[was@modular verify_visible]$ [was@modular verify_visible]$ Magma V2.7-3 Tue Oct 31 2000 20:16:10 on modular [Seed = 2673461278] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R ellap idxG0 CS MS S factormod modcharpoly DC ND Tn factorpadic padiccharpoly ES NS Z fcp qexp F Q charpoly fn x > load "verify.m"; Loading "verify.m" > a:=<1,<1,3>>; > a:=$1; >> a:=$1; ^ Runtime error: Previous value number (1) should be in the range [1 .. 0] > a:=<1,<1,3>>; > a; <1, <1, 3>> > a[1] > ; 1 > a[2]; <1, 3> > a:=[<1>, <2,3>]; >> a:=[<1>, <2,3>]; ^ Runtime error in [ ... ]: Could not find a valid universe > a:=[* <1>, <2,3> *]; > a; [* <1>, <2, 3> *] > EllipticCurve; Intrinsic 'EllipticCurve' Signatures: ( S) -> CrvEll The elliptic curve defined by the coefficients of S. S must be of length 2 or 5 ( j) -> CrvEll Creates an elliptic curve with j-invariant j ( D, N, I, J) -> CrvEll The J-th elliptic curve in the I-th isogeny class of conductor N found in the elliptic curve database D ( R, j) -> CrvEll Returns an elliptic curve over R with j-invariant j ( D, S) -> SeqEnum An elliptic curve with label S (e.g. "101A" or "101A1") in the elliptic curve database D. ( D, N, S, J) -> SeqEnum The J-th elliptic curve of conductor N and label S (e.g. "A") in the elliptic curve database D. ( C) -> CrvEll, Map, Map The elliptic curve E specified by the genus one hyperelliptic curve C of odd degree, followed by the morphism C -> E and its inverse. ( C, P) -> CrvEll, Map, Map The elliptic curve E specified by the genus one curve C and the point P, followed by the birational map C -> E, and the morphism E -> C. ( M) -> SeqEnum [ StartPrec, Database ] An elliptic curve over the rational numbers that lies in the isogeny class of elliptic curves associated to M. > SetColumns(65); > EllipticCurve; Intrinsic 'EllipticCurve' Signatures: ( S) -> CrvEll The elliptic curve defined by the coefficients of S. S must be of length 2 or 5 ( j) -> CrvEll Creates an elliptic curve with j-invariant j ( D, N, I, J) -> CrvEll The J-th elliptic curve in the I-th isogeny class of conductor N found in the elliptic curve database D ( R, j) -> CrvEll Returns an elliptic curve over R with j-invariant j ( D, S) -> SeqEnum An elliptic curve with label S (e.g. "101A" or "101A1") in the elliptic curve database D. ( D, N, S, J) -> SeqEnum The J-th elliptic curve of conductor N and label S (e.g. "A") in the elliptic curve database D. ( C) -> CrvEll, Map, Map The elliptic curve E specified by the genus one hyperelliptic curve C of odd degree, followed by the morphism C -> E and its inverse. ( C, P) -> CrvEll, Map, Map The elliptic curve E specified by the genus one curve C and the point P, followed by the birational map C -> E, and the morphism E -> C. ( M) -> SeqEnum [ StartPrec, Database ] An elliptic curve over the rational numbers that lies in the isogeny class of elliptic curves associated to M. > load "verify.m"; Loading "verify.m" > E(visdat[1][2]); Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 1154*x - 15345 over Rational Field > load "verify.m"; Loading "verify.m" > E(visdat[1][2]); Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 1154*x - 15345 over Rational Field > E(no_curve) > ; E( label: [ 0, 0 ] ) In file "verify.m", line 60, column 24: >> assert label ne no_curve; ^ Runtime error in 'EllipticCurve': Conductor must be positive > E(no_curve) > ; E( label: [ 0, 0 ] ) In file "verify.m", line 60, column 24: >> if label eq no_curve then ^ Runtime error in 'EllipticCurve': Conductor must be positive > load "verify.m"; Loading "verify.m" > E(no_curve) > ; No such curve. > load "verify.m"; Loading "verify.m" > verify_ranks() > ; Lie in <3, [ 681, 2 ], [ 681, 3 ]> : rank is not two. > e:=E([681,3]); > e; Elliptic Curve defined by y^2 + y = x^3 - x^2 + 2 over Rational Field > Rank(e); 2 > load "verify.m"; Loading "verify.m" > verify_ranks() > ; <3, [ 681, 2 ], [ 681, 3 ]> passed. [Interrupt twice in half a second; exiting] Total time: 8.489 seconds [was@modular verify_visible]$ [was@modular verify_visible]$ exit exit Process magma exited abnormally with code 1 [was@modular verify_visible]$ [was@modular verify_visible]$ Magma V2.7-3 Tue Oct 31 2000 20:52:39 on modular [Seed = 417224229] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R ellap idxG0 CS MS S factormod modcharpoly DC ND Tn factorpadic padiccharpoly ES NS Z fcp qexp F Q charpoly fn x > Rank; Intrinsic 'Rank' Signatures: ( X) -> RngIntElt ( X) -> RngIntElt The rank of X ( M) -> RngIntElt ( M) -> RngIntElt ( M) -> RngIntElt ( M) -> RngIntElt The rank of the free module M over its base coefficient ring ( R) -> RngIntElt ( R) -> RngIntElt ( R) -> RngIntElt ( R) -> RngIntElt The number of indeterminates of R over its coefficient ring ( A) -> RngIntElt The current number of indeterminates of A ( L) -> RngIntElt The rank of the lattice L ( E) -> RngIntElt [ Bound: RngIntElt ] The (lower bound on the) rank of the Mordell-Weil group of E; E must be defined over Q ( D) -> RngIntElt The rank of the incidence geometry D ( D) -> RngIntElt The rank of the coset geometry D ( G) -> RngIntElt The rank of the genus. ( G) -> RngIntElt The rank of the genus. > load "verify.m"; Loading "verify.m" > e:=E(visdata[2][2]);f:=E(visdata[2][3]); >> e:=E(visdata[2][2]);f:=E(visdata[2][3]); ^ User error: Identifier 'visdata' has not been declared or assigned >> e:=E(visdata[2][2]);f:=E(visdata[2][3]); ^ User error: Identifier 'visdata' has not been declared or assigned > load "verify.m"; Loading "verify.m" > e:=E(visdat[2][2]);f:=E(visdat[2][3]); > RankBounds(e); [Interrupt twice in half a second; exiting] Total time: 33.860 seconds [was@modular verify_visible]$ exit exit Process magma finished [was@modular verify_visible]$ [was@modular verify_visible]$ Magma V2.7-3 Tue Oct 31 2000 20:55:51 on modular [Seed = 973043780] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R ellap idxG0 CS MS S factormod modcharpoly DC ND Tn factorpadic padiccharpoly ES NS Z fcp qexp F Q charpoly fn x > load "verify.m"; Loading "verify.m" > e:=E(visdat[2][2]);f:=E(visdat[2][3]); > RankBounds(f); 2 2 > Rank(f); 2 > load "verify.m"; Loading "verify.m" > verify_ranks(); <3, [ 681, 2 ], [ 681, 3 ]> passed. <5, [ 1058, 4 ], [ 1058, 3 ]> passed. <5, [ 1246, 2 ], [ 1246, 3 ]> passed. <5, [ 1664, 11 ], [ 1664, 14 ]> passed. <3, [ 1913, 2 ], [ 1913, 1 ]> passed. <3, [ 2006, 5 ], [ 2006, 4 ]> passed. <3, [ 2366, 4 ], [ 2366, 5 ]> passed. <5, [ 2366, 6 ], [ 2366, 5 ]> passed. <3, [ 2429, 2 ], [ 2429, 4 ]> passed. <3, [ 2534, 5 ], [ 2534, 7 ]> passed. <3, [ 2534, 6 ], [ 2534, 7 ]> passed. <3, [ 2541, 4 ], [ 2541, 3 ]> passed. <5, [ 2574, 4 ], [ 2574, 7 ]> passed. <3, [ 2601, 8 ], [ 2601, 12 ]> passed. <3, [ 2674, 2 ], [ 2674, 1 ]> passed. <3, [ 2710, 3 ], [ 2710, 2 ]> passed. <3, [ 2718, 4 ], [ 2710, 2 ]> passed. <3, [ 2768, 3 ], [ 2768, 2 ]> passed. <5, [ 2834, 4 ], [ 2834, 3 ]> passed. <5, [ 2900, 4 ], [ 2900, 3 ]> passed. <3, [ 2955, 2 ], [ 2955, 3 ]> passed. <3, [ 3054, 1 ], [ 3054, 3 ]> passed. <5, [ 3185, 3 ], [ 3185, 2 ]> passed. <3, [ 3306, 2 ], [ 1102, 1 ]> passed. <5, [ 3384, 1 ], [ 3384, 3 ]> passed. <3, [ 3536, 8 ], [ 3536, 7 ]> passed. <3, [ 3555, 5 ], [ 3555, 4 ]> passed. <3, [ 3712, 10 ], [ 3712, 9 ]> passed. <3, [ 3879, 5 ], [ 3879, 4 ]> passed. <3, [ 3933, 1 ], [ 3933, 2 ]> passed. <5, [ 3952, 3 ], [ 3952, 5 ]> passed. <3, [ 3954, 3 ], [ 3954, 4 ]> passed. <5, [ 4092, 1 ], [ 4092, 2 ]> passed. <5, [ 4592, 4 ], [ 4592, 7 ]> passed. <3, [ 4592, 6 ], [ 4592, 3 ]> passed. <3, [ 4592, 6 ], [ 4592, 7 ]> passed. <3, [ 4606, 2 ], [ 4606, 3 ]> passed. <3, [ 4675, 10 ], [ 4675, 9 ]> passed. <3, [ 4963, 3 ], [ 4963, 4 ]> passed. <3, [ 5046, 8 ], [ 5046, 10 ]> passed. <5, [ 5082, 3 ], [ 5082, 4 ]> passed. <3, [ 5136, 2 ], [ 1712, 4 ]> passed. verify_ranks( ) E( label: [ 5499, 5 ] ) In file "verify.m", line 63, column 24: >> return EllipticCurve(CremonaDatabase(),label[1],label[2],1); ^ Runtime error in 'EllipticCurve': Conductor 5499 is not stored in database > load "verify.m"; Loading "verify.m" > e=E(visdat[3][2]); Elliptic Curve defined by y^2 + x*y = x^3 - x^2 - 332311*x - 73733731 over Rational Field = Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 10688904*x - 13455247360 over Rational Field > Rank(e); [Interrupt twice in half a second; exiting] Total time: 42.919 seconds [was@modular verify_visible]$ exit exit Process magma finished [was@modular verify_visible]$ [was@modular verify_visible]$ Magma V2.7-3 Tue Oct 31 2000 20:57:35 on modular [Seed = 921728995] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R ellap idxG0 CS MS S factormod modcharpoly DC ND Tn factorpadic padiccharpoly ES NS Z fcp qexp F Q charpoly fn x > Type(EllipticCurve([1,2,3,4,5])); CrvEll > load "verify.m"; Loading "verify.m" > verify_visible(); verify_visible( ) E( label: 681 ) In file "verify.m", line 64, column 13: >> if label eq no_curve then ^ Runtime error in 'eq': Bad argument types Argument types given: RngIntElt, SeqEnum[RngIntElt] > visdat; [ <3, [ 681, 2 ], [ 681, 3 ]>, <5, [ 1058, 4 ], [ 1058, 3 ]>, <5, [ 1246, 2 ], [ 1246, 3 ]>, <5, [ 1664, 11 ], [ 1664, 14 ]>, <3, [ 1913, 2 ], [ 1913, 1 ]>, <3, [ 2006, 5 ], [ 2006, 4 ]>, <3, [ 2366, 4 ], [ 2366, 5 ]>, <5, [ 2366, 6 ], [ 2366, 5 ]>, <3, [ 2429, 2 ], [ 2429, 4 ]>, <3, [ 2534, 5 ], [ 2534, 7 ]>, <3, [ 2534, 6 ], [ 2534, 7 ]>, <3, [ 2541, 4 ], [ 2541, 3 ]>, <5, [ 2574, 4 ], [ 2574, 7 ]>, <3, [ 2601, 8 ], [ 2601, 12 ]>, <3, [ 2674, 2 ], [ 2674, 1 ]>, <3, [ 2710, 3 ], [ 2710, 2 ]>, <3, [ 2718, 4 ], [ 2710, 2 ]>, <3, [ 2768, 3 ], [ 2768, 2 ]>, <5, [ 2834, 4 ], [ 2834, 3 ]>, <3, [ 2849, 1 ], [ 0, 0 ]>, <5, [ 2900, 4 ], [ 2900, 3 ]>, <3, [ 2932, 1 ], [ 0, 0 ]>, <3, [ 2955, 2 ], [ 2955, 3 ]>, <3, [ 3054, 1 ], [ 3054, 3 ]>, <5, [ 3185, 3 ], [ 3185, 2 ]>, <3, [ 3306, 2 ], [ 1102, 1 ]>, <7, [ 3364, 3 ], [ 0, 0 ]>, <5, [ 3384, 1 ], [ 3384, 3 ]>, <3, [ 3536, 8 ], [ 3536, 7 ]>, <3, [ 3555, 5 ], [ 3555, 4 ]>, <3, [ 3712, 10 ], [ 3712, 9 ]>, <3, [ 3879, 5 ], [ 3879, 4 ]>, <3, [ 3933, 1 ], [ 3933, 2 ]>, <5, [ 3952, 3 ], [ 3952, 5 ]>, <3, [ 3954, 3 ], [ 3954, 4 ]>, <5, [ 4092, 1 ], [ 4092, 2 ]>, <3, [ 4229, 1 ], [ 0, 0 ]>, <3, [ 4343, 3 ], [ 0, 0 ]>, <5, [ 4592, 4 ], [ 4592, 7 ]>, <3, [ 4592, 6 ], [ 4592, 3 ]>, <3, [ 4592, 6 ], [ 4592, 7 ]>, <3, [ 4606, 2 ], [ 4606, 3 ]>, <3, [ 4675, 10 ], [ 4675, 9 ]>, <3, [ 4914, 14 ], [ 0, 0 ]>, <3, [ 4963, 3 ], [ 4963, 4 ]>, <3, [ 5046, 8 ], [ 5046, 10 ]>, <3, [ 5054, 3 ], [ 0, 0 ]>, <3, [ 5073, 4 ], [ 0, 0 ]>, <5, [ 5082, 3 ], [ 5082, 4 ]>, <3, [ 5136, 2 ], [ 1712, 4 ]>, <3, [ 5389, 1 ], [ 0, 0 ]> ] > load "verify.m"; Loading "verify.m" > verify_visible(); [ 681, 3 ] verify_visible( ) E( label: 681 ) In file "verify.m", line 64, column 13: >> if label eq no_curve then ^ Runtime error in 'eq': Bad argument types Argument types given: RngIntElt, SeqEnum[RngIntElt] > load "verify.m";verify_visible(); Loading "verify.m" > [ 681, 3 ] At level 681 p divides the level. verify_visible( ) In file "verify.m", line 126, column 26: >> if Product_cpbar(e) mod p eq 0 then ^ Runtime error: No return statement executed in user-defined function > load "verify.m"; Loading "verify.m" > verify_visible(); [ 681, 3 ] At level 681 p divides the level. verify_visible( ) Product_cpbar( e: e ) In file "verify.m", line 106, column 48: >> return &*[cpbar(e,p[1]) : p in Factorization(Discriminant(e))]; ^ Runtime error in 'Factorization': Bad argument types Argument types given: FldRatElt > verify_visible(); [ 681, 3 ] At level 681 p divides the level. verify_visible( ) Product_cpbar( e: e ) In file "verify.m", line 106, column 48: >> return &*[cpbar(e,p[1]) : p in Factorization(Conductor(e))]; ^ Runtime error in 'Factorization': Bad argument types Argument types given: FldRatElt > load "verify.m";verify_visible(); Loading "verify.m" [ 681, 3 ] At level 681 p divides the level. [ 1058, 3 ] [ 1246, 3 ] [ 1664, 14 ] [ 1913, 1 ] [ 2006, 4 ] [ 2366, 5 ] At level 2366 p divides the prod cpbar(E). At level 2366 p divides the prod cp(F). [ 2366, 5 ] [ 2429, 4 ] [ 2534, 7 ] [ 2534, 7 ] [ 2541, 3 ] At level 2541 p divides the level. [ 2574, 7 ] [ 2601, 12 ] At level 2601 p divides the level. [ 2674, 1 ] [ 2710, 2 ] At level 2710 p divides the prod cpbar(E). [ 2710, 2 ] At level 2718 p divides the level. [ 2768, 2 ] [ 2834, 3 ] [ 0, 0 ] [ 2900, 3 ] At level 2900 p divides the level. [ 0, 0 ] [ 2955, 3 ] At level 2955 p divides the level. At level 2955 p divides the prod cpbar(E). At level 2955 p divides the prod cp(F). [ 3054, 3 ] At level 3054 p divides the level. [ 3185, 2 ] At level 3185 p divides the level. [ 1102, 1 ] At level 3306 p divides the level. At level 3306 p divides the prod cpbar(E). [ 0, 0 ] [ 3384, 3 ] [ 3536, 7 ] [ 3555, 4 ] At level 3555 p divides the level. [ 3712, 9 ] [ 3879, 4 ] At level 3879 p divides the level. [ 3933, 2 ] At level 3933 p divides the level. [ 3952, 5 ] [ 3954, 4 ] At level 3954 p divides the level. [ 4092, 2 ] [ 0, 0 ] [ 0, 0 ] [ 4592, 7 ] [ 4592, 3 ] [ 4592, 7 ] [ 4606, 3 ] At level 4606 p divides the prod cpbar(E). [ 4675, 9 ] At level 4675 p divides the prod cpbar(E). At level 4675 p divides the prod cp(F). [ 0, 0 ] [ 4963, 4 ] [ 5046, 10 ] At level 5046 p divides the level. [ 0, 0 ] [ 0, 0 ] [ 5082, 4 ] [ 1712, 4 ] At level 5136 p divides the level. At level 5136 p divides the prod cpbar(E). [ 0, 0 ] >> load "verify.m";verify_visible(); ^ Runtime error in procedure call: No return statement executed in user-defined function > load "verify.m";verify_visible(); Loading "verify.m" At level 681 p divides the level. At level 2366 p divides the prod cpbar(E). At level 2366 p divides the prod cp(F). At level 2541 p divides the level. At level 2601 p divides the level. At level 2710 p divides the prod cpbar(E). At level 2718 p divides the level. At level 2900 p divides the level. At level 2955 p divides the level. At level 2955 p divides the prod cpbar(E). At level 2955 p divides the prod cp(F). At level 3054 p divides the level. At level 3185 p divides the level. At level 3306 p divides the level. At level 3306 p divides the prod cpbar(E). At level 3555 p divides the level. At level 3879 p divides the level. At level 3933 p divides the level. At level 3954 p divides the level. At level 4606 p divides the prod cpbar(E). At level 4675 p divides the prod cpbar(E). At level 4675 p divides the prod cp(F). At level 5046 p divides the level. At level 5136 p divides the level. At level 5136 p divides the prod cpbar(E). > 681 mod 3; 0 > load "verify.m";verify_visible(); Loading "verify.m" At level 681 p = 3 divides the level. At level 2366 p = 3 divides the prod cpbar(E). At level 2366 p = 3 divides the prod cp(F). At level 2541 p = 3 divides the level. At level 2601 p = 3 divides the level. At level 2710 p = 3 divides the prod cpbar(E). At level 2718 p = 3 divides the level. At level 2900 p = 5 divides the level. At level 2955 p = 3 divides the level. At level 2955 p = 3 divides the prod cpbar(E). At level 2955 p = 3 divides the prod cp(F). At level 3054 p = 3 divides the level. At level 3185 p = 5 divides the level. At level 3306 p = 3 divides the level. At level 3306 p = 3 divides the prod cpbar(E). At level 3555 p = 3 divides the level. At level 3879 p = 3 divides the level. At level 3933 p = 3 divides the level. At level 3954 p = 3 divides the level. At level 4606 p = 3 divides the prod cpbar(E). At level 4675 p = 3 divides the prod cpbar(E). At level 4675 p = 3 divides the prod cp(F). At level 5046 p = 3 divides the level. At level 5136 p = 3 divides the level. At level 5136 p = 3 divides the prod cpbar(E). > load "verify.m";verify_visible(); Loading "verify.m" At level 681 p = 3 divides the level. OK at level 1058 OK at level 1246 OK at level 1664 OK at level 1913 OK at level 2006 At level 2366 p = 3 divides the prod cpbar(E). At level 2366 p = 3 divides the prod cp(F). OK at level 2366 OK at level 2429 OK at level 2534 OK at level 2534 At level 2541 p = 3 divides the level. OK at level 2574 At level 2601 p = 3 divides the level. OK at level 2674 At level 2710 p = 3 divides the prod cpbar(E). At level 2718 p = 3 divides the level. OK at level 2768 OK at level 2834 At level 2900 p = 5 divides the level. At level 2955 p = 3 divides the level. At level 2955 p = 3 divides the prod cpbar(E). At level 2955 p = 3 divides the prod cp(F). At level 3054 p = 3 divides the level. At level 3185 p = 5 divides the level. At level 3306 p = 3 divides the level. At level 3306 p = 3 divides the prod cpbar(E). OK at level 3384 OK at level 3536 At level 3555 p = 3 divides the level. OK at level 3712 At level 3879 p = 3 divides the level. At level 3933 p = 3 divides the level. OK at level 3952 At level 3954 p = 3 divides the level. OK at level 4092 OK at level 4592 OK at level 4592 OK at level 4592 At level 4606 p = 3 divides the prod cpbar(E). At level 4675 p = 3 divides the prod cpbar(E). At level 4675 p = 3 divides the prod cp(F). OK at level 4963 At level 5046 p = 3 divides the level. OK at level 5082 At level 5136 p = 3 divides the level. At level 5136 p = 3 divides the prod cpbar(E). > load "verify.m";verify_visible(); Loading "verify.m" 681 : p = 3 divides the level. 1058 : OK 1246 : OK 1664 : OK 1913 : OK 2006 : OK 2366 : p = 3 divides the prod cpbar(E). 2366 : p = 3 divides the prod cp(F). 2366 : OK 2429 : OK 2534 : OK 2534 : OK 2541 : p = 3 divides the level. 2574 : OK 2601 : p = 3 divides the level. 2674 : OK 2710 : p = 3 divides the prod cpbar(E). 2718 : p = 3 divides the level. 2768 : OK 2834 : OK 2900 : p = 5 divides the level. 2955 : p = 3 divides the level. 2955 : p = 3 divides the prod cpbar(E). 2955 : p = 3 divides the prod cp(F). 3054 : p = 3 divides the level. 3185 : p = 5 divides the level. 3306 : p = 3 divides the level. 3306 : p = 3 divides the prod cpbar(E). 3384 : OK 3536 : OK 3555 : p = 3 divides the level. 3712 : OK 3879 : p = 3 divides the level. 3933 : p = 3 divides the level. 3952 : OK 3954 : p = 3 divides the level. 4092 : OK 4592 : OK 4592 : OK 4592 : OK 4606 : p = 3 divides the prod cpbar(E). 4675 : p = 3 divides the prod cpbar(E). 4675 : p = 3 divides the prod cp(F). 4963 : OK 5046 : p = 3 divides the level. 5082 : OK 5136 : p = 3 divides the level. 5136 : p = 3 divides the prod cpbar(E). > load "verify.m";verify_visible(); Loading "verify.m" 681 : p = 3 divides the level. 1058 : OK 1246 : OK 1664 : OK 1913 : OK 2006 : OK 2366 : p = 3 divides the prod cpbar(E). 2366 : p = 3 divides the prod cp(F). 2366 : OK 2429 : OK 2534 : OK 2534 : OK 2541 : p = 3 divides the level. 2574 : OK 2601 : p = 3 divides the level. 2674 : OK 2710 : p = 3 divides the prod cpbar(E). 2718 : p = 3 divides the level. 2768 : OK 2834 : OK 2900 : p = 5 divides the level. 2955 : p = 3 divides the level. 2955 : p = 3 divides the prod cpbar(E). 2955 : p = 3 divides the prod cp(F). 3054 : p = 3 divides the level. 3185 : p = 5 divides the level. 3306 : p = 3 divides the level. 3306 : p = 3 divides the prod cpbar(E). 3384 : OK 3536 : OK 3555 : p = 3 divides the level. 3712 : OK 3879 : p = 3 divides the level. 3933 : p = 3 divides the level. 3952 : OK 3954 : p = 3 divides the level. 4092 : OK 4592 : OK 4592 : OK 4592 : OK 4606 : p = 3 divides the prod cpbar(E). 4675 : p = 3 divides the prod cpbar(E). 4675 : p = 3 divides the prod cp(F). 4963 : OK 5046 : p = 3 divides the level. 5082 : OK 5136 : p = 3 divides the level. 5136 : p = 3 divides the prod cpbar(E). > load "verify.m";verify_visible(); Loading "verify.m" 681 : p = 3 divides the level. Additive reduction for N= 1058 1058 : OK 1246 : OK Additive reduction for N= 1664 1664 : OK 1913 : OK 2006 : OK Additive reduction for N= 2366 2366 : p = 3 divides the prod cpbar(E). 2366 : p = 3 divides the prod cp(F). Additive reduction for N= 2366 2366 : OK 2429 : OK 2534 : OK 2534 : OK 2541 : p = 3 divides the level. Additive reduction for N= 2541 Additive reduction for N= 2574 2574 : OK 2601 : p = 3 divides the level. Additive reduction for N= 2601 Additive reduction for N= 2601 2674 : OK 2710 : p = 3 divides the prod cpbar(E). 2718 : p = 3 divides the level. Additive reduction for N= 2718 Additive reduction for N= 2768 2768 : OK 2834 : OK 2900 : p = 5 divides the level. Additive reduction for N= 2900 Additive reduction for N= 2900 2955 : p = 3 divides the level. 2955 : p = 3 divides the prod cpbar(E). 2955 : p = 3 divides the prod cp(F). 3054 : p = 3 divides the level. 3185 : p = 5 divides the level. Additive reduction for N= 3185 3306 : p = 3 divides the level. 3306 : p = 3 divides the prod cpbar(E). Additive reduction for N= 3384 Additive reduction for N= 3384 3384 : OK Additive reduction for N= 3536 3536 : OK 3555 : p = 3 divides the level. Additive reduction for N= 3555 Additive reduction for N= 3712 3712 : OK 3879 : p = 3 divides the level. Additive reduction for N= 3879 3933 : p = 3 divides the level. Additive reduction for N= 3933 Additive reduction for N= 3952 3952 : OK 3954 : p = 3 divides the level. Additive reduction for N= 4092 4092 : OK Additive reduction for N= 4592 4592 : OK Additive reduction for N= 4592 4592 : OK Additive reduction for N= 4592 4592 : OK Additive reduction for N= 4606 4606 : p = 3 divides the prod cpbar(E). Additive reduction for N= 4675 4675 : p = 3 divides the prod cpbar(E). 4675 : p = 3 divides the prod cp(F). 4963 : OK 5046 : p = 3 divides the level. Additive reduction for N= 5046 Additive reduction for N= 5082 5082 : OK 5136 : p = 3 divides the level. Additive reduction for N= 5136 5136 : p = 3 divides the prod cpbar(E). > SquareFree; Intrinsic 'SquareFree' Signatures: ( a) -> RngIntElt, RngIntElt ( a) -> RngIntEltFact, RngIntEltFact Return a squarefree integer x as well as an integer y, such that a = x*y^2 > IsSquareFree; >> IsSquareFree; ^ User error: Identifier 'IsSquareFree' has not been declared or assigned > load "verify.m";verify_visible(); Loading "verify.m" 681 : p = 3 divides the level. 1058 : additive reduction. 1246 : OK 1664 : additive reduction. 1913 : OK 2006 : OK 2366 : p = 3 divides the prod cpbar(E). 2366 : p = 3 divides the prod cp(F). 2366 : additive reduction. 2366 : additive reduction. 2429 : OK 2534 : OK 2534 : OK 2541 : p = 3 divides the level. 2541 : additive reduction. 2574 : additive reduction. 2601 : p = 3 divides the level. 2601 : additive reduction. 2674 : OK 2710 : p = 3 divides the prod cpbar(E). 2718 : p = 3 divides the level. 2718 : additive reduction. 2768 : additive reduction. 2834 : OK 2900 : p = 5 divides the level. 2900 : additive reduction. 2955 : p = 3 divides the level. 2955 : p = 3 divides the prod cpbar(E). 2955 : p = 3 divides the prod cp(F). 3054 : p = 3 divides the level. 3185 : p = 5 divides the level. 3185 : additive reduction. 3306 : p = 3 divides the level. 3306 : p = 3 divides the prod cpbar(E). 3384 : additive reduction. 3536 : additive reduction. 3555 : p = 3 divides the level. 3555 : additive reduction. 3712 : additive reduction. 3879 : p = 3 divides the level. 3879 : additive reduction. 3933 : p = 3 divides the level. 3933 : additive reduction. 3952 : additive reduction. 3954 : p = 3 divides the level. 4092 : additive reduction. 4592 : additive reduction. 4592 : additive reduction. 4592 : additive reduction. 4606 : p = 3 divides the prod cpbar(E). 4606 : additive reduction. 4675 : p = 3 divides the prod cpbar(E). 4675 : p = 3 divides the prod cp(F). 4675 : additive reduction. 4963 : OK 5046 : p = 3 divides the level. 5046 : additive reduction. 5082 : additive reduction. 5136 : p = 3 divides the level. 5136 : p = 3 divides the prod cpbar(E). 5136 : additive reduction. >