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1. Introduction

Let p > 5 be a prime and be a finite extension oF, the field of p

elements. Lep : Go = Gal(Q/Q) — GLa(k) be a continuous Galois
representation. Ip is odd (i.e. de@(c) = —1 wherec is complex conju-
gation) and absolutely irreducible then Serre has conjectured in [Sel] that
p “comes from” a modular newfornt of prescribed weighk(p), level

N(p) and charactew(p). Following work of Eichler-Shimura, Deligne and
Deligne-Serre there would then exist a representationGg — GL2(0),
where@ is the ring of integers of some finite extensiorVéfk), the ring of

Witt vectors ofk, with the following properties:

e p¢ is unramified at primeg not dividing N(p) p.

e For suchq let Frob, denote the conjugacy class of Frobeniug.athen
Tracept (Frobg)) = a4, an algebraic integer which is the eigenvalue of
the Hecke operatarly acting on the newfornf with coefficients in@.

e If 7 is a uniformizer of® thenp; mod is equivalent tqp.

Serre’s Conjecture thus trivially implies, in Mazur’s language, that there
is a characteristic zero deformation @fConversely, the existence of such
a deformation might be regarded as evidence for Serre’s Conjecture. In [Kh]
Khare has shown that if one is willing to allow additional ramification at
a finite set of primes not dividindgN(p) p then there is a deformation to
mod p?, i.e. a representatiop, : Go — GLa(W(k)/p?). His method
works for p even as well. Ifp is reducible Khare has shown thatan be
deformed tow(k) if additional ramification is allowed.

The main result of this paper is that with several technical hypotheses on
anabsolutely irreduciblep one can defornp to W(k). As in Khare’s work
more ramification must be allowed and the methods are independent of the
parity of p. We do not know if these deformations are potentially semistable
at p in the sense of Fontaine. We also do not know whether, for unramified
primes, the trace of Frobenii are algebraic.
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After twisting p by a character we may (and do) assume the fields fixed
by the kernel ofo and the kernel of its associated projective representation
are ramified at the same set of primes. We denote these @&losand
Q(Ad®p) throughout this paper. Note that any of twjisby a continuous
k*-valued character can only increase the set of ramified primes loét
S denote the union of this common set of primé¢p}, and the infinite
prime. LetGs = Gal(Qs/Q) where Qs is the maximal extension d
ramified only at primes irS. Note p factors throughGs and that with
the possible exception of the pringeand the infinite prime all twists of
p are ramified at all primes o8. For a placev let G, = Gal(Q,/Qv).

Let Ad°p denote the set of X 2 trace zero matrices with entries kn
and Gg action throughp and by conjugation. LetAd°p)* be its Cartier
dual andN and NY be the maximal subgroups & that act trivially on
Ad°p and (Ad°p)* respectively. NoteQ(Adp) is the fixed field ofN.
Let D = Q(Ad°p) N Q(ip) and K be the composit® (Ad°p)Q(11p).
ObserveGal(K /D) ~ Gal(Q(Ad°p)/D) x Gal(Q(up)/D). Finally note
that for Ad°p absolutely irreducible, the minimal field of definition of the
representation 0G5 on the three dimension&l spaceAd’s may in fact
be a proper subfield d. We call this minimal fieldk. This is discussed in
Section 6. Noté # k in the odd example of Section 8.

Q(Ap)

\Q(M)
NS

D

Q

Theorem 1lLetp : Gs — GLy(k) be an absolutely irreducible Ga-
lois representation where the characteristjt of k is greater than or

equal to5. AssumeAd®p is an absolutely irreduciblé[Gs] module, that

HL(Gs/N, Ad°p) and H(Gg/NY, (Ad°p)*) are trivial, and that

H2(G,, Ad°p) = Ofor all v € S. Finally suppose there is an element

a x b € Gal(Q(Ad°p)/D) x Gal(Q(u)/D) ~ Gal(K /D) < Gal(K /Q)

such thata corresponds to an element in the (projective) image whose
eigenvalues have ratibe F}, wheret # £1, andb € Gal(Q(u,)/Q) —
(Z/p)* maps to the element Letr = dimH?(Gs, Ad°p). Then there is
a set of primesQ = {qi, O, .., ¢} disjoint from S and a representation
p: Ggg = GL2(W(K)) such thate = p mod p.



Lifting Galois representations 539

While the above theorem is stated quite generally it is not immediately
clear whether the hypotheses can actually be satisfied in a case of interest!
The following theorem is a corollary of Theorem 1. Recall that Serre’s
weight, k(p), is an invariant ofo |Gp=Ga,@p /Qp)’ and therefore makes sense

for p even as well as odd.

Theorem 2 Let p > 7. Assume the image pf: Gs — GL,(k) contains
SLy(k). Also assume if € Sandl # pthatl # +1 mod p, thatk(p) #
p — 1 or 2p, and thatk(p) # 2 mod p + 1. Letr = dim¢H?(Gs, Ad°p).
Then there is a set of primé&3 = {qi, O, .., ¢} disjoint from Sand a rep-
resentationo : Ggyo — GL2(W(K)) such thato = p modp.

The method is to deforone step at a time from maaf to modp"** as
in [R1-3]. Such deformation questions have been considered in [Mal], [BM],
[B1-3], [BO], and [Kh]. As obstructions to deformation problems lie in
H?(Gs, Adp) the exact sequence

0 — IE(A°p) — H3(Gs, Adp) — P,esHA(G,, Ad%p)

is extremely important. A typical approach for lifting to characteristic zero
(for p not known to be modular) has been to work with explicit examples
where H2(Gs, Ad°p) or at IeastHIé(AdOp) can be shown to be trivial.
Here we assume the right hand term in the exact sequence is trivial. Thus
II4(Ad°5) = H%(Gs, Ad°p) or more loosely ‘all obstructions to defor-
mation questions arise from class group problems’.

By the work of Poitou-Tate the kernel oH(Gs, (Ad°p)*) —
®esHY(G,. (Ad°p)*), which is denotedIT5((Ad®p)*), and ITI5(Ad?p)
are dual. (The duality uses the fact ttsatontains the infinite place.) For us
IHé((AdOp)*) will play the role of the dual Selmer group in [Wi] and [TW].
Following those papers, we carefully choose aef auxiliary primes that
annihilates[HlsJ ((Adp)™). It will then turn out that global obstructions to
deformation problems, allowing ramification U Q, need only be studied
locally at primes inQ. The method of [R1-3] can then be used to remove
these local obstructions. We cannot guarantee ghiatthe theorems will
be ramified at the primes i@. We only knowp exists and is unramified
outsideSU Q.

In this paper we study the cohomology A5 as opposed to that of
Adp, the set ofall 2 x 2 matrices ovek. For our purposes this means
we are fixing the determinant of all deformations mthat we consider
once and for all. Lety denote the cyclotomic character, both mpdand
in characteristic zero. We then hadetp = «(p)x<”~1. Let & be the
Teichmuiller lift of w. For definiteness we may assume the fixed determinant
of all our deformations ig "1,

The author would like to thank the referee for numerous helpful sug-
gestions. In particular, the referee suggested the formulation and proof of
Lemma 7 which leads to the corrected proof we give for Lemma 8.
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Notations

p: A prime > 5.

k: A finite field of characteristiqp > 5.

k: A subfield ofk which is the minimal field of definition ofAd°5 and
(Ad°p)*.

k: A separable closure d¢f

k: A finite extension ok.

k(¢): The one dimensional spakewith Galois action by the charactet
W(k): The ring of Witt vectors ok.

S: A finite set of places (including andoo).

Q: Afinite set of primes disjoint frons.

Qv: The completion of) at the placev.

Qs: The maximal separable extension@funramified outside the places
of S.

Go: Gal(Q/Q).

Gs: Gal(Qs/Q).

G,: Gal(Qu/Qv).

I,: The inertia subgroup ds,.

1: The two by two identity matrix ovew(k) or W(k)/p™ for suitablem.
x: The cyclotomic character.

0. A continuous representation fro@is to G L, (k).

k(p): Serre’s weight fop.

Ad°p: The trace zero two by two matrices odewith Gg action throughp
and by conjugation.

(Ad®p)*: The Cartier dual ofAd°p.

Ad°5: A descent ofAd®p to its minimal field of definitiork.
(Ad’5)*: A descent of Ad’5)* to its minimal field of definitiork.

2. Deformation theory

We give a short introduction to deformation theory. See [Mal], [BM], [Bol]
and [Bo2] for details and more results.

Let7 : H — GLg(k) be an absolutely irreducible continuous represen-
tation of a profinite groupgH. SupposeH*(H, Ad®7) is finite dimensional.
Let C be the category of Artinian local rings with residue fié&ldvhere
the morphisms are homomorphisms that induce the identity map bet
R be in¢. We call two liftsy; andy, of 7 to GL,(R) strictly equivalent
if y1 = Ay, A! for someA congruent to the identity matrix modulo the
maximal idealmg of R. We call a strict equivalence class of lifts@fto R
a deformation ofr to R.
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Mazur studied the deformations @fand proved the following funda-
mental theorem in [Mal].

Theorem A There is a complete local Noetherian riRj" with residue
field k and a continuous homomorphistn: H — G Lg4(R"") such that

1) Reduction oftr modulo the maximal ideal dR"" gives7.

2) For any ringR in ¢ and any deformatiory of 7 to GL4(R) there
is a unique homorphism : R — R in € such thatp o @ = y as
deformations.

Moreover, if7 is not absolutely irreducible the statements hold except
the ¢ in part 2 may not be unigue. We c&®'" the universal deformation
ring associated té and7 in the absolutely irreducible case. We cBi"
the versal ring associated kb andz otherwise. In either case we have the
following fact.

Fact RU"is a quotient ofW(K)[[T1, To, ...Tm]] Wwherem = dimyH(H,
Ad°7).

The elements oH*(H, Ad°7) correspond to the deformations ®fto
k[e] = K[X]/(X?), the dual numbers d. Given f € H(H, Ad°7) the
corresponding deformations @fto the dual numbers is given b (o) =
(I + ef(o)m (o).

Let 7, be a deformation off to GLgq(W(k)/p"). We ask ifr, deforms
to G Lq(W(k)/p™1). The obstruction to deforming, to G Lq(W(K)/p™t1)
lies in H2(H, Ad°7). If this obstruction is triviabr, deforms to somery,, 1
and pr o mp1 = m, wherepr : W(k)/p™t — W(k)/p" is the canonical
projection. When such a lift exists one sees tHatH, Ad°7) acts on the
set of deformations af, to G Lq(W(k)/p"™). For f € H(H, Ad°7) the
actionis givenby f.rn,1)(0) = (14+p" f(0)) (mny1(0)). If 7 isabsolutely ir-
reducibleH!(H, Ad°7) acts on the deformations of, to G Lg(W(K) / p"*+1)
as a principal homogeneous space.

Mazur has also shown that modifications could be made so related
functors with theordinary restriction are also representable. Héteis
a Galois group and we insist that when restricted to a suitable inertia group
I, that we only consider liftsr of 7 whose restriction td is of the form

(‘é i) See [Mal] and [Maz2] for details.

3. Local atqg; deformation theory

Letg # +1 modp (andg # p) be a prime (at which we eventually
wish to allow ramification) and leGy = Gal(Qqi /Qq). Supposep :
Gy — GLa(k) is unramified aty andp(Froby ) has (necessarily distinct)
eigenvaluesj x; andx;. We need to study the deformation theory of this local
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atq; representation to understand the roledhplay in Theorems 1 and 2.
The characteristic polynomigl(z) of p(Frobg ) is 22 — X (g + 1)z + g x?
has coefficients ik. But g is a rational integer so its reduction mpdies
in F, and is therefore ik. Sincex; (g + 1) € k we seex; € kK so p(z)
has distinct roots ik. Thus we may assume(Froby ) = (qi(;(i )(()) for
1

a suitable choice of basis of the two dimensiokalector space on which
Gy acts.

Recall we denote the cyclotomic characterhyBy k(¢) we mean the
one dimensiona{ vector space with Galois action by the charagtand by
k we denote the one dimensioralector space with trivial Galois action.

Lemma 1 Letq be as above. TheH?(Gg,, Ad°p) is one dimensional and
HY(Gq, Ad%p) is two dimensional.

Proof: Note that withG,, action, Ad°s ~ k @ k(x) @ k(x~1). Since we
are assumingj # 1 mod p we seeH%(G,, Ad°p) is one dimensional.
Observe(Ad°p)* ~ k(x) ® k @ k(x?). Thus forg; # +1 mod p we see
H%(Gq, (Ad®p)*) is one dimensional. By local dualit®(Gg,, (Ad®5)*)

is dual toH?(Gg, Ad°p) which is thus one dimensional. The local Euler-
Poincare characteristic gives the result fot(G , Ad°p).

We want to consider deformations @to W(k)/p". Asq; # p, such de-
formations factor through the Galois group of the maximal tamely ramified
extensmrQEq overQg,. This group is well understood. See Chaiptre 11,85
of [Se2]. Thus we may choose topological generators of the tame quotient
of Gy, o andry subject to the relationg, g q*1 = 1¢ . Recallzy topo-
logically generates inertia ang, maps to Frobenius under the surjection

GaI(Qgi/qu) — GaI(Fqi/Fqi). LetX € W(K) be the Teichmiller lift ok;.

We call a deformation (or a representation in this equivalence class) of
p to W(k)/p" (allowing n = oo in the case of a deformation ¥(k)) of

« . " oif e . X 1*
our “desired form” if it is given byoy +—> (q'o' % ) andry — (O 1).

The images oby, andz satisfy the relatiorrg 704" = = 7¢'. We want to
deform this tow(k) /p™t?.

Lemma 2 A deformation of our “desired form” toM(k)/p" deforms to
W(k)/p™*t,

Proof: One need only lifts from mod p” to mod p™*+* to get a deformation
to mod p"** of the “desired form”.

We give a basis foH(G,,, Ad®p). Recall thap(og ) = (q‘oxi S) and
|

p(tg) = (é 2) A nontrivial unramified deformation tk[¢] is given by
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p(og) = (qic;(i )(()i)+€ (qic;(i —(:(i ) andp(tq) = 1+4€ (8 8) Letg e Gq

and letny be the image of under the composite mapg, — Z — Z/p.

ng 0

0 —ng/*

A nontrivial ramified deformation to the dual numbers is given by

. i Xi 0 00 . 01
plog) = < 0 Xi) +e<00) and p(tg) = 1+e<00). We see

o rqiaq‘il = 74 holds. The corresponding cohomology class is given by
00 01
S (0g) = (0 0) andsy (7q) = (0 0)-

Clearly the images of, ands; in HY(Gy, Ad°p) are linearly inde-
pendent and therefore they span the two dimensional $p&aeg,,, Ad°p).
Note that botlry andsy, or more precisely their corresponding deforma-
tions tok[e], cut outZ/p extensions oy (p), the extension 0@, fixed
by the kernel ofp. Any linear combinatiorurg + vsy with u,v # 0ink
cuts out the uniqué& /p x Z/p extension ofQq, (o).

Also note that for any deformation to mad/(k)/p", n > 2, of our
“desired form”,acting on it by the cohomology clasg leaves it in the
“desired form”. One sees this by noting

n— i X 0 i Xi 0
1+p lSQi(UQi)) (qox )~(i> = (qOX Xi)

n— 1 1 n-1 1 %

We call a cohomology class that preserves the “desired fouti! If a co-
homology class does not preserve the desired form we calbrinull
Observe g is nonnull.

Thenry (9) =

and

Proposition 1 Letp : G — GLa(k) be unramified and given o) =
ng S) with g # £1 modp. Fix f € HY(Gg, Ad°p) such thatf and

Sy are linearly independent. Lei, be a deformation op to modp" of the

“desired form” and p,,1 be any deformation gf,, to modp"**. Then there

is anvpy1 € k such that(vn 1 ). pny 1 is of our “desired form.” Thusp can

be lifted toW(k) one step at a time with adjustments made at each step only

by a multiple off. In particular, we may take fof any nonzero multiple of

the unramified cohomology clasg.

Proof: Note that from the discussion in Section 2 we ggg differs from
the “desired form” by the action sbmeelementn 1 f + n41Sy of the two
dimensional spackl }(Gg, Ad°p). Thatis,(vny1 f + in11Sy)-ons1 iS Of the
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“desired form”. Since the one dimensional subspace of null cohomology
classes preserves this form we seg 1 f).on1 is of the “desired form”.

Remark: One possibility is that our characteristic zero representation may
havery — 1, that is it might be unramified.

4. Local atl # p obstructions

Lemma 3 H?(G,, Ad°p) # 0if and only if Ad°5 has a one dimensional
guotient on whichG, acts by the cyclotomic character.

Proof: In this lemmaw is any finite prime, including. By local duality we
seeH?(G,, Ad®p) # 0 if and only if HO(G,, (Ad°p)*) # 0. This happens
exactly when(Ad°p)* has aG, stable one dimensional subspace, that is
whenAd®p has a one dimensional quotient (bgastable two dimensional
subspace) on whic, acts byy.

The aim of this section is to prove the proposition below.

Proposition 2 Let p > 5and| be a prime such thdt# p, | #% +1 modp.
Suppose : G| — GL,(k) and the action of5; on Ad°5 is ramified. Then
H2(G;, Ad°p) = 0.

Remark: We choosey > 5 asall primes (other than 3 itself) are congruent

to +£1 mod 3. While the conditions of Proposition 2 are sufficient they are
not necessary for the conclusions. We have chosen these strong hypotheses
because they are easy to state and verify.

Proof: We know H2(G, Ad°p) = 0 if and only if Ad°s does not have
a one dimensional quotient (by a two dimensio@alstable subspace) on
which G acts byy. Asl # pthis action is unramified and &s# +1 modp
we seey has order at least 3. L& and| be the images dB and its inertia
subgroupl; under the composite map, — GLa(k) — PG Ly (k).

We need the following lemma to prove the proposition.

Lemma4 If [G : ] < 2 then Ad°5 has no one dimensional quotient on
which G, acts byy. ThusH?(G,, Ad°5) = 0in such cases.

Proof: The order ofy would have to be 1 or 2, i.é.= £1 modp. We are
excluding these cases.

We recall the classification in [Dil] of two dimensional local mpd
Galois representations. Note that we are reversing the rolésaofl p
in [Dil] and the classification is often only given up to a twist. Sidadp as

ak[G;] module is insensitive to twists by*-valued characters this does not
affect our computations. We do not need to worry about possible difficulties
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arising from scalar extensions associated to these twists or about the minimal
field of definition of Ad°5 as H2(G,, Ad°p) ®¢ k ~ HZ(G;, Ad°p ®y k)
wherek is a separable closure kf Thus we extend scalars and consider
Ad®p and (the representation space pfisk[G,] module.

In his classification Diamond has four cases that he €3lIS, V andH.
We recall these below under the hypotheses Ithat+1 mod p andp is

ramified. We do not give all of Diamond’s equivalent formulations of each
case.

P : p is twist equivalent to a representation of the fo<r% 2) for some
ramified charactey.

S : p is twist equivalent t )é li) wherey is the cyclotomic character

andu is a not coboundary.

V : T is cyclic of order not divisible byp andG is dihedral of twice that
order.

H:a) I'is dihedral of order P for somer > 1 andG is dihedral of order
dividing 4", or

b) | = 2, I (respectivelyG) is isomorphic toD, (respectivelyAs), As
(respectivelyAs), or A4 (respectivelysy).

Proof of Proposition 2:In caseV the hypotheses of Lemma 4 are satisfied
so Proposition 2 holds in this case.

In caseP we see€p is a direct sum of the trivial character and a ramified
character. One easily sees that d4 @] module Ad°ps becomes a direct
sum of three one dimensiondlG,] modules. One of these is trivial and the

other two have ramifie®, action. ThusH?(G;, Ad°p) is nontrivial only if
x is the trivial character, that Is= 1 mod p. We are excluding this case.

In caseSwe haveo = ( )(() li) . ThenAd°5 has a unique one dimensional

quotient and3; acts on this quotient by 1. Sincel # —1 modp we know
x~ 1 # x. ThusH?(G,, Ad°p) = 0 in this case.

It remains to consider cadd. Here the hypotheses of Lemma 2 are
satisfied except when= 2, [ ~ D4 andG ~ A,. By Lemma 3 we know
that for H?(G;, Ad°p) not to be trivial there must be a one dimensional
quotient of Ad°s on which G, acts viay. This quotient must be by a two
dimensionalG, stable subspace. Sinc&#= 12 andp > 5 we see that
G, acts onAd°p via a quotient of order prime t@. By the theory of
representations of finite groups of order prime to the characteristic we see
Ad®p is a semisimple representation 8§. Since A, acts faithfully on
Ad°p we easily seé\d’p is an irreducible three dimensional representation
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of A4. Thus there are no two dimensional invariant subspaces so we must
haveH?(G,, Ad°p) = 0 in this last case.
Proposition 2 is now proved.

5. Local at p obstructions

Recall that Serre attaches in [Sel] a weilfji) to a modp Galois rep-
resentation that depends only on its restriction tdhe inertia subgroup
of G,. (We usel for inertia in this section to be consistent with [Sel]). This
definition therefore applies to even as well as odd.

Proposition 3 Letp > 5andp : G, — GL,(k) be given. Ik(p) # p—1
or 2p andk(p) # 2mod(p + 1) thenH?(Gp, Ad’p) = 0.

Remark: As before the hypotheses are sufficient for the conclusion but
not necessary. See for example Section 11 of [Ma3]. As in Section 4 (of
this paper) we need not worry about possible scalar extensions since such
extensions do not change tbdamensionof the cohomology groups. Thus

we considerAd®p as ak[G p] module.

Proof: Following Section 2 of [Sel] we will separate the cases when inertia
acts (througltp) via characters of level two and characters of level one. By
Lemma 3, to shovwH?(G,, Ad®p) = 0, it suffices to show thaAd®s has
no one dimensional quotient on whi€h, acts viay. Here x is ramified.

We will study thek[l] module Ad°s and show that if the conditions of
Proposition 3 are satisfied thexd’s has no one dimensional quotient on
which | acts viay.

If inertia acts througtp via characters of level two, then by Section 2.2
of [Sel] we seep |g, is irreducible andp | = (g q?p) where ¢ is
acharacter of level two. Thus a&f ] moduleAd°» decomposes as a direct
sum of 3 one dimensional spaces, one with triviattion, one with action
via ¢P~1 and one withl action viag'~P. To showH?(G,, Ad°p) = O it
suffices to show neithesP—* nor ¢*~P equaly.

From [Sel] we see that we can wrige= y2P° where is a fun-
damental character of level two and<© a,b < p — 1. Thus¢P! =

YAP-D+b(P-P Recally = P+ and thaty has ordem? — 1.

Lemma 5 With ¢ as above, neithepP~* nor ¢~ P equal x. Therefore ifl
acts (throughp®S) via characters of level two theH?(G,, Ad°p) = 0.

Proof: SettinggP~! = x we seeyaP-D+b(P*~P — y P+l or equivalently
a(p—1)+b(p?—p) = p+1mod p?—1). This becomega—b)(p—1) =

p + 1 mod(p? — 1). Sincep — 1 divides p? — 1 this last equation holds
mod (p — 1) and becomes & 2 mod p — 1) so p = 3. We are excluding
this case. The computation fgt—P is similar.
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We now turn to the case where inertia acts throjagha characters of
level one.

a
If wild inertia acts trivially,p |, = ()E) )?b> where0<a<b<p-2

Keeping in mindp > 5 we seeAd°p has a one dimensional quotient on
which | acts byy only if b —a = 1. In that case, by Section 2.3.2 of [Sel]
we havek(p) = 1+ pa+b =2+a(p+1). We are excluding such weights
from our consideration. Note j# is unramified atp thena = b = 0 and
Serredefinek(p) to be p.

B
If wild inertia acts nontrivially,p || = (XO ;) where0<a < p-—2

and 1< 8 < p—1andp |, is a nontrivial extension class. One easily sees
that Ad°p has a one dimensional quotient on whichcts byy if and only

if x*=# = x, that is if and only ife — 8 = 1 mod p — 1). (Recallx has
orderp—1). From the bounds amandg we see-(p—1) <a—fB < p—3
soa — B =1or—(p—2). Inthe first caser = 8 + 1 so following [Sel]
k(p) =1+ pB+B8+1=2+pB(p+1.Inthe second cage= p—2orp—1
soa = 0 or 1 respectively and(p) = p — 1 or 2p respectively. (Recall

p # 3.) As we have excluded these cases Proposition 3 is now proved.

For the lemma below we tredd’p and (Ad®p)* ask[Gp] andk[I]

modules. We also will extend scalars to the quadratic exterisioik to
diagonalizep |, as necessary.

Lemma 6 Ad%% # (Ad°p)* asF,[G,] modules.

Proof: Recall we are assuming > 5. In particular we knowp # 2. It
suffices to showAd’s and(Ad°p)* are not isomorphic aS,[1] modules.
Consider first the case whepects through via fundamental characters
of level one. We studyAd®s°S, the semisimplification oAd°p as aFp[]
module. One easily se€¢Ad®p)> ~ k & k(x™ @ k(x~™) ask[l ] modules
for some integem. Thus((Ad°5)*)*° ~ k(x) @ k(x1™) @ k(x*™). As
p # 2 itis easy to see these semisimplifications are not isomorphic as
K[1] modules. Since is finite overF,, countingF, eigenspaces shows
(Ad°p)ssand((Ad°p)*)SSare not isomorphic ap[| ] modules. ThuAd®s
and(Ad°p)* are not isomorphic as,[Gp] modules.
Suppose now acts via character of level two. We know that (after a pos-

. . . - _ Yateb 0
sible quadratic extension of scalars to a fie)dhatp || = ( 0 l//b+pa>
o)

Ado,b ~k oy R(l//(Pfl)(b*a)) D R(I/I(P*l)(afb))

ask[1] modules. We see

(AdD)* ~ K(0 & KOy P D) @ K (xy D C-3)
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ask[1] modules. If thek[G ] modulesAd’s and (Ad®5)* are isomorphic
as Fp[G,] modules we would necessarily have that ft{ep] modules
Ad®p and (Ad°p)* are isomorphic a&,[Gp] modules and thus &&,[1]
modules. Without loss of generality we would then have- ¢ (P-D@-b,
ThusAd®p ~ k @ k(x) @ k(1) ask[I] modules. Since + 2 this is not
self-dual as &[I] module. Counting-, eigenspaces we see tkhenodules
Ad®p and (Ad°p)* are not isomorphic aBp[I] modules. ThusAd®s and
(Ad°p)* are not isomorphic asp[Gp] modules. The lemma is now proved.

6. Descents

In the introduction we alluded to the fact that the minimal field of definition
of the three dimensional representationGf on Ad°s could conceivably
be smaller thak. We have the following fact which is Lemmal@ of [DS].

Fact Lett : G — GLn(k) be a semisimple representation. lkebe the
subfield ofk generated be the coefficients of the characteristic polynomials
of elements ofG. Thent is realizable ovek, i.e. it is isomorphic to

a semisimple representatiagh : G — GLy(k) and¢ ®; k ~ 7. The
descent tk is semisimple and unique up to non-canonical isomorphism.

| am grateful to the referee for pointing out the following lemma and its
proof.

Lemma7 Letr : G — GLNH(IZ) be absolutely irreducible with minimal
field of definitionk. LetV = k" be the representation space. Suppdées
a nonzerd~, subspace oY stable under the action @&. ThenW = V.

Proof: Firstwe showV is a semisimplé,[G] module. LetV, be a nonzero
irreducibleG stableF, subspace o¥. If Vo = V thenV is a simpleF,[G]
module. Assumé/, # V. SinceV, is G stable so is itk span. Since is
irreducible we see thie span ofV, is all of V. Fora € k, « # 0, consider
oV, the Fy subspace oW consisting of all multiples of elements &f
by a. ClearlyaVy is G stable and an irreduciblé,[G] module. Note also
that fore, B € k, , B # 0, we havexV, and 8V, intersect trivially or they
are equal. Since thie span of\; is all of V we seeV is contained in the
span of simpld=,[G] modules and thereforé itself is a semisimpl&,[G]
module.

To prove the lemma it suffices to show is irreducible as arp[G]
module. To show this it is enough to show the injection- End-,i6)(V)
is an isomorphism. For ¥ were a direct sum of more than one irreducible
constituentend: (V) would contain noninvertible elements.
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We will show thatk : Fpl=dime, (End-((V)) by extending scalars and
checking the equivalent statemdht: Fp] = dimy (End g,k ®¢, V) =
dile (Ean[G]((R ®Fp R) ®|2 V))

Note thatk ®e, k = [T,k where the isomorphism is as léftalgebras
and the product is indexed by the elemesits Gal(k/F,) and thesth
factor has rightk algebra structure via the automorphisof k. Thus
Encg (K ®F, V) = Endy (] [ Vs) whereVs is the absolutely irreducible
k[G] module obtained fronv by base change by NoteEnd;,Vs = k.

We claim that fors, t distinct in Gal(R/Fp) that Vs and V; are not
isomorphic a&[G] modules sdHony g, (Vs, Vi) = 0. Sincek is the minimal
field of definition ofr andst™! is not trivial in Gal(R/Fp) there must be
someg € G so that the characteristic polynomials okeof the action ofy
on Vs andV; are distinct. The irreducible[G] modulesVs andV; are thus
not isomorphic s&nd; g, (k ®¢, V) = [[sEnd g, (Vs) = [][sk which has
dimension &Bal(k/Fy) = [k : Fp] overk as desired.

Denote byAd’p and(Ad’p)* descents oAd®p and(Ad®p)* to k.

Lemma 8 Suppos@: H— GL,(Kk) isabsolutely irreducible and thzﬁjop

is absolutely irreducible as a representationtbfLet f € H(H, fA\VdO,b) be
non-zero. Lep : H — GL,(k[¢]) be the deformation to the dual numbers
corresponding tof. Let A and B be the kernels op and p respectively.

Suppose also that*(H/A, ,&Hop) is trivial. In terms of the choice of,
the Fp[H] moduleA/B can be naturally endowed with a structure oka

vector space so thahd 5 = (A/B) @ k ask[H] modules. In particular
A/B is a simpleFy[H] module and has cardinality#k)3.

Proof: Consider the inflation-restriction sequence
0 — HY(H/A Ad’p) — HY(H, Ad’p) — HL(A Ad’H)A.

Sincef # 0 andHY(H/A, Ad’5) = 0 we see see thdt ¢ H(H, Ad’p)
maps to a nonzero elemefiof HX(A, Ad’p)"/A = Homy (A, Ad p). The
last equality follows becausa acts trivially on Avdo,b. So f gives rise to

a nonzeroH equivariant mapf : A — Ad’s. That the kernel off is B
follows from the explicit description of the correspondance between elem-

ents of H(H, Avdi),b) and deformations gb to the dual numbers described
in Section 2. Lek be the minimal field of definition of the representation

of H on ,&Hop. We know the image ofA/B under f is a nonzerd,[H]
submodule ofAd’5. By Lemma 7 the image equakd’s and we are done.
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7. Global methods

We recall our set-up for Theorem 1 in preparation for its proof. We have
p : Gs — GLy(k) a continuous absolutely irreducible Galois represen-
tation wherek is a finite field of characteristic- 5. We assumeAd®p

is absolutely irreducible. This necessarily implies thatp)* is an ab-
solutely irreduciblek[Gs] module as well. We assumig!(Gs/N, Ad°p)

and HY(Gs/NY, (Adp)*) are trivial whereN and N¢ are the maximal
subgroups ofGs that act trivially on Ad°p and (Ad°p)* respectively.
Let Q(Ad®°p) and Q(Adp") be the fixed fields oN and NY. PutD =
Q(Ad®p) N Q(up) andK = Q(A5)Q(up). We assume thaH?(G,,
Ad®p) = 0 for all v € S. Also recall there exists an elemeatx b ¢
Gal(K /Q) as described in Theorem 1.

K

Q(Ap)

\ >Q(Mp)

D

Q

We refer the reader to [Ha] and [Mi] for the main theorems of global

Galois cohomology. Recaﬁ\vdop and (ﬂaop)* are decents oAd°p and

(Ad°p)* to k. Henceforth we study these objects. The truth of our co-
homological assumptions fokd’p and (Ad°p)* implies the truth of the

corresponding statements fad° s and (Ad’p)*.
Studying the exact sequence

0 — II4(Ad’p) — H3(Gs, Ad’p) — ®,csH(G,. Ad’p)

we see we have an isomorphidii%(Ad’p) — H2(Gs, Ad’p). Letr be

the commork dimension of these cohomology groups. Recall that by global
Poitou-Tate dualitgI13(Ad’p) is dual toll1((Ad’p)*), the kernel of the
mapH(Gs, (Ad’p)*) — @,esHL(G,, (Ad’p)*). Also using global dual-

ity and the global Euler characteristic we fikd(Gs, ,&HOp) isr orr 42 di-
mensional ag is even or odd. Lefgs:, 0o, .., g } be a basis OIHé((ATEJO,Z))*)

and{fq, f,, ..., f,} be linearly independent irl*(Gg, ,&Hop). Our plan, is
foreachi, 1 <i <r, tofind a primeg; ¢ Ssuch that
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e g # +1 mod p and p(Froby ) has eigenvalues with ratig. By the
remarks at the beginning of Section 3 the distinct eigenvalugsfabhby, )
will lie in k.

® Jlg, # 0.

e fi |g,# O is unramified and therefore nonnull gt by the results of
Section 3.

e Fori # j we havef; g, = 0 andg; g, = 0.

Letting Q = {q1, O, .., 0 } we will then haveUIlSJQ((Kaop)*) is trivial
and by global duality thal 1, (Ad’5) = 0. The mafH2(Gs o, Ad ) —
BuesigH2(G,, Adp) is therefore injective. SinceAd p)* is assumed ab-
solutely irreducible we hav#i®(Gs, (Ad’p)*) = 0 and theH? restric-
tion map above is surjective by Chapter |, Theorem 4.10 of [Mi]. Since
H2(G,, Kao,b) is assumed trivial fov € Sthe mapH?(Gg,q, Kao,b) —
®,eqH2(G,, Kao,b) is an isomorphismThus obstructions to deformation

problems forp with ramification inSU Q need only be analyzed at ex-
actly the primes inQ. But for eachqg; we have, by our choice of the,

a nonnull cohomology class iH(Gs, ,&HOp) available, namelyf;. We use
these as in Proposition 1 to at each stage put the deformation in our “desired
form” at ¢. Sincef; |qu = O fori # ] adjusting byf; will not change the
deformation ag;.

The idea of seeking the séXto annihilatelHlsJQ((%IOp)*) comes from
the work of [Wi] and [TW]. However, unlike the situation in [Wi] and [TW]
our auxiliary primes cannot be congruent to 1 npdHad we chosen them
so the f; would have beemull for g;. Thus f; could not be used to bring
the local deformation problem gf to an unobstructed form. (The ‘shape’
of the local atg; deformation theory fog; = 1 mod p is different than that
given in Section 3. See the lemma in the appendix of [TW].) Chebotarev’s
theorem will provide us with thej.

I:i/ Li\K/Mi

Q(Ap)

\Q(u)
NS

D

Q

Recall N and N¢ are normal subgroups @s that fix Q(Ad’p) and
Q((Ad°p)*) respectively.
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Lemma9

1) Let ; be the image of; in HX(N, Ad’5)®s/N = Homg(N, Ad’5). The
kernel of f; fixes a fieldl; € Qs Galois overQ with Gal(L;/Q(Ad°p))
isomorphic to th&k[Gg] module%op. The exact sequence

1 — Gal(Li/Q(Adp)) — Gal(Li/Q) — GalQ(Ad°p)/Q) — 1
splits.

2) Letg; be the image aj in HX(N4 (Ad’p)*)8s/N= Homg (N4 (Ad’p)").
The composite of the field fixed by the kernaj@&ndK is a fieldM; C Qs

Galois overQ with Gal(M;/K) isomorphic to th&k[Gg] module(ﬂao,b)*.
The sequence

1— GalMj/K) — Gal(Mi/Q) — Gal(K/Q) — 1
splits.

Proof: Recall HY(Gg/N, AH%) is assumed trivial N acts trivially on

A':ao,b, and A':ao,b is an absolutely irreduciblie[Gs] module. Consider the
inflation-restriction sequence

0— HLGs/N, (Ad’p)") — HY(Gs, Ad’p)
S HIN, AdD) T - HAGe/N, (Ad)M).
~0_ ~ ~0__Gs/N

Thenf; e HY(Gs, Ad p) mapstonon-zeroelemeftof HY(N, Ad p) =
Homg(N, ,&aop) as desired. The image &fis a nonzerd-p[Gs] submod-
ule of Ad’s. The mapf, : N — Ad’s is surjective by Lemma 8. Ldi,
be the fixed field of the kernel of;. ObserveGal(L;/Q(Ad°p)) inherits
ak structure fromﬂao,b. The sequence splits becaukemaps to zero in
H2(Gs/N, Ad’p) by exactness.

Forthe second partwe nd# 2 Gal(Qs/K) andH(Gs/N¢, (Ad’p)*)
is assumed trivial. Replacad’s and N by (Ad°p)* and N9 in the exact

sequence above. If the fixed field Nf is notK let M; be the composite of
K and the field fixed by the kernel gf.

LetL; be the composité K. Note[L; : K] = [L; : Q(Ad°p)] = (#k)3
as[K : Q(Ad°p)] = [Q(up) : D] is prime top. LetI:J- be the composite of
all theL; exceptL;. Definel\?lj similarly. LetL be the composite of all the
L; andM the composite of all thi#;. LetF = LM.
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N

M

L/,:. |\7|-\\|v|-
|\. //. i

K

Q(Ap)

\Q(u)
NS

D

Q

Lemma10 1)L NL; = K.
2MiNnM; =K
3)LNM =K.

Proof: RecallGal(L;/Q(Ad°p)) ~ Gal(L{/K) ~ Kao,b ask[Gs] modules
by Lemma 9. Sincéiao,b is a simpleF,[Gs] module and thé; andL; are
Galois ovep wesed i NL;=L;orK. Ifthe irltersection i ; we would
havelL; C L;. Suppose this happens. Then, d§@s] module,Gal(L /K)

has at most — 1 copies ofﬂaop in its Jordan-Hdlder sequence. Consider
the inflation-restriction sequence

0 — HY(Gal(K/Q), (Ad’5)%¥/9) — HY(Gal(L/Q), Ad"p)
— HY(Gal(L /K), Ad’p)%aK/Q

ThefirsttermiH(Gg/N, (Ad’5)N) which is assumed trivial. AGal(L /K)
acts trvially onAd’p the last term becomesdomg,(Gal(L /K), Ad’p) and
is at mostr — 1 dimensional. Thusi!(Gal(L /Q), Avdo,b) isatmostr — 1
dimensional. This contradicts the independencé fef f5, .., f;}, so the
L; nL; = K. The second part is handled similarly.
For the third part, observe the simple terms in the composition series

for the k[Gs] module Gal(L /K) are all A'Tao,b. Those ofGal(M /K) are
all (’AHO;))*. By Lemma 6 these are, after scalar extensiof,tmoniso-

morphicF,[G,] modules so they are nonisomorphiGs] modules. Thus
LNM =K.
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Remark: GalL /K)andGal(M /K) inheritk structures from th& modules
Gal(L;/K) andGal(M;/K).

Lemma 1l 1) Gal(L/K) ~ (A':Ejo,b)r as k[Gs] modules and the exact
seqguence

1— GallL/K) - Gal(L/Q) —» GallK/Q) — 1

splits.

2) GalM /K) ~ ((,’A\Volo,b)*)r ask[Gs] modules and the exact sequence
1—- Gal(M/K) - Gal(M/Q) — Gal(K/Q) — 1

splits.

Proof: The L; are linearly disjoint ovelK by Lemma 10. Since each

Gal(L;/K) is isomorphic to th&k[Gg] moduleﬂaop we seeGal(L /K) ~

(A'Tao,b)r. The splitting follows from Lemma 9. This proves part 1. The proof
of part 2 is similar.

Lemma 12 Gal(F/K) ~ Gal(L /K) x Gal(M /K).
Proof: Immediate from part 3 of Lemma 10.
Lemma 13 Gal(F/Q) ~ Gal(F/K) x Gal(K/Q).
Proof: We have that the exact sequences
1 — Gal(L/K) — Gal(L/Q) — Gal(K/Q) — 1

and
1— Gal(M/K) - Gal(M/Q) — Gal(K/Q) — 1

both split by Lemma 11. Sinc8al(F/K) ~ Gal(L /K) x Gal(M /K) we
see (using part 3 of Lemma 10) that the exact sequence

1— Gal(F/K) - Gal(F/Q) —» Gal(K/Q) — 1
splits.

In Theorem 1 we assume an elemenk b € Gal(Q(Ad°p)/D) x
Gal(Q(up)/D) ~ Gal(K/D) € Gal(K/Q) exists where is in theprojec-
tive image ofp, the eigenvalues & have ratiot andb corresponds to the
class oft € (Z/p)* wheret # 4+1 mod p. Note that we insist thdtlie in
the multiplicative group of th@rimefield Fy. Letc = a x b. Letd be the
(multiplicative) order ot mod p. Noted is prime top andc has orded in
Gal(K/Q).

Lemma 14 1) Consider the action af on GakL;/K) ~ ,&Hop. There are
nontrivial elements of G&l;/K) on whichc acts trivially.
2) There are nontrivial elements of GM; /K) on whichc acts trivially.
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Proof: 1) One easily sees thatacts trivially onAd®p. (Not Kaop!). Using
that the projective elemeat has distinct eigenvalues with ratipwe see
that Ad°s decomposes under the actionadhto one dimensiongk vector
spaces. Thus the actionois via multiplication byt, 1 and ¥t respectively.
Ast € F, we seeAd’p decomposes as &j vector space into eigenspaces
with c acting byt, 1 and Zt.

Recall we have an injectioAd’ s — Ad°p by extending scalars and this
injection isGs equivariant. Thus thE, vector spacéiaop decomposes into
eigenspaces with eigenvalugsl, and ¥t under the action of. Suppose
there are no eigenspaces with eigenvalue 1. Then under the scalar extension
mapAd’s — Ad®p the image ofAd 5 lies in the two dimensiondd vector
space spanned by the one dimensidnalgenspaces on whiahacts byt
and Yt. Since the image oﬁjo,b in Adp is Gs stable itsk span is also
Gs stable. But thék span is a two dimension&l subspace oAd°s. This
contradicts the absolute irreducibility &d®p.

2) The proof is identical, except the action ©®bn (Ad°p)* decomposes
(Ad°%)* into one dimensionat vector spaces with eigenvaluest Bndt?.

Lemma 15 Leta; € Gal(L/K) ~ (Ad’5)" be the element all of whose
entries are0 except the théth entry which is a nonzero element on which
acts trivially. Put

Bi = aj x ¢ € Gal(L/K) x Gal(K/D)
C Gal(L/K) x Gal(K/Q) ~ Gal(L /Q).

Theng; has orderpd in Gal(L /Q). Letu; be a prime ofQ unramified inL
with Frobenius in the conjugacy class gfin Gal(L /Q). Then forj # i
the primes abovae; in K split completely fronK to L; but these primes do
NOT split completely fronK toL;.

Proof: The order ofg; in Gal(L/Q) is the least common multiple of
the orders ofy; andc, namelypd. The remaining statements follow from
projectings; € Gal(L/Q) to Gal(L;/Q) andGal(L;/Q) and observing the
order of the projections akand pd respectively.

Corollary 1 fi |, # 0 and is unramified. Therefore by the results of
Section 3 itis nonnull atij. For j # i we havef; |g, = 0.

Proof: By the choice ofc prior to Lemma 14 we see; is a prime as in
Section 3 and all the results there apply. By the choiag ofe seeG,,; acts

on Ad®p through a quotient of ordet. If we complete the extensidn /Q at

a prime abovey; the degree of the local extensiongd. This follows from
Lemma 15 and the fact thélvdo,b is ap-group. Observel+e fi)p g, isthe
restriction toG,;, of the deformation to the dual numbdig] corresponding

to fi € HY(Gs, Ad°p). The projective representation associated to this
representation has image of ordaa. Since the order of the image of the
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projective representation associatecbtfy,, is d we seef; |g, # 0 and it
is clearly unramified ati;. That f; IGu — 0 follows from the fact that the

local degree at;; of L;/Qisd.

Lemma 16 Let y; € Gal(M/K) ~ ((Ad’5)*) be the element with all
entriesO except theth which is a nonzero element on whichcts trivially.
Put

8i =y x ce Gal(M/K) x Gal(K/D)

C Gal(M/K) x Gal(K/Q) ~ Gal(M/Q).
Thené; has orderpdin Gal(M /Q). Letv; be a prime with Frobenius in the
conjugacy class af; in Gal(M /Q). Then forj # i the primes above; in

K split completely fronK to Mj, but they daNOT split completely fronK
to M.

Proof: The proof is the same as Lemma 15.
Corollary 2 g e, # 0 and forj # i we haveg; s, = 0.
Proof: The proof is as in Corollary 1.

Proposition 4 Let

n e Gal(F/Q) ~ Gal(F/K) x Gal(K /Q)
~ (GaI(L/K) x Gal(M/K)) » Gal(K /Q)

be the elementiy; x y;) x c. Letqg be a prime ofQ unramified inF with
Frobenius in the conjugacy classgfin Gal(F/Q). LetQ = {qi, 02, .., O }.

ThenlITg o ((Ad’5)*) = 0

Proof: Note that(¢; x ;) x ¢ € Gal(F/Q) projects tog;, &, andc in
Gal(L/Q), Gal(M/Q) and Gal(K /Q) respectively. Thus ify is a prime
with Frobenius in the conjugacy class(@ x y;) x ¢ € Gal(F/Q) we see

g is a prime as in Section 3 by Corollary 1. By Corollaries 1 and 2 we see
that fi |, # 0, Gi g, # 0 and fori # | that f; |Gq = 0 andg; |Gq =0.

Consider the natural |nject|oHI Q((Ad 0)*) — TIT ((Ad 0)*). Let
h e ITI% ((Ad 0)*). Thenh = Zl 1 Vi wherev; e k and we sed log =

vig. If h e HISJQ((Ad p)*) thenh |g, is trivial so we must have; = 0
forall1 <i <r, thatish = 0.

Proposition 5 The mapH?(Gs o, Ad’s) — ®ueqH?(G,, Ad’) is an
isomorphism.
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Proof: For allv € Swe assuméd?(G,, Njop) = 0. Thus the right side of
the above map is actualig,s,oH?(G,, /?d‘)p). Injectivity follows from

the fact thatlI3 o(Ad’p) is dual toIITg,o((Ad p)*) which is trivial.
Surjectivity follows from Chapter I, Theorem 4.10 of [Mi].

Theorem 1lLetp : Gs — GLy(k) be an absolutely irreducible Ga-
lois representation where the characteristjt of k is greater than or

equal to5. AssumeAd®p is an absolutely irreduciblé[Gs] module, that

HL(Gg/N, Ad°p) and H(Gg/NY, (Ad°p)*) are trivial, and that

H?(G,, Ad°p) = Ofor all v € S. Finally suppose there is an element

a x b € Gal(Q(Ad°s)/D) x Gal(Q(u)/D) ~ Gal(K /D) < Gal(K /Q)

such thata corresponds to an element in the (projective) imagg whose
eigenvalues have ratibe F}, wheret # £1, andb € Gal(Q(u,)/Q) —

(Z/p)* maps to the element Letr = dimH?(Gs, Ad°p) Then there is
a set of primesQ = {1, Oz, .., ¢} disjoint from S and a representation
p: Gsaug = GL2(W(K)) such thatp = p mod p.

Proof: Let Q be as in Proposition 4. We apply induction to deform from
W(k)/p" to W(k)/p™*! one step at a time. We note that for all thep g

is of the “desired form” of Section 3. This is the base case in our induction.
Suppose we have a deformation: Gs o — GL2(W(K)/p") with pp g

of the desired form for 1< i < r. Since the local atj deformation
problems (to modp™*?!) are then unobstructed we can by Proposition 5
deform p, to mod p"*1, that is there is & : Gg o — GLa(W(k)/p"th)
with p = p, mod p". The local atj representationg la, may not be of the
“desired form”. However we know; is nonnull atg; by Corollary 1. Using
Proposition 1, we can altgrby an appropriate multiple, € k of f; so that

(vi fi).p |, isof the “desired form” aty. Letpn 1 = Qv f).p. As fj |G

is trivial for j # i we have by Corollary 1 thadn1 g, = (vi fi).p g, and
the deformation problem is unobstructedjatThenp, 1 = (Z Vi fi) S

of the “desired form” a5, for 1 <i < r. The induction is now complete
and the theorem follows.

We now prove Theorem 2. Rec&l(p) is the field fixed by the kernel gi
and that we assume the imageppidenotedimp, containsSL,(k).

Lemma 17 Letp : Gs — GLy(k) be such thatmp 2 SLy(k) where the
characteristicp of k is greater than or equal t&. Thenp and Ad°p are
absolutely irreducible and the minimal field of definitionAad®p is k.

Proof: If p is not absolutely irreducible then it is conjugate (o@rto

arepresentation ovérthat is upper triangular. This impliem is solvable.
As we assume > 5 we knowIlmp is not solvable.
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To show absolute irreducibility oAd°p it suffices to show the action
of SLy(k) on the two by two matrices with trace O overis absolutely
irreducible. It suffices to prove the special case that the acti@LefF,)
on the two by two matrices with trace O oy is absolutely irreducible.

Sincep is odd we may cite [CR], example 17.17. The absolutely irre-
ducible representations &L, (F,) are given by actions dbL,(Fp) on the
d + 1 dimensional spackly of homogeneous polynomials in two variables
: 3 e Sly(Fp). Theng
acts onMy by g. X =rX + sYandg.Y = tX 4+ uY. Whend is odd note
that—1 € SLy(Fp) acts nontrivially orMy. Since—1 acts trivially onAd®p
we see the Jordan-Holder sequence AoPp can contain onlyMg with
d even. The only possibilities are the one dimensionsal sp&cand the
three dimensional spadd,. If Mg occurs in the Jordan-Holder sequence
it occurs with multiplicity three and as in the first paragraph of this proof
one seedPSLy(Fp) is solvable forp > 5, a contradiction. The absolutely
irreducible representatioll, is Ad°s and we are done.

Let g = #k. As for the minimal field of definition ofAd’p, consider

the the elements oANdO,b stabilized by the group of matricés$ of order

g of the form ((1) ?) € SLy(k). Since we have g group acting on &

(say X andY) of degreed over pr. Letg =

group there are nonzero elementsia’ p fixed by the action oU. Clearly

thek span of these elements ﬁjop is pointwise fixed under the action
of U. If this k span were greater than one dimensional then on extending
scalars tck we seeU would pointwise fix a two (or greater) dimensional
k subspace oAd®p. It is easy to see this is not the case. Ligbe the one
dimensionak subspace oﬁjo,b pointwise fixed byU. We ask what other
elements ofSLy(k) pointwise fixl,. These elements @&L,(k) pointwise
fix the k span ofl; in Ad°s and we easily see thatU is the stabilizer
of ;. Letxg € |1 be nonzero. The orbit ofy under the action 08L,(k) has
cardinality #SL,(k)/(2#U) = (q°—1)/2. SoAdO,Z) contgins at least distinct
(g? — 1)/2 elements. If the minimal field of definitiok is strictly smaller
thank then #& < q2. Thus Ad’5 contains at mosg®? distinct elements.
Sinceq > 5 we seey®? < (q? — 1)/2, a contradiction. The minimal field
of definition of Ad°p is k.

Remark: Since, with the hypotheses of Theorem 2, we Have k we will
useAd°p and (Ad°p)* for the rest of this section.

Lemma 18 Let p > 5 and suppose the image of : Gs — GLy(k)
containsSL,(k). RecallD = Q(Ad%p) NQ(up). ThenD : Q] =1or2. As
[Q(up) : Q] = p— 1 we have that GalQ(u.p)/D) is not the trivial group.

Proof: AsD C Q(up), we seeD/Q is abelian sd5al(Q(p)/D) contains
the commutator subgroup &al(Q(p)/Q) = Imp. As Imp 2 SLy(k) and
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#k > 4 we see this commutator subgroup is jBb(k). AsD € Q(Ad?p),
the fixed field of the projective representation associatgd tee have that
Gal(Q(p)/D) contains the scalar matriceslimp which we denot&. Thus
Gal(Q(p)/D) containsZ - SLy(k) as a normal subgroup.

Let A be inImp with determinant € k. ThenA? € Imp has determi-
nanta? so A = 8 g - X whereX e Sly(k), that isA? € Z - SLy(k).
Sincelmp/SLy(k) € k* is cyclic we havelmp : Z - SLy(k)] = 1 or 2.
We concludgD : Q] = 1 or 2.

Lemma 19 If #k > 7andImp 2 SLy(k) thenH(Gg/N, Ad®p) is trivial.

Proof: Let B" be the Borel subgroup of upper triangular matricesnip.
Since[Imp : B'] is easily seen to be prime tp it suffices to show
HY(B', M% = 0 whereM? is the set of two by two trace zero matrices
overk. But as aB' module M° has a 3 step filtration. By computing the
cohomology of the various one dimensional subquotients the result follows.
See Lemma 2 of [FI]. Note that during this argument the fact thgitcon-
tains diagonal elements the ratio of whose eigenvalues tshtused. This

is why we require ¥ > 7. Alternatively, ifk = Fs andIimp = GL,(Fs)

the same methods can be used to skbWG L,(Fs), Ad°p) = 0.

Lemma 20 [NN¢ : N] is prime top.

Proof: Note thatNNY/N¢ ~ N/(N N N9). Recall thatN = Gal(Qs/
Q(Ad®p)) and thatNY © Gal(Qs/K). SoN N N4 D Gal(Qs/K). Thus
N/(N N N9 is isomorphic to a subquotient &al(K /Q(Ad°p)) which is
in turn isomorphic taGal(Q(wp)/D) which has order prime tg.

Lemma 21 If p>5andimp 2 SLy(k) thenH(Gg/NY, (Ad°p)*) = 0.

Proof: We apply the inflation-restriction sequencedg/N¢ and its normal

subgroupNN¢ /N9, The quotient isGs/NN? and sinceNY fixes (Ad°p)*
d d

we see(Ad%p)*" /N = (Ad®p)*". We get the exact sequence

0— HY(Gs/NN?, (Ad)™") — HY(Gs/N?, (Adp)")
d
— HL(NNY/N, Adp) ™™
where the last term is trivial @4N?/N has order prime t@ by Lemma 20.
As N acts trivially on Ad°p we see the action dil on (Ad°p)* is x |n.,

which is nontrivial by Lemma 18. s(c(AdOp)*)N = 0. Thus the left term in
the sequence is trivial sd*(Gs/N¢, (Ad°p)*) = 0.

Theorem 2 Let p > 7. Assume the image pf: Gs — GL,(k) contains
SLy(k). Also assume if € Sandl # pthatl # +1 mod p, thatk(p) #
p — 1or 2p, and thatk(p) # 2 mod p + 1. Letr = dim¢H?(Gs, Ad°p).
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Then there is a set of primé3 = {qi, O, .., ¢} disjoint from Sand a rep-
resentationp : Ggyo — GL2(W(K)) such thato = p modp.

Proof: RecallN andN¢ are the kernels of the actions 6% on Ad°s and
(Ad°p)* respectively. By Lemmas 19 and 21 we ha&Gs/N, Ad°p) and
H1(Gs/NY, (Adp)*) are trivial. The hypotheses on the ramified primes
and the weighk(p) imply, by the results of Sections 4 and 5, thét(G,,
Ad°p) = Ofor allv € S. Sincep is odd we easily seBl?(G,,, Ad°p) = 0.
By Lemma 17 we seg is absolutely irreducible andd®p is an absolutely
irreduciblek[Gg] module.
By Theorem litremainsto firaxb € Gal(Q(Ad°p)/D) xGal(Q(up)/
D) ~ Gal(K/D) C Gal(K/Q) such that corresponds to an element in the
(projective) image op whose eigenvalues have ratie Fj, t # +1, and
b e Gal(Q(up)/Q) — (Z/p)* maps to the element as in Theorem 1.
Since p > 7 there is anx € F} such thatx®* # +1 in Fj. As
Gal(Q(up)/Q) = Fp we consider the elemert in Gal(Q(up)/Q). Since

x? is a 2nd power andD : Q] = 1 or 2 by Lemma 18 we se¥’ €
Gal(Q(up)/D).
Recall that by the proof of Lemma 18 th&@al(Q(p)/D) 2 SLy(k).

We have that<é xgl) e Gal(Q(p)/D). We consider the projection

of this element, in Gal(Q(Ad°p)/D), i.e. its image in the projective
representation associated o Finally, we takea x b to be X x x? €
Gal(Q(Ad®p)/D) x Gal(Q(up)/D) =~ Gal(K /D) < Gal(K/Q). Theorem
1 now applies.

8. Examples

We give an even and odd example that illustrate the theorems.

Consider the polynomigl(x) = x” — 22x8 + 141x> — 204x* — 428x3 +
768x? 4 320k — 512 of [ZM]. The splitting field ofj(x) is a totally real field
with Galois group ovefQ isomorphic toPSL;(F;). We abuse notation for
a moment and call this splitting field(Ad°p). Zeh-Marschke has shown
that there is a quadratic extension (which we €xp)) of Q(Ad°p) Galois
overQ with Gal(Q(p)/Q) ~ SLy(F7). This extension gives our evenThe
discriminant ofj(x) is 2°19*3672. As mentioned in the introduction prior
to the statement of Theorem 1, we may assume these are the only ramified
primes inQ(p)/Q. These primes are not congruentitd mod 7 andp is
unramified afp = 7 so by Serre’s definition of weight we skg) = p=7.
The hypotheses of Theorem 2 are satisfied. Thus there is a finite set of
primesQ and a deformatiow of p with p : Gg,o — SLx(Z7). That this
representation is surjective follows from [Se3], Chaptér Lemma 3.

In Section 5 of [Sel] Serre has given an absolutely irreducible odd
representatiop : Go — GL2(Fag). The image of Galois ifPG La(Fag) is
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PSLy(F7) and is the splitting field of the polynomi&il(x) = x” — 7x + 3.
(The polynomial is due to Trinks). Note= F49 andk = F;. The splitting
field of h(x) is complex and is ouQ(Ad°p). As h(x) has discriminant %7®
we seeQ(Ad°p)/Q is ramified only at 3,7 ando, and we may assume
Q(p)/Q is ramified only at 3,7 ando. Since 3 is not congruent téx1
mod 7 we haveH?(G3, Ad°p) = 0. Serre has shown that a twist pfis
weight 3 so by Proposition 3 we haw#?(G;, Ad°p) = 0.

We see thaH(Gs/N, Ad’p) = HL(PSLy(F,), Ad 5). This last co-
homology group is trivial (essentially) by Lemma 19 $#'(Gs/N,
A':ao,b) =0. Similarly, H1(Gs/N¢, (Avdo,b)*) =0 essentially by Lemma 21.

As Q(Ad°p)/Q is an extension with Galois group the simple group
PSLy(F7) we seeQ(Ad°s) N Q(up) = Q so in this exampl® = Q.

Q(p)

Q(Ap)

\Q(M)
NS

Q

Serre has shownmp > SLy(F7) so <(2) 1?2> € Imp. Let a be
the projection of this element iGal(Q(Ad°5)/Q). Considera x b =

<c2) 1?2) x 4 € Gal(Q(Ad°p)/Q) x Gal(Q(u7)/Q) ~ Gal(K /Q). This

element satisfies the last hypothesis of Theorem 1 and we deforms to
W(F,49) after allowing ramification at an additional finite set of primes.
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