[was@modular rabi]$ [was@modular rabi]$ Magma V2.7-3 Fri Nov 24 2000 17:51:25 on modular [Seed = 355590042] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R ellap idxG0 CS MS S factormod modcharpoly DC ND Tn factorpadic padiccharpoly ES NS Z fcp qexp F Q charpoly fn x > E:=EC("65A"); > E > ; Elliptic Curve defined by y^2 + x*y = x^3 - x over Rational Field > W:=WeierstrassForm(E); >> W:=WeierstrassForm(E); ^ User error: Identifier 'WeierstrassForm' has not been declared or assigned > W:=Weierstrass(E); > W; [ -1323, 3942 ] > W:=EllipticCurve([ -1323, 3942 ]); > W; [ -1323, 3942 ] > W:=EllipticCurve([ -1323, 3942 ]); > W; Elliptic Curve defined by y^2 = x^3 - 1323*x + 3942 over Rational Field > EW; >> EW; ^ User error: Identifier 'EW' has not been declared or assigned > E; Elliptic Curve defined by y^2 + x*y = x^3 - x over Rational Field > > > > > > > > > > > > > > > > > E; Elliptic Curve defined by y^2 + x*y = x^3 - x over Rational Field > G,f := MordellWeilGroup(E); > f(G.2); (-1 : 1 : 1) > Type($1); CrvEllPt > K:=FractionField(PolynomialRing(Rationals())); >> K:=FractionField(PolynomialRing(Rationals())); ^ User error: Identifier 'FractionField' has not been declared or assigned > K:=FieldOfFractions(PolynomialRing(Rationals())); > K; Rational function field of rank 1 over Rational Field Variables: x > Type(K); FldFunRat > P:=f(G.2); > P; (-1 : 1 : 1) > P[1]; -1 > 2*P; (4 : -10 : 1) > Attach("rabi-11-24-00.m"); > G; Abelian Group isomorphic to Z/2 + Z Defined on 2 generators Relations: 2*G.1 = 0 > h := RabiFunction(E, f(G.2)); > h; (x^2 + 34/25*x + 9/25)/(x^2 - 8*x + 16) > f(G.1); (0 : 0 : 1) > Evaluate(h,0); 9/400 > factor($1); [ <3, 2>, <2, -4>, <5, -2> ] > h := RabiFunction(E, f(G.2)); > RabiFunction; Intrinsic 'RabiFunction' Signatures: ( E, P) -> FldFunRat The rational function (x - x(P))*(x-x(3*P))/(x-x(2*P))^2. > Order(f(G.2)); 0 > h := RabiFunction(E, f(G.2)); > h; (x^2 + 34/25*x + 9/25)/(x^2 - 8*x + 16) > P:=f(G.2); > P; (-1 : 1 : 1) > 3*P; (-9/25 : 96/125 : 1) > Type(P); CrvEllPt > F:=FunctionField(E); > F; Algebraic function field defined over Rational Field by $.1^2 + x*$.1 - x^3 + x > R:=PolynomialRing(Q); > F:=FunctionField(E); > F; Algebraic function field defined over Rational Field by $.1^2 + x*$.1 - x^3 + x > G; Abelian Group isomorphic to Z/2 + Z Defined on 2 generators Relations: 2*G.1 = 0 > f(G.1); (0 : 0 : 1) > f(G.2); (-1 : 1 : 1) > h; (x^2 + 34/25*x + 9/25)/(x^2 - 8*x + 16) > P; (-1 : 1 : 1) > 2*P; (4 : -10 : 1) > 3*P; (-9/25 : 96/125 : 1) > G; Abelian Group isomorphic to Z/2 + Z Defined on 2 generators Relations: 2*G.1 = 0 > h:=RabiFunction(E,P); > h; (x^2 + 34/25*x + 9/25)/(x^2 - 8*x + 16) > Evaluate(h,0); 9/400 > Evaluate(RabiFunction(E,2*P),0); 130662006784/45120132225 > factor($1); [ <2, 20>, <353, 2>, <3, -2>, <5, -2>, <7, -4>, <17, -4> ] > Evaluate(RabiFunction(E,3*P),0); 37988629075871938150281/119283737148688367507344 > factor(Evaluate(RabiFunction(E,3*P),0)); [ <3, 10>, <7, 8>, <173, 2>, <1931, 2>, <2, -4>, <353, -4>, <692917, -2> ] > factor(Evaluate(RabiFunction(E,4*P),0)); [ <2, 4>, <17, 8>, <41, 2>, <191, 4>, <775152793, 2>, <3, -2>, <5, -2>, <7, -4>, <67, -2>, <353, -2>, <577, -2>, <149057, -4> ] > factor(Evaluate(RabiFunction(E,5*P),0)); [ <3, 2>, <11, 8>, <23, 2>, <37, 4>, <61, 2>, <101, 2>, <643, 4>, <997, 2>, <141488069, 2>, <2, -4>, <5, -4>, <73, -4>, <3517, -2>, <966937, -4>, <226761978977, -2> ] > Q:=P;factor(Q[1]*(3*Q[1])); > Q:=P;factor(Q[1]*(3*Q[1])); [ <3, 1> ] > Q:=P;factor(Q[1]*((3*Q)[1])); [ <3, 2>, <5, -2> ] > Q:=7*P;factor(Q[1]*((3*Q)[1])); [ <3, 2>, <29, 4>, <31, 2>, <131, 4>, <757, 2>, <4523, 2>, <24371, 2>, <32579, 2>, <808455370189231, 2>, <5, -2>, <13, -4>, <457, -2>, <733, -4>, <2857, -2>, <55544655533, -2>, <216284387469461, -2> ] > Q:=6*P;factor(Q[1]*((3*Q)[1])); [ <2, 4>, <353, 4>, <16210522753, 2>, <19729076361697, 2>, <3, -6>, <5, -4>, <7, -8>, <167, -2>, <173, -2>, <1931, -2>, <692917, -2>, <2312150887, -2> ] > Q:=P;factor(Q[1]*((3*Q)[1])); [ <3, 2>, <5, -2> ] > P; (-1 : 1 : 1) > 3*P; (-9/25 : 96/125 : 1) > Z:=FieldOfFractions(PolynomialRing(Rationals(),2)); > F:=FunctionField(E); > P:=[x,y,1]; > P:=E!P; >> P:=E!P; ^ Runtime error in '!': Cannot coerce element into ring > P; [ x, y, 1 ] > E![x,y]; >> E![x,y]; ^ Runtime error in '!': Cannot coerce element into ring > Type(x); RngUPolElt > Type(y); FldFunElt > E![Parent(y)|x,y]; >> E![Parent(y)|x,y]; ^ Runtime error in '!': Cannot coerce element into ring > E; Elliptic Curve defined by y^2 + x*y = x^3 - x over Rational Field > y^2 + x*y - (x^3 - x); 0 > F:=BaseExtend(E,Parent(y)); > generic:=E![Parent(y)|x,y]; >> generic:=E![Parent(y)|x,y]; ^ Runtime error in '!': Cannot coerce element into ring > generic:=F![Parent(y)|x,y]; > generic; (x : y : 1) > 3*generic; ((1/9*x^9 + 4/3*x^7 + 2/9*x^6 + 10/3*x^5 + 4/3*x^4 - 35/9*x^3 - 2/3*x^2 + x)/(x^8 + 2/3*x^7 - 35/9*x^6 - 4/3*x^5 + 10/3*x^4 - 2/9*x^3 + 4/3*x^2 + 1/9) : (1/27*x^12 + 1/27*x^11 - 22/27*x^10 - 55/9*x^8 - 22/9*x^7 + 79/27*x^6 + 67/27*x^5 - 175/27*x^4 - 55/27*x^3 + 89/27*x^2 + 4/27*x - 1/9)/(x^12 + x^11 - 17/3*x^10 - 107/27*x^9 + 31/3*x^8 + 10/3*x^7 - 37/9*x^6 + 4/3*x^5 - 11/3*x^4 + 1/9*x^3 - 2/3*x^2 - 1/27)*y + (-1/27*x^13 - 26/27*x^11 - 1/3*x^10 - 92/27*x^9 - 20/9*x^8 + 182/27*x^7 + 97/27*x^6 - 188/27*x^5 - 44/27*x^4 + 2*x^3 - 1/27*x^2 + 1/9*x)/(x^12 + x^11 - 17/3*x^10 - 107/27*x^9 + 31/3*x^8 + 10/3*x^7 - 37/9*x^6 + 4/3*x^5 - 11/3*x^4 + 1/9*x^3 - 2/3*x^2 - 1/27) : 1) > x_coord:=$1[1]; x_coord:=$1[1]; > x_coord; (1/9*x^9 + 4/3*x^7 + 2/9*x^6 + 10/3*x^5 + 4/3*x^4 - 35/9*x^3 - 2/3*x^2 + x)/(x^8 + 2/3*x^7 - 35/9*x^6 - 4/3*x^5 + 10/3*x^4 - 2/9*x^3 + 4/3*x^2 + 1/9) > factor(x_coord); >> factor(x_coord); ^ Runtime error in 'factor': Bad argument types Argument types given: FldFunElt > Factorization(Numerator(x_coord)); >> factor(Numerator(x_coord)); ^ Runtime error in 'Numerator': Bad argument types Argument types given: FldFunElt > Factorization(Numerator(x_coord)); >> Factorization(Numerator(x_coord)); ^ Runtime error in 'Numerator': Bad argument types Argument types given: FldFunElt > Factorization(PolynomialRing(Rationals())!Numerator(x_coord)); >> Factorization(PolynomialRing(Rationals())!Numerator(x_coord)); ^ Runtime error in 'Numerator': Bad argument types Argument types given: FldFunElt > x_coord; (1/9*x^9 + 4/3*x^7 + 2/9*x^6 + 10/3*x^5 + 4/3*x^4 - 35/9*x^3 - 2/3*x^2 + x)/(x^8 + 2/3*x^7 - 35/9*x^6 - 4/3*x^5 + 10/3*x^4 - 2/9*x^3 + 4/3*x^2 + 1/9) > factor(1/9*x^9 + 4/3*x^7 + 2/9*x^6 + 10/3*x^5 + 4/3*x^4 - 35/9*x^3 - 2/3*x^2 + x); [ , ] 1/9 > factor(x^8 + 2/3*x^7 - 35/9*x^6 - 4/3*x^5 + 10/3*x^4 - 2/9*x^3 + 4/3*x^2 + 1/9); [ ] 1 > P; [ x, y, 1 ] > f(G.2); (-1 : 1 : 1) > f(G.1); (0 : 0 : 1) > factor(Evaluate(RabiFunction(E,2*P),0)); >> factor(Evaluate(RabiFunction(E,2*P),0)); ^ Runtime error in '*': Bad argument types Argument types given: RngIntElt, SeqEnum[FldFunElt] > P:=f(G.2); > P; (-1 : 1 : 1) > Evaluate(RabiFunction(E,2*P),0); [ <2, 20>, <353, 2>, <3, -2>, <5, -2>, <7, -4>, <17, -4> ] > Evaluate(RabiFunction(E,2*P),0); 130662006784/45120132225 > > > > > > > > > > > > > //////////////////////////////// > > > E:=EC("82A"); > G,f:=MordellWeilGroup(E); > G; Abelian Group isomorphic to Z/2 + Z Defined on 2 generators Relations: 2*G.1 = 0 > Evaluate(RabiFunction(E,f(G.2)),f(G.1)[1]); 9/4 > T:=f(G.1); > P:=f(G.2); > T; (1 : -1 : 1) > P; (0 : 0 : 1) > E; Elliptic Curve defined by y^2 + x*y + y = x^3 - 2*x over Rational Field > Evaluate(RabiFunction(E,2*f(G.2)),f(G.1)[1]); 1500625/576 > factor($1); [ <5, 4>, <7, 4>, <2, -6>, <3, -2> ] > Evaluate(RabiFunction(E,2*f(G.2)),2*f(G.1)[1]); 0 > f(2*G.1); (0 : 1 : 0) > Evaluate(RabiFunction(E,2*f(G.2)),f(G.1)[1]/f(G.1)[3]); 1500625/576 > factor($1); [ <5, 4>, <7, 4>, <2, -6>, <3, -2> ] > > > > > > > // RANK 2 > > E:=EC("1088J1"); > G,f:=MordellWeilGroup(E); > G; Abelian Group isomorphic to Z/2 + Z + Z Defined on 3 generators Relations: 2*G.1 = 0 > P1:=f(G.2); > P2:=f(G.3); > T:=f(G.1); > T; (3 : 0 : 1) > P1; (-1 : 8 : 1) > P2; (-6 : 3 : 1) > Evaluate(RabiFunction(E,P1),T[1]/T[3]); 20736/289 > factor(20736/289); [ <2, 8>, <3, 4>, <17, -2> ] > Evaluate(RabiFunction(E,P2),T[1]/T[3]); 3017043937296/907505804276569 > factor(3017043937296/907505804276569); [ <2, 4>, <3, 10>, <1787, 2>, <73, -4>, <5653, -2> ] > E; Elliptic Curve defined by y^2 = x^3 + x^2 - 25*x + 39 over Rational Field > factor(1088); [ <2, 6>, <17, 1> ] 1 >