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1. Introduction

Let F(z) :=Y .2 a(n)q" € Su(M, 1) (g := €™ as usual) be a new-
form of weight 2k with trivial Nebentypus character y,, and let
L(F,s) =Y~ ,a(n)n™* be its L-function. If D # 0 is a fundamental
discriminant, then let y, denote the Kronecker character for the field
Q(v/D). The D-quadratic twist of F, denoted Fp, is the newform
corresponding to the twist of F by the character y,. If (D,M) =1,
then Fp(z) := Y, xp(n)a(n)q". The central critical values L(Fp, k)
have been the subject of much study, both because of their intrinsic
interest and because of the prominent role they have played in
Kolyvagin’s work on the Birch and Swinnerton-Dyer Conjecture (see
[B-F-H], [1], [J], [Ko], [Ma-M], [M-M1], [O-S], [P-P)).

Waldspurger proved a fundamental theorem [Théoréeme 1, W1]
relating these central critical values to the Fourier coefficients of half-
integral weight cusp forms. For notational convenience, if D is a
fundamental discriminant of a quadratic number field, then define D,
by

_[|D] if D is odd,
(1) Do = { |D|/4 if D is even .
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Waldspurger’s theorem then guarantees the existence of a
0(F) € {£1}, an integer N, and a non-zero eigenform 0 # g(z)
=021 b(n)q" € S, 1(N) of half-integral weight k + 5 such that 4M |N
and for each fundamental discriminant D for which 6(F)D > 0,

—L
(2a) b(Dy)* = {eD”LQ)D“z if (Do, N) =1,
0 otherwise ,

where Q is some non-zero complex period of F and ¢p is an algebraic
number. Moreover,

the b(Dy)’s are algebraic integers in some finite extension of @ .
(2b)

(For a proof that the existence of such a ¢ is a consequence of
Waldspurger’s work see the beginning of §2 below.) This result is at
the heart of this paper’s study of the values L(Fp, k).

There have been numerous papers focusing on the non-vanishing
of L(Fp, k). The works of Bump, Friedberg, Hoffstein [B-F-H], [F-H],
Luo [H-L], M.R. Murty and V. K. Murty [M-M2], Mai [Ma-M], Ono
[O1] and Waldspurger [W1] [W2], among others, guarantee the ex-
istence of infinitely many fundamental discriminants D for which
L(Fp, k) # 0. In this note we too focus on questions pertaining to the
non-vanishing of the values L(Fp, k).

Definition. Let P be the set of fundamental discriminants. If
n=A{p1,p2,...,p:} is an arbitrary finite set of distinct primes, and if
e=(e1,e,...5) € {£1}, then define sets of fundamental discrimi-
nants P(r), P(¢,n), and P(e,m,r) by

P(r) :={D € P | D square-free with exactly r prime factors},
P(e,n) :={D € P | D square-free, yp(p:;) = & for each i},
P(e,m,r) :={D € P(¢e,n) | D has exactly r prime factors} .

If F € S% (M, y,) is a newform, then for any P(e, w,r) we consider the
following question.

Question. How many 0 < |D| < X in P(e,n,r) have the property that
L(Fp,k) #0 7

This question for » =1 (i.e., prime twists of F) has been asked by H.
Iwaniec.
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Hoffstein and Luo [H-L] have proved that there are infinitely
many D in Ule P(e,m,r) for which L(Fp,k) # 0. Inspired by some
ideas in [O2], we prove a fundamental lemma that implies that under
a certain (mild) condition a positive proportion of D € P(¢g, m,r) have
the property that L(Fp,k) # 0. We expect that this condition holds
for P(e,m, 1) for every newform F of even weight and trivial Ne-
bentypus character. In other words, we expect that our methods al-
ways prove that there are infinitely many nonvanishing prime twists.
For evidence supporting this, see Corollary 2 below and the example
involving Ramanujan’s Delta function.

Goldfeld conjectured that a positive proportion of 0 < [D| < X
have the property that L(Fp, k) # 0 (cf. [G] and [K-S]). This has only
been proved for very exceptional F' by James [Ja], Kohnen [K2], and
Vatsal [V]. Apart from these forms, the best result to date is due to
Perelli and Pomykala [P-P] who show that the number of 0 < |[D| < X
for which L(Fp, k) # 0 is > X'~¢. Our fundamental lemma combined
with a result of Friedberg and Hoffstein implies the stronger result
that the number of 0 < |D| < X for which L(Fp, k) # 01is > X /logX.

For modular elliptic curves, these results shed light on the distri-
bution of quadratic twists having rank zero. Recall that if £/Q is an
elliptic curve given by

E:y2 =x'4+Ax+B ,
then E(D), its D-quadratic twist, is the curve given by
E(D):y* =x’ + AD’x + BD® .

Although it is widely believed that a positive proportion of twists
E(D) have rank zero, this is only known for special curves. Heath-
Brown [HB] and Wong [Wo] obtain such results under special
circumstances. When r =1, the above Question is connected to
the following conjecture which was brought to our attention by
J. Silverman.

Conjecture. If E/Q is an elliptic curve, then there are infinitely many
primes p for which either E(p) or E(—p) has rank zero.

Our results follow from the following lemma.

Fundamental Lemma. Let g(z) = ) %, b(n)q" € S, .1(N) be an eigen-
form for which i

(1) b(m) # 0 for at least one square-free m > 1 coprime to 4N,

(1) the coefficients b(n) are algebraic integers contained in a number
field K,
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and let 6 € {£1}. Let v be a place of K over 2, and for each s let
B, := {om/m > 1 square-free, (m,4N) = 1,and ord,(b(m)) =s} .
Let sy be the smallest integer for which By, # 0. If Bs, N P(r) # 0, then
X r—1
< T —— .
#{me B, NP(r)/Im| <X} > log X (loglog X)

Using this lemma we obtain the following results, valid for arbitrary
P(e,n) and P(e,m,r).

Corollary 1. Suppose F € Sy (M,y,) is a newform. Let ¢(z):=
> b(n)qg" € Sk+%(N) be an eigenform satisfying (2a,b). Let K be the
extension of Q generated by the b(n)’s, and v a place of K over 2. Define
Uup by

uo := min{u/ord,(b(|D|) = u for some D € P(e) coprime to 4N,
o(F)D > 0} .

If there exists a Dy € P(g,m,r) coprime to 4N, 6(F)D; > 0, for which
ord,(b(|D1])) = ug, then a positive proportion of the D € P(e, m,r)
satisfy L(Fp,k) # 0.

Corollary 2. If E/Q is an elliptic curve with conductor < 100, then
either E(—p) or E(p) has rank zero for a positive proportion of primes

p-

Corollary 3. If F € Sy (M, y,) is a newform, then the number of
0 < |D| <X in P(¢e,m) for which L(Fp,k) # 0 is > X /logX. In par-
ticular, if E/Q is a modular elliptic curve, then the number of
0 < |D| < X for which E(D) has rank zero is > X /log X.

2. Proofs

For each positive integer £, let S, il (N) be the space of cusp forms of
half-integral weight k + 3 on I'j(4N), and let S¢(M) (resp. Si(M, x))
be the space of cusp forms of weight k on I'j(M) (resp. I'o(M) with
trivial Nebentypus character y).

Proof of (2a,b). While Waldspurger’s theorem is quite general, two
technical hypotheses, H1 and H2 in the notation of [W1], intervene in
an attempt to apply it to an arbitrary form F. However, there is a
twist Fy, of F, satisfying these hypotheses. One can construct such a
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character  as follows. Choose i to be a product of an even character
of conductor a large power of 2 and odd characters of conductor
either ¢ or £2 for each prime ¢ for which &(F) = —1 (¢ can equal 2).
Here, ¢/(F) is the local root number at £. That F, satisfies Hypothesis
HI1 is a consequence of the characterization of local root numbers.
The large power of 2 dividing the conductor of / ensures that F,
satisfies Hypothesis H2. A similar construction is carried out in more
detail in [Section 6, J]. Now put

1Y (— _Ju(E) ify(-1) =-1,
O(F) = (=) (=1) and z= {lﬁ( ) otherwise ,
and apply [Théoréme 1, W1] to the form F./, and character y (which is
even by construction and satisfies y2 = y%). The existence of an N and
g satisfying (2a) can be seen by inspecting the explicit formulae given
in [W1] for the functions c,(n) (notation as in [I, 4, W1]). Moreover,
N can be chosen so that it is divisible by the conductor cond(y) of y.
This is just a straight-forward case-by-case analysis. The ¢p’s can
be taken to be the root numbers W(y 'y*,xp) if 6(F)=1 or
W (x4 yp) if 6(F) = —1. By the theory of modular symbols (cf.
[M-T-T] and [;l“l}eorem 3.5.4, G-S)) there is a complex period Q such
that L(Fp, k)D, */€ is in the ring of integers of some finite extension
of @ for any discriminant D for which 6(F)D > 0 and (4M,Dy) = 1.
It is a simple consequence of the definition of the root numbers &p
and the assumption that (Dy, N) = 1 that cond(y )281) is an algebraic
integer lying in a fixed, finite extension of Q. Property (2b) follows
from combmlng these two observations with (2a) (take
Q = Qcond(y)~ ) Note that we are not making a precise claim about
the nature of N. To do so would require much more care than is
needed for either statements (2a,b) or the applications in this paper.
Q.E.D.

By the theory of newforms, every F € Sy(M) can be uniquely
expressed as a linear combination

= Z o Ai(z) + Z B;B;(6;z)
i=1 J=1

where 4;(z) and B;(z) are newforms of weight £ and level a divisor of
M, and where each 6, is a non-trivial divisor of M. Let

Fro%(z Zocl i(z) and F°N(z) ZﬂB 5,2)

be, respectively, the new part of F and the old part of F.
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If F(z) =Y " a(n)q" € S(M) is a newform, then the a(n)’s are
algebraic integers and generate a finite extension of @, say Kg. If K is
any finite extension of @ containing Kz, and if ¢/, is the completion of
the ring of integers of K at any finite place v with residue charac-
teristic, say ¢, then by the work of Shimura, Deligne, and Serre ([Sh],
[D], [D-S]) there is a (not necessarily unique) continuous represen-
tation

pr, + Gal(Q/Q) — GLy(Cy)

for which

(R1)  pg, is unramified at all primes ptM{ .
(R2) trace pp,(frob,) = a(p) for all primes ptM¢ .

Here frob, denotes any Frobenius element for the prime p.

Proof of Lemma. Let sy be the smallest integer such that By, # ), and
let mp > 1 be some square-free integer coprime to 4N for which
ord,(b(my)) = so. It is clear that by taking combinations of quadratic
twists (and possibly twists of twists) one can find a cusp form
g'(z) =32, b'(n)g" of weight k + 1 and level N’ coprime to mq for
which b'(mg) = b(my) and, for any square-free integer m, b'(m) = 0 if
(m,4N") # 1 or m = 1, and otherwise b'(m) is either b(m) or 0. Since g
is an eigenform, it follows that

(3) ord,(b'(n)) > so
for all n. Let G(z) := 32 e(n)q" := ¢'(2) - (1 +235 ‘1"2>’ S0

(4) cmy=bmm+2 > bmd).

mx2+y2=n,y>0

m square-free

Then G is a cusp form of integer weight £ + 1 on I';(4N’). Write
G = G™ + G°. Since ord,(b'(mg)) = so, it follows from (3) and (4)
that ¢(mg) # 0. Since my is coprime to the level of G, it must be that
G"™V is not identically zero. Write

h

GV — Za[ﬁ(z)7 o 7& 0 ,

i=1

where each fi(z) := Y-, a;(n)q" is a newform of level dividing 4N'. If
(n,2N") = 1, then
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h
(5) c(n) =Y wai(n) .
i=1

Let L be a finite extension of Q@ containing K, the Fourier coefficients
of each f;, and the o;’s. Let w be a place of L over v, let e be the
ramification index of w over v, let (/,, be the completion of the ring of
integers of L at the place w, and let A be a uniformizer for O,,. Let

(6) E= lngllagyz lord,,(4a;)| ,

and let pg , : Gal(Q/Q) — GLy(0,,) be a representation as in the
preceding discussion. Finally, let ¢ : Gal(Q/@Q) — ¢ be the cyclo-
tomic character giving the action of Gal(Q/®) on all 2"th power
roots of unity. Consider the representation

h
p =e@ps,, mod Tt
=1

1

Write
my=pi...p, p;aprime

By the Chebotarev Density Theorem, for each j there are > X /log X
primes g less than X for which p(frob,) = p(frob,,). By (R2), for such
a prime, a;(q) = a;(p;)mod £t for all i. Also, g = &(frob,) =
e(frob, ) = p; mod 4. It follows from these observations and the
multiplicativity of the Fourier coefficients of newforms that there
are > 1o§x (loglog X)) square-free integers om = dq, - - - ¢, € P(r),
m < X, such that

(m,4N") =1 and a;(m) = a;,(my) mod JFTeot!

For any such m, it follows from (5) and (6) that c(m) =
¢(my) mod Je0tl By our choice of s, ord,,(c(mg)) = esp, sO
ord,,(c(m)) = esy. It follows from (3) and (4) that ord,,(b'(m)) = eso
(equivalently, ord,(d'(m)) =s¢), whence ord,(b(m)) =so. In other
words, om € By,. This proves the lemma.

Q.E.D.

Proof of Corollary 1. By taking combinations of quadratic twists of
g (and possibly twists of twists), one obtains an eigenform g*(z) :=
>0 b*(n) of level coprime to D; whose coefficients are supported on
integers m > 1 such that ys,(p;) =& for each i and for which
b*(|Dy1|) = b(|Dy|) # 0. Furthermore, b*(m) is either b(m) or 0. The
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corollary now follows from the Fundamental Lemma applied to the
eigenform ¢g*(z) with 6 = 6(F) (note: so = uy).
Q.E.D.

Proof of Corollary 2. This result is an application of the previous
corollary with » = 1 and = = () and of the work of Kolyvagin [Ko].
For each isogeny class of elliptic curves over @), Basmaji [B] com-
puted a basis from which a relevant eigenform g(z) =3 7, b(n)q"
can be constructed. The rest of the proof involves checking the
condition of Corollary 1.

Q.E.D.

Proof of Corollary 3. Let g(z) := Y, b(n)q" be an eigenform satis-
fying (2a,b). By [Theorem B(i), F-H], there is a D’ € P(e, ) coprime
to 4N for which b(]D'|) # 0. One now proceeds as in the proof of
Corollary 1, with D' playing the role of D;. The application to
modular elliptic curves follows from the work of Kolyvagin [Ko].

Q.E.D.

Remark 1. The theorem of Friedberg and Hoffstein was a critical
ingredient in the proof of Corollary 3. However, the proof does not
require the existence of infinitely many non-vanishing critical values,
only a single suitable non-zero value.

Remark 2. The fundamental lemma is a result about the coefficients of
an eigenform ¢(z) of half-integral weight. However, the result can be
applied in a slightly different setting. Let M be an odd square-free
integer, and let F(z) € Sy (M, yy) be a newform. Kohnen and Zagier
[K1], [K-Z] have constructed an explicit cusp form g¢(z)=
S b(n)q" € Sk+%(M) for which b(n) = 0 unless (—1)*z = 0,1 (mod
4) and for which

™ (F,F)
(k—1!{g.9)

for any fundamental discriminant D for which (—1)*D >0 and
1p(f) = wy, the eigenvalue of the Atkin-Lehner involution at ¢, for
each prime ¢ dividing M. This ¢(z) is an eigenform for operators
similar to the classical Hecke operators. The conclusion and proof of
the fundamental lemma applies to these forms as well.

(7) L(Fp, k) =27 |Dp (DI

Example. Let A(z) :=3 ", 1(n)q" € S12(1) be Ramanujan’s delta
function, and let g(z) = >~ b(n)q" € Su(1, %) be the eigenform
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given in [K-Z] satisfying (7). It turns out that g(z) =) 2 g1’
(mod 8), but modulo 16 it is

g(z) = q+8¢* +8¢° +9¢° + 84" +--- (mod 16).

By the analog of Corollary 1 (see Remark 2), we find that uy = 4 since
b(5) =0 (mod 8) but 5(5) # 0 (mod 16). Since 5 € P(1), there is a
positive proportion of primes p for which L(A,,6) # 0. In fact, Ko-
hnen and Zagier [Corollary 2, K-Z] first noticed that if p = 5 (mod 8)
is prime, then L(A,, 6) # 0.

Acknowledgements. We thank the referee for pointing out a mistake in our
application of Waldspurger’s theorem in an earlier version of this paper.
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