[was@modular wooley]$ [was@modular wooley]$ Magma V2.8-2 Mon Dec 3 2001 16:43:25 on modular [Seed = 2744413716] Type ? for help. Type -D to quit. Loading startup file "/home/was/magma/local/emacs.m" Loading "/home/was/magma/local/init.m" > A := AffinePlane(Rationals()); > X := Scheme(x^2+y^2-1); >> X := Scheme(x^2+y^2-1); ^ Runtime error in 'Scheme': Bad argument types Argument types given: RngMPolElt > X := Scheme(A, x^2+y^2-1); > X; Scheme over Rational Field defined by x^2 + y^2 - 1 > Z := ProjectiveClosure(X); > Z; Scheme over Rational Field defined by $.1^2 + $.2^2 - $.3^2 > C := Curve(Z); > GeometricGenus(C); 0 > X := Scheme(A, x^5+3*x^4*y+y^5-1); > Z := ProjectiveClosure(X); > C := Curve(Z); > GeometricGenus(C); 6 > Type(C); Crv > Attach("12-03-01.m"); > C,g := RandomCurve(5); In file "/home/was/people/wooley/12-03-01.m", line 13, column 9: >> Z := ProjectiveCluse(X); ^ Runtime error: Undefined reference 'ProjectiveCluse' in package "/home/was/people/wooley/12-03-01.m" > C,g := RandomCurve(5); RandomCurve( d: 5 ) In file "/home/was/people/wooley/12-03-01.m", line 12, column 15: >> X := Scheme(f); ^ Runtime error in 'Scheme': Bad argument types Argument types given: RngMPolElt > C,g := RandomCurve(5); > g; 0 > C,g := RandomCurve(5); RandomCurve( d: 5 ) GeometricGenus( C: C ) In file "/usr/local/Magma2.8/package/AlgGeom/curve/singularity.m", line 9, column 17: >> return Genus(C); ^ Runtime error in 'Genus': Genus cannot be computed > c; >> c; ^ User error: Identifier 'c' has not been declared or assigned > C; Curve over Rational Field defined by $.1^5 + $.1^4*$.2 - $.1^3*$.2^2 - $.1^2*$.2^3 + $.1*$.2^4 + 2*$.2^5 > C,g := RandomCurve(5); RandomCurve( d: 5 ) GeometricGenus( C: C ) In file "/usr/local/Magma2.8/package/AlgGeom/curve/singularity.m", line 9, column 17: >> return Genus(C); ^ Runtime error in 'Genus': Genus cannot be computed > C,g := RandomCurve(5); C = Curve over Rational Field defined by $.1^4*$.2 + 1/2*$.1^3*$.2^2 + 1/2*$.1^2*$.2^3 + $.2^5 RandomCurve( d: 5 ) GeometricGenus( C: C ) In file "/usr/local/Magma2.8/package/AlgGeom/curve/singularity.m", line 9, column 17: >> return Genus(C); ^ Runtime error in 'Genus': Genus cannot be computed > C,g := RandomCurve(5); RandomCurve( d: 5 ) In file "/home/was/people/wooley/12-03-01.m", line 14, column 6: >> PP := Parent(Z); ^ Runtime error in 'AssignNames': Bad argument types Argument types given: PowerStructure ~, SeqEnum[MonStgElt] > C,g := RandomCurve(5); RandomCurve( d: 5 ) In file "/home/was/people/wooley/12-03-01.m", line 15, column 14: >> C := Curve(Z); ^ Runtime error in 'Curve': Bad argument types Argument types given: RngMPolElt > C,g := RandomCurve(5); C = Curve over Rational Field defined by x^5 + x^4*y - x^3*y^2 - 2*x^2*y^3 + x*y^4 + 2*y^5 RandomCurve( d: 5 ) GeometricGenus( C: C ) In file "/usr/local/Magma2.8/package/AlgGeom/curve/singularity.m", line 9, column 17: >> return Genus(C); ^ Runtime error in 'Genus': Genus cannot be computed > C,g := RandomCurve(5); C = Curve over Rational Field defined by x^5*y^5 - 2*x^5*y^4*z + x^5*y^3*z^2 + x^5*y^2*z^3 + 2*x^5*y*z^4 + 2*x^5*z^5 + x^4*y^5*z - x^4*y^4*z^2 - x^4*y^3*z^3 - 2*x^4*y^2*z^4 + 2*x^4*y*z^5 - 2*x^4*z^6 - 2*x^3*y^4*z^3 - 2*x^3*y^3*z^4 + x^3*y^2*z^5 - 2*x^3*z^7 + 2*x^2*y^5*z^3 - x^2*y^3*z^5 + x^2*y^2*z^6 - x^2*y*z^7 - x^2*z^8 + x*y^5*z^4 + x*y^4*z^5 - 2*x*y^3*z^6 - x*y^2*z^7 + x*z^9 + 2*y^5*z^5 - 2*y^4*z^6 + 2*y^3*z^7 + y^2*z^8 + 2*y*z^9 + 2*z^10 > g; 16 > C,g := RandomCurve(5); C = Curve over Rational Field defined by 2*x^4*z + x^3*y^2 + x^3*y*z - x^3*z^2 + 2*x^2*y^3 + x^2*y^2*z - 2*x^2*z^3 + 2*x*y^4 + 2*x*y^3*z + x*y^2*z^2 - x*z^4 - y^5 + y^4*z - 2*y^3*z^2 + 2*y^2*z^3 - 2*y*z^4 + z^5 > g; 6 > C,g := RandomCurve(5); C = Curve over Rational Field defined by x^5 - x^4*y + x^3*y^2 + x^3*y*z - x^3*z^2 + x^2*y^3 + 2*x^2*y^2*z - 2*x^2*y*z^2 - x^2*z^3 + x*y^4 - 2*x*y^3*z - 2*x*y^2*z^2 + 2*x*y*z^3 + x*z^4 + y^5 - 2*y^4*z + 2*y^3*z^2 + y*z^4 + 2*z^5 > g; 6 > C,g := RandomCurve(5); C = Curve over Rational Field defined by x^5 + x^4*y + 1/2*x^3*y^2 + x^3*y*z + 1/2*x^3*z^2 - x^2*y^3 + 1/2*x^2*y^2*z + 1/2*x*y^4 - x*y^3*z - x*y^2*z^2 + x*y*z^3 + x*z^4 + y^5 - y^2*z^3 + y*z^4 + z^5 > g; 6 > C,g := RandomCurve(5); C = Curve over Rational Field defined by x^5 - x^4*z + 2*x^3*y^2 - x^3*y*z + 2*x^3*z^2 - x^2*y^3 - x^2*y^2*z + 2*x^2*y*z^2 + 2*x*y^4 - 2*x*y^3*z + x*y^2*z^2 - x*y*z^3 + x*z^4 - 2*y^5 - y^3*z^2 - y^2*z^3 + 2*z^5 > g; 6 > C,g := RandomCurve(5 : range := 10); C = Curve over Rational Field defined by x^5 + 4*x^4*y - x^3*y^2 - 5*x^3*y*z - 4*x^3*z^2 - 1/2*x^2*y^3 - 7/2*x^2*y^2*z - 7/2*x^2*y*z^2 + 5/2*x^2*z^3 - 2*x*y^4 - 2*x*y^3*z + 3/2*x*y^2*z^2 + 9/2*x*y*z^3 + 9/2*x*z^4 + 5*y^5 + 5/2*y^4*z - y^3*z^2 + 1/2*y^2*z^3 - 2*y*z^4 > g; 6 > C,g := RandomCurve(6 : range := 10); C = Curve over Rational Field defined by x^6 + 2/3*x^5*y + 7/6*x^5*z - 5/6*x^4*y^2 - 2/3*x^4*y*z + 5/3*x^4*z^2 + 5/6*x^3*y^3 - x^3*y^2*z + 3/2*x^3*y*z^2 + 5/6*x^3*z^3 + x^2*y^4 - 5/3*x^2*y^3*z + 1/3*x^2*y^2*z^2 + 4/3*x^2*y*z^3 - 1/6*x^2*z^4 - 5/6*x*y^5 + 4/3*x*y^4*z + 1/2*x*y^3*z^2 + 1/6*x*y^2*z^3 - 1/2*x*y*z^4 + 1/3*x*z^5 - y^6 - 5/3*y^5*z + 1/2*y^4*z^2 - 1/2*y^3*z^3 - 3/2*y^2*z^4 + 4/3*y*z^5 + 5/3*z^6 > C; Curve over Rational Field defined by x^6 + 2/3*x^5*y + 7/6*x^5*z - 5/6*x^4*y^2 - 2/3*x^4*y*z + 5/3*x^4*z^2 + 5/6*x^3*y^3 - x^3*y^2*z + 3/2*x^3*y*z^2 + 5/6*x^3*z^3 + x^2*y^4 - 5/3*x^2*y^3*z + 1/3*x^2*y^2*z^2 + 4/3*x^2*y*z^3 - 1/6*x^2*z^4 - 5/6*x*y^5 + 4/3*x*y^4*z + 1/2*x*y^3*z^2 + 1/6*x*y^2*z^3 - 1/2*x*y*z^4 + 1/3*x*z^5 - y^6 - 5/3*y^5*z + 1/2*y^4*z^2 - 1/2*y^3*z^3 - 3/2*y^2*z^4 + 4/3*y*z^5 + 5/3*z^6 > g; 10 > ; > C,g := RandomCurve(6 : range := 10); > g; 10 > C; Curve over Rational Field defined by x^6 - 3/2*x^5*y + 1/3*x^5*z - 1/2*x^4*y*z - 2/3*x^4*z^2 - 5/3*x^3*y^3 - 5/3*x^3*y^2*z - 7/6*x^3*y*z^2 + 1/2*x^3*z^3 - 1/2*x^2*y^3*z + 1/6*x^2*y^2*z^2 + 3/2*x^2*y*z^3 - 4/3*x^2*z^4 + 5/6*x*y^5 + 5/3*x*y^4*z + 4/3*x*y^3*z^2 + 1/3*x*y^2*z^3 - 1/6*x*y*z^4 + 1/2*x*z^5 - 5/6*y^6 + 7/6*y^5*z - y^4*z^2 + 4/3*y^3*z^3 + 1/6*y^2*z^4 + 5/6*y*z^5 - 5/6*z^6 > DefiningPolynomial(C); x^6 - 3/2*x^5*y + 1/3*x^5*z - 1/2*x^4*y*z - 2/3*x^4*z^2 - 5/3*x^3*y^3 - 5/3*x^3*y^2*z - 7/6*x^3*y*z^2 + 1/2*x^3*z^3 - 1/2*x^2*y^3*z + 1/6*x^2*y^2*z^2 + 3/2*x^2*y*z^3 - 4/3*x^2*z^4 + 5/6*x*y^5 + 5/3*x*y^4*z + 4/3*x*y^3*z^2 + 1/3*x*y^2*z^3 - 1/6*x*y*z^4 + 1/2*x*z^5 - 5/6*y^6 + 7/6*y^5*z - y^4*z^2 + 4/3*y^3*z^3 + 1/6*y^2*z^4 + 5/6*y*z^5 - 5/6*z^6 > Parent($1); Polynomial ring of rank 3 over Rational Field Lexicographical Order Variables: x, y, z > 23+1-2*Sqrt(23); 14.408336953374560916805123871875216307 > C,g := RandomCurve(6 : range := 15); > C; Curve over Rational Field defined by x^6 - 13*x^5*y + 2*x^5*z + 6*x^4*y^2 - 3*x^4*y*z - 14*x^4*z^2 - x^3*y^3 + 11*x^3*y^2*z + 3*x^3*y*z^2 - 4*x^3*z^3 + 2*x^2*y^4 - 8*x^2*y^3*z + 9*x^2*y^2*z^2 - 6*x^2*y*z^3 + 13*x^2*z^4 + 4*x*y^5 + 4*x*y^4*z + 11*x*y^3*z^2 - 7*x*y^2*z^3 + x*y*z^4 + 14*x*z^5 - 4*y^6 - 15*y^5*z + 3*y^4*z^2 - 13*y^3*z^3 - 14*y^2*z^4 - 4*y*z^5 + 6*z^6 > g; 10 > 2*6-2; 10 > 2*7-2; 12 > C,g := RandomCurve(5); > g; 6 > C; Curve over Rational Field defined by x^5 + x^4*y - 2*x^4*z + 2*x^3*y^2 - 2*x^2*y^3 - 2*x^2*y*z^2 + 2*x^2*z^3 - 2*x*y^4 - x*y^3*z + y^5 + y^4*z + 2*y^3*z^2 - 2*y^2*z^3 - 2*y*z^4 - 2*z^5 > ; In file "/home/was/people/wooley/12-03-01.m", line 23, column 4: >> for t in y do ^ User error: bad syntax > ; In file "/home/was/people/wooley/12-03-01.m", line 24, column 42: >> phi := hom R | R.1,t,1); ^ User error: bad syntax > ; > C; Curve over Rational Field defined by x^5 + x^4*y - 2*x^4*z + 2*x^3*y^2 - 2*x^2*y^3 - 2*x^2*y*z^2 + 2*x^2*z^3 - 2*x*y^4 - x*y^3*z + y^5 + y^4*z + 2*y^3*z^2 - 2*y^2*z^3 - 2*y*z^4 - 2*z^5 > SolvablePoint(C,[1]); >> SolvablePoint(C,[1]); ^ Runtime error in 'SolvablePoint': Bad argument types Argument types given: Crv, SeqEnum[RngIntElt] > SolvablePoint(C,[1]); Permutation group acting on a set of cardinality 5 (1, 2, 3, 4, 5) (1, 2) [ 7, 6, 3, 2*w + 9, 9*w + 9 ] 11 0 > SolvablePoint(C,[1]); 120 0 > SolvablePoint(C,[i : i in [1..10]]); 120 120 120 120 120 120 120 120 120 120 0 > ; In file "/home/was/people/wooley/12-03-01.m", line 19, column 34: >> intrinsic GaloisGroup(C::Crv, y::RngRatElt) -> . ^ User error: Unknown type 'RngRatElt' > ; In file "/home/was/people/wooley/12-03-01.m", line 19, column 34: >> intrinsic GaloisGroup(C::Crv, y::RngRatElt) -> Grp ^ User error: Unknown type 'RngRatElt' > ; > GaloisGroup(C,1/5); In file "/home/was/people/wooley/12-03-01.m", line 23, column 36: >> phi := hom R | R.1,t,1>; ^ Runtime error: Undefined reference 't' in package "/home/was/people/wooley/12-03-01.m" > GaloisGroup(C,1/5); Permutation group acting on a set of cardinality 5 (1, 2, 3, 4, 5) (1, 2) [ 1, 21*w + 33, 20*w + 33, 3*w + 32, 38*w + 32 ] 41 > #$1; 1 > GaloisGroup(C,1/5); Permutation group acting on a set of cardinality 5 (1, 2, 3, 4, 5) (1, 2) [ 1, 21*w + 33, 20*w + 33, 3*w + 32, 38*w + 32 ] 41 > #$1; 120 > ; > #G2(C,1/5); 120 > G2(C,1/5); Permutation group acting on a set of cardinality 5 (1, 2, 3, 4, 5) (1, 2) [ 1, 21*w + 33, 20*w + 33, 3*w + 32, 38*w + 32 ] 41 > K := NumberField(x^2+1); >> K := NumberField(x^2+1); ^ Runtime error in 'NumberField': Bad argument types Argument types given: RngMPolElt > R := PolynomialRing(Rationals()); > > K := NumberField(x^2+1); > G := G2(C,a); Permutation group acting on a set of cardinality 5 (1, 2, 3, 4, 5) (1, 2) [ 8, 8*w + 8, 9*w + 8, 11*w + 4, 6*w + 4 ] Prime Ideal Two element generators: [17, 0] [13, 1] > #$1; 120 > G := G2(C,a); > G; Permutation group G acting on a set of cardinality 5 (1, 2, 3, 4, 5) (1, 2) > IsSolvable(G); false > K := NumberField(x^3+17); > G := GaloisGroup(C,a); > G; Permutation group G acting on a set of cardinality 5 (1, 2, 3, 4, 5) (1, 2) > IsSolvable(G); false > ; > SolvablePoint(C,20); >> SolvablePoint(C,20); ^ Runtime error in 'SolvablePoint': Bad argument types Argument types given: Crv, RngIntElt > SolvablePoint(C,10,20); SolvablePoint( C: C, ymin: 10, ymax: 20 ) In file "/home/was/people/wooley/12-03-01.m", line 39, column 58: >> return [y : y in [ymin..ymax] | IsSolvable(GaloisGroup(C, y))]; ^ Runtime error in 'GaloisGroup': Bad argument types Argument types given: Crv, RngIntElt > ; > SolvablePoint(C,10,20); SolvablePoint( C: C, ymin: 10, ymax: 20 ) In file "/home/was/people/wooley/12-03-01.m", line 40, column 58: >> return [y : y in [ymin..ymax] | IsSolvable(GaloisGroup(C, y))]; ^ Runtime error in 'GaloisGroup': Bad argument types Argument types given: Crv, RngIntElt > SolvablePoint(C,10,20); [] > SolvablePoint(C,10,20); [] > SolvablePoint(C,10,20); [] > G := GaloisGroup(C,a); > G; Permutation group G acting on a set of cardinality 5 (1, 2, 3, 4, 5) (1, 2) > SolvablePoint(C,20,30); [] > SolvablePoint(C,50,60); [] > SolvablePoint(C,100,120); [] > SolvablePoint(C,1,100,5); [] > SolvablePoint(C,1,100,7); [] > C,g := RandomCurve(5); > C,g := RandomCurve(4); > g; 3 > SolvablePoint(C,1,100,7); SolvablePoint( C: C, ymin: 1, ymax: 100, denom: 7 ) GaloisGroup( C: C, y: 1 ) In file "/home/was/people/wooley/12-03-01.m", line 34, column 12: >> f := phi(F); ^ Runtime error in map application: Coefficient ring coercion fail > C; Curve over Rational Field defined by x^4 - 1/2*x^3*y + 1/2*x^3*z - 1/2*x^2*y^2 - 1/2*x^2*z^2 - 1/2*x*y^3 - x*y^2*z - 1/2*x*y*z^2 - x*z^3 + y^2*z^2 - 1/2*y*z^3 + z^4 > FractionField; >> FractionField; ^ User error: Identifier 'FractionField' has not been declared or assigned > SolvablePoint(C,1,100,7); [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 ] > C,g := RandomCurve(5); > C; Curve over Rational Field defined by x^4*y - 2*x^4*z + x^3*y^2 - 2*x^3*z^2 + 2*x^2*y^3 - 2*x^2*y^2*z + 2*x^2*y*z^2 - x^2*z^3 + x*y^4 + 2*x*y^3*z - x*y*z^3 - y^5 + 2*y^4*z - y^3*z^2 - y*z^4 > g; 6 > SolvablePoint(C,1,40,7); SolvablePoint( C: C, ymin: 1, ymax: 40, denom: 7 ) GaloisGroup( C: C, y: 1 ) In file "/home/was/people/wooley/12-03-01.m", line 35, column 22: >> return GaloisGroup(f); ^ Runtime error in 'GaloisGroup': Argument 1 is not irreducible > SymmetricGroup(3); Symmetric group acting on a set of cardinality 3 Order = 6 = 2 * 3 > &*[SymmetricGroup(3), SymmetricGroup(4)]; >> &*[SymmetricGroup(3), SymmetricGroup(4)]; ^ Runtime error in '&*': Universe has no multiplication algorithm > SymmetricGroup(3) * SymmetricGroup(4); >> SymmetricGroup(3) * SymmetricGroup(4); ^ Runtime error in '*': Could not find a covering group > SolvablePoint(C,1,40,7); [ 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1, 8/7, 9/7, 10/7, 11/7, 12/7, 13/7, 2, 15/7, 16/7, 17/7, 18/7, 19/7, 20/7, 3, 22/7, 23/7, 24/7, 25/7, 26/7, 27/7, 4, 29/7, 30/7, 31/7, 32/7, 33/7, 34/7, 5, 36/7, 37/7, 38/7, 39/7, 40/7 ] > C; Curve over Rational Field defined by x^4*y - 2*x^4*z + x^3*y^2 - 2*x^3*z^2 + 2*x^2*y^3 - 2*x^2*y^2*z + 2*x^2*y*z^2 - x^2*z^3 + x*y^4 + 2*x*y^3*z - x*y*z^3 - y^5 + 2*y^4*z - y^3*z^2 - y*z^4 > g; 6 > SolvablePoint(C,1,40,1); [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 ] > SolvablePoint(C,1,5,1); x - 1 x^3 + 11/2*x^2 + 15*x - 5 x^4 + 7*x^3 + 41*x^2 + 132*x - 111 x^4 + 7*x^3 + 103/2*x^2 + 190*x - 290 x^4 + 23/3*x^3 + 209/3*x^2 + 290*x - 2005/3 [ 1, 2, 3, 4, 5 ] > SolvablePoint(C,1,5,1); -x^4 - x^3 + x^2 + 2*x - 1 x - 1 2*x^3 + 11*x^2 + 30*x - 10 x^3 + 11/2*x^2 + 15*x - 5 x^4 + 7*x^3 + 41*x^2 + 132*x - 111 x^4 + 7*x^3 + 41*x^2 + 132*x - 111 2*x^4 + 14*x^3 + 103*x^2 + 380*x - 580 x^4 + 7*x^3 + 103/2*x^2 + 190*x - 290 3*x^4 + 23*x^3 + 209*x^2 + 870*x - 2005 x^4 + 23/3*x^3 + 209/3*x^2 + 290*x - 2005/3 [ 1, 2, 3, 4, 5 ] > C; Curve over Rational Field defined by x^4*y - 2*x^4*z + x^3*y^2 - 2*x^3*z^2 + 2*x^2*y^3 - 2*x^2*y^2*z + 2*x^2*y*z^2 - x^2*z^3 + x*y^4 + 2*x*y^3*z - x*y*z^3 - y^5 + 2*y^4*z - y^3*z^2 - y*z^4 > C,g := RandomCurve(5); > C; Curve over Rational Field defined by x^5 - 2*x^4*y - 2*x^4*z - 2*x^3*y^2 - 2*x^3*y*z + x^3*z^2 - 2*x^2*y^3 + x^2*y^2*z + x^2*y*z^2 - 2*x^2*z^3 + 2*x*y^4 - x*y^3*z - 2*x*y*z^3 + y^5 + 2*y^4*z - 2*z^5 > g; 6 > C; Curve over Rational Field defined by x^5 - 2*x^4*y - 2*x^4*z - 2*x^3*y^2 - 2*x^3*y*z + x^3*z^2 - 2*x^2*y^3 + x^2*y^2*z + x^2*y*z^2 - 2*x^2*z^3 + 2*x*y^4 - x*y^3*z - 2*x*y*z^3 + y^5 + 2*y^4*z - 2*z^5 > SolvablePoint(C,1,5,1); x^5 - 4*x^4 - 3*x^3 - 2*x^2 - x + 1 x^5 - 4*x^4 - 3*x^3 - 2*x^2 - x + 1 x^5 - 6*x^4 - 11*x^3 - 12*x^2 + 20*x + 62 x^5 - 6*x^4 - 11*x^3 - 12*x^2 + 20*x + 62 x^5 - 8*x^4 - 23*x^3 - 44*x^2 + 129*x + 403 x^5 - 8*x^4 - 23*x^3 - 44*x^2 + 129*x + 403 x^5 - 10*x^4 - 39*x^3 - 110*x^2 + 440*x + 1534 x^5 - 10*x^4 - 39*x^3 - 110*x^2 + 440*x + 1534 x^5 - 12*x^4 - 59*x^3 - 222*x^2 + 1115*x + 4373 x^5 - 12*x^4 - 59*x^3 - 222*x^2 + 1115*x + 4373 [] > SolvablePoint(C,1,5,1); [] > SolvablePoint(C,1,5,7); [] > SolvablePoint(C,1,11,13); [] > SolvablePoint(C,1,11,19); [] > SolvablePoint(C,1,11,31); [] > SolvablePoint(C,1,100,31); [] > SolvablePoint(C,-1,1,31); [] > C,g := RandomCurve(4); > C; Curve over Rational Field defined by x^4 + x^3*y + 1/2*x^3*z + 1/2*x^2*y^2 - x^2*y*z + 1/2*x^2*z^2 - x*y^3 + x*y^2*z + x*y*z^2 + x*z^3 + y^4 + 1/2*y^2*z^2 + y*z^3 + 1/2*z^4 > g; 3 > SolvablePoint(C,1,5,1); [ 1, 2, 3, 4, 5 ] > > R := PolynomialRing(Rationals()); > K := NumberField(x^3+1); > IsSolvable(GaloisGroup(C,a)); > >> K := NumberField(x^3+1); ^ Runtime error in 'NumberField': Argument 1 is not irreducible > true > > > R := PolynomialRing(Rationals()); > K := NumberField(x^3+x^2+1); > #GaloisGroup(C,a); > > 24 > >