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Introduction

History. In 1986, Francisco Thaine [Th] introduced a remarkable
method for bounding ideal class groups of real abelian extensions of Q.
Namely, if F' is such a field, he used cyclotomic units in fields F'(u,), for
a large class of rational primes ¢, to construct explicitly a large collection
of principal ideals of F. His construction produced enough principal ideals
to bound the exponent of the different Galois-eigencomponents of the ideal
class group of F', in terms of the cyclotomic units of F'. Although Thaine’s
results were already known as a corollary of Iwasawa’s “main conjecture”,
proved by Mazur and Wiles [MW], Thaine’s proof was very much sim-
pler. The author [Rul] was able to apply Thaine’s method essentially
unchanged to bound ideal class groups of abelian extensions of imaginary
quadratic fields in terms of elliptic units, with important consequences for
the arithmetic of elliptic curves with complex multiplication.

Shortly after this, Victor Kolyvagin [Kol] discovered (independently
of Thaine) a similar remarkable method, in his case to bound the Selmer
group of an elliptic curve. Suppose E is a modular® elliptic curve over
Q, with sign +1 in the functional equation of its L-function. Kolyvagin’s
method used Heegner points on E over anticyclotomic extensions of prime
conductor of an imaginary quadratic field K (in place of cyclotomic units in
abelian extensions of Q) to construct cohomology classes over K (in place
of principal ideals). He used these cohomology classes, along with duality
theorems from Galois cohomology, to bound the exponent of the Selmer
group of E over Q. The overall structure of his proof was very similar to
that of Thaine.

Inspired by Thaine’s work and his own, Kolyvagin then made another
fundamental advance. In his paper [Ko2] he introduced what he called
“Euler systems.” In Thaine’s setting (the Euler system of cyclotomic units)

1C. Breuil, B. Conrad, F. Diamond, and R. Taylor have recently announced that
they have succeeded in extending the methods of Wiles to prove that every elliptic curve
over Q is modular. Given this result, one can remove the assumption that E is modular,
both here and throughout the discussion of elliptic curves in §3.5.

3



4 INTRODUCTION

Kolyvagin showed how to use cyclotomic units in fields F(u,.), for a large
class of integers r (no longer just primes), to bound the orders of the
different Galois-eigencomponents of the ideal class group of F', rather than
just their exponents. Similarly, by using a larger collection of Heegner
points in the situation described above, Kolyvagin was able to give a bound
for the order of the Selmer group of E. Thanks to the theorem of Gross
and Zagier [GZ], which links Heegner points with the L-function of E,
Kolyvagin’s bound is closely related to the order predicted by the Birch
and Swinnerton-Dyer conjecture.

This book. This book describes a general theory of Euler systems
for p-adic representations. We start with a finite-dimensional p-adic repre-
sentation T' of the Galois group of a number field K. (Thaine’s situation
is the case where K = Q and T is @/.Lpn twisted by an even Dirichlet
character; in Kolyvagin’s case T is the Tate module of a modular elliptic
curve.) We define an Euler system for T to be a collection of cohomology
classes cp € H'(F,T), for a family of abelian extensions F' of K, with a
relation between cr: and cr whenever F' C F'.

Our main results show how the existence of an Euler system leads
to bounds on the sizes of Selmer groups attached to the Galois module
Hom(T, u,poo), bounds which depend only on the given Euler system. The
proofs of these theorems in our general setting parallel closely (with some
additional complications) Kolyvagin’s original proof. Results similar to
ours have recently been obtained independently by Kato [Ka2] and Perrin-
Riou [PRS5].

What we do not do here is construct new Euler systems. This is the
deepest and most difficult part of the theory. Since Kolyvagin’s introduc-
tion of the concept of an Euler system there have been very few new Euler
systems found, but each has been extremely important. Kato [Ka3] has
constructed a new Euler system for a modular elliptic curve over Q, very
different from Kolyvagin’s system of Heegner points (see §3.5). Flach [FI]
has used a collection of cohomology classes (but not a complete Euler sys-
tem) to bound the exponent but not the order of the Selmer group of the
symmetric square of a modular elliptic curve.

One common feature of all the Euler systems mentioned above is that
they are closely related to special values of L-functions. An important
benefit of this connection is that the bounds on Selmer groups that come
out of the Euler system machinery are then linked to L-values. Such bounds
provide evidence for the Bloch-Kato conjectures [BK], which predict the
orders of these Selmer groups in terms of L-values.
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Our definition of Euler system says nothing about L-values. If there is
an Euler system for 7' then there is a whole family of them (for example,
the collection of Euler system cohomology classes is a Zj,-module, as well
as a Gal(K /K )-module). If one multiplies an Euler system by p, one gets
a new Euler system but a worse bound on the associated Selmer groups.
The philosophy underlying this book, although it is explicitly discussed
only in Chapter 8, is that under certain circumstances, not only should
there exist an Euler system for 7', but there should exist a “best possible”
Euler system, which will be related to (and contain all the information in)
the p-adic L-function attached to 7.

A remark about generality. It is difficult to formulate the “most
general” definition of an Fuler system, and we do not attempt to do this
here. The difficulty is partly due to the fact that the number of examples
on which to base a generalization is quite small. In the end, we choose
a definition which does not cover the case of Kolyvagin’s Heegner points,
because to use a more inclusive definition would introduce too many diffi-
culties. (In Chapter 9 we discuss possible modifications of our definition,
including one which does include the case of Heegner points.) On the other
hand, we do allow the base field K to be an arbitrary number field, instead
of requiring K = Q. Although this adds a layer of notation to all proofs,
it does not significantly increase the difficulty. A reader wishing to restrict
to the simplest (and most interesting) case K = Q should feel free to do
so.

Organization. In Chapter 1 we introduce the local and global coho-
mology groups, and state the duality theorems, which will be required to
state and prove our main results. Chapter 2 contains the definition of an
Euler system, followed by the statements of our main theorems bounding
the Selmer group of Hom(7', pe.) over the base field K (§2.2) and over
Zi-extensions Ko of K (§2.3).

Chapter 3 contains some concrete applications of the theorems of Chap-
ter 2. We apply those theorems to three different Euler systems. The first
is constructed from cyclotomic units, and is used to study ideal class groups
of real abelian fields (§3.2). The second is constructed from Stickelberger
elements, and is used to study the minus part of ideal class groups of abelian
fields (§3.4). The third is constructed by Kato from Beilinson elements in
the K-theory of modular curves, and is used to study the Selmer groups of
modular elliptic curves (§3.5).

The proofs of the theorems of Chapter 2 are given in Chapters 4
through 7. In Chapter 4 we give Kolyvagin’s “derivative” construction,
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taking the Euler system cohomology classes defined over abelian extensions
of K and using them to produce cohomology classes over K itself. We then
analyze the localizations of these derived classes, information which is cru-
cial to the proofs of our main theorems. In Chapter 5 we bound the Selmer
group over K by using the derived classes of Chapter 4 and global duality.
Bounding the Selmer group over K, is similar but more difficult; this is
accomplished in Chapter 7 after a digression in Chapter 6 which is used to
reduce the proof to a simpler setting.

In Chapter 8 we discuss the conjectural connection between Euler sys-
tems and p-adic L-functions. This connection relies heavily on conjectures
of Perrin-Riou [PR4]. Assuming a strong version of Perrin-Riou’s conjec-
tures, and subject to some hypotheses on the representation 7', we show
that there is an Euler system for T which is closely related to the p-adic
L-function.

Chapter 9 discusses possible variants of our definition of Euler systems.

Finally, there is some material which is used in the text, but which is
outside our main themes. Rather than interrupt the exposition with this
material, we include it in four appendices (A-D).

Notation
If F is a field, F will denote a fixed separable closure of F and
Gr = Gal(F/F).

(All fields we deal with will be perfect, so we may as well assume that F
is an algebraic closure of F.) Also, F?* will denote the maximal abelian
extension of F', and if F' is a local field F* will denote the maximal unram-
ified extension of F. If F' is a global field and ¥ is a set of places of F', then
Fy, will denote the maximal extension of F which is unramified outside X.
If K C F is an extension of fields, we will write K C;F to indicate that
[F : K] is finite.

If F is a field and B is a Gp-module, F(B) will denote the fixed field
of the kernel of the map Gr — Aut(B), i.e., the smallest extension of F'
whose absolute Galois group acts trivially on B.

If O is a ring and B is an O-module then Annp(B) C O will denote
the annihilator of B in 0. If M € O then By, will denote the kernel of
multiplication by M on B, and similarly if M is an ideal of O. If B is a free
O-module, 7 is an O-linear endomorphism of B, and z is an indeterminate,
we will write

P(7|B;z) = det(1 —rz|B) € O[z],
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the determinant of 1 — 7z acting on B. Caution: If o is, for example, a
Galois automorphism which acts on B, then P(7|B;o) means P(7|B;x)
evaluated at ¢ = o, and not det(1 — 70|B).

The Galois module of n-th roots of unity will be denoted by p,,. If p
is a fixed rational prime and F' is a field of characteristic different from p,
the cyclotomic character

. x
Ecye : GF — Zp

is the character giving the action of Gr on e, and the Teichmiiller
character w : Gr — (Z) )tors is the character giving the action of Gr on
u, (if p is odd) or on p, (if p = 2). Hence w has order at most p — 1 or
2, respectively (with equality if F = Q) and () = w™'ecy. takes values in
1+ pZ, (resp. 1+ 4Z,).

If B is an abelian group, Bg;y will denote the maximal divisible sub-
group of B. If p is a fixed rational prime, we define the p-adic completion
of B to be the double dual

B* = Hom(Hom(B, Q,/Z,), Q,/Z,)

(where Hom always denotes continuous homomorphisms if the groups in-
volved comes with natural topologies). For example, if B is a Z,-module
then B" = B; if B is a finitely generated abelian group then B" = B®zZ,.
In general, B” is a Z),-module and there is a canonical map from B to B".
If 7 is an endomorphism of B then we will often write B™=° for the kernel
of 7, write B™=! for the subgroup fixed by 7, etc.

If {A; :i € I} is an inverse system, we will denote by {a;}; (or some-
times simply {a;}) an element of lim A;.

Finally, if S is a set, then |S| will denote the cardinality of S.

Most of these notations will be recalled when they first occur.






CHAPTER 1
Galois Cohomology of p-adic Representations

In this chapter we introduce our basic objects of study: p-adic Galois
representations, their cohomology groups, and especially Selmer groups.

We begin by recalling basic facts about cohomology groups associated
to p-adic representations, material which is mostly well-known but included
here for completeness.

A Selmer group is a subgroup of a global cohomology group determined
by “local conditions”. In §1.3 we discuss these local conditions, which are
defined in terms of special subgroups of the local cohomology groups. In
§1.4 we state without proof the results we need concerning the Tate pair-
ing on local cohomology groups, and we study how our special subgroups
behave with respect to this pairing.

In §1.5 and §1.6 we define Selmer groups and give the basic examples of
ideal class groups and Selmer groups of elliptic curves and abelian varieties.
Then in §1.7, using Poitou-Tate global duality and the local orthogonality
results from §1.4, we derive our main tool (Theorem 1.7.3) for bounding
the size of Selmer groups.

1.1. p-adic Representations

Definition 1.1.1. Suppose K is a field, p is a rational prime, and O is
the ring of integers of a finite extension ® of Q,. A p-adic representation
of Gk = Gal(K/K), with coefficients in O, is a free O-module T of finite
rank with a continuous O-linear action of Gk .
Let D denote the divisible module ®/0O. Attached to a p-adic repre-

sentation T we define

V=T [S00) ‘I),

W =V/T =T®oD,

Wu = M_IT/T C W for nonzero M € O,

so Wy is the M-torsion in W. Note that T determines V and W, and

W determines T = LiLnWM and V, but in general there may be different
O-modules T giving rise to the same vector space V.

9



10 1. GALOIS COHOMOLOGY OF p-ADIC REPRESENTATIONS

Example 1.1.2. Suppose p : Gxg — O is a character (continuous, but
not necessarily of finite order). Then we can take T' = O, where O,, is a free
rank-one OJ-module on which G acts via p. Clearly every one-dimensional
representation arises in this way. When p is the trivial character we get
T = O, and when O = Z, and p is the cyclotomic character
Eeye : Gk — Aut(pye) — ZX

we get

T = Z,(1) = lmp,,

V= Q1) = Q®z, imp,.,

W = (Qp/zp)(l) = Hpoo-
For general O we also write O(1) = O ® Zp(1), write ®(1) = ® ® Q,(1),
and write D(1) = D ® Z,(1).

Definition 1.1.3. If T is a p-adic representation of Gk then so is the dual
representation
T* = Homo(T, O(1)).
We will also write
V* = Homp(V,®(1)) = Homep(T,®(1)) = T* Q0 9,
W* = V*/T* = Home(T,D(1)).

Example 1.1.4. If p: Gk — O is a continuous character as in Example
1.1.2,and T = O, then T* = O

plecye:

Example 1.1.5. Suppose A is an abelian variety defined over K, and p
is a prime different from the characteristic of K. We can take O to be Z,
and T to be the p-adic Tate module of A defined by

Tp(A) = II(LHAP"

where A,» denotes the p™-torsion in A(K). Then rankz T = 2dim(A). If
A and A’ are isogenous, their Tate modules T = T,(A) and T' = T,(A")
need not be isomorphic (as G g-modules), but the corresponding Q,-vector
spaces V and V' are isomorphic.

If the endomorphism algebra of A over K contains the ring of integers
Op of a number field F', and p is a prime of F' above p, we can also take
® = F},, the completion of F at p, and

T = Ty(4) = lim Ayn
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which has rank 2dim(A)/[F : Q] over the ring of integers O of ®. If A
is an elliptic curve with complex multiplication by F' C K, this is another
important source of one-dimensional representations.

1.2. Galois Cohomology

Suppose K is a field. If B is a commutative topological group with a
continuous action of Gk, then we have the continuous cohomology groups
HYK,B) = H(Gk, B).

If further the action of Gk factors through the Galois group Gal(K'/K) for
some extension K’ of K, we also write H(K'/K, B) = H'(Gal(K'/K), B).
See Appendix B for the basic facts which we will need about continuous
cohomology groups.

Example 1.2.1. We have
Hl (K7 QP/ZIJ) = HOHI(GK, QP/ZP)J
HY(K,Z,) = Hom(Gk,Zy).
By Kummer theory and Proposition B.2.3, respectively,
HY(K, pye) = K* @ (Qp/Zy),
HY(K,Z,(1)) = 1(1_H1 (K, ptn) ;1_1( (KXY = K*X®Z,,

where @ denotes the (p-adically) completed tensor product.

Suppose T is a p-adic representation of G with coefficients in O as in
§1.1, and M € O is nonzero. Recall that V =T ® ® and W = V/T. We
will frequently make use of the following exact sequences and commutative
diagram.

0 — W S w M, w y 0 (1.1)
0— 7 M, 7 My, y 0

I lM_l l (1.2)
0 y T y V > W > 0.

Lemma 1.2.2. Suppose M € O is nonzero.

(i) The ezact sequence (1.1) induces an exact sequence

0 — WO /MW — HY(K,Wy) — H (K, W)y — 0.
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(ii) The bottom row of (1.2) induces an exact sequence
VErx — W — HY(K, T)tors — 0.
(iii) The kernel of the map H'(K,T) — H'(K,W) induced by the com-
position T — T/MT — Wy — W is
MHI(K7T) +H1(K7T)tors-
Proof. Assertion (i) is clear, and so is (ii) once we show that the kernel
of the natural map HY(K,T) — HY(K,V) is H'(K,T)tors- But this is
immediate from Proposition B.2.4, which says that the map H!(K,T) —
H'(K,V) induces an isomorphism H'(K,V) =2 HY(K,T) ® Q,.
The diagram (1.2) induces a commutative diagram with exact rows

HYK,T) -2 HY(K,T) —— H'(K,Wy)

'l Je I
HY(K,T) -2 HY(K,V) -2 H'(K,W)
where ¢; is induced by M~! : T — V. Since
ker(gs) = ¢2(H'(K,T)) = ¢ (MH'(K,T)),
we see that
ker(¢s o 1) = MH'(K,T) +ker(¢1) = MH" (K, T) + H' (K, T)sorss
which proves (iii). O

1.3. Local Cohomology Groups

Unramified local cohomology. Suppose for this section that K is
a finite extension of Q, for some ¢, where we allow £ to be either a rational
prime or oo (in which case Q; = R). Let Z denote the inertia subgroup of
Gk (so T = Gk if K is archimedean), let K" = K7 be the maximal un-
ramified extension of K, and if K is nonarchimedean let Fr € Gal(K"/K)
denote the Frobenius automorphism.

Definition 1.3.1. Suppose B is a Gg-module. We say that B is un-
ramified if 7 acts trivially on B. We define the subgroup of unramified
cohomology classes H! (K,B) C H'(K, B) by

H..(K,B) = ker(H'(K,B) — H'(Z,B)).
Note that if T is as in §1.1, then
T is unramified <= V is unramified <= W is unramified,

and if K is nonarchimedean of residue characteristic different from p, then
this is equivalent to T*, V*, and/or W* being unramified.
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Lemma 1.3.2. Suppose B is a Gk -module which is either a finitely gen-
erated Zp,-module, or o finite-dimensional Qp-vector space, or a discrete
torsion Zy,-module.

(i) If K is nonarchimedean then
H! (K,B) = H'(K“/K,B*) = BY/(Fr —1)B~.

(ii) If K is nonarchimedean of residue characteristic different from p,
then
H'(K,B)/H(K,B) = H'(Z,B)"™ "
(iii) If K is archimedean then HL (K,B) = 0.

Proof. Assertion (iii) and the first isomorphism of (i) follow from the infla-
tion-restriction exact sequence (Proposition B.2.5(i)). The second isomor-
phism of (i) (induced by the map on cocycles ¢ — ¢(Fr)) is Lemma B.2.8.

The hypotheses on B guarantee (see Propositions B.2.5(ii) and B.2.7)
that we have an inflation-restriction exact sequence

0— H'(K"/K,B*) - H'(K,B) - H(Z,B)"™' - H*(K™ /K, B*).
If K is nonarchimedean then Gal(K"'/K) has cohomological dimension

one, so H2(K" /K, BY) = 0. This proves (ii). O

Corollary 1.3.3. Suppose K is nonarchimedean of residue characteristic
different from p, and V is a Qu[Gk]|-module which has finite dimension as
a Qp-vector space. Then

(i) dimq, (H(K,V)) = dimq, (VEx),
(i) dimq,(H'(K,V)/HL.(K,V)) = dimq, (H*(K,V)).

Proof. Using Lemma 1.3.2(i) we have an exact sequence
0— Vo yT 2L yI_, gl (K, V)—0

which proves (i).

Since the residue characteristic of K is different from p, the inertia
group 7 has a unique maximal p-divisible subgroup Z', and Z/I' = Z,, (see
[Fr] §8 Corollary 3). Thus both Z and Gal(K""/K) have p-cohomological
dimension one. It follows that

H™K"Y /K, HZ,V)) = 0

if m > 1 or n > 1. Therefore the Hochschild-Serre spectral sequence
(Propositions B.2.5(ii) and B.2.7) shows that

HYK“/K,HYZ,V)) = H*(K,V).
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On the other hand, Lemma 1.3.2 shows that
Hl(Kur/Ka Hl(la V)) = Hl(Ia V)/(FI‘ - 1)H1(I: V)a
HY(K,V)/Hy(K,V) = HYZ,V)™="

Thus there is an exact sequence

0— HY(K,V)/H.(K,V) - H(Z,V) 2=% HY(Z,V) » H*(K,V) — 0.

Since dimgq, (H'(Z, V')) is finite (Proposition B.2.7(iii)), this proves (ii). O

Special subgroups. As above, let K be a finite extension of Q, with
£ < oo. Let T be a p-adic representation of Gx, let V =T ® ®, and let
W =V/T asin §1.1. Following many authors (for example Bloch and Kato
[BK] §3, Fontaine and Perrin-Riou [FPR] §1.3.3, or Greenberg [Gr2]) we
define special subgroups H} (K, -) of certain cohomology groups H' (K, ).
We assume first that £ # p and £ # oo, and we discuss the other cases in
Remarks 1.3.6 and 1.3.7 below.

Definition 1.3.4. Suppose £ # p and £ # oo. Define the finite part of
H'(K,V) by
HY(K,V) = HL(K,V).
Define H(K,T) C H'(K,T)and H;(K,W) C H'(K, W) to be the inverse
image and image, respectively, of H} (K, V) under the natural maps
H'(K,T) — HY(K,V) — H'(K,W).

For every M € O define H;(K, Wy ) C H' (K, W) to be the inverse image
of H;(K,W) under the natural map H" (K, W) — H'(K,W).

Finally, for V, T, W, or W), define the singular quotient of H*(K, -)
by
so there are exact sequences

0— Hi(K, ) — H'(K,-) — H}(K, -) — 0.

If Ais a Zy,-module let Agi, denote its maximal divisible subgroup.

Lemma 1.3.5. Suppose T is as above, £ # p, and £ # 0o. Then:
(i) Hi(K,W) = Hy (K, W)aiv-
(i) Hy(K,T) C H}(K,T) with finite index and Hy(K,T) is torsion-
free.
(iii) Writing W = W /(W%)aiy, there are natural isomorphisms

Hy (K,W)/H}(K,W) = W/(Fr—1)W
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and
H{(K,T)/HL(K,T) = W™="
(iv) If T is unramified then
HM(K,T) = HL(K,T) and HK,W) = HL(K,W),
Proof. Tt is immediate from the definitions that H}(K , W) is divisible and

HY(K,T) is torsion-free. The commutative diagram with exact rows and
columns

0 —— H!(K,T) —— HY(K,T) —— HYZ,T)

! !

0 —— H}K,V) — H'K,V) —— H'(ZL,V)

! !

0 —— H! (K,W) —— HY(K,W) —— HYZ,W)
shows that H}(K,W) C Hy,(K,W) and Hy,(K,T) C H;(K,T). The rest
of assertions (i) and (ii) will follow once we prove (iii), since WZ /(W7)4iy
is finite.
Note that the image of VZ in W7 is (WZ)gqjy. Taking Z-cohomology and
then Gal(K""/K)-invariants of the exact sequence 0 > T -V - W — 0
gives an exact sequence

0 — (WE/(WhHa )™= — HY(Z,T)"=! — HY(Z,V)"=1
Therefore using Lemma 1.3.2 we have
Hi(K,T)/Hy (K, T)
= ker(H'(K,T)/H..(K,T) - H'(K,V)/H} (K,V))
= ker(H'(Z,T)™=' — HY(Z,V)"")
= (WH/(WH)a)™=",

H (K,W)/H}(K,W) = coker(H}.(K,V) - H}.(K,W))
= coker(VZ/(Fr — 1)VT - WT/(Fr — 1)WT)
= W1/ (WhHay + Fr — )WY).
This proves (iii). If T is unramified then WZ = W is divisible, so (iv) is

immediate from (iii). O

Remark 1.3.6. When the residue characteristic £ is equal to p, the choice
of a subspace H} (K,V) is much more subtle. Fortunately, for the pur-
pose of working with Euler systems it is not essential to make such a
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choice. However, to understand fully the arithmetic significance of the
Selmer groups we will define in §1.5, and to get the most out of the appli-
cations of Euler systems in Chapter 3, it is necessary to choose a subspace
H}(K,V) in the more difficult case £ = p.

In this case, Bloch and Kato define H} (K,V) using the ring Beyis
defined by Fontaine ([BK] §3). Namely, they define

H}(K,V) = ker (H(K,V) — H(K,V ® Bexis)) -

For our purposes we will allow an arbitrary special subspace of H!(K,V),
which we will still denote by H} (K,V). This notation is not as bad as it
may seem: in our applications we will always choose a subspace H }(K ,V)
which is the same as the one defined by Bloch and Kato, but we need not
(and will not) prove they are the same. One could also choose, for example,
H}(K, V)y=0or H}(K, V) =HYK,V).

Once H}(K,V) is chosen, we define the groups H}(K,T), H{ (K, W),
and H} (K, W) in terms of H} (K, V) exactly as in Definition 1.3.4.

Remark 1.3.7. If K = R or C then H'(K,V) =0, so H}(K, V) =0 and
proceeding as above we are led to define

Hi(K,W) =0,
HY(K,T) = H'(K,T),
Hi(K,Wy) = ker(H (K, Wu) = H(K,W)) = WO /MW,
Note that all of these groups are zero unless K = R and p = 2.

Lemma 1.3.8. Suppose M € O is nonzero. Then:
(i) The submodule H} (K, W) is the image ofH} (K, T) under the map
HY(K,T) — HY(K,Wy) induced by T - M~'T/T = Wy,.
(ii) If T is unramified, £ # p, and £ # oo then
H{(K,Wy) = Hy (K, Wa).
Proof. The diagram (1.2) gives rise to a commutative diagram with exact
rows

HYK,T) -2 HYK,T) —— HY(K,Wy) — H*(K,T)

[ [ | I
HY(K,T) —— HY(K,V) —— HYK,W) —— H2(K,T).
(1.3)

It is immediate from this diagram and the definitions that the image of
H}(K,T) is contained in H (K, W)
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Suppose cw,, € Hf(K,Wr). Then the image of cw,, in H' (K, W)
is the image of some cy € H} (K,V). Thus (1.3) shows that cy,, is the
image of some ¢y € H'(K,T), and the image of ¢y in H*(K,V) differs
from cy by an element ¢’ of H'(K,T). Therefore cr — Mc' € H;(K,T)
and ¢r — Mc' maps to cw,,. This shows that H} (K, W) is contained in
the image of H} (K,T), and completes the proof of (i).

If T is unramified, £ # p, and £ # oo then

H}(K, W) = image(H}(K,T)) = image(H, (K, T)) C Hy, (K, W)
by (i) and Lemma 1.3.5(iv). Similarly, if ¢ps : H(K, W) — HY(K, W) is
the natural map then Lemma 1.3.5(iv) shows that

Hi(K,Wu) = iy (Hp(E, W) = 137 (Hy (K, W)) D Hy (K, War)
which proves (ii). O
Remark 1.3.9. We can view W), either as a subgroup of W or as a quo-
tient of T. Lemma 1.3.8(i) says that it makes no difference whether we

define H};(K, W)y ) as the inverse image of H;(K, W) (as we did) or as the
image of H}(K,T).

Corollary 1.3.10. There are natural horizontal exact sequences and ver-
tical isomorphisms

0— Hiy(K,W) — HY (K,W) — H(K,W) —0

I I |
0 — lim H} (K, War) — lig HY (K, War) — lim Hy (K, W) — 0
M M M

0— HyK,T) — HYK,T) — H{(KT) —0

I | |
0 — lim H} (K, Wy) — lim H' (K, W) — lim H; (K, Wy) — 0
M M M

Proof. The groups inside the inverse limits are finite (Proposition B.2.7(ii)),
so the horizontal exact sequences are clear.

The isomorphism H'(K,W) = li_n;Hl(K, W) is a basic fact from
Galois cohomology, and the isomorphism H (K, W) = lig H} (K, W) fol-
lows immediately from the definition of H} (K,Wur). The isomorphism
H (K, W) = lig Hy (K, W) now follows.

The second set of isomorphisms is similar, except that to handle the
inverse limits we use Proposition B.2.3 for the center and Lemma 1.3.8(i)
for the left. O
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1.4. Local Duality

Suppose again that K is a finite extension of Qy for some prime £ < oo,
and T is a p-adic representation of G .

Theorem 1.4.1 (Local duality). Suppose that either K is nonarchime-
dean and 0 < ¢ < 2, or K is archimedean and ¢ = 1. Then the cup
product and the local invariant map induce perfect pairings

~

Hi(K,V) x H¥{(K,V*) —  HXK,®(1)) BaN
Hi(K,Wy) x HX (K, W},) — H2(K,0(1)/MO(1)) = O/MO
Hi(K,T) x H>~{(K,W*) —  H*K,D(1)) = D.

Proof. See for example [Mi] Corollary 1.2.3 or [Se2] §11.5.2 (and use Propo-
sitions B.2.3 and B.2.4). O

Without fear of confusion, we will denote all of the pairings of Theorem
1.4.1 by ( 5 )K-

Proposition 1.4.2. Suppose that either K is archimedean, or K is nonar-
chimedean of residue characteristic £ # p. Then H} (K,V) and H} (K,V*)
are orthogonal complements under the pairing { , k.

Proof. If K is archimedean then all the groups are zero, so there is nothing
to prove.

Suppose that K is nonarchimedean of residue characteristic £ # p. The
pairing

(, )k : H{(K,V) x H}(K,V*) — &

factors through H?(K"/K,®(1)), which is 0 since Gal(K"*/K) has co-
homological dimension 1. Thus H}(K,V) and H;(K,V*) are orthogonal.
Further, Corollary 1.3.3(i), local duality (Theorem 1.4.1), and Corollary
1.3.3(ii), respectively, give the three equalities

dim (HL(K,V*)) = dimg(HO(K,V*)) = dima(H2(K, V)
= dime(H' (K, V)) — dime (H}(K,V)),
so H}(K,V) and H}(K,V*) are orthogonal complements. O

Proposition 1.4.3. Suppose that either

(a) K is archimedean,

(b) K is nonarchimedean of residue characteristic £ # p, or

(¢) K is nonarchimedean of residue characteristic £ = p and we choose
subspaces H} (K,V) and H} (K,V*) which are orthogonal comple-
ments under the pairing { , k.
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Then under the pairings ( , Yk,
(i) H} (K,T) and H} (K,W*) are orthogonal complements,
(ii) if M in O is nonzero, then H(K, W) and H;(K,Wy) are or-
thogonal complements.
Proof. The definition of the local pairings in terms of cup products shows
that the diagram
HYK,V) x HYK,V*) —— @

b
HY(K,T) x HYK,W*) —— D.
“commutes”, in the sense that if c € H'(K,T) and d € H'(K,V*), then
(¢(c),d)x = (¢,¢"(d))k € D.

By Proposition 1.4.2, H;(K,V) and H}(K,V*) are orthogonal comple-
ments of each other in all cases. Thus if we write - to denote the orthog-
onal complement, then since H} (K, W*) = ¢*(H};(K,V*)) we see that

Hp(K,W*)*" = ¢ (Hp(K,V)) = ¢~ HHHK,V)) = Hi(K,T).
This proves (i). The proof of (ii) is similar, using (i), Lemma 1.3.8(i), and
the diagram

HY K, T) x HYK,W*) —— D

HY(K,Wy) x HYK,Wj;) —— O/MO. O
Definition 1.4.4. If K is nonarchimedean of residue characteristic differ-
ent from p, then there is an exact sequence

0 —>72 —7I—12Z, —0

where 7' has trivial pro-p-part (see [Fr] §8 Corollary 3). It follows that if
M is a power of p then 7 has a unique subgroup of index M (the inverse

image of MZ,), and by slight abuse of notation we denote this subgroup
by M.

There is a natural action of Gal(K%"/K) on the cyclic group Z/Z™.
The next lemma is essentially Exercice 2, §IV.2 of [Se3].

Lemma 1.4.5. Suppose that K is nonarchimedean of residue characteris-
tic different from p and that M is a power of p. Then there is a canonical
isomorphism of Gal(K""/ K)-modules

T/TM =5 gy,
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Proof. We have isomorphisms
Hom(Z/ZY, ppy) = Hom(Z, ppr) — (K1) /(K*))M = Z/MZ,

given by Kummer theory and (on the right) by the valuation map (the unit
group of the ring of integers of K" is p-divisible). The inverse image of 1
under this composition is the desired isomorphism.

More concretely, the isomorphism is given by

o (/\I/M)a/(/\l/M)
where A is any uniformizing parameter of K. O

Definition 1.4.6. If M € O is nonzero, we let M € Z* denote the small-
est power of p which is divisible in O by M.

Lemma 1.4.7. Suppose that K is nonarchimedean of residue character-
istic different from p, that T is unramified, that M € O is nonzero, and
that py; C K. Fiz a generator ¢ of pgr and let o¢ € I/IM be the inverse
image of ¢ under the isomorphism of Lemma 1.4.5.

(i) Ewvaluating cocycles on Fr and o¢ induces isomorphisms
H}K,War) = W /(Fr — )Way, HIK, Wa) = Wi,

respectively.
(ii) With an appropriate choice of sign on the right, the diagram
H}(K,W}{}) x HYK,Wy) —— O/MO

! ! Joe

Wi /(Fr — D)Wy x (Wa)F=t  —— 0Q1)/MO(1)
commutes, where the first two vertical maps are the isomorphisms of
(i), the upper pairing is the paring of Theorem 1.4.1, and the lower
pairing s the natural one.

Proof. The first isomorphism of (i) is just a restatement of Lemma 1.3.2(i),
since by Lemma 1.3.8(ii) we have H (K, W) = Hy, (K, Way). Similarly,
Lemma 1.3.2(ii) shows that

Hy (K, Wy) = H'(K,War)/Hy, (K, War) = HY(I, W)™

Lemma 1.4.5 shows that Z/Z™ = p 5, and we have assumed that G acts
trivially on p5;, so we conclude that

HY(K,Wy) = Hom(I/IM,WM)Fr=1 ~ Hom(p gy, WE=).

Our choice of generator of py; now completes the proof of (i).
Assertion (ii) can be extracted from Chapter I of [Mi], especially
Proposition 0.14, Examples 0.8 and 1.6, and Theorem 2.6. O
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1.5. Global Cohomology Groups

Suppose for this section that K is a number field, T is a p-adic repre-
sentation of Gk, and V and W are defined in terms of 7" as in §1.1. We
assume in addition that T is unramified outside a finite set of primes of K.
(As usual, we say that T is unramified at a place v if the inertia group of
v acts trivially on T'.) We write K, for the completion of K at a place v,
and for all primes v dividing p we fix a subspace H}(K,,V) of H'(K,,V).

For every place v of K there is a canonical restriction map

HY(K,-) — HYK,,-),

which we will denote either by ¢ + res,(c) or simply ¢+ ¢,.

If ¥ is a finite set of places of K we write Ky, for the maximal extension
of K unramified outside X.

Recall that

HN(K,,W) = HY(K,,W)/HHK,,W).

Definition 1.5.1. Suppose ¥ is a finite set of places of K. We define some
Selmer groups corresponding to X as follows. First, define

Se(K,W) c S¥(K,W) c H'(K,W)

by
S¥(K,W) = ker (H (K, W) — @D HA: (K., W)),
v¢y
Sy(K,W) = ker(sE(K,W) — @HI(KU,W)).
vEX

(Note that every element of H'(K, W) restricts to zero in all but finitely
many H}(K,, W) because T is ramified at only finitely many primes.) In
other words, S¥ (K, W) consists of all classes ¢ € H' (K, W) satisfying the
local conditions

e ¢, € H}(Kv,W) ifvogs,
e no restriction for v € ¥,

and Sy (K, W) has the additional restrictions
e c,=0ifvel.
When ¥ = ) is the empty set we write

S(K, W) = SYK,W) = Sy(K,W).
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Similarly, we define Sx(K,T) C S*(K,T) C HY(K,T) by

SE(K,T) = ker(Hl(K, 7y — ] H;(KU,T)),
gD
Se(K,T) = ker<32(K, T) — @Hl(Kv,T)),
vEX
and likewise for Sy (K, W) C S¥(K,Wy) C HY(K,Wyy) for every non-
zero M in O.

Remark 1.5.2. If ¥ contains all primes above p, then the Selmer groups
S> and Sy, are independent of the choice of subspaces H}(Kv,V) for v
dividing p.

Lemma 1.5.3. Suppose ¥ contains all infinite places, all primes above p,

and all primes of K where T is ramified. If A = T, W, or Wy with
M € O, then

S¥(K,A) = HY(Kx /K, A).

Proof. For every place v ¢ ¥, Lemmas 1.3.5(iv) and 1.3.8(ii) show that
H}(K,,A) = H,,(K,, A). Therefore, writing Z, for an inertia group above
v, we have

SE(K,A) = ker(Hl(K, AH—1] Hom(Iv,A))
v¢y
= ker(Hl(K, A) — Hl(Kg,A)) = H'(Kg/K,4). O

Lemma 1.5.4. If M € O is nonzero and X is a finite set of primes of K,
then the natural map tpr : HY (K, Wyr) = HY (K, W) induces a surjection

SE(Ka WM) - SE(Ka W)M

Proof. Lemma 1.2.2(i) shows that ¢y (H'(K,Wy)) = HY(K, W), and
from the definition of H}(K,, W) it is clear that

i (SE(K,W)y) = ST (K, Wy). O

Remark 1.5.5. Lemma 1.5.4 need not be true if we replace S* by Sy,
because it might not be the case that t3; (Ss (K, W)ar) C Ss(K, War).

Proposition 1.5.6. If X is a finite set of primes of K then
(i) SX(K, T) = MSE(K, WM) and SE(K, T) = @S{)(K, WM),
M M

(i) S*(K,W) = lig S¥(K, W) and Sg(K, W) = ling Sz.(K, Wr).
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Proof. We have HY(K,W) = ling(K, W), and by Proposition B.2.3,
HY(K,T) = im H'(K,Wa). Corollary 1.3.10 shows that all the local
conditions behave well under inverse and direct limits, and the proposition
follows. O

Lemma 1.5.7. Suppose M € O is nonzero and X is a finite set of primes
of K. Then
(i) S®(K, W) is finite,

(i) S®(K,T) is a finitely generated O-module,

(iii) the Pontryagin dual of S*(K,W) is a finitely generated O-module.
Proof. Without loss of generality we may enlarge ¥ if necessary so that
¥ contains all infinite places, all primes above p, and all primes where
T is ramified. Then by Lemma 1.5.3, if A is Wy, T, or W we have
S*¥(K,A) = H'(Kx /K, A). As is well known (see Proposition B.2.7) these
groups have the desired properties. O

Remark 1.5.8. Suppose F' is a finite extension of K, and ¥ is a set of
places of K. Write X for the set of primes of F' dividing places in 3.
We will often write S*(F, -) instead of S*¥ (F, -) and Sg(F, -) instead of
Sy, (F, -) for the Selmer groups over F' attached to W, Wy, and T.

1.6. Examples of Selmer Groups
Again for this section K will denote a number field.

1.6.A. Ideal class groups I. Suppose O = Z, and T = Z, with
trivial G k-action.

Proposition 1.6.1. If X is a set of places of K containing all primes above
p, then

Ss(K,Qp/Zy) = Hom(Ak s, Qp/Zyp),
S (K, Qp/Zy) = Hom(Gal(Kx/K), Qp/Zy),

where Ak x, s the quotient of the ideal class group of K by the subgroup
generated by the classes of primes in X.

Proof. Suppose v is a place of K not dividing p. Lemma 1.3.5(iv) (for v
finite) and Remark 1.3.7 and Lemma 1.3.2(iii) (for v infinite) show that

H}‘(Kv:Qp/Zp) = H&r(Kanp/Zp) = Hom(Gal(Kgr/Kv)an/Zp)-

Since H'(K,Q,/Z,) = Hom(Gk,Q,/Z,), the proposition follows easily
by class field theory. O
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With an appropriate choice of H }(Kv,Qp) for primes v dividing p,
Proposition 1.6.2 below will show that Proposition 1.6.1 holds even when
Y is empty, i.e.,

S(K,Qp/Zp) = Hom(Axk, Qp/Zp) (1.4)

where A is the ideal class group of K.

1.6.B. Ideal class groups II. More generally, suppose that
x : Gg — OF

is a character of finite prime-to-p order, and let ' = O,, a free rank-one
O-module on which Gk acts via x. Let L be an abelian extension of K
of degree prime to p such that x factors through A = Gal(L/K). Write
D,=D®0, and &, =2 0O,.

Suppose v is a place of K (finite or infinite). If w is a place of L above
v let D, and Z,, denote a decomposition group and inertia group of w,
respectively, in Gx. The restriction map gives isomorphisms (Corollary
B.5.3(ii))

HY(K,,V) = (@y,Hom(Dy,V))* = (@ypHom(Dy, @))%,  (1.5)
and if v 1 p this identifies

H}(Kva V) = H&r(K’UaV) = (®w|vH0m(Dw/Zw7 V))A (16)

If v | p we take (1.6) as the definition of H}(K,,V) as well; this agrees
with the Bloch-Kato definition of H} in this case.

Let A;, denote the ideal class group of L. When L = K the following
proposition reduces to (1.4).

Proposition 1.6.2. S(K,W) = Hom(Az,D,)2.
Proof. Since [L : K] is prime to p, the restriction map
HY(K,W) — HYL,W)» = Hom(Gp,D,)*

is an isomorphism. Exactly as in (1.5) and (1.6), and using Lemma 1.3.5(i),
for every place v of K we have

Hl(K’UJW) — (®w|vH0m(Dw7W))A
U U

H}(Kva W) — (@w\v(Hom(Dw/Iwa W))A)div-
Since each D, /7, is torsion-free, ©,,,Hom(D,,/T,,, W) is divisible. Since
A has order prime to p, we see that

(@ujoHom(Du/Zu, W) = (IA]7 Y 8) (@ Hom(Du /T, W)
dEA
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is divisible and so H}(K,,W) = (®y|yHom(Dy /Ly, W))*. Therefore, if
H, is the Hilbert class field of L, we have
S(K,W) = {¢ € Hom(Gr,D,) : ¢(T,) = 0 for every w}
= Hom(Gal(Hy/L),Dy)* = Hom(AL,D,)A. O
1.6.C. Global units and ideal class groups. Let x, T' = O,, L,
Ar, and A = Gal(L/K) be as in §1.6.B above. Then T* = O,-1._,,
i.e., T* is a free rank-one O-module on which Gk acts via x ey, where

Ecyc denotes the cyclotomic character. In particular G, acts on T by the
cyclotomic character.

Definition 1.6.3. Suppose B is an abelian group. We define the p-adic
completion of B to be the double dual

B* = Hom(Hom(B,Q,/Z,),Q,/Z,)

(with continuous homomorphisms, when B comes with a topology). For
example, if B is a Zy,-module then B” = B; if B is a finitely generated
abelian group then B" = B ®z Z,. In general B" is a Z,-module and there
is a canonical map from B to B".

Now suppose further that B is a Z[A]-module. Define the x-component
of B by

BX = {be B"®z, O :vb= x(7)b for every v € A}.

We fix once and for all an O-generator of O,-1, and with this choice we
get an isomorphism
BX = (B" ®z, Oy-1)".
Since [L : K] is prime to p, taking x-components is an exact functor and
B ®z, O = ©,BX.

Suppose now that v is a prime of K, and let Uy, , denote the local units
of L K, = Hw‘v Ly. (That is, Ur, = lev OF where O, is the ring
of integers of L,,.) The restriction map (Corollary B.5.3(ii)) and Kummer
theory (Example 1.2.1) give isomorphisms

HY (Ko, V*) 2 @y H' (Lu, V)2
= (BufoH' (Lu, Qp(1) ® 2y-1)2 = (LOK,) )X @ 8.
If v { p then with this identification one can check that
HY(K,,V*) —— (LOK,)*)X®®
U U (1.7)
H{(K,,V*) —— Ur,®9.



26 1. GALOIS COHOMOLOGY OF p-ADIC REPRESENTATIONS

If v | p we take the bottom row of (1.7) as the definition of H} (Ky, V*).
This agrees with the Bloch-Kato definition of H} in this case. Combining
(1.5) and (1.6) with the identifications

@w|va = (L®Kv)xa 69w|vIw = UL,v
of local class field theory gives a similar diagram
H'(K,,V) ——  Hom(((L® K,)*)X,®)
u u (1.8)
HY(K,,V) —— Hom((L® K,)*)X/U,,, ).

The local pairing { , ), is the natural one induced by the identifications of
(1.7) and (1.8), and so H}(K,,V*) and H}(K,, V) are orthogonal comple-
ments.

Let Or, denote the ring of integers of L.

Proposition 1.6.4. (i) There is a natural isomorphism
HY (K, W*) =5 (L* ® Qp/Zy)X.
(ii) There is an exact sequence
0 — (0Of ® Qp/Z,)X — S(K,W*) — AF — 0.
Proof. Since [L : K] is prime to p, the restriction map
H'(K,W*) HY(L,W*)% = (HY(L, pyee) ® Oy-1)2
HY(L, prpee ¥ = (L ® Qp/Zp)*

is an isomorphism, which gives (i). It follows easily from (1.7) that for
every v there is an isomorphism, compatible with (i),

H}(Kv,W*) AN Uf,v QR Qp/Zp.
Therefore if we define X, to be

resL/K
—

IR

{y@p™™eL*®Qy/Z, :ord,(y) =0 (mod p") for every prime w of L},
then
resL/K(S(K,W*)) = X;f

Suppose ¢ € X, is represented by y ® p~—™ with y € L*. Then the
principal fractional ideal yOy, is of the form a?” for some fractional ideal
a. This map 2 — a induces a well-defined surjection from Xy, to the p-part
Af) of the ideal class group of L. Thus there is an exact sequence

0 — 0 ®Q,/Z, — X, — AP — 0,

and taking y-components gives the exact sequence of the proposition. [
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Let ¥, denote the set of primes of K above p.

Corollary 1.6.5. If Leopoldt’s conjecture is true for L, then Sy, (K, W*)
18 finite.

Proof. Leopoldt’s conjecture for L is the assertion that the p-adic comple-
tion of OF injects into (L ® Q,)*. This implies that the map

(0F @ Qp/Zp)* — (L® Qp)* ® Qp/Zp)* = &y H' (K, W)

has finite kernel, so the corollary follows from Proposition 1.6.4(ii) and the
finiteness of the ideal class group. O

Corollary 1.6.6. With notation as above, suppose that K = Q. If x is
odd (i.e., x sends complex conjugation to —1) then S(Q,W*) = A¥.

Proof. Since x is odd, (Of)X is finite and so (O] ® Qp/Z,)X = 0. Thus
the corollary follows immediately from Proposition 1.6.4(ii). O

1.6.D. Abelian varieties. Let A be an abelian variety defined over
K and let T = T}, (A) be the p-adic Tate module of A as in Example 1.1.5.
(See for example [Si] for the basic facts in the case of elliptic curves.) Then

V=V(A) =T,(4)®Qp, W =V,(A)/Tp(A) = Ap,

where A, is the p-power torsion in A(K).
For every place v of K there is a natural injective Kummer map

A(Ky) @z, Qp = H' (K, Vp(4)) (1.9)
where A(K,)" denotes the p-adic completion of A(K,). If v is a prime of

K above p we define H} (Ky,Vp(A)) to be the image of this map. This
definition agrees with the Bloch-Kato definition of H }c

Remark 1.6.7. Let A* denote the dual abelian variety of A. The Weil
pairing shows that V,(A)* = V,(4*), and if we define H}(K,,V,(A*))
in the same way as for A, then H}(K,,V,(A)) and H}(K,,V,(A¥)) are
orthogonal complements under the local pairing { , )k, -

Note that if we fix a polarization of A, then the Weil pairing gives an
isomorphism V,(A4*) = V,,(A). This isomorphism identifies H} (Ko, Vp(A))
and H(Ky, V,(4%)).

Proposition 1.6.8. The Selmer group S(K,Ap~) is the usual p-power
Selmer group attached to the abelian variety A, and there is an exact se-
quence

0 — AK)®Qu/Z, — S(K,Ap=) — II(A/k)p= — 0

where (A /g )p denotes the p-part of the Tate-Shafarevich group of A
over K.
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Proof. Suppose v { p. If £ is the rational prime below v, then A(K,) has
a subgroup of finite index which is a pro-£ group, so the p-adic comple-
tion A(K,)" is finite. Also in this case H}(Ky,V,(A)) = 0 by Corollary
1.3.3(1) and Remark 1.3.7. Therefore for all v (including those above p),
H}(K,,V,(A)) is the image of the map (1.9). Tt follows that for every
v the subgroup H (K, Ap) is the image of A(K,)" ® Qp/Z, under the
corresponding Kummer map, and so the definition of S(K, Ape) coincides
with the classical definition of the Selmer group of A. O

1.7. Global Duality

As in §1.5 we suppose that K is a number field and T is a p-adic
representation of G ramified at only finitely many primes of K. For all
primes v dividing p we also fix special subspaces H} (K,,V) Cc H'(K,,V)
and H} (K,,V*) Cc H(K,,V*) which are orthogonal complements under
the pairing ( , )i, of Theorem 1.4.1. We will also denote this pairing by

(5 o

Remark 1.7.1. If v is a place dividing p, and the representation V is
potentially semistable (see [FPR] §1.2) at v, then the subspaces H}(K,,V)
and H }(Kv, V*) defined by Bloch and Kato are orthogonal complements
(see [FPR] Proposition 1.3.3.9(iii) or [BK] Proposition 3.8).

Definition 1.7.2. If ¥y C X are finite sets of places of K we will write

locs : Hl(K,WM) — @Hl(KU:WM)

VEX

lock s, : S(K,Wu) — P H(Ky,, W)
vEX X

locl v 0 Sso(K,Wa) — P HpKy, Wa)
VEX %

for the respective localization maps.

Theorem 1.7.3 (Poitou-Tate duality). Suppose M € O is nonzero, and
3o C X are finite sets of places of K.

(i) There are exact sequences

locs
0C% 50

0 — S¥o (K, Wa) — SE(K, W) P HI K., Wn),

vEX—X9

I
x5

1
0 — Sx (K, W) — S5, (K, Wiy) —=% P HHK,, Wiy).

vEX—X9
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(ii) The images locs; 5, (S* (K, War)) and locg,20 (S0 (K, W3)) are or-
thogonal complements with respect to the pairing ZUEE—EO (), Yo
(iii) There is an isomorphism

Sz (K, Wiy)/Ss(K, W) — Homo(coker(locs; 5, ), O/MO).

Proof. Assertion (i) is immediate from the definitions of the Selmer groups
involved.

For (ii), recall that by Theorem 1.4.1 and Proposition 1.4.3(ii), the pair-
ing ( , ), induces a nondegenerate pairing on Hy (K,, Wa) x H (K, W)
Suppose first that ¥ contains all infinite places, all primes above p, and all
primes where T is ramified, so that S (K,Wy) = H'(Kx/K, W) and
SE(K,W3,) = H' (Kx/K,W};) by Lemma 1.5.3. Under these conditions,
a part of the Poitou-Tate duality exact sequence ([Mi] Theorem 1.4.10 or
[T1] Theorem 3.1) is

SEK,War) 22 @D H (K., War) —2 S(K,Wi)¥  (1.10)
VED
where S*(K,W3,;)V = Hom(S*(K,W};),0/MO) and the maps are in-
duced by localization and the local pairings between H'(K,, W) and
H'(K,,W;,;). Using Proposition 1.4.3(ii), we can combine (1.10) and (i)
to produce a new exact sequence

S
locg)20

0 — S¥(K,Wy) — S¥(K, W) P HIE., W)

vEX—Yo
f
loc):’):0

— S5, (K, W3)Y — Ss(K,Wi;)V — 0. (1.11)

The exactness in the center proves (ii) in this case. (To see the exactness
in the center, note that the dual of the tautological exact sequence

0 — Sx, (K, Wi;) — S*(K,W3)
1 Plocs, _
0020 OCyy X0 @ Hl(Kv7W1T4) @ H;(KU,W;\})
vEX) vEX -
is

P H' (K., Wu) P H} (Ko, Wn)

vEX vEX—Xo

(locx, @100%_20 )V

SE(K, WiV — Ss, (K, W3V — 0.
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Splicing this together with (1.10) and
0— P H' (K., Wu) P H}(K,, W)
vEX vEX—Yo
_)®H1(KU7WM)—> @ H;(KIHWM)_)O
vEY vEX—%g

gives (1.11).)

Now suppose X is arbitrary, and let ¥’ be a finite set of places con-
taining ¥, all infinite places, all primes above p, and all primes where T’
is ramified. Then we have an exact sequence (1.11) for each of the pairs

¥ C ¥ and ¥y C ¥, so we obtain a diagram
0 0

! !

SE (K, W) /8% (K, Wx) —» S¥ (K, W) /SE(K, War)

s s
loc):/,xo l locz,!zl

®UEE’—EOH31(KU7WM) —_—> ®v€E’—EHsl(K’UJWM)
(locér,go)vl (locg,‘z)vl
(Sso (K, Wip) [ S5 (K, W)Y —— (Se (K, Wiy) [Sse (K, W)Y

! !

0 0
with surjective horizontal maps. The snake lemma gives an exact sequence
of kernels of the horizontal maps

s
locz,20

0— SE(K7 WM)/SEO(Kv WM) E— GBvEE—EOHSI(Kv:WM)

(locf 5)¥

(Sso (K, W) /Ss(K, Wiy))Y — 0
and the exactness in the center proves (ii) for ¥y C ¥. Assertion (iii) is

just a restatement of (ii). O

Remark 1.7.4. Theorem 1.7.3 will be applied with ¥ equal to the empty
set or the set of primes dividing p, and with ¥ large enough so that
Ss(K,W;;) = 0. In that situation, it follows from Theorem 1.7.3(iii) that

|50 (K, Wiy)| = |coker(locy s )|

Thus if one can produce “enough” cohomology classes in S* (K, Wyy), one
obtains a good bound on the size of Ss, (K, W},). The purpose of an Euler
system is to construct these classes.
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Recall that X, denotes the set of primes of K above p.

Corollary 1.7.5. There is an isomorphism
S(K,W*)/Ss, (K,W*) — Homp(coker(locs; ), D)
where locs, s the localization map S (K, T) - [1,, H: (K., T).

v|p

Proof. We apply Theorem 1.7.3(iii) with ¥ = X, and with £y equal to the
empty set, and take the direct limit over M to obtain

lig (S(K, Wjy)/Ss, (K, W) = lim Homo(coker(locs; y), O/MO)
where locs, y is the localization map S™» (K, War) = @y pH; (Ko, W)
By Proposition 1.5.6(ii),
lim (S(K, Wy )/Ss, (K, W3)) = S(K,W*)/Sx, (K, W)

By Proposition 1.5.6(i),
@SEP(Ka WM) = Szp (K7T)7
M

and by Corollary 1.3.10,
@ 6Bv\p Hsl(KU7WM) = @v|pH51(KU,T).
M

Since all the groups S*» (K, Wy) and HL(K,, W) are finite (Proposition
B.2.7(ii) and Lemma 1.5.7), it follows (Proposition B.1.1(ii)) that

lim Homop (coker(locs,, r), O/MO) = Homo(lim coker(locs,, 1), D)
M M

and that
lim coker(locs, ,,) = coker(locs, ).
gM 5, M ¥p

This completes the proof. O






CHAPTER 2
Euler Systems: Definition and Main Results

In this chapter we state our main results. The definition of an Eu-
ler system is given in §2.1, and the theorems applying Euler systems to
study Selmer groups over number fields and over Zg—extensions of number
fields are given in §2.2 and §2.3, respectively. Examples and applications
are given in Chapter 3; the reader might benefit from following along in
those examples while reading this chapter. The proofs, using tools to be
developed in Chapter 4, will be given in Chapters 5 and 7. In Chapter 9
we discuss some variants and extensions of the definition of Euler system
given below.

For similar results see the papers of Kato [Ka2] and Perrin-Riou [PR5].

For a first reading, one might want to restrict below to the case K = Q
(so that the group of global units O is finite) and O = Z,. This simplifies
the notation, while all the main ideas still appear.

2.1. Euler Systems

Fix a number field K, and let Ok denote the ring of integers of K.
Fix also a rational prime p and a p-adic representation T of Gk as in §1.1,
with coefficients in the ring of integers O of some finite extension ¢ of Q.
We assume in addition, as in §1.5, that T is unramified outside a finite set
of primes of K.

Suppose q is a prime of K not dividing p, and T is unramified at q.
Let K(q) denote the maximal p-extension of K inside the ray class field of
K modulo g, let Fry denote a Frobenius of q in Gk, and define

P(Fr;'|T*;2) = det(1 — Fr;'z|T*) € O[z]

(the determinant is well-defined because T* is unramified at q).
We will write

Kc F
to indicate that the field F' is a finite extension of K.

33
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Definition 2.1.1. Suppose K is an (infinite) abelian extension of K and
N is an ideal of K divisible by p and by all primes where T is ramified,
such that

(i) K contains K (q) for every prime q of K not dividing N,
(if) K contains an extension K, of K such that

e Gal(K/K) = ZZ for some d > 1,

e no (finite) prime of K splits completely in K /K.

A collection of cohomology classes
c={cre H(F,T): KC,F C K}
is an FEuler system for (T, K,N) if, whenever K C, F C,F' C K, then

Corprjp(cpr) = ( H P(Frq_1|T*;Frq_1))cF
9EX(F'/F)
where X(F'/F) is the set of (finite) primes of K, not dividing A/, which
ramify in F' but not in F.

We say a collection ¢ = {cp € H'(F,T)} is an Euler system for T if ¢
is an Euler system for (T, K, ') for some choice of N and K as above.

If K, is a Zg—extension of K in which no finite prime of K splits
completely, we say a collection ¢ = {cr € H'(F,T)} is an Euler system for
(T, Kw) if ¢ is an Euler system for (T, K, N) for some choice of N and K
containing K, as above.

Remark 2.1.2. The condition that no finite prime splits completely in
K/ K is satisfied, for example, if K, contains the cyclotomic Z,-extension
of K.

In general, since Zg has no proper finite subgroups, to say that a prime
does not split completely in K /K is equivalent to saying that its de-
composition group is infinite. See §9.2 for additional remarks about this
assumption.

Note that since we require A/ to be divisible by p, no Euler factors
at primes dividing p enter our picture. It follows from our definition that
the Euler system cohomology classes are “universal norms” in the Ko /K
direction, i.e., if KC,FC, F' C F'Ko, then 3(F'/F) is empty so

COI‘F//F(CF/) = CF.-

On the other hand, one might want to include Euler factors for primes
where T is ramified. One could easily modify the definition above to take
such Euler factors into account. Alternatively, one can choose an ideal N’
prime to p, replace K by the maximal extension K' of K in K which is
unramified at all primes dividing A, and replace N' by NN'. Then the
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Euler factors at primes dividing A/ become irrelevant, and no information
has been lost when we apply the theorems below (since the conclusions are
independent of K and A).

Remark 2.1.3. If mis a generalized ideal of K (i.e., m can be divisible by
archimedean places as well as prime ideals), let K[m] denote the ray class
field of K modulo m. Given K and A as in the definition above, an Euler
system for (T, K, N) is equivalent to a collection

{&€nw € H(K[m]NK,T) : every generalized ideal m}
satisfying
Cor g [mglnk/Km]nk (€mq) = - if g | mA.

For, given such a collection, if F' is a subfield of X, then we can define

B {P(Frq_1|T*;Frq_1)ém if g f mAV,

Cr = COI’K[m]nIC/F(ém)
where m is the conductor of F//K. One checks easily that the collection
{cr} is an Euler system. Conversely, given an Euler system {cy} we can
define
Em = HP(Frq_1|T*;Frq_1)cK[m]mC
where the product is over primes q which divide m but do not divide N,
and which are unramified in (K[m]NK)/K.

Remark 2.1.4. Suppose now that we are given N and K, /K as in Defi-
nition 2.1.1. If t = qy - - - g, is a product of distinct primes not dividing N,
then we define K (t) to be the compositum
K(r) = K(q1) --- K(qx)-

We will write 1 for the trivial ideal of Ok, and K (1) will denote the max-
imal p-extension of K inside the Hilbert class field of K. If KC, F C K,
we let F(t) = FK(r). Let Kyin be the compositum of K, and all K(q)
for primes q not dividing N. Thus Kmin is the smallest extension of K
satisfying the conditions of Definition 2.1.1 for N and K /K. Every finite
extension of K in K, is contained in F(r) for some squarefree ideal t©
prime to N and some K C,F C K. It follows easily that an Euler sys-
tem for (T, Kmin,N) is completely determined by the classes cp() with
KC,F C Ky and t squarefree and prime to V.

Conversely, suppose we are given a collection

{ep@) € H'(F(x),T) : KC, F C K, t squarefree prime to A’}
satisfying
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(a) if KC,FC F' C Ky and ¢ is a squarefree ideal of K prime to N,
then

Corpr(ey/r() (Cri(v) = €r(y),
(b) if KC,F C Ky, and qu is a squarefree ideal prime to N with q
prime such that K(q) # K(1), then

Corp(eq)/F(v) (Cr(eq) = P T FryYep-

(Note that if K(q) = K (1) if and only if F'(vq) = F(r).) Then this collection
determines an Euler system: if K C,L C Ky, then we can set

cr = Corp(y/n(cr))

where v and F' are minimal such that L C F(r). Thus we may view an
Euler system for (T', Kmin, ) as such a collection {cp(y € H'(F(x),T)}.
This will be the most convenient way to think of an Euler system for the
proofs in Chapter 4.

Remark 2.1.5. Kolyvagin’s original method ([Ko2] or [Ru3]) required
the Euler system to satisfy an additional “congruence” condition. By ex-
panding on an idea from [Ru6], using our assumption that X contains K
(i-e., that our Euler system extends “in the p-direction”), we will be able
to bypass the need for the congruence condition. In fact, the congruence
condition follows easily from our techniques in Chapter 4, and although we
do not need it, we will state and prove it in §4.8 (Corollary 4.8.1).

On the other hand, if we assume that our Euler system classes sat-
isfy appropriate congruence conditions then we can remove from Definition
2.1.1(ii) the assumption that K contains K. See Chapter 9 for a dis-
cussion of this and other possible variations on the definition of an Euler
system.

2.2. Results over K

We now come to the fundamental application of Euler systems. We
will use the “derivative” classes associated to an Euler system (see §4.4)
and the duality theorems from Galois cohomology stated in §1.7 to bound
the order of a Selmer group (Theorems 2.2.2, 2.2.3, and 2.2.10). Theorems
2.2.2 and 2.2.3 will be proved in Chapter 5.

Let p be the maximal ideal of O and let k = O/p be the residue
field. Recall that K (1) is the maximal p-extension of K inside the Hilbert
class field of K. We will make use of two different sets of hypotheses
on the Galois representation 7. Hypotheses Hyp(K,T) are stronger than
Hyp(K,V), and will allow us to prove a stronger conclusion.
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Hypotheses Hyp(K,T). (i) There is a T € Gk such that
® T acts trivially on p,e, on (OF)YP™, and on K(1),
o T/(r—1)T is free of rank one over O.
(ii) T ®k is an irreducible k[G k]-module.

Hypotheses Hyp(K,V). (i) There is a T € Gk such that
e 7 acts trivially on e, on (0?77 | and on K (1),
o dimg(V/(r —1)V) =1.
(if) V is an irreducible ®[Gk]-module.

Definition 2.2.1. If ¢ is an Euler system, we define the index of divisibility
of ¢ to be

indp(c) = sup{n:cx € p"HY(K,T) + H (K, T)tors} < 00,

i.e., pdo(©) ig the largest power of the maximal ideal p by which cx can
be divided in HY(K,T)/H' (K, T)tors-

Write £ (B) for the length of an O-module B, so that |B| = |]k|£o(B).
We allow £ (B) = oc.

Define Q = K (1)K (W)K (e, (OF)'/?7), where K(W) denotes the
smallest extension of K such that Gk (w) acts trivially on W.

Let ¥, denote the set of primes of K above p.

Theorem 2.2.2. Suppose that p > 2 and that T satisfies Hyp(K,T). If c
is an Euler system for T then

Lo(Ss, (K, W) < indo(c) + nw + njy
where
nw = Lo(HY(Q/K, W) N S¥ (K, W)),
ny = lo(H' (Q/K,W*) N Sx, (K,W*)).
Theorem 2.2.3. Suppose that V satisfies Hyp(K,V) and T is not the

one-dimensional trivial representation. If ¢ is an Euler system for T and
cx ¢ HY(K,T)tors, then Ss, (K, W*) is finite.

Note that Theorem 2.2.3 holds even if p = 2.

Remark 2.2.4. Hypotheses Hyp(K,T) are satisfied if the image of the Ga-
lois representation on T is “sufficiently large”. They often hold in practice;
see the discussion of the examples in the next chapter. If ranko(T) = 1,
then (i) holds with 7 = 1, and (ii) holds trivially.

Remark 2.2.5. Corollary C.2.2 shows that if V is irreducible as a ®[Gk]-
module, then both H(Q/K, W) and H'(Q/K,W*) are finite unless either
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T = O with trivial action or T = O(1). Frequently the “error terms” ny
and njy; in Theorem 2.2.2 are zero; see the examples in Chapter 3.

Remark 2.2.6. Hypothesis Hyp(K,T)(i) will be used to guarantee the
existence of sufficiently many primes q of K such that H} (Kq, Wa) and
H} (K4, W;,) are free of rank one over O/M . This in turn will make it
possible to use Theorem 1.7, along with the cohomology classes we will
construct from the Euler system in Chapter 4, to bound the Selmer group
as in Theorem 2.2.2.

Remark 2.2.7. In the exceptional case of Theorem 2.2.3, when T = O,
the Selmer group Sz, (K, W*) is finite if and only if Leopoldt’s conjecture
holds for K. See Corollary 1.6.5.

Remark 2.2.8. There is always a trivial Euler system, namely the one
defined by ¢y = 0 for every F. But in that case indp(c) = oo so Theorems
2.2.2 and 2.2.3 say nothing.

Remark 2.2.9. Theorem 2.2.2 gives a bound for the size of the “strict”
Selmer group Sy, (K, W*), not the true Selmer group S(K,W*). Since we
have put no local conditions at p on either our representation T or our
Euler system c, that restricted Selmer group is all that the Euler system
can “see”. Combining the global duality results from §1.7 with Theorems
2.2.2 and 2.2.3 gives Theorem 2.2.10 below concerning S(K, W*).

Suppose that, as in §1.7, for every prime v of K dividing p we have
subspaces H}(K,,V) C H'(K,,V) and H}(K,,V*) C H'(K,,V*) which
are orthogonal complements under the pairing (, Yx,. We write

Hl(Kp, ) = ®v\pH1(Kva )
and similarly for H} and H; = H'/H}, and let
locy, : 877 (K,T) — Hy (K, T)
be the localization map as in Corollary 1.7.5.

By Corollary B.3.5 (see also Proposition 4.6.1) and Lemma 1.3.5(ii), if
c is an Euler system then cx € S¥»(K,T).

Theorem 2.2.10. Suppose c is an Euler system for T and locs, (ck) # 0.

(i) Suppose that T is not the one-dimensional trivial representation,
that V' satisfies Hyp(K, V), and that [H;(Kp,T) : Olocs, (ck)] is
finite. Then S(K,W*) is finite.

(ii) Suppose that p > 2 and T satisfies Hyp(K,T). Let nyw and njy, be
as in Theorem 2.2.2. Then

lo(S(K,W*)) < Lo(H! (Kp,T)/Olocs, (ck)) +nw +nyy.
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Proof. We will use Theorems 2.2.2 and 2.2.3 to bound Sy, (K, W), and
Corollary 1.7.5 to bound [S(K,W*) : Sy, (K, W*)].

For every v, the O-module H} (K,,T) is torsion-free since by definition
it injects into the vector space H!(K,,V). Hence if locs; (ck) is not zero
then cx ¢ H'(K,T)tors- Now Theorem 2.2.3 shows that Sy, (K,W*) is
finite, and Corollary 1.7.5 shows that

[S(K,W*) : Sz, (K, W*)] = [H;(Kp,T) : Olocs, (S (K,T))]  (2.1)

< [HYK,,T) : Olocs; (ck)]-
This proves (i).
The definition of S¥» (K, T) gives an injective map

H'(K,T)/S"(K,T) < @u,H)(K,,T),

so HY(K,T)/S* (K,T) is torsion-free. Since cx € S¥»(K,T), It follows
that for every n > 0,

cx €Pp"HY(K,T) + HY(K,T)tors = cx € p"S™ (K, T) + H (K, T)tors

= locg, (ck) € p™locs; (S (K, T)).
Therefore if locs; (ck) # 0 then
indo(c) < Lo(locs, (S*r (K, T))/Olocs;, (ck)),
and so Theorem 2.2.2 shows that
Lo (Sy, (K, W) < Lo(locs, (87 (K,T))/Olocs, (ck)) + nw + iy

Together with equality (2.1) of Corollary 1.7.5, this proves (ii). O
Remark 2.2.11. Note that, although a full Euler system is required to

prove Theorems 2.2.2, 2.2.3, and 2.2.10, only the class cx appears in the
statements of those theorems.

Remark 2.2.12. The choice of subspace H}(KP,V) intervenes on both
sides of the inequality of Theorem 2.2.10(ii).

Remark 2.2.13. One would like a bound for the order of S(K, W*) which
involves a value of an appropriate L-function. However, Theorems 2.2.2 and
2.2.10 are purely algebraic and never “see” special values of L-functions.
One hopes that (as in the examples of Chapter 3) these L-values will arise
as locgp (ck) for some Euler system ¢, and thereby come into the bound for
the order of S(K, W*) via Theorem 2.2.10. See Chapter 8 for a discussion of
a general framework in which one expects Euler systems which are related
to L-values to exist.
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2.3. Results over K

Fix for this section an (infinite) abelian extension K, of K such that
Gal(Ko/K) = Z¢ for some d > 1, and such that no finite prime of K splits
completely in K.

Essentially by proving analogues of Theorem 2.2.2 for each finite exten-
sion F of K in K, we can pass to the limit and prove an Iwasawa-theoretic
version of Theorem 2.2.2. See [Lan]| Chapter 5 or [Wa] Chapter 13 for ba-
sic background on Iwasawa theory, or [Sel] for the more general situation
of Z%-extensions with d > 1.

Theorems 2.3.2, 2.3.3, and 2.3.4 below will be proved in Chapter 7.

Notation. If K C; F C K, we will write Ap = O[Gal(F/K)]. Let I =
Gal(K«/K) and let A denote the Iwasawa algebra
A=OT) = tm A,
K Cy FCKoo
so A is (noncanonically) isomorphic to a power series ring over O in d
variables.

We say that a A-module B is pseudo-null if B is annihilated by an
ideal of A of height at least two. A pseudo-isomorphism is a A-module
homomorphism with pseudo-null kernel and cokernel, and two A-modules
are pseudo-isomorphic if there is a pseudo-isomorphism between them. If
B is a finitely generated torsion A-module then there is an injective pseudo-
isomorphism

PA/fih = B
i
with f; € A, and we define the characteristic ideal of B
char(B) = HfiA.
i

The characteristic ideal is well-defined, although the individual f; are not.
The individual ideals (elementary divisors) f;A are uniquely determined if
we add the extra requirement that f;11 | f; for every i. If B is a finitely
generated A-module which is not torsion, we define char(B) = 0. If

0—B —B-—B"—0
is an exact sequence of finitely generated A-modules, then
char(B) = char(B')char(B").

We will need the following weak assumption to rule out some very
special bad cases. In particular it is satisfied if K = Q.
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Hypothesis Hyp(K/K). If rankz, (I') = 1 and Gk, acts either triv-
ially or by the cyclotomic character on V, then either K is a totally real
field and Leopoldt’s conjecture holds for K (i.e., the p-adic completion of
Of injects into (O ® Zp)* ), or K is an tmaginary quadratic field.

We will also write Hyp(K,T) (resp. Hyp(Kw,V)) for hypotheses
Hyp(K,T) (resp. Hyp(K,V)) with Gk replaced by Gk, i.e.,

Hypotheses Hyp(K,,T). (i) There is a T € Gk, such that
e 7 acts trivially on pye, on (0?7 | and on K (1),
o T/(r—1)T is free of rank one over O.
(if) T ® k is an irreducible k[Gk_ ]-module.

Hypotheses Hyp(K,,V). (i) There is a T € Gk, such that
o 7 acts trivially on pe., on (OF)YP™, and on K(1),
o dimg(V/(r —1)V) =1.
(ii) V is an rreducible ®[G K, |-module.

There are simple implications
Hyp(Keo, T) = Hyp(Ke,V)
Y U
Hyp(K,T) = Hyp(K,V).
Definition 2.3.1. Recall that D = ®/0. Define A-modules
H! (K,T) = lim HY(F,T)

K C; FCKoo
SEP(KOOJW*) = h_H} SEP(FaW*)
K Cy FCKoo

X = Homgp (SEP (K007 W*)’ D)v

limits with respect to corestriction and restriction maps, respectively. If ¢

is an Euler system let cx o = {cr}x c, Fck.. denote the corresponding
element of H. (K,T) and define an ideal of A by

inda(c) = {¢(ck,00) : ¢ € Homp(HL (K, T),A)} C A.

The ideal ind (¢) measures the A-divisibility of ¢k 0, just as indp(c)
of Definition 2.2.1 measures the O-divisibility of ck.

Recall that c is an Euler system for (T, K,) if it is an Euler system
for (T, K,N) with K, C K.

Theorem 2.3.2. Suppose ¢ is an Euler system for (T,K,), and V satis-
fies Hyp(K, V). If ¢k, does not belong to the A-torsion submodule of
HL! (K,T), then X is a torsion A-module.



42 2. EULER SYSTEMS: DEFINITION AND MAIN RESULTS

Theorem 2.3.3. Suppose ¢ is an Euler system for (T, Ko), and T satis-
fies hypotheses Hyp(K oo, T) and Hyp(Koo/K). Then

char(Xy,) divides inda (c).
Theorem 2.3.4. Suppose c is an Euler system for (T, K), and V satis-

fies hypotheses Hyp(K oo, V) and Hyp(K oo/ K). Then there is a nonnegative
integer t such that

char(Xo,) divides p'ind, (c).

Remark 2.3.5. The assertion that X, is a torsion A-module is called the
weak Leopoldt conjecture for T. See [Gr2] or [PR4] (§1.3 and Appendice
B).

Remark 2.3.6. As with Theorem 2.2.2, these three theorems all give
bounds for the size of Sy, (Ko, W*) rather than the true Selmer group
1i_m) S(F,W*). Combining these results with the global duality results from
§1.7 gives Theorem 2.3.8 below concerning the true Selmer group.

Suppose that for every K C, F' C K, and every prime w dividing p we
have subspaces H}(Fy,V) C H'(Fy,V) and H}(Fy,V*) C H' (Fy,V*)
which are orthogonal complements under the pairing (, }g,, as in §1.7.
We suppose further that if F' C F' and w' | w then

COI‘FIIUI/FWH}(F;,, V) C H}(Fw, V),

ReSFq’U,/FwH}"(Fw; V*) C H}(F:U,, V).
(In fact, the local pairing and our assumptions about orthogonality show
that these two inclusions are equivalent.) These conditions ensure that,
if KC,FC,F' C K, the natural restriction and corestriction maps induce
maps

S(F,W*) — S(F',W*), Hsl(FI'),T) — HX(F,,T)
where we write
HI(FIH : ) = 6911)|101:I1(Fuh : )a

and similarly for H; and H; = H'/H}. Define

S(Keo, W) = lim S(F,W*),
K Cf FCKoo
H;O,S(KIHT) = m H;(FIHT)

K CgFCKoo
Proposition 2.3.7. There is an exact sequence
0 — Hy, (Kp, T)/locs, (HL, (K, T))
— Homop (S(Keo, W*),D) — Xoo — 0
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where locs; H! (K,T) - HL, ,(Kp,T) is the localization map.
Proof. By Corollary B.3.5,
HY(K,T) = lim 8™ (F,T).
K Cs FCKoo
Thus the proposition follows from Corollary 1.7.5 by passing to the (direct)
limit and applying Home (-, D). O

Theorem 2.3.8. Suppose that ¢ is an Euler system for (T, K), and V
satisfies hypotheses Hyp(K o, V) and Hyp(Ko/K). Suppose further that
locs, (¢k,00) ¢ Hoo o(KpsT)a—tors and Hy, (Kp,T)/Alocs, (ck,00) is a
torsion A-module. Then Homp(S(Kx, W*), D) is a torsion A-module and
(i) there is a nonnegative integer t such that
char(Homo (S(K oo, W*), D)) divides p'char(H, ,(Ky,T)/Alocs; (ck,c0))s
(ii) if T satisfies Hyp(Koo,T) then
char(Homo (S(Koo, W), D)) divides char(H, ,(Kp,T)/Alocs, (Ck,00))-
Proof. Since locs; (Cx,00) ¢ Hi, 5(Kp, T)Ators, We see that cx,co cannot
belong to H (K, T)A—tors- Therefore Theorem 2.3.2 and Proposition 2.3.7
show that Home (S(K s, W*), D) is a torsion A-module and that
char(Homo(S(K s, W*), D))
= char(Xo)char(Hy, ,(K,, T)/locs, (Hy, (K, T))).
Our assumptions ensure that locs; (H, 1 (K,T)) is a rank-one A-module,

so there is a map ¢ : locs, (H(K,T)) = A with pseudo-null cokernel.
Then

$(locs,, (€x,00))A = char(y(locs, (Ho (K, T)))/¢(locs, (ck,00))A)
> char(locs, (HL, (K,T))/Alocs (ck,o0))s

and by definition inds(c) divides 9 oloc3; (ck,0). The theorem follows
easily from these divisibilities and the divisibilities of Theorems 2.3.4 and
2.3.3. O

2.4. Twisting by Characters of Finite Order

Suppose ¢ is an Euler system for (T, K, N) as defined in Definition 2.1.1.
The consequences of the existence of such an Euler system described in §2.2
and §2.3 do not depend on K (except that, in the case of §2.3, the field
K must contain K,). We could always take K to be the “minimal” field
Kmin described in Remark 2.1.4, and ignore the Euler system classes cp
for F ¢ Kumin, and still obtain the results stated above.
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However, there is a way to make use of the additional information
contained in an Euler system for a non-minimal K. Namely, in this section
we show how to take an Euler system for (T,K,N) and obtain from it
an Euler system for twists T ® x of T by characters x of finite order of
Gal(K/K) (see below). For example, if K is the maximal abelian extension
of K, then we will obtain Euler systems for all twists of T' by characters
of finite order, and the results of this chapter then give (possibly trivial,
possibly not) bounds for all the corresponding Selmer groups.

Suppose x : Gxg — O is a character of finite order. As in Example
1.1.2 we will denote by O, a free rank-one O-module on which G g acts via
X, and we fix a generator £, of O, We will write T ®x for the representation
T®o OX'

Definition 2.4.1. Suppose c is an Euler system for (T, X, N) and x is a
character of finite order of Gal(KX/K) with values in O%. Let L = KCker®)
be the field cut out by x. If K C,F C K, define ¢} € H'(F,T ® x) to be
the image of cpr under the composition

HY(FL,T) B, HYFL,T)® O, 2 H(FL,T®X) Loy HY (F,T®X)
(we get the center isomorphism since Gy, is in the kernel of x).
Proposition 2.4.2. Suppose c is an Euler system for (T,K,N) and
x : Gal(K/K) — O~
is a character of finite order. If  is the conductor of x then the collection
{c} : KC,F CK}
defined above is an Euler system for (T ® x, K,iN).
Proof. If KC,F C,F' C K then using Definition 2.1.1 we have
COI‘F’/F(C%) = Corprp (e ®&y)
= Corpp/r ((CorF’L/FLcF’L) ® fx)
CorFL/F<( H P(Frq_1|T*;F1"q_1)CFL) ®§X>
qEX(F'L/FL)

Corpryr( TIPS T x(Fr)Fry Y (ers, © &)
q€X(F'L/FL)

I P, T X(Fro)Fr, ) Corpp r(crr ® &)
qEX(F'L/FL)

= I PENTox)5F
qeX(F'L/FL)
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where as usual P(Fr;1|(T ®x)*;x) = det(l — Fr;1$|(T ® x)*), and
Y(F'L/FL) = {primes q: q{.N, q ramifies in F'L but not in FL}
= {primes q : q{fN, q ramifies in F' but not in F'}.
This proves the proposition. O
Lemma 2.4.3. With notation as in Definition 2.4.1, suppose K C,F C

Ko and LC. L' C K. If every prime which ramifies in L'/K is already
ramified in L/ K, then the image of ¢} under the composition

—1
H'(FToy) 2% HY(FL,Toy) —s HY(FL',T)

18
Z X(é)&cFLI.

S€Gal(FL'/F)
Proof. Since c is an Euler system, and every prime which ramifies in L'/ K
ramifies in L/K, we have CorFL,/FL(cFL/) = cpr. Thus the image of ¢}
under the composition above is
(ResprrpCorpr p(crr ® &) ® &
= (Respp/pCorpp plcrn ® &) @ & "
- ( Z 6(CFLI (39 §X)) ® é‘;l

5€Gal(FL'/F)

= Z X(d)écFL’- O

5€Gal(FL'/F)






CHAPTER 3
Examples and Applications

In this chapter we give the basic examples of Euler systems and their
applications, using the results of Chapter 2.

3.1. Preliminaries

Suppose x is a character of G into O*. As in Example 1.1.2 we will
denote by O, a free rank-one O-module on which Gk acts via x. Recall
that D = /0 = O ® (Qp/Z,). We will also write

D, = D®o 0y = Oy ®(Qp/Zp).

For the first three examples (§§3.2, 3.3, and 3.4) we will assume that x
has finite prime-to-p order. As in §1.6.B and §1.6.C we take T' = O,,, and
we then have W = D, and T* = O(1) ® Oy-1 = Oy-1._,., where ecy is
the cyclotomic character.

Let L = K¥'X be the abelian extension of K corresponding to x, and
write A = Gal(L/K). Thus A is a cyclic group of order prime to p. As in
Definition 1.6.3, if B is a Z[A]-module we write B" for the p-adic completion
of B and BX for the x-component of B" ®z, O. We also fix a generator of

O,-1, and this choice determines an isomorphism BX 2 (B" ®z, O,-1)".

Lemma 3.1.1. (i) If x # 1 then H'(L(p,) /K, W) = 0.
(ii) If x is not the character giving the action of Gk on m,, then
HY (L) [ K, W) = 0.

Proof. Write Q = L(p,e) as in §2.2. Suppose p : Gk — O is a character.
Recall that p is the maximal ideal of O and k = O/p is the residue field.
Write k, =k ® O,.
Since |A| is prime to p, the inflation-restriction sequence shows that
H'(Q/K k,) = Hom(Gal(2/L),k,)* = Hom(Gal(Q/L),k2)

(note that A acts trivially on Gal(2/L) because /K is abelian). Further,
if  is a generator of p, it follows from the exact sequence

0—%k, —D, = D, —0

47
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that

H'(Q/K,k,)=0 = H'(Q/K,D,), =0 = H'(Q/K,D,)=0.
If p is not congruent to 1 modulo p, then kf =0andso H'(2/K,D,) = 0.
Applying this with p = x proves (i), and with p = x ey proves (ii). O
3.2. Cyclotomic Units

The Euler system of cyclotomic units is studied in detail in [Ko2] and
[Ru3].

An Euler system for Z,(1). Take K = Q. For every extension F' of
Q, Kummer theory shows as in Example 1.2.1 that

H'(F,Z,(1)) = %HHI(F,M,,") = @FX/(FX)’W =(F*)y (1

where (F'*)" is the p-adic completion of F'*.

Fix a collection {(», : m € ZT} such that (,, is a primitive m-th root
of unity and ¢?,, = (n for every m and n. (For example, we could fix an
embedding of Q into C and choose (,, = €**#/™.) For every m > 1 and
every prime £ we have the relation

(Cm - 1) if £ | m
NQ(us )/ Q) Cme = 1) = $ Gn = DFF " if £fmand m>1 (3.2)
(—1)t-L¢ ifm =1

where Fry is the Frobenius of £ in Gal(Q(u,,,)/Q) (see for example [Lan]
Theorem 6.3.1). For every m > 1 we define

Cmoo = NQ(ymp)/Q(pm)(Cmp - 1) € Q(H‘m)x C Hl(Q(l"m)7ZP(1))
and &n = Nq(, )/q(u, )+ (€mec) where Q(u,,)" is the maximal real sub-
field of Q(u,,,). The distribution relation (3.2) shows that the collection

{€moo, &m : m € ZT}
is an Euler system for (Z,(1),Q%,p) (see Definition 2.1.1 and Remark
2.1.3), since for every prime £ # p we have
det(1 — Fr;'2|Z,(1)*) = det(1 — Fr;'z|Z,) = 1 — 2.

Remark 3.2.1. If p | m then (3.2) shows that €00 = (n — 1. But if
p1m, our definition takes into account that our Euler system must satisfy
Naqw..,) /Q(s,,,) (Emp) = €m. This causes us to lose some information, and
leads to the unwanted hypothesis x(p) # 1 in Theorem 3.2.3 below. We can
remove this hypothesis either by using Theorem 3.2.10 below (see Remark
3.2.5) or by modifying the definition of Euler system as in Example 9.1.1.
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The setting. Let K = Q and K« = Q, the cyclotomic (and only)
Z,-extension of Q. As in §3.1 we fix a character x : Gq — O of finite
prime-to-p order, and we assume for the rest of this section that y is even
and nontrivial.

Let f denote the conductor of x, and recall that L is the field cut out
by x. We will view x as a Dirichlet character modulo f in the usual way, so
that x(€) = x(Fr,) if the prime £ does not divide f, and x(¢) = 0if £ | f. For
every n > 0let Q,, be the unique subfield of Q. with degree [Q,, : Q] = p",

50 Qn C Q(ptpn+1) and [Q(pyn+1) : Qn] = p — 1. Let L, = LQ,, and let
Lo = LQw- Since [L : Q] is prime to p, we have LN Q,, = Q for every n
so we can identify A = Gal(L/Q) with Gal(L,,/Q,) for every n.

Loo
8/
Qoo &

L,
A Z/p"Z
Qn/ \ L
W\QA/

Let T = Oy, as in §3.1, so that T* = Z,(1) ® x~'. The restriction map
gives an isomorphism (using (3.1))

HY(Qu,T*) = H'(L,,T*)® 2 (L)) ® Oy-1)?
=~ (LY C (LX) ®0. (3.3)

The Euler system € for Z, (1) constructed above gives rise (by Proposi-
tion 2.4.2) to an Euler system ¢ = & for (T*,Q?,pf). By Lemma 2.4.3,
the image of cq in LX®O under (3.3) is

[ ep® = I« -, (3.4)

5ECa(Q(p,)*/Q) 3€Gal(Q1s,)/Q)

The Selmer group. We have W = D,.. Let Q, , denote the com-
pletion of Q,, at the unique prime above p, and as in the example of §1.6.B
ta‘ke H]l‘ (Qn,p7 V) = H&r(Q”,P: V)
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For every n let A, be the ideal class group of L,,. We will also write
Ap = Ay, the ideal class group of L. By Proposition 1.6.2 we have isomor-
phisms

S(Q:W) = Hom(ALaDX)Aa S(QOOJW) = Hom(m AnaDX)A' (35)
The ideal class group of L.

Definition 3.2.2. If n > 0 we let £, denote the group of global units of
L,. We define the group of x-cyclotomic units Cy, , to be the subgroup of
EX generated over O[Gal(L,,/Q)] by

I - 1)x ' ®) ifn =0,
o, = J CCUQU/Q) B
’ " G0 050
0€Gal(Qn (K spn+1)/Qn)

We will also write £, = &, Crx = Co,y and &Ly = &o,x-

The following theorem and its Corollary (3.2.4 below) were first proved
by Mazur and Wiles [MW]; the proof given here is due to Kolyvagin [Ko2].
See the additional remarks following the proof.

Theorem 3.2.3. Suppose that x is an even character of order prime to p.
If p> 2 and x(p) # 1, then

|AX| divides [EF : Cp ]

Proof. We will apply Theorem 2.2.2 with the Euler system ¢ constructed
from cyclotomic units above. Since rankpT™* = 1, we see that Hyp(Q,T™*)
is satisfied with 7 = 1. Further, in this case ) = L(p, ), and since x is
nontrivial and even, Lemma 3.1.1 shows that the error terms ny - and njy,.
in Theorem 2.2.2 are both zero.

By (3.3) we have maps

E — (L)X = HYQ,T™).
Identifying &y, ,, with its image in H*(Q,T*), it follows from (3.2) and (3.4)
that

-1
cq =& 7 (36)

where x(p) = 0if p | f. Since x(p) # 1 and x has order prime to p, we
have 1 — x~!(p) € O* so cq generates Cr,y.

Recall that indp(c) is the index of divisibility defined in Definition
2.2.1. Since L* /&, is torsion-free, it follows that indp(c) is the largest
power of p by which a generator of Cp, can be divided in £f. Since we
have assumed that p > 2, that x is even, and that x # 1, the Dirichlet unit
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theorem (see for example [T5] §1.4) shows that £F is free of rank one over
O, and we conclude that

indo(c) = Lo(EF/CLy)-
Putting all of this together, Theorem 2.2.2 in this case yields
IS, (Q,W)| divides [E) : CL,y]-

Let Z denote an inertia group above p and Fr, € Gq a Frobenius

element. By Lemma 1.3.2(i),
H(Qp, V) = V7 /(Fr, - )VT = V7 /(x(p) - 1)VT = 0
since x(p) # 1. Therefore H}(Qp, W) = 0 and
S5, (Q, W) = 8(Q,W) = Homp(A], D),

the final equality coming from (3.5). This completes the proof. o

A well-known argument using the analytic class number formula takes
Theorem 3.2.3 and gives the following strengthening.

Corollary 3.2.4 (Mazur & Wiles [MW] Theorem 1.10.1). Suppose x is
an even character of order prime to p. If p > 2 and x(p) # 1, then

[AZ] = (€7 : Coxl-
Proof. See for example Theorem 4.2 of [Ru3]. O

Remark 3.2.5. When p divides the order of x, Theorem 2.2.2 still applies
to give a bound for $(Q, W), but (see Proposition 1.6.2) this Selmer group
is no longer exactly the ideal class group.

If x(p) = 1, then (3.6) shows that cq = 0, so Theorem 2.2.2 is of no use.
However, in this case Greenberg ([Grl] §5) has shown how to deduce the
equality of Corollary 3.2.4 from Theorem 3.2.10 below (Iwasawa’s “main
conjecture”) which we will prove using Theorem 2.3.3. See also §9.1.

The inverse limit of the ideal class groups. Recall that A is the
Iwasawa algebra O[[Gal(Qw/Q)]]- For every n, let L, , = L, ® Q, and
denote by U, the local units of L, ,,. Define

Aw = @(An)Av o = I'Ln(gn)Aa Coox = yLn(CmX)A:

n

Uso = lim (Un)", Yoo = lim (Lnp)",

n

inverse limits with respect to norm maps, where (- )" denotes p-adic comple-
tion (Definition 1.6.3). Let &/, be the group of p-units of L,, (elements which
are units at all primes not dividing p) and &, = lim (£},)". Recall that

HL(Q,T*) = im H'(Q,,T*), and set HY(Q,,T*) = lim H'(Qy, T)
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and Héo,s(Qpa T*) = 1£1 Hl (Qn,pa Thk)/‘[{]1c (Qn,p; T*), Where H}‘ (Qn,p; V*)
is defined as in the example of §1.6.C.

Proposition 3.2.6. (i) With the natural horizontal inclusions and sur-
jections, there are vertical isomorphisms making the following dia-
gram commute.

A{CQn }C—> HéO(QJ T*)C—> Héo(Qpa T*) —>> H;O,S(Qp? T*)

T

Coox = (EL)XC Y YXIUX

o

(ii) There is a A-module isomorphism

xx o~ )0 X)) #1,
Yo /U {0 if x(p) = 1.

(iii) There is a A-module injection (EL)X/EX — O.

Proof. Just as for (3.4), Lemma 2.4.3 shows that the image of ¢q,, in (LX)X
under (3.3) is &y y, so the left-hand vertical isomorphism is clear. As in the
example of §1.6.C, the restriction isomorphism (3.3) identifies

SPHQn, T*) = (&),
and by Corollary B.3.5

lim H'(Qn, T*) = limSH(Q,, T),

so we obtain the second vertical isomorphism. With H} as defined in the
example of §1.6.C, we see as in (1.7) that there are restriction isomorphisms
(the top row is the local analogue of (3.3))

Hl (Qn,p7 T*) ;) (Lx,p)x

n

U U
HYQup T*) ——  UX

and the rest of (i) follows. (Note that once we have the vertical isomor-
phisms, the injectivity of the upper center horizontal map follows from
that of the lower center horizontal map; the latter injectivity follows from
Leopoldt’s conjecture, which is known in this setting.)
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Let A, denote the decomposition group of p in A. For every m > n
there is a commutative diagram in which all maps are isomorphisms

D |pOrday ~
Ly p/Un === @,,, 2w —— Z[A/A,]
Nimin | wsuley | I
Ly Un =22 @, 20— ZIA/A,)

and so YX/UX = Z,[A/A,)x. Clearly Z,[A/A,]X = 0 if x is nontrivial
on Ay, ie., if x(p) # 1, and otherwise Z,[A/A,]X = O,. This proves
(ii), and (iii) follows from (ii) since £X is the kernel of the natural map
(€)X = Y JUX. O

Theorem 3.2.7. If x is even and nontrivial then
char(AY)) divides char(€X /Coo ).

Proof. Hypotheses Hyp(Qoo, T*) are satisfied with 7 = 1, so we can apply
Theorem 2.3.3 and Proposition 2.3.7 to conclude that

char(Homo (S(Qoo, W), D)) divides indy(c) char(H, ,(Qp, T™))

with inda (c) as defined in Definition 2.3.1.

By [Iw3] Theorem 25, the A-module Y% is torsion-free, finitely gen-
erated, and rank-one. Since (£.)X is a nonzero A-submodule of Y, it
follows that (£/,)* is also torsion-free, finitely generated, and rank-one.
Combined with the diagram of Proposition 3.2.6(i), it follows easily that
ind (¢) = char((€.,)X/C,y), and so using Proposition 3.2.6(iii) we see
that inds (c) divides Jchar(€X /Coo,y), where J = char(0O) is the augmen-
tation ideal of A. By (3.5) we have Homp (S(Qe, W),D) = AX . and

[o.oX]

Proposition 3.2.6 shows that char(H}, ,(Q,,T*)) divides .. Therefore
char(AX)) divides J>char(€X /Coo,y)-

Thus to prove the theorem it suffices to show that char(AX)) is not divisible
by J.

We only sketch the proof. A standard elementary Iwasawa theory
argument (see for example [Iw3] §3.1) shows that AX /JAX is a finitely
generated Zp,-module, that

J | char(AX)) <= AX/JAYX is infinite,

and that AX /JAX = Gal(Mu /L) where My is an extension of L
which is abelian over L. Since y is even, we know that L is a real abelian
field and that Leopoldt’s conjecture holds for L. Therefore class field theory
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shows that L has no ZZ2-extensions, so Gal(Ms /L) has Z,-rank one and
[Moo : Loo] must be finite. This completes the proof. O

Corollary 3.2.8. Suppose that x is even and nontrivial, and that p > 2.
Then
char(AX)) = char(€X /Coo,x)-

Proof. As was the case for Corollary 3.2.4, this follows from Theorem 3.2.7
and the analytic class number formula. See for example [MW] §1.6, or
[Ru3] p. 414. O

The p-adic L-function. Let w : Gq — (Z, )tors denote the Teich-
miiller character giving the action of Gq on p,, (if p is odd) or on p, (if
p = 2). Thus wlecy is a character of Gal(Qx/Q). Fix an embedding
O < Q, — C so that we can identify complex and p-adic characters of
finite order of Gq. With this identification, a character p of Gal(Qso/Q) of
finite order extends naturally to an O-algebra homomorphism p: A — Q,.

Let L(s, p) denote the Dirichlet L-function attached to a character p.

Theorem 3.2.9. Suppose that x is even and nontrivial, and that p > 2.

(i) There is an element L, € A (the p-adic L-function attached to x)
such that for every k > 1 and every character p of finite order of

Gal(Q/Q),
(W eeye)*p(Ly) = (1= w ™ px(p)p* )L = k,w ™ px).
(i) char(UX /Coo,x) = LyA.
Proof. See for example [Iw2] §6 or [Wa] Theorem 7.10 for (i), and [Iw1],
[Wa] Theorem 13.56, [Lan] Theorem 7.5.2, or (for the general case) [Gi]

Théoreme 1 for (ii). (See also §D.2 where we carry out the main computa-
tion needed to prove (ii).) O

Theorem 3.2.10. Suppose that x is even and nontrivial, and that p > 2.
Let Zoox = Gal(Moo/Loo)X, where My, is the mazimal abelian p-extension
of Lo unramified outside primes above p. Then Zu , is a Gal(L/Q)-
module and a finitely generated A-module, and

char(Zoo,y) = LyA
where L,, is the p-adic L-function defined in Theorem 3.2.9.

Proof. Class field theory gives an exact sequence (see for example §III.1.7
of [dS])

0 — EX/Coy — UX/[Coory — Zooxy — A, — 0.

Applying Corollary 3.2.8 and Theorem 3.2.9(ii) proves the corollary. O
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Remark 3.2.11. The case p = 2 was excluded from Corollary 3.2.8 and
Theorems 3.2.9 and 3.2.10 because we did not use the best group of cy-
clotomic units to define our Euler system and to define C . By making
use of all cyclotomic units one can prove analogues of Corollary 3.2.8 and
Theorems 3.2.9 and 3.2.10 for p = 2 as well.

3.3. Elliptic Units

Let K be an imaginary quadratic field, K, a Z,- or Zf,—extension of K
in which no (finite) prime splits completely', x : Gx — O* a character of
finite order, and T' = O, as above. Using elliptic units in abelian extensions
of K, exactly as with cyclotomic units in §3.2, we can define an Euler system
cen for Z,(1) over K, from which we get an Euler system for T*. See [Rub5]
81 and §2 for details.

Keep the notation of §3.2, except that if F' is an abelian extension of K
we now let Cr,, denote the elliptic units in (F*)X. Then Theorems 2.2.2
and 2.3.3, respectively, prove the following two theorems (compare with
[Ru5] Theorems 3.3 and 4.1), exactly as in §3.2.

Theorem 3.3.1. Suppose that p > 2 and that x(B) # 1 for all primes P
of K above p. Then

|AX| divides [EF : Cp ]
Theorem 3.3.2. If x(B) # 1 for all primes P of K above p, then
char(lim A%) divides char(lim (€3 /Cr,y)),
where the inverse limits are over finite extensions F' of L in LK .

Remarks 3.3.3. As with cyclotomic units, one can use the analytic class
number formula to turn the divisibility of Theorem 3.3.1 into an equality.

One can remove the hypothesis that x(8) # 1 from Theorem 3.3.2 by
modifying the definition of an Euler system. See §9.1.

3.4. Stickelberger Elements

The Euler system we present in this section is not the same as the
Euler system of Gauss sums introduced by Kolyvagin in [Ko2] (see also
[Rud]), but it has the same applications to ideal class groups. We use
Stickelberger’s theorem in the construction of our Euler system, so Gauss
sums are implicitly being used.

n fact, this splitting condition is unnecessary; see §9.2.
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Definition 3.4.1. For every integer m > 2, define the Stickelberger ele-
ment
(@ 1\
O = Z E - 5 Y € Q[Ga‘l(Q(p‘m)/Q)]
a€(Z/mZ)*

where v, € Gal(Q(u,,,)/Q) is the automorphism which sends every m-th
root of unity to its a-th power, and (a) € Z is such that 0 < {(a) < m and
(a) = a (mod m). Also define 6; = 0. It is well-known (and easy to check;
see for example [Wa] Lemma 6.9 or [Lan] §2.8) that

if b € Z is prime to 2m, then (b — ;)0 € Z[Gal(Q(x,,,)/Q)]  (3.7)
and if £ is prime, then

(1-Fr; Y0, if Lfm,

An Euler system for Z,. Again we take K = Q. For every finite
extension F' of Q, class field theory shows that

HY(F,Z,) = Hom(Gr,Z,) = Hom(A}/F*,Z,)
= Hom(A%/(F*Br),Z,) (3.9)
where A} denotes the group of ideles of F' and
Br = [[ Fx x[[{1} x ] OF. C Af,
wloo wlp wipoo

since every (continuous) homomorphism from A} into Z, must vanish on
Bp. Further, the map which sends an idele to the corresponding ideal class
induces an exact sequence

0 — UF/EF — A;/(FXBF) — AF — 0 (3.10)

where Ur denotes the local units of F @ Q,, (i.e., Ur = EB,,@(’)EU) and &p
denotes the closure of the global units of F' in Up, and Ap is the ideal class
group of F. We will write Zp[u,,]* = Uqu, )-

Definition 3.4.2. Fix an integer b prime to 2p (a precise choice will be
made later), and for every m € Z% prime to b we use the Stickelberger
elements 6,, to define

5O — {(b—vb)om if p | m

(1 F0, it gt € HCAQU)/Q)

(the two separate cases are to ensure, using (3.8), that 6_?52,|Q(”m) =4y
for every m). Stickelberger’s theorem (see for example [Wa] Theorem 6.10
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or [Lan] Theorem 1.2.3) shows that égnb)AQ(Mm) = 0. Thus, using (3.10)

we can view multiplication by 6‘,(,’;) as a map

AS Q1) B, ) — Zplkm]* [, )

and we define ¢,,, = © ¢ Hom(Aa(“ )/(Q(um)xBQ(”m)),Zp) to be the
composition

7o )
ASu )/ Q) Ba,)) == Zplttm]™ /Eau,,)
i ZP[I‘Lm]X/(ZP[l"/m]X)tOI‘S ﬂ) Zp

where ¢ denotes complex conjugation in Gal(Q(g,,)/Q), so (1—c)€q(u. ) is
finite, and A, is the map defined in Appendix D, Definition D.1.2. Finally,
we define &, € H'(Q(u,,),Z,) to be the element corresponding to ¢,
under (3.9).

Proposition 3.4.3. Suppose m is prime to b and £ is a prime not dividing
b. Then

" (1-Fr,h)e, if (4mp,
Corqu,,.)/Qunm) €me) = {éin ¢ it €| mp.

Proof. Tt follows from a standard result of class field theory (see for example
[T2] §11(13)) that, with the identification (3.9), the map Corq._,)/qQ(u,,)
is induced by the inclusion As(pm) — Aé(”ml).

Suppose first that £+ mp. By Lemma D.1.4 the restriction of A, to
Z,[p,, )" is Ap o (—Fry), and by (3.8) we have éﬁﬁ'Q(um) =(1- Fr[l)ég).
Therefore

bmtlax, = dno(Fr)(1=F7") = ¢no(1=Fr) = (1= Fr7")m

Q(rm

and hence Corq(u._,)/Q(u,,) (€me) = (1—Fr; )&, Similarly (but more sim-
ply), if £ divides mp then Lemma D.1.4 and (3.8) show that ¢m4|A8( =
"

m)
¢m and then CorQ(Mme)/Q(ll-m)(é;nl) =él..

Remark 3.4.4. Technically we should write &, instead of ¢!, since the
ray class field of Q modulo m is the real subfield Q(u,,)". But

Corqu,.)/Quu,)* €n) = 0 € H'(Q(r,,)",Zy)

(because we annihilated all even components in our definition), so we will
never need to deal with those classes and there should be no confusion.

For every prime £ # p we have

det(1 — Fr, '2|Z,(1)) = 1 — ¢ 'a.
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But Proposition 3.4.3 shows that the collection {&!, € H'(Q(u,,),Zp)}
satisfies a distribution relation with Frobenius polynomials 1 — Fr[l, not
1-— EilFrzl, so this collection is not an Euler system for the trivial repre-
sentation Z,. However, since

1-¢1'z2=1-2 (mod (£—1)Z,[z])

we can modify the classes €/, (see Lemma 9.6.1 and Example 9.6.2) to
produce a new collection

{€m € H'(Q(1), Zp) :m € Z* and (m,b) =1}

which is an Euler system for (Z,,, Q*™°, bp), where Q®:* denotes the maxi-
mal abelian extension of Q unramified outside b. Further (Lemma 9.6.1(ii)),
we have ¢,» = €, for every n.

Note that this Euler system depends on the choice of b.

The setting. As in §3.2 let K = Q, let T = O, for a character x
of Gk of finite prime-to-p order, and keep the rest of the notation of the
beginning of §3.2 as well.

For the rest of this section we assume that x is odd, and we let b be a
nonzero integer prime to 2p and to the conductor f of x. (A precise choice
of b will be made later.) Note that these hypotheses imply that p > 2,
because there are no odd characters of odd order.

Let A = Gal(Q(pf)/Q)- Since x is nontrivial and of order prime to
p, we have H*(A,O,) = 0 for every i > 0. Therefore the restriction map
gives an isomorphism (compare with (3.9))

HY(Qn,T) = H'(Qn(py), 0x)*

= Hom(Agn(”f)/Qn(p,f)x,OX)A - Hom(Agn(”f),O), (3.11)

the inclusion using our fixed generator of O,. The Euler system ¢ for
Z, constructed above gives rise (by Proposition 2.4.2) to an Euler system
c = & for (T,Q*®? bfp). By Lemmas 2.4.3 and 9.6.1(iii), the image under
(3.11) of cq in Hom(Ag(”f),O) is

S x(@)de; = 3 x@)dE; = 3 x(0)5- (3.12)
seA scA seA
The Selmer group. We have W* = D, -1, . Asin §3.2, let L be
the fixed field of the kernel of x, let L,, = LQ,, let Q, , be the completion
of Q,, above p, let A, be the ideal class group of L,,, and let A, = Ay, the
ideal class group of L.
We take H}(Qp,p, V) and H}(Q,,p, V*) to be as defined in the exam-
ples of §1.6.B and §1.6.C, respectively.
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Proposition 3.4.5. (i) S(Q,w*) = Af,
(i) S(Quo, W) = limg AY.

Proof. Let £, denote the group of global units of L,,. Since x is odd, £X is
finite, so (£,®Qp/Z,)X = 0. Now the proposition follows from Proposition
1.6.4(ii). O

The minus part of the ideal class group of L. The following
theorem (or more precisely, its Corollary 3.4.7) was first proved by Mazur
and Wiles in [MW]. A proof using Euler systems, but somewhat different
from the one here, was given by Kolyvagin in [Ko2], see also [Ru4].

Define the generalized Bernouilli number

f
Biy-1 = % Zx_l(a)a = x(6y)-
a=1

Recall that w : Gq — (%, )tors is the Teichmiiller character giving the
action of Gq on p,, (recall also that p # 2, since we have assumed that x

is an odd character of order prime to p).

Theorem 3.4.6. Suppose that x is an odd character of order prime to p,
that x(p) # 1, and that x"'w(p) # 1. Then

|AY| < |O/By4-10.

Proof. Since x # w, we can choose b prime to 2pf so that b—x(b) € O*. Let
¢ be the Euler system for T' constructed above from Stickelberger elements,
with this choice of b.

Since T has rank one over O, Hyp(Q, T) is satisfied with 7 =1, so we
can apply Theorem 2.2.10 with this Euler system.

As in the proof of Theorem 3.2.3, since x is odd and different from w,
Lemma 3.1.1 shows that ny = nj;; = 0 in Theorem 2.2.2.

Using the definition of H} in §1.6.B and local class field theory, we
have identifications (the top row is the local analogue of (3.11))

HY(Q,, T) — Hom(@u|pGQqu,),  Ox)* —= Hom(Q,(1;)*, 0y)

| .

H;(QpaT) = Hom(@w‘pr,(’)X)A Hom(zp[ﬂf]x7ox)A

where Q,(us) = Q(uy) ® Qp and Z,, is the inertia group in Gr,,. Thus

Hsl(QpaT) = Hom(Zp[p,f]X,Ox)A = Hom(zp[ﬂf]xao)x_l- (3.13)
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With this identification, using (3.12) and Definition 3.4.2 of 6", and writ-
ing ¢ for complex conjugation,

lociyy r(eq) = Y- x(B)(As o (1~ )8}")’

JeEA
= D x(®)(y 00 1 =08y
JEA
= Aro Y (x(@)o (1 -c)f
JeA
= 2(b— Xx())(1 = x " (0))B1 -1 Y X ()X

sEA
Since x~'w(p) # 1, Lemma D.1.5 shows that Y 5. x(0)A} generates

the (free rank-one) O-module Hom(Z,,[p,f]x,O)X_l. We chose b so that
b— x(b) € O, and we assumed that x(p) # 1 and x has order prime to p,
so 1 — x(p) € O*. Thus (3.13) shows that

Oloctyy r(eq) = Biy-1Hy(Qp,T).
Now Theorem 2.2.10 yields
IS(QW)| < [H;(Qp, T) : Biy-1H; (Qp, T)] = [0/B14-10]. O
Corollary 3.4.7 (Mazur & Wiles [MW] Theorem 1.10.2). With hypothe-
ses as in Theorem 3.4.6,
|[AL] = 10/By 10|

Proof. As in Corollary 3.2.4, this follows from Theorem 3.4.6 and the an-
alytic class number formula. See for example [Ru4] Theorem 4.3. O

Remarks 3.4.8. If x = w, then A} =0 and B; 10 =p~ 0.
If x(p) =1, or x"lw(p) = 1 but x # w, the equality of Corollary 3.4.7

can be deduced from Theorem 3.4.13 below (Iwasawa’s “main conjecture”).

See [MW], §1.10 Theorem 2. See also §9.1.

The p-adic L-function. There is a natural map
XA © Ol[Gal(Quo (1) /Q)]] = O[A][[Gal(Qu/Q)]] 2 A
given by x on A and the identity on Gal(Qwo/Q). Let
() = wlecye : Gal(Quo/Q) — 1+ pZy,
let Tw(y : A — A be the twisting map induced by
v = e ()

for v € Gal(Qw/Q), and let n — n® denote the involution of A induced by
vyt for v € Gal(Qoo/ Q).
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Write @fpoo = {0fpn+1}n. If b is prime to 2fp then by (3.7) and (3.8),

(b—m)0sp € Zp[[Gal(Q(1tfp=)/ Q)]
and so by restriction we have xa((b—75)@fp=) € A. If x # w then we can

fix b so that b — x(b) € 0%, and then x4 (b — ;) € A*. We will write
Xa(@pp=) = xa(b—7) 'xa((b—1)8sp=) € A
which is independent of b.

Theorem 3.4.9. If x is odd and x # w, then

XA(Ofp=)® = Twey(Ly-10)
where L, -1, is the p-adic L-function defined in Theorem 3.2.9 for the even
character Y~ 'w.

Proof. This was proved by Iwasawa; see [Iw2] §6 or [Wa] Theorem 7.10. If
p is a character of finite order of Gal(Quo/Q), it follows from the definitions
that

pOXa(@5p=)%) = p~ (Xa(B5p)) = (L= x "' p(0))B1x-1,
= (1 —X_lp(p))L(O,X_lp) = <5>p(£x—1w) = p(TW(s)(ﬁx—lw))'
Since this is true for every p, the equality of the theorem holds. O

Direct limit of the ideal class groups. The main result of this
section, Theorem 3.4.13 below, is equivalent to Theorem 3.2.10 by standard
methods of Iwasawa theory (see for example [Ru3] §8), so we will only
sketch the proof.

Let U denote the direct limit (not the inverse limit) of the local units

of Qu(p7) ® Q- Recall that A = Gal(Q(s;)/Q) = Gal(Qn(1;)/Qn)-

Lemma 3.4.10. There is an isomorphism of A-modules

A~ A if x(p) #1,
Hom(t, )™ = {Aeao if x(p) = 1.

Sketch of proof. Let Y, denote the inverse limit of the p-adic completions
of the multiplicative groups (Q(s,=) ® Qp)*. There is a natural Kummer
pairing
U x Yy — Z,1)
which leads to a A-module isomorphism
(Yoo ® Oyy1) QW1 = Hom(U, 0,)2 @ Opyy.

The lemma then follows from a result of Iwasawa ([Iw3] Theorem 25; see
also [Gi] Proposition 1). O
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Corollary 3.4.11. Suppose that x is odd and x # w. Then we can choose
b so that, if c is the Fuler system defined above, then

Cha‘r(H;o,s(va T)/AIOCJs[p}({ch }n))
Twe)(Ly-10)  if x7'w(p) # Lx(p) # 1,
= TW(E) (jﬁx—lw) if Xﬁlw(p) =1,
jTW(E) (‘Cx—lw) if X(p) =1,

where J is the augmentation ideal of A.

Sketch of proof. For every n, exactly as in (3.13) we have
Hsl(Qn,paT) = Hom(Un,(’)X)A
and so HY, (Qp,T) = Hom(U, Oy)~. Let
Apex = Hm S x(8)A%,n € Hom(U, Ox)".
seA
One computes, using Lemma 3.4.10, that there are A-module isomorphisms
0 ifx'w(p) #1,x(p) #1,
Hom(ua OX)A/A)‘fPt"JyX = O(s) if Xﬁlw(p) =1,
o if x(p) =1.

(The first case follows from Lemma D.1.5; the others require more work.)
Also, by the definition of cq, and Lemma 2.4.3 we have

locf,y(cq,) = Z X(8)Appnr1 067 (L =) (b—75)0pnt1.
deA

Thus

Alocty; (fequ tn) = Adpp x 0 2(xa (b — 1) xA (O 1p=))
XA (D —75)*xA (O fp=)* AXjpee x
= XA (efp“’ ).A)‘fp"" X

since b was chosen so that xa (b—,) € A*. The corollary now follows from
Theorem 3.4.9. (]

Theorem 3.4.12. If x is an odd character of order prime to p and x # w,
then

char(Homo (lim A, D)) divides Tw ) (Ly-14)-

Sketch of proof. Let ¢ be the Euler system constructed above, with b chosen
to satisfy Corollary 3.4.11. Since T has rank one over O, we see that
Hyp(Q,T) is satisfied with 7 = 1. Thus we can apply Theorem 2.3.8(ii),
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and we conclude (using Proposition 3.4.5(ii) to identify the Selmer group
with the direct limit of the ideal class groups) that

char(Homo (lim A¥, D)) divides char(H;o’s(Qp,T)/Aloc?p}({ch 1))

If x(p) # 1 and x 'w(p) # 1, the theorem now follows immediately from
Corollary 3.4.11.

The two exceptional cases remain. First suppose that x 'w(p) = 1. In
this case we conclude from Corollary 3.4.11 that char(Homo(lim AX, D))
divides Tw .y (J Ly-14,), 0 to complete the proof it will suffice to show that
Tw () (J) cannot divide char(Homo(lim A, D)).

Briefly, if Tw)(J) divides char(Homo(lim AX, D)) then class field
theory and Kummer theory show (see for example [Lan] Chapter 6 or
[Wa] §13.5) that there is a divisible subgroup of Q(p,)* ® (Qp/Z)) which
generates an unramified extension of Q(g s, ). But this would contradict
Leopoldt’s conjecture, which holds for Q(u,,)-

Now suppose x(p) = 1. In this case, if xo denotes the trivial character
then the definition (Theorem 3.2.9) of £, -1, shows that

Xo(TW (o) (Ly-14)) = W eeye(Ly-10) = (1= x(P)L(0,x) = 0.
In other words, J divides Tw)(Ly-1,) so we cannot hope to show in
this case that char(Homo (lim AX, D)) is not divisible by J. Instead, one

must “improve” the Euler system ¢ to remove this extra zero. We omit the
details. 0

Theorem 3.4.13 (Mazur & Wiles MW]).  If x is an odd character of
order prime to p and x # w then

char(Homeo (h_m} AX, D)) = Twy(Ly-14)-

Proof. This follows from Theorem 3.4.12 by the usual analytic class number
argument. See [MW] §1.6, where this equality is deduced from divisibilities
opposite to those of Theorem 3.4.12. O

3.5. Elliptic Curves

The “Heegner point Euler system” for elliptic curves, used by Kolyva-
gin in [Ko2], does not fit precisely into the framework we have established.
We will discuss in §9.4 how to adapt Definition 2.1.1 to include the system
of Heegner points. However, Kato ([Ka3], [Scho]) has constructed an Eu-
ler system for the Tate module of a modular? elliptic curve, using Beilinson
elements in the K-theory of modular curves. In this section we describe
applications of Kato’s Euler system.

2See the footnote on page 3.
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The setting. Suppose E is an elliptic curve defined over Q, and take
K=Q, Ky =Qx, 0=2,, and T = T,(E), the p-adic Tate module of
E, as in Example 1.1.5. Then V = V,(E) = T,(E) @ Qp and W = Epes.
The Weil pairing gives isomorphisms V 2 V* T 2 T* and W = W*. As
in the previous sections, Q,, is the subfield of Q. with [Q, : Q] = p", and
Q. p is the completion of Q,, at the unique prime above p.

The p-adic cohomology groups. As in §1.6, for every n we let

H}(Qup, V) = image(E(Qn,p) ® Qp = H'(Qup,V))-

Since V = V*, this also fixes a choice of H}(Qn,p, V*) C HY(Qnp, V*), and
then H} (Qnp, V) and H}(Qn,p, V*) are orthogonal complements under the
local pairing of §1.4.

For every n let Tan(E,q, ,) denote the tangent space of E/q, , at the
origin and consider the Lie group exponential map

expp : Tan(E/q, ,) = E(Qn,p) ® Qp.

Fix a minimal Weierstrass model of E and let wg denote the correspond-
ing holomorphic differential. Then the cotangent space Cotan(E,q, ,) is
Qn pwe, and we let w}, be the corresponding dual basis of Tan(E). Let
E;(Qn,p) be the kernel of reduction in E(Q,), let p,, be the maximal ideal
of Qp p, and let E be the formal group of E. We have a commutative
diagram in which all the maps are isomorphisms

€XPg

Tan(E/q, ,) E(Qnp) ® Qp

E |

Qup <5 B(pn) ® Qp —> E1(Qup) ® Qp

where Ag is the formal group logarithm, and the bottom right isomorphism
is defined in [T3] Theorem 4.2. Using these identifications we will also view
AE as a homomorphism from E(Qy ) to Qn,p.

Since V' = V*, the local Tate pairing gives the second isomorphism in

Hom(E(Qn,p)7 Qp) = Hom(H} (Qn,pa V)7 QP) = Hsl (Qn,pa V)
Thus there is a dual exponential map (see [Kal] §II.1.2)
expyy ¢ Hy (Qnyp, V) — Cotan(E/q, ,) = Qnpwe-

Write exp¥  : Hy (Qnp, V) — Qup for the composition w}; o exp};. Since
HY(Qn,p,T) injects into H}(Qn,p, V), we see that exp’  is injective on
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H!(Qnyp,T). The local pairing allows us to identify
Hy(Qnp, V) —— Hom(E(Qu,p), Qp)

T T (3.14)

Hy(Qup,T) —— Hom(E(Qn,p), Zy)-
Explicitly (see [Kal] Theorem I1.1.4.1(iv)), z € H}(Qy , V) is identified
with the map

z = Trq, ,/q, E(Z) expy, (2). (3.15)
Proposition 3.5.1. With notation as above, if p > 2 then
eXp:}E (Hsl (QP:T)) = [E(Qp) 1 Ey (Qp) + E(Qp)tors]p_lzp-

Proof. The diagram (3.14) shows that an element of H(Q,, V) belongs to
H!(Q,,T) if and only if its image in Hom(E(Q,), Q,) takes E(Q,) into
Z,. Thus by (3.15), we have

expl, (H(Qp,T)) = p*Zy

where Ag(E(Qp)) = p °Z,. If p > 2 then Ag(E1(Q,p)) = pZ, and, since
rankz, E(Q,) = 1, we see that

[)‘E(E(Qp)) 1 Ap(Ey (Qp)] = [E(Qp) 1 By (Qp) + E(Qp)torS]- O
The L-functions.

Definition 3.5.2. Let
o0
) = zannis = ng(qis)il
n=1 q

denote the Hasse-Weil L-function of E, where £,(¢*) is the usual Euler
factor at gq. If m € Z1 we will also write

= Y an = [ = ([Tl )LEs)
(n,m)=1 gtm q|m
for the L-function with the Euler factors dividing m removed. If x is a
character of Gq of conductor f,, let

L, (E,x,s) = Z x(n)ann=? H L,(q %x(q)) .

(n,fxm)=1 atfxm
When m = 1 we write simply L(E, x, s), and then we have
Ln(E,x,5) = (][] tala=*x(0))) L(E, x; 5). (3.16)
qlm

If F is modular then these functions all have analytic continuations to C.
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The Euler system. Kato has constructed an Euler system in this
setting. Let N denote the conductor of E, and let Qg be the fundamental
real period of E (which corresponds to our choice of differential wg).

Theorem 3.5.3 (Kato [Ka3]; see also [Scho]). Suppose that E is modu-
lar. Then there is a positive integer Tg, independent of p, and an Euler
system ¢ for T,(E) such that for every n > 0 and every character x of

Ga‘l(Q"/Q) 1)

Y. x(Mexpi,(loch,y(eq,)) = relny(E,x,1) /5.
7€Gal(Qn/Q)

In particular we have
exp;,, (loct,y(cq)) = reLny(E,1)/QE.

See [Scho], especially §5, for the construction of the Euler system and
the proof of the identities in the case where E has good reduction at p.
(See also [Ru9] Corollary 7.2 to get from [Scho] Theorem 5.2.6 to the
statement above.)

Consequences of Kato’s Euler system. Following Kato, we will
apply the results of Chapter 2 to bound the Selmer group of E. Let III(E)
be the Tate-Shafarevich group of E.

Theorem 3.5.4 (Kato [Ka3]). Suppose E is modular and E does not have
complex multiplication.
(i) If L(E,1) # 0 then E(Q) and TI(E) are finite.
(ii) Suppose L is a finite abelian extension of Q and x is a character of
Gal(L/Q). If L(E, x,1) # 0 then E(L)X and III(E, ;)X are finite.

Remarks 3.5.5. We will prove a more precise version of Theorem 3.5.4(i)
in Theorem 3.5.11 below. Kato actually constructs an Euler system for
(Tp(E), Q»PD" NpDD') for appropriate auxiliary integers D, D', where
Q#b:PD’ ig the maximal abelian extension of Q unramified outside DD'.
Thus (for some choice of D and D', depending on x) Proposition 2.4.2 gives
an Euler system for T,(E) ® x for every character x of Gq of finite order,
with properties analogous to those of Theorem 3.5.3. These twisted Euler
systems are needed to prove Theorem 3.5.4(ii). For simplicity we will not
treat this more general setting here, so we will only prove Theorem 3.5.4(i)
below. But the method for (ii) is the same.

Theorem 3.5.4(i) was first proved by Kolyvagin in [Ko2], using a sys-
tem of Heegner points, along with work of Gross and Zagier [GZ], Bump,
Friedberg, and Hoffstein [BFH], and Murty and Murty [MM]. The Euler
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system proof given here, due to Kato, is self-contained in the sense that it
replaces [GZ], [BFH], and [MM] by the calculation of Theorem 3.5.3.

Corollary 3.5.6. Suppose E is modular and E does not have complex mul-
tiplication. Then E(Qoo) is finitely generated.

Proof. A theorem of Rohrlich [Ro] shows that L(E, x,1) # 0 for almost
all characters x of finite order of Gal(Qu/Q). A result of Serre ([Se4]
Théoréme 3) shows that E(Qeo)tors is finite, and the corollary follows
without difficulty from Theorem 3.5.4(ii). (See for example [RW], pp.
242-243.) O

Remark 3.5.7. When E has complex multiplication, the representation
T,(E) does not satisfy hypothesis Hyp(Q, V') (i) (see Remark 3.5.10 below),
so we cannot apply the results of §2.2 and §2.3 with Kato’s Euler system.
However, Theorem 3.5.4 and Corollary 3.5.6 are known in that case, as
Theorem 3.5.4 for CM curves can be proved using the elliptic unit Euler
system of §3.3. See [CW], [Ru5] §11, and [RW]. See also the final example
of §6.5.

Verification of the hypotheses. Fix a Z,-basis of T" and let
PEp : GQ — Aut(T) = GLQ(ZI,)
be the p-adic representation of Gq attached to E with respect to this basis.
Proposition 3.5.8. (i) Suppose that E does not have complex multi-
plication. Then H'(Q(Ey=)/Q, Ep=) is finite and T,(E) satisfies
hypotheses Hyp(Quo, V).

(ii) Suppose that pg.p is surjective. Then H'(Q(Ep=)/Q, Ep=) = 0 and
T,(E) satisfies hypotheses Hyp(Qoo,T').

Proof. The Weil pairing shows that

GQu,e) = PEp(SLa(Zp)).
If E does not have complex multiplication then Serre’s theorem ([Se4]
Théoréme 3) says that the image of pg,p is open in GLy(Z,). It follows
that Vp(E) is an irreducible Gq_, -representation, and if pg , is surjective
then E, is an irreducible F,[Gq,, ]-representation.
It also follows that we can find 7 € Gq(u,..) such that

pea) = (5 1)

with z # 0, and such a 7 satisfies hypothesis Hyp(Qoo, V) (i). If pg,p is sur-
jective we can take ¢ = 1, and then 7 satisfies hypothesis Hyp(Qoo,T)(i)-
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We have

H' (Q(Ep=)/Q, Ep=) = H'(pp,p(Ga), (Qp/Zp)?)
which is zero if pg ,(Gq) = GL2(Z,), and finite if pg ,(Gq) is open in
GL2(Z,) (see also Corollary C.2.2). This completes the proof of the propo-
sition. O

Remark 3.5.9. Serre’s theorem (see [Se4] Corollaire 1 of Théoréme 3)
also shows that if E does not have complex multiplication then pg, is
surjective for all but finitely many p.

Remark 3.5.10. The conditions on 7 in hypothesis Hyp(Q, V')(i) force
pE,p(T) to be nontrivial and unipotent. Thus if E has complex multiplica-
tion then there is no 7 satisfying Hyp(Q, V) (i).

Bounding S(Q, Ep). Recall that N is the conductor of E.

Theorem 3.5.11. Suppose E is modular, E does not have complex multi-
plication, and L(E,1) # 0.
(i) E(Q) and II(E)p~ are finite.
(ii) Suppose in addition that E has good reduction at p, that p does not
divide 2rg|E(F,)| (where E is the reduction of E modulo p and rg
is as in Theorem 3.5.3), and that pgp is surjective. Then

TL(E) e | divides ZXE2).
QF

Proof. Recall that £,(¢g~*®) is the Euler factor of L(E, s) at ¢, and that by
Proposition 1.6.8, S(Q, Ep) is the usual p-power Selmer group of E.

Since L(E,1) # 0, and £,(g™") is easily seen to be nonzero for every
g, Theorem 3.5.3 shows that loc,,(cq) # 0. By Proposition 3.5.8(i) and
(3.14) we can apply Theorem 2.2.10(i) to conclude that S(Q, E,e) is finite.
This proves (i), and it follows (see for example Proposition 1.6.8) that
S(Q, Epe) = HI(E)pee . -

If E has good reduction at p then pl,(p~1) = |E(F,)| and

[E(Q,) : E1(Qp) + E(Q,)tors] divides |E(F,)|.
Therefore if p{ 2rg|E(F,)| then

eXp:;E(Hsl(Qpan(E))) = Pflzp
U U
expl, (Zplociy(cq)) = p YIn(E,1)/QE)Z,

by Proposition 3.5.1 and Theorem 3.5.3. By Proposition 3.5.8(ii), if further
PE,p is surjective then we can apply Theorem 2.2.10(ii) (with ny = 0 and
njy = 0) and (ii) follows. O
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Remarks 3.5.12. In Corollary 3.5.19 below, we will prove using Iwasawa
theory that Theorem 3.5.11(ii) holds for almost all p, even when p divides
|E(F,)|. This is needed to prove Theorem 3.5.4(i), since |E(F,)| could be
divisible by p for infinitely many p. However, since |E(F,)| < 2p for all
primes p > 5, we see that if F(Q)iors # 0 then |E(F,)]| is prime to p for
almost all p. Thus for curves E with nontrivial rational torsion points,
Theorem 3.5.4(i) follows directly from Theorem 3.5.11.

The Euler system techniques we are using give an upper bound for the
order of the Selmer group, but no lower bound. In this case there is no
analogue of the analytic class number formula that enabled us to go from
the Euler system divisibility to equality in Corollaries 3.2.4 and 3.4.7.

The p-adic L-function and the Coleman map. Suppose for this
section that E has either good ordinary reduction or multiplicative reduc-
tion at p. Let a € Z) and 3 = p/a € pZ, be the eigenvalues of Frobenius
over F, if F has good ordinary reduction at p, and let (o, 8) = (1,p) (resp.
(=1, —p)) if E has split (resp. nonsplit) multiplicative reduction.

Write G, = Gal(Q,,/Q) = Gal(Q,,,/Qp), and fix a generator {(y» },
of lim pu . If X is a character of Gal(Qw/Q) of conductor p™ define the
Gauss sum

m(x) = Y XM
YEGal(Q(1,n )/ Q)
Fix also an embedding of Q,, into C so that we can identify complex and
p-adic characters of Gq.

The following theorem is proved in [MSD] in the case of good ordinary

reduction. See [MTT] for the (even more) general statement.

Theorem 3.5.13. Suppose E is modular and E has either good ordinary
reduction or multiplicative reduction at p. Let a be as above. Then there are
a nonzero integer cg independent of p, and a p-adic L-function Lg € c;JlA,
such that for every character x of Gal(Qw/Q) of finite order,

(1-a Y)2L(E,1)/Qp if x =1 and E has good reduction at p
x(Lp) =4 (1-—a " )L(E,1)/Qr if x =1 and E is multiplicative at p
a™"7(x)L(E,x"',1)/Qr if x has conductor p™ > 1.
If m € ZT, define
Com=( II tla'Fr;Y))Lo € cptA.
alm,q#p

Using (3.16) and Theorem 3.5.13 one obtains expressions for x(Lg ) in
terms of L,,(E,x !,1) similar to those in Theorem 3.5.13.
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Proposition 3.5.14. Suppose that E has either good ordinary reduction
or multiplicative reduction at p. Then there is a A-module map

Colee : HY, ,(Qp,T) < A

such that for every z = {zn} € HY, ,(Qp,T) and every nontrivial character
x of G, we have

X(Colo(2)) = a™*7(x) Y x7"(7) exp}, (2])
YEGR

where p* is the conductor of x. If xo is the trivial character then

X0(Colss(2)) = (1—a )1 =B7") " expj, (20).

Further, if E has split multiplicative reduction at p then the image of Cols
is contained in the augmentation ideal of A.

Proof. The proof is based on work of Coleman [Co]. See the appendix of
[Ru9] for an explicit construction of Coly, in this case, and see §8.1 for a
discussion of a generalization due to Perrin-Riou [PR2]. O

Using the Coleman map Col,, described above, we can relate Kato’s
Euler system to the p-adic L-function.

Corollary 3.5.15. With hypotheses as in Theorem 3.5.13, with rg as in
Theorem 3.5.3, and with other notation as above, we have

Colx (loctyy({eq, })) = reLE,N-

Proof. Fix a character x of Gal(Qw/Q) of finite order. Theorem 3.5.3 and
Proposition 3.5.14 allow us to compute x(Cols(loc,({cq, }))), the defi-
nition (Theorem 3.5.13) of Lg and (3.16) allow us to compute x(rgLEe,~),
and these values turn out to be equal. For example, if x is nontrivial then
both are equal to

rpa"T(X)Lnp(E,x 71, 1) /Q.

When x = 1, we need to use the fact that £,(p 1) is (1—a 1)(1-871)
(resp. (1—B71)) if E has good (resp. multiplicative) reduction at p. Since
x(Colss (loct,y ({eq, 1)) = x(reLE,n) for all x, the corollary follows. [

Bounding S(Qu, Ep-). Recall that N is the conductor of E, and let

Zy = Hom(S(Qoo, Ep=), Qp/Zp).
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Theorem 3.5.16. Suppose E is modular, E does not have complex multi-
plication, and E has either good ordinary reduction or nonsplit multiplica-
tive reduction at p. Then Zy, is a finitely generated torsion A-module and
there is an integer t such that

char(Z,) divides ptﬁE,NA.

If pp,p is surjective and p { B[], N 4zp l,(g7"), then char(Zy) divides
LeA.

If E has split multiplicative reduction at p, then the same results hold
with char(Zy,) replaced by Jchar(Zy), where J is the augmentation ideal
of A.

Proof. Rohrlich [Ro] proved that Lg # 0. Thus the theorem follows by
combining Propositions 3.5.8 and 3.5.14, Corollary 3.5.15, and Theorem
2.3.8. O

Remark 3.5.17. For a discussion of the “extra zero” (the extra factor
of J in Theorem 3.5.16) in the case of split multiplicative reduction, see
[MTT].

Corollary 3.5.18. Let E be as in Theorem 3.5.16. If p is a prime where
E has good ordinary reduction and

pt H [E(Qq)tors|,
a|N
then Zy, has no nonzero finite submodules.
Proof. This corollary is due to Greenberg [Gr2], [Gr3]; we sketch a proof
here. Let ¥ be the set of places of Q dividing Npoo, and let Qx be the

maximal extension of Q unramified outside 3. By Lemma 1.5.3 there is an
exact sequence

0— S(Qoanp"") — Hl(QE/Qoanp’”) — @qu @vlq Hsl(Qoo,v:Ep(“’)' )
3.17

It follows from local duality (Theorem 1.4.1 and Proposition 1.4.3) that for
every place v of Q, we have

Hom(H;(Qoo,va Epm)a Qp/zp) = I&H E(Qn,v)A

where as usual ( )" denotes p-adic completion.
If v | ¢ for some ¢ # p, and E(Q,) has no p-torsion, then it is not
hard to show that E(Qu,v») has no p-torsion and so E(Q,»)" = 0 for every
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n. Thus for p as in the statement of the corollary, the Pontryagin dual of
(3.17) is

lim £(Qn,p)" — Hom(H'(Qs/ Qoo Bp< ), Qp/Zp) — Zoo — 0.

Since Qo /Q is totally ramified at p, we have
@E(Qn,py = l.LnEl(Qn,p) = L&nEA'(pn)

and this is free of rank one over A (see for example [PR1] Théoréme 3.1 or
[Schn] Lemma 6, §A.1). It now follows, using the fact that Z is a torsion
A-module (Theorem 3.5.16) and using Propositions 3, 4, and 5 of [Gr2]
that Hom(H'(Qs/Qoo, Ep=), Qp/Z,) has no nonzero finite submodules.
By the Lemma on p. 123 of [Gr2] the same is true of Z. O

Corollary 3.5.19. Suppose that E is modular, that E does not have com-
plex multiplication, that E has good reduction at p, that p does not divide
2rg quNZq(q_1)|E(Qq)mrs| (where rg is as in Theorem 3.5.3), and that
PE,p s surjective. Then

L(E,1)

|II(E)pe | divides
Qg

Proof. First, if E has good supersingular reduction at p then |E(F,)| is
prime to p, so the corollary follows from Theorem 3.5.11(ii).

Thus we may assume that F has good ordinary reduction at p. In
this case the corollary is a well-known consequence of Theorem 3.5.16 and
Corollary 3.5.18; see for example [PR1] §6 or [Schn] §2 for details. The
idea is that if Z, has no nonzero finite submodules and char(Z.,) divides
ﬁEA, then

|S(Qoos Bp) ¥ (=/V divides xo(Lp,n),
where xo denotes the trivial character, and
xo(Le,w) = (1=a™)? [T ba(a™")(L(E, 1) /).
alN
On the other hand, one can show that the restriction map
S5(Q, By=) — S(Qoo, Bpee) /Y
is injective with cokernel of order divisible by (1 —a~1)2, and the corollary

follows. O

Remark 3.5.20. The Birch and Swinnerton-Dyer conjecture predicts that
the divisibility of Corollary 3.5.19 holds for almost all, but not all, primes

p.
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Proof of Theorem 3.5.4(i). Suppose E is modular, E does not have com-
plex multiplication, and L(E,1) # 0. By Theorem 3.5.11, E(Q) is finite
and ITI(E),e is finite for every p. By Corollary 3.5.19 (and using Serre’s
theorem, see Remark 3.5.9), III(E),~ = 0 for almost all p. This proves
Theorem 3.5.4(i). O

Remark 3.5.21. We can also now prove part of Theorem 3.5.4(ii), in
the special case where L is contained in Q., and E has either good or-
dinary or multiplicative reduction at p. For in that case, Theorem 3.5.16
shows that x(char(Hom(S(Qwo, Ep=),Qp/Zp))) divides a nonzero multiple
of L(E,x,1)/Qg. If L(E, x,1) # 0 it follows that S(Qoo, Ep=)X is finite.
The kernel of the restriction map S(L, Epe) = S(Qoo, Epe) is contained
in the finite group H'(Qq /L, Ego?"" ), and so we conclude that both E(L)X
and IMI(E/ )y are finite.

3.6. Symmetric Square of an Elliptic Curve

Let E be an elliptic curve over Q and let T,(E) be the p-adic Tate
module of E. Let T be the symmetric square of T,(E), i.e., the three-
dimensional Z,-representation of Gq defined by

T = (T,(E) @ T,(E))/{t®t —t' @t: t,t' € T,(E)}.

Suppose 7 has eigenvalues @ and a=! on T,(E) with a® # 1 (mod p).
Then 7 € GQ(u,) (as in Proposition 3.5.8), and 7 has eigenvalues a?,
1, and a2 on T, so 7 satisfies hypothesis Hyp(Q,T)(i). If the p-adic
representation attached to E is surjective and p > 3 then we can always

find such a 7, and further T'/pT is an irreducible Gq-module and
H'(Q/Q,W) = H'(Q/Q,W~) = 0.

Thus if we had an Euler system for T, then we could apply Theorem 2.2.10
to study the Selmer group S(Q,W*). See [F]] for important progress in
this direction.






CHAPTER 4
Derived Cohomology Classes

The proofs of the main theorems stated in Chapter 2 consist of two
steps. First we use an Euler system to construct auxiliary cohomology
classes which Kolyvagin calls “derivative” classes, and second we use these
derived classes along with the duality theorems of §1.7 to bound Selmer
groups.

In this chapter we carry out the first of these steps. In §4.2 and §4.3 we
define and study the “universal Euler system” associated to T and K /K.
In §4.4 we construct the Kolyvagin derivative classes, and in §4.5 we state
the local properties of these derivative classes, which will be crucial in all
the applications. The remainder of this chapter is devoted to the proofs of
these properties.

4.1. Setup

Keep the notation of §2.1. We have a fixed number field K, a p-adic
representation T of Gi with coefficients in the ring of integers O of some
finite extension ® of Q,, and we assume that 7' is unramified outside a
finite set of primes of K.

The letter q will always denote a prime of K. For every prime q of K
not dividing p, we let K(q) denote the maximal p-extension of K inside the
ray class field of K modulo q. Similarly, let K (1) denote the maximal p-
extension of K inside the Hilbert class field of K. Class field theory shows
that K(q)/K(1) is unramified outside ¢, totally ramified above g, and
cyclic with Galois group canonically isomorphic to the maximal p-quotient
of (Ox /9)*/(OF (mod q)). Let Ty = Gal(K (q)/K(1).

Fix an ideal N of K divisible by p and by all primes where T is ramified,
as in Definition 2.1.1. Define

R = R(N) = {squarefree products of primes q of K such that q{ N}.
Ifre R, say t =q1---qx, then we define K (t) to be the compositum

K(t) = K(q1)--- K(qx)-

75
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Note that K(r) is contained in, but not in general equal to, the maximal
p-extension of K inside the ray class field of K modulo v. We define

'y = Gal(K(v)/K(1)).
Ramification considerations show that the fields K(q) are linearly disjoint
over K (1), so there is a natural isomorphism
r.= [ 1y
primes g|t

where Iy is identified with the inertia group of q in I';. If s | ¢ this allows
us to view I'y as a subgroup of 'y, as well as a quotient.

Fix a Zg—extension Ko /K in which no finite prime splits completely,
as in Definition 2.1.1. If K C F C K, let F(t) = FK(t). Asin Chapter 2,
we will write K C; F' to indicate that F' is a finite extension of K, and if
KC F C Ky we let

Tpey = Gal(F(r)/K(1)).
Again, we will often identify I'. with the subgroup of T'p(;) generated by
the inertia groups of primes dividing t, and I'p(1) with the subgroup gen-
erated by the inertia groups of primes dividing p, and then (since Ko /K
is unramified outside p)

FF(t) = FF(I) x T';.

As above, if 5 | v we can also identify I'p(4) with a subgroup of T'p().
Figure 1 illustrates these fields and Galois groups.
For t € R define

Ne = Y o € Z[T\] C Z[Gal(K(v)/K)].
oel'y
If s | v and KC, F C Ko we can view Ny € Z[I'y] C Z[Gal(F(r)/K)] as
above, and then Ny = NsN,/,.
As in Chapter 2, let Fry denote a Frobenius of q in Gk, and
P(Fr;'|T*;2) = det(1 —Fr;'2(T*) € Olz].

Definition 4.1.1. Suppose K C;F C K, and M € O is nonzero. We
define Rp,pr C R to be the set of all ¢ € R such that for every prime q
dividing ¢,

o M|[K(q): K(1)],

o M| P(Fr'|T*1),

e g splits completely in F(1)/K.

As in Definition 1.4.6, if M € O is nonzero we let M € Z% denote the
smallest power of p which is divisible in O by M.
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Lemma 4.1.2. Suppose q € R is a prime of K and M € O is nonzero.
(i) M|[K(q): K(1)] < q splits completely in K (pz,(O%)/M).
(ii) (Fr_1|T* N(q )Fr_l) annihilates T.

(iii) If M | [K(q) : (1)] then

P(Fr;'|T*;2) = det(1 — Frqz|Wy) (mod M).

(iv) If M | [K(q) : K(1)] then P(Frq_1|T*;Frq_1) annihilates Wy .
Proof. Class field theory identifies Gal(K (q)/K) with the maximal p-quo-
tient of (Ok/q)* /(0% (mod q)). Thus if q 1 p, then [K(q) : K(1)] divides
I(Ok/a)*| = (N(q) — 1) and

Fry fixes py; <= M divides |(Ok/q)*| <= M divides |(Or/q)™|.
If Fr, fixes p;; we have further
Fr, fixes (0%)/M < (O} (mod g)) C ((Ok/q)*)™
This proves (i). One checks easily that
P(Fr,'|T*;z) = det(1 — Fr,'2|T*) = det(1 — N(q) 'Frqz|T).
This and the Cayley-Hamilton theorem prove (ii), (iii), and (iv). O
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The following lemma, together with the Tchebotarev density theorem,
will give a large supply of primes in Rp . By F(Wy) we mean the
smallest extension of F' whose absolute Galois group acts trivially on Wy,
(or equivalently, the fixed field of the kernel of the action of Gr on Wyy).

Lemma 4.1.3. Suppose K C,F C Ky, and M € O is nonzero. Suppose
further that 7 € Gk acts trivially on K (1)K (e, (077 and that
T™=1 #0. If q is a prime of K not dividing N such that the Frobenius Fr,
of q is a conjugate of T on F(1)K (W, pyy, (OIX{)I/M), then q € Rr,um.

Proof. Note that q is unramified in F(1)K (W, gz, ((’)IX()I/M)/K. Since
Fr, fixes K (pyr, (OF%)Y/M), it follows from Lemma 4.1.2(i) that M divides
[K(q) : K(1)]. Since Frqy fixes F(1), we see that q splits completely in
F(1)/K. By Lemma 4.1.2(iii) we have

P(Fr,'|T*;1) = det(1 — Fry[Wa)

det(l — T|WM)
det(1 —7|T) = 0 (mod M),

the first equality because Fry is a conjugate of 7 on Wiy, the second because
T7=1 7é 0. Thus qe RF,M- O

4.2. The Universal Euler System

We now define the “universal Euler system”. This might also be called
a universal distribution for the Euler system distribution relation of Defi-
nition 2.1.1. In the special case K = Q and T' = Z,(1), it is closely related
to the universal ordinary distribution studied by Kubert in [Ku] (see also
[Lan] §2.9 or [Wa] §12.3).

Definition 4.2.1. Suppose that t € R and K C; F C K. We define an
O[Gal(F(r)/K)]-module Xp, as follows.

First suppose that every prime q dividing ¢ satisfies K(q) # K(1). For
every s dividing v let zp(s) be an indeterminate. Set Xp() = Yp(y) 1Z F(v)
where:

Yr(y) is the free O[Gal(F'(r)/K)]-module on generators {zp() : 6 | t},
Zp(v) is the submodule of Yp(;) generated by the relations

OTF(s) = TF(s) if o € Gal(F(v)/F(s)) = I'e/s,

Ny p(gs) = P(Fry T Fry Dape)  if gs |t

For general t, let ¢/ be the product of all primes q dividing t such
that K(q) # K(1). Then by definition F(r) = F(¢'), and further we have
{F(s): 5|t} = {F(s) : s | t'}. We simply let Xp() be Xp(wy as defined
above.
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Ifs|vand K C, F C,F' C Ky then there are natural O[Gal(F'(v)/K)]-
module maps

Xpi(e)y — Xp(r) induced by zp/() = zp(y) for t|r, (4.1)
Xp(s) — Xpr(v) induced by gy = Ny peyTr g for t|s.  (4.2)
The map (4.1) is clearly surjective, and Proposition 4.3.1(v) below will
show that the map (4.2) is injective.
Definition 4.2.2. The universal Euler system (for (T,N,K/K)) is

X = X(T,N,Ks/K) = limXp().
F,v

direct limit with respect to the maps (4.2). Using the maps (4.1), (4.2) we
also define
Xeoe = m XF(t) and Xoor = liﬂxoo,t-
K Cs FCKoo tER
For every v € R define
H(K(v),T) = lim H'(F(),T).

KCeFCKoo

Lemma 4.2.8. If ¢ is an Euler system for (T,K,N) with K, C K, then
sending Tp () to cp(y) induces G -equivariant maps

XF(r) — Hl(F(t),T), Xoo,r — Héo(K(t)aT)a
X — lig H'(F(x),T), Xoo,r — lim HY (K (v), T),
F,x TER

direct limits with respect to restriction maps.

Proof. This is immediate, since the Euler system classes {cp(y)} satisfy all
the relations that the {zp(;)} do (see Definition 2.1.1 and Remark 2.1.4).
O

Remark 4.2.4. Conversely, although we will not make use of it, it follows
from the following lemma that every map

Xoo,r — lim Ho (K(¢),T)

reR
induces an Euler system for (T, Kin, V), where K, is as in Remark 2.1.4.
Lemma 4.2.5. (i) f KC.F C Ky and t € R, then
TCre = T9r@ gpd Wore = Worm,
(ii) Ifts € R then the restriction map induces an isomorphism
H! (K(v),T) = HL (K (xs),T)"".
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Proof. Since Gal(F(¢v)/F(1)) = I'; is generated by inertia groups of primes
dividing v, and T is unramified at those primes, Gal(F(¢r)/F(1)) acts triv-
ially on T¢#® and W%r ). This proves (i).

It is enough to prove (ii) when s is prime, and then the general case
follows by induction.

Let S be a finite set of places of K containing all places dividing AN tsoo,
and let Kg be the maximal extension of K unramified outside S. (Recall
that AV is divisible by p and all primes where T is ramified, so in particular
K (vs) C Kg and T is a Gal(Ks/K)-module). By Propositions B.2.5(ii)
and B.2.7(i), we have an inflation-restriction exact sequence

H'(F(vs)/F(x), T¢r<) — H'(Ks/F(x),T)
— HY(Ks/F(vs),T)'s — H?*(F(xs)/F(xr), T9F2). (4.3)
By (i) (and using our identification Gal(F'(vs)/F(r)) = T),
HY(F(vs)/F (), TFt=)) = H'(F(rs)/F(v), TEFw)
= Hom(T,, T9 @) = 0
and similarly (since s is prime, so T's is cyclic)
H?(F(vs)/F(x), TCr) = TGr@ [|D T,
Now pass to the inverse limit over F' in (4.3). Using Corollary B.3.6 and

our assumption that the decomposition group in Gal(K,/K) of every finite
prime is infinite, we obtain an exact sequence

00— H;O(K(t),T) — H;Q(K(ts),T)Fﬁ N m TGF(I)/|F5|TGF(1).

K Cf FCKoo

By Lemma B.3.2, this inverse limit is zero, so this proves (ii). O

4.3. Properties of the Universal Euler System
Recall that ® is the field of fractions of O.

Proposition 4.3.1. Supposet € R and K C,F C Ko,. Then

(i) Xp() is a finitely generated free O-module,
(ii) Xp@r) ® @ is a free rank-one module over ®[Gal(F(r)/K)],
(iii) Xp() is a free O[Gal(F (r)/ K (r))]-module of rank [K(x) : K],
(iv) for every FC, F' C Ky, the map (4.1) induces an isomorphism
X pr(x) Qofcal(F (v)/k)) OlGal(F(v)/K)] — Xp(),
(v) for everys |t and FC, F' C Ko, the map (4.2) induces an isomor-

Gal(F'(x)/F(s))

phism Xp (g = XF,(t)
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Proof. Let ¢ be the product of all primes q dividing ¢ such that I'q # {1}.
Then Xp(vy = Xp(), F(t') = F(r), and K(¢') = K(t), so the proposition
for t is equivalent to the proposition for t'. Thus without loss of generality
we may replace t by t/, i.e., we may simplify the proof by assuming that
Iy # {1} for every g dividing t.

We will prove the proposition by constructing a specific O-basis of
X (). Fix a set of representatives A; C Gal(F(r)/K) of Gal(K(1)/K),
and for every prime q dividing ¢ let A; = 'y — {1} C Gal(F(x)/K). For
every ideal s dividing v, define a subset Ay, C Gal(F(r)/K) by

Aps = Gal(F(r)/K(v) A J] Aq

primes q|s
= {orgi ] 90+ 9r € Gal(F(@)/K (1)), 01 € 41,1 # gq € Ty}
qls
and then define a finite subset By () of X () by
Brqy = UAF,sxF(s) C XF)-
slt

We will show that Bp(;) is an O-basis of Xp()-
Clearly Aq U {Ngy} generates O[I'y] over O, so

Gal(F(r)/K(x)) Ay [](AqU{Ng})
qls

generates O[I'r(s)]. For every q dividing s we have a relation
Nyxpe) = P TS FryDape/q € OlGal(F(s/q)/K)|zpes)q)-

It follows easily, by induction on the number of primes dividing t, that
Bp(y) generates X ;) over O. Further,

|Bre| < Y |Ars| = [F(1) : K] J](1Aq] + 1)

sle qlr

= [FQ1): K][[ITq| = [F(x) : K].
qle

On the other hand, we claim that ranko(Xp()) > [F(r) : K]. To see
this, let Yp(r) and Zp(,) be as in Definition 4.2.1 of X (). One can check
directly that the assignment

i e N,
zrw =[] No JT(ITal + (P T ;Frql)—|rq|)—|r“|)
al(e/s)  als a
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induces a well-defined homomorphism from Y () to O[Gal(F'(r)/K)] which
is zero on Zp(y). Thus we obtain a map

0 : Xy @8 — B[Gal(F(r)/K)].

If x is a character of Gal(F'(r)/K) into an algebraic closure of ®, say x has
conductor exactly s, then

x(p(zr))) = [[Tal # 0.

gt

It follows that ¢ is surjective, and in particular
ranko(Xp(t)) = dimQ(Xp(t) ®(I>) > [F(t) : K] > |BF(t)|

Since Bp(y) generates Xp(;) over O, we conclude that equality holds, that
Bp(y) is an O-basis of Xp(,), that Xp() is torsion-free, and that ¢ is
an isomorphism. This proves (i) and (ii). Further, since Gal(F(t)/K (t))
permutes the elements of the basis Bp(y), (iii) follows as well.

The map (4.1) defined by zp(4) = (s induces a surjective map

X pi(v) ®ojqal(F (v)/ k)] OlGal(F(v)/K)] - Xp-

By (iii) applied to F' and F’, this map must be injective as well, which
proves (iv).
It is immediate from the definitions that the map (4.2) induces a sur-
jection
Gal(F'(r)/F(x))
Xr@w = Xpi ’

which then must be injective by (iii). Also we see that Br() C Br(x), S0

the map X p(5) = Xp(y) is injective and its cokernel is torsion free. By (ii),

X Gal(F (1) /F(s))

F(o) /X Fp(s) is finite, so it must be zero. Now (v) follows. O

If G is a profinite abelian group, we write O[[G]] = lim O[G/U].

vca
Corollary 4.3.2. The O[[Gal(K(t)/K(r))]]-module X . is free of rank
[K(v) : K], and for every K C; F C K we have
Xoor ®0[[Gal(K e (v) /K)]] O[Ga](F(t)/K)] >~ XF(:)-
Proof. This is immediate from Proposition 4.3.1(iii) and (iv). O

Lemma 4.3.3. Suppose R is a ring, G is a profinite abelian group, and H
is an open subgroup of G. Suppose B is an R[[G]]-module.
(i) Hompgye) (B, R[[G]]) = Hompgy (B, R[[H]]) as R[[H]|-modules.
(ii) If B is free as an R[[H]]-module then Ext}%[[c]](B,R[[G]]) =0.
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Proof. Write S = R[[H]] and S’ = R[[G]]. Fix a (finite) set C C G,
containing 1, of coset representatives of G/H. Then C is an S-basis of S,
and we let 7 : S’ — S be the S-module map

Zann — aj.-

neC

Define a homomorphism Homg/(B,S') — Homg(B,S) by composition
with 7. One can check directly that this map is both injective and surjec-
tive, which proves (i).

It follows from (i) that Exty, (B, S') = Extg(B, S), and if B is free over
S this is zero. O

Proposition 4.3.4. Suppose that ¢t € R, that k > 0, and that M € O is
nonzero.

(i) If KC, F C Ky and G = Gal(F(v)/K), then
Ext(o,/mo)6)(Xre) /MXp), (O/MO)[G]F) = 0.
(ii) If G = Gal(K(¥)/K), then
Ext(o,m0)[a1(Xoo,t/MXoo,e, (O/MO)[[G]]F) = 0.
Proof. Apply Lemma 4.3.3(ii) with R = O/M O and with
G:Gal(F(t)/K), HZ{I}, B:XF(t)/MXF(t)
to prove (i), and with
G = Gal(Kx(v)/K), H = Gal(Kx(t)/K(r)), B = Xoo/MXoo

to prove (ii). That B is free over R[[H]] is Proposition 4.3.1(i) in the first
case, and Corollary 4.3.2 in the second. O

Remark 4.3.5. Alternatively, Proposition 4.3.4(i) can be proved by ob-
serving that (O/MO)[G] is injective (as a module over itself) when G is
finite. However, this is not true for (O/MO)[[Gal(K«(¢)/K)]]-

4.4. Kolyvagin’s Derivative Construction

Following Kolyvagin [Ko2], we will associate to an Euler system a
collection of “derivative” classes

I{J[FataM] E Hl (F7 WM)

for every K C, F C K, every nonzero M € O, and every t € R,y (where
Rr um is the subset of R given by Definition 4.1.1).
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Definition 4.4.1. Fix a generator £ of I'(Lnupn, and for every prime q of
K not dividing p fix a prime Q of K above q. We will fix a generator oy
of I'y as follows.
Let M = |I'y| = [K(q) : K(1)] and let Zg denote the inertia group
of Q in Gk. Since M is a power of p and q is prime to p, Lemma 1.4.5
shows that Zy has a unique cyclic quotient of order M, and this quotient
is canonically isomorphic to pj,. Since I'y itself is a cyclic quotient of Zg,
this allows us to identify I'y with p,,. The chosen generator £ gives us a
generator ¢ of p,.; we define o4 € I'y to be the corresponding generator
of I'y. (This definition depends on the choices of Q and &, but we will
suppress this dependence from the notation.)
Now define, for every prime q not dividing p,
Tql—1
Dy = Y iol € Z[Ty].
i=0
If t € R and q | v we view Dy € Z[I';] and define
D.= ][] Dy €2
primes gq|t

If KC, F C Kw, fix an element Np(1)/r € Z[GFr] whose image under re-
striction to F'(1) is the norm element }°_ c.1p(1),r) ¥ € Z[Gal(F(1)/F)],
and define

Dy r = Np(@)/pDe-
We have the easy “telescoping” identity
(0 =1)Dgq = [Tq| = N, (4.4)

This is the key step in the following lemma, which in turn is crucial for the
construction of the derivative classes.

Lemma 4.4.2. Suppose M € O is nonzero, KC, F C K, andt € R .
Let Zp(x) denote the image of Tp() in Xp)/MXp). Then
(i) DerZre) € (Xpw) /MXp) @EC/),
(ii) De,rZp(y) is independent of the choice of Np(1)/F-
Proof. We will show that
(0 =1)Dixpr) € MXp() for every o € Gal(F(r)/F(1)),

and then both assertions of the lemma follow.
The proof is by induction on the number of primes dividing t. If t =1
there is nothing to prove. In general, suppose q is a prime dividing ¢, say
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t = gs. Since q € R, v, we have that Frq € Gal(F(r)/F(1)) and that M di-
vides both |T'y| and P(Frq_1|T*; 1). Since Nyzp() = P(Frq_1|T*; Frq_l)asp(s),
using (4.4) and the induction hypothesis we obtain

(0q = 1)Dixp(e) = (0q — 1) DgDsz vy
= |Tq|Dsz () — P(Fry ' [T*; Fry ') Dawp(s)
= 04| Dszp() — P(Fr, ' |T*1)Dezpsy (mod (Frq — 1)Dszp(s))
€ MX (o).

Since Gal(F(r)/F(1)) is generated by the o4, this proves the lemma. O

Remark 4.4.3. Theidea of the construction of the derivative class &g, u
is as follows.

By Lemmas 4.4.2 and 4.2.3, the image of D, pcp(y in H' (F(r), W)
is fixed by Gal(F(r)/F). If W¢r® = 0 then the restriction map

HY(F, W) — HY(F(x), Wy) G F®/F) (4.5)

is an isomorphism, and we define k[p 1 € H L(F, W) to be the inverse
image of Dy pep(y)-

When WYre # 0, the map (4.5) need not be an isomorphism. The
rest of this section will be devoted to showing, using Proposition 4.3.4
and the universal Euler system, that the image of D, pcp(.) always has a
canonical inverse image under (4.5). That inverse image will be our class
K[r,c,m] (see Definition 4.4.10). Our construction will also be quite explicit,
so that we can use it to prove the local properties of the derivative classes
which we state in §4.5 below.

Fix, for the rest of this section, a nonzero M € O.

Definition 4.4.4. Let Wy, = Ind(W)s) denote the induced module de-

fined (and called Ind{§ (W) in §B.4:

WM = Ma,ps(GK,WM),
i.e., the O-module of continuous maps (not necessarily homomorphisms)
from Gk to Wy, with Gk acting via

(vf)(g) = f(gy) for all v,g9 € Gk.

There is a natural G g-module inclusion W,; — Wj, which sends ¢ to the
map g — gt, and we will identify Wy, with a submodule of Wy, using this
inclusion.

Proposition 4.4.5. For everyt € R and every finite extension L of K in
Ko (r), there is a canonical map

6r + (Way /Wa)¥s — HYL,Wy)
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such that
(i) there is an ezact sequence
0 — WHE — WSE — (War /W) 25 HY(L,War) — 0,

(i) if f € (War /War)Cr and f € Way lifts f, then 81.(f) is represented
by the cocycle

v (y=1)f € Wy for v € Gy,
(iii) if KC, LC, L' C Koo(r) then the following diagram commutes:

L/L

(Wit [War) G0 (War /W) G ——

Jos o

Resyr
HY(L, W) —=

(War /War)¥®

lJL
Corpr/p

HY(L',Wy) —— HY(L,Wy).
Proof. By Proposition B.4.5, taking G'.-cohomology of the exact sequence
0 — Wy — Wy — Wy /Wy — 0

gives the exact sequence of (i) and the commutativity of (iii). Assertion (ii)
is just the standard calculation of the connecting map in Galois cohomology.
o

Lemma 4.4.6. Let d = rankp(T), and suppose t € R.
() IfKC,F C Ko then Wof ) is a free (O/MO)[Gal(F(v)/K)]-mod-
ule of rank d.
(ii) Let A, = O[[Gal(K(t)/K)]]. Then @Wff(‘) (inverse limit over
K C. F C Ky with respect to the norm maps) is a free Ay/MA,-
module of rank d, and if K C,F' C K, then

Q_WGF(” ®4, O[Gal(F'(v)/K)] = Wir'®.

Proof. Let W9, denote the O-module W)y, with trivial Gk-action, and
abbreviate H = Gal(F(v)/K). Then there are Galois-equivariant isomor-
phisms

Wff(') = Maps(H, W) = Maps(H,O/MO) @0 W.

Since Wyy is free of rank d over O/MQO, and Maps(H,O/MOQO) is free of
rank one over (O/MO)[H], this proves (i). The second assertion follows
by taking inverse limits. O

If v € R we write HL (K (r), W) = lim HY(F(t), War).

K Cg FCKoo
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Proposition 4.4.7. Suppose vt € R. Then the maps dp(.) of Proposition
4.4.5 induce an exact sequence

0 — im WEP® s lim (Wyy /Wi ) 670 25 HL (K (v), War) —s 0.
M L [ee)

Proof. By Lemma 4.4.6(i), Wff ) is finite whenever K C,F C K. There-
fore taking inverse limits over F' of the exact sequence of Proposition 4.4.5(i)
(with respect to norm maps for the first three terms and corestriction for the
fourth; see Proposition 4.4.5(iii)) yields a new exact sequence (see Propo-
sition B.1.1(i))

0 — Lm Wy " — lim WyF©
F F

— Lim (Way /War) 70 25 HL (K (), War) — 0.

By Lemma B.3.2, lim WAC,';F(‘) =0, and the proposition follows. O

Proposition 4.4.8. Suppose ¢ is an Fuler system and ¢t € R. There is a
family of O[Gk]-module maps

{dF : XF(t) — (WM/WM)GF(” : KCfF C Koo}

lifting c, i.e., such that the following diagrams commute

dpr
(Was [Wi)9re Xpr(v) —— (War /W) '
dr
/ léF(r) NF’(w)/F(w)l lNF'm/F(c)
Xp) — H'(F(x), Wn) X () = (Wag [Wig) Cr o

where the bottom map on the left sends Tp(5) = cp(s) for all s dividing t
as in Lemma 4.2.3, and on the right K C,F C, F' C Ko,. These conditions
determine each dp uniquely up to an element of Homojq .| (Xp(r), War)-

Proof. We first illustrate the proof in a simplified setting. If WEF(“) =0,
then Proposition 4.4.5(i) becomes a short exact sequence which (abbreviat-
ing R = (O/MO)[Gal(F(x)/K)] and Xp()/M = Xp)/MXp()) induces
an exact sequence

0 — Homp(Xp(x) /M, Wyt ) = Homp(Xp(e) /M, (War /War) °*)

6F T F (v
22 Homp(X gy /M, H'(F(x), War)) = Exth (X /M, War ).

By Lemma 4.4.6(i) and Proposition 4.3.4(i), Exth (X p() /M, Wyt ©) =0,
so we can choose a map dr lifting c in this case.
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In general, since WA(,’;F(” may be nonzero, we pass to the limit and
use the short exact sequence of Proposition 4.4.7 instead of Proposition
4.4.5(1). Arguing as above, using Lemma 4.4.6(ii) and Propositions 4.4.7
and 4.3.4(ii), and writing A, = O[[Gal(K(t)/K)]], we obtain an exact
sequence

0 — Homaj, (Xoo,t/MXoo,ta @W(Iijpm)
2

— HomAt (Xooat/MX(x),t; @ (WM /WM)GF(I))

F
2% Homy, (Xeoe/MX oo, HL (K (v), War)) — 0. (4.6)
Therefore there is a map dog : Xoo,e — Jim (War /War)¥re such that
F

0. 0dec({zr(s)}r) = {Cr(s)}r

for every s dividing t. We define dr to be the composition
X () — Xoo,e @, O[Gal(F(r)/K)]
S=5% lim (War /Wa)97' @, O[Gal(F()/K)]
FI
— (WM/WM)GF(')

where the left-hand isomorphism comes from Corollary 4.3.2 and the right-
hand map is the natural projection. (Explicitly, dr(zp(s)) is the projection
of doo({zpr(s)}) to (War /War)9F.) Tt is straightforward to check that
these maps have the desired properties. By (4.6), dw is unique up to an

element of Homg, (Xoo,r, im Wff(‘)), and it follows that d is well-defined
up to an element of Homeq, (X p (), War). O

Remark 4.4.9. We will only need to use the existence of the maps dr of
Proposition 4.4.8 for individual F. The compatibility as F varies (the right-
hand diagram of the proposition) is needed in order to get the uniqueness
portion of the proposition, i.e., to make the map dp well-defined up to an
element of HomO[GK] (Xp(t), War).

Definition 4.4.10. Suppose ¢ is an Euler system, M € O is nonzero,
KC,F C Ky, and t € Rp,. Fix a map
d =dyp: XF(r) —)WM/WM

in a family lifting ¢ as in Proposition 4.4.8.
Lemma 4.4.2 shows that

d(Dr,Fl'F(t)) c (WM/WM)GF;
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where Dy r = Np(1),pD: is as in Definition 4.4.1, and we define
KiEem) = 0F(d(Dy pap)) € HY(F, W).

We can describe this definition with the following diagram

L Y

SF(r)

d(Dt,F-'EF(r)) € (WM/WM)GF(t) — HI(F(Y),WM) E) Dr,FcF(r)

I

A(Dersr) € (Wi /Wi)or —2 > HY(F,Wy) 3  Kirem]
AN ¥

where the commutativity of the inner square is part of Proposition 4.4.5(iii).

Remark 4.4.11. The class kg, is independent of the choice of Np(1)/r
used to define Dy r, since by Lemma 4.4.2, D rxp() € Xp()/MXp(y) is
independent of this choice. The definition of k[r . a7 is also independent
the choice of d in Proposition 4.4.8. For if d' is another choice, then
d—d' € Homg, (Xp(:), War), so by Lemma 4.4.2 and Proposition 4.4.5(i),

d(D:,pzp(r) — d'(Depzrp(y)) € image((War)9") = ker(dp).

Also, note that k[f .,y depends only on the images of the Euler system
classes cr, in HY(L, W), not in H'(L,T). However, the extra information
in HY(L,T) will be used to prove Theorem 4.5.1 below. See §9.3 for a
further discussion in this direction.

The class &[p,.,m does depend (because D does) on the choice of
generators o4 of the groups I'y. Making another set of choices will multiply
K[F,e,m] by a unit in (O/MO)*.

For the next two lemmas, suppose c¢ is an Euler system, M € O is
nonzero, K C, F C Ko, and t € Rp,y as in Definition 4.4.10.

Lemma 4.4.12. Suppose d : Xy — War /Was is a lifting of the Euler
system c as in Proposition 4.4.8. Let f € Was be any lifting of (D, r2p(y))-
Then K[F. ) 18 Tepresented by the cocycle

vy (y=1)f € Wy for v € Gp.
Proof. This is a combination of the definition of k[ above with the
explicit description of the connecting map dp (Proposition 4.4.5(ii)). O
Lemma 4.4.13. (i) The class k(r,1,m) is the image of cr under the
map HY(F,T) - HY(F,Wy).
(ii) More generally, the restriction of K(pc ) to H' (F(r), Way) is equal
to the image of D pep(yy) in H'(F(x), War).
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(iii) If M | M' and v € Rp,m then under the natural maps we have
HY F,Wyp) — HY(F,Wy), HY F,Wy) —— HYF,Wyp).
K[F,t,M'] ——> K[F,t,M] KiF,e,M] —— (M' /M) K{p,e, v

Proof. All three assertions follow from Definition 4.4.10. For the first we
take vt = 1,50 D r = Np(1),r, and use Proposition 4.4.5(iii) and the Euler
system relation Corg(1)/r(cr(1)) = cF- O

4.5. Local Properties of the Derivative Classes

Fix an Euler system c for T. In this section we will state the main
results describing the local behavior of the derivative classes k[p,¢ ) of
§4.4. We will see (Theorem 4.5.1) that &g, 3 belongs to the Selmer group
SE(F, W) where ¥ is the set of primes of K dividing pr (see Remark 1.5.8
for this slight abuse of notation). For our applications it will be crucial to
understand (Theorem 4.5.4) the ramification of k[f,. a7) at primes dividing
t.

The proofs will be given in the remaining sections of this chapter.

Theorem 4.5.1. Suppose that M € O is nonzero, that K C,F C K, and
that v € Rp,nm. For every place w of F' not dividing pr,

(K[, M])w € H}(FU);WM)'
In other words,
Klpem) € S7PF(F, W)
where Yy is the set of primes of K dividing pr.

Theorem 4.5.1 will be proved in §4.6.

Lemma 4.5.2. Suppose M € O is nonzero and q € Ri a s prime. Then
there is a unique Qq(x) € (O/MO)[z] such that

P(FrgllT*;m) = (z —1)Qq(z) (mod M).
Proof. Take
Q4(@) = P(Frq—IIT*;;,;) - P(Frq_1|T*;1)-

r—1

Since q € Rk, m, we know that M divides P(Frq_1|T*; 1) so this polynomial
has the desired property. The uniqueness comes from the fact that z — 1
is not a zero divisor in (O/MO)[z]. O
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Definition 4.5.3. Suppose M € O is nonzero and q € Rg,m is prime.
The choices of o4 € I'y (Definition 4.4.1) and Fry depend on the choice of
a prime £ of K above q. We use the same choice for both, and we further
fix 54 in the inertia group of Q extending oy.

By Lemma 1.4.7(i) (which applies thanks to Lemma 4.1.2(i)) there are
well-defined isomorphisms

ag : HX(Kq, W) = Wyt

Bq : H}(Kq,WM) = Wun/(Frg— )Wy
given on cocycles by

ag(c) = ¢(aq), Bq(c) = c(Fry).

If g € Rk, um, then P(Fr,'|T* Fr,') annihilates War by Lemma 4.1.2(iv).
Thus the polynomial @} of Lemma 4.5.2 induces a map

Qq(Fry) : War/(Fry — YWar — Wyt~
We define the “finite-singular comparison” map

¢f* + Hy(Kq,Wn) — Hy(Kq, W)

to be the composition

HY(Kq, Wat) 25 War/(Frg — )W
Fr-1! _ —1
N )
If KC,F C Ky and q € Rp,um, then Fy = K, and we can view ¢£s as
a map from Hf(Fa,Wn) to H}(Fa, War). We will still write ¢%® in this
case, and suppress the dependence on £.

Theorem 4.5.4. Suppose M € O is nonzero, KC,F C K, q is prime,
and vq € Rrpm. If ¢£S is the map defined above, and (K(F,cq,r))g denotes
the image of K{p,q,n) in Hi (Fa, W), then

(KiFea,nn)s = 3° (Kipean)-
In other words, the singular part of K[p,.q,0 at g is controlled by the

(finite) localization of kg ) at q. Theorem 4.5.4 will be proved in §4.7.

Corollary 4.5.5. Suppose M € O is nonzero, q is prime, and tq € Rk .
Suppose further that Wy /(Frqy — 1)Way is free of rank one over O/MO.
Then the order of (Kik cq,p)g in H} (K4, W) is equal to the order of
(K[K,t,M])q mn H}(Kq, WM)



92 4. DERIVED COHOMOLOGY CLASSES

Proof. The maps oy and Sy in Definition 4.5.3 are both isomorphisms,
and by Lemma 4.1.2(iii) and Corollary A.2.7 (applied with 7 = Frq_1 and
Q(z) = Qq(x)), so is the map Qq(Frq_l). Thus ¢{;s is an isomorphism and
the corollary follows from Theorem 4.5.4. O

4.6. Local Behavior at Primes Not Dividing pt

For this section fix an Euler system c for 7' and a nonzero element
MeO.fKC,F C Ky and t € Ry, we need to show that (k[p,e,m1)w €
H } (Fw, War) for every place w of F not dividing pr. When w is archimedean
(Lemma 4.6.3), or when w is nonarchimedean and T is unramified at w
(Corollary 4.6.2(ii)), this is not difficult. We treat those cases first, and
then go on to the general case.

Proposition 4.6.1. Suppose K C,F C K, and v € R. For every prime
Q of F(r) not dividing p, and every v € Gk, we have

(verw)e € Hy(F()o,T), (vepw)e € Hi(F(t)o,Wn)
where Cp(y) is the image of cp(yy under H' (F(x),T) — H'(F(xr), War).

Proof. Since {ycpy}r € HL(K(x),T), the first inclusion follows from
Corollary B.3.5 and the second from Lemma 1.3.8(i). O

Corollary 4.6.2. Suppose KC,F C Ko, and v € Rpn. If Q is a prime
of F' not dividing pr, then

(0) (Kre,an)e € He(Fo, W),
(il) o T is unramified at Q then (Kip.e,m1)0 € Hi(Fo, Wr).

Proof. Let D, r be as in Definition 4.4.10 and write Z for an inertia group
of @ in GF. Since F(r)/F is unramified at Q we have Z C Gp(), so by
Lemma 4.4.13(ii) the restriction of kg ) to T is equal to the image of
D: rcpq) in H'(Z,War). By Proposition 4.6.1, the latter is zero. This
shows that (kp.,m])o € Hi(Fo, W), and if T' is unramified at Q then
Lemma 1.3.8(ii) shows that H}(Fg, W) = Hy,(Fg, War). O

Lemma 4.6.3. Suppose KC,F C K, and vt € Rp,pm. If w is an infinite
place of F, then (Kip,e,m))w € H}(Fw,WM).

Proof. Let w be a place of F(r) above w. Since F(r)/F ramifies only

at primes dividing ¢, the place w splits completely in F(tr)/F. Thus

Lemma 4.4.13(ii) shows that (k[p ¢, m])w is the image of (D rcp(y))s under
HY(F(t)3,T) = H'(Fy,T) — H'(Fy,Wy).

By Remark 1.3.7 we have H}(F,,T) = H'(F,,T), so the lemma follows
from Lemma 1.3.8(i). O
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Remark 4.6.4. In the nonarchimedean case, if w is a prime of K not di-
viding pr, then Corollary 4.6.2(i) shows that (Kpem))w € Hop(Fu, War).
Unfortunately, for primes w where T is ramified it may not be true that
H}(Fy, W) = Hy (Fow, War). However, we do get immediately the fol-
lowing corollary, with only a slightly stronger assumption on t.

Corollary 4.6.5. There is a nonzero m € O, independent of M, such that
for every KC, F C K, every t € Rp,pm, and every prime Q of F not
dividing pe, we have (Kipe,a)o € Hi(Fo, W)

Proof. Choose m € O such that for every prime q of K not dividing p, m
annihilates WZa /(WZa)g4;,, where Z is an inertia group for q in Gk and
(WZa)giy is the maximal divisible submodule of WZa. Clearly we can take
m to be nonzero, since WZa /(WZa)y;, is always finite and is zero whenever
W is unramified at q.

Suppose K C. F C K. If Qis a prime of F not dividing p, and q is the
prime of K below Q, then Z; is also an inertia group of Q in Gr. Therefore
Lemma 1.3.5(iii) shows that m annihilates H} (Fg, WMm)/H} (Fo, Wirm),
so by Corollary 4.6.2 we have (m&[p,c pm])o € H} (Fo,Wnm). Lemma
4.4.13(iii) shows that mkp ¢ rrp is the image of kg ar) in H'(F, W),
and the corollary follows. O

Corollary 4.6.5 is already strong enough to use in place of Theorem
4.5.1 in proving the theorems of Chapter 2. Thus one could skip the rest
of this section if one were so inclined.

To prove Theorem 4.5.1 for primes Q where T may be ramified is
much more delicate. We will mimic the construction of k[p . ) locally,
and use Proposition 4.6.1 to show that (kr,., 7)o can be constructed inside
HY(Fg,T%2 /MT?*<). The theorem will follow directly from this.

Fix for the rest of this section an ideal v € R and a prime q of K not
dividing pt (but not necessarily in R).

Definition 4.6.6. Fix inertia and decomposition groups Z C D C Gk of
q- If L is a finite extension of K, unramified at ¢, let S; denote the set of
primes of L above q and abbreviate
H(Ly,Wn) = € H'(Lo, W),
QeSy
Hi(Lo, T*/MTT) = @) H'(Lo, T /MT™)

Q€eSy
where for each Q@ € S, we write Zg for the inertia subgroup of Gp,.
(Since L/K is unramified at q, each Zg is conjugate to Z.) Write ( - )4
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or resq : HY(L,War) — H*(Lq, War) for the sum of the restriction maps.

Note that H¢(Lq, W) and Hé(Ly, T /MT?) are Gal(L/K)-modules: this
can be seen directly (every o € Gal(L/K) induces an isomorphism

H'(Lg,T*® /MT*®) = H'(L,q,0(T"®/MT*?))
= H(L,g,T%2 /MT%2)

for every Q, and summing these maps over Q € Sy, gives an automorphism
of H{(Ly, T* /MT?) and similarly for H*(Lq, Was)), or see Corollary B.5.2.
Write

WJ{/I = TI/MTI = ((WI)diV)M C (WM)I CWu
and define a G g-submodule W/, C Wy by
W!, = Ind(W{,) = Maps(Gx,W1,) c Wy.

Asin §B.4, let Indp(Wis) C Wy denote the G g-submodule of maps satis-
fying f(hg) = hf(g) for every h € D, and similarly for IndD(WJ{,I) C W{M

Lemma 4.6.7. If L is a finite extension of K, unramified at q, then
with notation as above we have a natural commutative diagram with ex-
act columns

(War /War)¥t —> (W /Indp(War)) 92 <— (W2, /Indp(W,))Gx

g3 04 6Lq,W1{/I
HI(L,WM) resq Hl(Lq,WM) Hl(Lq,WM)
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Proof. The three columns come from Gr-cohomology of the short exact
sequences
00— Wy — Wy —)WM/WM_)O
0 — IndD(WM) — Wy — WM/IndD(WM) — 0
0 — Indp(Wi,) — W/, — W/, /Indp(W],) — 0
respectively (the left-hand column is Proposition 4.4.5(i)), using Corollaries

B.4.4 and B.5.2. The horizontal arrows are the natural ones, and the
commutativity follows from the functoriality of all the maps involved. [

We now need a local analogue of Proposition 4.4.8. If KC, F C K,
Q € Sp(r), and s | t, then by Proposition 4.6.1,

(cr(s) e € Hy(F(s)o, T) = H' (F(s)§ /F(s)o, T") C Hl(F(s)g’T?: )7)

S0 (CF(s))q maps naturally to H' (F(t),, WJ{:I)

Proposition 4.6.8. Suppose c is an FEuler system and v € R. There are
two families of O[Gk]-module maps

{drq : Xr@) = (War /Indp(War))9F® : KC, F C Koo}
{df, : Xp() = (Wi, /Indp(W]))97® : KC, F C Ko}
lifting c, i.e., such that if KC,F C,F' C K, then
(i) the maps dp,q (resp dfr’q) are compatible with respect to the norm
maps
Xpr(e) = Xy, (War /Indp(War)) 7<) = (Way /Indp (War)) 97,
(Wi /Tndp (W) — (W], /Indp (W) %),

(ii) for every K C,F C Ky and every s dividing ¢, the compositions

6F T
Xy 2% (Wit /Indp(Wr))or© 0% HY(F(t)y, Wa)

af,
Xpey —2 (W, /Indp(W;))%re

JF(r)q W

f
s H'Y(F(v)q, Wiy)
both (using (4.7) for the latter) send xp(s) to (cp(s))q-

These two conditions determine every dp,q (resp. d{V,q ) uniquely up to an
element of Homoyq, |(Xp(c), War) (resp. Hom@[gk](XF(r),wa)).
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Proof. For each K C, F C Ky we have maps (see Lemma 4.2.3)
Tp) CF(s) > (CF(s))q

Xpey —— HY(F(x),T) —— H'(F(v),,T)

! !

HYF(v),Wn) —— HYF(t)q, Wu).

and by (4.7) the composition X ) — H(F(t)q, W) factors through a
G g-equivariant map

Xpw — HYF (@), W])). (4.8)
To prove the proposition we need to lift these to maps
XF(t) — WM/IndD(WM), XF(t) — W};/IndD(W}\})

in the center and right-hand columns, respectively, of the diagram of Lemma
4.6.7 with L = F(r). We will do this by mimicking the proof of Proposi-
tion 4.4.8. We describe the proof only for the right-hand column; the other
proof is exactly the same (and see Remark 4.6.9 below).

Since we have assumed that the decomposition group of q in K /K
is infinite, we can find a Z,-extension K of K in K such that K/ has
only finitely many primes above q. Then for each finite extension L of K
we see that  limg HO(F(t)y, W],) is finite, so by Lemma B.3.2,

KCy FCKL L

lim HO(F()q,Wiy) = lm  lim HO(F(0)q,Wi)) = 0

K Cf FCKoo KCfLCKoo KLCgFCKL L

(inverse limits with respect to the norm maps). Proposition B.2.7(ii) shows
that each H(F(x), W]{,I) is finite, so exactly as in Proposition 4.4.7 the
inverse limit over K C; F' C K of the right-hand column of the diagram
of Lemma 4.6.7 is a short exact sequence

0 — Lim (W7,)9r® — lim (W1, /Indp(W{;)re
— lim H'(F(x)q, W;) — 0.

Taking the inverse limit over F' of (4.8) yields a map
Xoo,e — lm H'(F(x)q, W), (4.9)
F

and exactly as in Lemma 4.4.6 we see that the (O/MO)[[Gal(K «(v)/K)]]-
module Jim (W{M)GFU) is free of finite rank. Just as in Proposition 4.4.8,
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Proposition 4.3.4 now shows that (4.9) lifts to a map
Xoo,e — lim (W}, /Indp (W) ¥,
F

Also as in Proposition 4.4.8, Corollary 4.3.2 shows that this in turn induces
maps

dfg : Xy — (W /Indp(W]p)%re
having the desired properties. The uniqueness is clear from the diagram of
Lemma 4.6.7. O

Remark 4.6.9. To construct the maps dp,q in Proposition 4.6.8 it suf-
fices to construct either the global maps dr of Proposition 4.4.8 or the
“unramified” maps d{,’ a of Proposition 4.6.8 and then compose them with
the appropriate map to (Was /Indp(War))¢#® in the diagram of Lemma
4.6.7.

In fact, that is how our proof of Theorem 4.5.1 will proceed. We
construct the maps dr and dlfg’q lifting our Euler system c. This gives
us two different constructions of dr, and we compare them using the
uniqueness assertion of Proposition 4.6.8.

Proof of Theorem 4.5.1. Keep the notation from the beginning of this sec-
tion, so M € O is nonzero and we now suppose that t € Rry. Fix a
prime g of K, not necessarily in R. Fix a lifting d : Xp) = Wi /Wiy
(resp. df; : Xpe) = qu/lndD(W}{;)) of ¢ as in Proposition 4.4.8 (resp.
Proposition 4.6.8). Write dq (resp dg) for the image of d (resp dg ) in
Hom(X p(r), War /Indp(War)) in the diagram of Lemma 4.6.7. From the
uniqueness portion of Proposition 4.6.8 it follows that

d, — d}, € image(Hom (X p(e), Wyt ).

In particular, Lemma 4.4.2 shows that, in the center column of the diagram
of Lemma 4.6.7 with L = F', we have

dq(De prp(r) — dy(De pap()) € image(W5) = ker(dp,).

By definition k(g a = 6 (d(Dy,F2F(x))), so the diagram of Lemma 4.6.7
shows that (K[F,c,am))q is equal to the image of K:E;.’,QM] in H'(Fy, W),
where

el = Sp, wi,(d](Derere)) € H (Fy, W)

As in Lemma 4.4.13, the restriction of /-cf;”{’)M] to HY(F(t)q, Wi, is

the image of (D pcp(r))q under the map

HY(F (1), T") — H'(F(1)q, W)
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(using (4.7) to view (D rcp(r))q € H*(F(t)q,T%)). Suppose Q is a prime
of F' above g, and Zg is an inertia group of Q in Gp. Then Ig C Gr(y),

and as in Proposition 4.6.1 the restriction of (D. rcp(y))q to Zg is zero.

We conclude that the restriction of E[(;’{)M] to Zg is zero and hence

(s lpe € H'(FE[Fo, T /MT™).

Since Gal(Fg"/Fg) has cohomological dimension one, taking Gal(Fg'/Fo)-
cohomology of the short exact sequence

0 — 77 My 770 _, TTo/pTTe — 0
gives a surjective map
Hy,(Fo,T) = H'(F§'[Fo,T*®) —» HY(F&/Fo,T*e/MT?e).

Thus we conclude finally that (k(p,,a)g lies in the image of H} (Fg,T),
so by Lemmas 1.3.5(ii) and 1.3.8(i),

(Kipe,my)e € Hf(Fo,Wu). O
4.7. Local Behavior at Primes Dividing t

Fix for this section an Euler system c for 7', a nonzero M € O, an
ideal vt € R, a prime q € R (which may or may not divide t), and a finite
extension F' of K in K.

Fix a prime 9 of K above q and let Z C D be the inertia and de-
composition groups, respectively, of Q in Gg. Since K(q)/K (1) is totally
ramified at ¢, the natural map Z — Iy is surjective, so we can choose a lift
of o4 to Z which we will also denote by o4. With this choice we will view

[K():K (1)]-1 [K ():K (1)) -1
Ny= > o, Dg= > ol €Z[Il
i=0 =0

However, writing m = [K(q) : K(1)], we no longer have of® = 1 in Z, so
instead of the identity (4.4) we have
(04 —1)Dgq = moy® — N (4.10)

in Z[Z]. Fix also some choice Fry € D of Frobenius for 9, and fix a lift
of the element Np(1),r of Definition 4.4.10 to Z[G'r], so that we can view
D:,F S Z[GF].

Lemma 4.7.1. Suppose d : Xpw)y = W /War is a lifting of ¢ as in
Proposition 4.4.8, and fl(wp(t)) € Wy is a lifting of d(xp()). Then for
every v € Gk and p,p' € D,

ppvd(zp) = p'pyd(@r ().
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Proof. Let Ipy = ZNGF(y). Since T is unramified at g, Proposition 4.6.1
shows that

resIF(r)(’ycF(r)) =0 in HI(IF(t),T) = Hom(IF(t),T).
Thus every cocycle representing ycp(y) vanishes on Zp (). In particular by
Proposition 4.4.5(ii),

(0 — l)fyfl(xp(t)) =0 in Wy, for every o € Tp(y). (4.11)

Since D/T and Gal(F(r)/K) are abelian, the commutator subgroup of D
is contained in both Z and G- In particular if we apply (4.11) with

c=pip pp € Tr(v), the lemma follows. O

Remark 4.7.2. Suppose that p and p’ belong to G, but not necessarily
toD. Then pp'd(zp(x)) = p'pd(2F(v)), because d is G k-equivariant and the
action of Gk on zp() factors through an abelian extension of K. However,
the action of Gx on d(z F(xr)) will not in general factor through an abelian
extension of K so it is not in general true that pp’ a(xp(t)) = p'pd(z F(x))-
However, Lemma, 4.7.1 shows that this does hold if p, p’ € D. We will use
this repeatedly below.
Note that Lemma, 4.7.1 is true whether or not q divides t.

Theorem 4.5.4 which will follow easily from the following lemma.

Lemma 4.7.3. Suppose that q € Rk, p and that q does not divide v. Fiz a
lifting d : Xp(q) = War /Wn of ¢ as in Proposition 4.4.8, and fix liftings
d(@Frq)), d(zrr) € Wi of d(zp(cq)) and d(zp()), respectively. Then
for every v € Gk,

Nyyd(zp(eq)) = P(Fry ! T Fry ) yd(@r))-
Proof. We will abbreviate Py (z) = (Fr_1|T* z). Note that
NQ7d(-Z'F(tq)) = Pq( q )'Yd(xF(r))
since d is G k-equivariant and NyZp(q) = Pq(Frgl)mF(t), )
Nq'y(Ai(a:F(tq)) — Pq(Frgl)ya(wF(t)) € W
First we will show that qufl(:cF(tq)) - P, (Fr;l)va(wF(t)) is indepen-
dent of the choices of d and d. Suppose we replace d by some other choice
d'. By Proposition 4.4.8, d’ = d + dy with dg € Homg,, (X.F(tq),WM).
Therefore if we choose liftings d’(z F(xq)) and d'(z F(r) € War of d'(2p(eq))
and d'(zp(y)), respectively, they must satisfy
al(mF(tq)) = a(mF(tq)) +do (-TF(rq)) +1,
d'(zp@) = d(@r@) + do(@r@)) + 1
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where t,t' € Wys. Thus, since dg is G k-equivariant,
(Ngvd' (@ p(eq)) — Py(Fry)yd' (@ p(r)))
- (Nq’yd(xF(rq)) - Pq(Frq_l)’Yd(xF(t)))

= do(Y(Nazr(eq) = Pa(Frq )ap(s))) + Nyt — Py(Frg)yt!

= Nyt — Py(Fry )t
Since o4 fixes Wy, and M divides [K(q) : K(1)] (because q € Rk ,m), we
see that N, annihilates Wj;. By Lemma 4.1.2(iv), P, (Frq’l) annihilates
Wy as well. Therefore Nyvt — P, (Frq_l)vt’ = 0 as desired.

Next we will make useful choices of El(xp(t)) and &(xp(tq)). Choose
k € Z% so that Fr’; is the identity on both F'(rq) and Wiz, and let kp be
the largest power of p dividing k. Since the decomposition group of q in
Gal(K «/K) is infinite, we can fix a finite extension F”’ of F' in K, such
that the decomposition group of q in F'(vq)/F'(rq) has order divisible by
kpM. Choose a lifting d : X pr(rq) = War /Was of ¢ as in Proposition 4.4.8.
Let H C Gal(F'(vq)/F(rq)) be the subgroup generated by Fr’;. Fix a
set B C G'r(cq) Of coset representatives of Gal(F'(vq)/F(vq))/H. Write
|H|—1
N' = Y B, N' =Y 8 €ZGrq)
i=0 BeB

The product N'N" restricts to the norm from F'(tq) to F(tq), so in par-
ticular

NIN”.Z'FI(tq) = Z.F(tq) and NIN”$F1(:) = mF(t) (412)

in XF’ (tq)- .

Choose liftings &(.’EFI (tq))7 d(m‘Fl (t)) € Wy of d(.’)j’p:(tq)), d('Z'F’(t)) (S
War /W, respectively, and define

El(a:F(tq)) = ’)/_ININ”’)/(AI(IL'F/(N)), &(mp(t)) = ’)/_ININ”’Y&(IIJFI(t)).

It follows from (4.12) that these are liftings of d(zp(q)) and d(zr(y)),
respectively, to Wy, . We will prove the lemma by showing that with these
choices, Nq'yél(arp(t)) - P, (Fr;l)va(mp(tq)) =0.

Note that N, Pq(Frq_l), and Ny all belong to O[D] because Fry and
oy do, so by Lemma 4.7.1 these elements commute in their action on

N”WcAl(:cF/(rq)) and N”WcAl(a:F:(r)). Thus
Nyyd(zr() — Po(Fry )vd(@r(eq))
= NyN'N"yd(2pr (rq)) — Py(Fry )N'N"yd(2 o (y)
= N'(NgN"yd(z 5 (cq)) — Pa(Fry )N"yd(zp(r)) € N'War,
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the last inclusion because NgN"yd(zp (xq)) —Pq(Frgl)N”ya(mF,(t)) € Wu
projects to N"yd(Nqzpr(rq) — Py (Fr;l)xpl(t)) =0in Wy /Wys. Since Frﬁ
fixes Wy, we have

NIWM C |H| War.
Now observe that H has index dividing k, in the decomposition group
of q in F'(rq)/F(rq), so in particular M divides |H|. This completes the
proof. O

Remark 4.7.4. The proof of Lemma 4.7.3 used in an essential way the
Euler system classes cpr(q) and cpi(y) for F'C, F' ¢ K4, and not just
cF(tq) and CF(t).

Proof of Theorem 4.5.4. Keep the notation from the beginning of this sec-
tion, and suppose now that tq € Rp a. Choose Q4 € O[z] as in Lemma
4.5.2, so that Qq(z)(x —1) = P(Frq_1|T*;x) (mod M) . To prove the the-
orem we need to show that, for some (or equivalently, for every) choice of
cocycles representing k[, ar] and K[p,eq, 0], We have
Qq(Frq_l)f‘é[F,r,M](Frq) = KF,eq,m](0q) € W

Fix d : Xp(eq) = War /W lifting ¢ as in Proposition 4.4.8, and choose
liftings d(zp(r)), d(Tp(eq)) € War of d(zp(r)), d(@Fr(eq) € War /Wi, re-
spectively. Lemma 4.4.12 shows that

tppe ) (Frq) = (Frg — 1)Dy rd(zr() € Wi,
K[Feqm)(0q) = (0q — l)Dth,p&(mF(tq)) e Wu.
Also
Qq(Fry ) (Fry" = Vippe m)(Frg) = P(Frg T Fry )k e (Frg) = 0
by Lemma 4.1.2(iv). Thus, using Lemma 4.7.1 repeatedly to commute
elements of O[D], and using (4.10), we see
Qq(Fry V) kre i) (Frq) — KiF,cq,m1(0q)
= Qq(Frq_l)Frq_lﬁ[F,:,M](Frq) — K[F,eq,M](0q)
= Qq(Fry " )Fry ! (Frg — 1)De pd(zp()) — (0q — 1)DgDe, pd(zp(cq))
= —P(Fr;'|T*; Fr; ") Do pd(2r(r) + NeDe,rd(@p(eq))
~[K(@) : KW)og P MIDe pd(wr(ea)
Since q € Rp,pm we have M | [K(q) : K(1)]. Thus by Lemma 4.7.3 we

conclude that Qq(Frgl)n[F,t,M](Frq) — K[F,eq,m](0q) = 0in Wy, as desired.
O
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4.8. The Congruence

Although we will not need it, we can now prove the following corollary
(the “congruence condition” for an Euler system) which was promised in
Remark 2.1.5. We again write Py(z) = P(Fr;1|T*;m).

Corollary 4.8.1. Suppose that ¢ is an Euler system for T and q € R is
prime. If KC,F C Ky and vq € R, then for every prime Q of F(rq)
dividing q,

Py(Fr;") — Py(N(q)Fr;"
fero = s L TR ) 0o € (o, 7).

Proof. Write
Py(z) — Py(N(q)z)
R(z) = 2 1
[K(q) : K(1)]
Since [K(q) : K(1)] divides (N(q) — 1), we see that R(z) € O[z].
Keep the notation and setting from the beginning of the previous sec-
tion, and let

¢ = Cp(eq) — R(Fr;epy € H' (F(q),T).

For every nonzero M € O let (c)g,m be the image of ¢ in H(F(rq)g, War).

Proposition B.2.3 shows that H'(F(xq)g,T) = lim H'(F(xq)o, W), so to

prove the corollary it will suffice to show that (¢)g,; = 0 for every M.
Fix an M divisible by [K(q) : K(1)], and a lifting

d: XF(tq) — Wy /W
of ¢ as in Proposition 4.4.8. Choose a(xp(t)),a(mF(rq)) € Wy, lifting
d(zp(r)), d(Tpq) € War /W, respectively. Fix a Frobenius element Fry
of q corresponding to a prime of K above Q. Then a Frobenius element
for Q in Gp(q) is given by ¢ = Fr’é for some k. By Proposition 4.6.1,
(¢)o,m € HL.(F(rq)g,Wn), and by Lemma 1.3.2(i) there is an isomor-
phism
Hy (F(ta)o,Wu) — Wu/(p—1)Wn
(ceo.m = ()
Proposition 4.4.5(ii) shows that
v e (v = 1D)(d(@peq) — BREd(zre)) € Wi
is a cocycle representing (¢) g, SO
(©em =0 <= (¢—1)(A(@rq) — RE;)d(zrm)) € (¢ — )W
Note that
(30 - l)a(xF(t))a (90 - 1)a($F(tq)) € Wy
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and
Ny, ¢ — 1, Py(Fr;") € O[D].
Therefore

A~

[K(q) : K)])(¢ — 1)(d(zr(eq)) — R(Fry HYd(@pr)))
= Ny(o = 1)d(zp(eq) — Py(Fry (e — d(zp(r))
= (¢ — D(NVed(zr(rq)) = Py(Fryd(@r())
the first equality since o4 fixes Wy, and P, (N(q)Frq_l) annihilates Wy,
(Lemma 4.1.2(ii)), and the second by Lemma 4.7.1. Lemma 4.7.3 shows
that the image of Nyd(2r(cq)) — Pq(Frq_l)d(xp(t)) under the projection
Wy — Wik (q):k(1)] is zero, and we conclude that

[K (a) : K()](p — D(d(@p(eq) — R(Fry (@)
€ [K(q) : K(D](p - H)Wp-

It follows that (c)g, /(K (q):k(1)] = 0, and since this holds for every M, the
corollary is proved. O
Example 4.8.2. Suppose T' = Z,(1). Then for every vt € R and every
prime Q of F () not dividing p (see Example 1.2.1)

HY(F(v),T) = (F(©)*), H'(F()o,T) = (F()3)" = (k)
where ( - )" denotes the p-adic completion and kg is the residue field of
F(r) modulo Q. In this case Py(z) = det(1 — Frq_la:|Zp) =1-2,s0

Py(Fry') — Py(N(@)Fr, ) _ N(@@—-1 .,
[K(q) : K(1)] [K(q): K@) *
Thus viewing cp(y), Cr(cq) € (F(t)*)", Corollary 4.8.1 in this case says
N(g)—1 F!‘_l
Cr(rq) = cllf((r‘;):“l” i (kg)" (4.13)

For the Euler system of cyclotomic units discussed in §3.2, (4.13) is the
“p-part” of the congruence
vt =
1—(rg =1- CTF ¢ modulo every prime of Q above ¢

(which in turn follows from the observation that {; = 1 modulo every prime
above q).






CHAPTER 5
Bounding the Selmer Group

In this chapter we will prove Theorems 2.2.2 (in §5.2) and 2.2.3 (in
§5.3). For every power M of p we will choose inductively a finite subset X of
primes in R ar. As truns through products of primes in 3, Theorem 4.5.1
shows that the derivative cohomology classes K[k ., 3 defined in Chapter 4
belong to S*Y*» (K, W)s), where ¥, is the set of primes of K above p, and
Theorem 4.5.4 tells us about the singular parts of these classes at primes in
Y. This information and the duality results of §1.7 will allow us to bound
the index [Ss, (K, W};) : Ssus, (K, W3;)]. By taking ¥ large enough so
that Seus, (K, W3;) = 0, and letting M go to infinity, we will obtain the
bound of Theorem 2.2.2.

5.1. Preliminaries

Keep the notation of §2.1 and §2.2. Fix an Euler system c for (T, K, )
for some K and N. If M is a power of p we will write Ry = Rk, v (as
defined in Definition 4.1.1), the set of ideals in R divisible only by primes
q such that q 1 N, both [K(q) : K(1)] and P(Fr;"|T*;1) are divisible by
M, and q splits completely in K(1). If v € Ry then ke p € H' (K, W)
will denote the derivative class Kk, a7 defined in §4.4.

Suppose B is an O-module. Recall that p is the maximal ideal of O
and £ (B) denotes the length of B. If b € B, define

order(b,B) = inf{n > 0:p"b =0} < oo,

the ezponent of the smallest power of p which annihilates b. Recall that
(Definition 2.2.1) indp(c) is the largest integer n such that cg is divisible
by p™ in HY(K,T)/H'(K,T)tors- We will suppose that indp(c) is finite,
or else there is nothing to prove.

If M € O is nonzero, we let 1y : H' (K, W) — H'(K,W) denote the
map induced by the inclusion of Wy in W. If L is an extension of K and
n € HY(K,W};), we write (n)r, for the restriction of  to L, and similarly
with Wy in place of Wy;.

105
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Lemma 5.1.1. Suppose M is a power of p and ord, M > indo(c). Then
order(uas (K1, a7), H (K, W)) = ord, M — indo(c).

Proof. Lemma 4.4.13(i) shows that ¢ps(k[1,5) is the image of ckx under
the composition

HY(K,T) — HY(K,Wy) — H'(K,W).

The kernel of this composition is M H*(K,T) + H'(K,T)tors by Lemma
1.2.2(iii), so

order(vpr (i1, 0), H (K, W))
= order(cx, HY(K,T)/(MH"(K,T) + H' (K, T)tors)-

Since HY(K,T)/H (K, T)tors is a torsion-free O-module, it follows from
the definition (Definition 2.2.1) of indp(c) that

order(cg, H'(K,T)/(MH"(K,T) + H'(K,T)tors)) = ord, M — indo(c).

This proves the lemma. O

5.2. Bounding the Order of the Selmer Group

We divide the proof of Theorem 2.2.2 into two main steps. The first
step (Lemma 5.2.3) is to produce inductively a sequence of primes of K
with useful properties. The second step (Lemma 5.2.5) is to show that
the Kolyvagin derivative classes we construct with these primes generate
a subgroup which has large image when we project to the singular part of
the local cohomology groups. Once this is accomplished, we have only to
plug this information into Theorem 1.7.3, the global duality theorem, and
we obtain the desired bound.

Suppose throughout this section that p > 2 and that T satisfies hy-
potheses Hyp(K,T). Fix a 7 € Gk as in Hyp(K,T)(i), i.e., T acts trivially
on K(1)K (e, (0%)/?7) and T/(r — 1)T is free of rank one over O.
Then for every power M of p the O/MO-module Wy, /(17 — 1)Wyy is free
of rank one, and by Corollary A.2.6, so is W77 and hence so is

Wit/ (r = )Wy = Hom(Wi, ppy  O).

Lemma 5.2.1. Fix a power M of p. Suppose L is a Galois extension of
K such that G, acts trivially on Wy and on W3, If € HY(K,Wy)
andn € HY(K,W},), then there is an element v € G, satisfying

(i) order(k(y7), W /(r — 1)Wnr)) > order((k)z, H' (L, War)),

(i) order(n(yr), Wiy /(r = )W) > order(n), H' (L, Wiy)-
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Proof. For v € Gy, the image of k(y7) in War /(7 — 1)War is well-defined
independent of the choice of cocycle representing x, and

k(y7T) = k(y) + k(1) (mod (7 — 1)Wnr), (5.1)

and similarly for 7.
Define subsets of G,

B, = {’y €eGyr:
order(k(y1), War /(1 — 1)Wpy) < order((k)r, Hom(Gr, War))}
B, = {’7 € Gr:

order(n(y7), Wi /(T = )W) < order((n)r, Hom(Gr, Wi,))}-

Every v € G — (Bx U By) satisfies the conclusions of the lemma, so we
need only show that B, U B,, is a proper subset of Gp.
Define a subgroup J of G by

J = {’)’ € Gr:
order(k(7y), War /(1 — 1)Wir) < order((k)r, Hom(Gr, War))}.

By (5.1), if v,7' € B, then y~14' € J. Therefore By either is empty or is
a coset of J.

Write d = order((k)r, Hom(Gyr,Ws)), and consider the image x(Gp)
of kK on Gr. Since (k) € Hom(Gp, Wy )G (E/K) | we see that

v(k(h)) = k(yhy™') for every h € G and v € Gk,

so k(Gr) is a Gx-stable subgroup of W4, not contained in Wya—1. By hy-
pothesis Hyp(K, T)(ii), W, = T ® k is irreducible so p¢~1x(G ) = W, and
therefore Ok(Gr) = Wya. Since Wi /(7 — 1)Wy = O/M O, we conclude
that

OKZ(J) C Wpd—l + (7’— 1)WM ; Wpd = OI‘-‘,(GL)

and so J has index at least p in G.

In exactly the same way, B;, either is empty or is a coset of a subgroup
of G of index at least p. Since p > 2, we cannot have B, UB; = Gr. This
completes the proof. O

Remark 5.2.2. The end of the previous proof is the only place where we
use the assumption that p > 2 in Theorem 2.2.2.

Let
Q = KO)K(W)K (ptpe, (05)'77)

where K (W) denotes the smallest extension of K such that Ggw) acts
trivially on W. Note that K(W*) C Q.
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Lemma 5.2.3. Fix o power M of p. Suppose C is a finite subset of
HY(K,W}) and let k = |C|.
Then there is a finite set ¥ = {q1,... ,qr} of primes of K such that
for1<i<k,
(1) q9; € RM;
(ii) Frq, is in the conjugacy class of T in Gal(K (W) /K),
(ili) writing t; = H{=1 q¢ (so to = 1), we have

Order((’i[ti—lyM])qi7H}(KQi7WM)) > Order((’i[ti_hM])QaHl(Qa WM)):
(iv) {n € C:(n)q =0 for every q € £} C H' (UK, W};).

Proof. Number the elements of C so that C' = {n1,n2,...,n}. We will
choose the q; inductively to satisfy (i), (ii), (iii), and

(n)q:; € Hp(Kqy,,Wyy) for every n € C, (5.2)
Order((ni)q“H}(Kq“W;&)) Z Order((ni)ﬂaHl(Q7WXl))' (53)

Suppose 1 < i < k and we have chosen {qq, ... , q;—1 } satisfying (i), (ii),
(i), (5.2), and (5.3). We need to find g; also satisfying these properties.
Define N to be the (finite) product of N and all primes q of K such that
{(n)q :m € C} ¢ Hi(Ky,Wj;). (Recall that N is divisible by p and all
primes where Wy is ramified.)

Let L = K(1)K(War, py, (O5)M), so L is a finite extension of
K contained in Q, and G acts trivially on both Wy and Wj,;. Apply
Lemma 5.2.1 with this L, with & = k[,,_, aq, and with n = n;, to produce
an element v € G. Let L' denote the (finite) extension of L which is the
fixed field of

ker((kr,_,,am)r) Nker((n:)1)

where we view (K:["'i—l,M])L € HOIII(GL,WM) and (m)L € HOIH(GL,WXI).
Let q; be a prime of K not dividing Nt;_1, whose Frobenius in L'/ K, for
some choice of prime above q;, is y7. The Tchebotarev theorem guarantees
the existence of infinitely many such primes.

Property (i) holds by Lemma 4.1.3, and (ii) and (5.2) are immediate
from the definition. By Lemma 1.4.7(i), evaluating cocycles at Frq, induces
an isomorphism

H}(Kq,Wur) = War/(Frg, = DWu = War/(1 = )Wu
and similarly for W}, so (iii) and (5.3) follow from Lemma 5.2.1(i) and
(ii).
It remains only to check (iv). Define ¥ = {qi,...,qx}, and suppose
that for some i, we have (1;)q = 0 for every ¢ € X. Then in particular
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(mi)q; = 0, so (5.3) shows that
n; € ker(H'(K,Wy,) - H' (Q,W})) = H'(Q/K,W}3). |
Definition 5.2.4. Suppose X is a finite set of primes in R. For every M

we have an exact sequence

locg
0 — 8% (K, War) — S50 (K, Wiy) —=203 () HE (K, W)
qeX
(5.4)

where we recall that
H;(K(DWM) = HI(K‘UWM)/H}’(KQ,WM)
and locs, yy,, is the sum of the localization maps (in Theorem 1.7.3 the map
locs; y,, was denoted locs, s, 5 ). We define locs; yy in exactly the same
way with Wy replaced by W.
If c e H'(K,W)y) and q is a prime, we write (c)§ for the projection of
the localization (c)q into H(Kq, War).
If a is an ideal of K let ¥, denote the set of primes dividing a. Let
nw = Lo (HY(Q/K,W) NS> (K,W))
as in Theorem 2.2.2.
Lemma 5.2.5. Suppose that m = p™ is a nonzero ideal of O, that k € Z7T,
and that M is a power of p satisfying
ordgM > n+ (k+ 1)nw + indo(c).
Suppose further that
Y= {qla"' 3qk} C RM
is a finite set of primes of K such that for 1 <i <k,
(a) Frq, is in the conjugacy class of T in Gal(K(Wu)/K),
(b) writing v; = [[]_; a¢ (so vo = 1), we have
Order((ﬁ[ti—laM])Qi ) H} (Kqis W) > Order(("(’[ti_hM])Qa H' (Q, Wn)).
Then the map locs; . of (5.4) satisfies
Lo (coker(locs, 1, ) < indo(c) + nw.
Remark 5.2.6. Since the proof of Lemma 5.2.5 is a rather technical cal-
culation, we first give a proof under the mild additional hypotheses
WY =0 and H'(Q/K,W) = 0. (5.5)
We will follow this immediately by the general proof; we include the easier
special case only because it makes the important ideas clearer.
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Proof of Lemma 5.2.5 under the assumption (5.5). Note that by assump-
tion (a) of the lemma, Wy /(Frq, — 1)Wyy is free of rank one over O/MO
for every i. Therefore we can apply Corollary 4.5.5 with g = q; and vt = v; 3
to relate k[, and K[e,_, - This will be the key to the proof.

By Lemma 1.2.2(i) and (5.5), all of the maps

HY K, Wy) ™Y HY(K,Wy) 2% qY(k,W) 2% HY(Q,W)
are injective. Therefore for 0 < i < k we can define
0; = order(k; vy, H' (K, W) = order(up (Ko, ap), H (K, W))
= order((¢ar (Ke;, 1)), H (Q, W)
= order((n[ti,M])Q,Hl(Q,WM)).
By Lemma 5.1.1,
0 = ordy, M —indp(c) > n. (5.6)
Fori>1,

9 > order((fﬁ[n,M]):i,Hsl(in,WM))
= Order((’i[ti—hM])QiaH}‘(KCIHWM)) > 01, (5.7)
the equality by Corollary 4.5.5, and the inequality on the right by assump-
tion (b) of the lemma. Combining (5.6) and (5.7) we see that 0; > n for
every 1.

It follows from Lemma 1.5.4 and the injectivity of tps that the ho-
momorphism tm ar 2 HY (K, Wy) — HY(K, W) sends S¥rvi (K, Wy,) onto
8¥rti (K, Wpr)m. Theorem 4.5.1 shows that K, v € S¥i (K, W), so
for each i > 1 we can choose &; € S¥rvi (K, Wy,) such that Oum a(K;) =
pai_n""/[ti,M]-

If 1 < i < k let A®) denote the O-submodule of H'(K, W) generated
by {%1,...,Ri}, and let A(®) = 0. Then

AW C 8% (K, Wy) C 8™ (K, W)

so for 1 < i < k, writing loc§; for locs, yy, , restriction to g; induces a
surjective map
locs,(AD) /locs, (A1) - O(ky)i, € HY(Kq,, W).
Hence for 1 <i < k, (5.7) shows that
Lo(lock (AD) /lock (A Y)) > order((ki)fu,Hsl(in s W)
> order((fe, v1)3, HL (Kq,, War)) = (0 = n)
>n+0;_1 — 0.

s
q:°
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Using the filtration
locg(A®) S loch (A*1) 5 ... D lock(AM) D lock (A@) =0
we conclude, using (5.6) and the trivial estimate 9 < ord, M, that
to(locs,(S™V%r (K, Wa))) > Lo(locg(A™))
k

> > (n+0i1—0;) = kn+0 —d > kn —indo(c).

i=1

For every prime q € Ry, we have H (Ky, Wy) = Wt~ by Lemma
1.4.7(1), so

lo(@gesHYH(Kq, W) = Ko(Wi™") = klo(Wn /(T — )Wy) = kn.

Thus
Lo (coker(locs;)) < indep(c)

as desired. 0

Proof of Lemma 5.2.5 in general. Recall that ¢ps is the natural map from
HY(K,Wy) to HY(K,W). For 0 < i < k define

o = order(LM(n[ti,M]),Hl(K,W)),
9; = order((kp; a)a, H' (Q, War)).
By Lemma 5.1.1,
9y = ordy M —indo(c) > n+ (k+ )nw. (5.8)
Since p% (K, M) = 0, we see that
p% it (Kpeaa) C HY(Q/K,W).

By Theorem 4.5.1, p®ipr(K(e;,017) € S# (K, W). Lemma 1.3.5(iv) shows
that for every q { N we have H(K,, W) = Hy (K, W), and Q/K is
unramified outside primes dividing N, so HY(Q/K,W) C SV (K,W).
Therefore, since t; is prime to A/ we conclude that
P enr (Ko ar) € HY(Q/K, W) NS (K, W)
= HY(Q/K,W)N &> (K,W). (5.9)

Therefore for every i, we have p® ™™ iy (K, A1) = 0, s0

nw +0; > 0. (5.10)
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Suppose i > 1. If Z;, is an inertia group of g;, then (using Lemmas 1.3.8(ii),
1.3.5(iv), and 1.3.2(ii)) we have a commutative diagram

Hsl(Kq“WM) = Hl(Kq”WM)/H&r(KCIUWM) C Hom(IQHWM)
lLM J, M
H;(Kq“W) = H'l(K—q“VV)/I’I1 (qu,W) C HOm(Iq“W).

Therefore the map tpr : H} (Kq,, W) — HY(Kq;,W) is injective. This
gives the first equality of

U; > Order([‘M(ﬁ[ti,M])ai:H;(qu'aW))
= Order(('y"‘[ti,M]):iaHsl(anWM))
= Order((ﬂ[l’i—laM])qi’H}(KQiJWM)) 2> 01, (5.11)

the second equality comes from Corollary 4.5.5 and assumption (a) of the
lemma, and the final inequality comes from assumption (b). Combining
(5.11) with (5.8) and (5.10), we conclude by induction that

0, >0y —(i+Lnw > n.
For 0 < i < k let A® denote the O-submodule of H' (K, W) generated
by
{p% " ups (Kipe; ) 1 0 < j < i}y
and write A = A(%)_ By Theorem 4.5.1,
AW ¢ SEri (K, W), (5.12)
so for 1 < ¢ < k restriction to g; induces a surjective map
locs, yw (A9) /locg, y (ACD) = p* (ke )5, © Hy (Kqi, W).
For 1 <14 <k, (5.11) shows that
order(pa"*”(n[q,M])ai,Hsl (Kq;sWu)) > 0-1— 0+,
so using the filtration
loc§, w (4) = locg 1y (A%®)) Dlocg, yy (A% 1) 5
-+ D locsE,W(A(l)) > locf\j’W(A(O))

we conclude that

k
Lo(lock 1 (A Za, 1 —0i 4+ 1) = kn+0 — 0k > kn + 0o —ord, M

(5.13)
Since m = p”, (5.9) shows that
mA C HY(Q/K,W)NS* (K, W). (5.14)
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Let An denote the submodule of A killed by m. By (5.12) and Lemma
1.5.4,

Ap C 8™ (K W)g = 1 (S™V50 (K, Wy)). (5.15)
From the exact diagram

0 0 0

l |

0 — ker(locs, yy) N A —— Ay ——locs, y (Am) ——0

l l

0 — ker(locs; y,) N A A locg; w(A) ——0
mA
0
we see that

to(locs, i (Am)) = Lo(locs w(A)) +
Co((ker(locs; yy,) N A)/(ker(locs, i) N Am)) — Lo(mA). (5.16)

By (5.12) with i = 0, we have
A — paof"LM(m[l,M]) C ker(locg’w).
Since A is a cyclic O-module, we conclude using (5.8) that
o((ker(locs, ) N A)/(ker(locg ) N Am)) > Lo(AD) — Lo(AD N Ay)
> (0 — (00 —n)) —n
= ordy M — indp(c) — g.
Combining this with (5.15), (5.16), (5.13), and (5.14) yields
Lo(locs, y, (S7V%7 (K, Wn))) > Lo(locs; w(Am))
> (kn 4+ 99 — ordp M) + (ordp M — indop(c) — dg) — nw
=kn —indp(c) — nw.

For every prime q € Ry, we have H) (Ky,Wn) = We=! by Lemma
1.4.7(i), so

Lo(@qesHH(Kq, W) = ko(Wi™Y) = kbo(Wa/(T — 1)Wa) = kn.
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Thus

Lo(coker(locs; )
= lo(®gexH; (Kq, Wn)) — Lo(locs, y, (8™ (K, Wi)))
< indp(c) + nw
as desired. 0
Proof of Theorem 2.2.2. Fix a nonzero ideal m = p™ of 0. Let C be the
image of Sy, (K, W) (which is finite by Lemma 1.5.7(i)) in H' (K, W};)
where M is a power of p large enough so that
ordy M > n+ (|Sg, (K, W3)| + 1)nw + indo(c)

(if indo(c) is infinite then there is nothing to prove). Apply Lemma 5.2.3
with this group C, let X be a set of primes of K produced by that lemma,
and apply Lemma 5.2.5 with this set X.

Combining the inequality of Lemma, 5.2.5 with Theorem 1.7.3(iii) shows
that

Lo (SEp (K, W,:)/Szugp (K, W})) < nw + indp(c).

Therefore

Lo(im(Ss, (K, Wy))) < Lo(im(Ssus, (K, Wy))) + nw + indo(c).
Lemma 5.2.3(iv) shows that

i (Sss, (K, W) € HY(Q/K,W*) 1 S5, (K, W),
and by definition nj, = Lo(H'(Q/K,W*) N Ss, (K,W*)), so we see that
fo(bm(Sgp (K, Wnﬁ))) < indo(C) +nw + Il;V.

Since this holds for every m, and Ss, (K, W*) = lim in(Ss, (K, Wy)), The-
orem 2.2.2 follows. O

5.3. Bounding the Exponent of the Selmer Group

The proof of Theorem 2.2.3 is similar to that of Theorem 2.2.2; it is
easier in the sense that one can work with a single prime q instead of a
finite set of primes, but more difficult in the sense that one must keep track
of extra “error terms”.

The idea is as follows. Given 5 € Sx, (K, W;;), we use Lemma 5.3.1
below to choose a prime ¢ such that

o H;(Ky,Wj;) and Hy (K4, W) are “almost” isomorphic to O/MO,
o order((k(q,n1)5, Hs (Kq, Wr)) is approximately ord, M — inde(c),
o order((n)q, H;(Kq, Wjy)) is approximately order(n, H' (K, W})).
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Since the Kolyvagin derivative class kg 7 belongs to S¥ra (K, W), the
duality Theorem 1.7.3 shows that

order((kiq,n1))g, H; (Kq, War)) + order((n)q, Hj (Kq, Wiy))

is “approximately” bounded by ord,M, and so order(n, H'(K,W},)) is
“approximately” bounded by indo(c). Since n € Sy, (K, Wj;) is arbitrary,
if we can bound all the error terms independently of M, this will prove
Theorem 2.2.3. In the remainder of this section we sketch the details of
this argument.

Keep the notation of §5.1 and §5.2. Suppose the Euler system c satisfies
the hypotheses Hyp(K, V), and fix a 7 € Gk as in hypothesis Hyp (K, V)(i).
We now allow p = 2.

Let a be the smallest positive integer such that p® annihilates the max-
imal G -stable O-submodule of (7 — 1)W and of (7 — 1)WW*. Hypothesis
Hyp(K,V)(ii) ensures that a is finite, since any divisible G g-stable sub-
group of (7 — 1)W would be the image of a Gi-stable subgroup of (r — 1)V,
which must be zero.

We have the following variant of Lemma 5.2.1.

Lemma 5.3.1. Fix a power M of p. Suppose L is a Galois extension of
K such that G, acts trivially on Wy and on Wy,. If

Kk € HI(K7WM)7 n e HI(K7W1T4)

then there is an element v € G, satisfying

(i) order(k(y7), Wa /(T — 1)Wp)) > order((k)r, H (L,Wp)) —a — 1,
(ii) order(n(y7), Wj;/(r — 1)W;j;) > order((n)r, H' (L, Wj;)) —a— 1.

Proof. The proof is similar to that of Lemma 5.2.1, once we note that every
G g-submodule of W)y which projects to zero in Wi /(1 — 1)W)y is killed
by p?, and similarly for W3;. The extra ‘1’ takes care of the casep =2. [

Let @ = K(1)K(W, ptee, (05)/P7) as in §5.2.

Lemma 5.3.2. If T # O and T # O(1) then both H'(Q/K,W) and
H'(Q/K,W*) are finite.

Proof. This is Corollary C.2.2 applied with F' = K. O
Proof of Theorem 2.2.3. If T'= O(1) then Proposition 1.6.1 shows that
Sz, (K,W*) C Hom(Ag,D),

where Ag is the ideal class group of K, so Sy, (K,W*) is finite. The
theorem assumes that T # O, so by Lemma 5.3.2 we may assume from
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now on that H(Q/K, W) and H'(Q/K,W*) are finite. Let
n = max{lo(H (Q/K,W)), lo(H" (Q/K,W*))}.

Suppose M is a power of p and n € Sy, (K,Wj;). Apply Lemma
5.3.1 with L = K(Q1)K Wz, pyr, (OF)YM) C Q, with this 5, and with
k = Kkj1,u) € HY(K, W), and let v € G, be an element satisfying the
conclusions of that lemma. Then since H'(Q/K,W) is the kernel of the
restriction map HY (K, W) — H'(Q,W),

order(k1,ar)(77), War /(T — 1)War))

> order(LM(m[l,M])mHl(Q,W)) —a—1

> order(ups (ka,m), H(K,W)) —a—1-n

= ordyM —indp(c) —a—1—-n (5.17)
by Lemma 5.1.1. Similarly

order(n(y7), Wit /(T — 1)W};) > order(n, H' (K,W3;)) —a—1—n.
(5.18)

Let L' denote the fixed field of
ker((kp1,m7)z) Nker((n)r)

and, using the Tchebotarev theorem, choose a prime q of K, not dividing
N, whose Frobenius in L'/K, for some choice of prime above g, is y7. By
Lemma 4.1.3, we have q € Ras.

As in the proof of Lemma 5.2.3, we conclude from (5.17) and (5.18)
that

order((m[l,M])q,H}(Kq,WM)) > ordyM —indp(c) —a—1—-n
and
order((n)q,H}(Kq,WX,I)) > order(n, H'(K,W})) —a—1-n. (5.19)

Let b = Lo(W™=' /(W™ 1)qiy), where (WT=1)4;, is the maximal divisible
submodule of W7=!. By Theorem 4.5.4 and Corollary A.2.6,

order((r[q,n))5, HY (Kq, War)) > order((kp1,m)q, H} (Kq, War)) — 2b
> ordy M —indp(c) —a—1—n —2b.
By Lemma 1.4.7(i),
bo(Hy (Kq, W) = Lo(War)™™") = Lo((W™")u) < ordyM +b.
Thus, applying Theorem 1.7.3(iii) with
Y =%, Yo=2X,, n€Sy, (K,Wy),
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we conclude that
order((n)q, Hp (Kq, Wyr)) < £o(coker(locs, s ))
< Lo(H; (Kq, War)) — order((kjq,a)5, Hy (Kq, Wir))
< indo(c)+a+1+4+n+3b
since k{q,p) € S¥7 (K, Wyr). Combining this with (5.19) shows that
order(n, H' (K, W;;)) < 2+ 2a+ 3b+ 2n + indpc.

This inequality holds for every M and every n € Sy, (K,Wj;). Since
S, (K, W*) is the direct limit of the Sx, (K, Wy,), if we set
m= p2-}—2a,—}—3b—|—2n+indoc
then we conclude that mSy, (K, W*) = 0.
As is well-known, this implies that Sx, (K, W*) is finite: Lemma 1.5.4
shows that
SEp (K: W*) = SEP (Ka W*)m C S(KaW*)m = Lm(S(K, W;))

and the latter is finite by Lemma 1.5.7(i). O






CHAPTER 6
Twisting

In this chapter we extend the methods of §2.4 to twist Euler systems
by characters of infinite order. This will be used in Chapter 7 when we
prove Theorems 2.3.2, 2.3.3, and 2.3.4. If p is a character of Gal(K/K),
then

e Theorem 6.3.5 says that an Euler system c for (T, K,) gives rise to

an Euler system c” for (T ® p, K),

e Theorem 6.4.1 shows that the theorems of §2.3 hold for 7" and c if

and only if they hold for T'® p and ¢, and

e Lemma 6.1.3 allows us to choose a particular p which avoids certain

complications.

We keep the setting of Chapter 2, so K is a number field, T is a p-adic
representation of G ramified at only finitely many primes, and K is an
abelian extension of K satisfying Gal(Ko/K) = Z%. Let T = Gal(Ko/K),
and recall that A is the Iwasawa algebra

A=0[I] = lm O[Gal(F/K)],
KCf FCKoo
a complete local noetherian unique factorization domain. The characteris-
tic ideal char(B) of a finitely generated A-module B was defined in §2.3.

6.1. Twisting Representations

Definition 6.1.1. Suppose p : Gxg — O* is a continuous character, pos-
sibly of infinite order. As in Example 1.1.2 we will write O, for a free
rank-one O-module with Gx acting via p, and if B is a G g-module we will
abbreviate
B®p =B®p0,.
Then B ® p is isomorphic to B as an O-module but not (in general) as a
G g-module.
If p: T — O define
Tw, : A = A
to be the O-linear isomorphism induced by v — p(v)y for v € T.

119
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Lemma 6.1.2. Suppose B is a finitely generated torsion A-module and
p: T — O* is a character. Then B ® p is a finitely generated torsion
A-module and

(i) Tw,(char(B ® p)) = char(B),
(i) if feAthenf-(Bp)=0 <= Tw,(f)-B=0.

Proof. If f € A and ¢, € O, then

f- (b® é.p) = (TWp(f)b) ® é.p-
The lemma follows easily from this, along with (for (i)) the fact that twist-

ing preserves the heights of ideals of A. O
Lemma 6.1.3. (i) Suppose B is Gg-module, free of finite rank over
O, and v1,...,7 are elements of Gk whose projections to T are

nontrivial. Then the set
{p € Hom(T',0*) : (B ®p)7fn:1 =0 for 1 <i <k and every n > 0}

contains an open dense subset of Hom(I', O*).
(ii) Suppose B is a finitely generated torsion A-module. Then the set

{p € Hom(T',0*) :
(B ® p) @4 O[Gal(F/K)] is finite for every K C,F C Ko}

is dense in Hom(T', 0*).

Proof. Consider (i) first. Recall that @ is the field of fractions of O, and
let ® denote an algebraic closure of ®. For each i define
R; = {eigenvalues of ~; acting on B ® &},
P = {x € 0" : 2R N pye # 0},
Z; = {p € Hom(T',0™) : p(vi) ¢ Pi}.
Each R; is finite, and p, N O is finite, so each P; is finite and thus
7 = N;Z; is an open dense subset of Hom(T', 0*). We will show that Z is
contained in the set of (i).
Suppose ¢ € ppe.. Then
¢ is an eigenvalue of 7; acting on (B ® p) ® ®
<= p 1(7;)¢ is an eigenvalue of 7; acting on B ® &
= (€ p(v:)R:
= p(vi) € P;.
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Therefore if p € Z; and n > 0, then 1 is not an eigenvalue of 'yf" acting on
(B®p) ® ®. It follows that for 1 < i < k, every n > 0, and every p € Z,
we have

Bop) ='ed® = (Bep)od®)" =' =0

and since B has no p-torsion we conclude that (B ® p) =1 o,

Let U C Hom(T', O*) be the set defined in (ii). We will show that U
contains a countable intersection of dense open sets, so the Baire category
theorem shows that U is dense. Since B is a quotient of a finite direct sum
of cyclic torsion A-modules, it is enough to prove this when B = A/fA
with a nonzero f € A.

Suppose B =A/fA,s0 B®p = A/Tw,-1(f)A. If KC,F C K then

(A/Tw,-1(f)A) ®a O[Gal(F/K)] is finite <=
p~'x(f) # 0 for every character x : Gal(F/K) — ®*. (6.1)
Let = be the set of characters of finite order of T into ®*, and for x € =
let
Yy = {p € Hom(T,0%) : p~"x(f) # 0}.

Since f # 0, each Y, is open and dense in Hom(T', 0*), and (6.1) shows
that U = N, czYy. Since Z is countable, this concludes the proof. O

6.2. Twisting Cohomology Groups
For every extension L of K, write

H\(L,T) = lim H'(FL,T).

K C¢ FCKoo
Proposition 6.2.1. Suppose KC;L and p : Gal(LK«/K) — O% is a
character. The natural map on cocycles induces G g -isomorphisms

() HL(LT)®p = HL(LT®p)

(ii) SEP (LKOO, W) K p = SEP (LKOO,W & p)
where ¥, is the set of primes of K dividing p.
Proof. Let Lo, = LK,. Choose a sequence fields LC,; Ly C, Ly C; -++ C Lo
such that Lo, = UL, and such that Gal(Leo/Ly,) is contained in the kernel

of Gal(LK o /K) & (O/p"©)*. Then O,/p"0, is a trivial G, -module,
so the natural map on cocycles induces Gk-equivariant isomorphisms

HYL,,T/p"T)®p — HY(L,,(T/p"T)  p). (6.2)
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Combining these isomorphisms with Lemma B.3.1 gives a sequence of iso-
morphisms

H(L,T)®p = lim H' (L, T/p"T) ® p
= lim H' (Ln, (T ® p) /p™(T ® p)) = Hoo(L, T ® p).

This proves (i).

Suppose w is a place of LK. The isomorphisms (6.2), and their
analogues for the completions Ly, ,,, induce the horizontal isomorphisms in
the commutative diagram

limg H' (Lo, W) ® p —— Ty H' (L, W @ p)

reswl lresw (63)
lig H' (Lp,w, W) ® p ——— Um H'(Ly,w, W ® p).

By Lemmas B.3.3 and 1.3.5(i), if w does not divide p then
li_n}H}’(Ln,waW) Kp= li_rgH]l‘(Ln,waW ®p) =0.

It follows that the top row of (6.3) induces the isomorphism of (ii). O

Corollary 6.2.2. Suppose p : I' = O* is a character. Then there is an
isomorphism of A-modules

Xoo(T ® p) =2 Xoo(T) ® p,
where Xoo(T) = Xoo = Hom(Sx, (Koo, W*), D) and
Xoo(T ® p) = Hom(Sx, (Koo, (W ® p)*), D)
is the corresponding A-module associated to T & p.

Proof. The corollary follows immediately from Proposition 6.2.1(ii) applied
with W replaced by W* and with L = K. O

Remark 6.2.3. Note that Proposition 6.2.1 does not assert the existence
of an isomorphism, or even a map, from H(L,T) to H'(L,T ® p).

6.3. Twisting Euler Systems

Definition 6.3.1. Suppose c is an Euler system for (T, K,), more specif-
ically (in the notation of Definition 2.1.1) for (T,K,N), where K, C K
and N is divisible by p and the primes where T is ramified. If K C,L C K
then we write cf o = {cLr}k c,Fck. for the corresponding element of
HL (L,T).
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Suppose p : Gal(K/K) — O* is a character which factors through
a finite extension of K. (We can always ensure this latter property by
taking K, to be the compositum of all Z,-extensions of K in K.) Let L
be a finite extension of K in K such that, writing L., = LK,

(i) p factors through Gal(Le/K),
(ii) Loo/K is ramified only at primes dividing A/, oo, and the conductor
of p.
(For example, L could be a finite extension of K such that LK, is the fixed

field of ker(p) N Gk, .) Fix a generator &, of O,. We define a collection of
cohomology classes

¢ = {c} € H\F,T®p): KC,F CK}

as follows. If K C, F C K let ¢/, be the image of cpr,,00®¢, € HL (FL,T)®p
under the composition

H! (FL,T)®p — H. (FL,T® p)

Corpr,r
E——

— HYFL,T ®p) HY(F,T ® p)

where the first map is the isomorphism of Proposition 6.2.1(i) and the
second is the natural projection from H} to H!.

Remark 6.3.2. The definition of c%, is independent of our choice of L.
To see this, suppose L’ is another choice satisfying the properties above.
Without loss of generality we may suppose that L c L'. If KC,F C K,
then FL'/FL is unramified outside AV, 0o, and the conductor § of p. The
primes which divide f but do not divide p are already ramified in FL/K, so
the Euler system distribution relation shows that Corpr:/pr(crr/) = cFr.

The definition of ¢4 does depend on the choice of &,, but only up to a
unit in O%.

Remark 6.3.3. Let ¢, ,, denote the image in O,/p"O, of the chosen gen-
erator £, of O,. An examination of the proof of Proposition 6.2.1(i) shows
that for K C, F C K, with L,, as in that proof, we have

crr, ®&pn € H (FLy, (T ® p)/p™(T & p))
and the definition of ¢4, easily seen to be equivalent to
ch = Jim Corpr, /r(crL, ®&pn)

€ lim H'(F,(T ® p)/p"(T ® p)) = H'(F,T ® p).
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Remark 6.3.4. When p is a character of finite order, this definition of ¢
agrees with the one given in Definition 2.4.1. (Just take L to be the fixed
field of ker(p).)

Theorem 6.3.5. Suppose that ¢ is an Euler system for (T,K,N) where
Ko CK, and p: Gal(K/K) — O* is a character which factors through a
finite extension of Koo. Then the collection of classes {c}, € H'(F,T®p)}
defined above is an Euler system for (T ® p,K,jN) where § is the non-
archimedean, non-p part of the conductor of p.

Proof. Suppose K C, FC,F' C K. We have a commutative diagram

HY(F'LT)®p —— HL(F'L,T®p) — H'(F',T®p)

COT@IJ, Corl Corpryp l
H (FL,T)®p —— HL(FL,T®p) —> HY (F,T® p).
Since c¢ is an Euler system, we have
Corpirk.. /FLK.. (CF/L,c0) = (H P(Fr, |T*;Fr;1))CFL,m
qges
where
S = {qof K : q ramifies in F'L/K but not in FL/K, and q{ N}
= {q of K : q ramifies in F'/K but not in F/K, and q1 N},

the last equality because the conductor of L/ K is divisible by § and divides
a power of A oco. Therefore

(Corpipk .. JFLEK. (CF/L,00))®E) = H P(F 1|T* Fr, Yerr,eo) ®&,
q€S

= H P Fr_1|T*,p (Frq)Fry Y(erL,0 ® &)
qeS

and so, using the diagram above,
Corp /p(ch) H P(F _1|T*,p (Frq)Fry Heh..
q€s
Since
det(1 — Fr;'z|(T ® p)*) = det(1 — p(Frq)Fr; " z|T*)
= P(Fr, '[T*; p(Frg)a),

this shows that ¢ is an Euler system for (T’ ® p, K, §N). O
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Lemma 6.3.6. Suppose that c is an Euler system for (T,K,N) where
Ko CK, and p,p' : Gal(K/K) — O* are characters which factor through
a finite extension of K. Let §,, fy, fppr be the non-archimedean, non-
p part of the conductors of p, p', and pp', respectively. Suppose that the
generator £y of Oppyr = O, @ O is chosen so that £y = €, @ .

If every prime divisor of §,f, divides f,y N, then (cP)' = cr?'. In
particular, if §, | N then (c?)r =c.
Proof. Let L, be a finite extension of K satisfying (i) and (ii) of Definition
6.3.1 for p, and similarly for L.

The assumption on the conductors of p, p', and pp' ensures that the
compositum L,L, satisfies Definition 6.3.1(i) and (ii) for pp’. The lemma

now follows easily from the definitions of c”, ¢, and ¢ (and Remark
6.3.2). O

6.4. Twisting Theorems
Recall that I' = Gal(K ./ K).

Theorem 6.4.1. If p: T' = O* is a character then Theorems 2.3.2, 2.3.3,
and 2.3.4 for T and c are equivalent to Theorems 2.3.2, 2.3.3, and 2.3.4,
respectively, for T ® p and c?, where c” is the Euler system for T ® p given
by Theorem 6.3.5.

Proof. The hypotheses Hyp(K oo, T), Hyp(K, V), and Hyp(Ko/K) de-
pend only on the action of Gk_, on T, so they are not affected by twisting
by characters of T.

Write X (T) = Xoo and let X (T'®p) be the corresponding A-module
associated to T' ® p, as defined in Corollary 6.2.2. That corollary says that

Xoo(T ® p) =2 Xoo(T) ® p,
so by Lemma 6.1.2(i),
Tw,(char(Xo (T ® p))) = char(Xo(T)).
The argument of Lemma 6.1.2, along with Proposition 6.2.1(i), shows that
Tw,(indx(c”)) = inda(c).

The theorem follows from these equalities. O

6.5. Examples and Applications

Recall that ecyc : Gk — Z; C O* is the cyclotomic character, and let
w : Gg — (Z, )tors be the Teichmiiller character giving the action of Gk
on u,, (if p is odd) or on p, (if p=2).
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Tate twists. Suppose p,. C K, 50 ecyc factors through Gal(K/K).
If T is a p-adic representation of Gk, then for every integer n we write
T'(n) for the Tate twist T ® 7. By Theorem 6.3.5, an Euler system c for
(T,K,N) gives an Euler system ¢ for (T'(n),K,N), and Lemma 6.3.6
shows that (c5eve)seve = c*5<" for every n and m.

Now take K, to be the cyclotomic Z,-extension of K. Then ey, does
not necessarily factor through Gal(K/K), but w ey, does. Thus if c is
an Euler system for (T, K,), then Theorem 6.4.1 shows that for every n,
Theorems 2.3.2, 2.3.3, and 2.3.4 for T' and c are equivalent to those same

—n_n

and ¢¥  Feve,

—n.-n

theorems for T'® w™"egy,
Cyclotomic fields. In §3.2 and §3.4 we used cyclotomic units and

Stickelberger elements, respectively, to construct Euler systems ccy. for
Z,(1) and cg for Z,.

Exercise. Both c5”° and c.y. are Euler systems for Z,(1). Determine the
relation between them.

Elliptic curves with complex multiplication. Let K be an imag-
inary quadratic field and K, the Zf)—extension of K. Suppose E is an
elliptic curve defined over K with complex multiplication by the ring of
integers Ok of K. Fix a prime p of K above p, and let O be the com-
pletion of Ok at p. Let Ty (E) denote the p-adic Tate module of E (see
Example 1.1.5), which is a free rank-one O-module. Let 9 be the character

v Gk — AutoK(E,,oo) ~ 0%,

Let cen denote the Euler system of elliptic units for O(1) over K of
§3.3. The character e, factors through a finite extension of K, so by

cyc
Theorem 6.3.5 we obtain an Euler system

Yerve
CEp = Cen
for O(1) ® Yez. = Oy = Ty(E). In particular we get an element
cppx € HY(K,Ty(E)).
Let Vy(E) =Ty (E) ® K. If v divides p, then as in §1.6.D we define
H}(K,,V,(E)) = image(E(K,) ® Q, = H'(K,,V,(E))).

Corollary 1.3.3 and Theorem 1.4.1 show that H'(K,,V,(E)) = 0 for all
v not dividing p. Write p* for the conjugate of p under the nontrivial
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automorphism of K/Q. If p splits in K, so p = pp*, then one can show
that
H}(Ky, Vy(E)) = HY(K,, Vo (E)), Hj(Ey, Vy(E)) = 0.
Therefore (whether or not p splits) H'(K,,Ty(E)) = H}(K,,Ty(E)) for
all v # p*, so
H'(K,Ty(E)) = S¥"}(K, T, (E)).
In particular, we have
cppx € SPHK, T,(E)).

Now suppose further that the L-function L(E,k,s) of E vanishes at
s = 1. Then one can show (see [Ru7] §4 for the proof in the case that
p splits in K; the general case is essentially the same) that the image of
cryp k in HY Ky, Ty(E)) is zero, so in fact
cEapyK € S(K7TP(E))'
If we assume further that the p-part of the Tate-Shafarevich group III(E) k)
is finite (and this is known if E is defined over Q and ords—1 L(E, s) = 1;
see [Ko2] or [Rub]) then the exact sequence
0 — EK)®Z, — S(K,T,(E)) — @m(E/K),,n — 0
shows that S(K,T,(E)) = E(K) ® Z,, so
cEpk € E(K)QZ,.
If p splits in K, one can compute the p-adic height of cg,y x in terms

of the derivative of the p-adic L-function of E at s = 1. In particular one
can prove the following theorem.

Theorem 6.5.1. Suppose E is defined over Q and p splits into two distinct
primes in K. If ords—1L(E,q,s) = 1, then cgp i has infinite order in
EK)QZ,.

See [Ru7] §9 for the details.






CHAPTER 7
Iwasawa Theory

In this chapter we use the cohomology classes constructed in Chapter 4,
along with the duality results of §1.7, to prove Theorems 2.3.2, 2.3.3, and
2.3.4. The proofs follow generally along the same lines as the proof of
Theorem 2.2.2 given in Chapter 5, except that where in Chapter 5 we
dealt with O-modules, we must now deal with O[Gal(F'/K)]-modules for
K C.F C K. This makes the algebra much more complicated.

In §7.1 we give the proofs of Theorems 2.3.3 and 2.3.4, assuming Theo-
rem 2.3.2 and two propositions (Propositions 7.1.7 and 7.1.9), whose proofs
will be given in the following sections.

We keep the notation of Chapter 2. In particular I' = Gal(K/K)
and A = O[[I']]. f KC,F C K and M € O is nonzero, then we write
Ap = O[Gal(F/K)] and

Aras = Ap/MAr = (O/MO)[Gal(F/K)]

We assume throughout this chapter that we have a p-adic representa-
tion T of Gk and an Euler system c for (T, K,) such that

Ckoo = {crtr ¢ HY (K, T)iors
(or else there is nothing to prove). We assume that hypotheses Hyp(K,, V)
are satisfied, and we fix once and for all a 7 € Gk as in hypothesis
Hyp(Kw,V)(i), i.e., 7 is the identity on K(1), on Ko, 0n p,, and on
(0P and dime(V/(r = 1)V) = 1.

7.1. Overview
Since 7 fixes p,e., we have
dimg (V* /(1 — 1)V*) = dimg (V™) = 1.

Definition 7.1.1. Fix an isomorphism

6 : W*/(r —1)W* = D.
Recall that Q = K(1)K(W, pye, (O%)*/?7). Define Qoo = Koo and let
0% be the fixed field of 7 in Q.

129
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There is a natural evaluation homomorphism
Ev* : G — Hom(Sy, (Koo, W¥), D) = X,
defined as follows. For every o € G(,»» and class ¢ € Sy, (Koo, W*), we set
Ev*(o)(c) = 6"(c(0))
where ¢(o) means any cocycle in the class ¢, evaluated at o. Then ¢(o) is
well-defined modulo (¢ — 1)W*, and ¢ acts on W* through Gal(QOQ/Q((Q)
which is (topologically) generated by 7, so
(c —1)W* C (1= 1)W* = ker(6").

Thus Ev* (o) is well-defined, and the cocycle relation shows that Ev* is a
homomorphism.

Definition 7.1.2. Define a positive integer a, by
ar = W= (W )aiy] - max{| Z],|Z*[}
where (W7=1)4;, is the maximal divisible submodule of W™=!, and Z

(resp., Z*) is the maximal G, -stable submodule of (7 — 1)W (resp.,
(r—1)W™*).

Lemma 7.1.3. (i) ar is finite.
(ii) If T and 7 satisfy hypotheses Hyp(K o, T) then a, = 1.

Proof. Let Z be as in Definition 7.1.2. The maximal divisible submodule
of Z gives rise to a Gk, -stable subspace Vo C (1 —1)V' G V. Hypothesis
Hyp(K, V)(ii) asserts that V is irreducible, so we must have V5 = 0.
Hence Z is finite, and similarly Z* is finite. The index [W7=!: (W™=1)g,]
is finite simply because W has finite Z,-corank. This proves (i).

Now suppose hypotheses Hyp(K o, T) hold. Then Wy is an irreducible
Gk -module (where p is the maximal ideal of O), and W, ¢ (r —1)W
because Wiy /(1 — 1)Wyy is free of rank one over O/M O for every nonzero
M, so it follows that Z = 0. Similarly Z* = 0, and Proposition A.2.5 shows
that WT=! = (W™=1)4;,. This proves (ii). O

Recall that N is the ideal of Definition 2.1.1 corresponding to ¢. Con-
sider the following two extra assumptions.

Assumption 7.1.4. For every K C,F C Ko, both Ap/char(X)Ar and
X ® A are finite.

Assumption 7.1.5. For every prime \ of K dividing N, the decomposi-
tion group of X in Gk contains an element vy with the property that

8=t = (T*)"i’":1 = 0 for every n > 0.
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Remark 7.1.6. Suppose that X is a torsion A-module. If p: T' = O* is
a character, and we replace T by its twist T ® p, then Corollary 6.2.2 shows
that X, is replaced by X ® p. Thus Lemma 6.1.3 applied to T & T
(in part (1)) and to Xo @ A/char(X) (in part (ii)) shows that there is a
p such that after twisting by p, Assumptions 7.1.4 and 7.1.5 are satisfied.
Theorem 6.4.1 shows that Theorems 2.3.2, 2.3.3, and 2.3.4 for T" and c are
equivalent to Theorems 2.3.2, 2.3.3, and 2.3.4, respectively, for T ® p and
the twisted Euler system c” of §6.3.

Suppose now that Theorem 2.3.2 holds (the proof will be given in §7.3),
so that X, is a torsion A-module. Then the discussion above shows that,
without loss of generality, to prove Theorems 2.3.3 and 2.3.4 we may assume
that 7.1.4 and 7.1.5 are satisfied. We will assume this for the rest of this
section.

As discussed in §2.3, since X, is a torsion A-module we can fix an
injective pseudo-isomorphism

T
PAr/fih — X, (7.1)
i=1
where fi,..., fr € A satisty fi;1 | fi for 1 < i < r — 1. The sequence of
principal ideals (elementary divisors) fiA, ..., f-A is uniquely determined
by these conditions, and the characteristic ideal of X, is
T
char(Xo) = J] fid- (7.2)
i=1

Since X is a torsion A-module, all the f; are nonzero.
Assume for the rest of this section that, in addition to hypotheses
Hyp(K o, V), hypothesis Hyp(K/K) is satisfied as well.

Proposition 7.1.7. With r as above, there are elements z1,... ,z; € X
and ideals g1, ... ,8, C A such that for 1 < k <r we have
(i) zx € Ev* (rGa..),
(ii) argr C frA, and if k <7 then g C gp+1,
(iii) there is a split exact sequence

k-1 k
0 — ZAzi — ZAz,- — Agr — 0,
i=1 i=1

(iv) a;(Xoo/ D1, Az;) is pseudo-null.

The proof of Proposition 7.1.7 will be given in §7.6. Using (7.1) it is
easy to find {z;}, with g; = f;A, satisfying (ii), (iii), and (iv), but condition
(i) will be essential for our purposes.
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Definition 7.1.8. Fix a sequence 21, ... ,2, € X as in Proposition 7.1.7
and define .
Zoo = Y A2i C Xeo.
=1
Let M denote the maximal ideal of A. If 0 < k < r, a Selmer sequence
o of length k is a k-tuple (o1, ... ,0%) of elements of 7Gq_ satisfying

EV*(UZ') —2; € MZy

for 1 < i < k. (When k& = 0, the empty sequence is a Selmer sequence.)
Note that by Proposition 7.1.7(i), Selmer sequences exist, for example with
all the above differences equal to zero.

Suppose M is a power of p. Let Qpr = K (1)K (W, pyr, (O5)1M),
and if KC, F C K let Ly pr D FQyr be the fixed field of the subgroup

ﬂ ker((c)FQM) C Gray,-
€Sz, (F,W3)
The restriction of Sy, (F, Wj;) to FQy is a finite (Lemma 1.5.7) subgroup
of Hom(Gra,,, Wir), s0 Lruv is a finite abelian extension of FQas. It is
straightforward to check that Lp /K is Galois and unramified outside
primes above p, co, and primes where T is ramified.

For 0 < k < r we call a k-tuple (q1,. .. ,qx) of primes of K a Kolyvagin
sequence (for F' and M) if there is a Selmer sequence o of length & such
that for 1 <i <k,

e g; does not divide the ideal N of Definition 2.1.1, and

e Fry, is (a conjugate of) o; on Lp
(all primes not dividing N are unramified in Lg »/K). If 7 is a Kolyvagin
sequence of length k we define

k
t(mw) = H q-

By Lemma 4.1.3, t(7) belongs to the set Ry, defined in Definition 4.1.1.

Let TI(k, F, M) be the set of all Kolyvagin sequences of length k for F’
and M. When k = 0, we make the convention that II(k, F, M) has a single
element, the empty sequence (independent of F' and M). Define an ideal
in AF,M

U(k,F,M) = Z Z%/’(H[F,r(w),M]) CArm
well(k,F,M) ¥

where K[p (x),u is the Euler system derivative class constructed in §4.4,
(K[F,e(m),0m1) 18 the A pr-submodule of H' (F, W) generated by &(p,«(m),m],
and the inner sum is over ¢ € Homa ((k[Fc(x),nm]), AF,m). In other words,
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U(k,F, M) is the ideal of Ar v generated by all homomorphic images of
modules (K[p,c(x),n]) @8 7 runs through II(k, F, M).
Proposition 7.1.9. There is an element h € A such that

(i) h is relatively prime to char(X),
(ii) for every K C;F C K there is a power Ng of p such that if M is
a power of p and 0 < k < r, then

ah¥(k,F, MNp)Apm C for1%(k+1,F, M).
Proposition 7.1.9 is the key to the proofs of Theorems 2.3.3 and 2.3.4;
it will be proved in §7.7. We now show how to use Proposition 7.1.9 to
complete the proof of Theorems 2.3.3 and 2.3.4. Recall that if ¥ is a set of

places of K, then Ky denotes the maximal extension of K in K which is
unramified outside X.

Corollary 7.1.10. Suppose K C;F C K, and h € A satisfies Proposition
7.1.9. Let X be a set of places of K containing all primes above p, all
primes where T is ramified, and all infinite places,

If v € Homy (HY(Kx /F,T),Ar), then a>"h™)(cp) € char(Xoo)Ap.

Proof. Note that ¢y € H'(Kx/F,T) by Corollary B.3.6.
Let Nr be as in Proposition 7.1.9(ii). Suppose 0 < k¥ < r and M is a
power of p. Proposition 7.1.9(ii) shows that

aSh¥(k, F,MN; *)Apn C fryr®(k + 1, F, MNy " YApu,
so by induction, writing M' = M N}. and using (7.2), we conclude that

aiThT‘II(O, F, MI)AF,M - (ﬁ fz) ‘I’(TJ FJ M)
i=1

C (H f@) AF,M = char(Xoo)AF,M. (73)
i=1

By Lemma 4.4.13(i), &[,1,m7] is the image of ¢ under the injection

HY(Kx/F,T)/M'H'(Kx/F,T) = H' (Ks/F,Wyp) < H'(F,W).
Let ¢ denote the composition

Ap ke < HY(Ks/F,T)/M'H (K /F,T) % Apar — Apu
induced by the inverse of this injection and by . By definition

Y(kpa,m) € (0, F, M )Apu,
so (7.3) shows
airhriﬁ(m[p,l,M/]) € char(Xoo)Ar,m.
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Since this holds for every sufficiently large M, and ’(Z(IC[F’L M) is the re-
duction of ¢(cy) modulo M, this completes the proof of the corollary. [

Lemma 7.1.11. Suppose that G is a finite abelian group, that R is a
principal ideal domain, that B is finitely generated R[G]-module with no
R-torsion, and that f € R[G] is not a zero-divisor. If b € B is such that

{4 (b) : ¥ € Homp (B, RIG])} C fR[G],
then b € fB.

Proof. Let B' = Rb+ fB. Since f is not a zero-divisor, we have a commu-
tative diagram

Hom gy (B', fR[G]) P Hompg(q(B', R[G]) —~— Homg(B',R)

HomR[G](fBa fR[G]) # HomR[G’](fBa R[G]) — HomR(fBa R)

in which the horizontal maps are all isomorphisms (see for example Lemma
4.3.3 for the isomorphisms on the right).

Suppose ¢ € Hompg g (fB, fR[G]). Since B has no R-torsion, ¢ ex-
tends uniquely to a map ¢ : B — R[G], and by our assumption on b, the
restriction of ¢ belongs to Hompg(g(B', f R[G]). Thus all the vertical maps
in the diagram above are surjective. Since B’ and fB are free R-modules,
the surjectivity of the right-hand map shows that B’ = fB, which proves
the lemma. O

Let inda (c) be as in Definition 2.3.1.
Theorem 7.1.12. char(X.,) divides a®"ind, (c).

Proof. Suppose h € A is as in Proposition 7.1.9. Let ¥ be a finite set of
places of K containing all primes above p, all primes where T is ramified,
and all infinite places. If K C; F' C K, Corollary 7.1.10 and Lemma 7.1.11
applied with B = HY(Kx/F,T)/H'(Kx/F,T)tors and b = h"a2"cr show
(note that H' (K /F,T) is finitely generated over Z, by Proposition B.2.7)
that

a’"h"cp € char(Xoo)(H (K /F,T)/H" (Kx/F,T)tors)-

It follows from Lemma 1.2.2(ii) that if K C; F C Ky, then HY(F, T4y is
annihilated by the annihilator in A of W%k so

1-£1 (Hl(F7 T)tOTS) C H;O(Ka T)tors

K C¢ FCKoo
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(where the latter group is the A-torsion submodule). Passing to the inverse
limit we deduce that

a’"h"ck 0o € char(Xoo)(Hy (K, T)/HL (K, T)tors)-
Therefore if ¢ € Homy (H! (K, T),A) then
a2 h" $(ck,00) € char(Xo).
Since h is relatively prime to (the principal ideal) char(X,), it follows that
a3 $(cK,00) € char(Xoo)-
This completes the proof. O

Proof of Theorems 2.3.3 and 2.3.4. Lemma 7.1.3(i) shows that a, is a (fi-
nite) positive integer, so Theorem 2.3.4 is immediate from Theorem 7.1.12.
If in addition T and 7 satisfy hypotheses Hyp(K,T), then a, = 1 by
Lemma 7.1.3(ii), and Theorem 2.3.3 follows as well. O

7.2. Galois Groups and the Evaluation Map
Keep the notation of the previous section.
Definition 7.2.1. Define ¢, (z) = det(1 —77'2|T*)/(z — 1). Our assump-
tions on 7 ensure that
g-(z) = det(l1 —7z|T)/(z — 1) € Olz]
and that, by Lemma A.2.4(ii) (applied with o = 771),
(Y V/(r-1)V = vt
is an isomorphism of one-dimensional vector spaces.
The D(1)-dual of the isomorphism 6* of Definition 7.1.1 is an isomor-
phism
0@1) = 17771,
The inverse of this isomorphism, together with the generator & of O(1)
chosen in Definition 4.4.1, gives an isomorphism
6 . (Wrzl)div % D.
Define 8 to be the (surjective, by Lemma A.2.4) composition

-1
w/r—1)w “ =y, % D.

We also fix once and for all an extension of 8 to W7=1
f: W=l — D.

This extension is not in general unique, but the difference between any two
choices lies in Hom(W™=! /(W™=1)4;y, D) which is killed by a.
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Definition 7.2.2. Recall the evaluation homomorphism
Ev* : GQ(-,-) — Xoo
of Definition 7.1.1. Similarly we define
Ev: Gy — Hom(H' (K, W),D)
by

Ev(0)(c) = 8(c(0)) = 0 0g-(17")(c(0))
for all 0 € Gy and ¢ € H' (Ko, W), where c(o) means any cocycle
representing ¢, evaluated at o.
Suppose M € O is nonzero and K C, F C K. Let Qg} denote the
fixed field of 7 in Qur = K (1)K (War, ppr, (O5)/M)/K). In exactly the
same way, we define evaluation maps

Evia : G — Hom(Sx, (F,Wj,),0/MO)
Evey : G — Hom(H'(F,Wy),0/MO)

)
FQ§)

)
FQ§)

by Evy p(0)(c) = 6*(c(0)) and Evp,m(o)(c) = 8(c(0)), where we identify
O/MO with M~10/0O C D.

Definition 7.2.3. If n € A, we will denote by 7n°® the image of  under
the involution of A induced by v ~ y~! for v € T'. Similarly if A is an
ideal of A we will write A® for the ideal which is the image of 4 under this
involution.

We will use repeatedly below that if B is a A-module and A is an ideal
of A which annihilates B, then .A* annihilates Hom(B, D).

If B is a A-module, Anny (B) will denote the annihilator in A of B.

Lemma 7.2.4. (G) If c € HY(Kw,W) and Ev(y)(c) = 0 for every
v € Ga,, then a; Anny (H' (Qoo /Koo, W))c = 0.
(i) a;Annp(H'(Qoo/Koo, W))* Hom(H' (Ko, W), D) C OEv(Ga,,).
(iil) a; Annp(H'(Qoo/Koo, W*))* X0 C OEv*(Ga.,).
Proof. Unwinding the definition of Ev, we see that the dual of Ev on Gq__
is given by the composition

resQ .,

HY (K4, W) —=s Hom(Gq_, W)=
—s Hom(Go_,W/(r — )W) - Hom(Gq_,D). (7.4)

The kernel of the first map is H'(Qs /Koo, W). The kernel of the second
map is
Hom(Ggq_, , W)%%~ NnHom(Gq_, (T — 1)W).



7.2. GALOIS GROUPS AND THE EVALUATION MAP 137

If ¢ belongs to this intersection, then ¥(Gq,, ) is a Gk, -stable submodule
of (1 — 1)W. The kernel of 8 is W ("~ )=0/(r — 1)W, which has the same
order as WT=1/W7=! by Proposition A.2.5 (applied with ¢ = 771). Thus
a, annihilates the kernel of the composition of the second and third maps.

If Ev(y)(c) = 0 for every v € Gq_,, then ¢ maps to zero under (7.4),
so this proves (i). Applying Home(-,D) to (7.4) yields

Go. ® 0 =% Hom(H'(Ku,W),D)
and (ii) follows. The proof of (iii) is the same as the proof of (ii) (except

that in that case the third map of the analogue of (7.4) is induced by 6*,
which is injective). O

Definition 7.2.5. Suppose K C, F C K., and M is a power of p. Define

Rrm,r = {t € R :for every prime g dividing ¢, Frq belongs to
the conjugacy class of 7 in Gal(FQa/K)}
where Qs is as above (and as in Definition 7.1.8). By Lemma 4.1.3,
Rrmr C Rr,pm where Rp ar is the set defined in Definition 4.1.1.
Suppose q € Rp,um,-. Let Q be a prime of K above q such that the
corresponding Frobenius Frq of q is 7 on FQr. Recall the generator o4 of
Gal(K (q)/K) given by Definition 4.4.1, and fix a lift of o4 to the inertia
group Zg of 9 in Gk . Then both Fry and o4 belong to G We define

the finite evaluation maps
Ev; ; = Eviy(Fry) : Sy, (F,Wi) — O/MO
Eve s = Evpu(Fry) : H' (F,Wy) — O/MO.

By Lemma 1.4.7(i) (which applies thanks to Lemma 4.1.2(i)), evaluation
at oy induces

HY(F,Wy) — HY(Fq,Wy) — H:(Fa,Wy) = Wh=" = Wit

o
FO)

and we define the singular evaluation map
Evgs : HY(F,Wy) — O/MO
by Evg,s(c) = 6(c(ay)).
Note that Ev’;’f, Evq,5, and Evg s depend on F', M, and the choice of

2 (as well as the specific choice of Fryq and o), but we will suppress this
from the notation.

Remark 7.2.6. We will usually apply Evq,; and Ev:;’ s to cohomology
classes which are finite at g, so we think of these maps (via Lemma 1.4.7(i))
as measuring the finite part at q of a cohomology class. Similarly, we view
Evq,s as measuring the singular part at g.
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Recall that Ap = O[Gal(F/K)] and Ap,;r = Ar/MAF.

Lemma 7.2.7. Suppose that K C,F C K, that M is a power of p, and
that B is a Ap-module.

(i) The map
HOIH(')(B,O/MO) — HOIHA(B,AEM)
v =

<

defined by
by = > byt
neGal(F/K)
is an O-module isomorphism.

(ii) If ¢ € Homo(B,O/MO) and o € Gal(F/K) then o) = o~ 14).
Proof. The map Homa (B, Ar,p) = Home (B, O/MO) induced by com-
position with }°, . k) an = a1 is a two-sided inverse of the map in
(i), and (ii) is easily checked. (Note that o acts on ¢ € Homp(B,O/MO)
by (0¢)(b) = 1(o~'b) for every b € B, and on ¢ € Homp (B, Apar) by
(0)(b) = (4 (b)).) O
Remark 7.2.8. Note that in Lemma 7.2.7, (ii) says that the bijection of
(i) is not in general a Af p-module homomorphism.

Definition 7.2.9. Suppose K C; F C K, and M is a power of p. If v €

G oo and g € Ry m,; we will write
M

Ever(Y), Evgz, Evgs € Homp (H'(F,War), Apar)

for the images of Evg (), Evq, s, and Evg s, respectively, under the map
of Lemma 7.2.7(i). Thus

Eves(c) = Y. Evgsmom™
n€Gal(F/K)
and similarly for ]’E)\\J/F, M (7y) and ],E)\\J/q,s.
The next two results, Theorems 7.2.10 and 7.2.11, are crucial for the
proof of Theorem 2.3.2 and Proposition 7.1.9. They are restatements of

Theorems 4.5.4 and 1.7.3(ii), respectively, in the language of these evalua-
tion maps.

Theorem 7.2.10. Suppose that c is an Euler system, that KC,F C K,
that M is a power of p, that t € Rp ar, and that q € R v - 45 a prime not
dividing v. Let k[p. p be the derivative class constructed in §4.4. Then

E\;Iq’f (K/[F,f,M]) = quvs(ﬁ[F,fq,M])'



7.2. GALOIS GROUPS AND THE EVALUATION MAP 139

Proof. Suppose p € Gi. Theorem 4.5.4 applied to the Euler system
{pcr ()} shows that, with Q4(z) as in Lemma 4.5.2,

Evg s (pk(pe,m)) = 00¢: (771 ((pK(pe, 1) (Frq))
= 00 Qq(Fry") (1, m) (Frq))
= 0((pK(F,eq,m1)(049))
= Evq,s(pK[F,cq,Mm))-
(Note that one consequence of Theorem 4.5.4 is that (pk[p,cq,m1)(0q) €

Wi, 80 Evg s(pK{F,cq,01)) does not depend on any choice made in extend-
ing 6 from W51 to W™=1.) The theorem follows immediately. a

Notation. If B is a Gg-module, v is a place of K, and K C, F C K, we
will abbreviate

Fv = F®KK11 = @w‘vo,

Hl(FvaB) = @wlle(FwaB)a

H}‘(FTHB) = eawlvH}‘(Fw;B)a

Cy = DylyCw € H'(F,, B) for every c € H'(F, B).

There is a natural action of Gal(F/K) on H'(F,, B). Concretely, every
o € Gal(F/K) induces an isomorphism

HYF,,B) = HY(F,,,B)

for every w, and summing these maps over w lying above v gives an au-
tomorphism of H!(F,, B); see also Corollary B.5.2. In applying Theorem
1.7.3 over the base field F' instead of K, all of the maps are Gal(F/K)-
homomorphisms.

Theorem 7.2.11. Suppose that K C; F C K, that M is a power of p,
that vq € Rp,m and that q is a prime in Rp . Let Xy and Xy denote
the sets of primes of K dividing pt and prq, respectively. Then

a:Evq,o(S¥ (F, W) BV: flsy, . (mwy) = 0.

Proof. Note that Evg 4(S¥r<« (F,Wy)) C Ap,y and that Evy tlss,.(rwy)
is in the Ap pr-module Hom(Syx,, (F, Wj;), D).

Suppose ¢ € Sy, (F,W};) and d € 8*»=s(F,Wyy). Theorem 1.7.3(ii),
applied with ¥ = ¥,y and Xy = X, shows that {(c,d)q = 0, where
() )a = Xq)q(, )q is the sum of the local pairings of Theorem 1.4.1 at
primes above g.
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Let 9 be the prime above q corresponding to our choices of Frq and
oq. Consider the diagram

HYFa,Wi) x HMFo,Wu) <22 0/MO

! ! =

Wi /(- DWWy x (W)= 2 01)/M0()

‘| | Jovsc
O/MO X oMo 2  O/MO
where

e the upper part (including the ambiguity of sign) comes from Lemma
1.4.7 (so the upper left and upper center vertical maps are isomor-
phisms given by evaluation at Frq and o4, respectively),

e ¢ is the chosen generator of Z,(1) from which we defined oq,

e {, Ywa is induced by the natural pairing W3, x Wy — O(1), and

e the pairing on the bottom is (z,y) — a,zy.

Since a, annihilates (W7=1)/(W™=1)4;y, it follows from Definitions 7.1.1
and 7.2.1 of 6* and 0, respectively, that the bottom half of the diagram
commutes. In other words,

ar(c,d)a = %a,;0(d(0q))0" (c(Frq)) = a,Evq,s(d)Evy ;(c).
Therefore

(arEvqo(EV; )(©) = ar Y Evgu(pd)(Evy ) (o)
peGal(F/K)

= a, Z qu,s(pd)Ev;,f(pc)
pEGal(F/K)

ta, Y {pc,pd)a
pEGal(F/K)

+ta, Z (c,d)ar = £a,{(c,d)q = 0. O
pEGal(F/K)

Corollary 7.2.12. Suppose that K C;F C K, that M is a power of p,
that v € R v, and that v € TGq_ . Then

ar BV m () (Bpe ) BV (Vlss, . (rws,) = 0.

Proof. Fix a finite Galois extension L of F(py,, (O5)YM,Wys) such that
the restrictions to L of kg a and of Sy, (F, Wy;) are zero (Sy, (F, W)
is finite by Lemma 1.5.7, so such an extension exists). Let A be the ideal
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of Definition 2.1.1 corresponding to c¢. Choose a prime q of K prime to tA
(and a prime 9 of K above q) such that Fry =y on L.
We have Evy 5, (7) = Evp p(Frq) = Evy ;. Since q € Rp,m,7, Theo-
rems 7.2.10 and 4.5.1 show that
Evenm (V) (K1F,e,00) = Evq,p(Kme,n)

= E\‘/fq,s(""[F,tq,M]) € E“\‘/’q,s(é“z’"“ (F,War)).

Now the corollary follows from Theorem 7.2.11. O

7.3. Proof of Theorem 2.3.2

In this section we will prove Theorem 2.3.2. The general idea is that if
c ¢ HL (K, T)tors, then we can use Corollary 7.2.12 to construct a nonzero
annihilator of X,, and hence X, is A-torsion.

Lemma 7.3.1. Suppose K C, F' C K, and M € O is nonzero. Let ress
denote the restriction map

S, (F,W*) — Sx, (Koo, W)
If v is a place of F, fix an extension w of v to K, and define

Hl(Koo,w/Fva (W*)GK“”"’) if v |P:
Hy (Fy, W*)[Hp (Fy, W) ifutp.

v =

Then there are a submodule B of @, x By and an ezact sequence
B — coker(ress o) — H?*(Ko/F,(W*)%K=).

Proof. Let ress, denote the restriction map H*(F,W*) — H' (K, W*)9F,
The inflation-restriction exact sequence shows that the cokernel of resg_
is isomorphic to a subgroup of H2(K,/F,(W*)%k=), and hence the same
is true for the cokernel of

resg’ (Sy, (Koo, W*)9F) 52 Sy (Koo, W) T
Since Ko /F is unramified outside primes above p, we have
resg (Sx, (Koo, W*)9F) C S (F, W)
so the cokernel of the inclusion
Ss, (F,W*) < resg! (Ss, (Koo, W*)°F)
injects naturally into @, n B,. This proves the lemma. O

Lemma 7.3.2. The A-module X, is finitely generated.
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Proof. Let J denote the augmentation ideal in A. Then Xo/J X =
Hom(Sy, (Koo, W*)GK,D). By Nakayama’s Lemma, to prove the lemma
we need only show that Hom(Ssg, (KOO,W*)GK ,D) is finitely generated
over O.

Let ress,oo denote the restriction map

Ss, (K,W*) — S5, (Koo, W*)9%.

By Lemmas 7.3.1 and 1.3.5, Hom(coker(ress,«), D) is finitely generated
over O. Lemma 1.5.7(iii) shows that Hom(Sx, (K, W*), D) is also finitely
generated over O, and the lemma, follows. O

Recall that Qo = Koo (1)K (W, tee (OX)H/P7).
Lemma 7.3.3. Suppose X, is not a torsion A-module. Define

J = {verGa, :Ev'(7) ¢ (Xco)tors}-
Then the subgroup of Gk generated by J contains a nonempty open sub-
group of Ga_, .

Proof. Corollary C.2.2 (with F = K,) shows that H'(Qu/Ke, W*) is
a torsion A-module. Therefore if X, is not a torsion A-module, Lemma
7.2.4(iii) shows that there is a 79 € Gq., such that Ev*(v9) ¢ (Xoo)tors-
Then either 7 or 7y belongs to J, so J is nonempty.

Since X, is finitely generated by Lemma, 7.3.2, the submodule (X )tors
is closed in X,,. The map Ev* is continuous, so

J = (Ev*) "N (X = (Xoo)tors) N TGa..
is open in 7Gq__, and the lemma follows. O

Proof of Theorem 2.3.2. Let ¢ be the Euler system of Theorem 2.3.2. We
will show, under the assumption that X, is not a torsion A-module, that
CK,00 € HY (K, T)tors-

Suppose that X, is not a torsion A-module. Choose a + in the set J
of Lemma 7.3.3, i.e., v € TGq,, such that Ev*(y) ¢ (Xoo)tors-

Suppose K C, F' C K, and M is a power of p. Let k(g ar) = K(F,1,m be
the derivative class constructed in §4.4. By Corollary 7.2.12 (with v = 1,
the trivial ideal),

GTE\:’F,M(V)(F"’[F,M]) EV},M(W’) =0

By definition the map Ev r,m(7y) factors through restriction to K, and for
every F' C, F' we have

(H[F,M])F' = (COTF'/F/‘G[F',M])F' = Z PR[F! M]-
pEGal(F' /F)
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Hence E\\/IF/’M(’Y)(K,[F:’M]) € Apr ur restricts to E\\/IF,M(’Y)(KZ[F’M]) € Arum.
Thus lim Ev g (7) (k(r,m) € A and
FM

ar (lim Bv () (Kp,aa7)) BV (7) = 0.

Since Ev*(y) € (Xoo)tors it follows that T(Lnﬁ;/F,M('y)(n[F,M]) = 0.
This holds for every v € J, so Lemma 7.3.3 shows that it holds for every v
in a nonempty open subgroup of Gq_, . Since a nonempty open subgroup
has finite index, and A is torsion-free, we conclude that for every F', every
M, and every v € Ga,,, we have Evr m(7)(kiF,m) = 0. Equivalently,
writing (k{r,m)) k., for the image of kg, in H' (Koo, W), we have

Ev(y)((kip,m)) ko) = 0. (7.5)
We will show that this is not compatible with the assumption that
CK,00 = {er}r ¢ H;O(K7 T)sors-

Recall that Anny(B) denotes the annihilator of a A-module B. By
Lemma 7.2.4(i), it follows from (7.5) that

arAnnp (H' Qoo /Koo, W)) (kg0 Ko = 0.

The inflation-restriction exact sequence shows that the kernel of the restric-
tion map HY(F,W) — H' (K., W) is H' (K /F, W) which (since
K. /K is abelian) is annihilated by Anns(W%%«). By Lemma 1.2.2(i),
the kernel of the natural map H'(F,Wy) — H'(F,W) is annihilated by
mp = [W : (WY )q4;,]. Hence for every F and M, we have

mFAnnA(Hl(QOO/KOO, W))AnnA(WGKw )K,[F,M] = 0.
By Lemma 4.4.13(i), s[F,u is the image of cr under the injection
HY(F,T)/MH"(F,T) — H"(F,Wu).
It follows that mpAnna (H'(Qs /Koo, W))Anny (WY e is divisible in
HY(F,T), so by Proposition B.2.4,
mpAnnp (H (Qoo/ Koo, W))Anny (W )cp = 0.
Lemma 1.2.2(ii) shows that the kernel of multiplication by mp in H*(F,T)
is annihilated by Anny (W%%=), so for every K C, F C Ko,
Annp (H" (Qoo/ Koo, W))Anna (W= )2cp = 0.

But this annihilator of cp is independent of F, and by Corollary C.2.2
applied with F' = K, it is nonzero as well. Thus we have found a nonzero
annihilator of ¢k, € HX (K,T). This contradicts the assumption that
CK 00 ¢ HL (K, T)tors, and completes the proof. O
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We also record the following lemma for later use.

Lemma 7.3.4. Supposel’ = Z,, and either K 1is totally real and Leopoldt’s
conjecture holds for K, or K is imaginary quadratic.
(i) If Gk, acts trivially on T, then Xoo/Annp (T) X« is finite.
(ii) If Gk, acts trivially on T(—1), then Xoo/Annp (T(-1)) X is fi-
nite.

Proof. Recall that T(-1) =T ® O,-1. We have assumed (Hyp(Kwo, V)
that V' is an irreducible Gk _, -representation, so the situations (i) and (ii)
can only arise if rankpT = 1 and T is a twist of O or O(1), respectively,
by a character of T'.

Suppose p is a character of I'. If we replace T by its twist T ® p,
then Corollary 6.2.2 shows that X, is replaced by X, ® p. Also Anny (T)
is replaced by Tw,-1(Anna(T)) by Lemma 6.1.2(ii) (where Tw, : A —
A is the map of Definition 6.1.1 induced by v — p~1(y)y on I), and
similarly for Anna(T'(—1)). It follows easily that X, /Anny (7T)X, and
Xoo/Annp (T(—1)) X remain unchanged as O-modules. Thus both as-
sertions of the lemma are invariant under twisting by characters of I'; so
we may assume that T' = O for (i) and T = O(1) for (ii). Then in both
cases we are trying to show that Xo/J X is finite, where J denotes the
augmentation ideal of A. Without loss of generality we may also suppose
that O = Z,,.

Suppose first that T' = Z,(1). Then W* = Q,/Z, and H' (K, W*) =
Hom(Gk,,,Qp/Z,), so by Proposition 1.6.1 we have X, = Gal(Loo/Kwo),
where L, is the maximal everywhere unramified abelian p-extension of K,
in which all primes above p split completely. A standard Iwasawa theory
argument ([Iw3] §3.1) now shows that X /J Xoo = Gal(L/K) where L
is the maximal abelian extension of K in L., and that this Galois group
is finitely generated.

If K is totally real and Leopoldt’s conjecture holds for K, then K has
no extension with Galois group ZZ, so L/K is finite. If K is imaginary
quadratic then K has a unique extension with Galois group Zf,, but no
prime above p is infinitely split in this extension, so again L/K is finite.
This proves the lemma in this case.

Now suppose T' = Z,, so W* = p,e. It follows directly from Lemma
7.3.1 in this case that the map

SEP(K:NIJ"") — SZP(KOOJ“IJ"“)GK = Hom(XOO/onoan/Zp)

has finite cokernel. Since Leopoldt’s conjecture holds for K, Corollary 1.6.5
shows that Sy, (K, tt,e ) is finite. This completes the proof. O
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7.4. The Kernel and Cokernel of the Restriction Map

For the remainder of this chapter we will assume that Assumptions
7.1.4 and 7.1.5 are satisfied. Since we have now proved Theorem 2.3.2, we
can do this with no loss of generality (see Remark 7.1.6).

In particular, if K C, F C K, and )\ is a prime of F dividing NV, then it
follows from Assumption 7.1.5 that W&r (W*)%r WY and (W*)%Fa
are all finite.

Definition 7.4.1. We define several ideals of A which will play a role in
the proofs below. Recall that Anny(B) denotes the annihilator in A of a
A-module B. Define
A ) Anny (WGK=) if rankz, T' > 1,
8P ™ ) Anny (WGKe /(WG )gyy) i T =17,
If v is a place of K, fix an extension w of v to K, let D,, be the decomposition
group of v in I, let Z,, be the inertia group of w in Gk, and let

Kyw = Uk, Fck.. Fuw-
Define
Anngp,j (WG Keow) if v | p and rankz, D, > 1,
Ay = { Annoyp, (W= [(WOKk=)qy,) i v |pand D, = Zy,
Annop, ) (HHEKYE o/ Koow, WE [(WE)aiy)) i vt p,
An = H AyA.
v|N
We define A, Aj, and A}, in exactly the same way with W replaced by
w.

Lemma 7.4.2. The ideals Agiob, Ax, Agiop,, and A}, defined above have
height at least two in A.

Proof. This is clear from the definitions of these ideals. O

Lemma 7.4.3. Suppose KC,.F C Ky, and i > 1.
(1) H(Ko/F,WC%=) is finite and annihilated by Agio -
(ii) H (Koo/F,(W*)Sx) is finite and annihilated by A%,
(iii) Ifv is a prime of K above p and w is a prime of K, above v, then
H{(K oo/ Fu, (W*)Ckeow) is finite and annihilated by A%.

Proof. Let W' = W%ke  (W*)%kee or (W*)9% = and G = Gal(K/F),
Gal(Kw/F), or Gal(K o1/ Fu), respectively. By Assumption 7.1.5, we can
choose a v € G, C Gp such that T7=! = (T*)"=1 = 0. Let 4 € T denote
the restriction of v to K-
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Since T is abelian, the annihilator of W' annihilates H(G, W') for ev-
ery i. If f(z) = det(l — vz|T & T*) € O[z], then the Cayley-Hamilton
theorem shows that f(5!) annihilates W', so in particular f(y!) annihi-
lates H'(G,W'). Since G acts trivially on H'(G, W), it follows that f(1)
annihilates H*(G, W'). Our hypothesis on «y ensures that f(1) # 0, so it
follows without difficulty (since G is finitely generated and W' is co-finitely
generated) that H*(G,W') is finite.

This proves the finiteness in all three cases, and the annihilation when
rankz (G) > 1. Suppose now that G = Z,, and use the exact sequences

HZ(GJ W(Iliv) — Hz(Ga WI) — Hi(Ga WI/Wéiv) — Hi+l(Ga Wéiv)‘

If i > 1 then H (G, W/;,) = 0 because G has cohomological dimension 1,
and if o is a topological generator of G then (Lemma B.2.8)

HI(GJ Wéiv) = Wéiv/(o— - 1)Wélv =0
because W/, /(o —1)W};, is a quotient of W, /(7 —1)W};,. Thus for every
i > 0 we have
Hi(G, WI) = HZ(GJ W,/Wéiv)a
so we see that the annihilator of W'/W}; annihilates H! (G, W'). O
Proposition 7.4.4. Suppose K C,F C Ko, and M is a power of p.

(i) The kernel of the restriction map
H'(F,W) — H'(Ko,W)*

is finite and is annihilated by Agob-
(ii) The kernel of the natural map

HY(F,Wy) — H'(F,W)u

is finite with order bounded independently of M, and is annihilated
by Annp (W),
(iii) The cokernel of the restriction map

Sy, (F,W*) — Sx, (Koo, W*)°F

is finite and is annihilated by Ay, A} -
(iv) If Sz, (Koo, W*)C" is finite, then there is a power Mg of p such that
if M > Mg is a power of p, then A;lobAj‘v annihilates the cokernel

of the natural map

Ss, (F,Wi;) — Ss, (Koo, W*)°T.
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(v) The cokernel of the natural map
SEp (F, WX,[) — Sgp (F, W*)M
is finite and bounded independently of M.

Proof. The inflation-restriction exact sequence shows that the kernel of
the restriction map in (i) is H' (K /F, W), so (i) follows from Lemma
7.4.3(i). By Lemma 1.2.2(i), the kernel (ii) is W%F /MWYF which in
turn is a quotient of WEF /(WCF)y,, and (ii) follows. Assertion (iii) is
immediate from Lemmas 7.3.1, 7.4.3, and 1.3.5(iii).

Suppose further that Sy, (K, W*)GF is finite. Since

SEP(F,W*) = @SEP(F:WJTJ);

we can choose My so that the image of Sy, (F,Wj, ) in H'(Ky, W*)
contains the image of resk,_, (Sx,(F,W*)). With this choice (iv) follows
from (iii).
By Lemma 1.5.4, the map S¥¢ (F,W},;) — S¥»(F,W*) s is surjective.
Thus the cokernel in (v) is isomorphic to a subquotient of
Dupker (H (Fy, Wi;) — HY(Fy, W)

For each w dividing p, Lemma 1.2.2(i) shows that the above kernel is

(W*)Gre [M(W*)Fre,
which is a quotient of the finite group (W*)%F /((W*)%Fu)4;, and hence
is bounded independently of M. This proves (v). O

7.5. Galois Equivariance of the Evaluation Maps

For the proofs of Propositions 7.1.7 and 7.1.9 in the following sections,
it would be convenient if Ggo_ were a A-module and Ev and Ev* were A-
module homomorphisms. Unfortunately this makes no sense, since Ggq_, is
not a A-module. We will get around this by defining an action of a subring
of A on a quotient of Ggq_ , and Ev and Ev* will behave well with respect
to this action.

Proposition 7.5.1. There are a subgroup 'y of finite index in ', char-
acters x,x* : Tog = O, an abelian extension L of Qo, and an action of
Z,[[To]] on Gal(L/Qu) such that

(i) Ev and Ev* on Gq, factor through Gal(L/Q),
(if) if n € Lo and v € Gal(L/QNw) then

Ev(y") = x(mMn(Ev(v)), Ev'(Y") = x*(m)n(Ev*(7)).
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Proof. Let L be the maximal abelian p-extension of
Ko (e, W) = Koy, W) = Koo(W, 7).

Then Q, C L, and every cocycle in H! (K, W) or in H(K,, W*) van-
ishes on Gr, so (i) is satisfied.
Consider the diagram of fields in Figure 2. By Proposition C.1.7,

L
Qoo
KOO (l'l/pc'o ? W)
K(W) Koo

Ky
|

K

FIGURE 2

there is a finite extension Ko of K in K (W) N K such that the center of
Gal(K(W)/K) maps onto Gal((K(W) N K)/Kp). Define

FO = Gal(Koo/Kg)
Fix once and for all a set of independent topological generators {71, ... ,7a}
of I'g, and for 1 < i < d fix a lift ¥; € Gal(Kw (e, W)/Ko) of y; such
that the restriction of 4; to K (W) belongs to the center of Gal(K(W)/K).
Since Koo (e, W) is the compositum of K (W) with an abelian extension

of K, each #; belongs to the center of Gal(Koo(tpe, W)/K). Therefore
these choices extend by multiplicativity to define a homomorphism

FO — Ga,l(Koo(p,pm 5 W)/Ko),
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whose image lies in the center of Gal( Ko (1, W)/K), which is a section
for the projection map Gal(Koo(ttpee, W)/Ko) — T'o. We will denote this
map by v — 4, and we will use this map to define an action of I'y on
Gal(L/Q): for v € Gal(L/Qs) and n € Ty, define

v = it

This definition extends to give an action of Zp[[I'¢]] on Gal(L/Q). It is
not canonical, since it depends on our choice of the ;.

By Lemma C.1.6, since V' is assumed to be irreducible, every element
of the center of Gal(K(W)/K) acts on W by a scalar in O*. Thus the
choice above defines a character

x : Lo — 0%, x(n) = 7 € Aut(W).

Similarly, if € T’y then 7j belongs to the center of Gal(K(W*)/K) so we
get a second character

x*:To— O, x*(n) = 7 € Aut(W").

Suppose that ¢ € H' (K, W), that v € Gal(L/Q), and that n € Ty.
Since Ev(y) € Hom(H! (K, W), D), we have

Ev(1)(c) = Ev(n)(n~'c) = 6((n~"c)(7))
= 0(7"(c(v")) = x(n~ Ev(y")(0).

In other words,

Ev(y") = x(mn(Ev(7)),
and similarly with Ev* and x*. This proves (ii). O

Recall the involution n — n® of A given by Definition 7.2.3.

Proposition 7.5.2. Suppose X' is a A-submodule of X and Xoo/X' is

pseudo-null. Then there is an ideal Ag of height at least two in A such that

for every KC, F C Ko,

Aoa; Annp (WE%=)* Annpy (H Qoo / Koo, W)) " Hom(H' (F, W), O/ MO)
C OEvpu((Ev*) " HX')NGa..)-

In other words, if Y belongs to

Ao, Annp (W% )* Anny (H' Qoo / Koo, W)) " Hom(H' (F, W), O/ MO)

then there are y1,... ,vx € Ga_, andcy,... ,cx € O such that Ev*(y;) € X’

for every i and
k

Z CiEVF,M(’yi) = ¢

=1
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Proof. Let Iy, L, x, and x* be as in Proposition 7.5.1. We define
Twy : O[[To]] — O[[To]] by 7= x(7)y

and similarly for Twy~, and then Proposition 7.5.1 shows that for every
n € Z,[[To]] and v € Gal(L/Qwo),

Ev(y") = Twy(m(Ev(y)), Ev'(y") = Twy-(m)(Ev¥(y)).  (76)

Note that a pseudo-null A-module is also pseudo-null as a Z,[[I'o]]-
module, and conversely if A4 is an ideal of Z,[[T'¢]] of height at least two
then AA is an ideal of A of height at least two.

Define

A = Twi (Amnojgre) (Xoo/X")) N Zy[[Tol:

Since X /X' is assumed to be a pseudo-null A-module, A is an ideal of
height at least two in Z,[[[¢]]. By (7.6),

Ev*(AGal(L/Q)) = Twys (A)Ev* (G, ) C X/,
and by (7.6) and Lemma 7.2.4(ii), for every K C, F C K,
OEv(AGal(L/Q)) = OTwy(A)Ev(Ga,,)
D Twy(A)a, Anny (H (Voo /Koo, W)) Hom(H (Ko, W), D).
By Proposition 7.4.4(i) and (ii), the image of the composition
Hom(H' (Ko, W), D) — Hom(H'(F,W),D)
— Hom(H'(F, W), 0/MO)
contains
Aliob Annp (W) "Hom(H* (F, War), O/MO).
Combining these inclusions, we see that the proposition holds with
Ao = A;lobTWX (A),
which has height at least two by Lemma 7.4.2. O

Remark 7.5.3. When I' 2 Z,, there is a simpler proof of Proposition 7.5.2,
which does not rely on the noncanonical construction of Proposition 7.5.1.
In that case X, /X' is finite, so (Ev*) " }(X')NGq_, has finite index in Gq__,
so by Lemma 7.2.4(ii), OEv((Ev*)~}(X') N Gq_ ) contains a subgroup of
finite index (not @ priori a A-submodule) of

ar Annp (H (Qoo/ Koo, W) 'Hom(H' (K o, W), D).



7.6. PROOF OF PROPOSITION 7.1.7 151

But every subgroup of finite index contains a submodule of finite index,
and hence there is a 7 > 0 such that

Mia Anng (H (Voo / Koo, W)) "Hom(H' (Ko, W), D)
C OEv((Ev*) "1 (X")NGa.)

where we recall that M is the maximal ideal of A. By Proposition 7.4.4(i)
and (ii), AglobAnnA(WGKw )* annihilates the cokernel of the map

Hom(H' (Ko, W),D) — Hom(H'(F,Wy),D),
so the proposition is satisfied with Ag = M7 Asiob

7.6. Proof of Proposition 7.1.7

Proposition 7.1.7 is very easy to prove in the following (fairly common,
see the examples of Chapter 3) special case. Suppose that hypotheses
Hyp(Ko,T) are satisfied (so a; = 1 by Lemma 7.1.3(ii)), O = Z,, and
HY(Q0o/Koo, W*) = 0. Use (7.1) to choose a sequence z1,. ..,z € X
such that ®Az; = ®A/f;A. By Lemma 7.2.4(iii), under our assumptions
we have

Ev*(rGq,) = Ev* (1) + Ev*(Gq..) = Ev' (7)) + Xoo = X0,

so Proposition 7.1.7 holds with these z; and with g; = f;A.
The rest of this section is devoted to the proof of Proposition 7.1.7 in
the general case, which unfortunately is more complicated.

We say that two ideals A and B of A are relatively prime if A+ B has
height at least two.

Lemma 7.6.1. The ideal char(X ) is relatively prime to each of the ideals
Anny (W), Anng (H (Qoo/ Koo, W)), Annp(H'(Qeo /Koo, W*))".

Proof. The proofs for all three ideals are similar. If W% is finite or if
rankz (') > 1 then Annj(W%%e) has height at least two and the first
assertion holds trivially. We have assumed that V is irreducible over Gk __,
so if WY is infinite then G x__ acts trivially on 7. Thus (using hypothesis
Hyp(K«/K)) the first assertion follows from Lemma 7.3.4(i).

The other two assertions follow similarly, using Lemma, 7.3.4 and Corol-
lary C.2.2. We sketch briefly the proof for the third ideal.

Corollary C.2.2 applied to T, with F' = K, and Q = Q,, gives three
cases. In case (i), H'(Qoo/Koo, W*) is finite, so Annp (H!(Qoo /Koo, W*))
has height at least two, and hence is relatively prime to everything. In case
(ii) (resp. (iii)), Gk acts on T™ via a character p of I' (resp. ecycp), and
H'(Qoo /Koo, W*) has a subgroup C of finite index on which G acts via p.
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Then Gk acts on T via cyep * (resp. p~1), so Anna(C)°® D Anna(T(-1))
(resp. Anny (C)® D Anny (T)). Since

Annp (H' (Qoo/ Koo, W*)) D Anny (C)Annpy (H' (Qeo /Koo, W*)/C)

and H'(Qu /Ko, W*)/C is finite, the lemma in this case follows from
Lemma 7.3.4. O

Lemma 7.6.2. Suppose B is a torsion A-module and x,y € B. Suppose
further that 95,9, € A are such that Anna(x) C g;A and Anny (y) C gyA.
Then there is an n € Z such that

Annp(z +ny) C [9z,94]A
where [g, gy] denotes the least common multiple of g, and g,.
Proof. Suppose P is a (height-one) prime divisor of [g,, g,], and define
Sy = {n € Z: Anny(z 4 ny) ¢ Pordnlo=oly,

Recall that p is the maximal ideal of O. We will show that Sg has at most
one element if P # pA, and Sy is contained in a congruence class modulo
p if P = pA. Then it will follow that Z — Up Sy is nonempty, and every n
in this set satisfies the conclusion of the lemma.

Suppose n,m € Sy, and let A = Anny (z + ny)NAnnp (z + my). Then
A ¢ B*, where k = ordg[gs,gy]- But (n — m).A annihilates both y and
z, so (n —m)A C P* and we conclude that n —m € PB. If P # pA it
follows that n = m, and if 8 = pA then n = m (mod p). This completes
the proof. O

Lemma 7.6.3. Suppose B is a finitely generated torsion A-module, and
B is pseudo-isomorphic to ©%_ A/h;A, where hiy1 | hi for 1 < i < k.
Suppose we are given a subring Ao of A such that A is finitely generated
as a Ag-module, a Ag-submodule By C B, and an element t € B such that
t and By generate B over A. Then there are elements ©1 € t + By and
ZT2,...,%k € By such that

(i) Azy = A/by where by C haA and hiA/by is pseudo-null,
(ii) #f 2 < j < k there is a split exact sequence

j—1 J
0 — ZAwi — EAmi — A/hjA — 0.
i=1 i=1

If t = 0 then we can replace (i) by
(i") Az1 Z A/MA, i.e., (ii) holds for j =1 as well.
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Proof. We will prove the lemma by induction on k.
If Ais an ideal of A then char(A/A) is the unique principal ideal
containing A with pseudo-null quotient. For every x € By write

A, = char(A/Anna(z)).

By Lemma 7.6.2 (applied successively with & = ¢ and y running through a
sequence of elements of By) we can choose z; € t+ By such that A,, C A,
for every x € t + By. Since t and By generate B over A, we must have
Az, = hA, so (i) is satisfied. This proves the lemma when k£ = 1 and
t#0.

If t = 0 then choose g € Ao, prime (in A) to hy, which annihilates the
pseudo-null A-module h; A/Anny (z;), and replace z; by gz;1. This element
has annihilator exactly hq A, so this completes the proof when k = 1.

If £ > 1, choose z1 as above. Let B' = B/Ax1, let B{ be the image of
By in B', and let t' = 0. Then B’ is pseudo-isomorphic to &% _,A/h;A, so by
the induction hypothesis (in the “¢ = 0” case) we can choose Za, ..., T €
Bj leading to split exact sequences

Jj—1 J
0 — ZAE,- — ZA:@- — A/hjA — 0
i=2 i=2
if2<j<k.

Now for 1 > 2 choose z; to be any lift of Z; to By. We claim the lemma
is satisfied with this choice of z1,...,zr. It will suffice to check that the
exact sequences

J J
0 — Azy — ZAmi — ZA@- — 0 (7.7)

i=1 =2
split for 2 < j < k.

Let h = Annp(B). Then h C hiA and hy'h is pseudo-null. By our
induction hypothesis we can choose elements 2,... ,yx € Ef:z AZ; such
that Ag; = A/h;A for each i and Zf:z Ag; = Zf:z AZ;. Let y; be a lift of
¥; to Zle Az;.

For each i we have h;y; € Axy, say h;y; = c;z1. Then h; 1p annihilates
c;x1, i.e., ¢;h C h;by, and we conclude that h; divides ¢;. Now the map
§i — y; — (ci/hi)z1 gives a splitting of (7.7). O
Proof of Proposition 7.1.7. Recall that we have a pseudo-isomorphism

@:ZlA/fiA — Xoo.
Define a A-submodule

Xo = AEV* (1) + AEv* (Gq_,) C Xw.
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Then Xo, D Xo D Xo Na; X, and Lemmas 7.2.4(iii) and 7.6.1 show that
(arX0)/(Xo NarXx) is pseudo-null. Thus we can find a new injective
pseudo-isomorphism
®i—1A/gih — Xo
with elements g; € A satisfying, for every i,
git+1 | 9i fi | args, gi | fi-

Apply Lemma 7.6.3 with B = Xy, with h; = g;, with By = Ev*(Gq,,),
and with ¢ = Ev*(7) to produce a sequence zi,...,%, € Xo. (Note that
By satisfies the hypotheses of Lemma 7.6.3 with Ay = Tw,-(Zp[[To]]),
where I'g and x* are as in Proposition 7.5.1, and Tw,- is as in the proof
of Proposition 7.5.2.) Define z; = 1 € Ev*(rGq_ ) and g; = h;. For
2 < i < r define

Z2i = X1+ x5 € EV*(TGQOO), gi = giA.

Lemma 7.6.3 shows that char(}_ Az;) =[] g; = char(Xj), so Xo/ > Az; is
pseudo-null. The other conclusions of Proposition 7.1.7 for these z; and g;
also follow immediately from Lemma 7.6.3. O

Corollary 7.6.4. Suppose z1,... ,z, and g1,...,8, are as in Proposition
7.0.7. If 1 < k < r then Ele Az; =2 ®F A/g; and Zle Az; is a direct
summand of Y., Az;.

Proof. This follows easily by induction on k from Proposition 7.1.7(iii). O
7.7. Proof of Proposition 7.1.9

In this section we will prove Proposition 7.1.9, and thereby complete
the proof of Theorems 2.3.3 and 2.3.4 begun in §7.1. Keep the notation of
§7.1. In particular recall that

Zow = > Azi = PA/gi C Xeo
i=1 =1

where the z; and g; are given by Proposition 7.1.7.
If o is a Selmer sequence of length k, as in Definition 7.1.8, define

k
Zy = ZAEV*(U,') C Zoo.
=1

Lemma 7.7.1. If o is a Selmer sequence of length k, then
Zs = @ A/gil

and Zy is o direct summand of Zs,. If k < r and o' is a Selmer sequence
of length k + 1 extending o, then Zy/ [Zg = N/ Grt1-
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Proof. Let Y = ¥ | Az;. By Corollary 7.6.4, Y; = @®¥_ A/g; and there
is a complementary submodule Y| C Z such that Y @ Y] = Z. The
image of Z, +Y)] in Z, /M Z, contains the image of Y}, +Y = Z,,, so by
Nakayama’s Lemma Z, + Y, = Zo,. We will show that Z, NY} =0, and
thus Z, = Z, @ Y} and

Zoe = Zoo|Y] = Y = @F AJgiA.

If © < r and o' extends o, we can repeat the argument above with &
replaced by k 4+ 1. We can choose Y, ; to be contained in Y}, and then
Yi/Yip1 = A/gkqa and

Zg @Yy = Zoo = Zg ®Y],
)
Zg = Zo ®Y([Yiy1 = Zo ® A/grt1.
It remains to show that Z, NY; = 0. For 1 < < k write

Ev*(o;) = z; +v; + w;
where v; € MY}, and w; € MY}]. Suppose

k
ZaiEv* (0:) €Y,
i=1
with a; € A; we need to show that Zle a;Ev*(0;) = 0.
Projecting into Y}, we see that

Z ai(z +v;) = 0. (7.8)

Using Proposition 7.1.7(iii) (see also Corollary 7.6.4), fix y1,... ,yx € Yi
so that for 1 < ¢ < k we have
i i
Yi =) Az = Py
j=1 j=1
and Ay; = A/g;. We can rewrite (7.8) in matrix form, using these genera-
tors, as

(a1,...,ax)A € (14, , grA)

where A is a k x k matrix with entries in A. Modulo M, we see that A
is lower-triangular with invertible diagonal entries (since z; € Y;, and the
projection of z; generates Y;/Y; 1 = Ay;, and the v; vanish modulo M).
Therefore A is invertible, and, since g; C g for every ¢ < k, we conclude
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that a; € gy for every i. But g; annihilates Y} because g C g; for i > k,
so we deduce that

k k
ZaiEv*(ai) = Zaiwi =0.
i=1 i=1

This completes the proof of the lemma. O

Lemma 7.7.2. For every Selmer sequence o, every power M of p, and
every K C, F C K, the ideal Annp (X /Z) annihilates the kernel of the
map

Ze @ Ap v — Xoo ® Ap,r.

Proof. By Lemma 7.7.1, Z, is a direct summand of Z,, s0 Z5 ® Ap m
injects into Zoo ® Ap,pr. If Jp,ar is the kernel of the map A — Ap s, then
the kernel of Zoo ® AF,M — Xoo ® AF,M is (Zoo N jF,MXOO)/jF,MZOCn
which is annihilated by Annj (Xoo/Zs). This proves the lemma. O

For the rest of this section fix a field F' such that K C, F' C K. By
Assumption 7.1.4, Ap/fiAF is finite. Fix a power of Ng of p such that
Np > |Ar/fiAr| and such that Np is at least as large as the integer Mp
of Proposition 7.4.4(iv).

Let Bo = (Agop)* (Ax)*Annp (Xoo / Zoo).

Corollary 7.7.3. If o is a Selmer sequence and M > N is a power of p,
then By annihilates the kernel of the natural map

Zo- ® AF,M — Hom(Sgp(F, WX/I),O/MO)
Proof. The map in question is the composition
Zy ® AF,M — X ® AF,M — HOIII(SEP (F, W]TJ)a O/MO)

It follows from Assumption 7.1.4 that Sz, (Koo, W*)®" is finite, so the
corollary follows from Proposition 7.4.4(iv) and Lemma 7.7.2. O

If v € R, recall that ¥, denotes the set of primes of K dividing pr.
Recall also from Definition 7.1.8 that II(k, F, M) is the set of Kolyvagin
sequences of length k for F' and M, and if # = (q1,...,q%) € H(k, F, M)

then t(w) = Hle qi-

Lemma 7.7.4. Suppose that M is a power of p, that o is a Selmer se-
quence of length k, and that 7 is a Kolyvagin sequence corresponding to o .
Then the map of Corollary 7.7.3 factors through a surjective map

Ze @ Arp,m — HOm(SzP(F, W]T/[)/SEW(,,)(F; Wi),O/MO,).
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Proof. Write o = (01,...,0%) and ® = (q1,... ,q%). The image of Z, in
Hom(Syx, (F,W3;), 0/MO) is Hom(Sx, (F, W3;)/B,0/MO), where

B = () ker(Evi(0:)?) = () ker(Evi y(Fro)).
1<i<k Qof F
Y€Gal(F/K) QIIL; ai
Each Ev}, y; (Fro) factors through a map which is injective on H;(Fo, W),

so the right-hand intersection is exactly Sz, ., (F, Wjy). O

Proposition 7.7.5. Suppose that 1 < k <, that M > N is a power of
p, and that ® = (my,... ,m) € H(k, F,M). Let ¥ = ¥,() and q = qj.
Then with By as defined before Corollary 7.7.3,

a-BoEvq,s(S¥(F, W) C gk

Proof. Fix M, k, and 7 as in the statement of the proposition. Let
o = (01,...,0k) be a Selmer sequence corresponding to 7 and let o’ =
(61,...,0p—1) and X' = ¥ — {q}.

Consider the commutative diagram

0 0

Zgr @ Ap,m —— Hom(Sy, (F, Wy;)/Ss/ (F,W;3;),0/MO)

Zy ®AF,M —_— HOIII(SEP(F,W]TJ),O/MO)
(Zo|Zor) ® Ay —— Hom(Ss (F, W3,), O/MO)
0 0.

The left-hand column is exact by Lemma 7.7.1, and the top horizontal map
is the surjection of Lemma 7.7.4. Applying the snake lemma, Corollary
7.7.3 shows that ker(j) is annihilated by By. The image of j is generated
by Evi v (0n)|sg (mwy,) = Evg flsg (rws,), and Zg /Zgr = A/giA. Hence

B()AIIIIAF’M (EV:’f |52, (EWK/I)) - gkAF,M.

By Theorem 7.2.11, aTE;q,S(SE (F, War)) annihilates Evy ¢|s,, 7w;,)- This
proves the proposition. O
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Recall that we have fixed a field F'. If M is a power of p and v € RF,u,
we will write simply &, ar] for &g ¢ a], and (K[, ar)) for the Ap pr-submodule
AF,M"?[t,M] of Hl (F, WM)

Recall also that the map E\{/q,s depends on M; we now need to record
that dependence. For every power M of p, instead of just E\\J/q,s we will
write ﬁ/q,s,M : HY(F,Wy) — Ap o for the singular evaluation map of
Definitions 7.2.5 and 7.2.9.

Corollary 7.7.6. Suppose 1 < k < r and M is a power of p. Suppose
further that ® = (q1,--- ,qx) € I(k, F, MNF), and let ¢ = qi andt = t(m).
Ifn € a2By then

MEVq.5,01 | (ge aeyy € SeHOma (e 1), Arag).

Proof. Let M' = MNp and ¥ = X,x). By Propositions 7.7.5 and
7.1.7(ii),

n]:j‘\{,q,s,M’ : SE(F7WMI) — aTgkAF,M’ C kaF,M’-
Since f | Nr in Ap, there is a well-defined “division by f;” map
fehr oy — Ap oy

which sends frg to g (mod M) for every g. Let ¢’ : S*(F,War) = Apm
be the composition of nﬁ(zq,s, m with this division map.

Let ¢n,.,pm and tpr s be the natural maps in the exact cohomology
sequence

LNF,M’

HY(F, W, HY(F, W) 222 HY(F,Way).

If we identify Ap n, with MAp v, we have
E\‘;q,s,Np = ﬁ/q,s,M' O LNp, M-
Applying Propositions 7.7.5 and 7.1.7(ii) again we see that
NEV q.0.8e (S™(F,Wap)) C fihrne,

and it follows that ¢’ o tn,,mr = 0. Therefore ¢ factors through tar ar,
ie.,

Y = Y ouy pm where Y € HOmA(LM’,M(SE(FJWM’))JAF,M)'
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Using Lemma 4.4.13(iii) and Theorem 4.5.1, we also have a diagram

"qu,s,M’

Ke,m) € SE(F, W) Ap

1 LM’,MJ fxd! i

Ke,m) € SE(F,Wu) — Ar v

nEvq,s,m

It follows that
fk¢('€[r,M]) = ka('f[t,M']) = nE;q,s(""[t,M])a
and so nﬁ\//q,s,M = fry on (K[, m1)- O
The following is a precise version of Proposition 7.1.9. Define
B = a A3BoAnny (W% )Anny (H' Qoo / Koo, W))
where Aq is the ideal of Proposition 7.5.2 applied with
X'={z€eXyn:a,2 € MZy}

(so by Proposition 7.1.7(iv), X /X' is pseudo-null) and By is as defined
before Corollary 7.7.3.

Proposition 7.7.7. If M > Ng is a power of p and 0 < k < r, then
Bq’(kaFaNFM)AF,M C fk-l—llIJ(k"_ laFaM)

Proof. Let M' = NpM. Fix a Kolyvagin sequence w € II(k, F, M'), let
t = (), and fix ¢ : (K, amr7) = Ap,pr. We need to show that

Bw(ﬁ[r,M’])AF,M C fk_;,_llI;(k-l- ].,F, M)

The idea of the proof is as follows. Ideally, we would like to find

v € TGq_, such that

(a) Ev*(7) € 241 + MZc,

(b) Evemr (7) = ¢ on (e, m),
and choose a prime q whose Frobenius on a suitable extension of F' is 7.
If we can do this then (a) says we can use q to extend 7 to a Kolyvagin
sequence of length k£ + 1, (b) combined with Theorem 7.2.10 shows that
V(K m)) = ﬁ/q,s,(m[tq,M/]), and Corollary 7.7.6 shows that the restriction
of E\{/q,S to (K[eq,nr) is (almost) divisible by fy1.

Unfortunately, conditions (a) and (b) on -y may not be independent,
and it may not be possible to satisfy them simultaneously. Instead, we
will use Proposition 7.5.2 to find a finite set of elements {v;} such that
Ev*(y;) € MZ,, and such that, instead of (b), a “small multiple” of 9 is
a linear combination of the Evp, (7).



160 7. IWASAWA THEORY

We now return to the proof. Let 1o € Hom((k[,ar)), O/M'O) be
the homomorphism corresponding to 1 under the isomorphism of Lemma,
7.2.7(1). If

n € Apa?Anny (W =) Annp (H' Qoo /Koo, W))°,

then by Proposition 7.5.2 (applied with X' as defined just before the state-
ment of this proposition) there are v1,...,7; € Ga_, and ¢q,... ,¢; € O
such that Ev*(v;) € (MZy) for every i and

J
S B R () (np gy = M- (7.9)

i=1

Fix i such that 1 < i < j. Let o be a Selmer sequence corresponding
to . Choose § € TGq,, such that Ev*(§) = 2441 (by Proposition 7.1.7(i)),
and define two Selmer sequences o' and o of length & + 1 extending
o by op,., = d and o}/ ; = 6y;. (These are Selmer sequences because
Ev*(8) = 241 and Ev*(y;) € MZy,.) Fix primes ¢',q" of K such that, for
an appropriate choice of primes above q' and q”, we have

Fry = O';H_l, Frqr = U;c'+1 on L

where L is a finite Galois extension of F' containing F(Wa, pas, (O3)/M")
and such that the restriction to L of every element of the finite groups (see
Lemma 1.5.7) Sy, (F,W3;,) and S¥» (F, Wy ) is zero.

We define two Kolyvagin sequences 7', " € II(k+ 1, F, M') extending
w by setting qj, ., = q' and qf,, = q”. By Corollary 7.7.6, if )’ € a2By we
can choose

@' € Homa ({k[eqr ), Ar,pr),  ¥" € Homa((Kpeqr,a17), Ar,nr)
so that
Fear® (Kgeqram) = 0'Evgr o mt (Beqr,an),
Frr1 " (Kieqr v) = 1EVqr 0,01 (jeqr a)-
Therefore, using Theorem 7.2.10 for the third equality below,
nlﬁ’F,M’ (i) (Kpe, 7))
= 0'EvE . (0541 (Kepr)) — 0BV E a0 (O ) (5(e,01)
= 1BV (Fron) (ke ary) — 1BV E v (Froe ) (e, a))
= nlﬁ’q",s,M' (K[eqr,m7) — nIE\‘;q’,s,M’ (Kfeqt,m7])
Srr1 (W (Kpeqr,m7) = ¢ (Kpeqr,a7))  (mod M)
for1®(k+1,F,M).

m
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By (7.9) and Lemma 7.2.7(ii),

j
> eEvean (v) = ndo = 1°Y,
i=1

so we conclude that
n°0' (ke ) Arm C fe1®(k + 1, F, M).

As n and 7’ vary, the products n®n' generate B, and the Proposition is
proved. O

Proof of Proposition 7.1.9. Observe that
o Ay, A%, and A}, have height at least two by Lemma 7.4.2 and
Proposition 7.5.2,
o Annp(H'(Qoo/Koo, W)) and Annp (WK ) are prime to char(Xo)
by Lemma 7.6.1, and
e Annp(Xw/Zw) contains the product of a, and an ideal of height
at least two by Proposition 7.1.7(iv).
An ideal of height at least two necessarily contains an element relatively
prime to char(X) (since char(Xo) # 0 by Theorem 2.3.2), so the ideal
B defined before the statement of Proposition 7.7.7 contains the product
of a3 and an element h of A prime to char(X). Now Proposition 7.1.9
follows from Proposition 7.7.7. O






CHAPTER 8
Euler Systems and p-adic L-functions

So far we have discussed at length how an Euler system for a p-adic rep-
resentation T" of G g controls the Selmer groups S(K, W*) and S(K o, W*).
This raises several natural questions which we have not yet touched on.

e Except for the examples in Chapter 3, we have not discussed at
all how to produce Euler systems. For which representations do
(nontrivial) Euler systems exist?

e If there is a nontrivial Euler system ¢ for 7', then there are infinitely
many such (for example, we can act on ¢ by elements of O[[Gk]]).
Is there a “best” Euler system?

e Conjecturally, Selmer groups should be related to L-functions and
their special values. Is there an Euler system related to an L-
function attached to T'?

In this chapter we will sketch a picture which gives a highly conjectural
partial answer to these questions, by describing a fundamental connection
between Euler systems and (p-adic) L-functions. This general picture will
rest on several layers of conjectures, but nonetheless there are several known
examples (such as the ones in Chapter 3) where the connection is proved.

The connection is made via the work of Perrin-Riou [PR2], [PR4].
Briefly, for certain p-adic representations T' of Gq, and subject to some
vast but plausible conjectures, Perrin-Riou shows how to view the p-adic
L-functions attached to twists of 7" by characters of conductor m as el-
ements in H! (Q(u,,),T) (or more precisely, in the tensor product of
H! (Q(p,,),T) with the field of fractions of A). As we will see below
in §8.3, these cohomology classes (if they exist) satisfy the distribution
relation defining an Euler system for 7. In other words, Perrin-Riou’s
conjectural elements form an Fuler system, and since they arise from p-
adic L-functions, Theorems 2.2.10 and 2.3.8 then relate the Selmer groups
S(Q,W*) and S(Qw, W*) to L-values.

8.1. The Setting

163
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For this chapter we will assume
e K =Q,i.e., T is a p-adic representation of Gq,
o the scalar ring O is Z,.

The first assumption is not too serious a restriction, as in general one could
consider the induced representation Indx,/qQT'. The second is completely
unimportant, and is made only for notational convenience.

Following Perrin-Riou [PR4], we will also make the more serious as-
sumptions that V =T ® Q, is the p-adic realization of a “motivic struc-
ture” in the sense of [FPR] Chapter ITI, that T corresponds to an integral
structure on this motive, and that the representation V is crystalline at p.

We let D(V') denote Fontaine’s filtered vector space attached to V, i.e.,

D(V) = (V ®q, Beris) .
By definition,
V is crystalline <= dimq,D(V) = dimqg, V.

Suppose F' is an abelian extension of Q, unramified at p. Then F has
[F : Q] distinct embeddings into Beris and we also define

Dr(V) = D(®F—B..V) = D(Indg/qV)

where Gq acts on ®p,p.,..V by acting both on V and on the set of
embeddings.

Suppose FE is a finite extension of Q,, with ring of integers Of, and
x : Gal(F/Q) — E* is a character. Let O, denote a free rank-one Og-
module (with a fixed generator) on which Gal(F/Q) acts via x, and write
Texfor TR Oy and V® x for V& Oy. Let

ex = Y, x(0)' €OR[Gal(F/Q)).

YEGal(F/Q)
Lemma 8.1.1. (i) There is a natural identification
Dr(V) =2 FqD(V).
(ii) Each choice of embedding F < By induces an isomorphism
DV ®x) = e-1(E®q, Dr(V))
where we let Gal(F/Q) act on D (V) via its action on F in (i).
Proof. We have
Dr(V) = (BjiresBos,V ® Beris) %,
so there is a natural embedding

FeqD(V) = Dp(V) givenby a®d = @;(i(a)d).  (8.1)
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In general
dimQP Drp(V) < dime (IndF/QV) = dime (F Xq D(V)),

so we conclude that equality must hold (i.e., Indr/QV is crystalline), and
the map (8.1) is an isomorphism. This proves (i).

For (ii), let (EQV ®Bcris)><_1 be the subspace of E®q, V ®q, Beris on
which Gq, (acting on V and Bes, not on E) acts via x~'. An embedding
j : F < Beis induces an embedding E ® F < E ® Beris, and hence (using
(1)) an isomorphism

-1 (E®@Dp(V)) = 6-1(E®@ F) @D(V) <5 (E®V ® Beris)X

Our fixed generator of O, induces an isomorphism from (E®V ® Bcris)X_1

t0 (V ® X ® Beris) 9% = D(V ® x). This proves (ii). O

As in Chapter 3 we let Qo = UQ,, denote the cyclotomic Z,-extension
of Q, let I' = Gal(Qu/Q), and let A = Z,[[I']] be the Iwasawa algebra.
Let H be the extended Iwasawa algebra defined by Perrin-Riou in [PR2]
81, i.e., if we identify A with a power series ring Z,[[X]] in the usual way,
and we let Q,[[X]]r C Qp[[X]] denote the Qp-vector space of power series
which converge on the open unit ball in Q, with growth

sup |f(X)| = o( sup |log(1+ X)|")
[X[<p | X|<p

as p = 17, then H is the A-algebra
H = A ®gz,(x) (lig Qu[[X]]»).

We let K be the field of fractions of H.

Suppose F is an abelian extension of Q unramified at p. In [PR2]
(see also [PRA4] §1.2) Perrin-Riou constructs! what she calls a “logarithme
élargi”, a Z,[[Gal(FQw/Q)]]-module homomorphism

Plim B (FQ.)», T) — K& Dr(V).
op "
This is a generalization of work of Coleman [Co], who defined such a map

in the case where T' = Z,(1). Composing Perrin-Riou’s map with the local
restriction maps we obtain a Z,[[Gal(F Qo /Q)]]-module homomorphism

Lp:Hy(F,T) = im H (FQ,,T) — K& Dp(V)

IPerrin-Riou’s construction only deals with odd primes p. We will implicitly assume
as part of the conjecture below that her construction can be extended to p = 2 to produce
a map with similar properties.
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which will be crucial in what follows. If F! C F then there is a commutative
diagram
HL(F,T) -2 K@ Dp(V)
COTF/FIJ, lTTF/F' (8-2)

HL(F',T) £ K@ Dp (V).

8.2. Perrin-Riou’s p-adic L-function and Related Conjectures
Let d = d(V) = dimgq, (V),
dy = dy(V) = dimg, (VF) = dimg, (V=)
where ¢ is a complex conjugation in Gq, and let
d_ = d_(V) = dimq, (V") = dimq, (V*=') = d - d;.
Let w: Gq — (Z;j)tors be the Teichmiiller character giving the action of
Gq on p,, (if p is odd) or on py (if p = 2), and define

1+pZ, ifpisodd,

71 ~
gy = € : G r —
e) = weeye : Ga = {1+422 if p=2.

Fix embeddings Q — C and Q = Q,,.
Suppose that E is a finite extension of Q, and x : Gq = E* is an
even character of finite order, unramified at p.

Conjecture 8.2.1 (Perrin-Riou [PR4] §4.2). Under the assumptions on
T at the beginning of §8.1, if r € Z% is divisible by the conductor of x then
there is a p-adic L-function

LP(Toyx) € Ko AGFDV* @ x™).

See [PRA4] §4.2 for the properties defining this p-adic L-function (when
p > 2). For our purposes we only say loosely that L£” ) (T ® x) is defined so
that for characters p of T" of finite order and for sufficiently large positive
integers k,

(&) pLP (T @ x))

k-1 _
= (p-Euler factor) x L,(Voxwhpt, —k)

(archimedean period)

x (p-adic period).

Here L,(V ® xwFp~',s) is the (conjectural) complex L-function of the
representation V ® yw®p~! with Euler factors at primes dividing r removed,
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which has an Euler product expansion
H L(Vexwpts) L (8.3)
fr

For primes £ # p where V is unramified, the Euler factor at £ is defined by

L(V@xwkpt,s) = det(l — Fr, 'z|V @ xwhp ™) |gmps,
so in particular
(V@ xwp™, —k) = (e)*p(det(L — Fr, ' @[V)|pmy—1(0)pr, ) -
Hence for such £, writing P(Fr;'|T;z) = det(1 — Fr; 'z|T) as in §2.1, we
have
LY(T@x) = P(Fr; ! |T;x" (O)F) LY (T @ x). (8.4)

The following statement is in the spirit of the conjectures of Perrin-Riou
in [PR4] §4.4, but stronger. In fact it is so strong that this formulation is
certainly not true in general (see Remark 8.2.5 below). However, one can
hope that it is “almost” true.

For r € Z% write A, = Gal(Q(u,)"/Q), where Q(u,,)" is the real
subfield of Q(u,,), and

Ay = AR Z[A] = Zp[[Gal(Qoo(Nr)+/Q)]]-

The involution v — 7~ of T' induces involutions of K and hence of

K®/\dE_‘D(V® x 1), for example. We denote this last involution by f — f*.

Wishful Thinking 8.2.2. Suppose r € Z% is prime to p. Then there is
an element €, € /\i: Héo(Q(ur)"_,T) such that for every finite extension
E of Q, and every character x : A, - E*,

S (L35 (€,)) = LO(T* 9 x)"

Remark 8.2.3. In the equality above, since d_(V) = dy(V*), the right-
hand side lies in K ® A% D(V ® x~1). On the left,
d- d- -
Lg(pr)"“ A Héo(Q(“r)—i_a T) — K AQP[AT]DQ(#T)“' V)

is the map induced by Lq, )+ Recalling that e, = >° x(7)7 1, we also
have a map

ex : Do+ (V) — DV ex")

from Lemma 8.1.1(ii) (our chosen embedding Q — Q, gives an embedding
Q(u,.) = Beris) which induces a map

_ d_ _
2- 1 K® /\dQP[AT]DQ(#m(V) — KoAL DV e x™).
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Note that this makes sense even if d_ = 0, in which case e;‘?O is the projec-
tion from K ® Q,[A,] to K® E induced by x. Thus the optimistic equality
of 8.2.2 above is an identity between two elements of K ® /\é‘ DV ex ).

Remark 8.2.4. The statement above is a strengthening and “extrapola-
tion” (by introducing the level r) of the conjectures of Perrin-Riou in §4.4
of [PR4]. We have also rephrased the conjecture in terms of L (T*®x)
instead of L (T ® x~!) by using the functional equation [PR4] §4.3.2,
because it simplifies the formulas below.

Remark 8.2.5. One reason that the optimistic statement 8.2.2 cannot be
true in general is that it asserts that the p-adic L-functions should all be
“integral” in a strong sense. But the L-values can have denominators, com-
ing from W@+ where W =T ® (Qp/Zy). Inspired by the theorem of
Deligne and Ribet [DR], by Stark’s conjecture [T5] (where this denomina-
tor has been extensively studied), and by Perrin-Riou’s [PR4] Conjecture
4.4.2 (and Lemme 1.3.3), one is led to the following slightly more modest
assertion. We optimistically call it a conjecture in the hope that at least
some similar statement is true.

Conjecture 8.2.6. Suppose that r € Z* is prime to p, that d_ = 1, and
that a € Z,[[Gq]] annihilates W%Qootun)t .

Then there is an element £, = 5&"‘) € H'. (Q(w,)",T) such that for
every finite extension E of Q, and every character x : A, - E*,

exLq )+ (&) = x(@LP(T* & x)",
where x(a) denotes the image of a under the composition
Z,([Gql] » A, 2 ARZA,] 2% AQE — KQE.
Note that if 7" is unramified at every prime dividing r, then
TG = TG and Wwwn) = W (8.5)

exactly as in Lemma 4.2.5(i), since Gal(Quo(t,)/ Qo) is generated by in-
ertia groups which act trivially on 792« and W<,

8.3. Connection with Euler Systems when d_ =1

Suppose that T is as above, that d_ = 1, that Conjectures 8.2.1 and
8.2.6 hold, and that the weak Leopoldt conjecture (see [PR4] §1.3) holds
for T*. For technical reasons we also assume that 7¢2~ = 0. Let N be
the product of all rational primes where T is ramified.
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Fix an element a € Z,[[Gq]] which annihilates W%2=. By (8.5), a

annihilates W%Qw w1+ for every r € Z1 prime to Np. For such r, let
& = {énr} € Ho(Qp,) ", T), with &nr € H'(Qu(p,) ", T),
be an element satisfying the conclusion of Conjecture 8.2.6.
Proposition 8.3.1. With hypotheses and notation as above, suppose r is
prime to Np and £ is a prime not dividing Nrp. Then for every n > 0 we
have
Corq, (u, )+ /Qu(u,)+Enire = PELy T Fry ),

where P(Fr, ' |T*;z) = det(1 — Fr, 'z|T*) € Z,[x].
Proof. Suppose that E is large enough so that all characters of A, into
Q,” take values in E*, and that x : A, — EX is a (necessarily even)

character. Write ' for the character A,; » A, 2 E*. Using (8.2) and
the definition of §,, we see that

exLqeu,)+ (Corquu, )+ /qu,)+&rd) = &xTro Lo, ,)+(&re)
= €L+ (&) = X@LE (T @ )"
On the other hand, the definition of £, shows that
xLqut &) = x(@LP(T* ® x)".
Replacing T' by T* in (8.4) and applying the involution ¢ yields
L7 (T* @x)" = PE; T X (OF; HLP (T © x)*.

Combining these equalities shows that

XL, (COrQ(u, )t /() +€rt) = xLaqu,y+ (P(Fry T Fr 1)E,)
for every x, and therefore since }° €y = [Q(e,)": Q] € E[A]X, we
conclude that

L)+ (CorQuu, )+ /Quu,)+ére) = Lo+ (PE T FrHE,).

It remains only to show that, under our hypotheses, ['Q(nr)+ is injec-
tive. Recall that Lq,, )+ is the composition

H,(Q(p,)",T) — Plim B (Qu(w,)T,T) — K®Dg, 1+ (V)
op "

(8.6)

The weak Leopoldt conjecture, which we have assumed, implies that ([PR4]
(1.4.2) and Corollary B.3.6) the restriction map

H;O(Q(I‘LT)+7T) — @ @ e3v|q Hl(Qn(u’r)jaT)

g/Np "
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v

torsion A-module if ¢ # p. Therefore the kernel of the first map of (8.6) is
a torsion A-module, and the definition of the second map ([PR4] §1.2.5)
shows that its kernel is torsion as well. But by [PR4] Lemme 1.3.3, the
A-torsion submodule of HL (Q(u,)t,T) is T%@wwn* | which is T%e by
(8.5), and by our hypothesis this is zero. Thus Lq(p, )+ 1s injective and the
proposition follows. O

is injective. By Proposition A.2.3 of [PR4], lim @,, H'(Qn (g, )7, T) is a

Corollary 8.3.2. With notation as above, the collection
{énr € H(Qu(p,)",T) :n >0 and r prime to Np}

defines an Euler system for (T, Qo (u')*, Np) in the sense of Definition
2.1.1 and Remark 2.1.3, where p' is the group of all roots of unity of order
prime to Np.

Proof. This is immediate from Proposition 8.3.1. O

Remark 8.3.3. There is another way to think about the existence of Euler
systems when d_ =1, in terms of complex L-functions. Namely, the Euler
product (8.3) for L(V*, s) converges (conjecturally), and hence is nonzero,
if s is a sufficiently large positive integer. This allows us to read off the value
of ords=—_ L(V, s) for large positive integers k in terms of the I-factors in
the functional equation relating L(V, s) and L(V*,s). Subject to standard
conjectures, one can show in this way that

ords—oL(V ® () *p,s) = d_

for all sufficiently large positive integers k£ and all characters p of finite
order of Gal(Qw/Q).

Fix one such k. The Beilinson and Bloch-Kato conjectures then predict
that the leading term in the Taylor expansion of L(V ® () *p, s) at 0 can
be expressed in terms of, among other things, a d_ x d_ regulator. When
d_ =1, this predicts the existence of certain special elements, and one can
hope that these elements produce an Euler system for T ® (g) .

By Theorem 6.3.5, an Euler system for T ® {¢) % can then be twisted
to produce an Euler system for 7.

Remark 8.3.4. In the next section we consider the example T' = Z,(1),
which has d = d~ = 1. Other interesting examples are when 7' is the Tate
module of a modular elliptic curve (as in §3.5), which has d~ =d* =1, or
when T is the symmetric square of the Tate module of an elliptic curve (as
in §3.6), which has d~ = 1 and d* = 2.
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8.4. Example: Cyclotomic Units

In this section we discuss the example T' = Z,(1). The results in this
section were all worked out by Perrin-Riou in [PR3]. The main ideas of
the computation go back to Iwasawa.

We suppose for this section that p > 2. We will show that Conjecture
8.2.6 is true for Z,(1), and in the process we will show that the Euler system
of cyclotomic units discussed in §3.2 arises in the way described in the
previous section. Note that d_(Q,(1)) = d(Q,(1)) = 1 and d;(Q,(1)) = 0.

For every r € ZT prime to p, and n > 0, let

Cpnr = I\TQ(PL”[,nH)/Qn(NT)+(Crp“+1 -1) e (Qn(ll'r)+)x
C H'(Qn(p,)*,2Z,(1)),
the Euler system of §3.2, and

ér,oo = {ép"r}n € H;O(Q(ur)+7zp(1))

Let
u(X) = GA+ X)) —1 € (Zlw,]®Z,)[X]]
and
he(X) = J] w(@+X)P =Da((1+X)° -1)
5€ﬂp—1czz>:<

where u,(X) = ¢71(1 —}-X)T_1 —1. Then h, is the “Coleman power series”
attached to €, o, i.e., for every n > 0,

Fr—7—1 ~
hr? ({pn+r — 1) = Epny.

The p-adic L-functions L") (Z, ® x) that arise below are the Kubota-
Leopoldt p-adic L-functions, so their existence does not rely on any conjec-
tures. The following proposition is essentially due to Iwasawa and Coleman,
but we present it in the language of Perrin-Riou, following [PR3].

Proposition 8.4.1. Suppose r > 1 and E is a finite extension of Q,. For
every character x : A, — E*, we have

exLqu,t €rce) = 2LP (Zy ® X)"-

Proof. Suppose first that r > 1. By [PR3] §1.8, §3.1 (or [PR2] §4.1.3) and
[Iw2],

Loyt @roo) € A® D, 1+(Qp(1) = Qp,)” ® A®D(Q,(1)), (8.7)
LP(Z, ® x) € A®D(Qy(1) ® X ') = (A ® D, 1+ (Qp(1))), (8.8)
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where the equalities use Lemma 8.1.1. Let e_; denote the canonical gen-
erator of the one-dimensional vector space D(Q,(1)), and define

H.(X) = logh,(X) — %loghfrp((l + X)P—1).

From the definition in [PR4] §1.2.5 (see also [PR3] §1.3 and §3.1.4), we
see that
'CQ(PT)+(6T’°°) = ]-'Te_l
where F, € Q(u,)" ® A is such that for every k > 1,
<5>k(-7:r) = (DkHr)(Cp -1)
where D is the derivation (1 + X )diX. Thus if x : A, = E* is a character,
then
6X['Q(M)Jr(ET’OO) = Frxe-1
where F,., € Q(u,)* ® A® E is such that for every k > 1,
@ (Frn) = Y x T DFHND (G - D).
YEA,
Therefore by Lemma D.2.2, if ¥ > 2 we have

1—p*x(p) it (p—1)|Fk,
so by the formulas in [PRA4] §4.2 and §4.3.3 we see that for & > 2,

<6>k(€X‘CQ(pT)+(éT700)) = ()" (Frxe-1)
= 2(e) *(LP(Z, ® X)) = 2(e)*(LP(Z, © X))
(the Gauss sums which appear in the formulas of [PR4] and [PR3] are not
present here because we never identified Q[Gal(Q(u,)/Q)] with Q(u,.)
as in [PR3] §1.8). By (8.7) and (8.8), these equalities suffice to prove
the proposition when r > 1. A similar computation shows that for every
(S GQ,

(€)* (Frx) = 20(R)(~2m) *LC ', B) {‘X(p)”k ek

Lauy+(0 = 1e100) = 2(0 — DLP (Z,)". O
Corollary 8.4.2. Conjecture 8.2.6 holds for T = Z,(1).

Proof. We have assumed that p > 2. Therefore ufo?"" = {1}, and for every
a € Z,[[Gq]], Proposition 8.4.1 shows that

€ = JoEno € HLQ,),T)

satisfies Conjecture 8.2.6. O
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8.5. Connection with Euler Systems when d_ > 1

Suppose now that 7' is such that d_ is greater than 1, and suppose that
some version of the assertion 8.2.2 is true, i.e., suppose there is an integer
N divisible by all primes where T is ramified, and an element o € Z,[[Gq]]
such that for every integer r prime to Np, there is an element

€, € Ay HL(Q(p,)",T)
satisfying
Lo +(€) = x(@LP (T © x)'

for every character x of A,.. We also suppose again that the weak Leopoldt
conjecture holds for T*. In this section we will adapt an idea from [Ru8] §6
to construct Euler systems (elements in H' (Q(,.)", T')) from the elements

€ € Ay HL(Q(u,)t,T).

Lemma 8.5.1. With hypotheses and notation as above, suppose r is prime
to Np and £ is a prime not dividing Nrp. Then

COr Qa1 1@y €re) = PFR T 5 By 1) (E,)
belongs to the A-torsion submodule of /\i: H;O(Q(,LLT)JF,T), where
P(Fr;'T*;2) = det(1 — Fr; 'z|T*) € Z,[z]
and

Corgin v squuyt * A HG(QU,) ", T) — A HL(Q(p,)*, T)

is the map induced by corestriction.

Proof. Exactly as in the proof of Proposition 8.3.1, we deduce that

®d- ®d_ — * —
Qe (Corq sy 6r0)) = £gip v+ (PEE T B (E)-

Also as in the proof of Proposmon 8.3.1, the kernel of L’Q( )+ 18 a torsion

A-module, and so the kernel of E )t is torsion as well. O
Suppose that r is prime to Np, and ¢ € Homa, (HL (Q(p,) ", T), A,).

Then ¢ induces a A,-module homomorphism from A% H} Q(p,)t,T) to
NSTTHL (Q(p,) T, T) for all k > 1 by the usual formula

s Acep — Z H_l 61/‘\ s NCi—1 NCig1 - NCg.
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Iterating this construction d_ — 1 times gives a map

A= Homy, (HL (Q(r,) ™, T), A)
— Hom(Ay HE (Qu,) ', T), HL (Q(k,) ", 7). (8:9)
If s | r then there is a natural map
Nr/s : HOI’IIAT (H;o (Q(p’r)-i—’ T)’ AT‘) — HOI’IIAS (H;o (Q(l‘l‘s)+7 T)7 As)

induced by restriction H: (Q(p,)*,T) = HL (Q(g,)",T) and the identi-

fication A, = ASaI(Q(M)WQ(ﬂS)ﬂ‘

Proposition 8.5.2. With notation as above, suppose that TG2~ =0 and
that

6 = {&,} € lim Ay_ "' Homy, (HL(Q(k,)",T),A,),

inverse limit with respect to the maps Nf?/‘i_fl. If r is prime to Np then

S,.(&,) € H;O(Q(MT)+,T), and if further £ is a prime not dividing Nrp
then

CorQ(pT£)+/Q(pr)+(67'[(57{)) = P(Fr[1|T*;Fr[1)(6T(§T)).
In other words, if we write &,(§,.) = {&n,r}n then the collection

{énr € H'(Qulp,)", 1)}
is an Euler system for T (Definition 2.1.1 and Remark 2.1.3).

Proof. The proof is identical to that of Proposition 6.2 and Corollary 6.3
of [Ru8]. Using (8.9) it is clear that &,(£,) € HL (Q(u,)",T). Suppose
that s | r. If ¢ € Homy, (H. (Q(i,)",T),A,) and ¢ € HL (Q(p,)*,T),
then ¢(c) € A,, and its image under the restriction map A, — Ay is
(N;/59)(Corqu )+ /Q(u,)+(¢))- From this it follows without difficulty that

®d_
Corqqu, )+ quu+ (6r(€r)) = 64(Corgey 11 /qq, )+ (€5)):
Combining this equality with Lemma 8.5.1 shows that

COTQ(,LTZ)+/Q(”T)+(Gr€(§r1)) - P(Fer|T*§ FYZI)Gr(ﬁr)

belongs to the A-torsion submodule of H. (Q(p,)*,T). But by [PR4]
(Lemme 1.3.3) and (8.5) this torsion submodule is 7%@=, which we have
assumed to be zero. O

Remark 8.5.3. Of course, Proposition 8.5.2 is only useful if we know
something about the size of lim /\7\:71 Homa, (H. (Q(p,)",T),A,), and
in particular that it is nonzero. See [Ru8] §6 for an example.



CHAPTER 9
Variants

In this chapter we discuss several alternatives and extensions to the
definition of Euler systems we gave in Chapter 2.

9.1. Rigidity

It is tempting to remove from the definition of an Euler system the
requirement that the field X (over whose subfields the Euler system classes
are defined) contain a Zp-extension of K. After all, the proofs of the
Theorems of §2.2 only use the derivative classes K[k ,n and not the K(r ¢, ar
for larger extensions F' of K in K,. However, our proofs of the properties
of the derivative classes K[k . p very much used the fact that the Euler
system class cx () is a “universal norm” in the extension K (t)/K(t).

In fact, some such assumption is needed, as the following example
shows. Suppose K has class number one, N is an ideal of K divisible
by p and all primes where T is ramified, and T has the property that
P(Frq_1|T*; 1) = 0 for every q not dividing /. (For example, if T is the
symmetric square of the Tate module of an elliptic curve as in §3.6 then T
has this property.) Suppose further that K is the maximal abelian extension
of K unramified outside N (so K does not contain a Z,-extension of K') and
c satisfies the distribution relation in Definition 2.1.1 of an Euler system
for (T,K,N). Then in Definition 2.1.1, the only equations connecting cx
with the other cg are of the form

Corp/xecr = H P(Frq_1|T*;Frq_1)cK = H P(Frq_1|T*; ek
4EX(F/K) qeX(F/K)
If F # K then the set (F/K) of primes ramifying in F/K is nonempty,
so the right-hand side will always be zero. In other words cx does not ap-
pear in any nontrivial Euler system relations, so we can replace cx by any
element at all in H'(K,T) without disturbing the distribution relation of
Definition 2.1.1. For example, the collection defined by ¢y = 0 for F # K,
with ck arbitrary, satisfies those relations. Since there are examples satis-
fying the conditions above with non-trivial Selmer groups, in this situation

175
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one cannot hope for a theorem like Theorem 2.2.2 (or Theorem 4.5.4), in
which the conclusion depends in an essential way on cg.

However, there are other possible ways to ensure the “rigidity” of an
Euler system. Let R be the set of squarefree ideals of K prime to N, as in
Chapter 4. In Definition 2.1.1, we can replace condition (ii) by

(ii') at least one of the conditions (a), (b), (¢) below is satisfied:

(a) K contains a ZZ-extension of K in which no finite prime splits
completely,

(b) k() € S¥*(K(x),T) for every t € R, and there is a v € Gk
such that T7=! =0 and v = 1 on K(1)K (g, (O%)*/?7),

() ck(r) € S¥* (K (x),T) for every v € R, the collection {cx ()}
satisfies the congruence of Corollary 4.8.1, and for every prime
q € R and every power n of p, Fr:” — 1 is injective on T'.

Condition (ii')(a) is condition (ii) of the original definition.

Under this more general definition, Theorems 2.2.2; 2.2.3, and 2.2.10
all hold, with the same conclusions as before, under the additional mild
assumption that T¢x1) = 0. We indicate very briefly how to adapt the
proofs in Chapters 4 and 5 to cover this expanded definition.

The idea is that there is a power m of p, independent of M, such
that one can still construct the derivative classes K[k ¢ 7], and prove the
local properties of §4.5, under the assumption t € R, am rather than
t € Rk, m- This additional assumption does not interfere with the proofs
of the theorems of Chapter 2.

Construction of the derivative classes. Since we assumed T¢x®) = (0,
Lemma 4.2.5(i) shows that T¢x = 0 for every r. Thus if we replace Wy,
by T = Maps(Gk,T) in Proposition 4.4.5 we get a short exact sequence

OF(x)
—=

0 — ’H‘GF(t) s (’H‘/T)GF(f) Hl(F(t),T) — 0.

Now as in Proposition 4.4.8, but using the exact sequence above instead
of Proposition 4.4.7, we can find a map d : Xp) — (T/T)%* lifting
c. Projecting this map to (Wys /War)¥F® we can proceed exactly as in
Definition 4.4.10 to define kg, -

Analogue of Theorem 4.5.1. We will use Corollary 4.6.5 instead of The-
orem 4.5.1. Corollary 4.6.5 follows directly from Proposition 4.6.1, which is
included as part of (ii')(b) and (ii’)(c). (In §4.6 we used assumption (ii')(a)
and Corollary B.3.5 to prove Proposition 4.6.1.)

Analogue of Theorem 4.5.4. Theorem 4.5.4 follows directly from Lem-
ma 4.7.3, so it will suffice to prove a form of that lemma. Suppose first
that (ii')(b) holds with an element v € Gk. Fix tq € R, a power M of p,
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and a power M' of p divisible by M P(v|T;1). By the definition of ~, we
have P(y|T;1) # 0. Let n = |, N K|. Choose a prime [ of K such that

(a) Fro =" on K1) KW, o, (O5) /1)),

(b) Fry =1 on K(tq),

(c) Fr¢ # 1 on K(A\Y(")) where \Ox = q" with h equal to the order

of g in the ideal class group of K.

(Exercise: show that these conditions can be satisfied simultaneously.) One
can imitate the proof of Lemma 4.7.3 by using the extensions K ([)/K in
place of the finite extensions of K in K. Condition (a) and the definition
of v ensure that nM' | [K(l) : K(1)]. Condition (c) ensures that the de-
composition group of g has index dividing n in Gal(K (I)/K), and therefore
has order at least M'. The key point is that although ck () and cg(rq)
are not “universal norms” from K (¢l) and K (rql) (as they would be from
K (t) and Kuo(tq)), the Euler system distribution relation shows that
P(Fr ' |T*Fri e K(x) is a norm from K (tf) and similarly with v replaced
by tq. Conditions (a) and (b) imply that in O[Gal(K (rq)/K)],

P(Fr 'T*FrY) = P(F (T 1) = P(y7'|T%1) (mod M)
— P(y|T;1).

Now imitating the proof of Lemma 4.7.3 one can show that, with notation
as in the statement of that lemma, if tq € Rk p then

P(Y|T; 1)(Ngyd(zp(cq)) — P(Fry ' |T* Fr, )yd(zp(r)) = 0 € W

This suffices to prove that k[p. v and K[pq ) satisfy the equality of
Theorem 4.5.4.

Now suppose (ii')(c) holds. In §4.8 we used Lemma, 4.7.3 to prove the
congruence of Corollary 4.8.1. Under the assumptions (ii’)(c) we can just
reverse the argument to prove Lemma, 4.7.3, and then Theorem 4.5.4.

Example 9.1.1 (cyclotomic units revisited). With this expanded defini-
tion, we can redefine the cyclotomic unit Euler system of §3.2. Namely, for
every m > 1 prime to p define

En = (Gn =D = 1) € Q) ) € HH(Q1n) ", Zp(1))
and set ¢; = 1. This collection is not an Euler system, even under our
expanded Definition 2.1.1. (If it were, then for every prime £ # p, the class
€Q(p,) would belong to 8% (Q(u,), Z,(1)), but this is not the case because
€Q(u,) ¢ H}(Q(Hz)zazp(l))-)

However, suppose x : Gq — O is a nontrivial character of finite
order, and its conductor f is prime to p. Then we can twist & by x ! as
in Definition 2.4.1, and with the modified definition above, the collection
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c =& isan Euler system for (Z,(1)®x %, Q*>?, fp), where Q" is the
maximal abelian extension of Q unramified outside p. Namely, although
condition (ii’)(a) does not hold, (ii')(b) (with v € Gq(u,.) and x(v) # 1)
and (ii')(c) (see Example 4.8.2) both do hold. With this Euler system we
can remove one of the hypotheses from Theorem 3.2.3 and Corollary 3.2.4.
With notation as in §3.2 (so L is the field cut out by x), we have the
following theorem.

Theorem 9.1.2. Suppose p > 2 and x is a nontrivial even character of
conductor prime to p. Then

[ ALl = €7 : Coyl.

Sketch of proof. If x(p) # 1 this is Corollary 3.2.4. So we may assume that
the conductor of x is prime to p and use the Euler system constructed
above. For this Euler system, c; generates Cr,,,, so exactly as in the proof
of Theorem 3.2.3 we deduce from Theorem 2.2.2 that

|85, (Q, (Qp/Zp) ® x)| divides [€F : CLx]-
Unfortunately, Proposition 1.6.1 shows that

Sx,(Q,(Qp/Zy) ® x) = Hom(Af/P,D)

where P is the subgroup of A} generated by the classes of primes of L
above p. This is not quite what we need.

To complete the proof, we observe that the derivative classes &k r v
attached to our Euler system all lie in S*"(Q, s, ® X 1), not just in
SE2(Q, puar ® X~ 1) as Theorem 4.5.1 shows in the general case. (This
follows from the fact that cq(, ) € S(Q(1,.), Zp(1) ® x 1) for every r. See
for example [Ru3] Proposition 2.4.) Therefore we can repeat the proof of
Theorem 2.2.2, but using ¥g = ) and ¥ = ¥, in Theorem 1.7.3 instead of
Yo = {p} and ¥ = X,,, to conclude that

|[AL] = 18(Q, (Qp/Zy) ® x)| divides [€F : Cp].

Now the equality of the theorem follows from the analytic class number
formula exactly as in Corollary 3.2.4. O

9.2. Finite Primes Splitting Completely in K, /K

Definition 2.1.1 of an Euler system requires a Zg—extension K- /K,
with K, C K, such that no finite prime splits completely in Ko /K.

In fact, the assumption that no prime splits completely is unnecessarily
strong. We can remove this hypothesis if we assume instead that
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(x) for every prime q of K which splits completely in K, /K, and for
every finite extension F of K in K, we have (cp)q € HL (Fy, T).
The set of primes which split completely in K, /K has density zero, so
such primes do not interfere with our Tchebotarev arguments. Using this
fact and (x), the proofs in Chapters 4 through 7 work without significant
modification in this more general setting.

9.3. Euler Systems of Finite Depth

Definition 9.3.1. Fix a nonzero M € O. An Euler system for Wy (or an
Euler system of depth M) is a collection of cohomology classes satisfying
all the properties of Definition 2.1.1 except that instead of cp € H'(F,T)
we require cg € H'(F,Wjs). An Euler system in the sense of Definition
2.1.1 can be viewed as an Euler system of infinite depth.

Remark 9.3.2. For this definition we could replace Wy by a free O/ M O-
module of finite rank with an action of Gg; it is not necessary that it can
be written as T/MT for some T.

The construction of the derivative classes kg, p in Chapter 4 only
used the images of the classes ¢y, (for various L) in H'(L, Wys). Thus if c
is an Euler system for W), then we can define the classes kg, 5y exactly
as in Chapter 4.

The proof of Theorem 4.5.4 also only used the images of the Euler
system classes in H'(L, W), so that theorem still holds for the derivative
classes of an Euler system for Wj,. However, the proof of Theorem 4.5.1
used the images of the Euler system classes in H!(L,T), so that proof
breaks down in this setting. However, as discussed in §9.1 above (and see
Remark 4.6.4), we can still prove a weaker version of Theorem 4.5.1, and
this will suffice for some applications.

For example, the proofs in Chapters 4 and 5 will prove the following
theorem. Keep the setting and notation of Chapter 2 (so in particular, for
simplicity, Wy, = T/MT).

Theorem 9.3.3. Suppose M € O is nonzero and c is an Euler system for
War. Suppose that Hypotheses Hyp(K,T) hold, that the error terms nw
and %y, of Theorem 2.2.2 are both zero, and that W = 0. Let

0 = m Anno (WIq /(WI“ )div)
primes q of K
atp

and let ay C O be the annihilator of ajcx in H* (K, Wyr). Then
(M/az)alszp (K, W;&) = 0.
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In particular if aycx # 0 then Sx, (K, W*) is finite.

Remark 9.3.4. The ideal a; of Theorem 9.3.3 is finite, since WZ /(W7)4i,
is finite for all q and is zero if T is unramified at gq. See the proof of Corollary
4.6.5.

One could reformulate Theorem 9.3.3 for a general Gg-module W
which is free of finite rank over O/M O, i.e., one which does not come
from a “I"”, but one would have to redefine the Selmer group since our
definition depends on 7', not just on Wyy.

9.4. Anticyclotomic Euler Systems

The “Euler system of Heegner points”, one of Kolyvagin’s original Euler
systems, is not an Euler system under our Definition 2.1.1. If one tries to
make the definition fit with K = Q, the problem is that the cohomology
classes (Heegner points) are not defined over abelian extensions of Q, but
rather over abelian extensions of an imaginary quadratic field which are
“anticyclotomic” (and hence not abelian) over Q. On the other hand,
if one tries to make the definition fit by taking K to be an appropriate
imaginary quadratic field, then the problem is that the Heegner points are
not defined over large enough abelian extensions of K, but only over those
which are anticyclotomic over Q.

We will not discuss Heegner points in any detail (see instead [Ko2],
[Ru2], or [Gro2]), but in this section we propose an expanded definition
of Euler systems that will include “anticyclotomic” Euler systems such as
Heegner points as examples.

Fix a number field K and a p-adic representation T of Gk as in §2.1.
Suppose d is a positive integer dividing p— 1, and x : Gk = Z; is a
character of order d. Let K’ = K*(X) be the cyclic extension of degree d
of K cut out by x.

For every prime q of K not dividing p let K'(q), denote the maxi-
mal p-extension of K' inside the ray class field of K’ modulo ¢, such that
Gal(K'/K) acts on Gal(K'(q),/K') via the character x. Similarly, let
K'(1), denote the x-part of the maximal unramified p-extension of K'.

Now suppose K' is an (infinite) abelian p-extension of K' and N is
an ideal of K divisible by p, the conductor of x, and all primes where T
is ramified, and such that K’ contains K'(q), for every prime g of K not
dividing .

Definition 9.4.1. A collection of cohomology classes

c={cre H(F,T): K'C,F CK'}
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is a x-anticyclotomic Euler system for (T,K',N') (or simply for T') if
(i) whenever K'C,FC,F' C K', then

Corperjp(cr) = ( I PeE;T Frq_l))cF
qEX(F/F)
where X(F'/F) is the set of primes of K not dividing N which
ramify in F' but not in F', as always Fr4 is a Frobenius of q in Gk,
and P(Fr;1|T*;x) = det(1 — Fr;1$|T*) € O],
(ii) at least one of the following analogues of the hypotheses (ii') of §9.1
holds:

(a) K' contains a Zf-extension K/, of K' such that no finite
prime splits completely in K /K', and Gal(K'/K) acts on
Gal(K! /K') via x,

(b) ckr(r), € S¥*(K'(t)y,T) for every t, and there is a v € Gk
such that ecye(y) = x(7), and T7=! = 0, and ¢ = 1 on
K1)y (e, (O,

(¢) ck() € 8% (K(r),T) for every t, the classes {cp} satisfy the
appropriate analogue of the congruence of Corollary 4.8.1,
and for every q not dividing ' and every power n of p, Fry—1
is injective on T'.

Remark 9.4.2. If d = 1, then x is trivial, K’ = K, and thus a y-anticyclo-
tomic Euler system for 7 is the same as an Euler system for 7" in the sense
of Definition 2.1.1 (or §9.1).

Suppose K = Q and x is an odd quadratic character, so d = 2. Then
K' is an imaginary quadratic field and K’ is an anticyclotomic p-extension
of K'. If T is the Tate module of a modular elliptic curve, and we make
the additional assumption that x(¢q) = 1 for every prime ¢ dividing the
conductor of y, then the Heegner points in anticyclotomic extensions of K’
give a x-anticyclotomic Euler system for 7. (One must modify the Heegner
points slightly, as in §9.6 below, to obtain the correct distribution relation.)
Note that in this situation we could take X' to contain the anticyclotomic
Zp-extension K/  of K'. However, all rational primes which are inert in
K' split completely in K. /K’ so condition (ii)(a) of Definition 9.4.1 fails.
However, both (ii)(b) and (ii)(c) hold.

Let
Q' = K' (D (kyee, (OF) /77, W).
For every ¢ € Z let

indo(c,x*) = sup{n : ¢k, € p"H (K", T) + H'(K', T)tors} < 0,
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where c}‘;, denotes the projection of cx into the subgroup H' (K, T)Xi of
H(K',T) on which Gal(K'/K) acts via x*. In this setting of anticyclo-
tomic Euler systems one can prove the following theorem.

Theorem 9.4.3. Suppose ¢ is a Xx-anticyclotomic Euler system for T.
Suppose further that H'(Q'/K'\W) = HY(QV'/K',W*) = 0, that T ® k
is an irreducible k[Gk']-module, and that there is a T € Gg such that

® geye(T) = X(7),

o 7@ is the identity on K'(1)y(ppee, (O5)/P7),

o if (€ py CO* then T/(T — )T is free of rank one over O.
Then for every i,

prdo(ex sy (K W)X = 0,
Remark 9.4.4. In the setting of the Heegner point Euler system men-
tioned in Remark 9.4.2, K’ is an imaginary quadratic field, and we can
take 7 to be a complex conjugation. Theorem 9.4.3 then says that the
“minus part” of the Heegner point in E(K') controls the “plus part” of the
Selmer group of E over K', and vice versa.

Sketch of proof. Given a x-anticyclotomic Euler system and a power M of
p, one can proceed exactly as in §4.4 to define derivative classes

K e € HY(K', W)

for every v € Rk m,r, where Ry ar,- is the set of squarefree ideals of K
divisible only by primes q such that q 1 A and such that the Frobenius of
q in Gal(K'(1)y (a1, (O™ Wir) /K is (conjugate to) 7. These classes
satisfy analogues of Theorems 4.5.1 and 4.5.4, and can be used along with
global duality (Theorem 1.7.3) to bound the appropriate Selmer group.

The main difference between the case of trivial x (i.e., Theorem 2.2.2)
and nontrivial x is the way the powers of x appear in the statement of
Theorem 9.4.3. This is due to the “anticyclotomic” version of Theorem
4.5.4, which states that for vq € Rk m,-, we have

locy (K[k7,eq,01]) = ¢£8(N[K',:,M])
where
off « Hi (K, W) — Hy(K{, War).
As usual we write H(Ky, Wn) = @yqH}(K,, W) and similarly for
H} (K}, W), so that both are Gal(K'/K)-modules. However, ¢1® is not
Gal(K'/K)-equivariant; for ¢ € Rk’ um -, one can show that

1

S1° (HI (KL, War)X') © HYNKL W)X ™.
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Thus, taking vt = 1 and letting q vary, we obtain a large collection of classes
i—1
in H'(K',Wp)X, ramified at only one prime of K not dividing p, whose
ramification is expressed in terms of c}‘;,, and these classes can be used
1—1

to annihilate classes in Sy, (K',WW*)X" . This is how Theorem 9.4.3 is
proved. O

Remark 9.4.5. To prove an analogue of Theorem 2.2.2 and bound the or-
der of the various components of Sy, (K', W*), we would need to proceed by
induction as in Chapter 5. Unfortunately this is not at all straightforward,
because at each step of the induction we move to a different component.
We will not attempt to formulate, much less prove, such a statement here.

In the case of Kolyvagin’s Euler system of Heegner points, the induction
succeeds by using the fact that 7* =2 T. When d > 2 there is no obvious
property to take the place of this self-duality. Also, if d = 2, then x takes
values +1, so if L is an abelian extension of K’ it makes sense to ask if
Gal(K'/K) acts on Gal(L/K") via x. When d > 2, this only makes sense
when L/K' is a p-extension. This is sufficient to discuss and work with
Euler systems, but it raises the question of whether one should expect
x-anticyclotomic Euler systems with d > 2 to exist.

9.5. Additional Local Conditions

Inspired both by work on Stark’s conjectures (see for example [Grol]
or [Ru6]) and by the connection between Euler systems and L-functions
(see Chapter 8), we now allow the imposition of additional local conditions
on Euler system cohomology classes.

Suppose ¥ and ¥’ are disjoint finite sets of places of K. If Ais T, W,
W, T*, W* or Wy, define

SE (K, A) = ker (S¥(K,A) = @pesr H (K,, A))
and similarly with K replaced by a finite extension. For example, Sz, (K, T)
consists of all classes ¢ € H'(K,T) satisfying the local conditions

® ¢y € H}(KW,T) ifo¢gXuyx,

e ¢, =0ifvey,

e no restriction for v € X.

Definition 9.5.1. Suppose c is an Euler system for (T,K,N), and ¥ is
a finite set of primes of K not dividing p. We say c is trivial at ¥ if
cr € Sgp (F,T) for every F.

If an Euler system is trivial at ¥, we can use it to bound the Selmer

group Sgp (K, W*). The proof will be the same as the original case where
¥ is empty, once we have the following strengthening of Theorem 4.5.1.
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Theorem 9.5.2. Let X be a finite set of primes of K not dividing p. If c
is an Euler system for T, trivial at ¥, then the derivative classes K[p,.
constructed in §4.4 satisfy

K[F,x,M)] S Sgpt (F, WM).

Proof. By Theorem 4.5.1, we only need to show that (k[p.,m1)q = O if
q € X. The proof is similar to that of Theorem 4.5.1 in §4.6. We use the
notation of that proof.

Fix a lift d : Xp() = War /Was of ¢ as in Proposition 4.4.8 and write
d, for the image of d in Hom(X gy, War /Ind$x (W) in the diagram of
Lemma 4.6.7. Then d, is a lift of c in the sense of Proposition 4.6.8, but
so is the zero map, since (¢ F(t))q = 0. Therefore the uniqueness portion of
Proposition 4.6.8 shows that dq € image(Hom(Xp(t),Wff(‘))), and from
this it follows without difficulty, as in the proof of Theorem 4.5.1, that
(N[F,t,M])q =0. u

The following analogue of Theorem 2.2.2 (using the same notation) is
an example of the kind of bound that comes from using an Euler system
which is trivial at X.

Theorem 9.5.3. Suppose that p > 2 and that T satisfies Hyp(K,T). Let
Y. be a finite set of primes of K not dividing p. If ¢ is an Euler system for
T, trivial at X, then

Lo (S5, (K, W*)) < indo(c) + nw + njy
where

nw = Lo(H (K, W) NS (K, W)),

ny = Lo(HY(Q/K,W*)N S, (K, W*)).

Proof. The proof is identical to that of Theorem 2.2.2, using Theorem 9.5.2
instead of Theorem 4.5.1. O

Remarks 9.5.4. There are similar analogues of the other theorems of
Chapter 2, bounding S (K, W*) and S5 (Koo, W*).

By taking ¥ to be large, we can ensure that the error term ny in
Theorem 9.5.3 is small.

In the spirit of Chapter 8, if we think of Euler systems as correspond-
ing to p-adic L-functions, then an Euler system which is trivial at ¥ cor-
responds to a p-adic L-function with modified Euler factors at primes in
Y. As in [Grol] §1 (where our X is denoted T'), these Euler factors can
be used to remove denominators from the original p-adic L-function (see
Remark 8.2.5 and Conjecture 8.2.6).
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9.6. Varying the Euler Factors

It may happen that one has a collection of cohomology classes satisfying
distribution relations different from the ones in Definition 2.1.1. Under
certain conditions one can modify the given classes to obtain an Euler
system.

Return again to the setting of §2.1. We fix a number field K and a
p-adic representation T" of Gx. Suppose K is an abelian extension of K
and N is an ideal of K divisible by p and all primes where T is ramified. If
KC, FC.F' CK,let X(F'/F) denote the set of primes of K not dividing
N which ramify in F'/K but not in F/K.

Lemma 9.6.1. Suppose {f; € Olz] : ¢ t N} and {gq € Olz] : q 1 N'}
are two collections of polynomials such that fq(z) = gq(z) (mod N(q) —1)
for every q, and suppose {¢p € H*(F,T) : KC,F C K} is a collection of
cohomology classes such that if KC, FC, F' C K, then

Corpryp(€p) = ( H fq(Frq_l))éF-
qEX(F' /F)
Then there is a collection of classes {cp € HY(F,T) : KC,F C K} satis-
fying the following properties.
(i) f KC, FC, F' CK, then
COI'F//F(CF/) = ( H gq(Frgl))cF.
qEX(F'/F)

(i) If KC, F CK and F/K is unramified outside N, then

Cr = CF.

(iii) Suppose K C;F C K and x is a character of Gal(F/K) of conductor
f. If every prime which ramifies in F/K divides Nf, then

Yo x(Wver = > x(er.
YEGal(F/K) YEGal(F/K)

Proof. f KC,F C K let X(F) = X(F/K), and if S is a finite set of primes
of K let Fs be the largest extension of K in F' which is unramified outside
Sand N. If gf N let dq = gq(Fr; ") — fo(Fr, ). For every F define

cFp = Z 71—1%2(1?)75%( H fq(Frq_l))éFs.

SCE(F) £+ Fs] 4€S—B(Fs)

(Let Zq(F/ K) denote the inertia group of q in Gal(¥/K). Then Gal(F/Fs)
is generated by {Z, : q € X(F) — S}, and |Zy] divides (N(gq) — 1) in O, so
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[F: Fs] divides [] 5 () —s(N(a) —1). Since dq € (N(q) —1)O[Gal(F/K)],
the fractions above belong to O[Gal(F/K)].)

With this definition, (ii) is clear. Assertion (iii) (of which (ii) is a
special case) also holds, because if every prime which ramifies in F/K
divides Nf, and if S is a proper subset of X(F), then x does not factor
through Gal(Fs/K) and s0 3° cqair/) X(V)7€Rs = 0.

For (i), observe that for every S, we have F{ N F = Fg. Thus, using
the diagram

FI
|
FLF
/
F
N

Fg

Fy

we see that
COI‘F:/F((NZFé) = CorFéF/FcorF’/FéF(éFé) = [F’ : FéF]CorFéF/F(éFé)

F': F - F':F 13 ~
= uCorFé/Fs(cFé) = [_[Fli] H fq(Frq 1))CFS,
S q4ES(FY/Fs)

[FL : Fs] Fs]

and so Corpr/p(cpr) = ESCE(F,) ag€rg where

GSZM( II fq(Frql))%( II fq(FrEl))

[F": Fg] , ,
qES—%(F}) qE€X(FY/Fs)
I1 ex(F)—S dq _
= W [T f@Eh.
" hS qeES—X(Fs)

Since Fs = Fsnx(r), We can group together those sets S which have the
same intersection with X(F'), and we get a new expression

COI'F//F(CFI) = Z bSéFS
SCE(F)

where

! I d
by = Z HqEE(F )—S—S' "4 H fq(Frgl)

/F) qeSUS’'—X(Fs)
H eX(F)-S d‘l _
= q[F( .)F' ] H fCI(Frql)
s qES—X(Fs)

x > (0 II da) IT fa®)

S'CX(F'/F) q€X(F'/F)-S' ~ q€s’
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Since
> (I do) I .ED = T e+ falrg)
S'CEX(F'/F) qeX(F'/F)-S' qes’ qeX(F'/F)
= H gq(Frgl)a
qEX(F’/F)

we conclude that Corp/r(cr) = [l ex(r/r) 94 (Fr,')cr as desired. O

Example 9.6.2. Suppose that K = Q, that f,(z) = 1 — z, and that

gq(x) =1—g 'z. Then f,(z) = g,(z) (mod (¢—1)Z,) for every ¢ # p. By
applying Lemma 9.6.1 with these data to the collection {¢} € H!(F,Z,)}
constructed in Definition 3.4.2, we obtain an Euler system for Z,,.

Lemma 9.6.3. Suppose {fq(z) € Olz,z™'] : q N} is a collection of
polynomials, {uq € O* : qt N'} is a collection of units, d € Z, and
{¢r e H'(F,T): KC,F C K}
s a collection of cohomology classes such that if K C, FC, F' C K then
COrFI/F(éFl) = ( H fq(Frq))éF
4ES(F'/F)

For each q define gq(z) = uqz?fq(z~') € Olz,z~']. Then there is a
collection of classes

{cr e HY(F,T): KC,F C K}
such that
(i) for all F and F' as above,

Corpi/p(cr) = ( H gq(Frq_l))cF,
qES(F'/F)
(ii) for every finite extension F of K unramified outside N,
Cp = éF-
Proof. For every F' define
Cp = ( H uqFrq_d)éF
1ES(F/K)

where we fix some Frobenius Fry € Gal(K?"/K) (previously we always had
Fry acting through an extension unramified at q). Then it is easy to check
that this collection has the desired properties. O

Let P(Fr, '|T;z) = det(1 — Fr, '=|T).
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Corollary 9.6.4. Suppose {¢r € H'(F,T) : KC,F C K} is a collection
of cohomology classes such that if KC, FC, F' C K, then

Corpr/p(Em) = ( I P(Frq_1|T;Frq))ép.
qEX(E"/F)
Then there is an Euler system {cg} for (T,K,N) such that for every finite
extension F' of K unramified outside N,

Cp = éF-

Proof. This will follow directly from the previous two lemmas. For every q
we have

P(Fr,'|T;2 ') = det(1 — Fry'e '|T) = det(1 — N(q) 'Frqz '(T™)
= (—N(q)) * det(Frq|T*)z ¢ det(1 — N(q)Fr, 'z|T*)
where d = rankpT'. Thus if we first apply Lemma 9.6.3 with
fa = P(RT;2), ug = (~N(8)) det(Frg|T%) 7,
and then apply Lemma 9.6.1 with
fo = P(Fr;'|T*;N(a)z), gq = P(Fr;'|T*;2),
we obtain the desired Euler system. O

Remark 9.6.5. If one has a collection of cohomology classes satisfying the
“wrong” distribution relation, one can either modify the classes as we did
above, to get an Euler system, or else one can keep the given cohomology
classes and modify the proofs in Chapters 4 through 7 instead.



APPENDIX A

Linear Algebra

Suppose for this appendix that O is a discrete valuation ring. Let
Lo (B) denote the length of an O-module B.

A.1. Herbrand Quotients
Suppose a, 3 € O[z] are nonzero.
Definition A.1.1. If S is an O[z]-module and a3S = 0, then
as c $P=°, BS c §°7°,
and we define the (additive) Herbrand quotient
h(S) = Lo(S°="/aS) = Lo(S*7°/BS)
if both lengths are finite.
Example A.1.2. If S = O[z]/aB0O][z] then
SP=0 = aS = aO[z]/aBO[z], S*=° = BS = BO[z]/aBO[z],
so h(S) =0.
Proposition A.1.3. (i) If S is an O[z]/aBO[z]-module and £ (S) is
finite, then h(S) = 0.
(ii)) If0 - 8" = S - S"” — 0 is an ezxact sequence of Olz]/aBO[z]-

modules and two of the three Herbrand quotients exist, then the third
ezists and

h(S) = h(S") + h(S").

Proof. This is a standard fact about Herbrand quotients, see for example
[Se3] §VIITA. If = (2™ —1)/(z — 1) and B =z — 1, and if G is a cyclic
group of order n with a generator which acts on S as multiplication by z,
then

H°(@,S) = $P=°/asS and H'(G,S) = $%=°/8.
For completeness we sketch a proof in our more general setting.
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Assertion (i) follows from the exact sequences
0— 5% 58 % asS — 0,
0 — $P=%aS — SjaS 25 520 — §=0/35 —; 0.
For (ii), multiplication by B induces a snake lemma exact sequence
— §P=0  gB=0 _, gnP=0 ¥, g1/85" 4 S/BS — S"/BS" — 0.
This gives rise to a commutative diagram
0 —— coker(yp)) —— S/BS —— S"/BS" —— 0
T
0 —— P70 5 §A=0 ___ ker(h) —— 0.
Applying the snake lemma again gives an exact sequence
0— A — §°7°/85 — §"*7°/B8"
— 57 /as’ — P=%)aS — B — 0
where A and B are defined by the exact sequence
0 — B — 5" /08" % 5'*7°/8S' — 4 — 0.
Assertion (ii) follows from these two exact sequences. O

Lemma A.1.4. Suppose aff = Hle p; with p; € O[z], and suppose fur-
ther that p; is relatively prime to B if 2 <i < k. Then

h®:0[z]/p;Olz]) =

Proof. For 1 <i < k let S; = O[z]/p;O[z]. If p; is relatively prime to S
(and therefore divides a), we see that Siﬁ =0 = aS; =0 and S&=° = S;.
Thus for i > 2

h(S;) = —Lo(S:/BS;) = —Lo(O[=]/(B,p;))

which is finite. By Proposition A.1.3 and Example A.1.2 we conclude that
the Herbrand quotient h(S7) exists as well, and that

h(®:0[z]/p;Ola]) = Zh Olz]/aB) = O
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A.2. p-adic Representations

Let T be a free O-module of finite rank, and let ¢ be an O-linear
automorphism of 7. Let p(z) = det(l — o 'z|T) € O[z], and suppose
further that p(1) = 0 (i.e., det(1 — ¢|T) = 0). Then there is a unique
polynomial ¢(z) € O[z] such that

p(z) = (1 —2)q(x).
The Cayley-Hamilton theorem shows that p(c) = 0, so T is an O[z]/p(z)-
module, with z acting via o. Thus we are in the setting of §A.1, with
a=gqg(z)and 8=z — 1.

Let @ denote the field of fractions of O and let V =T ® .

Lemma A.2.1. Suppose that T = &;0[z]/ fi(z)Oz] with fi(z) € Olx],
and that dime(V/(o —1)V) = 1. Then the Herbrand quotient h(T) = 0.
Proof. We have p(z) =[], fi(z). Since dimg(V/(c — 1)V) = 1, exactly one
of the f;(z) (say, f1) is divisible by z — 1. Thus we can apply Lemma A.1.4
to conclude that hA(T') = 0. O
Lemma A.2.2. There is an Oo]-submodule S of T such that

(i) Lo(T/S) is finite,

(il) S = ®;0[z]/ fi(x)O[z] with fi(z),..., fr(z) € Olz].
Proof. Since the polynomial ring ®[z] is a principal ideal domain, V is a
direct sum of cyclic ®[¢]-modules, and the lemma follows easily. O

Proposition A.2.3. If dimg(V/(c —1)V) =1 then h(T) = 0.

Proof. This is immediate from Proposition A.1.3 and Lemmas A.2.1 and
A22. o
Lemma A.2.4. Suppose dimg(V/(c —1)V) =1. Then

(i) VII=0 = (6 = 1)V and V°=' = ¢q(0)V,

(ii) the map V/(oc — 1)V 19, yo=1 s an isomorphism.

Proof. Viewing V' as a ®[z]-module with z acting via o, there is an iso-
morphism

Vo @@[m]/fi(w)“{)[m]
where the f;(z) € ®[z] are irre(;ucible, fi(0) =1, and
Hfi(w)e" = p(z) = (1-2)q(z).

Since dimg (V/(o — 1)V) = 1, precisely one of the f; is 1 — z. Both asser-
tions follow easily from this. O
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Proposition A.2.5. Suppose dimg(V/(oc —1)V) =1, and let W = V/T.
Then the lengths of the following O-modules are finite and equal:

i) 7°7'/q(o)T (iv) Wo='/q(o)W
(i) TU)=0/)(g —1)T (v) Wa@=0/(g — )W
(i) (T/(o0 — )T )tors (vi) west/wet

where WSZ' denotes the mazimal divisible O-submodule of W=".

Proof. Proposition A.2.3 says that h(T) =0, so (i) and (ii) have the same
(finite) length. Similarly, by Lemma A.2.4(i) we have h(V) = 0, so Propo-
sition A.1.3(ii) shows that h(W) = 0 as well. Thus (iv) and (v) have the
same length.

Lemma A.2.4(i) shows that V4(?)=0/(¢ — 1)V = 0, and it follows that
T9)=0 /(g — 1)T is a torsion O-module. Since T/T4(9)=0 is torsion-free
we have

(T/(6 = )T )tors = T"=0/(c —1)T

and so (ii) and (iii) are isomorphic. It follows similarly from Lemma A.2.4(i)
that ¢(o)W = WZ! and (iv) is isomorphic to (vi).
It remains to compare (i) with (v). Consider the diagram

T/(c—1)T —=V/(c —1)V —W/(c —1)W —0

q(a)l q(d)l q(a)l

00— Ta':l Va:l Wa-:l .

By Lemma A.2.4(ii), the center vertical map is an isomorphism, so the
snake lemma gives (i) = (v). O

For the next two corollaries let W = V/T, and if M € O let Wy
denote the kernel of multiplication by M on W.

Corollary A.2.6. Suppose dimg(V/(c — 1)V) = 1, and let b denote the

common length of the modules in Proposition A.2.5. Then the kernel and
cokernel of the map

Wt /(o — )W 22 we=t

both have length at most 2b.
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Proof. Consider the diagram

W/(o — )W ——>"(¢‘:’ wo=1

T T (A1)

Wt /(o — D)Wy —270 we=1.
(o34

The kernel and cokernel of ¢ are (v) and (iv) of Proposition A.2.5, respec-
tively, and therefore both have length b. Multiplying the exact sequence

0— Wy — W 5% W — 0
by o — 1 yields a snake lemma exact sequence
we=t 2 WSt s Wy /(o — )Wy — W/(o — 1)W.

Therefore the kernel of the left vertical map of (A.1) is Wo=1 /M (W°=1),
which is a quotient of the module (vi) of Proposition A.2.5, and hence has
length at most b. Thus we conclude that £o(ker(¢pr)) < 2b. The exact
sequence

0 — W;\Zzl — WM 0—_1> WM — WM/(J—I)WM — 0
shows that £o(War /(o — 1)War) = Lo(WET1), so
Lo(coker(dar)) = Lo(ker(dar)) < 2b

as well. 0O

Corollary A.2.7. Suppose

(a) 7 is an O-linear automorphism of Wy such that Wy /(T — 1)Wiy
is free of rank one over O/MO,
(b) Q(x) € (O/MO)|[x] is such that (1 — z)Q(x) = det(1 — 7 1z|Wa).
Then the map

Wt /(r — )Wy 22 =t

s an isomorphism.

Proof. We will show that there is an automorphism o of 7" such that

(i) o induces 7 on Wy,

(ii) T/(o — 1)T is free of rank one over O.
Once we have done this, we will apply Proposition A.2.5 and Corollary A.2.6
with this 0. Condition (ii) shows that the module (T'/(o — 1)T)tors Of
Proposition A.2.5(iii) is zero, so the integer b of Corollary A.2.6 is zero. It
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follows from condition (i) (together with the fact that 1 — z is not a zero-
divisor in (O/M O)[z]) that ¢(o) reduces to Q(7) on Wy, so this corollary
will follow from Corollary A.2.6.

It remains to find a o satisfying (i) and (ii). Since Wy /(7 — 1)Wyy is
free of rank one over O/M O, it follows that WI=" is free of rank one over
O/MO as well. Therefore we can choose a basis {w1,...,wq} of War such
that 7wy = wy, where d = rankpT.

For each i fix t; € T which reduces to w;. By Nakayama’s Lemma
{t1,t2,... ,tq} is an O-basis of T, and we define ¢ on this basis by lifting
the action of 7 on the w;, and requiring that o(t;) = t;. Then o is an
automorphism because det(o) = det(r) (mod M), and clearly (i) is satis-
fied. Further rankpT/(c — 1)T > 1, and since (T'/(c — 1)T) @ (O/MO) =
W /(T — 1)Wy is a cyclic O-module, we can apply Nakayama’s Lemma
again to deduce (ii). O



APPENDIX B
Continuous Cohomology and Inverse Limits

Notation. If G and T are topological groups then Hom(G,T') will always
denote the group of continuous homomorphisms from G to T'. We denote by
Maps(G,T) the topological group of continuous functions (not necessarily
homomorphisms) from G to T, with the compact-open topology.

B.1. Preliminaries

Since we will use it repeatedly, we record without proof the following
well-known result.

Proposition B.1.1. (i) Suppose {An}, {Bn}, and {C,} are inverse
systems of topological groups and there are exact sequences

00— A4, — B, —C, — 0

for every n, compatible with the maps of the inverse systems. If the
A, are compact, then the induced sequence

0—)@An—>@3n—>@0n—>0
s exact.

(if) If O is a discrete valuation ring with fraction field ® and {A,} is
an inverse system of finite O-modules, then the canonical map

li_n;Hom(An,q)/O) — Hom(@An,q)/(’))
is an isomorphism.

B.2. Continuous Cohomology

For this section suppose G is a profinite group and 7T is a topological
G-module, i.e., an abelian topological group with a continuous action of G.

Definition B.2.1. Following Tate [T4], we define the continuous coho-
mology groups HY(G,T) as follows. Let C'(G,T) = Maps(G?,T). For

195
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every i > 0 there is a coboundary map d; : C*(G,T) — C*+1(G,T) defined
in the usual way (see for example [Se3] §VIL.3), and we set

HY(G,T) = ker(d;)/image(d; 1).

Ifo—->T — T - T" — 0 is an exact sequence and if there is a
continuous section (again a map of sets, not necessarily a homomorphism)
from T" — T, then

0 — CYG, Ty — CYG,T) — CYG,T") — 0
is exact for every i and there is a long exact sequence
.. — HYG,T') — HYG,T) — HYG,T") — H*(G,T'") — ---

Remark B.2.2. Note that if 7" is topologically discrete, as is assumed in
the more “classical” formulations of profinite group cohomology, then there
is always a continuous section 7" — T'. This is the case whenever T" is open
in T. Also, if T is a finitely generated Z,-module or a finite-dimensional
Q,-vector space with the usual topology, then there is a continuous section.
These are the only situations in which we will use these cohomology groups.

For the situations of interest to us, the following propositions will allow
us to work with the cohomology groups H!(G,T) exactly as if T were
discrete. The first two are due to Tate [T4]; see also Jannsen [J].

Proposition B.2.3 ([T4] Corollary 2.2, [J] §2). Suppose i > 0 and T =
UmT, where each T, is a finite G-module. If H=Y(G,Ty,) is finite for
every n then

HY(G,T) = im H'(G, T,).

Proposition B.2.4 ([T4] Proposition 2.3). If T is a finitely generated
Z,-module and i > 0, then H(G,T) has no divisible elements and the
natural map

H(G,T)®Q, — H'(G,T®Q,)

s an isomorphism.

Proposition B.2.5. Suppose H is a closed, normal subgroup of G.

(i) There is an inflation-restriction exact sequence

0 — HY(G/H,T") — HYG,T) — HY(H,T).

(ii) Suppose further that p is a prime, and for every G-module (resp. H -
module) S of finite, p-power order, H*(G,S) and H*(G,S) (resp.
HY(H,S)) is finite. If T is discrete, or if T is a finitely generated
Z,-module, or if T is a finite-dimensional Qp-vector space, then
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there is a Hochschild-Serre exact sequence extending the sequence in
(i)
0 — HY(G/H,T") — HY(G,T) — H'(H,T)%/H
— H*(G/H,T") — H?*(G,T).

Proof. If T is discrete both assertions are standard. The proof of (i) in
general is identical to the proof in this classical case.

Suppose T is a finitely generated Z,-module. Then for every n > 0, the
quotient T'/p"T is discrete, so there is a Hochschild-Serre exact sequence
for T/p"T. Our hypotheses ensure that all the terms in this sequence are
finite, and so taking the inverse limit over n and applying Proposition B.2.3
gives the exact sequence of (ii) for 7.

If T is a finite-dimensional Q,-vector space, choose a G-stable Z,-
lattice To C T. Then by the previous case we have a Hochschild-Serre
exact sequence for Ty, and tensoring with Q, and using Proposition B.2.4
gives the desired exact sequence for T'. O

Remark B.2.6. To apply Proposition B.2.5(ii) we need to know when a
group G has the property that H*(G,S) is finite for every i and every G-
module S of finite p-power order. For example, this is true whenever the
pro-p-part of G is (topologically) finitely generated.

We also have the following well-known result. In the most important
case 7 = 1 it follows easily from class field theory (see for example [Se2]
Propositions I11.14 and IIL.8). We say that a Z,-module is co-finitely gen-
erated if its Pontryagin dual is finitely generated.

Proposition B.2.7. Suppose that one of the following conditions holds.
(i) K is a global field, Kg is a (possibly infinite) Galois extension of K
unramified outside a finite set of places of K, and G = Gal(Ks/K),
(ii) K is a local field and G = Gk, or
(iii) K is a local field of residue characteristic different from p and G is
the inertia group in Gk .
If T is a G-module which is finite (resp. finitely generated over Z,, resp.
co-finitely generated over Z,, resp. finite-dimensional over Qp) and i > 0,
then HY(G,T) is finite (resp. finitely generated over Z,, resp. co-finitely
generated over Z,, resp. finite-dimensional over Q).

Let Z denote the profinite completion of Z.

Lemma B.2.8. Suppose G is a topologically cyclic profinite group with
infinite pro-p-part (for example, G 2 Z or G = Z,), and «y is a topological
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generator of G. Suppose T is a Zp|Gk]-module which is either a finitely
generated Z,-module, or a finite-dimensional Qp-vector space, or a discrete
torsion Z,-module. Then

HY(G,T) = T/(y-1)T
with an isomorphism induced by evaluating cocycles at .

Proof. Tt is easy to see that evaluating cocycles at v induces a well-defined,
injective map H'(G,T) — T/(y — 1)T. It remains only to show that this
map is surjective.

Using direct limits, inverse limits (Proposition B.2.3), and/or tensoring
with Q, (Proposition B.2.4), we can reduce this lemma to the case where
T is finite. When T is finite, the lemma is well-known, see for example
[Se3] §XIII.1. O

B.3. Inverse Limits

For this section suppose that K is a field, p is a rational prime, and T
is a Z,[G k]-module which is finitely generated over Z,.

As usual, we write K C; F' to indicate that F' is a finite extension of K.
If K is an infinite extension of K and {Cr : K C,F C K} is an inverse
system of abelian groups, we will write {cr} for a typical element of lim Cr
with cr € Cp.

Lemma B.3.1. If KC,Fi1C, F5C, --- and US2, F, = Ko then
m H'(F,T) = lim H"(F,, T/p"T).

K C; FCKoo
Proof. By Proposition B.2.3 we have
lim H'(F,T) = lim H(F,,T) = limlim H'(F,,T/p™T)

K Cf FCKoo

= lim HY(F,,T/p"T). O

Lemma B.3.2. Suppose K, is an infinite p-extension of K. Then

lim T =0
K Cf FCKoo

where the maps in the inverse system are given by the norm maps
Npr g : TOF — TYF

for KGFC F' C K.
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Proof. Define a submodule Ty of T' by
To = Uk, rcr T

Then Ty is finitely generated over Z,, since T is, so we must have T = T'%Fo
for some finite extension Fy of K in K,. Therefore
l.Ln TGr — m TGr — m To
KCsFCKoo Fo C¢ FCKoo FoCs FCKoo
where the norm maps N, p in the right-hand inverse system are multipli-
cation by [F' : F]. Since T is finitely generated over Z,, and for every F'
the index [F” : F] is divisible by arbitrarily large powers of p as F' varies,
this inverse limit is zero. O

If K is a finite extension of Q, for some ¢, let H! (K,T) denote the
subgroup of unramified classes in H'(K,T), as defined in Definition 1.3.1.

Lemma B.3.3. Suppose T is a discrete Z,-module, K 1is a finite extension
of Qg for some £ # p, and K is an extension of K containing the unique
Z,-extension of K. Then

li H! (F,T) = 0.
s

Proof. Without loss of generality we may assume that K., is the Z,-
extension of K, and then the general case will follow immediately. In
particular K, /K is unramified.

If KC,F C Ko then H! (F,T) = H'(K"/F,T?) (Lemma 1.3.2(i))
where 7 C Gk, is the inertia group in Gx. Thus (since T is discrete)

iy HL(F,T) = H(K"™/Ke,T7).

K Cs FCKoo
But the pro-p-part of Gal(K""/K ) is trivial, so this is zero. O

Proposition B.3.4. Suppose K is a finite extension of Qg for some £ # p,
and Koo is the unique Zy-extension of K. If {cr} € lim HY(F,T) then

K C; FCKoo
cr € HL.(F,T) for every F.

Proof. Let T C Gk denote the inertia group. Since £ # p, the extension
K /K is unramified, so 7 is also the inertia group in G for every F C K.
Thus for K C, F C K we have an exact sequence

0 — H!(F,T) — HYF,T) — HYZ,T)%".
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Since ¢ # p, Proposition B.2.7(iii) shows that H'(Z,T) is finitely generated
over Z,. Therefore taking inverse limits with respect to F' and applying
Lemma B.3.2 to the Gk-module H!(Z,T) shows that

lim Hy(FT)= lm H'(FT)
K CyFCKoo K Cs FCKoo
which proves the proposition. O

For the next two corollaries, suppose that K is a number field and K,
is an abelian extension of K satisfying

Gal(K»/K) & ZZ for some d > 1.
Corollary B.3.5. Suppose
{ck} € lim HY(ET).

K Cs FCKoo
If KC. F C Ky, and v is a prime of F' not dividing p whose decomposition
group in Gal(K . /K) is infinite, then (cr)y, € HL.(Fy,T).

Proof. Let w be a prime of K, above v. Since the decomposition group
of v in Gal(K/K) is infinite, if K C,F C Ko we can find FC, F' C
Fy C Ko such that Gal(Foo/F") =2 Z, and w is undecomposed in Fi, /F".
Thus Proposition B.3.4 applied to the classes {(cr)w : F'C;L C Fx}
shows that (cpr)y € HL.(F.,T). Since this holds for all w above v, and
Corpr/p(crr) = cr, we deduce that (cr), € H).(F,,T). O

Corollary B.3.6. If S is a set of places of K containing all primes where
T is ramified, all primes dividing p, all primes whose decomposition group
in Gal(K/K) is finite, and all infinite places, then

1'£1 Hl(FaT) = m Hl(KS/FJT)

K Cy FCKoo KCf FCKoo

where Kg is the mazximal extension of K unramified outside S.

Proof. Suppose that
{CF} € m Hl(FaT)

KCfFCKoo

Fix a field F' such that K C,F C K. Let 7T C Gk be an inertia group
of a prime g of K not in S. Since F/K is unramified at q, we see that 7
is also an inertia group of a prime Q of F' above q, so by Corollary B.3.5
the restriction of cp is zero in HY(Z,T) = Hom(Z,T). It follows that
every cocycle representing cp factors through Gal(Kg/F), which proves
the corollary. O



B.4. INDUCED MODULES 201

B.4. Induced Modules

Again we suppose that G is a profinite group, and now H is a closed
subgroup of G and T is a discrete H-module (not necessarily a G-module).

Definition B.4.1. Define the induced module Indg(T) = Ind$ (T') by
Indg(T) = {f € Maps(G,T) : f(ny) = nf(y) for every vy € G,n € H}.
We let G act on Indg (T") by

(9f)(v) = f(vg) for g,y €G.

Since T is discrete, Indg (T') a discrete G-module.

If H = {1}, then Indy(T) is simply Maps(G,T). If H' is a closed
subgroup of H then there is a natural inclusion Indg(T) C Indg (T). If T
is a G-module then evaluation at 1 induces an isomorphism Indg(T) — T,
and so there is a natural (continuous) inclusion T' < Indg(T"), which sends
t € T to the map vy — ~t.

Proposition B.4.2. Suppose T, G, and H are as above, and I" is an open
subgroup of G. For every i > 0 there is an isomorphism

H'(T,Indy(T)) =2 @ H(sTg 'nH,T).
geH\G/T

Proof. First suppose i = 0. Fix aset S C G of double coset representatives
for H\G/T. If f € Indy (T)" then for every s € S,

f(hsy) = h(f(s)) for every h € H and v € I. (B.1)

In particular if h € sT's~' N H, then h(f(s)) = f(s), so f(s) € T(Ts™ NH)_
Conversely, if for every s € S we have an element f(s) € T°'*" " then
we can use (B.1) to define an element f € Indg(T)". This proves the
proposition when i = 0.

Now suppose ¢ > 1. The functor T' ~ Indg(T') is exact on the category
of discrete H-modules, so the proposition for T with i > 1 follows from the
case 1 = 0 and the Leray spectral sequence comparing the functors

A~ @ AT A s Indg(4), B~ B
geEH\G/T
(see for example [Sh] pp. 50-51). O

Remark B.4.3. When T' = G, Proposition B.4.2 is Shapiro’s Lemma, (see
for example the exercise on p. 125, §VIL5 of [Se3)).
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Corollary B.4.4. With T, G, and H as above, for every open subgroup T’
of G there is an exact sequence

0 — Indg(T)" — Indgy(T)"
— (Indg13(T)/Indg(T))" — H'(T,Indg(T)) — 0

Proof. By Proposition B.4.2 with H = {1}, we have H'(T,Ind;}(T)) = 0.
Thus the long exact I'-cohomology sequence of the canonical exact sequence

0 — IndH(T) — Ind{l}(T) — Ind{l}(T)/IndH(T) — 0
gives the exact sequence of the corollary. O

Proposition B.4.5. Suppose K is a field, F is a finite extension of K,
and T is a discrete Gg-module. Let T = Ind?fi (T). Then there is a
commutative diagram with exact rows

TGx TGx (T/T)%* — H'(K,T) —=0
T T
0 TGr TGr (T/T)9F —— HY(F,T) ——0
lNF/K lNF/K lNF/K lCorF/K
0 TGk TGk (T/T)¢x — HY(K,T) — 0.

Proof. The horizontal sequences are the exact sequences of Corollary B.4.4
applied with H = Gg and ' = Gk or Gg. The commutativity of the lower
right square is essentially the definition of the corestriction map, and the
rest of the commutativity is clear. O

B.5. Semilocal Galois Cohomology

Suppose for this section that K is a number field, that q is a prime
of K, that F' is a finite extension of K, and that S is the set of primes of
F above q. For every prime Q € S fix a prime Q of K above Q and let
Zo C Dg C Gk denote the inertia group and decomposition group of 9.
Fix a prime Qg € S and write D = Dg, and Z = Zg,. For every Q € S fix
g € G such that Q = g;1Qo. Then Dg = g; 1 Dgs.

Let T be a discrete G g-module, and let T’ C T be a subset which
is a D-submodule, i.e., D sends T’ into itself. For every Q € S we let
T, = g5 'T', and then T is a Dg-module.
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Proposition B.5.1. With notation as above, if i > 0 then there is a
canonical isomorphism
H'(F,Ind3* (")) = P H'(Fo,T}).
Qes
Proof. The map
D\GK/GF — S

DgG = g 1Q
is a bijection. Applying Proposition B.4.2 with G = Gk, with H = D, and
with I' = GF yields
HY(F,Ind3*(T")) = P H'(%Grg ' ND,T')
Q€S
>~ (P H(Gr NDo,T) = @ H'(Fo,Tb).
Q€S Qes

An examination of the proof of Proposition B.4.2 shows that this isomor-
phism is independent of the choices of the representatives g,. O

Corollary B.5.2. With notation as above, there are canonical isomor-
phisms
H'(F,Ind3* (T)) = (P H'(Fo,T),
Q€S
H'(F,Ind$*(T7)) = (P H'(Fo,T™).
Q€S
Proof. Apply Proposition B.5.1 with 7' = T and with 7" = TZ. O
Corollary B.5.3. Suppose F is a finite Galois extension of K and T is
a finitely generated Z,-module with a continuous action of Gkx. Let V =
T®Qp.
(i) If [F : K] is prime to p, then the restriction map induces an iso-
morphism
HI(KEUT) = (®Q\qH1(FQ7T))
(ii) The restriction map induces an isomorphism
H' (Ko, V) = (9g4H" (Fo,V))*"/").
Proof. For every n > 0 we have a commutative diagram
H'(K,Ind3*(T/p"T)) ~ —— H'(K,,T/p"T)

Resp J, J, DResg

HY(F,Ind3* (T/p"T))CE/K) = (@gesH (Fo,T/p"T))

Gal(F/K)

Gal(F/K)
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where the vertical maps are restriction maps and the horizontal maps are
the isomorphisms of Corollary B.5.2. The inflation-restriction sequence
shows that the left-hand vertical map has kernel and cokernel annihilated
by [F' : K], and hence the right-hand map does as well. Taking the inverse
limit of the right-hand maps and applying Proposition B.2.3 shows that
the restriction map

HY Ky, T) — (®oesH'(Fo,T

has kernel and cokernel annihilated by [F' : K]. This proves (i), and (ii)
follows by tensoring with Q, and using Proposition B.2.4. O

))Gal(F/K)



APPENDIX C
Cohomology of p-adic Analytic Groups

Suppose that F' is a number field and W is a Gg-module. When
analyzing a Selmer group S(F, W) as defined in §1.5, one frequently wants
to restrict to an extension  of F' such that the action of Gq on W is
trivial, and then study the image of S(F, W) under the restriction map

HY(F,W) — H'(Q,W) = Hom(Gq, W).
In this appendix we will show (Corollary C.2.2) how to control the kernel
of this restriction map.
C.1. Irreducible Actions of Compact Groups

Theorem C.1.1. Suppose V is a finite-dimensional Qp-vector space, and
G is a compact subgroup of GL(V) which acts irreducibly on V. Then
HY(G,V)=0.

The proof will be divided into a series of lemmas. For this section we
fix a finite-dimensional Q,-vector space V and a compact subgroup G of
GL(V) which acts irreducibly on V, as in the statement of Theorem C.1.1.
Let Z denote the center of G.

Lemma C.1.2. Ifg€ Z and g # 1, then g — 1 is invertible on V.

Proof. Let Vi = ker(g—1). Since g is in the center of G, the subspace V; is
stable under G. Since g # 1 we have V] # V. Hence by our irreducibility
assumption, V; = 0. O

Lemma C.1.3. If Z # {1} then H'(G,V) = 0.

Proof. Suppose that g € Z and g # 1. Let B be the closed subgroup of Z
generated by g. We have an inflation-restriction exact sequence

0 — HY(G/B,Vv®) — HY(G,V) — HY(B,V).
By Lemma C.1.2 we have VZ =0, and
H'(B,V) Cc V/(g-1)V = 0. O

205
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Lemma C.1.4. Suppose U is an open normal subgroup of G. Then V is
completely reducible as a representation of U.

Proof. Let V4 denote the subspace of V' generated by all irreducible U-
subspaces of V. Since U is normal in G, we see that Vj is stable under G.
Clearly Vi # 0, so the irreducibility hypothesis for G implies that V5 = V.
It follows easily that V is a direct sum of a finite collection of irreducible
U-subspaces. O

For a general reference for the background material on p-adic Lie
groups, Lie algebras, and their cohomology which we use below, see [Laz]
or [Bo].

Proposition C.1.5. Lie(G) is reductive.

Proof. Tt follows from Lemma C.1.4 that the representation of Lie(G) on V
is semisimple, and it is clearly also faithful. By [Bo] §1.6.4 Proposition 5,
it follows that Lie(G) is reductive. O

Proof of Theorem C.1.1. The compact subgroup G of GL(V) is a profi-
nite p-analytic group in the sense of [Laz] §II1.3.2. Therefore by Lazard’s
Théoreme [Laz] V.2.4.10, for every sufficiently small open normal subgroup
U of G,
HY(G,V) = HYU, V)¢ = H'(Lie(G), V).

If the center of Lie(G) is zero then (since Lie(G) is reductive by Proposi-
tion C.1.5) Lie(G) is semisimple, and in that case (see [Bo] Exercise 1(b),
§1.6) H'(Lie(G),V) = 0. If the center of Lie(@) is not zero then every
sufficiently small open normal subgroup U of G has nontrivial center, and
then Lemmas C.1.3 and C.1.4 together show that H'(U,V) = 0. Thus in
either case we can conclude that H'(G,V) = 0. O

Recall that Z is the center of G.

Lemma C.1.6. Suppose that O is the ring of integers of a finite extension
® of Qp, that V is a ®-vector space, and that G acts ®-linearly on V. If
G contains an element g such that dimg(V/(g — 1)V) = 1, then Z acts on
V' wia scalars in O*.

Proof. The one-dimensional subspace ker(g — 1) of V' is preserved by Z.
Let x : Z — Aut(ker(g — 1)) = ®* be the character determined by this
action. Since Z is compact, x(Z) C O*. Let

Vi = {veV:zv=x(z)v for every z € Z}.

Then V, is nonzero and stable under G, so the irreducibility of V implies
that V, = V. O
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Proposition C.1.7. Suppose that A is an abelian quotient of G. Then the
projection of Z to A has finite cokernel.

Proof. Let m : G — A be the projection map. Since A is compact, it is
finitely generated.

By Proposition C.1.5, G is reductive. It follows easily that the induced
map of Lie algebras sends the center of Lie(G) onto Lie(A). Therefore
[A : 7(Zy)] is finite, where Zy is the center of a sufficiently small open
normal subgroup U of G.

The finite group G/U acts on Zy by conjugation, and we define

N(z) = Z 27

geEG /U

(writing Zy as an additive group). Clearly N(Zy) C Z, and also (since
ker(r) contains all commutators) m(N(z)) = «([G : U]z) for every z € Zy.
Therefore m(Z) contains [G : Uln(Zy). This completes the proof. O

C.2. Application to Galois Representations

For this section fix a (possibly infinite) Galois extension F//K of fields
of characteristic different from p, and a subgroup B of K*. (In our ap-
plications K will be a number field, F' will be a (possibly infinite) abelian
extension of K, and B will be Of.) Suppose that O is the ring of integers
of a finite extension ® of Q,, and V is a finite-dimensional ®-vector space
with a continuous ®-linear action of Gk such that V is irreducible over
Gp. Let Q = F(upw,Bl/pw,V), the smallest extension of F' whose abso-
lute Galois group acts trivially on g, on B'/?” and on V. The result
we will need for our applications to Selmer groups is the following.

Theorem C.2.1. One of the following three situations holds.

(i) HY(Q/F,V) =0.
(ii) Gk acts on V wvia a character p of Gal(F/K), and Gal(F/K) acts
on HY(Q/F,V) via p.
(iii) B is infinite, Gk acts on V via Ecycp Where ecyc 15 the cyclotomic
character and p is a character of Gal(F/K), and Gal(F/K) acts on
HY(Q/F,V) via p.

Proof. Let Qy = F(V), the smallest extension of F' such that Gq, acts
trivially on V (so Qy = FH where H = ker(Gr — Aut(V)), and Qy is
necessarily Galois over F). Define D = Gal(Qy /F) and Qv,, = Qv (e )-
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We have a diagram

Q
/
Qv
AN
Qv
/b
K (ppe0) F
NS
K

The inflation-restriction exact sequence gives
HY(D,V) — HYQ/F,V) — HY(Q/Qy,V)P.

The map D — Aut(V) is injective by the definition of Qy, so D is iso-
morphic to a compact subgroup of GL(V). We have assumed that D acts
irreducibly on V', so Theorem C.1.1 shows that H'(D,V) = 0. Thus we
have an injection

HYQ/F,V) < H'(Q/Q, V)P = Hom(Gal(Q/Qv), V).

If Hom(Gal(2/Qy), V)P = 0 then (i) holds. We consider two cases.
Cose I: Qv # Qv. In this case Gal(Qv,,/Qv) acts on Gal(Q2/Qv,,)
via the (nontrivial) cyclotomic character. Let {15, denote the maximal
abelian extension of Qy in Q. Then Gal(Qy,,./Qy) acts on Gal(Qap/Qv,u)
trivially and via the cyclotomic character. We deduce from this that
Gal(Qap/Qv,) is killed by |upw N Qy |, which is finite since Qy,,, # Qy.
Hence Hom(Gal(Qab/Qv,.), V) =0, so

Hom(Gal(2/9Qy), V)P = Hom(Gal(Qu,/Qv), V)P
= Hom(Gal(QV,”/QV),V)D = Hom(Gal(QV,”/QV),VD)

since D (and in fact all of Gal(Qy /K)) acts trivially on Gal(Qy,,./Qv).
Since D acts irreducibly on V, either VP = 0 or V is one-dimensional with
trivial action of Gp. Therefore (i) or (ii) is satisfied in this case.

Case II: ~ Qy,, = Qy. In this case pyo C Qy, s0 Gal(Q2/€Qy) is abelian
and Gal(Qy /K) acts on Gal(Q2/Qy) via the cyclotomic character. Thus

Hom(Gal(2/Qy), V)P = Hom(Gal(/Qy ), Vo)

where Ve denotes the subspace of V' on which D (and hence Gr) acts
via €cyc. Again, since D acts irreducibly on V, either Ve = 0 or V is
one-dimensional with G acting via ecyc. Therefore (i) or (iii) is satisfied
in this case. O
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Corollary C.2.2. Suppose T is a finitely generated O-submodule of V
which is stable under Gk, and let W = V/T. Then one of the follow-
ing three situations holds.
(i) HY(Q/F,W) is finite.
(i) Gk acts on T via a character p of Gal(F/K), and H'(Q/F,W) has
a subgroup of finite index on which Gal(F/K) acts via p.
(i) B is infinite, Gk acts on T via €qycp where qye is the cyclotomic
character and p is a character of Gal(F/K), and H'(Q/F,W) has
a subgroup of finite index on which Gal(F/K) acts via p.

Proof. From Proposition B.2.4 and the exact sequence

HY(Q/F,V) - H'(Q/F,W) —» H*(Q/F,T) — H*(Q/F,V)
we see that the cokernel of H'(Q/F,V) — HY(Q/F,W) is H>(Q/F,T)tors-
Since Gal(2/F) is (topologically) finitely generated, H2(Q2/F, T )tors is fi-
nite. Now the corollary is immediate from Theorem C.2.1. O






APPENDIX D
p-adic Calculations in Cyclotomic Fields

In this appendix we carry out some p-adic calculations in cyclotomic
fields which are used in examples in Chapters 3 and 8. Everything here is
basically well-known, due originally to Iwasawa and Coleman.

For every n € Z™ fix a primitive n-th root of unity ¢, such that (%, =
(m for every m and n. By slight abuse of notation, for every n we will
write Z,[p,] = Z[p,] ® Zp, the p-adic completion of Z[u,,], and similarly

Define

log = Zp[p,JI[IXT = Zp[pn]™ x (14 XZp[p,][[X]]) — Qp(pe,)[[X]]

to be the usual p-adic logarithm on Z,[p,,]* and the power series expansion
of log(1 + X f(X)) on 1+ XZp[p,][[X]]- If a € Z), define

[o](X) = 1+ X)* -1 € XZ,[[X]]
Let D be the derivation (14 X)-% of Q,[[X]]. Then for every o € Z, and
g € Qp[[X]], we have
Dla] = a- ([0](X) +1) and D(go[a]) = a-(Dg) o a].

If m is prime to p let Fr, be the Frobenius of p in Gal(Q(x,,,)/Q), i-e.,
the automorphism which sends ¢, to ¢£,. We let Fr, act on Qp(x,,,)[[X]]
by acting on the power series coefficients.

D.1. Local Units in Cyclotomic Fields

In this section we will construct, for every positive integer n, a homo-
morphism A, : Zp[p,]* = Zp. These maps are used in §3.4 to construct
an Euler system for the trivial representation Z,.

Fix an integer m prime to p. Define

= mé, [m™! _LC% w
Fm(X) = mGm[m~")(X) |<Z§)wrslge<zz;:>m g

€ 1(Z)sors| ™ Zp[tmn ] [1X]]
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and

Om(X) = Cmlog(1+X) —m Y pich”
i=1

oo Fri :
mp (X i i1
+ (B - ) og14 1)),
=0

Lemma D.1.1(i) below shows that the latter sum converges to an element
of Q,(1,,)[[X]], and a direct computation shows that

oo ] . Cpi+1 .
DGn(X) =G+ D (i 1p)(X) - 22— 3 [ LBp(X)).

i=0 |(ZP )t0r5| /Be(Z")c

(D.1)

Lemma D.1.1. (i) Gm(X) € Qp(,,)[[X]], i-e., the sum in the defini-
tion of G (X) converges.
(ii) There is a unique gm(X) € 1+ (p, X)Zp[p,,, ][[X]] such that

log(gm(X)) = Gm(X).
(iii) If £ is a prime different from p, then

-1
Fr,

—(DGr" ([¢')(X)) ifLtm,

TrQ, (p) /Qp (1) PGt (X) = {0 iolm

(iv) 2iep, Im(C(L+X)—1) = m? ([p)(X)).
(v) If gm is as in (i), then [[ce,, gm(¢(1+X) —1) = gm” ([p)(X)).

Proof. The first two assertions follow from Theorem 24 of [Co] applied with
a=-mY 2, p'CE , with b= (p, and with f(X) = fm(X) = ((m — (B)X.
Assertion (iii) follows directly from (D.1) and the fact that

-1
Fr,

—Cm if £4m,

Tr il =
Qtme) /Q(tar) St {0 e m

The fourth assertion is similarly a direct computation, and then (v) follows
from (iv), since log is injective on 1 + (p, X)Z,[p,,][[X]]. O

Definition D.1.2. Suppose m > 1 is prime to p, and let N(m) = [],,, £,
product over primes ¢ dividing m. Let ¢ (X) € Z,[u,,][[X]]* be as in
Lemma D.1.1(ii). For n > 0 define

amp" = H (ggr;n(Cp" - 1)) € Zp[p‘mp"]x'
d|m,N(m)|d
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By Lemma D.1.1(v),
N Ay pn if n >1,
Q(I—"mpn+1)/Q("l‘mP" )amp"+1 N a:niFr;l ifn= 0.

Suppose P is a prime of Q(u,,) above p. We will also write P for the
unique prime of Q(u,,,,») above B, for every n. We let

am,‘»B € Ga‘l(Q(umpm);gJ/Q(umpm)q:})

be the image of {@mpn }n>1 under the Artin map of local class field theory.
Using the Kummer pairing we define

/\mP" : Zp[ump"]x — ZP

so that, writing u € Zy[tt,,n]* as (ugp) € SpZ[ppn |y, for every k > 0

we have
[T ot = e,
p
Blp

The explicit reciprocity law gives the following description of the map
Amp~ - Recall that D is the derivation (1 + X)-%.

Proposition D.1.3. If m is prime to p and n > 0 then
)\mp" (u) = p_nTer(ympn)/Qp (wmp" Ing(u))

where log,, is the usual p-adic logarithm and

m S (DG )G — 1) ifn >0,
Tmpn = d|m,N(m)|d 1 -
m™t D" (DG)(0) — =(DG,* )(0) ifn=0.
d|m,N(m)|d p

Proof. The formula of the proposition is the explicit reciprocity law of
Wiles [Wi] (see also [dS] Theorem 1.4.2) in the present situation. O

Lemma D.1.4. For every m > 1 (not necessarily prime to p) and prime
£, there is a commutative diagram

Zp[p‘mf]x At

1 or —Frg\J K Z
p
——

ZP [p‘m] x "

where the vertical map is

the inclusion Zp[p,,1* C Zp[p]™ f €| m or £ =p,
—Fr, followed by that inclusion if £4mp.
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Proof. Let the z,, be as defined in Proposition D.1.3. Using Lemma
D.1.1(iii) and (iv) we see that

T if¢|mort=p,

T =
rQP (Bme)/Qp (/J,m)wmf {_Fre_lg;m if ¢ )f mp,

for every m and £. Now the lemma follows from Proposition D.1.3. O

Let w denote the Teichmiiller character giving the action of Gq on p,,
(if p is odd) or on p, (if p = 2).

Lemma D.1.5. Suppose O is the ring of integers of a finite extension of
Qp, and x : Gq — O is a character of finite prime-to-p order. Let f be
the conductor of x, and suppose that p? t f and x~'w(p) # 1 (where we view
X 'w as a primitive Dirichlet character). Let A = Gal(Q(u;)/Q). Then

D oseA X((S))\fc generates the O-module Hom(Zp[p ], O)X™" (the submodule
of Hom(Z,[p]*, O) on which A acts via x*).

Proof. Let Afy = D 5ca X((S))\‘}. Write f = mp® with m prime to p and
€ =0 or 1. Note that if p = 2, then we cannot have e = 1. Let x; be as in
Proposition D.1.3, and let y; be the “conductor f” part of z;, namely

FH((DG)(0) - LDGET)0)) = £1(¢y - 1) ife=o,

T e G - 1) = m NG+ ) ife=1

By Proposition D.1.3,

Apx(u) = p~° Z X(‘S)Ter(uf)/prf” logp(u)
JEA

=p Y. > x(9)2) log, (u")

JEA YEA

=p ) (x©)z}) D (x (7)log,u"))

dEA YEA

P (x5 > (xt(7)log, (1))

JEA YEA

(1 =p "x(@) Y_(x()¢D) Y- (x (1) log, (u™)).

SeA yeA

e

First suppose p { f, so x(p) € O*. Let g, be as in Lemma D.1.1(ii) and

let u = g (0)/™ € Zy[us]*. Then log,(u) =m G, (0) = =32, pi¢h ",
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SO
3 (6 () log, (u?)) = —Zp St
YEA = YEA
= —Zp'x"(p > G-
yeA
Thus

Arx@) = 2(x(0) =p) DX ®) D ()¢ D (T}

i=0 dEA YEA

~|

:X( sz —i— 1 GOX

the last equality since the product of the two Gauss sums is x(—1)f.
Now suppose p | f but p?{ f (so p # 2), and set

u=(gm” (G — 1))/™ € Zylus)*.
Then
log, (u) = m ™ Gm? (¢, — 1)

= <1 - 1% Z W(Ufl)a) (Cﬁ;l(qﬂ_l _ 1)) z pier o+
U\Q(:i)A:Frp i=1

so with this choice, since Cfn_lC;”_l = (y, we have
1 _ _
SoxT g ) = (1= =5 3 wlex(0) ()G

YEA ogEA YEA
olQ(um)=Frp

=1 -xw ' ®) Y. (M)
yeA
and
1 _ _
Apx(u) = ?(1—xw Y0) D (@) DT ¢
dEA YEA
= x(-1)(1 - xw(p)™') € O*.

In either case the p-adic logarithm shows that Hom(Z,[u ], O)X
is a rank-one O-module, which is clearly torsion-free and hence free. The
formulas above show that

Aix & pHom(Zp[,uf]x,(’))X_

where p is the maximal ideal of O, and the lemma follows. O

-1
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D.2. Cyclotomic Units

For this section suppose that m > 1 and m is prime to p. Fix an
embedding Q, C C and let ¢,, = €2™/™ for every n € Z*. Define

um(X) = Gn(1+ )" —1 € Zylu,JX]]
Lemma D.2.1. Suppose m > 1 and m is prime to p. Suppose n > 0 and
v € Gal(Q(typn ) /Q), and choose b € Z such that (pn = Cb . Then for
every k > 2,
(D*logum” ")(Gn — 1)

= (=D T (k) (2m0) *p™* (C(b,mp"; k) + (=1)*¢(=b,mp"; k)
where ((a,r;s) is the partial Riemann zeta function } o iz (mod r)J°-
Proof. Since m > 1 and m is prime to p, we see that v, (0) € Zy[w,,]>.
Therefore ufnr; e Zp[p, [ X])* and log ufnr; "7 is defined. Thus

(1+ X)(um” ) (X)
UI;’:';“’Y(X)

(D*logum® )G —1) = D!
X:{;n —1
poo MmO A+ X))

T+ Xy —1

X=¢b, -1
Substituting e? = (1 + X)m_1 and m_ldiz =1+ X)diX, this becomes

Ldt e
dzZk=-1 ez _q

(D*logum® (G —1) = m

-1
eZ=Cm

k dk*l eZ

dzZk-1 eZ — 1

=m

— 2mib
z=2x8

By [Al] equation (10), p. 187 (or just observe that the difference is a
bounded entire function which vanishes at 0)

eZ 1 L1 +i 11
-1 2 Z “Z\Z-2min Z+2min)’
Thus for k> 2,r > 1, and ¢ € Z — rZ, we have
! e” k-1 k, .k 1
- = (=11 (k — 1)!1(2mi)~ S
T o= OO e Y e

r nez

= (=)D (k) 2mi) ~Fr* (L e rs k) + (1) ¢ (—e, 5 F)).

Combining these formulas proves the lemma. O
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hm(X) = H Um((1 4+ X)? = D1+ X)? - 1)

Be (Z; )tors

where U, (X) =1 —(21(1+ X)™ ", and define
1
Hm(X) = log hp(X) — Blog RET (1 4 X)P —1).

For every n > 1 write A, = Gal(Q(p,,)/Q) and A} = Gal(Q(u,,)/Q).

Lemma D.2.2. Suppose p > 2, and let w be the Teichmiiller character
giving the action of Gq on p,,. Suppose O is the ring of integers of a finite
extension of Qp, and x : Gq — O is a nontrivial even character of finite
order, unramified ot p. If m is the conductor of x then

> X T NDMHL (G - 1)

veal,
B N . —x(p)p* ifp—1+tk,
= 20(k)(—2mi) *L(x™'w*, k) x {1_pklx(p) ifp—1|k.

Proof. We have
D*#H} (¢ —1) = D*logh], (¢, — 1) — p*~ ' D*log hyy»7(0).

If { =(, or ( =1, then

DFloghl,(¢-1)= > B*DFlogu,(¢° — 1) + B¥D*logu,(¢° - 1)
BE(Z;)tors

= Z w*(a)D* logu]? (¢7 — 1).

7€GA(Q(Hmp)/ QlHr)T)

Thus by Lemma D.2.1, writing L,(x'w*,s) for the Dirichlet L-function

with Euler factors for primes dividing r removed,

> x T NDMHYL(G - 1)

yealk

Z x twk(y (D'c loguy, (¢ —1) — pF1DF loguf,f”(()))
YEAmp

= (=D (k) (200) P (1 + (1) X wH (1)) x () Linp (x ' w", k)
= P DR 2m0) TF (L (1P @)L (T R) Y wF ().

TEA,
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Note that x 1w*(—=1) = (=1)*. If (p—1) | k then w* = 1, and the formula
above simplifies to
20(k)(—2m8) *x () LI k) (= (1 = X" ()p™") + (p — 1)p* )
= 2T (k)(=2m) *L(x ", B)(1 = p* ' x(p))-
If (p— 1)t k then 3° 5 w*(7) =0, so in that case
> xT'DFH (G — 1) = =20 (k) (—=2mi) FpFx(p)L(x W k). O

yeAd,
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