[was@descent was]$ [was@descent was]$ Magma V2.7-1 Tue Jul 4 2000 20:49:39 on descent [Seed = 3118648700] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R factormod padiccharpoly CS MS Tn fcp qexp DC ND Z fn x ES NS charpoly idxG0 F Q ellap modcharpoly > M:=ModularSymbols(9,4); > M; Full Modular symbols space of level 9, weight 4, and dimension 6 > A:=CS(M); > A; Modular symbols space of level 9, weight 4, and dimension 2 > Periods(A,50); [ (0.1047477693755510168878537506 + 0.06047615284598721747189642123*i), (0.1047477693755510168878537506 - 0.06047615284598721747189642123*i) ] > EllipticInvariants(A,50); -0.000008545806165793494726244039305 + 0.00001480177046680886373605378910*i -56626421681.55843066 - 4.336808688938617706 E-19*i -2.6906338494440222415129152749036827420 E-33 - 9.4002327278681342691728250862648041580 E-43*i > EllipticInvariants; Intrinsic 'EllipticInvariants' Signatures: ( A) -> FldPrElt, FldPrElt, FldPrElt ( A, n) -> FldPrElt, FldPrElt, FldPrElt The invariants c4, c6, and j, computed to precision n. > P:=Periods(A,97); > P; [ (0.1047477693755510168878523836 + 0.06047615284598721747189198005*i), (0.1047477693755510168878523836 - 0.06047615284598721747189198005*i) ] > C:=ComplexField(); > i*P[1]; (-0.06047615284598721747189198005 + 0.1047477693755510168878523836*i) > v:=i*P[1]; > v; (-0.06047615284598721747189198005 + 0.1047477693755510168878523836*i) > P[1]+P[2]; (0.2094955387511020337757047673 + 0.E-30*i) > 3*v; (-0.1814284585379616524156759401 + 0.3142433081266530506635571509*i) > 4*v; (-0.2419046113839488698875679202 + 0.4189910775022040675514095346*i) > omega:=(1+Sqrt(-3))/2; > omega; 1/2 + 0.8660254037844386467637231707*i > omega*P[1]; (1.262177448254078626000000000 E-29 + 0.1209523056919744349437839601*i) > P; [ (0.1047477693755510168878523836 + 0.06047615284598721747189198005*i), (0.1047477693755510168878523836 - 0.06047615284598721747189198005*i) ] > P[1]-P[2]; ( 0.E-30 + 0.1209523056919744349437839601*i) > P; [ (0.1047477693755510168878523836 + 0.06047615284598721747189198005*i), (0.1047477693755510168878523836 - 0.06047615284598721747189198005*i) ] > P[1]+P[2]; (0.2094955387511020337757047673 + 0.E-30*i) > EM:=MS("27A"); > EM; Modular symbols space of level 27, weight 2, and dimension 2 > Periods(EM,97); [ (1.766638750285479428628084783), (-0.8833193751427397143140423916 + 1.529954037057257284034757869*i) ] > jInvariant(EllipticCurve(EM)); 0 > P; [ (0.1047477693755510168878523836 + 0.06047615284598721747189198005*i), (0.1047477693755510168878523836 - 0.06047615284598721747189198005*i) ] > [P[1]+P[2], P[2]]; [ (0.2094955387511020337757047673 + 0.E-30*i), (0.1047477693755510168878523836 - 0.06047615284598721747189198005*i) ] > PE:=Periods(EM,97); > PE[1][1]/PE[2][1];PE[1][1]/PE[2][1]; -0.4999999999999809375574334612 - 0.8660254037844276410573759675*i > omega; 1/2 + 0.8660254037844386467637231707*i > P[1][1]/P[2][1]; 0.5000000000000000000000000001 + 0.8660254037844386467637231706*i > Periods(EM,97)[1][1]/(P[1]+P[2])[1]; 8.432822774256743799544616666 + 0.E-28*i > a:=8.432822774256743799544616666; a:=8.432822774256743799544616666; > a; 8.432822774256743799544616665 > ContinuedFraction(a); 8.432822774256743799544616665 > ContinuedFraction(a); [ 8, 2, 3, 4, 1, 1, 16, 1, 1, 10, 1, 1, 1, 9, 1, 16, 2, 2, 3, 1, 1, 5, 121, 1, 4 ] > 22/7.0; 3.142857142857142857142857142 > ContinuedFraction(3.142857142857142857142857142); [ 3, 7 ] > ContinuedFraction(3.142857142857142857142857143); [ 3, 7 ] > ContinuedFraction(3.1428571428571428571422948); [ 3, 7 ] > ContinuedFraction(3.142857142857142857129808235598); [ 3, 7, 1563974887706165852 ] > ContinuedFraction(a); [ 8, 2, 3, 4, 1, 1, 16, 1, 1, 10, 1, 1, 1, 9, 1, 16, 2, 2, 3, 1, 1, 5, 121, 1, 4 ] > ContinuedFraction(234.32423423515371578548); > ContinuedFraction(234.32423423515371578548); >> ContinuedFraction(234.32423423515371578548); ^ User error: bad syntax > User error: bad syntax >> User error: bad syntax ^ User error: bad syntax > ContinuedFraction(234.32423423515371578548); [ 234, 3, 11, 1, 7, 5, 3, 1, 1, 8, 3, 1, 5, 1, 33, 5, 1, 7, 2, 3, 2, 11, 6 ] > E; >> E; ^ User error: Identifier 'E' has not been declared or assigned > P; [ (0.1047477693755510168878523836 + 0.06047615284598721747189198005*i), (0.1047477693755510168878523836 - 0.06047615284598721747189198005*i) ] > PE; [ (1.766638750285479428628084783), (-0.8833193751427397143140423916 + 1.529954037057257284034757869*i) ] > [P[1]*a, P[2]*a]; [ (0.8833193751427397143140423915 + 0.5099846790190727992733811351*i), (0.8833193751427397143140423915 - 0.5099846790190727992733811351*i) ] > PE; [ (1.766638750285479428628084783), (-0.8833193751427397143140423916 + 1.529954037057257284034757869*i) ] > a; 8.432822774256743799544616665 > LSeries(A,1,97); -0.4189910775022040675514095346 > LSeries(A,2,97); -0.7599657499933076359136227472 + 0.E-29*i > LSeries(A,3,97); -0.9189502627850946258433477704 >