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INTRODUCTION

The purpose of this paper is to generalize some results of Gross-
Zagier [20] and Kolyvagin [28] to totally real fields. The main result
and the plan of its proof are described as follows.

Main results.
Let F' be a totally real number field and N a nonzero ideal of Op.

Let f be newform on GLy(Ap), of (parallel) weight 2, level Ky(N),
and with trivial central character, where Ky(/N) denotes the subgroup

of GLy(F)
Ko(N) = {(Z 2) € GLy(0p)|c Kf}

where for an Abelian group M, M denotes M & Hp Z,. Let Oy denote
the subalgebra of C over Z generated by eigenvalues a(f, m) of f under
the Hecke operators. For each embedding o : Oy — C, let f denote
the newform with the eigenvalues a(f?,m) = a(f,m)?. Assume that
either [F: Q] is odd or ord,(N) = 1 for at least one finite place v of F.
Then there is an Abelian variety A over F of dimension [Of : Z] such
that L(s, A) equals to Ha:ofﬁcc L(s, f7) modulo the factors at places
dividing N. Our main result is the following

Theorem A. Assume the L-function L(s, f) has order < 1 at s = 1.
Then for any A as above:

1. The Mordell-Weil group A(F') has rank given by
rank A(F) =[Oy : Z] ord,—1 L(s, f);
2. The Shafarevich-Tate group TI(A) is finite.
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The thoerem holds with a weaker condition that either [F' : Q] is
odd or ord,(N) is odd for at least one finite place. Provided we can
overcome one technical difficulty. Namely, it is enough to prove Lemma
5.2.3 without the assumption that ord,(/N) < 1.

Shimura curves.

As in the case F' = Q treated by Gross-Zagier and Kolyvagin, we
will prove the theorem by studying Heegner points over some imag-
inary quadratic extension. Let E be a totally imaginary quadratic
extension of F' which is unramified over places dividing N. Assume
further e(N) = (—=1)9! where g = [F : Q] and

€ = @uey, : FX\F* — {£1}

is the character on Ay /F> associated to the extension E/F. Let 7 be
a fixed archimedean place, and let B be a quaternion algebra over F
which is non split exactly at all archimedean places other than 7, and
finite places v such that ¢,(N) = —1. Fix an embedding p : £ — B
over . Let R be an order of B of type (N, E), that is an order
of B of discriminant N which contains p(Og). Fix an isomorphism
B, ®R ~ Ms(R) such that p(F)®R is sent to the subalgebra of My (R)
of elements (_ab 2) Then the group B of the elements in B* with
totally positive reduced norm acts on the Poincaré half-plane . Then
we obtain a Shimura curve

X,(C) = B,\H x B*/F*R* U {cusps}

where {cusps} is not empty only if F = Q and ¢,(N) = 1 for any v|N.
By Shimura’s theory [35], X, (C) has a canonical model X defined over
F.

The curve X over F'is connected but not geometrically connected.
Let Jac(X) denote the connected component subgroup of Pic(X/F).
Then,

Jac(X) = Resﬁ/FPico(X/ﬁ),

where F denotes the Abelian Galois extension of F' corresponding to
the subgroup F - (F*)?- Oy via class field theory.

Theorem B. There is a unique Abelian subvariety A of Jac(X) de-
fined over F' of dimension [Qy : Z] such that L(s, A) is equal to Ha:o,—><c L(s, f7)
modulo the factors at places dividing N .

We will prove this theorem in §3, by combining the Eichler-Shimura

theory and a newform theory for X obtained by using Jacquet-Langlands
theory [24]. The key to the newform theory on X is Proposition 3.3.1. T
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am indebted to H. Jacquet for showing me the proof in the supercuspi-
dal case using results of Waldspurger. (After the paper was submitted,
I learned from Gross and the referees that some related results have
been obtained by Tunnell [38] and Gross [19].)

Heegner points. R

Let = denote the image on X, (C) of {v/—1} x {1} € H x B*. By
Shimura’s theory [35], = is defined over the Hilbert class field H of E.
We call  a Heegner point on X.

In order to construct a point in the Jacobian Jac(X) from x, we need
to define a map from X to Jac(X). Write X,(C) as a union UX; of
connected compact Riemann surfaces of the form

X; = T\H U {cusps}

with I'; € By /F* C PSLy(R). Then one has Jac(X)(C) =[] Jac(X;).
We define a canonical divisor class of degree 1 in Pic(X;) ® Q by the
formula

& = {Ql —1—2 1—— [cusps]}//x;i;i—;j‘g,

peX;

where for any noncuspidal point p € X;, u, denotes the cardinality of
the group of stabilizers of p in I', where p is a point in H projecting
to p. Now we define a map ¢ : X — Jac(X) ® Q which sends a point
p € X, to the class of p—¢&;. It is easy to see that some positive multiple
of ¢ is actually defined over F'.

Let z denote the class

ut Y p(a”)

ceGal(H/E)

in Jac(X)(E) ® Q. Let z; be the component of z in A ® Q.

Gross-Zagier formula. Now we assume that a prime g is split in F
if either p divides 2 or ord,(N) > 1.

Theorem C. Let Lg(s, f) denote the product L(s, f)L(s,¢, f) here
L(s,€, f) is the L-function of f twisted by e. Then LE(f 1) =

AR KNS )2

Lg(f,1) =

where

1. (zy, z) is the Néron-Tate height of zs;
2. dp s the discriminant of F', and dg s the norm of the relative
discriminant of E/F';
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3. (f, f) is the inner product with respect to the standard measure on

Z(Ap)GLy(F)\GLy(Ap).

If F = Q and every prime factor of N is split in F, this is due
to Gross-Zagier [21]. Again, the extra condition that g is split in £
when ord,(N) > 1 can be eliminated if we know how to compute local
intersections at p when the integral model of Shimura curves has some
mild singularities over .

For the proof of the second part of Theorem A, we assume that
L(s, f) has order less than or equal to 1. By some results in [3] [40] (the
theorem in [3] is stated for Q, but its proof can be easily generalized to
any number field), there is an E such that Lg(f,s) has order equal to 1
at s = 1. It follows from Theorem C that z; has infinite order. Now the
second part of Theorem A follows from Kolyvagin’s method [17] [28]
29] [30], which applies directly to our case without any new difficulty.
The only thing we need is to give a correct system of CM-points which
we will do at the end of this paper.

Plan of proof.

Now we sketch the proof of Theorem C. Let ¥ and ® be two cusp
forms on GLy(Ap) of weight 2 and level Ky(N) characterized by the
following properties:

e The Fourier coefficients of ¥ are given by
a(¥,m) = (z,T(m)z)

for all m.
e The form ® satisfies the equality

Lip(f,1) = c(f, @)
for any new form f on GLg(Af) of the weight 2, level Ky(N), and

with trivial central character, where ¢ is some constant, and (-, -)
denotes the Weil-Petersson product.

Then the equality in Theorem C is equivalent to & = const - ¥ modulo
old forms, and the proof of Theorem C is reduced to the computations
of Fourier coefficients of ¥ and & respectively. We will do this by
using Arakelov theory and Rankin-Selberg method respectively. (In a
separate paper [14], we will provide a more simple and direct proof for
the Fourier coefficients of ® when F = Q.)

The absence of a cuspidal divisor representative for & and the ab-
sence of Dedekind’s n-function in the general case cause some essential
difficulties in our height computation. Fortunately, these difficulties
can be overcome by using Arakelov theory and the strong multiplic-
ity one argument. See §4 for a detailed explanation of our method.
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Even in the case X = Xy(N), our method simplifies the computation
of Gross and Zagier.
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Shimura for some useful correspondences, and K. Keating and D. Roberts
for sending me their papers. Finally, I would like to thank D. Goldfeld
and H. Jacquet for their constant support.

Notations.

e Np: the multiplicative monoid of nonzero ideals of Op.

e For any ideal m of Op, we define €(m) such that e is multiplicative
on Np and such that €(p) = e, () if p is unramified in £ and 7
is an uniformizer of p in O; otherwise, €(p) = 0.

e Let D denote the inverse different ideal of F',

Dit ={z € F: trp(z0r) C Z}

and let Dy denote the relative discriminant of E over F'.

e Let dp, dg, dy denote the absolute norm of N, Dp, and Dg.

e For a quaternion algebra we let det (resp. tr) denote the reduced
norm map (resp. reduced trace map). For an order in a quaternion
algebra, we call the reduced discriminant simply as disctiminant.

1. SHIMURA CURVES

In this section we introduce some of the theory of Shimura curves
which will be used in later sections. We start from the construction of
the integral model for general Shimura curves through a moduli inter-
pretation §1.1. and §1.2. Then we give a description of the set of special
fibers in §1.3. In §1.4, we study Hecke operators and their reductions.
We give some modular interpretations and prove the Eichler-Shimura
congruence relation in some special case. Finally in §1.5, we move
to the special Shimura curve X constructed in the Introduction. We
define the order R and corresponding level structure.

1.1. Modular interpretation.
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1.1.1. General properties of Shimura curves. Let F' be a totally
real field of degree g. This means that all Archimedean places of F' are
real. Fix a real place 7 which allows us to consider F' as a subfield of
R by the embedding which we still denote by 7. Let B be a quaternion
algebra over F' which is ramified at 7 but not at the other infinite
places. Then we can fix an isomorphism

B®R ~My(R) @ H! (1.1.1)

where the first fact corresponds to 7, and H is the quaternion division
algebra over R. See [39] for basic properties of quaternion algebras.
Let H* denote the Poincaré double-half plane H* = C — R equipped
with the usual action by GLy(R). Thus the first projection in (1.1.1)
gives an action of B on H*. R

For each open subgroup K of B* which is compact modulo F X we
have a Shimura curve

M (C) = BX\\H* x B*/K, (1.1.2)

where for any abelian group M, M denote the completion M ® Hp L.

For any g € EX, and open subgroups Ki, K such that gKig7! C
K5, the right multiplication on (B ® F)* by g~! induces a morphism
g Mg, (C) — Mkg,(C). By Shimura’s theory (see [6]), the curve
Mg (C) has a canonical model My defined over F' and the morphism
g: Mg, — Mk, is also defined over F' with respect to these models.

By some work of Drinfeld and Carayol [1] [4] [7], one can even define
an integral model Mg over SpecOp such that My is regular if K is
sufficiently small. This is what we need for the computation of heights
in §4 and §5.

If F=Q, then Mk(C) parameterizes elliptic curves or Abelian sur-
faces. The canonical models and integral models can be obtained by
extending the corresponding modular problems to integers. See [25] [1]
for details.

If F# Q, Mk(C) does not parameterize Abelian varieties in a con-
venient way. But Mg(C) has a finite map to another Shimura curve
My:(C) which apparently parameterizes Abelian varieties. Thus ex-
tending the moduli problem to integers gives the integral models. In
the following we will describe the curve Mg and its moduli interpre-
tation.

Let us fix a quadratic extension F' = F(v/A) of F, where ) is negative
integer. Consider v/A as an element in C. Then 7 can be extended to
a complex place for F”:

m(z +yVA) = 7(x) + 7(y) VA (1.1.3)
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Let B’ denote B ® F', let J be a compact open subgroup of ﬁ’x,

and let K’ denote the subgroup K - J of B, Then we have a Shimura
curve

My:(C) = F*B*\H* x B*F* /K’
= My(C) xp. |(F)Y\F' /J|. (1.1.4)

Again by Shimura’s theory, this curve has a canonical model Mg over
F’ and the morphism

My(C) — My (C) (1.1.5)

is defined over some extension of F’. For example, we have the Abelian
extension corresponding to J via class field theory. The image of the
morphism in (1.1.5) is another Shimura curve Mz where

K=K-|Fn(FJ)].

1.1.2. A moduli problem over F’. In the following we will explain
how the curve Mg/ (C) parameterizes certain abelian varieties over F’
and, therefore, has a model M} defined over F”.

For this we write V for B’ as a left B’-module and write Vi for V®R.
Then we have a decomposition:

Ve=(BOR)®r FF@R = (My(R)®C)® (He C)* ",

where we use (1.1.1)) and (1.1.3) with 7 replaced by all places of F.
Now we define a complex structure on Vi such that v/—1 acts on Vg
by right multiplication of the following element j € B ® C:

. 0 1
= (%) e ve rova)
Then the space H* can be identified with the (B @ R)* - (F’ @ R)*-
conjugacy classes of j: each z = z+yi € H* corresponds to an element
given by

j. = (Oéz (-01 (1))%1’1@)\/_—1"“ ’1®\/_—1) (1.1.6)

where a, is an element of GLy(BR) such that its action on H* gives
a.(v/-1) = 2.

Thus Vg is a C vector space with an action by B’. The traces of
elements ¢ of B’ acting on the C-space Vg is given by the following
formula:

tr(0, Vi /C) = t(¢)
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where t is a map t : B’ — F’ given by
t(0) = 2trpyg(x) + 2 (treye(y) — y) VA (1.1.7)

if trp/p(0) = x + yv'A. The function ¢ characterize (Vg,j) uniquely
in the sense that a complex B’-module W is B’-linearly isomorphic to
(Vk,7) if and only if tr(¢, W) = t(¢) for every ¢ € B’.

Let v — v denote the product of the involutions on both factors of
B' = B®p F’, and let 0 be a symmetric (§ = §) and invertible element
in B’. Let { — ¢* be a anticonvolution on V' defined by

=516

Notice that every anticonvolution of B” which extends the convolution
on F can be obtained in this manner.
Let ©r be a pairing on V' with values in F' given by

VYr(u,v) = trp)p (\/XUE(F) :
Then for any ¢ € B’,
Vp(fu, v) = Yp(u, Cv).

One can show that the group of similitudes of g consists of right
multiplication on V' = B’ of elements of B* - F'*.
Choose a § such that ¥r(v,vj) € F@R is totally positive for v € V.

Proposition 1.1.3. The curve Mj; is the coarse moduli space of the
following moduli functor F%, over C: For an F'-scheme S, F0..(S) is
the set of the isomorphism classes of objects [A, 1,0, k| where

1. A is an abelian scheme over S up to isogeny with an action ¢ :
B' — Endg(A) such that for any ¢ € B’ one has the equality
tr(c(f), LieA) = t(£).
2. 0 is a F*-class of polarizations 6 : A — AV for A € A such that
for any ¢ € B, the associated Rosati involution takes t({) to o(€*).

3. kis a K'-class of B'-linear zsomorphzsms KV — V(A) which are

F- symplectic similitudes, where V(A) = T(A) ® Q with T(A) =
[17,(A). This means that each x € K is symplectic between the
form b induced by a polarization 0 € 6, and the form trpg(uatp)

for some u € ﬁx, a € det K'.
Proof. Let x be a point Mg/(C) we want to construct an element
[A, 1,0, K] in F%,(C) as follows. Assume that z is represented by (z,7).
1. A is the abelian variety up to isogeny
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with A any lattice of V', where j4 is the complex structure con-
structed as in (1.1.6). So we have V(A) = V.

2. t: B" — End(A) is induced by left multiplication of B’ on V.
3. i is the K'-class of the map V — V(A) induced by right multi-
plication of ~.
It follows from the definition that the isomorphic class [4, p, 0, ] is an
element of F9.,(C).

Conversely, we can construct a point x € Mg/ (C) from an element
[A,1,0,R] of F9,(C) as follows. Let V4 denote Hi(A, Q) and let 4
be an alternative form defined by one polarization in . Then Vj is a
B’-algebra which is isomorphic to V' at each place of F’ by a map in .
It follows that V4 must be isomorphic to V. We may identify V, with
V = B’ by fixed such an isomorphism. By the second condition, the
alternative form 14 has the form

Ya(vi,v2) = trpr(vib, v2)
for some v/ € B*. Fix k € K then & is induced by the map v — vy
with 4 € B'*. Condition 3 implies

trr/(up(vie, v2x)) = trp/Q(Yr(v1b, v2)). (1.1.8)

This is equivalent to the equation uxz = b. By Hasse’s principal (see
[27], §2.2.3), this equation must have a solution x € B'*. After modi-
fying the isomorphism ¢ : V4 — V| we may assume that b = 1. Then
equation (1.1.8) implies that v € B* - F". Such v is uniquely de-
termined modulo right multiplication of K’ once ¢ is fixed. We may
replace ¢ by b with b € B*-F'* which acts on V by left multiplication.
Then v is changed to by.

Let j4 € GLg(Vk) be the multiplication of /—1 in the complex
structure on Lie(A). Then j4 commutes with the action of By so it is
given by a right multiplication of an element which we still denote by
Jja. Since j4 preserves the alternative form ¢4 or equivalently the form
Yr, we see that j4 € By ® R. We may write

jA:(CYl@ﬁla"' 7O‘g®ﬁg)

where for each i, either a; = 1,8; = /=1 or o? = —1,3; = 1. By
computing the trace of Bg over V4 which must satisfy condition 1, we
see that j4 must have the form

jA:(a®171®V_17”'71® V_l)

with o2 = —1. Now a must be conjugate to SO ja must be

0 1
-1 0
j. for some z € H*. Again this z is unique if ¢ : V — Vj is fixed. If
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we change ¢ to b¢ then z is changed to b(z). It follows that the image
x of (z,7) in Mg/(C) is a well defined point. O

1.1.4. Second version. We may also describe Mg as a coarse moduli
space of abelian varieties, rather than abelian varieties up to isogeny.
For simplicity, we assume that K is compact. Thg\n we can find a
maximal order Op of B such that K is included in O}. (Notice that
this is not the exact case we want, as the Shimura curve X dgﬁned in
the Introduction is the compactification of My with K = R*-F*.) Let
Op be the order Og® OEJ of B’. Write V for Op/ as a left Op-module.
Let U be a subset of F'* representing

F\F*/det K')

such that for each u € U, the alternating pairing uir is integral on V7.
Let v(K') denote det K' N F* of OF

Proposition 1.1.5. The functor F9%, is isomorphic to Fg+ defined as
follows: For an F'-scheme S, Fx/(S) is the set of isomorphism classes
of objects [A, 1,0, K] where
1. A is an abelian scheme over S with an action ¢ : Op — Endg(A)
such that for any ¢ € O one has the equality

tr(c(f) : LieA) = t(?).

2. 0 is a v(K')-class of polarizations 6 : A — AV such that for any
¢ € Op, the associated Rosati involution takes v(€) to t(£*).

3. i is a K'-class of Op-linear isomorphisms k : Vg, — f(A) which
is symplectic with respect to 1, 4 = trﬁ/@(uawp) for some u € U
and a € det K.

Proof. We have an obvious morphism from F: to F%,. Now we want
to define its converse. Let [A, p, 8, &] be an object in F%,(S). Then the
lattice (V7)) does not depend on the choice of k € %. Let A be the
corresponding abelian variety isogenous to A. Then A has the action
by Op: such that condition 1 is satisfied. As k varies in K = K’k and
6 varies in § = F*0, u in condition 3 in Proposition 1.1.3 varies in a
single double-coset of F*\F*/det K’. Thus we may choose a 6, €
such that w € U, and the set of such #’s form a class v(K')fy. As
tre/g(uar) is always integral, ¢4’s corresponding to 6y € v(K')b,
takes integral values on T'(A). It follows that every such 6, defines a
polarization of A. Condition 2 in this proposition is obviously satisfied.
This defines a morphism J%, — Fx which is obviously the inverse of
the obvious morphism Fxr — F,. O
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1.1.6. Remark. Let € Mg/(C) be represented by (z,7). From the
proof of Proposition 1.1.3 and 1.1.5, we see that the object [A, ¢, 0, ]
in Fg/(C) parameterized by x has the following form:

1.
A =Vey '\ (Wk, )

2. ¢ is induced by left multiplication by O on Vzy~*
3. 0 is the unique class induced by alternative forms

uelU

{trF/@(WF) L oteF N <H“demK,)}

4. R is the K'-class of the morphism XA/Z — \A/Zy_l induced by right

multiplication by v~ 1.

Proposition 1.1.7. When K’ is sufficiently small, then F: (therefore
F.,) is representable.

Proof. For each v € U, let Fg,, denote the subfunctor of Fx» @ F'F

with given v in condition 4 of Proposition 1.1.5, where F'is the exten-
sion of F' corresponding to F'* det K’ via class field theory. We want
to show that JFg- , is representable. We need the following:

Lemma 1.1.8. There is a positive integer n such that
(1+mOp)* = (1 +mOp)* N F* C [(1+mOp)*]?
with some n > 3.

Proof. We fix an n > 3 and let S be a finite subset of (1+n0p)* which
contains 1 and represents the quotient

(14+n0p)*/[(14+n0p)"]?.

For each s € S — {1}, let ps be a prime not dividing 2m such that s is
not a square in (Op/psOp)*. Then

will satisfy the requirement. Indeed, the definition of m implies that
the morphism

(l—i-nOF)X . (OF/mOp)X
(1 +n0p)<]2 [(Op/mOp)]?
is injective. Thus (1 +mOpg)* is included in [(1 + nOr)*]?. O
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We go back to our proof of Proposition 1.1.5. Assume that K’ is
sufficiently small so that

det K' € (14+mOg)* - (1+mOp)*.
Then v(K') C (1 +nOp)*% Let T denote the set of elements in
(1 + nOp)* whose squares are in v(K’). Let K’ denote K'-T. If
t € T, then multiplication by ¢ induces an isomorphism
[A,1,0,R] — [A,1,0,tR]

of objects in Fgs,(S). Here if x is symplectic with respect to 1,4,
then tr is symplectic with respect to ¥, o2. As T? = v(K') = v(K'), it
follows that the canonical morphism Fg,, — Ff, , is an isomorphism.

Let F 7, denote the functor defined in the same way as F3, , but
with v(K’)-class 0 to replace a single . Then the multiplication by ¢
induces an isomorphism

[A,1,0,R] — [A,1,t%0, &]

of objects in g‘“f(u(S) So the canonical morphism §’~/7u — Fz,, is also

an isomorphism.

’
U

In this way we have shown that g, is isomorphic to T 7w Now we

want to show the representability of I, . Let d denote the degree of
1. Let A denote the moduli functor which classifies abelian varieties
of dimension 4g, with a full level n structure and a polarization of
degree d. As n > 3, A is representable by a scheme Mg, ([32], Prop.

7.9). The functor F i, has finite morphism to A. The conditions in the
definition of F R defines a finite scheme M, K/ over My, @ F' F which

represents F 71 s also Fgr . Now the union My of M, K’ Tepresents
Fr ® FF. Notice that ]TJK/ has action by

Gal(F/F) = F*\F*/det K'

which induces a model Mg of M i defined over F’. This model repre-
sents Frr. As Mp/(C) is a smooth Riemann surface, Mk is a regular
scheme. O

1.2. Integral models.

1.2.1. A new version of Jx ® F|,. Let p be a prime of F' of charac-
teristic p. Assume that \ is prime to p and and that (%) is 1; we fix

a square root ji, in Q,. Then F’ can be embedded into F|, over F' by
sending VA to . We want to extend Mg ® F, to a model Mg, over
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O,, the ring of integers in F|,. For this we need a new version of the
moduli problem Fg» over Fi,-schemes. We start with some notation.

The algebra Op , = Op ® Z,, is the sum of all completions O, at
its places q over p. We have the following decomposition:

_ 1 2
OF’,p — OFI,I) + O /,p

where Op, , (resp. 0%, ,) denotes the sum of all completions O 4 such

that the map Op — Op, takes VA to p, (resp. —p,). For any
Opr, module M, we let M* (resp. M}, M?, M) denote Of, ,M (resp.
0% ,M). Let 0%, denote the sum of components of Op, not over o
and let M® (resp. M,, ) denote OF, M (resp. Ops ,M).

Choose 0 and U such that for each u € U, uyr has degree prime to
p, and that v has component 1 at places dividing p. Then we have the
following;:

Proposition 1.2.2. The functor T @ F,, is equivalent to the follow-
ing functor Fgr,: for any F,-scheme S, Fgr ,(S) is the isomorphism
classes of objects [A, 1,0, k,, KF] where
1. Ais an abelian scheme over S with an action v : O — End(A/S)
such that the following two condition are satisfied:
(a) Lie(A)? is a locally free Og module of rank 2 such that the
action of o(F) is given by the inclusion F' — F, — Og;
(b) Lie(A)%¥ = 0.
Here we view Lie(A) as an O, via the action ¢.
2. 0 is a v(K')-class of polarizations on A of degrees prime to p, such
that the Rosati involutions take v(€) to v(0*).

=2 p 1 - g
3. K, is a Ky-class of O, -linear isomorphisms:

Ky Vi, — Th(A).
4. RP is a K'P-class of O%,-linear isomorphisms
kP \A/Zp — T(A)P

which is symplectic with respect to some Y¥ . Here for a 6F-
module M = Hq M,, we let MP denote the product of components

Mg forq fp.

Proof. Let us first define a morphism from Fy ® F, to Fxr . Let
[A,1,0,F] be an object in Fg/(S) where S is an F,-scheme. Then we
can decompose any k into parts

~

R=FR,®K: Vg, ® VP — T,(A) & T(AP. (1.2.1)
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Furthermore we can decompose k), into two parts:
1 2. 1/1 2 1 2
Ky ® Ky, Vy, @Vy, = T,(A) ©T,.

We claim that the object [A, ¢, 0, &y, k7] is an object of Fr,(S). We
need only verify condition 1 in Proposition 1.1.5. Indeed, by a result
of Carayol, condition 1 in Proposition 1.1.5 which states that

tr(u(0), LieA) = (), leB

can be replaced by the first condition in Proposition 1.2.2 together with
one further condition that

A is an abelian variety of dimension 4g.

This is a slight generalization of Carayol’s proposition in [4], page
171. In his case p is split in B. His proof can be generalized to
our case without any difficulty. In this way, we obtain a morphism
H:K/ X Fp — ?K’,p-

Now we want to construct the converse of the morphism of functors
constructed as above. Since that A has dimension 4g is implied by
condition 4 in Proposition 1.2.2, we need only show that for a given K-
class Ri of as in Proposition 1.2.2, we can find &, with a decomposition
as in (1.2.1) and such that &, is a K -class of isomorphisms k, = Vg, —
T,(A) which is Op p-linear and symplectic with respect to trayp and
some 4 induced by a 6 in 0, where a is some element in det K,

Notice that condition 2 in both Propositions implies that all these
subspaces are null spaces under symplectic forms. So each pair of these

spaces forms a complete dual. So we may take /1110 to be the dual of /4;12).
1.2.2 ]

1.2.3. Definitions. Let S be a scheme over O,, § an Op,-module
scheme over S.

1. We say G is a special O ,-module if the induced action of Op , on
Lie(G) makes Lie(9) to be a locally free module of rank one over
05 ®o,, Op,u, where O, is any unramified quadratic extension of
O, contained in Op,.

2. Let n € N and z € G[n](S). We say x is a Drinfeld base of G of

level n if as cycles in G one has identity:

Sl]= > [nal.
ac0p, ,/p"
Proposition 1.2.4. Assume that J is mazximal at all places dividing
p. Then the functor T, can be extended to the following functor over
O, which is still denoted by Fg ,: For any Og-scheme S, Fxy ,(S) is
the set of isomorphism classes of objects [A, 1,0, T, k>*, kP] where
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1. A is an abelian scheme over the scheme S with an actiont: O —
End(A/S) such that the following two condition are satisfied:
(a) G:= Alp™]? is a special formal Op - module.
(b) A[p>]** is an étale O%’&-module.

2. 0 is a v(K')-class of polarizations on A of degrees prime to p, such
that the Rosati involutions take t(€) to v(€*).

3. T 15 a Ky-class of Drinfeld bases of G of level n, where n is a
positive integer such that K, contains 1 + p"Op,.

4. K% is a Kyp-class of O%fp-lmear 1somorphisms:

K29 VRS — T, (A)P.
5. RP is a K'P-class of O%,-linear isomorphisms
kP VP — T(A)

which is symplectic with respect to some tr(uayr) for some u € U
and a € det K', and some 14 induced by some element in 6.

Moreover, when K, = (1 + ¢"Op)* and K is sufficiently small,
the functor Fk , is representable by a reqular scheme Mg, over O,.

In general, the functor Fg .y has a coarse moduli space Mg, over
0.

Proof. 1t is easy to see that conditions in Proposition 1.2.4 are equiva-
lent to the conditions in Proposition 1.2.2 when S is a Fi,-scheme. The
representability can be proved in the same way as in Proposition 1.1.5.
Here we need to choose K'? to be sufficiently small and take care of
Drinfeld bases. See [4] §5.3 and §7.3. Also the regularity can be proved
using the same argument as in [4] §5.4 and §7.4.

If K'P is not sufficiently small or if K, does not have the form (1 +
©"0p )%, then Fx , may not be representable. But we may choose a

sufficiently small normal subgroup K’ of K’ so that the functor F [
representable. The quotient My, o /K’ does not depend on the choice

of K’ and it is actually the coarse moduli space of Fg , O

1.2.5. Modules My and modules Gx. Recall that M has a finite
morphism to Mg. We, therefore, obtain a model Mk , for the Shimura
curve Mg by taking the normalization of Mg , in Mg . One can show
that this model does not depend on the choice of F’ and J. By gluing
these models, one has a model Mg over SpecOp for Mg, which is
regular when K is sufficiently small.

Assume that K’ is sufficiently small so that Fg , is represented by
a regular scheme Mg ,. Then over Mg ,, we have a divisible Op -
module G/ := G4 , where A is the universal abelian variety on Mg:.
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Let Gx be the pull-back of G4 on Mg. Then Gk, does not depend on
the choice of J.

Let Ky denote Og,p - K¥. Then the scheme My over My, classifies
the K-class of Drinfeld bases in G, [p"].

Let x be a geometric point of the special fiber of Mg,. Then over

—

the completion of the strict localization Mg, ., Gk, is the universal
deformation of G, |-

1.3. Reductions of models.

We want to study the set of irreducible components of the special
fibers of M.

1.3.1. Split case. First we assume that B is split at . Then we
can fix an isomorphism between Op , and My(O,,). Thus, we have the
decomposition of O, modules over Mg, :

Sk, = 9" 9, 91=((1) 8) S, 92=(8 ?) S,

The two O -modules G', §% are isomorphic by the element ((1) (1) It
is easy to see that in this setting, Mg over Mg, classifies the K -class
of morphisms
n\2 n
¢ (0p/p")" — §'[p"]
such that this homomorphism is surjective on cycles.
Let x be a geometric point in the special fiber of Mk, . Then the
Oy,-module 9:10 has two possibilities:

1. Ordinary case: The group Gl is isomorphic to the product of
(F,/0,) and a formal O, -module ¥; of height 1.

2. Supersingular case: The group G: is isomorphic to a formal O,-
module Y5 of height 2.

The set of connected geometric components of the special fiber of
Mk, over p is the same as that of the generic fiber. Fix a geometrically

irreducible component D of the special fiber of Mg, over p. Then we
have:

Proposition 1.3.2. Assume that o is split in B. Then the set of the
irreducible geometric component of My over @ is indezed by P*(0,,)/K,,.
More precisely, for each line C C O?D, the corresponding component of
Mg over o will classify the morphism

¢ (0/p)* = G'[p"]
such that ker ¢ contains C' (mod p).
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1.3.3. Nonsplit case. It remains to study the reduction of My in the
case that B is not split at . In this case, one can show that Gy is a
formal group. It follows that the map

MK — MKO

is purely inseparable at the fiber over . So the set of irreducible
components in the special fiber of My over p is the same as that of
Mk, -

To study the irreducible component of My, over p we can use the
uniformization theorem of Cerednik — Drinfeld [1]. We need some nota-

tions. Let M K, denote the formal completion of Mg, along its special
fiber over p. Let B(p) denote the quaternion algebra over F' obtained
by switching the invariants of B at 7 and @. Fix an isomorphism:

B(p) = Ma(F,) - BY

where the superscript g means that the component at the place g is
removed. Let () denote Deligne’s formal scheme over O, obtained by
blowing-up P! along its rational points in the special fiber over the
residue field k of O successively. So the generic fiber 2 of Qis a
rigid analytic space over F|, whose Fp points are given by IP’l(F@) —
PY(F,). The group GLy(F,,) has a natural action on Q). The theorem
of Cerednik-Drinfeld gives a natural isomorphism

M, = B(p) \QBOY x B¢/ K

where 6;’" denote the completion of the maximal unramified extension
of O,,.
To obtain a description of the special fiber of My,, we notice that

the irreducible components of special fiber of 0 correspond one-to-one
to the classes modulo F™* of O, lattices in F| 5. Consequently, we have
the following:

Proposition 1.3.4. Assume that @ is not split in B. Then the set of
irreducible geometric components of My, over ¢ is indexed by the set

B(p)*\GLa(F)/F GL2(Oy) x Ex’p/Kp
—— X
~B(p)\B(p) /F}GLy(0,)K".
1.4. Hecke correspondences.

1.4.1. Definition. Let Mg be a Shimura curve with a compact K

contained in 62 Let m be an ideal of O such that at every prime @
dividing m, K has maximal components and B is split. Let G,, (resp.
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G1) be the set of element g of 0) g which has component 1 at places not
dividing m, and such that det(g) generates m (resp. is invertible) at
each place dividing m. Then we may consider (G; as a subgroup of K.
The Hecke operator T(m) on M is defined by the formula

Tmz= 3 (2,97, (14.1)

’YGGm/Gl

where (z,g) is a representative of z in H x B*, and [(z,¢7)] is the
projection of (z,g7y) on X. It is easy to see that the correspondence
has the degree
deg T(m) = o1(m) = ZN(@).
alm
To see that T(m) is a correspondence given by algebraic cycles, de-
compose G, into a union of double cosets:

Gm =[] G19:G1.

For each i, let K; denote the group ¢;Kg; ' N K. Then we obtain two
morphisms p;,pe from Mg, to Mg, induced by right multiplication
on B* by 1 and g; respectively. The image of My, in Mg x Mg by
(p1,p2), as an algebraic cycle, defines a correspondence T;. Then T(m)
is defined to be the sum of 7.

If Mk is the integral model constructed as before then the Hecke
correspondences T(m) can be extended to My by taking Zariski closure
of cycles in Mg x M. See moduli interpretation in the next section.

1.4.2. Moduli interpretation. Let I/ = F(1/\) be a quadratic ex-
tension as in 1.1.1. Let J be a compact subgroup of F'* which has
maximal components for places dividing m. Let K’ = K - J. Then we
can use the same formula (1.4.1) to define Hecke correspondence T(m)

on M. In the following we want to describe a moduli interpretation
for T(m).

1.4.3. Definition. Let [A, p,0, K] be an object in Fx(S) as in Propo-
sition 1.1.5, let m be an ideal of Op, and let D be an Og,-submodule
of Alm]. We say that D is an admissible submodule of level m if the
following conditions are satisfied:

1. D is its own annihilator under a Weil pairing
(-,-) : Alm] x Alm] — @gmO¢/mO; (1.4.2)

induced by a polarization in 6.
2. D' and D? have the same order.
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Proposition 1.4.4. Assume that each prime factor £ of m is split in
both B and F'. Let [A, p,0,R] be an object in Fx:(S).

1. Let D be an admissible submodule of A of level m, let Ap denote
the abelian variety A/D, and let pp denote the action of Op on
Ap induced from that on A. Then there is a unique v(K)-class
Op of polarizations on Ap inside of F*0, and a unique K'-class
KEp of level structure which have the same components as K out
side of ¢ such that [Ap, pp,0p, kp] defines an element in Fg/(S).

2. The Hecke operator as a correspondence acting on Mg is given
by the following formula:

T(m)[A, p.0,F] = Z[ApapD,Q_D, k)
D
where D runs over all admissible submodule of A of level m.

Proof. Choose a root i, of A in Fy for each ¢ dividing m. Then we have
an isomorphism

Opr e — O @ Oy, VA = (e, —pte).-
Any @O g-module M has a corresponding decomposition M =
M+ M2
Since T(m) is multiplicative for coprime m’s, we may assume that
m is a power of a prime ideal /.

1.4.5. Models for Op , and Vz,. In the decomposition

Opry = Ok, ® 0%y,
the Rosatti convolution switches two factors. So we can fix an isomor-
phism

Op ¢ = 0py® Opy, (1.4.3)
such that the following conditions are satisfied:

e The second projection is the projection onto (‘)23,,4 composing with
the canonical isomorphism 0%, , ~ Op.
e The Rosatti operator is given by

(a,b)" = (b,a).
Similarly, we fix a model for V7, as follows. First of all, since
2/}f‘_‘(CI":C7 y) = ¢F<I, a*y)u (144)

it follows that in the decomposition

1 2
Vi = Vg, 0 Vg,
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Yr has the form
Vr(at + 2%yt + %) = ve(at y?) — Yr(y' 2?)
for 2, y* € V; ,. Tt follows that ¢ gives a perfect pairing between V; ,s.
So we have an isomorphism
V2o~ 0ps®Opy (1.4.5)
such that:

e The second projection is the projection onto VZ% , composing with
the canonical isomorphism

2
VZ,@ ~ OBJ.

(Recall that V7 = Op in its definition.)
e The pairing ¢ is given by

vp((zh, 2%), (', y?) = trpyp(z'y?) — trpr(y'e?)
(1.4.6)

for ', y" € Opy.

With respect to the decompositions (1.4.3) and (1.4.5), the action
of the second factor of Op/, on V7, is given by left multiplication on
the second factor of Vz,. It follows from from (1.4.4), that the same is
true for the first factor.

Now we want to find a formula for another action Op, on Vg, which
is originally given by right multiplication in its definition. Let us denote
this action by r. Let a € Opy. Since r(a) is Op -linear, r(a) is
must be given by right multiplication of some element (ay,as) of Op/ 4
with respect to the decomposition (1.4.3). From the definitions of the
decomposition, ay = a. Recall that r(a) is a similitude of ¥p:

ZﬂF(r<a’)$> T(a)y) = det<a’>wF(x7 y)
Combining this with (1.4.6), we must have a; = a. So the action r is

still given by right multiplication.

1.4.6. First statement. Let x be one element in k. Then tensoring
with Q we obtain an isomorphism

k:V > TARQ
Notice that the natural map A — Ap induces inclusions
T(A) CT(Ap) CT(A) ®Q.

We want to find v € Gy, such that Vzy~! = k= 1(T(Ap)). Notice that
such y is unique modulo G if it exists. We need only work at the place
l.
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Let W denote k*(T;(Ap)). Then D is isomorphic to W/V7,. Notice
that the Weil pairing on A[m] is induced up to an invertible factor by
the pairing

042¢F . m_IVZ’g X ’ITL_IVZ’@ — Og, (147)

where @ € F* is a generator of m. Since D is its own annihilator, it
follows that the pairing

ap W x W — O,

is perfect.
With respect to the decomposition (1.4.5), W must have the form

W =0gm" ® 057"

with v; € Opy. Notice that D; is isomorphic to OB’g’}/;l/OB’g respec-
tively. So D; has order (det(y;)). Since D' and D? have the same
order, it follows that both det~; and dety, generate m. Now as ayp
is perfect on W, 7, must be equal to ~; times a unit. So W = sz'yl_l.

Let v be an element of GG, Whifh has the component v, at the place
¢, then we have k™ 1(T(Ap)) = Vzy~!. Now we can define Kp as the
class of the composition

Koy Vg — Vvt =k YT (Ap)) — T(Ap).

As in the proof of Proposition 1.1.5, there will be a unique class p
inside F*0 such that [Ap, pp, Op, kp] is an object in Fg(S).

1.4.7. Second statement. Let v be an element in GG,,,. Recall that in
the proof of Proposion 1.1.3, if [(z, g)] represents an object [A, p, 0, &]
in F9.,(C) then [z, g7] represents the object [A, p, 01, Ky~!]. Also recall
that in the proof of Proposition 1.1.5 of the equivalence F%., and F,
these two objects are equivalent to

[A,p,0,F] and [A'p,0 &y
where A (resp. A’) is the abelian variety isogenous to A such that

w(V) =T(4)  (resp. roy!(V2) = T(4)).

Here 6 (resp. #' ) is the unique v(K')-class inside 64 to make this to
be an object in Fg/(C).

The inclusion V;, C 1727’1 induces an isogeny A — A’ with kernel D
isomorphic to R R

Voy ™t/ Vy.

We want to show that D is admissible of level m. As the Weil pairing
on A[m] up to an invertible scale is induced by a pairing as in (1.4.7),
it follows easily that D is its own annihilator. Also D; and D5 have
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the same cardinality as both of them are isomorphic to O 37157_1 /OB
Thus D is admissible.

By the first statement, [A, p, 0, &y~ is equal to [Ap,p,0p,Fp].
From the above arguments, one sees that the correspondence between
admissible submodules of level m and 7’s in G,,/G; is bijective. The
second statement of the proposition thus follows. O

1.4.8. Remarks. First of all, we may extend Definition 1.4.3 and Propo-
sition 1.4.4 to Mg, where @ is a prime of F. Indeed, everything is
exactly the same as above except when ¢ = p. In this case, we need
the following aasumptions:

1. Assume further that A is split in F|, and choose a square root j,
in F,.
2. Assume the Weil pairing in (1.4.2) has the values in

31[m] & Bemm O /mOy

where ¥, is the formal Oy,-module of height 1.

Secondly, D is uniquely determined by D? as D! is the annihilator of
D? in A[m]'. Actually, the correspondence D — D? gives a bijection
between admissible submodules of A[m] and submodules of A[m]* of
order m?2.

Moreover, if each ¢|m is split in B then we may give a further de-
composition for M?2. For this we fix an isomorphism Op, ~ My(O,).
Then M? has a decomposition:

M2 — M?,l + MZ,Q

901 (10 2 22 (0 0 2
N O T X

The element w = _01 (1) switches M?! and M??2.

If D is an admissible submodule of A of level m, then D*! is a
Oy-submodule of A[m]*! of order N(m). The map M —— M?*! is
bijective between the set of admissible submodules of A of level m,
and the set of submodules of A[m]*! of order N(m). Indeed, for a
given O p-submodule D; of A[m]*! of order m, we can obtain a module
Dy = Dy +wD; as an Op,, module of A[m]?. Let D3 be the annihilator
of Dy in A[m], then D = Dy + D3 is an admissible submodule of level
m.

where
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1.4.9. Eichler-Shimura congruence relation. Let o be a prime in
O over which K has the maximal component and B is split. Let
Frob(p) be the Frobenius correspondence on Mg where k is the
residue field of Op,,. Then we have the following Eichler-Shimura con-
gruence relation:

Proposition 1.4.10. Let Frob(p)* denote the dual correspondence of
Frob(p). Then
T(p) = Frob(p) + Frob(p)*

Proof. Let F' = F(v/A) as before such that p is split in F’. We will
only give a proof for the special case where Mg can be embedded into
My for some K’ which is sufficient to apply to the curve X defined in
Introduction. (The proof of the general case can be found in Carayol’s
paper [4], §10.3 where he uses a slightly different definition of My so
that every My can be embedded into his M)

It is obvious that we need only prove the same identity for Mg .
Furthermore, it is true if the identity is true for one K’ then it is
true for smaller one, as the identity in the proposition is stable under
pushforward of cycles. So we may assume that K’ is compact. Now
we need only verify the identity for points in Mg (k). We may only
restrict ourself to the dense subset of smooth and ordinary points.
These points thus are reductions of points in Mg (W) where W is
the completion of the maximal unramified extension of Fj,.

Let [A, p, 0, K] be one object in Fy(W). Then

T(p)[A, p,0, k] = Z[AD,PDyeD, Rp)
D
where D runs through the set of admissible submodules of level m. We
want to study the reduction of this identity module .

As we explained in 1.4.8, D is completely determined by a submodule
D*! of A[p]*! of order p. Since our object is ordinary, A[p*>]|'? is
isomorphic to

=318 F,/0,
where ¥; is a formal Og-module on W of height 1. The generic fiber
of ¥ isomorphic to F,,/O, ® F,/O,. For any t € O,/p, let £ denote
the submodule of ¥ whose generic fiber is group of points (tz,x). The
submodules of ¥ order g are exactly those 3! and ;.

As the universal deformation space of [A, p, 6, ] is isomorphic to
that of A[p>]?!, it is easy to see that the isogeny A — Ap is purely
inseparable if D?! corresponds to Y, and is etale if D?! does not
correspond to X;. Thus in the first case,

[ADv PD; 0_D7 RD] = Fl"Ob(gJ) [Av Ps 0_7 R] (mOd p)
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and in the second case
[A, p, 0, ] = Frob(p)[Ap, pp,0p, kp] (mod ).

Now the congruence relation in the Proposition follows. O
1.5. Order R and its level structure.

1.5.1. Construction of R and X. Let N be a nonzero ideal of O and
let E be a totally imaginary quadratic extension of F' whose relative
discriminant is prime to N. Assume that ¢(N) = (—1)9"!, where

e FX\F* — {+1}

is the character associated to the extension E/F. Then up to isomor-
phisms,; there is a unique quaternion algebra B such that B ramified
exactly at the place 7 and finite places p where €,(N) = —1, as this
ramification set has even cardinality by our assumption. Also by con-
struction, every ramification place of B is not split in £. So we may
fix an embedding p : E — B over F'. This allows us to consider E as
a subalgebra of B.

In the following we want to construct an order R of B of type (N, E);
this means that R contains Op and has discriminant N. For each prime
p dividing N, let px be a prime of O dividing p. Let Ng be an ideal
of O which is a product of powers of pr and which has relative norm
N/Np. The existence of such Ng follows easily from our assumptions.
Indeed, if we write

7 ord ord,,
N= T o™ I ot

e(p)=1 e(p)=-1
Then
NE — p%dp(N).
©

Let Op be a maximal order of B containing Or. Then we obtain an
order of B by the following formula:

R =0+ NgOg.

Conversely, any order of type (N, F) of B has the above form with
some choice of the maximal order Op.

As in the Introduction, our primary curve of study is the compact-
iﬁcati/(\)n X of the Shimura curve associated to the noncompact group
F* - R*.
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1.5.2. Cyclic submodule structures. Let K be an open subgroup
of R which has the same components as R over places dividing N.
Let J be some compact open subgroup of F'* which has maximal
components at places dividing N. Let K, denote the subgroup of 62
which is obtained by replacing components of K over places diving N
with maximal ones. Let K’ denote K - J and K|, denote K - .J. Then
we have a morphism of functors

?K/—>5"~K6.

In the following we want to show that the fiber of this morphism is
given by so called cyclic submodule structures.
For every prime p which is divided by at least one prime factor p in

N, we assume that (%) = 1, and fix a square root p, of VA in Q. In

this way any Op//N module M has decomposition M = M & M? in
the same fashion as before.

1.5.3. Definition. Let A be an object of Fg, (S). By a cyclic sub-
module structure on A of level Ng, we mean an Og/Ng-submodule C
of A[Ng|? such that locally there is an element z € A[Ng| with the
following properties:

1. The element x is a Drinfeld base for C'. This means that as cycles

one has:
A= Y laa]
a€0g/Ng
2. If p is a prime of F' over which B is not split, then z is also a
Drinfeld base for ©5/N-module A[N]?2.
Notice that the second condition here is equivalent to the fact that
x is not divisible by uniformizers of B in A[Kf ].

Proposition 1.5.4. The functor Fg: is equivalent to the functor which
sends a F'-scheme S to the set of objects [A, C], where A is an object
in I (S), and where C'is a cyclic submodule structure of level Ng: on

Before the proof of this Proposition, we need the following crucial
lemma. Let E' = F ® F’. Then every prime factor g of O can be
lifted to a prime pg which is the preimage of pg via the map

Op — Op oy, VA — — .
Let Ng be the lifting of Ng to the ideal in Og: So we have the formulas
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Lemma 1.5.5. The following identities hold in B:

6§-A2,2{96§X~ﬁlxz 6B/g:63f},
EX:{QEGE: Ng'g=Nj' (mod@B)},

EX 6;/ - {96626;/ 3]/\}5/19:]/\};71 (mOd 63/)}.
Proof.

1.5.6. First identity. We need only prove the inclusion “2” for each
place p. Let a € B} and b € F;X such that ¢ =ab € Op, .
If Fé is a field unramified over F,,, then b = db’ with d € Fy and

V' € O . So we may write ¢ = a'b" with
d =ad=cb~' € B,n0O} =0},
If F{, is split, then we have a decomposition
F,=F,&F, B,=DB,oD,.

Write b = (b1, by) with respect to these decompositions. Then ab; and
aby are both in Op . It follows that biby' € OF,- So we may write
c = a'l! with

V= (biby', 1) € Oz, and a' =ab € Op,,.

Finally let us assume that Fj, is a ramified quadratic extension of
F,. Let 7’ be a uniformizer for F/. By replacing b with a multiple of
elements in F} -O%,, we may assume that b is either 1 or 7. In the first
case, a must be a unit and we are done. Now we assume that b = 7’.
Since p is ramified in F”’, p must be split in B. By writing a as a 2 by
2 matrix over Fj,, we see that the integrality of an’ implies that of a.
But this implies that ¢ = a7’ can’t be a unit.

1.5.7. Second identity. This identity follows from the definition be-
cause
ﬁglg:j\\fgl (mod 63)<:>]\7§1g:]/\\7§1+63
<:>966E+NE632§.
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1.5.8. Third identity. For this one, we need only show the following
0xn (63 + JVE,GB/) c R~ (1.5.1)
since by similar reasoning as above,
]Vg,lg = ]VE,I (mod 63/) g€ 6E/ + ]VE@B/.

We need only check (1.5.1) for each place p of F. This is clear if p
does not divide N. But if p divides N, then it is split in F’ and we
have decompositions:

B;:B@@Bﬁm \/X_><:upa_,up)7

Np o =0g, @ Ng,.
It follows that
Op o+ NpOp,=0p,®R,,.
Thus (1.5.1) is proved. O

1.5.9. Proof of Proposition 1.5.4. Let S be an F’-scheme, and [A, R
an element of Fx/(S) with A € Fg;(S) and & a class modulo K’

isomorphisms & : V, —» T (A). This £ will induce an isomorphism

ki V — XA/(A) and a map
RV o V(A)/T(A) = Ay

Thus, we have an Og-submodule C, := R(N'/Op) of A[Ng/]. By
the above lemma, C, does not depend on the choice of k in the class
k. Since N g,l /Op is a free module of rank 1 over O /Np and gener-
ates Op//Np-module N I,?,l(f) p'/Ops, it follows that Cj is generated by
a Drinfeld base = of the order Ng.

Conversely, for any Opg-submodule C' of A[Ng/] which is generated
by a Drinfeld base of order Ng/, and any level structure ko for the
compact subgroup K, we have a unique level structure x so that kg = &
(mod KJ) and C = C,.

In a similar manner, we have the following

Proposition 1.5.10. Let o be a prime of F of characteristic p. As-
sume that J is mazimal at places over p. Then the functor Fg: , is
equivalent to the functor which sends the W-scheme S to the set of
isomorphism classes of objects [A, C] where A is an object in Fr ,(S)
and C s a cyclic submodule structure on A of order Np.
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2. HEEGNER POINTS

In this section we study Heegner points. We start with the general
definition of CM-points and Heegner points as complex points, and
their modular interpretations in §2.1. Then we move to the study of
their reductions which are so called distinguished points, first the struc-
ture of formal group in §2.2 and then the structure of endomorphism
ring in §2.3 using Honda-Tate theory. Finally in §2.4, we study the lift-
ing of distinguished points by Serre-Tate’s theory and Gross’ theory.
In this section we assume that every prime factor of 2 is split in E.

2.1. CM-points.

2.1.1. Definitions and general properties. Our primary object of
study in this paper is the class of Heegner points on the curve X defined
in 1.5.1 by the noncompact group F*R*. From the modular point of
view, it is more natural to study Heegner points on the Shimura curve
Y defined by the compact group R

Y = BX\H* x B*/R*.

The curve X is then a quotient of Y by the action of F*. As in the
Introduction, we fix a splitting

B®: R = My(R)
such that p(E) ® R is sent to the subalgebra of My(R) of elements

<_ab 2) We then extend 7 : ' — R to 7 : E — C such that

(@) = a+ bi <= p(z) = (_“b Z) .

We say a point z in Y is a CM-point ( by E ), if z is represented by
an element of H* x B> of the form (v/—1, g).
For a CM-point z, let ¢, denote the morphism

g 'pg: E — B.

Then up to conjugation by ﬁx, ¢, does not depend on the choice of
g. The order End(z) := ¢;*(R) in E, which does not depend on the
choice of g, is called the endomorphism ring of z. The ideal ¢ of Op,
such that

End(z) = 0. := Op + cOp,

is called the conductor of z.
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For a place p prime to ¢, the homomorphism ¢, defines an orientation

in
U, = Hom(Op,, R@)/Rg.

This set has only one element it @ does not divide /V; otherwise if has
two elements: the image of p which we called the positive orientation,
and the image of p which we called the negative orientation. We say two
CM-points have the same orientation, if they define the same elements
in U, for p|N. If we write

Op,e =0p,+ Oppe
with e? € F, then two embeddings
¢17 ¢2 : OE,p - Rp

define the same element in U, if and only if

(p1(e) — ¢2(e))> =0 (mod N). (2.1.1)

Indeed, write R, = Op ,+t0p,, with t € R, such that det(t) generates
N,. Then if e; and ey have same orientation, it follows that e; — ey €
tR,. This implies that
(e1 —eg)? = —det(e; —eg) =0 (mod N,).
If e; and e, are not in same orientation, then e; — ey = 2e; mod tR,,.
Thus
(e1 —e2)* =4ei #0 (mod N,).
The curve Y admits an action by the group
W={be B :b"'R*b=R*}/R"
This group has 2° elements, where s is the number of prime factors of
N. The action of W on CM-points does not change the conductors,
and the induced action on [ oy Up 1s free and transitive.

Let Y. denote the subscheme of the positively oriented CM-points of
conduct c¢. Then Y, is defined over E and every point in Y.(F) = Y.(C)
is defined over the ring class field H, of O.. Indeed, let (v/—1,g) be
a CM-point of Y with positive orientation and conductgr c, then Y, is
identified with the set of points represented by (v/—1, E*g). The cor-
respondence which sends z to the class of (/—1, zg), therefore, defines
a bijection

EX\E* /O ~Y..
The Galois action of Gal(H./FE) on Y. is given by the inverse of the
map,
Gal(H./E) ~ EX\E* /O,
via class field theory.
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A CM-point z by E is called a Heegner point if its conductor is the
trivial ideal Or. Obviously, the point (v/—1,1) is a Heegner point. In
this paper we only consider CM-points with conductors prime to NDg
and with positive orientation, where Dpg is the relative discriminant
ideal in Op for the extension E/F.

Notice that the property of a point to be a CM-point of conductor
¢ is invariant under the action by F*. So all the above discussion is
valid for X or any Shimura curves between X and Y.

2.1.2. Modular interpretation. We fix F” asin §1.5. In the following
we want to give a modular interpretation of Heegner points over £’ =
F’ - E. We let Y’ denote the Shimura curve Mg with
K/ — EX . 6;‘/
Then Y has a finite morphism to Y.
Let F denote the functor F and let Fo denote Fy; where

Then every point z in Y (C) represents an object [A, C|, where A stands

for an object [A, pa,fa, k4] of Fo(C) and C is a cyclic O g-submodule
structure of A of level Ng. We need some notation to state our result:
e For [A,C] in F(S5),

— let Endg,(A) denote the Op-subalgebra of End,, (A) gener-
ated by elements ¢ : A — A such that ¢¢* € F*, where
¢ — ¢* is a Rosati involution induced by a polarization in 6 ,.

— let Ends(A, C') denote the subalgebra of Endg, (A) of elements
¢ such that ¢(C) C C.

e Lett': B/ — E' be a map defined by
t'(a+bV\) = trggla) +a—a+ (trggd) —b—b) VA
for any a,b € E.

Proposition 2.1.3. Let z be a point on Y (C), and let [A,,C] be an
object represented by x. Then the point x is a CM-point by E if and
only if Endg,(A) ® Q ~ E’. Moreover, if x is a CM-point by E, then:
1. There is a unique isomorphism
a: E ~Ends(A)@Q
over F' such that for any a € E’,
tr(a(a) : LieA) = 2s(a).
2. With « as abowve,
End(z) ={a € E: «fa) € Ends(A,C)}.
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Proof. Let x be represented by (z,7). With notation in the proof of
Proposition 1.1.5, the endomorphism ring Endg, (A) can be identified
with the subring of B generated by elements b € B* - I’ such that

1. V,b C V., or equivalently, b € ~vOpyL;

2. bj, = j.b, or equivalently, 7(b) € ap(E)a™! @, R, where a €

GLy(R) such that a(v/—1) = 2.

It follows that Endg,(A4,) ® Q is a F'-subalgebra of B’ generated by
elements b € B* satisfying the second condition.

2.1.4. Equivalence. If Endg,(A) ® Q ~ E’, then we have an embed-
ding 5 : E — B over F such that in B’,
Endg,(A) @ Q= 3(E) ® F'.

As all embeddings of E into B are conjugate, it follows that § =
bpb~! where b € B* is uniquely determined by 3 modulo p(E)*. Now
condition 2 implies that in B ®, R,

bp(E) ' @, R =ap(E)a™! @, R.
It follows that b = ak with some k € p(F) ®, R. As a(v/—1) = z,
k(v/—1) = v/—1, one must have z = §(v/—1). Thus z can be repre-

sented by
B7Hzm) = (V=1,671).

So x is a CM-point.

Conversely, if  is a CM-point and is represented by (v/—1, g), then
in the above description of Endg,(A), we may take a = 1 in condition
2. So we have

Endg,(4) @ Q = p(E) @ F.

This is isomorphic to E’ by the following map:
a:E' =FE®F — Endg(A) ®Q,
a(z®@y) = plz) ®y.
2.1.5. First property. It remains to show that « satisfies both prop-
erties in the Proposition. Let a € FE then a acts on Vg via right
multiplication by p(a). Write p(a) = (ai,--- ,a,) with respect to the
decomposition
B®R = My(R)® (H) .

Then by definition of complex structure in §1.1 on

e =M(R)® Co® (H®C)"",
one has

tr(a 4+ bVA) = 4a + 2 Z (trH/BR(ai) + trH/BR(bi)\/X> = 2t'(a).

i>2
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The only other isomorphism between Endg, (4) ®Q and E’ is & defined
by

a(r®y) =a(z®y)
which does not satisfies property 1 as t'(a) # t'(a) for a € E — F.
2.1.6. Second property. Finally we want to prove the second prop-

erty in the Proposition. By the proof of Proposition 1.1.5 and 1.5.4, C'
is isomorphic to Ng'y~! modulo V., = Opy~1. It follows that

{a € E, afa) € Endgs(A,C)}
B

Ni'v'p(a) € Ng'y™'  (mod Opy1)
- {a €E, v 'pla)y € Op + NpOp

Similar to 1.5.9, it is easy to see that

~

B (0 + NpOp ) = R,
Thus we have
{a € E, p(a) € Ends(A,C)} = {a €E, pla)ce fyﬁ'y_l}
= End(z).
U

Proposition 2.1.7. Let x and y be two CM-points with conductors
prime to N, and representing the objects [A,C] and [A',C"]. Then x

and y have the same orientation if and only if there is an (L(Op) @ a(Of)) 5 -
linear symplectic similitude from T(A)y to T(A")n which takes C' to

C". Here for a Op-module M, My = M & ©ynZy.

Proof. We may assume that z is represented by (/—1,1) and prove
only the local statement for each p dividing N. Let y be represented
by (v/—1,7). Then we have isomorphisms of (O p) ® a(Og,,)-modules

TKJ(A) = OB’,p TW(A/> = OB/,M?
where +(Op/) acts by left multiplications and o(Og) acts by right mul-
tiplications of p(Og), and isomorphisms of a(O g )-submodules
Cy~ Ng', (mod Op ) Cf~Ng'y™' (mod Op oy,
As any By -linear endomorphism of By, is given by right multiplication
by an element of B[, the “if” part of the proposition is, therefore,

equivalent to the existence of a € By, such that the following conditions
are verified:
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Loy la€ 0% ;

2. a commutes with p(E);

3.aeBY-FJ;

4. NE/fyp_la C Ng (mod OB/@).

By the first identity of Lemma 1.5.5, condition 1 and 3 here are equiv-
alent to the fact that a has the form ”y;la = bc where b € ogy@ and
¢ € Op . Replacing a by ac™
a € B,

Now Condition 2 is equivalent to a € p(E), and condition 4 is equiv-
alent to v 'a € R, by a similar argument to 1.5.8. It follows that
the “if” part of the proposition is equivalent to 7, € p(E)* - R}, or
equivalently to the fact that the map

, we may assume that ¢ = 1 and then

Vo' P - By — By

has positive orientation. O

2.2. Formal groups.

Let g be a finite place of £ and let EJ" be the completion of the
maximal unramified extension of E, with ring of integers O}, and
residue field k. Let y be a CM-point of Y with conductor ¢ prime to
NDg and g. Then y is defined over EJ". Let 3 denote the Zariski closure
of yinY® (9}1”, where Y is the integral model of Y over O constructed
in §1.2. We want to study the reduction y; of y in Y, :=Y ® k.

Let p denote the characteristic of k£ and let o denote the prime of

Or under ¢. As usual, we will choose an auxiliary negative integer A as
in §1.1 and work on F' = F(v/)). We will assume that <%> =1 and

choose a square root p, of A in Q,. Then we have usual decomposition
M = M" @ M? for F] modules M. Let i denote the embedding

i:E'=EW\ — E"

which takes v/ to Lp-

Let [A, C] be the Abelian variety represented by 7. Then the action
of End(y) ® O on A = A® E}" extends to an action on A Let §
denote the divisible O z-module A[p™]?.

Proposition 2.2.1. The action of Op on the Oy -module Lie(§) in-
duced by the action o on A is given by the canonical embedding O —

ur
opr .

Proof. We want to prove the Proposition by computing the trace of
the action of a(Og/). Recall that the action o : £ — End(A) ® Q
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induces an action of £ = E' ® Q, on Lie(A), therefore an action of
B, = E'® F, on Lie(A[p>]). This last module has a projection

Lie(A[p™]) — Lie(S), VX — —p,.

We denote all these actions by a. By proposition 2.1.3, the action «
of £’ on Lie(A) has the trace map i 0 2t' : E' — E. It is easy to see
that the action a of Ef, on Lie(A[p]*°) will have the trace 2t,, where
t,, : B, — E;, has the same formula as ¢’ but with trg/q being replaced
by trg, /g. The trace 2t” of £ on Lie(SG) is given by composing 2t with
the embedding

Eog, a T TV

7 2 2y,

and the projection

E,— EX, a+b/X— a+ by,

So for x € E, we have

() = tr (x>+$ A ‘ vt
— PR 2 2 FolGs 241y 2hp 2y &

=X.

So the action « of E on Lie(9) has the trace 2z. Thus Lie(9) is a two
dimensional space of " and the action « of F is given by usual scalar
multiplication of &2 C Ej". O

2.2.2. Structure of G. Let € be the component of C' in §G. In the
following we want to identify the structure of [, €] as an Op , — O -
module. First of all let us construct a special object [S°, €°].

Let ¥ denote the following O ,-module:

) if p is not split in F,

| X1 @ F,/0, if pissplit in E.
Here for any positive integer h, let Y, denote a formal O,-module of
height h over Oy which is special in sense that the induced action on

tangent space is given by scalar multiplication, which exists uniquely
up to isomorphism. Let

OpexX—%, (azx)—ax

be a faithful O,-linear action such that the induced action of Og on
Lie(X) is given by the reduction O, — O, — k.
Let us define a special Op, — Op ,-module [§%, C°] such that

1.8 =2,
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2. the action a° of Op, is given by the multiplication:
a®(a)(u,v) = (zu, zv);

3. € = X[Ng| ® 0 as O ,-modules;
4. the action of Op, is given as follows:

(a) If p is ramified in E' we fix an isomorphism Opg, >~ M(0O,,).
Define the action ¢ : O, — Endg,(9°) by matrix multipli-
cations.

(b) If p is not ramified in E, then Op, is generated by Op , and
an element o such that wr = Tw and such that 7 := w? is a
uniformizer of O, if p is ramified in B, and 1 if p is split in
B. Then we define the action of Op, on ¥? by the following
formula:

O(2) (u,v) = (zu, 7v), (@) (u,v) = (v, u).

Proposition 2.2.3. The object [G, €] is isomorphic to [§°, C]. In other

words, there is an isomorphism ¢ : G — G° such that

1. ¢ is Op -linear with respect to the actions a, a°,

2. ¢ is Op ,-linear with respect to the actions ¢, .°,

3. ¢(€) = C°.
Proof.
2.2.4. Case 1: p is ramified in E. In this case C = €% = 0. Define

() P ()

Then G is isomorphic to §; & G2 and ¢ ( (1) é ) switches two factors.

So the G;’s are stable under the action of O, therefore, it is isomorphic
to EQ.

2.2.5. Case 2: p is not ramified in E. Let G; (resp. G2) be the
maximal a(Og,)-submodule over which ¢(z) = a(z) (resp. t(z) =
a(z)) for any x € Op,,, then G;’s are O ,-modules (via «) of height 1
and § = G; + G2. The action of ((w) gives two Op ,-linear morphisms
u: Gy — Goand v : Go — Gy such that uv = vu = w. The object [G, ¢, a]
is completely determined by [G1, Ga, u, v]. As up to isomorphism there
is only one special formal O -module of height 1, so G, is isomorphic
to X and one of u and v is an isomorphism. In other words, up to
isomorphism, [G1, Go, u, v] is isomorphic to [3, 3,1, 7] or [¥, X, 7, 1].

By Proposition 2.1.7, the generic fiber of the (Op, O, )-module
(G, @) is isomorphic to that corresponding to (v/—1, 1), that is

(S, G)E;f ~ (By/0p.p, NEIOE,W/OE,KJ)
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with the action ¢ by the multiplication from the left and the action of
« by the multiplication from the right. It follows that [G1, G2, u,v] is
isomorphic to [X, ¥, 1, 7] and € is isomorphic to X[Ng] @ 0. O

2.3. Endomorphisms. Now we assume that y is a Heegner point.
We want to study Endg(Ag, Ck), where Ay is the reduction of A over
Spec(k). Let F be a finite subfield of k over which [Ax, Ci] and « are
defined. In other words, [Ax,Cy] is the base change of some object
[Ap, Cr| with an action of Og. Let o be the Frobenius over F which
acts on Ap. By the Honda-Tate theorem and the Tate theorem [37]
[42], End(Ap) is a semi-simple algebra with center Q(o), and for any
prime /,

End(Ar), ~ End(Ag[¢(*]) ~ End? (A;[(>])

where End?(-) means the commutator of ¢ in End(-). It follows that
Endg(Ag, Cr) is also a semi-simple algebra with center containing O pr (o),
and such that for any place ¢ of F”,

EI]df;(AF, CF)g/ ~ EIldf,v~ (AF [g/oo]’ C[F [gloo]>
~ Endg (Ak 0], Cy [E"’OD .

Here two Endg’s on the right are defined in the same way as in 2.1.2.
Fix Op-linear isomorphisms from the level structure of [Ap, Crl:

ke 19%.€% = [9,¢€l,
mp? s Vo (Ngt/ (9E/),2;’p — [T(A);*, Cp¥],
ko VP (Ngt/0p)') — [T(A)P,Cv). (2.3.1)
Then we obtain isomorphisms:
End, (5%, €°) if ¢|p,
Budy(As, Ce)o = § Endg,, (V29 (N5!/0p)2") it fpand ¢ fo
Endg (‘7217 ,(Ng'/ OE’)p> . otherwise,

(2.3.2)

where o denotes the endomorphism induced from o through the iso-
morphisms «’s. It follows that Ende,, (Ar, Cr) is the commutator of o
in a quaternion algebra over Opr.

Proposition 2.3.1. If ¢ is split over E, then
Endg(Ak, Ck) = OE/
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Proof. From the definition of G°, one sees that
Endo,(§°) ~ End, (%) ~ 0, ® O,,.

It follows that for ¢'|p, Ends(Ax, Cy); can only be an algebra over O,
of degree at most 2. Thus Endg( Ay, Cy) is an algebra over O of degree
at most 2.

Obviously, the right side is isomorphic to Endg(A, C), therefore, it
is included in the left hand side. As Op is a maximal order, we must
have an equality. O

Proposition 2.3.2. Assume that o is not split in E. Let B(p) be the
quaternion algebra obtained by changing invariants at T and . Then

there is an order R(p) of B(p) of type (N(p), E) such that
Ends(Ag, Ck) ~ R(p) ® Op,
where N(p) = Np!=20rda(Ne),

Proof. We need only prove this identity locally at each place ¢ of F”
using (2.3.2). In this case, one can show that for I sufficiently large,
o € F'. (See [4], §11.4.4, 11.4.5 for a proof).

It is easy to check that if ¢ does not divide p then Ends(A,C)y
is isomorphic to R ® Opr . It remains to show that Ende,(G°, €°) is
isomorphic to R(p),. Notice that €° has only geometric point 0, thus
does not play any role in the computation.

Let D denote Endg, () which is the maximal order of a quaternion
division algebra over F|,. The action of Og, defines an embedding of

Op, into D. By a direct computation, we have the following descrip-
tion of Ende, (5%, €°)

Endg, (§%) = Ende, (X @ X) = My(D) :
1. If p is ramified in E, then

10
Endo,,,(§") = D (0 1) .
2. If p is ramified in B, then

0 —1

w

where @ is an element in D such that @? = p and such that
wr = rw for x € E,.
3. If p is unramified in both B and F, then

1
EndOB@(gO, %) ~ Ope + Opew ((1) O) .
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2.3.3. Some remarks and definitions. Let y; be point in Y(k). We
call yp a distinguished point in Y (k) if it is the reduction of Heegner
points in Y (E}"). We can define a similar concept for any curve between
Y and X.

Assume that y; is CM-point representing (A, Cy). If p is split in £
then we have shown that

EHd;}“(Ak, Ck> ~ OE/.

We write End(yg) or End®( Ay, Cy) for the unique subring of Ends( Ay, Ck)
corresponding to Op (the superscript a stands for the “admissible en-
domorphisms”).

If p is not split in £ then we have shown that

Endg(Ax, Cr) ~ R(p) ® Op

with R(p) an order of B(gp) of type (N¥, E). One may fix the isomor-
phism so that the involution Endsg, (Ay)g induced by the polarization
corresponds to the product of the involutions on B(p) and F”’ respec-
tively. In this way the image of R(p) does not depend on the choice
of the isomorphism. Denote this image by End(yx) or End®(Ag, Cy).
Notice that two orders in B(gp) of type (N (p), E) are isomorphic if and
only if they are conjugate under B(p)*.

For a fixed point z of type (Ngp, E) with End(z) = R(p), the reduc-
tion thus defines a map from the set of CM-points reducing to z, with
conductor ¢ prime to Ng, to the set

H R(p), \Hom(Og,, R(p),)

v|Np

of orientations. This set has 2°) elements, where s(gp) is the number
of prime factors of N which do not divide Dg. Two CM-points x and
y reducing to z have the same orientation with respect to R if and only
if they have the same orientation with respect to R(p). We call the
orientation defined by the reduction of the point (v/—1,1) the positive
orientation.

Proposition 2.3.4. Assume that @ is not split in E. Then the map
x — End(z) gives a bijection between the set of distinguished points in
X(k) and the set of conjugacy classes of orders of B(p) of type (N, E).

Proof. The set of distinguished points on X(k) is the set of F*-orbits
of distinguished points on Y(k) or any curves between X and Y.
Notice that the set of Heegner points in Y (C) is represented by

(v/=1, E)). Thus the corresponding objects are
[A’Y7 C’Y] = ‘72’7_1\(VR7j)7 (NE_’l/OE) ’7_1] )
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where v € E*. Let y, be the point in Y’(C) representing the object

[A,,C,]. Then y, depends only on the class of v in EX\EX/QTJ Thus
we may only consider y, with v integral and having components 1 at
places over Np. Then we have isogenies ¢, from [A;,Ci] to [4,,C,]
given by right multiplication of y~! on V7. Let y, be the reduction
of y, and let ¢, denote the reduction of ¢,. Then we can choose
isomorphisms in (2.3.1) such that for places not dividing g they are
induced by multiplication of v~!, and that at place @, ¢, induces
identity on [G°, €°].
Using Honda-Tate’s theorem, it is not difficult to show that

-1 o End(yy) 0 6, = vR(p)y 1 N B(p)

where R(p) (resp. B(p)) denotes End(y; k) (resp. End(y; ) ® Q), and
we identify both sides as subrings in

B*% ~ B(p)**.

As every order of B(gp) of type (N, F) is conjugate to one of yR(p)y ™1,

the map in the Proposition is surjective.
Let y,, and y,, be two Heegner points. Using (2.3.1), it is easy to
see that the injective map

ISOng ([A’}q,ka C’Yl,k‘]? [A’YQ,]’M C’YQ,k]) - End?o (Al,k) ® @7

a— gb’;zl,kaqb’ﬂ’k

has the image consisting of elements b such that

[S°.€% b= [5°C7,

_ 2, _ 7 _ 2, _

V2o (NG 0) ) vt = VS, (NG /0p) 2] -7,

V2, (Ng!/Op)"] -4t = [V, (Ng! /Op)"] - 75
This is equivalent to

—X
71 'by2 € Rlp) OF.

Thus y., » and y,, , are in the same orbit under F* if and only if

— X o~
Y2 € B(p)* - - R(p) - F”.

This in turn is equivalent to the fact that End(y; ;) and End(y,, ) are
conjugate in B(p). O

2.4. Liftings of distinguished points.
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2.4.1. A deformation problem. Let y; be a point of Y (k) which
represents an object [Ay, Cy] of F(k). Let Gx denote A[p™]* and let Cy,
denote the component of C' in Gj. Let i : E — Endg, (A) @ Q be a
homomorphism with order

0, := {iII ek Oé(ZL‘) € Endg([Ak, Ck])}

Assume:

1. The order O, has conductor prime to Ng, and the restriction of
ay on this order has the positive orientation.
2. The action of O, on Lie(9) is given by the map

i:04, = O4,/q — k.

3. The object [S, Cx] is isomorphic to the reduction of [§9, €9 with
respect to both the actions of ¢«(Op) and a(O.,).

Let us consider the deformation functor &, over O"-algebra with residue
field & which sends an algebra W to the set of isomorphism classes of
objects [A,C,a]. Here [A,C] is an object in F(W), and o : O, —
End4[A, C] is a homomorphism such that the following conditions are
satisfied

e The reduction of [A, C, o] at k is isomorphic to [Ay, Ci, o]

e The Rosati involution induced by 64 takes a(x) to «(z) for any
r e 0,.

e The action of a(O.) on Lie(A)? is given by the composition:

0, — 0 — Os.
Proposition 2.4.2. The functor &, is representable by Oy

Proof. The deformation space of [Ag, Ck, ax| is the same as that of
Gk, Cr, ). This is isomorphic to [S?, €Y, a?] by Proposition 2.2.3.
Notice that €} = 0. Now the conclusion of Proposition 2.4.2 follows
from the fact that the formal E;,-module > has universal deformation
space Ej". ]

Corollary 2.4.3. Let y,, be a point of Y (k) which represents an object
[Ag, Cr] of F(k). Then yy. is a distinguished point if and only if there
1s @ homomorphism

ar : Op — Endg([A, C])

such that the above conditions 1-3 are satisfied.
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2.4.4. Canonical liftings. The universal object over Oy" is called the
canonical lifting of [Ag, Cy,ax]. In this way, if p is not split in F
then for a fixed distinguished point y, € Y (k), the set of positively
oriented CM-points with conductor ¢ prime to N g, which reduce to y
modulo p, is bijective to the set of positively oriented homomorphisms
E — B(p) with conductor c.

If p is split over F, then « is an isomorphism, and the canonical
lifting of y; is a Heegner point y (of characteristic 0).

Proposition 2.4.5. Assume @ is not split in E and ord,(N) < 1.
Let ym = [Am, O] be the deformation of yy = [Ay, Cy] to OFF /¢™ with
respect to ay. Then End(y,,) has the same localization as End(yy) at
places different than @, and

End(ym)p = Opp + ¢" "End(ys).

In other words, End(y,,) is the unique sub-order of End(yy) of discrim-
inant g’ N where

po_lm if © is ramified in E
" 12m =1 if p is unramified in E.

Moreover the action on the formal module G,, = An[p™]* is given by
the following composition of canonical homomorphisms:

Opp+¢" "End(yp)y — Opp/q™ — O /q™.

Proof. By a fundamental theorem of Serre and Tate [7], one can show
that

End(y,,) = End(yx) N End([Gm, Cn))

where @, is the component of C,, in G,,. It follows that End(y,,) has
the same localization as End(yy) at places different than g, and

End(y,,), = End([Gm, Cn]) =~ End([SY,, C2])

where [),, €] is the restriction of [§°, €°] on O} /¢™. We want to use
the description in the proof of Proposition 2.3.2 and Gross’ result [15]
to describe End([SY , €2 ]).

As in the proof of Proposition 2.3.2, let D denote Ende, () and
let D,, denote the suborder Endo,(32,,). Then by Gross’ result [15],
Proposition 3.3,

Dy =0,+¢™'D.
Now in

Endo, (G;) = Endo, (S @ X)) = My(D)
Endo, ([Sy,, €),]) = EndO, ([}, €2]) N My(Dyy).

m? m
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Using the description in the proof of Proposition 2.3.2, we have the
following;:

1. If p is ramified in F, then € = 0 and

10
Endo, (S,) = D, (0 1).

2. If p is ramified in B, then

m (0 @'
EndOB,p(gg”m e?n) = OE7P + OE@Q ( wo ) )

w

where @ is an element in D such that @? = p and such that
wr = Tw for x € E,.
3. If p is unramified in both B and E, then

Endey (5%, €%) = O, + Op0™ ' (1 O) ,

0J

2.4.6. Quasi-canonical liftings. We need also consider the quasi-
canonical lifting. Let y be a Heegner point representing [A,C] in
F(E£y*). Let D be an admissible submodule of A of order m = "
(n # 0) prime to N and let [Ap, Cp] be the quotient constructed in
Proposition 1.4.4. Assume that D is connected (This is automatically
satisfied if g is not split in £). Then [Ap,Cp] is an object of F(WW)
where W is a finite extension of Oy*. Then [A,C] and [Ap, Cp] have
the same reduction modulo ¢q. Notice that [Ap, Cp] is not a canonical
lifting of the reduction of [A, Cy]. We call [Ap, Cp] a quasi-canonical
lifting of [Ag, Cy].

Proposition 2.4.7. The objects [A,C| and [Ap,Cp| are not isomor-
phic modulo ¢>.

Proof. By the Honda-Tate theorem we need only check whether or not
the associated divisible groups are isomorphic. It suffice to consider
the groups A[p>]? and Ap[p>]?. Then the conclusion follows from our
precise description for A[p*]* and corresponding results of Gross ([15],
Proposition 5.3) on formal groups of dimension 1. O

3. MODULAR FORMS AND L-FUNCTIONS

In this section we will collect various facts about Hilbert modular
forms and associated L-functions. In §3.1, we will recall definitions of
modular forms and Atkin-Lehner’s theory on newforms. In §3.2-3.3,
we will give a newform theory for X using Jacquet-Langlands corre-
spondence and some work of Waldspurger. In 3.4, we will first recall
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Hecke’s theory of L-functions then prove Theorem B in Introduction.
In §3.5, we will study some standard Eisenstein series and theta series
attached to quadratic characters.

3.1. Modular forms.

3.1.1. Some definitions. Let k be a positive integer, N an ideal of
Op, and w = [Jw, a finite character of Ay /F* with conductor dividing
N such that w,(—1) = (=1)* for vjoo. We want to define the space
of modular forms of (parallel) weight k& and level N. See [2], [10] for
general background and references. R

Let Ko(N) denote the following subgroup of GLq(F)

Ko(N) = {(CC” Z) €GLy(F):c=0 (mod N)} |

Let K°° denote the compact subgroup [[,,.. GLa2(F,) of matrices of the

form

v]oo

r(@) = (r(0,), wv|oo)€ GLy(F @ R)
where for § = (6,,v|c0) € RY,
r(60,) = ( cos 2w, sin 277&91,)

—sin 276, cos?2nl,

Let Z denote the center of GLy. Extend w to a character on Z(Ap) Ko(N) K>
by the formula

w ((g 2) (i Z) r(e)) — w(2) -Ordg)>0wv(av) -v];[oe%ik@v.

Now by a modular form over F of weight k, level N, character w we
mean a function ¢ on GLy(Af) satisfying the following conditions:

1 ¢(vg) = &(g) for v in GL,(Q);

2 ¢(gk) = ¢(g)w(k) for k in Z(Ap)Ky(N)K;

3 ¢ is slowly increasing: for every ¢ > 0, and any compact subset (2
of GLy(Ap), there is a constant C' and N such that

o 9s) o

for all g € Q, and a € A* with |a| > c.
Let ¢ be a character on F'\Af defined by
() = exp2mi(trryg(reo) — trrjg(zy)].
Then every character on F\Ag has the form

r — v(ax)
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with some a € F'.

Let dz be a Haar measure on Ar which is a product of local Haar
measures dz, such that if v archimedean, dz, is the usual Haar measure
on R, and that if v is nonarchimedean, the volume of O, is 1. In this
way, the volume of Ap/F is d;l/Q where dp denotes N(Dp).

For a modular form ¢ as above, let Wy(g) denote the corresponding
Whittaker function on GLy(A):

-t o((s D)oo

where Wy(g) satisfies the same above condition 2 as ¢, and in addition
the following property:

wa (5 1)) = vemto) (312

Now ¢ has the following Fourier expansion

o =co+ X w((5 1)) (313

acF%

Cylg) = d;2 /F\AF y (((1) f) g) du. (3.1.4)

We say a form ¢ is cuspidal, if for almost every g,

Cilg) = 0.

Thus cuspidal forms are determined by their Whittaker functions.
Notice that any double coset in

Z(Ar)GLy(F)\GLa(AF)/ Ko(N) Koo
01

where

can be represented by an element of the form with y € Aj,

Yoo > 0, and = € Ap. We say a form ¢ is holomorphic if

w0 ((g yf))

Too + Yoo € H.

is holomorphic in

Proposition 3.1.2. Let ¢ be a holomorphic form. Then
1. W, <(g (D) #£ 0 only if yso > 0.
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2. There is a function a on the set of fractional ideals which vanishes
on non-integral ideals, such that

co((3 9)) = w0

W ((g ?)) = w(y)ly"*aly;Dr)v(iys)

where y € Ay with yoo > 0, © € Ap, and Dp is the inverse of the
different ideal of F':

Dt ={z € F:tr(x0F) C Z}.
Proof. From (3.1.2), one sees that
: ((‘8 1)) = el 3 clay)i(an)

where ¢(y) is defined by

co((3 7)) =wtlyco)
W (3 1)) =l

As ¢ is holomorphic in = + iYs, it follows that c(y) # 0 only
if Yoo > 0. Moreover if y,, > 0, then c¢(y) has the decomposition

cy) = () liyeo):

For any o € O, 3 € Op, since

0 ((67) (6 ) - )

clayp)b(Byr) = cyy).

It follows that c(ys) # 0 only if y;Dp is integral, and that c(ys) only
depends on the ideal y;Dp. In other words, there is a function a(m)
on the ideals m of Op which vanishes on non integral ideals and such
that

one has

c(yr) = a(ysDr).
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3.1.3. Hecke operators. Now a holomorphic form is uniquely deter-
mined by a(m). We call a(m) the m-th coefficient of ¢ and denote it
as ay(m) if ¢ is referred.

Now let m be a nonzero ideal of Or. We want to define the Hecke op-
erator T(m) on the space of cusp forms. Let H(m) denote the following

subset of GLy(F):
H(m) = {(Cé Z) € M2(6F) : (d,N)=1,ce N, (ad—bc)@F :ﬁz}.
We define T(m) by the formula:

(T(m)é)(g) = N(m)"/21 /H . olaman

where dh is a Haar measure on GLy(F) such that Ky(N) has volume
1.

Proposition 3.1.4. The Fourier coefficients of T(m)¢ are given by
the following formula:

arme() = Y N(@)* ag(mt/a®).
alm+-¢

Proof. We need only prove the corresponding statement for Wy,. The
set H(m) is stable under right multiplication by Ky(/N) and has a
disjoint decomposition:

o =11 (§ ) ()

a,b,d
where (a,d) are representatives in the class
Or N (F)*/0F
such that ad generates m, and for fixed (a,d), b are representatives in
Op/a0F. So we have

yra/d yf?/d>)

a,b,d

((
=N S (5 9)) vt
. ((

) > vlusb/a
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For fixed a, d, if ag(ayra/dDp) # 0 then ayra/dDp is an integral ideal.
In this case b — ¥ (aysb/d) is a character on ap/aép. So the last sum
over b is |a|™! if this character is trivial; otherwise it is 0. Notice that
this character is trivial if and only if ayyd ' Dp is an integral ideal. In
terms of Fourier coefficients, we obtain

armo(aysDp) = Nm)*>~ 3" |a/d|*?|a| ag(aysa/dDp).

a,d
dlaysDp

For any given nonzero ideal ¢ of Op, we always can find «, y such that
ayrDp = (. So the above formula gives

armys(€) = N(m)M>71 Y Ja/d*?|a| " ag(Ca/d).

a,d

dje
Let a = dOp then fa/d = ml/a?®, and |a|™* = N(m/a) and |d|~! =
N(a). The above formula, therefore, gives the proposition. O

Set ¢ =1 in the formula, then we obtain

armys(1) = ag(m)

Corollary 3.1.5. If¢ is a nonzero eigenform for all T(m) then as(1) #
0 and

ag(1)T(m)¢ = ag(m)¢.

3.1.6. Newforms and multiplicity one. The Hecke operators are
generated by T(p) with prime p and satisfies the formal idenity

> 1 S o)) T - T + mi )

mS
p|N plN

It follows that if two eigenforms ¢, and ¢, have the same eigenvalues
under all T(p), then ¢; and ¢ are proportional. This will not be true
if we only consider Hecke operators T(m) with m prime to some given

~

ideal m/. Let N’ be a factor of N, let d € GLy(F') be such that
d ' Ko(N)d C Ko(N'),

and let ¢’ be a form for Ky(N’). Then the function ¢)(g) = ¢'(gd) is
a form for Ky(N). The subspace of Si(Ky(N)) generated by these ¢/
with N/ # N is called the space of old forms.

We say a form ¢ for Ko(N) is new, if it is perpendicular to the space
of old forms. The space SpV(Ko(N)) of new forms is generated by
newforms: eigenforms for T(m) ((m, N) = 1) whose first coefficients

are 1. Then we have the strong multiplicity one theorem:
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Theorem 3.1.7. Let ¢;, (i = 1,2), be two newforms of weight k of
levels Ny, Ny respectively, such that ag, (p) = ae,(p) for all but finitely
many ©. Then N1 = Ny and ¢y = ¢s.

Proof. See [2], Theorem 1.4.4 and 3.3.6, and [5] O

In particular if ¢ is a newform of level N then wy(¢) = ¢ since
wn (@) is also a new form and shares the same eigenvalues as ¢, where

ux@@ =0 (s (Y o))

with ¢ a generator of N.

One application of this is the rank of the Hecke algebra. Let T =
Ti(Ko(N)) denote the subalgebra of Endc(Sk(Ko(NV)) generated by
T(m) with (m, N) = 1. Then T acts faithfully on

Sy = On NS (Ko(N))

and there is a nondegenerate bilinear form

Sy ®c T 2% ¢
such that

(6, T(m)) = at@mys(1) = ag(m).
In particular, we have

Corollary 3.1.8. For any linear map o : T — C, there is a unique
form ¢ such that

whenever (m, N) = 1.

3.2. Newforms on X. As in the modular curve case, one may define
the notion of modular form on the curve X defined in the Introduction:

X = B.\H x BX/F*R* U {cusps}.

Here we are only interested in forms of weight 2, which are functions
f on H x B* such that f(z)dz gives a differential form on X. For m
prime to N, we define the action by the Hecke operator T(m) by the
following formula:
T(m)a = Z 7 a,
YEGm/G1

where a € T'(X,Q'), and G,, and G; are defined in §1.4. Let T’
denote the subalgebra of End(I'(X, QL)) generated by images of T(m)
((m,N) = 1). For every newform ¢ of level dividing N, let ayy be a
character of T defined by ¢ as in Corollary 3.1.8.
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The following theorem translates newforms for Ky(NV) into newforms
for R*:

Theorem 3.2.1.

1. The algebra T’ is a quotient algebra of the Hecke algebra T defined
m 3.1.7.

2. If f is a newform of weight 2 for Ko(N) with trivial character,
then the eigen subspace of T'(X, Q%) of T with character oy has
dimension 1.

Proof. Indeed, as in modular curve case, one can show that T is di-
agonalizable and every character o : T — C of T’ corresponds to
an irreducible automorphic representation of (B ® A)*. By Jacquet-
Langlands theory [24], this representation corresponds to a cuspidal
representation of GLa(Ag). Thus there is a character 3 : T — C such
that a(T(m)) = B(T(m)). So T’ is a quotient of T. This proves the
first part.

For the second part, let 7 be the cuspidal representation of GLy(AF)
corresponding to f. Then for each place p with ord,(N) odd, the
local component m, of 7 is special or supercuspidal. (Otherwise 7
is principal with trivial central character. So 7, = m(u, u~*) and the
conductor of 7, is the square of the conductor of y. This implies that
ord,(N) is even. (See [10], p.73 for a discussion of conductors) By
Jacquet-Langlands’ theory [24], m corresponds to a unique admissible
representation 7’ of B*(Ag). Let V' be the space of the representation
of ©’. Then the Proposition is equivalent to the following: The space of
invariant vectors under R* has dimension 1. This is a local problem.
In other words, we may check the above problem for each finite place
©. Thus the proof is to reduced the following theorem. O

Theorem 3.2.2. Let F' be a nonarchimedean local field, B a quater-
nion algebra over F', E a unramified quadratic extension of F' embedded
in B. Let O be a maximal order of B containing Op. Let (1,V') be
an admissible representation of B* with trivial central characters. As-
sume that the conductor of v is 2n if B is split, and 2n+ 1 if B is non
split. Then the subspace of V' of vectors invariant under the action by
['=(0p+©"0p)* is one dimensional, where © is a uniformizer of F'.

Proof.
Case 1: FE is split. The theorem in this case is a special case of a

result of Casselman [5]. Indeed, in this case we may assume that Op is
the matrix algebra My(Or) and O is the algebra of diagonal matrices.
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Let w = 2 (1) . Then w"Tw™ = Ty(p**). In the following we

assume that Og is not split and n > 0.

Case 2: B is split, and ¢ is a principal series with conductor
©?". Then ¢ = 7(u, u~') with g a quasicharacter of conductor ", and
p?(x) # |z|*!. Recall that m(u, p~ 1) acts by right translation on the
space B(u, u=t) of locally constant functions f on GLy(F) such that

(5 1) a) = utamiamsio)

The restriction on GLy(Of) gives an isomorphism from B(u, u!) to
the space of functions f on GLy(Op) such that

(5 3)9) = nemit

The subspace of invariant vectors f for I' are functions f on GLy(Op)

such that
(5 3)a (0 0)) =mamsto)

for all CCL, Z, in I'.

Since the embedding of O into My(Op) is unique up to conjugation,
the assertion of the Theorem does not depend on the choice of the
embedding. Now write O = Op + Ope with €2 € 03X\ (05)?. Define
an action of My(Op) on Of such that

(Ccl 2) (z + ye) = (dz + cy) + (bx + ay)e.

Then action of O on Of given by multiplication induces an embedding
a from Op into My(Op). Let g € GLy(Op) = Autp,(Og). Let s =
e g He)tand ¢ = g- a(s)”t. Then ¢ will fix ¢, so it has the form

g = Bla,z) = ((1) "Z) :

g9 = Bla,x)a(s)

of this form is obviously unique. The element ¢ is in I' if and only if
ord(a — 1) > n.

Now it is easy to see that the space of functions invariant under I' is
the one dimensional space generated by

fo(Bla,x)a(s)) = p(a)™". (3.2.1)

The decomposition
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Case 3: B is split, and ¢ is a special representation. Now ¢ is
the quotient representation of B(u|-|~*/2, u|-|*/?) with u? = 1, modulo
the one dimensional representation p o det(g). The restriction of this
one dimensional representation on I' has the form

(k- det)(B(a, x)a(s)) = p(Ngyrs)).

Since ¢ has a conductor of even order, so u has a conductor of positive
order. As Ng/pOp = O, this one-dimensional representation s - det
is non-trivial on I'. It follows that the image of fy defined in (3.2.1)
on the space of ¢ gives a nonzero generator of the space of invariant
vectors for I

Case 4: B is non split or B is split but ¢ is supercuspidal. The
proof was shown to me by H. Jacquet and will be given in the next
subsection. O

3.3. Supercuspidal case.

We prove the Theorem in the supersingular case in two steps. First
we prove that V9 is one dimensional then we show that this space is
also invariant under IT.

Proposition 3.3.1. The subspace V0% of Of-invariants in V' has di-
mension 1.

Proof. Let 7 be a representation of GLy(Op) such that # = ¢ if B
is split, and 7 is the Jacquet-Langlands correspondence of ¢ if B is
non split. Let m be the conductor of w, so m = 2n if B is split and
m = 2n + 1 if B is not split.

Since ¢ has trivial central character and Og/Op is unramified, O}
invariants are simply E* invariants. According to Waldspurger, (The-
orem 2 in [41],) V has a nonzero vector invariant under E* if and only

if
1 - B 1
€ 2,7r €p | =€ 2,7r
1 - B 1
€ 2,77 €g | = —¢€ 2,7r

if B is non-split, where €¢g is the quadratic character of F'* attached
to the extension E/F. Moreover by Proposition 1 in [41], the space of
E*-invariants has dimension 1 if these conditions are verified.

So the proposition follows from the following identity:

; G,w@eE) (1) (%w) |

if B is split, and
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Let ¢ be a nontrivial character of F' and let W be a vector in the
Whittaker model W(m,1). As the L-function of 7 is 1, one has the
functional equation:

e(s,ﬂ,l/z)/W[(g (1))} |a|s—1/2dxa:/’WK8 (1))} lal2=d%q

where we have set
—~ 01 _
Wi(g) =W [(1 0) ‘g 1} :

Now assume that W is the essential vector. This means that

W a 0 _ 1 if]a|:‘1;
01 0 otherwise.

Then it follows that

(s, 0) = /’W Kg (1))} la|2-*d% .

1
o= e (1)

where ¢ is the cardinality of the residue field of F'. Thus

vl )]

implies |a| = ¢™. Consequently,

o)=L G )

Replacing 7 by 7 ® eg and W(g) by W(g)eg(det g), we obtain the
required equality,
D r@en) = (—1)me (L
c\ypm@er )= clm)-

Let v € V be a nonzero vector invariant under E*. Let w be a
square root of p in Og. Then v is invariant under K, = 1+ w"Op for
some sufficiently large r.

Recall that

O

Proposition 3.3.2. With the notation and assumption as in Proposi-
tion 3.3.1, the smallest v such that v is invariant under K, isr =m
if B is split, and r =m — 1 if B is not split.
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Proof. We will prove the case that B is not split. The case that B
is split is similar. Let f(g) = (7(g)v,v) be the coefficient function
attached to v. Let ® be the characteristic function of K,. Its Fourier
transform is (apart from a positive factor) the function ¥ (—tr(g))V,
where ¥ is the the characteristic function of the set w!*"Op. The
Godement-Jacquet equation [13] reads, apart from a nonzero constant
factor,

(s,m,) = / Fa )W (g)(~tr(g))]| det g 2~ g.

Since €(s, 1)) = ¢™1/27%)¢(1/2, ), we see that the integral does not
change if we restrict the domain of the integral to the set Opw ™.
Thus ¥ must be nonzero on this set; which implies that » > m — 1.
Moreover the non vanishing of the above integral implies that for at
least one g € OFw ™" the following integral is non-zero:

| 1t e taghyae.
Km—l
Since 1 (—trgk) does not depend on k, we have

/ f(k™tg™Hdk # 0.
Kmfl
This implies that
v = / 7(k)vdk # 0.
Km—1

As K,, is a normal subgroup of O} and v is invariant under Oy, o'
is invariant under the action of Of. So v is a multiple of v’ by the
previous proposition and v is invariant under K,,_ ;. ]

3.4. L-functions associated to newforms.

3.4.1. Definitions. Let ¢ be a newform for Ky(NN) of weight 2 with
trivial central character. Let a,(m) be the Fourier coefficients of ¢.
Then the L-function for ¢ is defined to be

o) — ag(m) _ 1 !
L(s. ) N(m)® Hv 1 — ay(p)N(p)~* Ml_][\, 1 —ag(p)N(p)' 2

meNp

which is absolutely convergent for s € C with Re(s) sufficiently large.

Recall that
ux@)) =0 (o (§ 5)) =7

with v = £1, where ¢ is an element of A} such that

e at archimedean places, ¢ has component —1;
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e at finite place, t generates of N.

Proposition 3.4.2. The function L(s, ¢) is holomorphic in s and sat-
isfies a functional equation:

L*(s,¢): = d%zd} [(I;Ef;

- 'YL*(Sa ¢)

Proof. Let d*x be a Haar measure on Ay which is a product of local
Haar measures dzf on F* such that d*xz, = dx/x if v is archimedean,
and that the volume of O equals 1 if v is nonarchimedean. Let A(s, ¢)
denote the function

o= [ o3 )

where F7} (resp. Ap, ) denotes the subgroup of F* (resp. Ay ) of
elements which are totally positive at archimedean places. Then A(s, ¢)
is absolutely convergent for all s € C and defines an entire function of
on C. Using the Fourier expansion of ¢ and Proposition 3.1.2, we have

A(smb):[ %(yDF)!y\s“/dey-/ ly =2 (iYoo) d*y
P x

Fso

F(s+1/2))g.

(27T)s+1/2

| 2.0

=d;PL(s +1/2,x, 0) - (

Thus we need only prove the corresponding functional equation for
A(s, ¢). By definition of wy(¢), we have

() () )
()6 )
(4 )

Bring this to our definition of A(s, x, ¢),

Moo = [ o((THY))

= - N(N)Y25 . A1 —s,9).
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3.4.3. Remarks. Let € be the character associated to the imaginary
quadratic extension E/F. Let L(s, €, ¢) be the twisted L-series:

L(S7 6, f) = Z X(?\;zfr?)(sm) ’

Then this series is essentially the L-series associated to a new form in
the space of the representation m®e if 7 is the representation associated
to ¢. Thus it has an functional equation.

The base change of L(s, ¢) is defined to be the product:

Lp(s, ¢) == L(s, @) L(s, €, ).

In section 6, using Rankin-Selberg’ convolution method, we will prove
that Lg(s, ¢) has a functional equation with sign e(N)(—1)9.

3.4.4. Proof of Theorem B. Let Jx denote the Jacobian variety
of X. Let T be the Z-subalgebra in Endz(Jx) generated by T(m)
((m,N)=1). Then T® C = T". For every newform ¢ of level dividing
N, let oy be a character of T defined by ¢ as in Corollary 3.1.8, let Oy4 be
the subalgebra of C generated by Fourier coefficients a4(m) ((m, N) =
1), and let J, be the maximal abelian subvariety of .J killed by ker(c).
We say two forms ¢, and ¢, are conjugate if ker(ay, ) = ker(ag,), or
equivalently, there is an automorphism o of C such that ag, (m) = ai2
for all m prime to N.

Lemma 3.4.5.

1. Jx is isogenous to ®gJs where [¢] runs through the conjugacy
classes of newforms ¢ in Sy.

2. If Jy is non-zero, then Oy is totally real with finite rank over Z.

3. If ¢ is a newform of level N, then Lie(Jy) is a free module of rank
1 over Oy @ C.

Proof. Part (1) and (3) are reformulations of part (1) and (2) of Theo-
rem 3.2.1. As T acts faithfully on H'(J,Z), the characteristic polyno-
mial of T(m) is monic and integral. It follows that a(m) are algebraic
integers, and that the subalgebra O, generated by as(m) over Z has
finite rank. Also as T’ is self-adjoint, the characteristic polynomial of

T(m) has only real roots. So Oy is an order in a totally real number
field. O

Now fix a newform f of weight 2 for Ky(N) with trivial character.
Let A denote J;. Fix a place p not dividing N. Then A has good
reduction at p. Let ¢ # p be a prime. Then A ® k(p) has the same
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(-adic Tate module as A, that is H*(A, Q;). The local zeta function of
Aat pis

Z,(t) = det(1 — tFrob(p)|H' (A, Qy)).
As Frob(p)* has the same characteristic polynomial as Frob(p), we
have

Z,(t)* = det [(1 — tFrob(p))(1 — tFrob(p)*)]
= det(1 — t(Frob(p) + Frob(p)*) + t*Frob(p)Frob(gp)

*).
As Frob(p) has degree N(p), we see that Frob(p)Frob(p)* = N(p).
Now the congruence relation

a(p) = Frob(p) + Frob(p)*
implies
Zo,(t)? = det(1 — a(p)t + N(p)t?).
As dim H'(A, Q) = 2[0; : Z], we have
Z(t) = No,/z(1 — a(p)t + N(p)t*).
Thus Theorem B follows, as the L-function of A is defined as
L™ (s, 4) = [ Zo(N(p) ™)

pIN

3.5. Eisenstein series and theta series.

3.5.1. Some definitions. Let k be a positive integer. Let x be a
quadratic character on Ay /F* with a square-free conductor D, such
that x,(—1) = (—1)*, and that D, is prime to Dr. We extend y to
Ko(D,) as in §3.1. For s a complex number, we define a function Hj
on GLy(Ap) by

(g = [l Xlaur®) it e Ko(Dy
) 0 otherwise

where every element g € GLy(Ap) has the form

o= (5 5)wo

with ur(6) € Ko(1)K, the standard maximal subgroup of GLa(AF).
Let B denote the Borel subgroup (the group of upper triangular ma-
trices), then H(g) is left invariant under B(F).

For Re(s) > 1, the Eisenstein series

EJg9)=L(2s,x) Y, Hig)
+EB(F)\GLa(F)
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is absolutely convergent and defines a (non-holomorphic and non-cuspidal)
form for Ko(D, ) of (parallel) weight k, and character x.

Proposition 3.5.2.
1. The constant term of Es at (‘g (1)) is given by the following for-

mula:

y 0 L(2s,x)x(y)lyl* if x #1
CES((O 1)) {@(28)\y15+d P2Cr(2s = )V (0)7y'~ if x =1

2. The Whittaker function at of Es is 0 if yDp 1s not inte-

y 0
01
gral; otherwise it is given by the following formula

e (8 1)) = el T m e elunto

v|Dy
with ( ) 21
1 — X (Y00 | YO0y | %57
s - ‘/s v
o (y) H 1 — X(ﬂ-v)|7rv|28_1 H (y )
vfDy v|oco
vfoo
where

o 7, is a uniformizer of F, such that e(m,) =1 if m, | D,.
e x(v) is a square root of (—1)* defined by

() =Im | Y xla/m)vu(—a/m,)

LLE(OU/TI'U)X

edcFXisa generator of Dp.

* [ee) 2WiYy T
Vi(y) _/_OO (l,2+1)s—k/2(x+i)kdx‘

Proof. For a« =0 or 1, let

cton=a [ 5.((4 %)) oo
Then F

we (5 1)) =t ca((h ) =aom,

The group GLy(F') has the Bruhat decomposition

GLy(F AIT]] B(F (1 “)

ueF
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(0 -1
w={; o]
Therefore

es(a,y) =L(25, \)d7"? /A R ((g ”15)) W(—az)da

+ L(2s, x)dp"? /AF o, <w (g f)) (—az)dz.

By definition the first term is equal to

L(2s, x)dyp 1/2/ Xy "¢ (—az)dx

Ap/F

where

which is
L(2s, x)x(y)|y|®

if @ = 0; otherwise it is zero.
To evaluate the second integral, we notice that

(@060

Replacing x by xy, the second integral becomes

/AFH < (35 f))w—ax)dx:,yp-ﬂw%)

where for y € F,,

v = [ (()5))) e

Case where v is archimedean. If v is archimedean, we have the
decomposition

0 1 1 —x T —1
( - > — (\/m2+1 Va4l ) (\/a:i—i-l \/r;+1) )
Iz 0 z? +1 Vz2+1l  Va2+1

It follows that

Vi = [ ( L ) v

:/ (22 + 1)S k/2(x+2) : (3.5.1)
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Case where v is nonarchimedean. If v is nonarchimedean, then

0 -1
() er

if x € O, otherwise we have the decomposition
0 -1\  [z7!' -1 1 0
1 =) 0 = b 1)
@)z ifx ¢ O

0 —1 X
Hv((1 x)): 1 if z € Oy, v1 D,
0 if z € Oy, v | D,.

So we have

Z/ox o o2~y (")

fo —yx)dz ifv [Dy,
if v | Dy

=S im e [ a—eyr s
n>1 v
1 ifv /Dy, y € Dp!
0 otherwise.

Case where v | D,. If v divides D,, then [. . x(x)Y(—zynr ")dx is
nonzero only if y # 0 and ord,(y) = n — 1. In this case it equals
x(ym™)k(v)|m,|Y2. So if v divides D,,, we obtain the following formula

for Vi(y):

Vily) = > x(y)k(v)|m[>*7H2if y # 0 and ord,(y) > 0
i 0 otherwise. (3.5.2)

Consequently, if x is nontrivial, V(0) = 0 and the 0-th Fourier coeffi-
cient of F4(g) is
Cs(y) = L(2s, x\)x(y)ly|".

Case where v { D,. In this case

1 —|m| if ord,(yDr) > n;
Y(—zyr ")dr = ¢ —|m,| if ord,(yDp) =n — 1;

O .
Y 0 otherwise.
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It follows that V(y) is nonzero only if ord,(yDp) > 0 and in this case

Vts(y) - Z X(,]rv)n|7rv|2ns—n(1 - |7rv|)

1<n<ordy (yDF)
+ 1= (x(m) |m [~ )ord WP |
ordy(yv DFy)
=(1 = xo(m) |7 [*) Xo ()" [,
n=0 (3.5.3)
Ll

Corollary 3.5.3. If (F,k,x) # (Q,2,1) then there is a unique holo-
morphic form E, , of weight k and central character x for Ko(D,) such
that the m-th Fourier coefficient of E, j is given by

oi-1(m) =) x(mN(n) .

nlm

Proof. The function V;(y) can be analytically extended to a function
for all Re(s) > 0 and has exponential decay with respect to y. When
s = k/2, we have

(=2mi)kyk=te=2™ if y > 0
Vi =
by2ly) {0 if y < 0.
So F4(g) can be analytically continued to a form for Re(s) > 0 and
E}/2(g) is a holomorphic form whose m-th Fourier coefficients are given
by
L(k, x) if m =0;
A oy i—1(m) ifm#0
where -
2mi)*
Ayk = (dpdy )F= 1/2X H RAY
v|Dy
0

3.5.4. Remarks.

1. When k£ =1 and y is the character attached to an imaginary qua-
dratic extension E/F, the form E, j is called the theta series associated
to the extension E/F and is denoted as 0/ or simply 6, thus

E1/2 = Aglg.
Notice that in this case o, ;_1(m) is the number of integral ideals in E

with norm m/, where m’ is the maximal factor of m prime to Dg. We
denote this number simply by r(m).



62 SHOUWU ZHANG

2. When (F,k,x) = (Q,2,1), E1(g) is holomorphic except constant
term.

4. GLOBAL INTERSECTIONS

In this section we will study the Néron-Tate height pairing (z, T(m)z)
of the Heegner points and the CM-points. More precisely, we will
first show that (z, T(m)z)) is the coefficient of a modular form ¥, and
then express the heights as the arithmetic intersections using arithmetic
Hodge index theorem [8]. Finally we decompose this number as a sum
of local intersections. Compared with the case F' = Q, there are two
major difficulties: one is the absence of cusps which ware used to map
the modular curves to their Jacobians; another is the absence of the
Dedekind n-function which was used to compute the self-intersection.
Therefore we can only obtain an expression of (z, T(m)z) as a sum
of the local intersections of CM-points which meet properly at special
fibers, modulo some multiple of the coefficients in the Dirichlet series
Ce(s) and (r(s)(r(s — 1). At the end of this section, we will use the
multiplicity one theorem to show that the modular form ¥ actually is
uniquely determined by our expression. This section contains most of
the new ideas of this paper.

4.1. Height pairing.

4.1.1. Height pairings as Fourier coefficients. In the Introduction,
we have defined a Shimura curve X and a Heegner point z in the
Jacobian J(F) ® Q of X. In §1.4 we have defined the Hecke operator
T(m) as correspondence for m prime to N. As in the modular curve
case we want to show that

(z, Tpnz), mé€Ngp, (m,N)=1

are Fourier coefficients of a holomorphic cusp form for Ko(NN), where

(-,-) is the Néron-Tate height pairing on J(F') ® Q. Actually this is a
general fact:

Lemma 4.1.2. Let Sy denote the sum of S3(Ko(N')) for all N'|N.
For any x € Jac(X)(F), there is a unique element f, in Sy such that
(x, T(m)x) is the m-th coefficients in the Fourier expansion of [ at oo

for all m € Ng prime to N.

Proof. Now T’ also acts on J(F)® C. So T — (x,Tz) gives a linear
function on T” and, therefore, on T. Now the conclusion follows from
Corollary 3.1.8 and Lemma 3.4.5. O
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4.1.3. Height pairings as intersection pairings. Let ¥ denote the
form f, defined in the lemma. The purpose of this section is to show
that W is determined by the local arithmetic intersections of some CM-
divisors.

We have constructed an integral model X for X over Op. However
this model is not fine enough for the computation of intersection num-
bers. Instead of X we will consider X which is the Shimura curve
corresponding to a smaller group K such that the corresponding curve
has a regular model. For example, we may take K = (1+N. =05 ) nU
where U is an open compact subgroup of G(Ay) which is maximal at
places dividing NDg. When U is sufficiently small, X has a regu-
lar model over X over Op. As U is maximal at places dividing Dp,
X x SpecOpg is also regular Let 7 XE — Xg be the projection in-
duced by the inclusion K — K, and let z be the pullback of z on
Xp. Then ? has degree 0 on each irreducible components of Xg. The
projection formula for heights gives

(2, T(m)z) = (2, T(m)z)/ deg .
Here the pairing on the right hand side is the Néron-Tate pairing on
the Jacobian of X ® E, which by definition is the product of Jacobians

of irreducible components.
We may write (z, T(m)z) as an intersection of arithmetic divisors on

X®O0g [9] [11] [12]. More precisely, let Z be the arithmetic divisor on

X ® O which has curvature 0 on the Riemann surface X (C) and has
zero degree on each irreducible component C' of the special fibers of

X ® O, then the Hodge index theorem gives

(2, T(m)3) = —(2, T(m)3).

Here the right hand side is the arithmetic intersection.

4.1.4. A formula for Z. Let us write a formula for Z.
Let 1 be the divisor
n=u") [z]

where u = [0 : Of] and z runs through the set of positively oriented
Heegner points on X. Let 77 be the pull-back of 1 on X ® E. Let
7 denote the Zariski closure of 77 on X®0 g. For each infinite place
7 of F', X;(C) is a Riemann surface compactified from a quotient of
3. Let du be a volume form on X5(C) such that on each irreducible

component X; of Xg(C), du has volume 1, and the pull-back of du on
H is proportional to the Poincaré metric dzdy/y* for x+yi € H. Let g
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denote Green’s function on X (C) with respect to the Poincaré volume
form du:

90 7
—g = 5Th' — deg(m)du, where 7, = 1|x,
ux;

Let 77 denote the arithmetic divisor (7, g).

Let £ be the class in Pic(X) ® Q which has component &; on each geo-
metrically connected component X; defined in the introduction. Then
z is the class of n— h{ where h is a number such that z has degree 0 on
each irreducible component of X. Let f be the pull-back of & on Xp.
Then f is the class of the bundle Q}( [cusps| divided by its degree. We

will find an extension of 5 to an arithmetic class E whose curvature is
multiple of du on each component X;. We need only do this locally at
each place v of Op.

Choose F' as before. Let X’ be the Shimura curve defined over F”
associated to the open compact subgroup K’ = =K-Jof B * where
J is an open compact subgroup of 6;, which is maximal at places
dividing N. Choose U and J sufficiently small so that F = Fpor is
representable. Let A be the universal Abelian variety over X’ and let
L denote det(LieA)Y. Then by Kodaira-Spencer map, L equals the
canonical bundle Q![cusps] on X'

If v is an infinite place 7 of F', then X, can be embedded into X . The
bundle L, has a Peterson-Weil metric ||-||: for a point x € X (C) repre-
senting an Abelian variety A, and for an element o € L, = T'(A4, ng ),

all? = <—z‘>g2/ ana.
A(C)

So we obtain a metric on &; this is nothing else but the standard hy-
perbolic metric up to a constant multiple.

If v is a finite place g, we assume that F” is split at o and that J is
maximal at places dividing p. We assume that Fg , is representable
by a regular scheme X' over Oy,. Then we can define a bundle L,
on X' by the same way. Let Of" be the completion of the maximal

unramified extension of O, then DNCozr can be embedded into DNC’OU
i ©

Now the restriction of £, on f)NCo;r defines an extension of Q!'[cusps| If
© does not dividing N, then this integral structure is the same as that
induced by ! on X at v.

Let £ be the extension of Q2'[cusps] on X such that L, =L®0) for

every p. Let E be the arithmetic divisor class of hermitian line bundle
(L, |l - ||) dividing by its degree. Then 7 — h& has curvature zero.
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For simplicity of notation and computation, we will assume that
E/F is not unramified. In this case n will have the same degree on
each geometrically connected component of X, and so is 1. Now we
can write R

Zi=n—hé+ 7
where h is a number such that Z has degree 0 on each geometrically
connected component of the generic fiber, and Z is a vertical divisor
of X ® Op such that z has the degree 0 on any irreducible component
of the special fibers of X ® Og. In the following subsections we will
compute T(m)n, T(m)g, and T(m)Z respectively.

4.2. Computing T(m)n.
Proposition 4.2.1. For ¢ prime to N, let

ne=u' Yy,
where u, s the cardinality of OF /Oy, and where the sum runs through
the set of positively oriented CM-points of conductor c. Then for m
prime to N,
T(m)m = Y r(m/c)n.

ceNp
clm

where r(m) denotes the number of integral ideals in O with norm m.

Proof. The map (v/—1,¢g) — ¢ identifies the set of CM points with the
set

E*\B*/R*.
For any Op-module M, write M” for M @ O, where O” is the product
I1 oty Op. Also write E* for the group of elements in E* which is a unit
at p for any place p dividing N. Then the set of positively oriented
CM-points is identified with

EN\T] EXR: - B™ R = E\B"* | R"™.
oIN
As B is unramified off N, there is an isomorphism 0% ~ Endg, (0%)
of the left O -algebras. Now the correspondence g — ¢©%, gives a

bijection between the set of positively oriented CM-points and the set
of classes of O’-lattices in E”:

EA\{© — lattices in E’}

where E* acts on the lattices by left multiplication. It is not difficult to
show that if a CM point has an order O, then the corresponding lattice
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class has the form gO° with g an element in E°. This shows that the
set of CM-points of conductor ¢ is bijective to

ENE" /02"

More precisely, let S, denote a subset of E” representing the above set,
then 7. has the expression

ne=u." Y [V=1,9]

YES.

where S, is considered as a subset of B> by setting components 1 at
places dividing N.

The action of T(m) on CM-points can be described as follows. If x is
represented by a lattice L in E” then T (m)z is the sum of classes of all
sublattices M of norm m (this means that the product of elementary
factors of Op- module L/M is m).

Let [gO’] be a lattice class with g € E**. Then the multiplicity of
[90°] in T(m)n; is equal to u; " times the number of pairs

(7,k) € S1 x EF/O
such that kg©? is a sublattice of 704 of norm m, or equivalently
y7lgk € 0%, N(y7'gk) =mj/c.
Now the surjective map

S1x BFJOF — (B°) /0, (9.k) =7 'gk  (mod OF)
is [0F : O] to 1. Thus the multiplicity is equal to

ul_l[(‘)g O #{y € 635/(‘)?; . N(y) =m/c} = u;'r(m/c).

Let 12 denote the sum of 7, for all alc and a # Op, and define

TO(m)n = e(c)n),e. (4.2.1)

c|m

Then T°(m)n is disjoint with . As r(m) = 2 njm €(n), we obtain:

Corollary 4.2.2. If m is prime to NDg, then
T(m)n = T°(m)n + r(m)n.

-~

4.3. Computing T(m)¢.
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4.3.1. Some definitions. Let m : U — V be a finite flat morphism
of integral schemes. Let Pic(U), Pic(V') be categories of line bundles
on U and V respectively. Then we can define pull-back functor 7* :
Pic(V) — Pic(U) as usual, and norm functor N, : Pic(U) — Pic(V)
as follows. If L is a line bundle on U then N, (L) is a line bundle on V'
which is locally generated by N, (¢) with ¢ a section of £ such that

N (f¢) = Norm(f)N,(¢)

where Norm is the norm map f,Opy — Oy for the algebra extension
Oy — f.Op. It follows from the definition that if L = Oy (D) for a
divisor D on U, then N, (L) is canonically isomorphic to Oy (m. D).

If W is an integral subscheme of U x V' such that the projection from
W to U is finite and flat then we can define a functor W : Pic(V) —
Pic(U) as W(L) = Ny, 7, (L) where 7y, my are projections from W to
U and V respectively. We may extend this definition linearly to any
correspondence W of U x V' such that W has all irreducible components
finite and flat over U.

It is easy to see that at the generic fiber

T(m)¢ = o1(m)¢.
The following Proposition gives the corresponding formula for T(m)g.
Proposition 4.3.2. There is a morphism
U T(m)L — L7

such that the following conditions are verified:
1. Let ¢ € Ng be such that

Y (T(M)L) = L™,

Then for each finite place g,

n

ord,(c) = 20 (mgp (™) Z iN(p™ ).
i=0

2. Let v be the following function on )?(C)

_ w8l

where 3 is a nonzero element in T(m)(L)(z). Then

Hme(iK) = N<m>201(m)'
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Proof. We need only prove the corresponding statement on X’. For this
we extend T(m) to X' by the formula (1.4.1). By Proposition 1.4.2,
we have the following modular interpretation for T(m): For any object
[A,C] of F(S), then

T(m)[A,C] = [Ap,Cp]

D

where D runs through the set of admissible submodules of A of order
m, A= A/D, Cp = C+ D/D. Let X,, be the subscheme of X' x X’
which represents the isogenies A; — Ay with admissible kernel of order
m, then T(m) is induced by X,,.

Let 7 : Ay — Ay be the universal isogeny over X,,, and let pq, po be
the projection of X,, to X'. Then p;L = det Lie(A;)¥. The morphism
7* : Lie(Ay) — Lie(A;) therefore induces a morphism of line bundles
on X'

Ny, (p2L) — Ny, (p1L).
Notice that by definition T(m)L = N, p5(L), and N, p;iL = L),
We, therefore, obtain a morphism of line bundles:

U - T(m)L — Lo,

To prove (a), we need only check the proposition locally at each finite
place p prime to N. Write m = m/@™ with (m/, p) = 1. Then v, is
factorized as a composition of ¢, and p,n:

T(m)(L) = T(p")T(m/ )& —22m p(grygenm) 28 poatm),
As T(m') is étale at p, it follows that if 1),» has order ¢ at p, then v,
has the order oq(m’)t.

Let x : SpecWW — X, be a strictly henselian point represented by an
Abelian variety A with ordinary reduction. Then

T(p")(L,) = @pdet Lie(A4/D)Y

where D runs through the set of of admissible submodules of A of order
m. Fix an isomorphism Op, ~ My(O,). Let G denote the O,-module
<(1) 8> A[p™]? of dimension 1, then det Lie(A) = Lie(G)®2. Tt follows
that

T(p"L = [[(LieG/H)®

n

where H runs through the set of submodules of G of order p”, and
that the morphism 1 : T(p")L — L") is induced by morphisms
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7 : Lie(G/H)Y — Lie(G)". Let
0—-H —H—H"—-0

be the formal-étale decomposition. Then
Lie(G)v/ﬂ*Lie(G/H)V ~ 0"(Qg) = 0*(Qy)

where 0 is the 0-section of G.

Now G has a decomposition G = 3B F,/O,, where ¥ is a formal O,-
module of height 1. Tt follows that H has the form H = %;[p| ® G,,_; »
where 0 < i <n, A € o' "0,/0,, and G,,_;  is the subgroup with the
generic fiber {(A\z,z) : z € ' "0,/0,}. Thus

0" () >~ 0" (s, ) Lie(X)Y/p'Lie(X)" ~ O, /¢".
It follows that the quotient of ¢) has the order

> 2iN(p" ).
=0

It remains to prove (b). Recall that T(m)L(x) is equal to
®@p det Lie(A/D)Y

where D runs through the set of admissible submodules of order m. As
1 is induced by the maps

71-*D : Q114/D - Q,147
the norm of v is the product of the norms of
det 77, : det F(Q}L‘/D) — det T'(Q})
which is (deg 7p)'/? = N(m)2. It follows for any infinite place 7, that
[l (x) = N(m)?m).
Ll

Corollary 4.3.3. Let ¢ be a function on the set of elements of Np
prime to N with values in the group of arithmetic divisors on O defined
by the formula

T(m)E = o1(m)(€ + (m)).

Then ¢ is quasi-additive: for any m' and m” such that (m’,m") =1
then

(b(m/m”> :¢<ml)+¢(ml/)
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Proof. We decompose ¢(m) = Y ¢(m),[v] where v runs through all
places of F'. Then by the Proposition,

o(m)y = co(pordem) =131 iN(p"Y)  if v = p is finite
| clogN(m) if v is infinite.

where c is some fixed constant. Thus ¢ is additive for coprime m’s. [J
4.4, Computing T(m)Z.

4.4.1. Decompositions. For each finite place p of F', let V,, denote

the group of Q-divisors of X supported in the fiber over p modulo the
subgroup of Q-divisors of connected components. Then we have the

decomposition
zZ=Y 7,
o

where Z,, are elements in V,,. We want to study T(m)Z,, for m prime
to NDp. If we choose different models X, then the decomposition is

preserved by the pull back maps. So we assume that X has the same
level structure as X at the place g.

Proposition 4.4.2. Assume that @ is split in B. Then
T(m)Z, = o1(m)Z,.
Proof. By definition T(m)Z is a unique solution to the equations
(T(m)7i — hT(m)é +T(m)Z, P)=0

for any irreducible vertical divisor P on T®O g As X ® E is smooth
at the places not dividing N, we need only check that the differences

o~

Zy =T(m)j —o1(m)n and Z; =T(m)¢ — al(m)g

both have degree 0 on each irreducible component of X over o dividing
N. For Z, this follows from Proposition 4.3.2. It remains to study Z;.

Case 1: p does not divide N. In this case, each geometrically

connected component of f)NCp has only one irreducible component. So
Zy=0.
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Case 2: p split in E. Let IN(O denote the level structure obtained
by replacing the level structure K, by the maximal one (‘)JXB@. Let

5C0 denote the corresponding Shimura curve. Then the natural map
X — DNCO induces a bijection on the set of connected components. Over
%0 we have the divisible O ,-module G! of height 2 and X classifies the
“cyclic 7 submodules C of G! of order pord?’(N ). For a fixed irreducible
component D of the special fiber of 5C0 over g, by Proposition 1.3.2,
the set of irreducible components of X over D is indexed by the types
of the subgroup over the ordinary points over D. By Proposition 2.2.3,
all divisors 7, will have ordinary reduction at @ and the corresponding
subgroups are of same type: either all étale or all formal. It follows
that all CM-divisors 7. with positive orientation will reduce to the same
irreducible component of f)NCp over D. This implies that Z; has degree

0 on each irreducible component of f)vCp.

Case 3: p is split in B and inert in E. We claim that each
connected component of X over p has only one irreducible compo-
nent. With the notation as §1.3.1 and Proposition 1.3.2, the set of
irreducible components of X, over D is indexed by P!(F,)/K* where
K = FJR5. As R contains Op, and Fg(‘)gp = E, it suffices to
show that P'(F,) has only one orbit under the action of EJ for any em-
bedding E,, — M (F,). Up to a conjugation, we may identify P'(F,)
as the set of surjective F,-homomorphism, from E, to F,, and the ac-
tion of £ is given by the multiplication on E,. It follows that PY(F,)
has one element tr : £, — F|,. As the pairing

By X By — I, (2,y) — tr(zy)

is nondegenerate, any other surjective Fi,-homomorphism ¢ : £, — F|,
will have the form

o(x) = tr(az)
where @ is a nonzero element of E,. In other words, ¢ = a(tr), or
the action of E,, on P*(F)) is transitive. Consequently, each connected

component of X, has only one irreducible component. As in case 1, we
have Z, = 0. O

It remains to consider the case where g is not split in B. The con-
clusion of the previous Proposition will definitely not be true. But we
have the following:

Proposition 4.4.3. Assume that ¢ is not split in B. Then for any
element D € V,,, there is a holomorphic V,-valued cusp form f of
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weight 2 and level Ko(N¥) such that for all but finitely many m, the
m-coefficient of f is given by T(m)D, where N¥ denotes N =N,

Proof. Actually by Proposition 1.3.4, the set of irreducible components
of X is identified with

Sg. = B(p)\B(p) /F*GLy(0,)K*.

The group V,, is therefore identified with a subgroup of the space 1%
of complex functions on Sg . By Jacquet-Langlands theory [24], the
action of the Hecke correspondences is factorized through the action of
the Hecke algebra of holomorphic cusp forms of weight 2 and level
F *GL2(0,)K*®, so the Proposition is true with the level structure
Ko(N) replaced by Ko(N¢)yKN.

Using pull-back of divisors, we notice that minimal level of the forms
which have T(m)D as Fourier coefficients does exist and does not de-
pend on the choice of K. Thus this minimal level must be Ko(N®). [

4.4.4. Some definitions. Let 8§ denote the vector space of complex-
valued functions on Ny modulo an equivalence relation so that two
functions a and b are equivalent if and only if there is some element M
in such that a(¢) = b(¢) for any ¢ prime to M. The strong multiplicity
theorem 3.1.7 implies that the map

f—f:n—ag(n)

is an embedding from Sy into §. We say a function h in 8 is quasi-
multiplicative if there is an M € Ng such that

f(mn) = f(m)f(n)
for all m,n € N such that
(m,n) = (mn, M) =1.

For a quasi-multiplicative function f, a function h is called an f-
derivative if

h(mn) = f(m)h(n) + f(n)h(m)
for all (m,n) as above.

Let o1 and r denote the elements in 8 defined by: m — o;(m) and
m — r(m) respectively, and let Dy be the subspace of § generated
by o1, r, oi-derivatives, and r-derivatives, and the Fourier coefficients
corresponding to the old cusp forms of weight 2. Then we have

Proposition 4.4.5. Let U denote the image of ¥ in §. Then in 8, we
have R
¥(m) = — (ﬁa To(m)ﬁ) /degm (mod Dy).
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Proof. By discussions in §4.1.3 and 4.1.4, for m prime to N Dg,

~

U(m) =~ (- hE+ 2, T(m)(@H—hE+2)) /degr.

Now we have shown:
o T(m)Z, = o1(m)Z, if p is split in B, and m — T(m)Z,, is given
by an old cusp form of weight 2 if @ is not split in B;
o T(m)E = a1(m)(€ +1(m)) with ¢ quasi-additive :
o T(m)7j = r(m)i + T°(m)7.
It follows that

-~

U(m) = — (7, T°(m)7) /degm (mod Dy).
0

4.5. A uniqueness theorem. Now we are going to prove that the
relation in Proposition 4.4.5 determines a new form projection of W
uniquely:

Proposition 4.5.1. Let f be an element in the space Sy such that in

8,

-~

f=0 (mod Dy).
Then f is an old cusp form of weight 2.
Proof. We start from the following

Lemma 4.5.2. Let aq,--- ,ap be distinct nonzero quasi-multiplicative
elements in 8. Then the equation

(cron +hy) + -+ (coow + he) =0
in 8§ does not have a nonzero solution
x = (c1,hy, -, co hy),
where for each , ¢; is a constant and h; s an o;-derivative.

Proof. Assume that the lemma is not true, then we will have one solu-
tion xg = (¢1, h,- -+, ¢, hy). Let M be an element in Ng such that

(craa(n) + hi(n)) + - + (ceou(n) + he(n)) =0

for any n prime to M. Let m be any ideal prime to M, then for any n
prime to mM, we have

(crar(mn) 4+ hi(mn)) + (caaa(mn) + ha(mn)) +--- = 0.
So we have a new solution

x1 = (crag(m) 4+ hy(m), ar(m)hy, -+, coae(m) + he(m), cg(m)hy).
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If hy(m) # 0 then we obtain a solution
o' =1 — an(m)zo = (i (m),0,-- ).

in which hy = 0 and ¢; # 0. Doing this for each 7, then we obtain a
solution in which every h; = 0 but some ¢; will not be 0. We need only
to show that aq,--- , ay are linearly independent. This is similar to the
proof of the linear independence of the characters of a group. O

Now go back to the proof of our proposition. Decompose f into a

sum of newforms of levels dividing N and forms of type ¢ (g ((1) 2)) )

where d # 1 is a divisor of N in F* and ¢ is a newform of level d~!N.
Then the above lemma implies the proposition if we can show that
o1 and r are distinct and not in the image of new forms. For any
quasi-multiplicative a in 8, we define the Dirichlet series

L(s,a) = Y a(n)N(n)™*
which is well defined modulo finite many factors. Then it is easy to see
up to finitely many factors,

L(s,r) = Cx(s), L(s,01) = Cr(s — 1)¢r(s).
So L(s,r) has a pole at s = 1 and L(s,o0;) has a pole at s = 2. If
r is multiple of o7 in 8, then L(s,r) should be equal to a multiple
of L(s,01) up to finitely many Euler factors. This is impossible as
they have different poles. The same argument shows that o and r
should not be equal to f for any cusp form f, as L(s, f) = L(s, f) is
holomorphic at s =2 and s = 1. O

4.5.3. Remarks. The number (7, T°(m)7n)/ deg m does not depend on
the choice of m : X — X. Let us denote it by (n, T°(m)n). As two
divisors 7 and T°(m)7 are disjoin at the generic fibers, thus it has
decomposition

(n, T(m)n) =Y (1, T(m)n),

(2

where v runs through the set of all places of F', and
(0, TO(m)n)y = > (7, T(m))/ deg 7
wlv

where w runs through all places of E over v.
Assume that m is prime to NDpg, then by (4.2.1), the computation
of ¥ modulo old forms is reduced to the computation of

(0, n0)e == (17,7")/ deg .
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In the following section we will first compute the local intersection then
will add them together.

5. LOCAL INTERSECTIONS

In this section we are going to compute (1, T(m)°n), where v is a
place of E. We follow the method of Gross- Kohnen-Zagier [22]. How-
ever we are working on CM-points with the discriminants not neces-
sarily coprime. Again, we need to assume that every factor of 2 is split
in E.

5.1. Archimedean intersections.

In this subsection we want to compute the infinite local intersections
(n,n0), where ¢ € Np is prime to NDg and 7 : X — X is some covering
of X constructed as in §4.1. First of all let us assume that v is over 7,
the embedding chosen in the Introduction.

5.1.1. Intersections as Green’s functions. Let R;’s be non conju-
gate orders of B of type (N, E). Then X(C) is a union of Riemann
surfaces

X; = RE\H = RI\H*.
We want to compute the intersections (7;, ngi)v separately, where 7; and
77271- are restrictions of n and 7Y on X;. Let g;(z,y) be Green’s function
on the compactification of X; with respect to the Poincaré metric du:
0,0,

v

9i(x,y) = 0, — du(x).

We can linearly extend g; to a function on the set of disjoint pairs of
divisors.
Lemma 5.1.2.

(05,02 3)w = Gi (13, 10)-
Proof. Let X; be _the part of X which projects into X;. Then the
Riemann surface Xj; is a union of Riemann surfaces of the form: X;; =
[ ;\3(, where I';; C PGLy(R)* acts freely on 3. Let n;; and np,

be the restrictions of 7; and ﬁ?l on X, ;, then by construction of 7; in
§4.1.4,

(7/7\1'7 7/7\(0),1‘)11 - Zgid (772'73‘» 778,1;3')/ degﬂ'
J

where g; ;(x,y) are Green’s functions on the compactifications of )N(l-,j’s
with respect to the Poincaré metric. Now the Lemma follows easily
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from the projection formula

gi(x,y) = Z gig(r~(x), 77 (y))/ degm

for any distinct « and y in X;(C). O

5.1.3. Construction of Green’s functions. Now g;(z,y) can be con-
structed as follows [16]: for s € C with Re(s) > 1, define the function

Gs(z,w) = Q51 (1 + M)

2ImzImw

where Qs_1(u) is the Legendre function of the second kind:

Qs—1(u) = / (u+ Vu? — 1cosht)dt.
0
Then the function on X;,

gsi(2,w) = Z Gs(z,yw)

RISIY

is convergent and has a simple pole at s = 1 with residue 1/x; where
['; is the image of R in PSLy(R) and x; is the Euler characteristic of
X;. Then we have an identity

9i(z,w) = lim (gs,i(’zuw) - %) .

s—1 s — 1)xi

Let x,y be two points on X, (C) represented by z,w on H. Let u,
and u, be the orders of stabilizers of x and y in I'; respectively. Let P,
and P, be the sets of points on H mapping to x and y, respectively,
then we have

-1, -1

u,. u
) — 1 __r Yy
9i(2/tz, y/uy) = lim > gs(2,w) Ep—y
(z,w)€T;\ Py X Py

Applying this to components in n; and 772,i7 then Lemma 5.1.2 gives

) degn degn?
(771'77721')1) = lim E gs(Z,w) - | »
sl s(s —1)x;
(2:w) €\ P;x P2, (5.1.1)

where P, and P°.

i are the sets of points in H mapping to components
of n; and 77,
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5.1.4. Some description of CM-points. We may identify H* with
Homg (C, My(R)) such that if z = g(v/—1) € H* with g € GLa(R),
then the corresponding element ¢, : C — My(R) takes a + bi to

g ( ab 2) g~'. In this way, the CM-points on X; are those points

induced by a homomorphism ¢ : K — B with order given by ¢~1(R;).
For two points z and w in H* corresponding to two homomorphisms
¢, and ¢, in Hom(C, M2(R)) it is easy to check that

|z — w|? 1t (i)
= — 7y,
2ImzImw 2

1+
where i, = ¢,(i) and i,, = ¢,,(7). It follows that z and w are in the same
connected component and z # w if and only if that —3tr(i.i,) > 1.
Let P; (resp. P9;) denote the inverse image of 7; and 72, on H*, and

let P.; denote the union of P; and ‘Pg’i. Then we have

‘ 1 degn; degn?;
(15,0, )o = lim >, Qe (—5“<Zz@w>)+w
(2;w)€P; x P /R
—Ltr(iziw)>1

For an element ¢ € Ng, define

INCUEIED DR G R

(z,w)€ePx P i/ R™
—Ltr(iziw)>1

(5.1.2)

Then formula (5.1.1) gives
deg n; degn?;

1o )y, = lim ) — 1,i :
(e =t (e =0+ S 5.1
5.1.5. Linking numbers. Each pair (z,w) € P;xP.; of X; determines
two homomorphism ¢, and ¢, from K to B such that ¢,(Ok) C R;
and ¢,(0.) C R; and that ¢, and ¢, have the same orientation. Let
a, b be two totally positive elements of ¢ and Dg respectively such that
both a and b are prime to N and that v/—bis in E. Let e; = ¢,(v/—b)

and ey = ¢,(cvV/—b) in R;. As ¢, and ¢,, have positive orientation, we
have

(ae; —e3)* =0 (mod 4N).
In other words there is an n € Na~'b~! such that

tr(ejeq) = —2ab + 4nab.
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It is easy to verify that n is independent of the choice of ¢ and d. So
n € Ne'Dg~'. We call n the linking number of z and w (or ¢, and
¢w) and denote it by n(z,w) (or n(p., py)).

As

1
—Etr(iziw) =1-2n(n),

formula (5.1.2) becomes

uv,s(ca Z) - Z Qv(ca n, i)Qs—l(l - 27—1 (TL)),
neNc D=1 (514)
7(n)<0
where g,(c,n,i) is the number of conjugacy classes of pairs (z,w) €
Pi x P.; such that n(z, w) = n.

5.1.6. Summing up. We need to sum up formula (5.1.3) for all i. We
need only to sum up g,(c,n,7)’s and residues. Let P(n); denote the set
of conjugacy classes of pairs (¢1, ¢2) € Hom(FE, B)? such that

$1(0g) C Ry, ¢2(0.) C R;, n(o1, ¢2) = n.

Then any pair (¢1, ¢2) defines two CM-points (z,w) € H x H with
conductor 1 and c respectively. These two points are in P; x P.; if
and only if the morphism ¢, defined by z has the positive orientation.
As the orientation group W acts freely on U;P(n);, the set U;P(n);,
therefore, has cardinality o,(c,n) :=2°)". 0,(c, n, ).

Now we want to treat the residue term in formula (5.1.3).

Lemma 5.1.7. The numbers degmn;, degn.;, xi; do not depend on i, if
they are nonzero.

Proof. The natural projection from X, (C) onto the set of its connected
components is given by the determinant map

X(C) — mo(X(C) := FA\F*/F*20%,

(z,9) € H® B* — detg.
Now 7. is u_' times the sum of CM-points represented by (v/—1,g)

with ¢ in EX\E*/F X@j The determinant map restricted on these
CM-points is given by norm homomorphism

Ng/r : EX\E*/F*0X — FX\F*/F*?05.
Thus the preimage of every point in m(X (C) has the same cardinality
if it is not empty. This implies that deg,;, therefore, degn;, deg 772’1-
do not depend on 1 if they are nonzero.

It remains to show that x; does not depend on ¢. Recall that yx; is
the volume of X; with respect to the measure dzdy/y? on H times an
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absolute constant. We need only show that the volume of X; does not
depend on i. For this we use Hecke’s correspondence T(m). By the
definition of T(m) in §1.4, the induced action of T(m) on 7y(X(C))
is given by [x] — o1(m)[mz|, where [z] denote a point represented by
z € F*. On the other hand, T(m) changes volume form dzdy/y* to
o1(m)dzdy/y?*. Thus all connected components of X,(C) must have
the same volume. O

5.1.8. Intersection on other archimedean places. Now we want
to compute the archimedean intersection for places of E over 7o, - - , 74.
For this we need to describe the conjugation X, (C) of X(C) over F.
Let B(7;) denote a quaternion algebra obtained from B by switching
invariants at 7, and 7. Fix an order R(7) of B(7g) of type (N, E),
then R R
X, (C) =~ B(7,)"\H* x B(m,)*/R(73,).

So the above formulas (5.1.2)-(5.1.4) and Lemma 5.1.7 for (n,n?) work
for each 7.

More precisely for each infinite place 7, let o, (c,n) be defined as
above for B(7), then we have the following:

Proposition 5.1.9. For each infinite place v of E over an infinite
place 7 of F, the local intersection (n,n°), is given by the formula

deg 7 deg 1;
s(s—1)x /)’
where x 1s a constant independent of ¢ and T, and

Uns(0) = Y 270, (c.n)Qur (1 —27(n)).

neENe D1
Tk(n)<0

s—1

lim (uTk,s(C) — U, s(Op) +

5.2. Nonarchimedean intersections.
In this section we want to compute the intersection of n and n° at a
place v of E over a prime @ of F.

5.2.1. Some intersection settings. Let g denote the prime of Op
corresponding to v, and let O;" be the completion of the maximal un-
ramified extension of O, with a uniformizer 7. Let E}" denote its field
of fractions. Then X := X ® Oy can be embedded into X =X® oy
For any Off-scheme S, the set Hom@;r(& X') parameterizes isomor-
phism classes of objects [A, C, ko] where [A, C] is an object of F(S),
and kg is a level structure defined by the compact subgroup U x J.
Let z and y be two integral components of 1 and 10 respectively over
E}*. Then x is the image of a morphism from E)* to X and y is the
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image of a morphism from F(WW) to X where F'(IW) is the fraction field
of a finite extension W of E;*. Let us denote

(2,y)q = (7(x) /ug, 7 (y) /uy) / deg T,

where 7*(x) and 7*(y) are the Zariski closures of 7*(z) and 7*(y).
Assume that U and J are maximal at places dividing ¢, then

™(x) = Uy sz T (y) = Z Yj

where x; are points of X defined over Ey" and y; are points defined
over F(W). So we have

(2, 9)g = —— S (). (5.2.1)

5.2.2. Moduli interpretation. The schemes 7*(z) = u, Y T;, and
m™(y) = wuy Y y; represent objects [A,C,x;] and [A',C", k]|, where
[A,C] and [A’,C'] are objects represented by the Zariski closures Z
and y of z and y in X, respectively, and «; and &; are level structures
on them for the group U - J.

Now let us study the local intersection (n,77), in two cases: o { ¢
and p | c.

Case 1: pfc. Let x and y be integral components of  and n° over
Ey". Then all x; and y; are sections of X over O;". Let 21, 29, -+, be
the inverse images of the reduction z of 7 on X. Let [A°, C?, kY] be the
corresponding objects.

If p is split in £ and Z; and j; intersect at some z;, then both Z; and
y; are canonical liftings of zj, with the same multiplication by End(z),
so x; = y;. This is impossible so (z,y), = 0.

If p is not split in £ and Z; and ¥; intersect at some z; in the
special fiber, then there are two embeddings a, : End(z) — End(z)
and oy, : End(y) — End(z). With respect to a, and «a,, z and y are
canonical liftings.

Fix isomorphisms

()
End(y) ~ O, (5.2.2)
()

where R(gp) is an order of type (N(p), E) in the quaternion algebra
B(p). We require that the first two isomorphisms satisfy the conditions
Proposition 2.1.3. Let

n=n(ag,a,) € N(p)c'Dg™!
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be the link number defined as in §5.1.5.

Lemma 5.2.3. Assume that ord,(N) < 1. Then the intersection of x
and y is given by (x,y), = m(n) where

ord, (np) if o | De
lord,(np/N)/2] if 1 Dp.

Proof. In this case the component of C' at o = 0. Thus the formal
deformation of the formal group gives a formal neighborhood of z/s in
X. By (5.2.1), it is not difficult to show that (Z, ) equals the maximal
integer m such that

m(n) =

1. End(x,,) contains the images of a, and «, where z,, is the re-
striction of x on OF/q™O},

2. oy = oy (mod ¢" ') in Op(,) as = and y have the same orienta-
tion at @, where

o otherwise

{q if 9| NDp
m =

and where w is a uniformizer of B(p)

By Proposition 2.4.5, End(z,,) is the unique suborder of R(p) of
type (E, g’ N) where

, _[am—1 itotDp

On the other hand, the algebra O, , generated by the images of a,, o,
has discriminant D, := ¢2Dg*n(1 —n). Thus m(n) is the largest num-
ber such that ord,(D,,) > b,,. So the first condition is equivalent to

9 .
< ) ) 29
For the second condition we let ¢ be an element in O, such that
O, =0,+0,t, t2€0,.
Then the second condition is equivalent to
x(t) —ay,(t) =0 (mod ¢" 'r).
Let 1 be an element in Op(,,) such that the following conditions hold:

OB(p) = Og + Ogt, pe o,
UT = Tp Vo € 0.
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Consider t as an element in R(p) via o, then o, (t) will have the form
a(t) = to+ Bu), o> — BRR =1

where a € O, 8 € O,. Now the second condition is equivalent to the
following

a—1=0 (mod g™ 'at™), Bu=0 (mod¢q™ 'mt).
(5.2.4)

By the definition of n,
tr(ag(t)ay(t)) = 2t° — 4t*n.
Thus

a—1=-2n BBu* = 4n(n — 1)
and (5.2.4) is equivalent to
n=0 (mod¢™ tnt™h), n(l—n)=0 (mod (¢" 'xt™1)?)

or equivalently
1
m < ord,(tq/m) + ord,(p) min {ordp(n), iordp(n(n - 1))}

< ord,(tq/m) + ordq(p)%ordp(n).
Thus the second condition is equivalent to
ord,(np) if p| Dp
m < ¢ sordg(n)  if o | N (5.2.5)

sord,(np)  otherwise.

The lemma follows from (5.2.3), (5.2.5), and the fact that ord,(n) > 0
if p is unramified in E, as n € N(p)c D3 O

Conversely if o and ay are two homomorphisms from Og and O, to
End(z) respectively which have positive orientation, then by Proposi-
tion 1.5.1, we can find objects [A4, C] and [A’, C'] which are canonical
liftings of [A°, C°] with respect to oy and p. This defines a component
x for n and a component y for n°. Now for each z, the level structure
kY can be uniquely extended to level structure on [A, C] and [A4’, C"] so
we obtain some sections ; and y; which intersect at z;. It is easy to
see that the number of 2 is degm/c, where ¢, = #[R(p)*/O0%]. So the
total intersection of (n,7?), at z is given by

S oz, e.m)min),

where o(z, ¢, n) is the number of R(gp)-conjugacy classes of pairs (¢, ¢2)
as above with link number n.
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Write g, (¢, n) as the sum of p(R(p), c,n) over all non-conjugate or-
ders R(p) of B(p) of type (N(p), E), where o(R(p), c,n) is the num-
ber of R(p)-conjugacy classes of pairs (ay, ay) of homomorphism from
Op and O, to R(p) with the same orientation and link number n in
N(p)c'Dg~'. As we did in archimedean case,

Z o(z,¢,n) = 275(@9@(07 n)

where s(p) is the number of prime factors of N(p) not dividing Dg.
Then we obtain

(17,712)0 = ugp(c) — up(1), (5.2.6)
where

ug(c) =270 3" gy(e,n)m(n),

TlENCilDEil

with m(n) given by formula (5.2.6). Here 27! appears in the formula
because the symmetry between n and 1 — n.
Case 2: ple. Write ¢ = dp* with s = ord,(c). Then ¢ can be

written as
=Y _a'(s)+ Y (W +y(s)

z'en y’6772/

where 2/(s) and y/(s) are sums of quasi-canonical liftings of the reduc-
tions of 2’ and ¢’ of levels up to s. If  is a section of 7 then a component
z; of m*x has intersection with a component z’(s); of 7*(z'(s)) if and

only if # = 2/, and then (Z;,2/(s);) = s. Similarly, a component z; of

m*z has an intersection with a component y(s), of 7*y(s) if and only if

Z; has an intersection with ¥;, and then (Z;,y(s);), = s. It follows that

(Uang)q = Shl’
if p is split in £, and that

(171 )g = sha + ug(c) — ug(1),

if o is inert in E, where hy, ho are constants independent of ¢, and
where

u,(c) = 275 Z 0o(c',n")(s +m(n')).

n'€Ne=1Dg~!

In summary we have proved the following:

Proposition 5.2.4. Assume that c is prime to N Dg.
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1. If e(p) =1, then
(1.1¢)0 = ord(c)hn

where hy is a constant independent of c.
2. If e(p) =0, then
(1,71 )0 = tp(e) — up(1),
where uy, s given by the formula
u, = 2750 Z 0p(c,n)m(n).
nechlDEil
3. If e(p) = —1, then
(n,n2)w = ordy(c)hs + ug(c) — uy(OF)

where hy is a constant independent of ¢, and where u,, is given by
the formula

ug(c) =270 N g (d n/)(ordy(c) + m(n')),
n'eNd—1Dg~ 1

where ¢ = cp°rd(©),

5.3. Clifford algebras.

5.3.1. Determining the ramification type. Let A be a quaternion
algebra over I’ with embeddings ¢; and ¢, from F into A. Let d be a
nonzero element in £'* such that v/—d € E, and denote

er = ¢1(vV—d), e = g2(V—d).
Let m € F* be defined by
e16q + exe; = 2dm.

Then m does not depend on the choice of d. We want to describe the
places at which A is ramified in terms of m.

Proposition 5.3.2. Let v be a place of F. The algebra A is ramified
at v if and only if e,(m* — 1) = —1.

Proof. Let A° denote the vector space of trace 0 elements in A. Then
AY is ramified at a place v of F if and only if A’ ® F, has no nonzero
element with square 0. Now A’ is a vector space over I generated by
e1, es and ejes — md and it is easy to check that for any z,y, z in F,,

[z + yeo + z(e1e — md)]? = —da? + 2mdzry — dy* + (m? — 1)d?2%
This form is linearly equivalent to

—dz? + (m?* — 1)y? — 22
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So A is ramified at v if and only if (m? — 1) is not a norm from E,,, or
equivalently, €,(m? — 1) = —1. O

5.3.3. Counting orders. Let ¢ be a nonzero ideal of O prime to
NDpg . Let S denote the Op-subalgebra in A generated by ¢1(Og) and
$2(0.). Then S is finite over O if and only if m+1 € 2¢7'Dg~!. The
discriminant of S is Dg = (m? — 1)c? D>

Let ¢ be an ideal of O such that the following conditions are satis-
fied:

1. ord,(?) is even if v is split in A and inert in F;

2. ord,(¢) is odd if v is ramified in A and inert in F;
3. ord, () is 0 if v is split in A and ramified in E;

4. ord,(¢) is 1 if v is ramified in both A and E.

In the following we want to compute the number of orders in A of type
(¢, E') containing S. The above conditions imply the existence of the
orders in A of type (¢, E). Indeed, Condition 1-2 implies that there is
an ideal {5 in O with norm ¢/Da where Dy is the product of primes
in F' over which A is ramified. Let O be any maximal order of A
containing ¢;(Og). Then

$1(0g) + ¢1(Lp)0a,

is an order in A of type (¢, FE). Let o(S) denote the number of orders
in A of discriminant ¢ containing S.

Proposition 5.3.4. Assume m+1 € 2¢"'Dg~t. There is an order of

discriminant ¢ containing S only if Dg is divisible by {. If £|Dg, then

o8 =rs/0)- [ 2

v|(Ds,DEg)
ev(m?—1)=1

Proof. Since the correspondence O — 0) gives a bijection between the
set of orders of A and the orders of A, it follows that o(S) equals the
product of the numbers p,(S) of orders on A, of type (¢, E') containing
S, for all finite places v of F. Fix a finite place v = p. We want to
compute g,(5) case by case. Let W denote the ring ¢1(Og,,) contained
in S. Recall that the discriminant of S is Dg.

If e(v) = —1, or v is ramified in A, then there is a unique order in A,
of discriminant °4°(“) containing W. This order contains S, if and only
if ord, (¢) < ord,(Dg). In other words, ,(S) = 1 if ord,(Dg) < ord,(¥)
and o,(S) = 0 if ord,(Ds) < ord,(¥).
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If e(p) = 1 then W ~ O as a ring. It follows that S, is an Eichler
order conjugate to an order of the form

a b
pordg,(Ds) c d

This order is contained in an order of the discriminant p°*d¢® if and
only if ord,,(¢) < ord,(Dg). If ord,(¢) < ord,(Dg), then each order of
A of the type (¢, E) containing this order has the form

a @ Fb
e d

with 0 < k < ord,(Dg) — ord,(¢). Hence o,(S) = 1 + ord,,(Dg/{).
If €(p) = 0 and g is not ramified on A, then S is generated by e;
and ey such that

a,b,c,dGOp}.

a,b,c.d, e O@}

e1eq + exe1 = 2md
and W is generated by e;, where ¢ = d. The correspondence [ —
Endg, () gives a bijection between the set of maximal orders of A
containing W and the set of ideals in W modulo an equivalence rela-
tion: Iy ~ Iy if and only if Iy = La for an a € F*. We have two
maximal orders Ende, (W) and Endg, (We;) corresponding to ideals
W and We;. One of them must contain S, say the first one. We want
to prove that the second one also contains S. It suffices to show that
the second one contains ey, or in other words es(Wey) C Wey. First of

all, as esW C W and
€162 + e9e] = 2md,

we have ex(Wey) C 2mdW +We;. Secondly, as p|(Dg, Dg) with Dg =
(m? —1)d*OF, we must have ordp(m) > 0. So e;|md at the place p. It
follows that ey(Weq) C Wey. So we have proved that o,(S5) = 2. This
completes the proof of the proposition. O

We will use Proposition 5.3.4 to compute the embeddings from S
into orders of type (¢, E):

Proposition 5.3.5. Let Oq,---, 0 be a representing set of all conju-
gacy classes of orders in A of type (¢, E). Then

h
S #{6:5 -0, (mod 0))} =21(S).
=1

where O] acts on the set of embeddings from S into O; by conjugations,
and t({) is the number of finite places dividing /.

Proof. The proof is completely similar to the modular curve case treated
by Gross, Kohnen, and Zagier [22]. We omit the details. O
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5.4. Final formula. For each place w of F, let (n,n°), denote the
total intersection over the places over w:

(0w =Y _(1,72)u log N(v) (5.4.1)
v|w

where v are places of E, and log N(v) is set to be 2 if v is a complex
place. In this section we want to compute the local intersection

(1, T(m)°)w = > () (1, 10 (5.4.2)

cm
5.4.1. Archimedean case. Let us first compute the Archimedean case.
By Proposition 5.1.9, for a place 7;, (, T(m)%y),, is equal to
(degn)® deg T°(m) )
s(s —1)x (5.4.3)

21im (Uw(m) —r(m)Us, s(OF) +

s—1

where U, ((m) is

273 e(e) D on(m/e,n)Qur (1 - 27(n))

clm nENcmleE_l
7i(n)<0

=277 Z Z e(c)or,(m/c,n)Qs_1 (1 — 27;(n)).

nENm- D=1 c|lm
7i(n)<0 clnmDgN~1

Lemma 5.4.2. Let n € N 'Dg™" be such that 7;(n) < 0. Then we
have the following assertions:

1. 0., (c,n) # 0 if and only if the following are satisfied:
(a) 0 < T7j(n) <1 forj#i;
(b) €x(n(n—1)) =1 for any p|Dg.
(c) r(n(n —1)AN"1) £ 0.
2. Assume the above conditions (a) and (b). Then
or,(c,n) = 2°r(n(n — 1)c*N"1)d(n)
where §(n) =[]

Proof. Let A and S be a Clifford algebra and an order defined as in
§5.3.1 and §5.3.3 with m = 2n — 1. Then S has discriminant

Dg =n(n —1)*Dg*.

By §5.1.6, Proposition 5.3.5 and 5.3.4, o,.(c,n) # 0 is equivalent to
the following;:

ol (Dmp) 2
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e A is isomorphic to B(7;), or equivalently by Proposition 5.3.2,
e(nn—1))=-1
if and only if v is ramified in B(7;).

e Dy is divisible by £ = N, or equivalently n(n —1)c2Dg*N =" is an

integer.

Recall that B(r;) is ramified exactly at archimedean place 7; (j # 1)
and finite places g such that e,(N) = —1. Thus these two conditions
are equivalent to the conditions (a), (b), and (c¢) because of the follow-
ing:

e for an infinite place 7;,

r,(n(n —1)) <0 <<= 75(n(n —1)) <0;
e (Dg,N) =1 so B(r;) is unramified at all places dividing Dg;
e r(n(n—1)c2N"1) # 0 if and only if n(n—1)c?Dg* N~ is an integer
and
eo(n(n —1)*Dg* N1 =1
for all finite place p t Dg.
This proves the first assertion in the lemma.

By assertion 1, the equality in assertion 2 follows if o (c,n) = 0.
Otherwise, by Proposition 5.3.5 and 5.3.4, o,,(c,n) = 2°0(S) and o(5)
is given by

T(Ds/f) : H 2.
v|(Ds,Dp)
ev(m?—1)=1

Now for any g | Dg, condition (a) implies €,(m* — 1) =1, and p | Dg
is equivalent to ord,(n) > 0. Thus we have assertion 2. O

Lemma 5.4.3. Let a and b be two nonzero ideals. Then
ab
> E(C)T(g) = r(a)r(b).
c|(a,b)

Proof. 1t is easy to reduce to the case where a = ™ and b = @™ both
are powers of a prime ideal in Op. In this case the lemma is obvious. [

Applying Lemma 5.4.2, 5.4.3 to formula 5.4.3, we, therefore, obtain
the following

Proposition 5.4.4. Let 7; be an infinite place of F. Then in §/Dy,
(n, T(m)"n),, is given by the limit as s — 1 of

2 > S(n)r(neN"Yr((n — 1)m)Q._1 (1 — 27:(n)).
neNm~1Dg~1 7;(n)<0,
0<7j(n)<1,Vj#i
co(n(n—1))=1Yp|Dp
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Here in 8/Dy, the limit makes sense, as the term
(degn)? deg T%(m)
s(s—1)x
is an element in Dy as a function of m.

5.4.5. Nonarchimedean case. Now let us treat the nonarchimedean
case. Fix a prime p. We want to compute (1, T(m)"n),,. We have three
cases.

Case 1: ¢(p) = 1. By Proposition 5.2.3,

(n, T(m)°n), = 2hyj,(m), (5.4.4)
where h; is a constant independent of m, and where

Jolm) = 3 ele)ord,(m/) log N(p) = 5 r(m)ord, (m) log N(p)

Case 2: ¢(p) = 0. As m is prime to Dg, by 5.2.3, one has

(n, T(m)°n)y = (Up(m) — R(m)U,(1)) log N(p).
(5.4.6)

where

Up(m) =270 % > elegp(m/e,n)m(n)
nEN(p)m—1Dg~! clm
clnmDgN~1
where m(n) is define by formula (5.2.3). The same proof of Lemma
5.4.2 gives

Lemma 5.4.6. Let n € N(p)c 'Dg~'. Then we have the following
assertions
1. o5(c,n) # 0 if and only if the following are satisfied
(a) for all infinite places 1;, 0 < 1;(n) < 1;
(b) €x(n(n—1)) = —1, and e,(n(n — 1)) =1 for all q|Dg, q # p;
(c) r(n(n —1)AN1) #£0;
2. if conditions (a) and (b) are satisfied then
00(c,n) = 2°@§(n)r(n(n — 1)*N71).
Applying Lemma 5.4.6 and 5.4.3, U,(m) is equal to

Z S(n)r(nmN—/p)r((n — 1)m)m(n).
neNm~1Dg~1,0<n<1 (547)
€p(n(n—1))=—1
eq(n(n—1))=1Vp#q|Dp

Where the equality 0 < n < 1 means 0 < 7;(n) < 1 for all 7;.
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Case 3: ¢(p) = —1. Again by Proposition 5.2.3,
(1, T(m)"n)y = hajp(m) + (Ug(m) — R(m)Uy(1)) log N(p).

(5.4.8)
Here h, is a constant independent of m, and
22 c)ord,(m/c)log N(p)
clm
=r(m)ordg,(m) log N(p) + ord,(mp)r(m/p) log N(@)g |
5.4.9

and U,(m) is equal to
L m/ m
21=s(p) Z e(c) Z Qp<7, n) [ordp(z) + m(n)] :
clm nem’'~1¢/Dp~'Np

where m/ = m/p~ %™ and ¢ = cp~9(9). Changing the order of

sums and writing ¢ = ¢p', then U,(m) is equal to

91-s(p) Z Z E(C/)Qp(m?/,n)

neNm'~1Dg 1o clm/
clnm'DgN~1

ord (m)
> (=1 [m(n) +ordy(m) —1].

The last two sums are independent. Let us evaluate them separately.
As in the other two case, we have the following lemma:

Lemma 5.4.7. Let ¢ be an integer prime to o and letn € Ne'Dg ™' p.
Then we have the following two assertions:
1. o,(c,n) # 0, if and only if the following conditions are satisfied:
(a) 0<n<1;
(b) €(n(n—1)) =1, for all {|Dg;
(c) r(n(n —1)AN1p™1) £ 0.
2. Moreover if conditions (a) and (b) are satisfied then
00(c,;n) = 2°@§(n)r(n(n — 1)N"1p™).

Applying Lemma 5.4.7 and 5.4.3, we obtain
s m'
Y e(c)op(~—m)

clm/
clnm/DgN~1

=r(nm/ N~ /p)r((n — 1)m/).
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The second sum can be evaluated directly:

ordg(m)
Z (—=1) [m(n) + ordgy(m) — t]
_ { [m(n) + tord,(m)] if ordy,(m) is even,
sordg (mp) if ord,,(m) is odd.

Thus U,(m) is equal to

. (! /N o)r((n = 1)m')d(n) -
nEmlleEle(p)
0<n<1
er(n(n—1))=1,V¢|Dg
2 [m(n) + tord,(m)] if ordy,(m) is even,
ord,(mg) if ord,,(m) is odd.
(5.4.10)

In summary we obtain the following:

Proposition 5.4.8. Assume that €(p) = 1 if either ord,(N) > 1 or
© | 2. Then the local intersection (n, T(m)n),, is given by the following
formulas:

1. If e(p) = 1 then (n, T(m)"n), (mod Dy) is equal to
hyr(m)ord,(m)log N(p)

where hy is a constant independent of m and .
2. If e(p) = 0 then (n, T(m)n),, is equal to

(Up(m) = R(m)U, (1)) log N(p)

where Uy(m) is equal to

> 5(n)r(nm/Np)r((n — 1)m)ord, (ng).
nem 1D I N(p),0<n<1

€p(n(n—1))=—1
€q(n(n—1))=1Vp#q|Dp

3. If e(p) = —1 then (n, T(m)°n),, is equal to

har(m)ord,(m) log N(p) 4 hpordg(me)r(m/e) log N(p)
+ (Up(m) — Uy (1)) log N(p)
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where hy is a constant independent of m, p, and U,(m) is equal
to

> r(n'm'N~'p)r((n' — 1)m/)8(n’) -
n’Em/_lDEle(p)
0<n/<1
er(n'(n'—1))=1Y¢|Dg
2 [sordy,(n'pm)]  if ord,(m) is even,
ord,(mg) if ord,,(m) is odd.

Proof. All these follows from formula (5.4.4)-(5.4.10) and Lemma 5.2.3,
with the fact that in the case €(p) = —1, the term for an »n’ in (5.4.10)
has nonzero contribution only if ord,(n'N(gp)) is even. Thus

1
m(n') = [§ordp(nlp)]
even when ord,, (V) is odd. O

6. DERIVATIVES OF L-SERIES

In this section, we will compute L';(f,s) using the method of Gross
and Zagier in [21]. We will start with a formula which expresses
Lg(f,1/2+ s) as an inner product of f with a non holomorphic form
®,(z). Then we compute the Fourier expansion for ®(z) and get a

formula for some multiple d of %‘5:1 /Q(I)S(Z). Finally the holomorphic

projection of o gives a holomorphic form ® with Fourier coefficients
given explicitly.

6.1. Rankin-Selberg method.

Let f be a new form for Ky(N) and let £ be an imaginary quadratic
extension of F' as before. Then the base change L-function of f to F
is defined to be Lg(s, f) = L(s, f)L(s,¢, f) where € is the character
attached to E/F. See §3.4 for definitions. For any nonzero ideal m
let r(m) denote the number of integral ideals in O with the norm m.
Using Proposition 3.1.4, one shows that

Li(f,s)=LY(2s—1,€) > a(m)r(m)N(m)~*
meNp (611)

where LY (s, €) denotes the series
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where Dy is the conductor of €. In other words, Lg(f,s) is essentially
the Rankin-Selberg convolution of L(s, f) with (g(s). We want to
express this convolution as an inner product of f with a modular form.
We will construct such a form using the Eisenstein series defined in

§3.5.

6.1.1. Some setting. Now we want to express Lg(f,s) as an inner
product of f with some other form. We need to define a Haar measure
on Z(Ap)\G(AFr). Let dk = ®dk, be the Haar measure on Ky(1) with
volume 1 on each component. Recall that dx = ®dx, is defined in
§3.1.1 to be a measure on Ap such that dx, is the usual Euclidean
measure if v is infinite, and that O, has volume 1 if v is finite. Also
recall that d*z = ®d*x, is defined in the proof of 3.4.2 to be a Haar
measure on Ay such that d*x, = |dz,/x,| if v is infinite, and that O
has the volume 1 if v is finite. Now dg on G(Af) is defined by the
formula

/(AF)\G (Ar) flg)dg = /AX /AF/ (( ) ) dkdzc@’y'

For any two function f and g on Z(Ap)G(F)\G(Ar) the integral fg
(if it is absolutely convergent) is denoted as (f, g).

Let E; be the Eisenstein series defined in §3.5.1 with x = € associated
to the extension E/F. Let E, y be an Eisentein series defined by the

formula
Esn(g) = E; (g ((1) 7&)) (6.1.2)

where 7y is an idele with components 1 at places not dividing N and
such that mn generates N. Then E; y is a form of level Ko(DgN).

Proposition 6.1.2. Let f be a new cusp form of weight 2, for Ko(N)
for trivial central character. Then

(fs BrppEon) = A(s)Li(s +1/2, f)

where . Y
s+ s 5 -
AS) = |t | s, v

92srs—1/2
where (N Dg) is the volume of Ko(NDg).

Proof. For each factor e of N, let EY be the Eisenstein series defined in
the same way as F; in §3.5.1 with factor L(2s, €) replaced by L¢(2s,¢€)
and with H; replaced by the following H¢:

He(g) = {%‘se(akr(é’)) if k € Ko(Dge)
s\9) = 0 otherwise.
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For Re(s) > 1, E<(g) is absolutely convergent and defines a (non-
holomorphic) form for Ko(Dge) of (parallel) weight 1 with character e.
Ife = Op, B¢ = E,.

Lemma 6.1.3. Let f be a cusp form of weight 2 for Ko(NDg) with
trivial central character. Let 0 be the theta series with Fourier coeffi-
cients r(m) defined in §3.4.5. Then

W] Li(s+1/2, f).

up to a factor L(2s,¢), (f,0EY) is given

(J.0EY) = u(NDg)dt! {

Proof. By definition of EY
by

s 7

/ fOTYdg

FO\G(Ap)

X
L o G et
A% Fs JAp/F 01 lyl

where A;} + denote ideles with positive components at the infinite places.
By definition of HY, the inner integral over K is

)69 (3 7)) et

Using Fourier expansions of f and # in (3.1.3) and Proposition 3.1.2,

Lo (G 1))

=di*|y[*e(y) " alay; Dr)r(aysDr)i(20ysi)

a>0

where a(m) are the Fourier coefficients of f defined in Proposition 3.1.2.
Combining these, (f,0EY) up to a factor L(2s,¢), is equal to

(N Dp)d/? / Y alyrDe)r(ys D) (2ysi)dy.
F,+ a>0
This integral is the product of the integrals over infinite ideles Hv‘oo F, 4+
and over finite ideles F*. The integral over infinite ideles gives
[F(s +1/2) ] g
(47r)+172

while the integral over the finite ideles gives

s+1/2
Z N(m s+1/2
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The lemma follows from (6.1.1). O
The following Lemma gives a comparison between E and Ej,,.

Lemma 6.1.4.

S G(Cl) N/a
o = ) e
a|lN

Proof. Let Hg n be the function on G(Ap) defined in the same way as

Es n:
Hovto = (o ).

It suffices to prove the corresponding statement for H, y on Ko(1):

ela) LN(2s,€)
Hyn = d L HNe
o = dy MZN N(a)? L(2s,¢) °

It suffices to show this by testing their values on elements k = (i Z)

of K, for finite place v not dividing Dg. Now we have the decomposi-

tion:
I 1 0 _ L(ad —be) bry 1 0
0 ™™ 0 dﬂ'N deN 1

if N|e, and
I 1 0\ _ [(™(ad—bc) a) (0 -1
0 mn) 0 ¢c)\1 4x

if c[Z2. It follows that

|78 if Nlc
Hop (k) = {| N |

S .
e () | i elZ

Let g, be the prime ideal of Op corresponding to v. By definition of
H,
It follows that
N(Ny)*H n (k)
=Y (k) + D> e(plIN(p}) (HY (k) — HY?

1<i<ord, (N)

LN/KJi(QS € . ;
——————e(p")N(p")* H¥' (k).
P R CANCORI A0
0<i<ordy(N)

i—1

(K))
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0J

Now go back to the proof of our Proposition. By Proposition 3.5.4,

(2m)9
Eip = 0.
1/2 Tods
Applying the above two lemmas, the proof of the Proposition is reduced
to showing that

(f? EI/ZEE) =0
for any factor e # N of N.

Let trp, be the trace operator from the space of cusp forms of level
Ko(NDg) to Ko(N): for any form ¢ of level DgpN,

(trp,0)(g) = > $(g7)- (6.1.3)

v€Ko(N)/Ko(NDg)
Then
(f, BijpES) = [Ko(N) : Ko(NDg)] ™ (f, trpy, (B2 E5).

As representatives of Ko(N)/Ko(NDpg) will also serve as representa-
tives for Ky(e)/Ko(eDg) for any e|N, trp, (Ei/2Ef) is a form of level
Ky(e). Thus it is orthogonal to f as f is a new form. O

6.1.5. Definition of ®,. We define

1

®5(g) = trp, SF[oDa] Z N(e)* 1/20¢ | .
oD (6.1.4)
Here for e a divisor of Dg,
5(g) = (B2 n)(97) (6.1.5)
where 7, is an element of GLy(Ap) which has components 1 at places
not dividing e and at a place v dividing e it has the component 77(')1; _01

where 7, is normalized such that e(m,) = 1; and where trp,, is defined
in (6.1.3). It is easy to check that ®, is a form of wight 1 for Ky(N)
with trivial character.

Corollary 6.1.6. Let f be a new form of weight 2 for Ko(N) with
trivial central character. Then

() = BOLs(f,1/2+ 9
where I'(s+1/2)

g
_ s+1/2 356 3—1/2
B(s) = [2(4@5_1/2] dn P dsedg ' u(N).
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Proof. Fix any factor e of Dg. Write f¢ for the form g — f(gv.?1).
Then again f€ is a form of level Ky(N). By definition, (f, ®¢) is equal
to

[Ko(N) : Ko(NDg)](f, E1/2Es.n).
By Proposition 6.1.2, this is

A(8)[Ko(N) : Ko(NDp)|Lp(s +1/2, f).

r (1) = 1)

if f has the Fourier coefficients a(m) then f¢ will have the Fourier
coefficients
a(f,m) = N(e)a(m/e).
It follows that
Lp(f*,s) =N(e)'"Lg(f, 5)-
The Proposition follows. O

6.2. Fourier coefficients.

6.2.1. Strategy. In this section we want to compute the Fourier coef-
ficients (o, y) (a € F) for @, defined by (6.1.4), where

o = (5 )) et

It suffices to compute ¢s(c, y) for « =0 or 1, as for o € F*,

cs(a,y) = cs(1, ay).
We proceed with the following steps:

1. Compute the Fourier coefficients c¢¢(«, y) for Es(g.). It will give
the Fourier coefficients for ®¢(g) defined by (6.1.5).

2. For a factor g of Dy and an integral adele a which is 0 at places
not dividing g, let v,, denote the element in GLy(A) which has
the component 1 at places v not dividing ¢, otherwise it is given

by (af’ _01) . Then
{Vg,a 9|Dg, a (mod g)}

forms a set of representatives for Ko(N)/Ko(DgN). Compute the
Fourier coefficients ¢%9(«, y) for

9= Y D(gga)- (6.2.2)

a (mod g)
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3. Compute the Fourier coefficients of @, using the following expres-
sion:

O, = 27 #IPEE N " N(e) 2909, (6.2.3)
e7g|DE
Lemma 6.2.2. The Fourier coefficient ¢S(c,y) of Es(g7.) is zero if
ayDyg is non-integral. Otherwise, it is given by the following expres-
s10NS:

e(y)L(2s,€)ly|® ife=1
¢5(0,) = { Jr V(01 L2s = Loy if e =Dy
S dp “di

0 otherwise,

1 g
(1 y) — %N(@W-wwwv—svy/e|ym|2s—le<—yv>fe<v>,

where
1— e(yvévwv)|yv5v7rv|23_l
s = : VS v/
os(y) H 1 — e(my)|my [T H (%)
vtDg v|oo
vtoo
and fory € R,

00 6—27riyac p
Voly) = /_ I N VET i R

Proof. The case e = 1 has been done in Proposition 3.5.2. So we assume
e # 1 in the following. Again using Bruhat decomposition, c®(«,y) is

equal to
L(2s,€)dy 1/2 AF/F (< ) ) (—ax)dx
+ L(2s,€) 1/2 (w < ) ) (—az)da.

Let v be a place dividing e, then ( ) v, has the component

Yo Ty 0 -1\ _ [y x,m, 0 —1
0 1 ™ 0/ \0 m, 1 0 /-

It follows that
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and that ¢*(«, y) is given by

L(25,e)d;1/2 /AF H, (w (‘g T) %) Y(—ax)dx
=L(2s, )dp |y = T Viloww) - T V2 ()

vte vle

where V; is defined in the proof of Proposition 3.5.2, and V! is given
by the formula

Vs’(y)zfv H, (w (é f) (7? _01)>w(—wy)dx-
(o 1) (2 )= L)

has the decomposition

—m, 0 1 0
0 1 xzm, —1)°
if ord,(z) > 0, and

—z' o, 0 1
0 —am ) \—-1 z7'x;1)"

if ord, (z) < 0. It follows that
I ((—ﬂv 0 )) ) m)Pen(—=1) if ord,(z) > 0,
"\ \zm, —1)) )0 otherwise,

Vity) = {|m|8ev<—1> if ord, () > 0,

Now

and

0 otherwise.

Now the lemma follows easily from this formula and the formulas for
V; derived in the proof of Proposition 3.5.2. O

Lemma 6.2.3. The Fourier coefficient ¢&9(c,y) (a« = 0,1) of =9 is
zero if ayDyg is non-integral. Otherwise, it is given by

& (a,y) = N(g)e(N) D &7 = n, mgy) ™ (n, moy/7n)
nel

where e x g denotes eg/(e, g).

Proof. By definition,

() 2169

a (modg
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From the following decomposition at any place v dividing g,
a —1\ _ 1 (m a,\ (0 -1
1 0) x,\0 1 T 0 )7
y L (myy ay+a
(0 1) (8 )
It follows that

(), 5, (@ )

a (mod g)

we see that

Thus the Fourier coefficients of %9 are given by
(o mgy) Y Wlaya),
a (mod g)
or in other words, ¢%9(«,y) is nonzero only if ay is integral at places
dividing ¢g. In this case it is given by
(o, y) = N(g)ag™ (e, mgy)
where af(«,y) is the Fourier coefficient of ®¢ which can be expressed

as(ay) = e(N) Y cfpla—n,y)el v (n,y/my).

neF

0J

Proposition 6.2.4. The Fourier coefficient cs(c,y) (o = 0,1) of D
15 nonzero only if ayDp is integral. In this case it is given by
e(N)dy®

Do ag(a,y)

ner

cs(a,y) =

where a”(a, y) is give by the following formulas if it is nonzero.
1. If n # 0 and n # «, then a™(ca,y) # 0 only if nyDpDpN~! is
integral. In this case a?(«a,y) is equal to

—s 1+ [nyyemo[* e (0 — a)n)
> 6 (ny) ] 5
’U|DE
-o1p((a = n)y)os(ny/mw),
where for an idele y, 6(y) = 2#{IPpordu(y)20}
2. Ifn=0, a=1, then a?(c,y) is equal to
02 (y)dy " dif "5 e (N)i7L(2s, )y /2

+ 012(y)Ve(0)!L(2s — 1, 6)@‘3/275-
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3. If n=a=0, then a?(«,y) is equal to
e(N)dpdpdy " L(1,€)L(2s, €)|y|"/*t*
+ Vija(0)V4(0)L(0, €) L(2s — 1, €)[y[*/**.
4. If n =1, a =1, then a?(«,y) is equal to
A dg” L(L, )| mpyp, [ (y) + L(0, ) Vi 2(0)7

os(y/mn) |y,

where €PE(y) denote €(y) [Lip, € (¥)-
Proof. By formula (6.2.3), ¢s(cv, y) is equal to
Ly N o) = LB S o)
50 2 e 2
where al (o, y) is equal to
dpdpdy’! ex ‘
Ardpdy S~ N(gN(e) V28 (o — n, myy)cs 9 (n, gy ).
o(1)
s (6.2.4)
Case 1: n # 0,a. If a?(«a,y) # 0, one must have
ord,(nym,) >0 for each v | Dg.

Assume this is the case and let gy be the factor of Dg consisting of
places v such that |n,y,m,| = 1. Then

e*g<

€12

—n,mgy) e (n, mgy /mn) # 0
only if go|g and in this case by Lemma 6.2.2, it equals

] s s

m\ﬂgy\m oa((a = n)y)os(ny/mn)N(g * €)'/
H 7Y g0 Ly (0 — n)n).

v|Dp/(g+e)

It follows that a”(a,y) is equal to
|y‘3/2—s
o(1)

N(ge)* N
> el T Inwmem P e -
v|Dg/(g*e) (625)

o12((a = n)y)os(ny/mn)

90l9|DE
6|DE
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Notice that

N(ge)

* H |7rg,v‘2 =1
v|Dg/(g*e)
so the last sum is

Z H [N,y ey (0 — n)n).

90lg|DE v|Dg/(g*e)
e|Dg

Substituting e by (Dg/e) * g, this sum equals
5(1/go) TT [L+ Inwyerms* (2 = n)n)] .
7)|DE
Bringing this to (6.2.4), we obtain the formula for a? (v, y) in the propo-
sition.
Case 2: n =0, o = 1. In this case, a?(1,y) is equal to

dpdpdi!
Pﬁ—lf Z N(g)/**¢y ;5 (1, my) et (0, 7y /)
g

dpdpdsst o 1/2 oD
" TDN zg:dE P*N(g)*”? 61/3(1>7Tgy)05‘9(0, Ty /TN ).
The formula in the Proposition follows, as c%/Q(l, wgy)ci(a Toy/mN) is

equal to

1/2 172 Ul/g(y)L<28, e)yyﬂ-g‘l/2+s€DE (y)
di2d!
and C?/g(l?ﬂ-gy)csDE (0, m,y/mN) is equal to
a5

d1E/2fs‘/s(O>90'1/2(y)L(28 -1, g)‘yﬂgléi/zfs
dpdp

where ¢ (y) denote €(y) HU| by €(y) which equals 1 if oy /2(y) # 0.

Case 3: n=a = 0. In this case, a’(1,y) is equal to

drdpdy’ .
% zg: N(g)/**5¢} (0, moy) ek (0, mgy/mn)

dpdpdy s—1/2 s
R Sk NP0 mae 0, m )

The formula in the Proposition follows, as 01/2(0, moy)cr(0, Ty /7N ) is
equal to
e(N)dyL(1,€)L(2s, e)|7rgy|1/2+s
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while 01/2(0 Tyy)cPE(0, 7,y /7N ) is equal to

dls

——d 5%/2(0)%(0)[/(0, 6)L(2S — 176)|y|3/2_5.
dFdE

Case 4: n = a = 1. This case can be treated similarly. We have
al(1,y) equal to

dFdEdsfl .
T 2N Ol )

L d d d . \
2 N Zd N(g)* 2B (0, my9)cPE (1, my /7).

where ¢ (0, my)es(1, gy /mn) is equal to

A>T 9L(1, €)

1/2+s
A2 di? ’

os(y/mn) [yl I peype [ e7E ()|

and 01/2 20, myy)cPe(1, may/ma) is equal to

L(0, €)dy

T V(0 ()

6.3. Functional equations and derivatives.

Proposition 6.3.1. The Fourier coefficient ¢<(«, y) of E(g7e.) has the
following functional equation:

&(a,y) - = (dpdpd.) ™2 [D(s + 1/2)7' )" ¢ (a, y)
=i%e(y) [] e~/ (ay).

v|Dg/e



104 SHOUWU ZHANG

Proof. If a =1, then by Lemma 6.2.2, up to a factor independent of s
and e, ¢¢(1,y) is given by

H |yU5U|1/2_S 1- €(yvévﬂv)|yv5vﬂ'v‘2s_l

_ 2s—1
v’rfE 1 — e(my)|my|

T TG + 17207275 gl V2 Vi)

v]oo

. H |yv7r1]’1/2—s

vle

I lvoml2e(=y)k(v).

v|Dg/e
By Proposition 3.3 in [20], p.278, with & = 1, Vi(t) (¢t # 0) has a
functional equation
V(1) = (wlt]) 27T (s + 1/2)Vi(t) = sgn(t) Vi, (¢).

(Notice that our V; defined in Lemma 6.2.2 is V115 in [20].) Thus the
functional equation in the lemma follows from the local equations and
the equality

H k(v) = 9€¢(Dp).

Now we want to treat the case where @« = 0. By Lemma 6.2.2, we
need only consider the case where e = 1 or e = Dg. Recall that L(s,¢)
has a functional equation:

L*(s,€) : = (dpdp)*? [D(s/2 + 1/2)7/*7/2) L(s, ¢)
=L*(1—s,e).

(This can be proved by using functional equations for both (g and (r
and the identity (g(s) = L(s, €)Cr(s).) Thus ¢(0,y) is equal to

(dpdp)* "2 [T(s + 1/2)7"/27]" L(2s, €)e(y)|y|*

=(dpdp) 2L (25, €)e(y)|y|® = (dpdp) 2L (1 - 25, €)e(y)|y|*.
(6.3.1)

On the other hand, by Proposition (3.3) in [20], p.277,
Vi(0) = —mi2° *T(2s — 1)/T(s — 1/2)T(s + 1/2)
= —in2D(s)/T(s +1/2).
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Thus ¢P£(0,y) is equal to

—1)9
(dpd%) 2 [T(s + 1/2)7"/275]° (1/2) Vs(0)9L(2s — 1,€)|y|"*
dp"dp

=(dpdg)*™* [iWI_SF(s)}g L(2s —1,¢)|y|**
—i9(dpdg) Y20 (25 — 1, €).
Combining with (6.3.1), we have shown
A 5(0,y) = Pe(y); (0, y)-
So the lemma is proved in this case. O

Corollary 6.3.2. The function ®, satisfies the following functional
equation:

®* = (dpdp)* V? [D(s + 1/2)7"* )" @,
= (=1)%e(N)®]_,.

Proof. We need only prove the following functional equation for &¢
defined in (6.1.4):

D" = (dpdpN(e))*™/* [T(s + 1/2)x'/*7]" @
= (—=1)%e(N)®77,.
As both sides are modular forms for Ko(N Dg) with trivial character,
it suffices to check the functional equation for its Fourier coefficients.

But this follows from Lemma 6.3.1, as the Fourier coefficients of ®¢ are
expressed in the form

ag(ay) = e(N) Y ¢f pla —n,y)es v (n,y/my).

neF

O
Theorem 6.3.3. The function Lg(s, f) satisfies the following func-

tional equation:
L*(s, f) - = (d2dpdy )~ [T(s)(2m) =] Li(s, f)
= (=1)%e(N)LE(2 = s, f).
Proof. This follows from Corollary 6.3.2 and 6.1.6. O
Proposition 6.3.4. Assume that e(N) = (=1)9"'. Then ®1/5 = 0
and the Fourier coefficient (o, y) (a =0,1) of
0

o= aq)s‘s:l/Z
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15 nonzero only if ayDyp is integral. In this case it is given by

1/2

« b («
(o, y) dEdF ; ,Y)

where b"(a,y) is give by the following formulas if it is nonzero:
1. If n # 0 and n # «, then b"(a,y) # 0 only If nyDgDpN~!
integral and (o — n)y is totally positive. In this case b™(«,y) is
equal to

(—47*)? |yl (iayoo) S (ny)r (o — n)yDp) Y bl (av, y)

where v Tuns through all places of F, §(y) = 2#{vIPe.orde®)=20} gy g
b s given by the following formulas:
(a) If v is an infinite place, then bl («,y) is nonzero only if
e ny is negative at place v and positive at other infinite
places,
o c,((n—a)n) =1 for every place p of Dg.
In this case, bl (o, y) is equal to

r(nyDr/N)q(47|ny,|)

q(t) = /100 e’”td—x, (t>0).

(b) If v is a finite place ramified in E, then bl (a,y) is nonzero
only if
e ny s totally positive
o c,((n—a)n) =—1 but e,((n —a)n) =1 for every place g
Of DE
In this case, bl (a, y) is equal to

where

_T(nyDF/N) lOg |nvyv7rv/7TN,v|

(¢) If v is a finite place inert in E, then b'(«a,y) # 0 only if
e ny s totally positive
o c,((n—a)n) =1 for every place p of Dg.
e ord,(nyDr/N) is odd.
In this case, b(a,y) is equal to

—r(nyDr/(Ngy)) log 1y D

where g, s the prime corresponding to v.
(d) If v is a finite place split in E, then bl'(a,y) = 0.
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2. Ifn =0, a = 1, then b"(«a,y) is nonzero only if y is totally
positive. In this case, it 1s equal to

r(yDr)Y(iyeo)yl(c1 + calog [y])

where ¢; and cy are constants.
3. If n=a =0, then b"(«,y) is equal to

ly|(cs + calog|y|)

where ¢z and ¢4 are constants.
4. If n =1, a =1, then b"(«,y) is equal to

YY (iYoo) [cs7(y D /N) log | Tppyp,| + cor’'(yDr/N)]
where cs, cg are constants, and for a nonzero integral ideal m,
r'(m) = e(n)logN(n).
nlm

Proof. The vanishing of &4 at 1/2 follows from Theorem 6.3.3. To
compute the Fourier coefficients of &’ we use formulas in Proposition
6.2.4 with

n a n
b (o, y) = %% (04’9”5:1/2'

Notice that a? vanishes at s = 1/2. This can be checked from its
expression, or from formula (6.2.4) and Proposition 6.3.1.

Case where n # 0, n # «. In this case, al is a product of
Y27 6(ny)o o (o = n)y) - [ [ ot (e y/m)

where v runs through on the set of all places of F', and

1 — Yoo 2s—1 .
+e((n a)n)2|n Yo T if U|DE

n .
Us,v<a> y) = ‘/s(nvyv) lf v ’ o0
l_e(nvyvévﬂ—v)‘nvyv(svﬂ'vl2871

i otherwise.

If 0" (v, y) # 0, then o1 /2((v — n)y) # 0 and one and only one factor of
05, vanishes at s = % If this is the case, then

0'1/2((04 - n>y) = T<<a - n)yDF) H ‘/1/2(((10 - nv)yv)'

v|oo

By Proposition 3.3 in [20], p 278, we know that V;s(t) for a t € R, is

given by
0 ift<0
Via(t) =
1/2() {—2%2’6_2” if £ > 0.
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Thus, if b"(«a, y) # 0, then (o —n)y must be totally positive and r((a —
n)y) # 0. In this case b" has the expression in the Proposition with
b (e, y) equal to

: 2 , n
¢(_Znyoo)%av,s(a7 y)|s:1/2 ’ H Uw71/2(a7 y)

wHv

The Proposition in this case can be checked case by case. Notice that
when v is archimedean, we have used the identity

9
0s
in Proposition 3.3 in [20].

V8<t>‘s=1/2 = —2miq(t)e ™ (t<0)

Cases where n = 0 or n = a. These cases can be verified from the
expressions in Proposition 6.2.4. O

The same proof will also give the following:

Proposition 6.3.5. Assume that ¢(N) = (—1)9 then the Fourier coef-
ficient c1y2(c,y) (o =0,1) of ®q/5 is nonzero only if ayDy is integral.
In this case it is given by

(N)dy* =
crjo(a,y) = Tdf Z%/Q(OGZ/)

nel
where a?/z(oz, y) is give by the following formulas if it is nonzero:
1. Ifn #0 and n # «, then a?ﬂ(a, y) # 0 only if the following holds:
(a) nyDpDpN~ is integral,
(b) both (o« — n)y and ny are totally positive,
(c) &(n(n—1)) =1 forallv | Dg.
In this case a?/Q(a, y) is equal to
(—4m)91y[6(ny)r (o — )y D )r(ny D/ N Y (iogec)
where for an idele y, 6(y) = 2#{vIPpordu(y)20}
2. Ifn=0, a=1, then a?/z(a,y) is equal to
ar(yDr) |y (iyoo)
where ¢y is a constant independent of y.
3. Ifn=a =0, then a?ﬂ(a,y) is equal to
C2ly|

where co 18 a constant independent of y.
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4. Ifn=1, a =1, then a?/Q(oz,y) is equal to

csr(yDr /N[yl (iyso)
where c3 1s a constant independent of y.

6.4. Holomorphic projection.

6.4.1. Asymptotic formula for ¢’ near cusps. Assume that ¢(N) =
(—1)971. The form @' defined in Proposition 6.3.4 is not holomorphic.
We want to find a holomorphic projection ®. This means that @ is a
holomorphic cusp form for Ky(/N) and has the property that for any
new form f, f has the same scalar product with both ® and ®.

As in the case F' = Q treated by Gross and Zagier [20], Chapter IV,
§6, ®’ satisfies the growth condition

/ x .
’ ((g 1) g) = agly|log [y] + bly| + Oy (ly'™)
(6.4.1)

for each g € GL(Ap). By Proposition 6.3.4, the asymptotic formula
(6.4.1) is true for g = 1, and we have

T —€
v ((g 1) 9) = c3ly|log [y| + caly| + O(ly['™)

where c3 and ¢4 are constants independent of g defined in Proposition
6.3.4.
For any e|N, let g. denote an element in GLy(Ap) which has com-

1 0
ponents 1 at places not dividing N and has components ( ordy (e) 1)
Ty

at each place v dividing N. Using the same method, we may compute
the Fourier coefficients of ®'(gg.) and will obtain the similar formula as
(6.4.1). As GLy(Ap) is a union of the form B(A)g.Ky(NV), thus (6.4.1)
is true for every g € GLa(Ap).

We have to subtract some Eisenstein series to make a4 = b, = 0 for
every g € GLao(Ap). Let Es4(g) be the Eisenstein series constructed in
§3.5.1 with k =2, xy =1, and N = 1. Then Ej4(g) is perpendicular to
all holomorphic cusp forms. The Proposition 3.5.2 implies the following
asymptotic formula

B (3 1)) = syl + ol + o) o1
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as y — 00, where ¢(s) and O(1) are holomorphic in s near s = 1.
Define by continuation

0

E(g9) = Es5(g)|s=1 and F(g) = =

= E .
as 275 (g)

s=1

For each e | N, let h, an element of GLy(Ag) which has components
1 0
1 at places not dividing N and has components ( 0 Ordv(e)) at places
Ty
v dividing N.

Lemma 6.4.2. There will be some pairs of numbers (ae, 3.) (e | N)
such that the form

O(g) = P'(9) = Y _ [@eF (ghe) + B.E (ghe)]

e

has the same holomorphic projection as ®', and d satisfied the bound

5 (4 7)s) ot

asy — oo, for every g € GLa(Afp).

Proof. We need only find (a.,)’s so that equation in the lemma
holds for g = g¢;’s, as GLy(Ap) is a union of B(Ap)y.Ko(N). Now

<y x) gshe has the decomposition at a place v of N:

0 1
My 1
Yo Lol . 0 if n, > m,
0 mw |

v My —Ny y :L-v Ny 0 _1 )
YoTtw Yo+ W”)-( - ) if my, > n,
0 o 1 e

v v

where m, = ord,(e), n, = ord,(f). Thus (6.4.2) implies
B (8 7) arhe) = Cxle ) Geolul els)Cnle. N1yl +00)
where Cy(e, f) = N(e, f)2/N(e). Tt follows that,

(4 1)) = ceCteul +00)

g

(4 7) asm) = riCxtes plalios o]+ Otos ).
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Now the asymptotic formula in the lemma is equivalent to

Z aeCN(e> f) = CF(2)71agf7

e|N

Z /660N<€7 f) = CF(Z)_lbgp

e|N

for all f | N, where a4, and b,, are constants in (6.4.1). Thus it suffices
to show that the matrix Cy = (Cn(e, f))e, v is invertible. It is easy
to see that Cy is multiplicative for coprime N’s in the sense of tensor
products. Thus it suffices to prove that C'y is invertible for N = " to
be a power of a prime. In this case, C,» has determinant +(N(p)*—1)".
This completes the proof of the lemma. O

Lemma 6.4.3. Let (g be a form which has the growth O(y'=¢) near

each cusp. Let ¢(y) denote the Whittaker function at <:(% (1)) of 5

=" [ I ((g 1)) Y(—a)dz.

Then the Fourier coefficients of the holomorphic projection ¢ of ¢* is
given by

a(m) = (4m)lim | [t (Yoo )1 (1400 ) Yoo "> Yo

s—1 Ri

where t is a generator of mDZ" in F*.

Proof. For m a nonzero ideal of O, let P, s(g) be the m-th Poincaré
series defined by

Pm,s(g) = Hm(,yg)
YEZ(F)U(F)\GL2(F)

where U denotes the algebraic group of matrices ((1) T) and H,, ; de-

notes a function on Z(Ap)\G(Ar) such that fory € A%, x € Ap,r(0)k €
K,

Hips ((g f) r(@)kz) = [y[*9(20 + = + iys)
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if yoo > 0, k € Ko(N), and yyDp = m; otherwise, it is zero. Then the
Petersson product (¢, P, 5) is equal to

/ Py = / STy
Z(Ap)G(F\G(AF) Z(Ap)U(F\G(Ar)
dX
// /ngms ((y x)k)dkd 4
X JAp/F |?J|
—u(N / / / (( ))w (= + iy ) dd*y
yooeRg OX AF/F
=u(N 1/2/ / (oo ) |y)* d™y.
Rg

Thus we have

(& Pos) = [ (V)2 / St i) [goc] 2y
R (6.4.3)

If we replace gg by ¢ with Whittaker function
c(y) = lyla(ys Dr)i(iyoo),

then we have

L(s) ]
s) = |t )’ 44
(0P = NI G50 o) (0.0)
As P, = lims ¢ P, s is a holomorphic form, we have

(¢, P) = (6, Pr). (6.4.5)
The lemma follows from (6.4.3)-(6.4.5). O

We want to apply this lemma to .

Lemma 6.4.4. Let a(m) be the Fourier coefficient of the holomorphic
projection of ®'. Then for m prime to NDp,

s—1

a(m) (mod Dy) = (4m) lim [ [t/ (1, tyoo )t (i1/oo) [Yoo] " dys
1

where t is a generator of ﬁlﬁ}l in F*.
Proof. Let a(y), b(y), and c(y) be Fourier coefficients of E(g), F(g),
and ®(g), then

cy) = (Ly) — aaaly) — Bib(y)

where ¢/(1,y) is the Whittaker function of @', and a4, 3; are constants
as in Lemma 6.4.2. By Lemma 6.4.3, a(m) is equal to



HEIGHT OF HEEGNER POINTS 113

(4m)? lim [t (L, ty)d (iyeo) [y 2 dy — crcs(m) — Bibs(m)
0 @mr)s (6.4.6)
where
bum) = (4m)? [ ] bl
(R*)9
and
culm) = (4m)? [ ] ety i) el
(R+)9
Write o5(m) = >_,,,, N(a)® and o'(m) = 2 ,_10s(m). One can show
from the Fourier expansion of Es ¢ that

bs(m) = kyo1(m) + o(s — 1),

and "

cs(m) = kaor(m) + kzo'(m) + . _4 1 + ks +o(s —1).
Here k;’s are constants independent of m. Thus c¢s(m), bs(m) only
contribute elements in Dy in (6.4.6). The lemma follows. O

Applying the formula for Fourier coefficients of &5, we obtain the
following:

Proposition 6.4.5. Let a(m) be the Fourier coefficients for the holo-
morphic projection ® of ®. Then for m prime to NDpg,
(2m)dy’

a(m) (mod Dy) = — i

a,(m)

where N(v) = 1 if v is archimedean and a,(m) is given by the following
formulas:
1. If v|oco, then a,(m) is equal to the constant term in the Taylor
expansion in s — 1 of

> 6(n)r((1 =n)m)r(nmDp/N)ps(|n.|)
neENm1Dg= 1 n,<0
0<nw <1Vv#w|oco
ew(n(n—1))=1Vw|Dg
where where the sum is over the set of places of F,

5(/]7/) — 2#{v|DE,ordv (n)20}7

and

p(s,t):/jo(letx)_scfE—x, (t > 0).
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2. Ifv=yp foo,e(v) =0, a,(m) is equal to

Z d(n)r((1 —n)m)r(nm/N)ord,(nmg) log N(v).
neNmleEfl
ev((n—=1)n)=1
ew((n—1)n)=1Vv#w|Dg
0<n<1

3. If v=p foo,e(v) = —1, a,(m) is equal to

Z d(n)r((1 —n)m)r(nm/Ngp)ord,(nmgp/N)log N(v).

neENm-1Dg~1!
ew((n—1)n)=1Vv|Dg
0<n<1

4. If v foo,e(v) =1,
a,(m) = 0.

Proof. By Proposition 6.3.4 and 6.4.4, the Fourier coefficients a(m)
(mod Dy) are given by

fv d1/2
NN 19 1 S 17 (1) (6.4.7)
dEdF S—>1
neF
where
b (1m) = / 17 (L, o (i) 0]l
R

From formulas of 6"(1, ¢y, ) one can show that if n = 0 or 1, b?(m) is
a linear combination of a multiple of r(m) and its derivatives. Thus,
modulo Dy, we may assume that n # 0,1 in (6.4.7). Moreover b7 (m) #
0 only if nDpmN~! is integral and 1 — n is totally positive. In this
case b (m) is equal to

(—4m*)95(n)r((1 —n)m) Y b} (m) (6.4.8)
where v runs through all places of F', and

bl‘,s(m):/R B (1, 1o )0 (20100 ) | Yoo| ¥ Yo

g
+

Now lets compute b ,(m) case by case using Proposition 6.3.4.

Case 1: v | oo. In this case, by (m) is nonzero only if

e n is negative at place v, but positive at other infinite places,
o ¢,((n —1)n) =1 for every place p of Dp.
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In this case, b .(m) is equal to

rlom /) [ atmlog, o il
[(s)
(a)

Case 2: v{o00,€e(v) =0. In this case, b ,(m) is nonzero only if

) Yu,s

—r(nm/N) { ]g (s, [10]). (6.4.9)

e n is totally positive
e ¢,((n—1)n) = —1 but €,((n — 1)n) = 1 for every place p of Dp.
In this case, b} .(m) is equal to

» Yu,s

r(nm/N)ord,(nmgp) log N(p) [ (6.4.10)

Case 3: v{o0,¢e(v) = —1. In this case, b} ,(m) # 0 only if
e n is totally positive
e c,((n—1)n) =1 for every place p of Dpg.

e ord,(nm/N) is odd.

In this case, b ,(m) is equal to

» Yu,s

I'(s) } g .
(4m)* (6.4.11)

r(nm/ (Ngy)ordy (nm/N) log N(p) [

Case 4: v is a finite place split in E. In this case,
by s(m) = 0. (6.4.12)
The proposition follows from (6.4.7)-(6.4.12) with
_ g1; n
au(m) = —(4m) T 37 7, (m).

neFr
n#0,1

The same proof will also give the following:

Proposition 6.4.6. Assume that e(N) = (—1)9. Let b(m) denote the
Fourier coefficient of the Holomorphic projection of ®y/5. Then for m
prime to NDg,

(2m)*dy?
b(m) (mod Dy) = > 5(n)r((1=n)m)r(nm/N).
dEdF -1 —
neNDg m 1
0<n<1
ev(n(n—1))=1Yv|Dg
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7. PROOF OF MAIN THEOREMS

In this section we will finish the proof of the theorems stated in
Introduction. We need only prove Theorem C and A.

7.1. Proof of Theorem C. Recall that ® is the holomorphic form of
weight 2 for Ko(N) with trivial character constructed in §6.4.1, which is
the holomorphic projection of %Cbs{szl /2 where ®, is a form constructed

in §6.1.5. By Corollary 6.1.6, we thus have
(f,®) = B(1/2)L(f1) (7.1.1)

where
B(1/2) = 27 9dpd¥ dg""* u(N).

Recall also that we have constructed a form W in §4.1.3 whose Fourier
coefficients are height pairings of CM-points (z, T(m)z), where z is the
class of n in the Jacobian of X and the pairing here is the Neron-Tate
height pairing.

The proof of Theorem C will be easily reduced to the following:

Proposition 7.1.1. With the notation of §4.4.4,

~ (212942 -

o = (d)EidFN\II (mod Dy).
Proof. We need only show that both sides have the same value for
all m € Ng prime to NDg, modulo Dy. By Proposition 4.4.5 and
§4.5.3, modulo Dy, ¥(m) is equal to the sum of —(n, T%(m)n),. On the
other hand, we have studied the Fourier coefficients a(m) (mod Dy) in
Proposition 6.4.5 by decompositing it into a sum of local terms a,(m).
Thus we need only show that

S, T(m)n)e = > au(m)  (mod Dy).

We will prove this by splitting the sum according to types of v. More
precisely we want to show

> (0, T(m)n), = > _ay(m) (mod Dy), (7.1.2)
veS veS
where S is one of the following

1. Ss: the set of infinite places;

2. Sp: the set of finite places ramified in F;
3. S1: the set of finite places split in E;

4. S_1: the set of finite places inert in F.
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Case of archimedean places. Since S, is finite, we need only show
the individual identity

(anO(m)n)v = au(m) (mOd ®N)
In view of Proposition 5.4.4 and 6.5.4, we need only show that the
quantity

E(s) = Z d(n)r((1 —n)m)r(nmDg/N)es(|ny|)

neENm=1Dg=1 n,<0
0<nw<1Vv#w|oco
ew(n(n—1))=1Vw|Dg

has limit 0 as s — 1, where
() = palt) = 2Qu(14+20) (> 0).
One can show that
e(t) =0, es(t) = Ot 17%)
as t — oco. Thus E(s) is absolutely convergent for Re(s) > 0, and has
limit 0 as s — 1.
Case of ramified places. Again Sy is finite, we need only show the
individual identity
(7, T°(m)n)y = au(m)  (mod Dy).
This follows directly from Proposition 5.4.8 and 6.4.5.

Case of split places. In this case S} is not finite. But by Proposition
5.4.8, the sum

> (0, T(m)n), = r(m) Y ord,(m)log N(v)
vEST vES

has only finitely many nonzero terms and defines an element in Dy.
On the other hand ) ¢ a,(m) = 0.

Case of inert places. Again by Proposition 5.4.8, the left hand side
of (7.1.2) is equal to

> (Uy(m) = Up(1)R(m))log N(p) (mod Dy).

©OES_1 (713)
We need to compare (U,(m) — U, (1)R(m))log N(p) with a,(m). For
¢ € Np prime to p define

ko (0) = > r(nN~Y/p)r((n — 1)0)8(n)

nel~1Dp7IN
0<n<1
eq(n(n—1))=1¥q|Dg
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K (0) = > r(ndN~Yr((n —1)/p)d(n).
nelt~'D'N
0<n<1
€q(n(n—1))=1¥q|Dp

Lemma 7.1.2. Let m' = mgp~de(m),

1. If ord,(m) is even, then
Uy(m)log N(p) — ap(m) = 0.
2. If ord,(m) is odd, then
Ugp(m) = ordg,(mg)ke(m’),
ag(m) = ordg,(mg) log N(p)k[,(m').

Proof. 1f ord,(m) is even, then the only nonzero terms in a,(m) are
for those n which lie in m' "' D ' N, where m/ = mp—°%(™ _ This is
clear if p ¥ m. Otherwise, p f N and then r(nm/Ngp) # 0 will imply
that ord,(n) is odd. But then r((n—1)m) # 0 will imply that ord,(n)
is nonnegative. Thus U,(m)log N(p) = a,(m).

If ord,(m) is odd, then the only nonzero terms in a,(m) are for those
n which have zero order at p. Indeed, r(nm/Ngp) # 0 implies ord,(n)
is even, but r((1—n)m) # 0 implies ord,(n) = 0. Actually, ord,(1—n)
is positive and even. Thus

a,(m) = Z r(nm'N~Nr((n — 1)m'/p)d(n)ord,(mgp).

0<n’<1
€q(n(n—1))=1,Yq|Dg

Lemma 7.1.3. Let { € Np prime to p. Then
k() — k(1) =K'(¢) — K'(1).

Proof. From the proof of Proposition 5.4.8, it is not difficult to see that
ko () — k(1) is the local intersection of n and T°(¢)n over p without
counting multiplicities. See formula (5.4.10) with m = £ and m(n') = 1.
But this doesn’t give a description for k[ (¢) — k{,(¢). So we need give
a description in a different setting.

Let R(p) be an order of B(gp) of type (E, N(p)). We consider the
projection map

m:C = E*\B(p)*/R(p)" — S = B*\B(p)"/R(p)".

The set C' can be considered as the set of CM-points, and the set
S can be considered as supersingular points, the reduction of CM-
points. We may define conductors for elements in C', and orientations
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for elements in C' with conductor prime to Ng for each place dividing
Ng. The group

W = {be B(p)* : b R(p)b}/R(p)*

acting on C' does not change reductions and conductors but is free and
transitive on orientations. For each place v dividing Ny, we call the
orientation defined by 1 the positive orientation.

By a Q-divisor in C' we just mean an element in the free Abelian
group Q[C]. For ¢ prime to N(p) we can also define the Hecke operator
T(¢) on Z[C]. Let n(p) (resp. n(p)’) be the set of elements in the
first set with trivial conductor and positive orientations at all places
of Np (resp. positive orientations at places dividing N but negative
orientation at place p). Then n(p) and 7n(p) have the exact same
reduction because of the action of W. Then k(¢) — k(1) (resp. k'(¢) —
k'(1)) is the intersection number of n(p) (resp. n(p)’) and T(£)°(n(p))
under the specialization map. Thus they are same as 7(p) and n(p)’
have the same reductions. O

Lets go back to the proof of (7.1.2) for S_;. By (7.1.3), the difference
of two sides of (7.1.2) for S_; is equal to

Y (Uy(m)logN(p) — ay(m))

e(p)=—1
- Y (Uu(1)1ogN(p) — ay(1))r(m)
e(p)=-1
= 2 ap(lr(m).
e(p)=-1
The first two terms vanish by the above two lemmas. The last sum is
absolutely convergent, thus defines an element in D y. O

Corollary 7.1.4. For any newform f for Ko(N), one has
(87)
2/dp

Proof. By Proposition 4.5.1, and Proposition 7.1.1,

Lyp(f,1) = [Ko(1) : Ko(N)I(f, ¥).

971)29 1/2
b = (?—ddN\If + an old form.
EQFR

Now the conclusion follows from formula (7.1.1). O
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7.1.5. Proof of Theorem C. The ideal is exactly as in [20], p308. By
Lemma 3.4.5, we may decompose z in Jac(X) ® C into eigenvectors z,
with the same eigenvalues with ¢ under Hecke operators T(m) with m
prime to N:

z= Z 26, T(m)zy = ap(m)ze.
oeSn
As Hecke operators on Jac(C) ® C are self adjoint with respect to the
Neron-Tate height pairing, one has the decomposition

U= (2 20)0-
PESN
Now Theorem C follows from this equality and Corollary 7.1.4.

7.2. Proof of Theorem A. By Theorem B and C, it suffices to prove
the following generalization of a theorem of Kolyvagin:

Proposition 7.2.1. Assume that the Heegner point ys in A is non
torsion. Then

o A(F) has rank given by
rankA(F) =[Oy : Z]ords—1 L(s, f),

o 1I(A) is finite.

In view of Kolyvagin’s method for other cases [17] [28] [29] [30], we
need only construct certain Euler system of CM-points. We consider
square-free elements n € Np which are square-free and prime to NDg
and such that every prime factor £ is inert in K. For every such n, we
choose a CM-point x,, of the conductor n such that

x, is included in T(¢)z,,
if n = mf with ¢ a prime. Then z,, is defined over E,,, the ring class
field of the conductor n over E.

Lemma 7.2.2. If n =m/{ as above, then

u ! Z 27 = u 'T (02,
c€Gal(En/Em)

where u, s the cardinality of the group O /O%.

Proof. By a similar argument as in the proof of Proposition 4.2.1, one
can show that P := Z—’:T(E)xm is a divisor with integral coefficients. It
follows that P = @) because of the following facts:

e P includes the divisor Q = 3", .15, /5,.) Th:
e deg P = deg Q);

e () is irreducible over E,,.
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0J

As in the case F' = Q, this lemma will imply that the collection of
x, forms an Euler system [28].
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