

• ΩE – real volume
∫

E(R) ωE

• RegE – regulator of E

• X(E) = Ker(H1(Q, E) → ⊕

v H1(Qv, E))

– Shafarevich-Tate group
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What about cr+1, cr+2, etc?

I think nobody has even a wild and crazy

guess for an interpretation of these.

They are probably not “periods” like cr is, so perhaps
should not have any nice interpretation...
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Motivating Problem 1

Motivating Problem 1. For specific curves, compute every

quantity appearing in the BSD formula conjecture in practice.

NOTE:

This is not meant as a theoretical problem about computability,

though by compute we mean “compute with proof.”
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Status

1. When ran = ords=1 L(E, s) ≤ 3, then we can compute ran.
Open Problem: Show that ran ≥ 4 for some elliptic curve.

2. “Relatively easy” to compute #E(Q)tor, cp, ΩE.

3. Computing RegE essentially same as computing E(Q); inter-

esting and sometimes very difficult.

4. Computing #X(E) is currently very very difficult.

Theorem (Kolyvagin):

ran ≤ 1 =⇒ X(E) is finite (with bounds)

Open Problem:

Prove that X(E) is finite for some E with ran ≥ 2.
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Victor Kolyvagin

Kolyvagin’s work on Euler systems is crucial to our project.
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Motivating Problem 2: Cremona’s Book

Motivating Problem 2. Prove BSD for every elliptic curve

over Q of conductor at most 1000, i.e., in Cremona’s book.

1. By Tate’s isogeny invariance of BSD, it suffices to prove BSD

for each optimal elliptic curve of conductor N ≤ 1000.

2. Rank part of the conjecture has been verified by Cremona

for all curves with N ≤ 40000.

3. All of the quantities in the conjecture, except for #X(E/Q),

have been computed by Cremona for conductor ≤ 40000.

4. Cremona (Ch. 4, pg. 106): We have 2 - #X(E) for all

optimal curves with conductor ≤ 1000 except 571A, 960D,

and 960N. So we can mostly ignore 2 henceforth.
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John Cremona

John Cremona’s software and book are crucial to our project.
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The Four Nontrivial X’s

Conclusion: In light of Cremona’s book and the above results,

the problem is to show that X(E) is trivial for all but the fol-

lowing four optimal elliptic curves with conductor at most 1000:

Curve a-invariants X(E)?
571A [0,-1,1,-929,-105954] 4
681B [1,1,0,-1154,-15345] 9
960D [0,-1,0,-900,-10098] 4
960N [0,1,0,-20,-42] 4

We first deal with these four.
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Divisor of Order:

1. Using a 2-descent we see that 4 | #X(E) for 571A, 960D,

960N.

2. For E = 681B: Using visibility (or a 3-descent) we see that

9 | #X(E).
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Multiple of Order:

1. For E = 681B, the mod 3 representation is surjective, and

3 || [E(K) : yK] for K = Q(
√
−8), so Kolyvagin’s theorem

implies that #X(E) = 9, as required.

2. Kolyvagin’s theorem and computation =⇒ #X(E) = 4?

for 571A, 960D, 960N.

3. Using MAGMA’s FourDescent command, we compute Sel(4)(E/Q)

for 571A, 960D, 960N and deduce that #X(E) = 4. (Note:

MAGMA Documentation currently misleading.)
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The Eighteen Optimal Curves of Rank

> 1

There are 18 curves with conductor ≤ 1000 and rank > 1 (all

have rank 2):

389A, 433A, 446D, 563A, 571B, 643A, 655A, 664A, 681C,

707A, 709A, 718B, 794A, 817A, 916C, 944E, 997B, 997C

For these E nobody currently knows how to show that X(E) is

finite, let alone trivial. (But mention, e.g., p-adic L-functions.)

Motivating Problem 3: Prove the BSD Conjecture for all el-

liptic curve over Q of conductor at most 1000 and rank ≤ 1.
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SECRET MOTIVATION: Our actual motivation is to unify

and extend results about BSD and algorithms for elliptic curves.

Also, the computations give rise to many surprising and inter-

esting examples.



Our Goal

• There are 2463 optimal curves of conductor at most 1000.

• Of these, 18 have rank 2, which leaves 2445 curves.

• Of these, 2441 are conjectured to have trivial X.

Thus our goal is to prove that

#X(E) = 1

for these 2441 elliptic curves.
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Our Strategy

1. [Find an Algorithm] Based on deep work of Kolyvagin,

Kato, et al.

Input: An elliptic curve over Q with ran ≤ 1.

Output: B ≥ 1 such that if p - B, then p - #X(E).

2. [Compute] Run the algorithm on our 2441 curves.

3. [Reducible] If E[p] is reducible say nothing.

25

Kolyvagin Bound on #X(E)

INPUT: An elliptic curve E over Q with ran ≤ 1.

OUTPUT: Odd B ≥ 1 such that if p - 2B, then p - #X(E/Q).

1. [Choose K] Choose a quadratic imaginary field K = Q(
√

D)

with certain properties, such that E/K has analytic rank 1.

Assume Q(E[p]) has degree #GL2(Fp).

2. [Compute Mordell-Weil]

(a) If r = 0, compute generator z for ED(Q) mod torsion.

(b) If r = 1, compute generator z for E(Q) mod torsion.
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3. [Index of Heegner point] Compute the “Heegner point”

yK ∈ E(K) associated to K. This is a point that comes from

the “modularity” map X0(N) → E.

4. [Finished] Output B = I ·A, where A is the product of primes

such that Q(E[p]) has degree less than #GL2(Fp).

Theorem (Kolyvagin): p - 2B =⇒ p - #X(E/Q).


