AN EXTENSION OF WILES’ RESULTS

FRED DIAMOND

1. INTRODUCTION

Suppose that E is an elliptic curve defined over Q. We wish to prove
that £ is modular, or equivalently, that the associated £-adic representation

p: GQ i GLQ(Z[)

is modular for some prime £.

If we are assuming that E is semistable, i.e., has square-free conductor,
then we can impose some convenient hypotheses on the local behavior of
the Galois representations p we consider. By “local behavior,” we mean
the behavior of the representation

8:G, — GLy(Ze)

defined by restricting p to a decomposition group at p.

Recall that if E has good reduction at p, then # is unramified. If E
has multiplicative reduction at p, then a convenient description of 4 results
from the Tate parametrization of E (§17 of {S]). In particular, we see that

1 %
w1 1)

To consider elliptic curves with additive reduction at some primes p # ¢,
we must allow more general types of #. We can actually consider represen-
tations p with arbitrary local behavior at primes p # £, This is carried out
in [D] where, building on the work of Wiles {W] and Taylor-Wiles [TW],
we prove a result of the form

(1) p modular = p modular ,
and deduce

Theorem 1.1. If E has good or multiplicative reduction at 8 and 5, then
E is modular.

The details of the proof can be found in [D]. Here we give an exposition
which we hope is more motivated and systematic. We often follow [DDT],
admitting results which are straightforward generalizations of those there
or elsewhere in this volume. For the proofs of some of the key lemmas, we
refer completely to [D].
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This article is structured as follows:
Some background is given in §2 on local Galois representations

g G, — GLy(k),

where p # £ and & is an algebraic closure of Fy. A classification of the pos-
sible o, though not logically necessary for the proof of theorem 1.1, helps
provide some insight into local Galois representations and their deforma-
tions. (The appendix with K. Kramer determines precisely how local Galois
representations arising from elliptic curves fit into this classification.)

In §3 we explain what it means for a deformation of ¢ to be “minimally
ramified” at p.

Suppose that £ is odd and

g GQ - GLa(k)

is an irreducible representation which is semistable at £. We formulate in
84 a certain deformation problem for each finite set of primes ¥. This
deformation problem turns out to be representable by a ring By whose
tangent space is described in terms of Galois cohomology (see [M]).

Suppose now that 5 is modular. The goal of §5 is to define a correspond-
ing Hecke algebra Tx, and modular deformation

7:Gg — GLz(Tx)

arising from a homomomorphism ¢y : Ry — Tx (see [Ri2}).

If we can show that it is an isomorphism, then we obtain a result of the
form (1) as a corollary. The main results are stated in §6.

To prove that ¢x is an isomorphism, we must modify some of the tech-
niques used in [W] and [TW]. In particular, the analysis of the Hecke
algebras becomes more difficult. In our sketch of the proof in §7, we indi-
cate where the complications arise, but give only a rough idea of how they
are dealt with in [D].

2. LOCAL REPRESENTATIONS MOD £

Suppose that p is a prime. We let G, = Gal(Q,/Q,) and let I, denote
the inertia subgroup of &,. Suppose that £ is an odd prime different from
p and consider continuous representations

a. GP - GL?(k)!

where k is an algebraic closure of Fy;. We let & denote the associated
projective representation.

We let ¥ denote the cyclotomic character G, — k*. Note that y is
nontrivial if and only if p # 1 mod £. In that case, we write sp, for the
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representation

2) (¥ 1)

where u is a cocycle representing the image of a uniformizer under the
Kummer map

Q; — Q;/(Q)) — H' G, k(1)).
The equivalence class is independent of the choice of uniformizer and co-
cycle. (See the proof of proposition 2.2 below.)

If 9 is a character G, — k*, then we write k(1)) for the one-dimensional
vector space over k an which G, acts via 4. Recall that two representations
o1 and o3 are called twist-equivalent if o) is equivalent to ¥ @ o4 for some
character ¥ : G, — k*.

We classify o according to the following four types of behavior (principal,
special, vexing or harmless).

P : o is reducible and ¢|;, is decomposable.
S8 : o is reducible and o|;, is indecomposable.
V : o is irreducible and ¢|;, is reducible.

H : ¢ is irreducible and ¢|;, is irreducible.

Proposition 2.1. The following are equivalent:

1. o is reducible and o|;, is decomposable.
2. o is lwist-equivalent to o representation either of the form

(a) ( T’g (1] ) for some character ¥, or

{b) (1] ? ) for some additive unramified character ¢.

3. Either 6(Gp) is cyclic of order not divisible by £, or it has order ¢
and &(1,} is trivial.
4. 3(Gy) is cyclic and the order of 5(1,,) is not divisible by ¢.

Proof: Suppose 1 holds. Then o is twist-equivalent to a representation

of the form
P u
0 1

for some character 1%, where u is a cocycle representing a class
z € HYGp, k(¥)).

If ¢ is indecomposable, then z is nontrivial. On the other hand, the image

of = in H' (I, k(%)) vanishes, so z is in the image of H'(Gp/1L,, k(v)!)

This last group is trivial unless ¥ is trivial, so 2 follows.
The implications 2 = 3 = 4 = 1 are clear.

Proposition 2.2. The following are equivalent:
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1. o is reducible and o| 1, is indecomposable.
2. p=1mod { and o is twist-equivalent to a representation of the form

(5 7)

for some additive ramified character ¢, or p £ 1 mod ¢ and o is
twist-equivalent to spo.

3. p=1mod{, 5(I,) has order £ and (G,) has order dividing £2, or
p # Ll mod ¢, 3(I,) has order € and 6(G,) has order df where d is the
order of p in F).

4. 6(I,) is cyclic of order divisible by £.

Proof: Suppose 1 holds. Then ¢ is twist-equivalent to a representation
of the form
Y ou
(3 7)

for some character 1 where  is a cocycle representing a class
z € H'Y(Gp, k(¥)).

Since oy, is indecomposable, the image of x in H(I,, k(1)) does not
vanish. This group is isomorphic to Homg,, (1¢(Qp), k(4)), which vanishes
unless © = x. Moreover if x is non-trivial, then H(G,, k(1)) is one-
dimensional over k, so 2 follows.

The implications 2 = 3 = 4 are clear. If 4 holds, then 1 follows from
the fact that o(G}) is contained in the normalizer of the ¢-Sylow subgroup
of o{I,).

Proposition 2.3. The following ere equivalent:
1. o is irreducible and ol;, is reducible.

2. a is equivalent to a representation of the form Ind gL £, where M is
the unramified quadratic extension of Q, and £ is a character of Gy
not equal to its conjugote under the action of Gal (M/Q,).

3. 6(Ip) is cyclic of order not divisible by £, and 5(G,) is dihedral of
twice thet order.

4. 6(Ip) is cyclic of order not divisible by £, and 3(G,) is not cyclic.

Proof: Suppose that 1 holds. Consider the action of G, on P1(k) gotten
from &. Note first that 5(1,) is nontrivial. Let S denote the set of elements
in P(k) fixed by I,. Since o 1, is reducible, § is not empty. Since o
is irreducible, § has no elements fixed by G, and it follows that S has
exactly two elements. Moreover G, acts transitively on S via the unramified
quadratic character, so 2 holds.

Suppose next that 2 holds. Then 6(G,) is a dihedral group in which
(G m) is a cyclic subgroup of index two and order not divisible by €. Since



AN EXTENSION OF WILES' RESULTS 479

M*=Q) O}y we see from local class field theory that

£ (Gu) = 7€ (L,),

where £' is the conjugate of £, and 3 follows. The implication 3 = 4 is
clear, and 4 = 1 follows from the converse of the corresponding one in
Proposition 2.1,

Proposition 2.4. The following are equivalent:
1. ol;, is trreducible.

2. p is odd and o is equivelent to o representation of the form IndG £,
where M is a ramified quadratic extension of Q,and £ is a chamcter
of Gu whose restriction to Iny is not egual to its conjugate under the
action of Gal{M/Q,), or p = 2 and the restriction of ¢ to the wild
inertio subgroup of Gy is irreducible.

3. &(1,) is dihedral of order 2p™ for somer > 1 and F(Gp) 1s dihedral of
order dividing 4p”, orp = 2, &(1;) (respectively 5(Gp)) is isomorphic
to Dy (mspectwely Aa), Aq (respectively A,) or Ay (respectively S, ).

4. §(I,} is not cyclic.

Proof: Suppose that 1 holds and furthermore that o| p, is irreducible,
where P, is the wild inertia subgroup of J,. Consider the action of G,
on P‘(k) gotten from &. Since &(J,) is not cyclic, we see that 7(P,) is
nontrivial. Let 5 denote the set of elements in P*(k) fixed by Py. Then §
is not empty and has no elements fixed by I,.. It follows that § has exactly
two elements and that I, acts transitively. ’I‘herefore P is odd and G, acts
transitively on S via a ramlﬁed quadratic character. We deduce that 2
holds, where M is the corresponding quadratic extension of Q. (We have
that £ # ¢’ on F,, hence on I;.)

Suppose now that 2 holds. First consider the case of odd p. Then &( Gp)
(respectively, &(I)) is dihedral, and &(G'ar) (respectively, &(Iys)) is a cyclic
subgroup of index two. Letting U denote the kernel of the reduction map
on O}, we have QU = QXOM has index two in M*. From local class
field theory it follows that 6(Zx) = &(Par) has p-power order and index at
most two in &(Gar). We conclude that 3 holds.

In the case of p = 2, we see that D = (F,) is dihedral, since it is not
cyclic and is a finite subgroup of PGLy(k) of 2-power order. Furthermore
&{Gp) is contained in the normalizer of D. If D has order greater than 4,
the normalizer is dihedral and we may use the same argument as in the
case of odd p. If D has order 4, then the normalizer is isomorphic to S,,
and 4 follows,

The implication 3 = 4 is clear, as is 4 = 1 (in view of the preceding
propositions).
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3. MINIMALLY RAMIFIED LIFTINGS

For a fixed representation
o Gp — GLa(k),
we consider liftings
8:Gq — GL2(R)
of o, where R is a complete local Noetherian W(k)-algebra with residue
field k. We shall now say what it means for 6 to be minimally ramified.
We use ~ to denote composition with the Teichmiiller lift
£ — W(k)* — R*.
Definition 3.1.
1. If o is of type P or V | then

U‘IP""(% g):

and we say @ is minimally ramified if

6;;p~(501 ;2)

2. If ris of type 8§ , then

1
0'|I,NE®(0 I)1

and we say 8 is minimally remified if

- 1 =
Blprcf@(O 1).

3. If o is of type H , then we say 8 is minimally ramified if det 8|y, is
the Teichmiiller lift of deto|y,.

Remark 3.2. First note that if x is a character of G, — k*, then ¢ is a
minimally ramified lifting of & if and only if ¥ ® 8 is a minimally ramified
lifting of ¥ ® o.

Remark 3.3. If g is of type P, then it has a twist which is either unram-
ified or of type B in the terminology of [W]. Note that if ¢ is unramified,
then @ is minimally ramified if and only if § is unramified.

Remark 3.4. If & is of type 8 , then it has a twist of type A in the
terminology of {W]. Recall that if # arises from the £-adic Tate module of
an elliptic curve E over Q, with split multiplicative reduction, then 8|,

is equivalent to a representation of the form . It is minimally

1 =
01
ramified if and only if & is ramified if and only if v,(AE) is divisible by £.
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Remark 3.5. Suppose now that ¢ is type V . If p 2 —1 mod ¢, then o is
type C in the terminology of [W]. Suppose instead that P =—1mod ¢ and
write ¢ = Ind g:!f as in proposition 2.3. Let p: Gy — @* be & ramified
character of Gps of é-power order. Then

(3) 0 =Ind g7, €

is a lifting of o which is not minimally ramified.

Remark 3.6. Now consider ¢ of type H . Suppose that
o, ~Ind

as in proposition 2.4. Then ¢ is minimally ramified if and only if
6z, ~ Ind * £.

Remark 3.7. Suppose that 6 : G, — GL3(() is a minimally ramified lift-
ing of o, where O is the ring of integers of a finite extension of the field of
fractions of W (k). Then det 8| 1, is the Teichmiiller lift of det o] 1, and the
Artin conductors of # and o coincide. In [W] and [TW] a technical hypoth-
esis is imposed to ensure that a partial converse holds. This hypothesis
rules out the existence of liftings as in (3) and facilitates the characteri-
zation of the modular forms which give rise to minimally ramified liftings.
The main contribution of [D] is to dispense with that hypothesis.

4. UUNIVERSAL DEFORMATION RINGS

Now consider an irreducible representation
p: GQ — GLQ(k).

For each prime p we fix an embedding of Q in Q, and regard Gp as a
decomposition group in Gq. We suppose that Ple, is semistable in the
sense of [DDT], section 2.4.

Suppose that K is a finite extension of the field of fractions of W(k). Let
O denote the integral closure of W (k) in K; thus @ is a complete discrete
valuation ring with residue field k. We consider liftings of p of the form

p: Gq — GLy(R),

where R is in the category C of local complete (-algebras with residue
field k. A deformation of p is an isomorphism class of such liftings (see
[dSL) (2.1}, (2.2)).

If T is a finite set of primes, we say that pis type X if
1. x;l det p has finite order not divisible by ¢;

2. p is minimally ramified outside I;

3. p is semistable at £ in the sense of {DDT].
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The notion depends only on the isomorphism class of p and is independent
of the choice of embeddings of Q in Q.

Consider the functor which associates to R the set of deformations of
7 of type L. The type I restriction satisfies the conditions listed at the
beginning of §6 of {dSL] (see also §29 of [M] and §2.4 of {DDT]}. From [dSL]
(2.4) and (6.1) we conclude that the functor is represented by a complete
local O-algebra Ry, the identity map of Ry corresponding to the universal
deformation of type X:

Pty Qg — Gle(Rg)-
Suppose now that we are given a lifting
p:Gq — GL2(O)
of type £. The universal property of Rx yields a surjective morphism
Ry — O
such that p is equivalent to the pushforward of pi*V. Let p denote the
kernel of 7. We define the group
H(Gq,(adp) ® (K/0))
as in §2.7 of [DDT]. A generalization of results of Mazur (see §23-25 of
[M]) yields a canonical isomorphism
(4) Homo(p/p*, K/O) 2 H}(Gq, (ad°p) ®o (K/O)).
5. HECKE ALGEBRAS

Recall that given a newform

f(,?.) — Z an (f)eZwin‘r

of weight 2, level Ny and character 47, a construction of Eichler and
Shimura (see [Ro]) associates to f a continuous representation

ps : Gq — GLz(Qy),

where we have fixed embeddings @ — C and Q@ — Q,. The representation
py is characterized up to isomorphism by the following property: For all
primes p not dividing N¢f, py is unramified at p and the characteristic
polynomial of ps(Frob,) is

X2 — ap(£)X + ¥ (p)p.

We wish to continue working over the ring O introduced above, so we
also fix an embedding Q; — K and view p; as taking values in GLy(K),
where K is the subfield of K generated by K and the Fourier coefficents
of f. We denote the ring of integers Oy, which we regard as an object of
C. Define

Ps: Gg — GLa(k)
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as the semisimplification of the reduction of p;.
We assume that our fixed representation 7 is modular in the sense that
it is isomorphic to 5; for some weight 2 newform f. We let @5 denocte the

set of newforms g such that p, is a deformation of 5 of type ¥ and Ny is
not divisible by £2.

Theorem 5.1. If § is modular, then &y # §.

This is a refinement of Serre’s e-conjecture for which a crucial ingredient
is Ribet’s theorem [Ril] (see [E]). The result stated here is a consequence
of D] which builds on the work Ribet and many others.

For each g in &5, we consider the map Ry — O, corresponding to pq.

We then define
Ts C H Og
g€ds

as the image of Rx. Since Ry is topologically generated by traces, we may
also regard Ty as the O-subalgebra generated by the elements
Ty = (ap(9))geex
for primes p not dividing N€. We wish to prove that the surjective map
is an isomorphism. Note that ®x gives rise to a type ¥ deformation
PR 1 Gq — GLy(Tx)

of p, such that for each g € ®, the composition with the projection to
GL2(0y) is equivalent to g,.

For finite sets of primes ¥ O ©, there is a natural surjective homomor-
phism Ry — Rg defined by regarding pg“i“ as a deformation of p of type
Z. We have also the natural surjection Ty — Tg so that the diagram

RE E:) TE
(5) ! 1
Re B8 Te

commutes.

6. THE MAIN RESULTS

Recall our assumption that £ is odd and 5 is semistable at £, We let
L = Q(vef), where ¢ = (—1)¥~1/2. We suppose that ¥ is an arbitrary
finite set of primes. The main result is the following:

Theorem 8.1. If plg, is irreducible, then ¢x is an isomorphism and Tx
15 a complete intersection.

We shall sketch the proof below referring to [D] for the full details.
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Corollary 6.2. Suppose that p: Gg — GLo{O) is continuous and unram-
ified outside o finite set of primes. Suppose that p is semistable at £ and
Pla,, is irreducible. If 5 is modular, then p is modular.

Applying the Langlands-Tunnell theorem (see [G]) as in [Ru|, we con-
clude:

Corollary 6.3. Suppose that E is an elliptic curve over Q with good or
multiplicative reduction at 3, and that [Q(E[3]) : Q| = 16 or 48. Then E
is modular.

We refer to {Ru] for the deduction of theorem 1.1 from corollaries 6.2
and 6.3.

7. SKETCH OF PROOF

7.1. Vague principle. A formulation of the problem such as theorem 6.1
enables us to use tools from commutative algebra. We shall use infor-
mation about the vertical maps in (5) and one of the horizontal maps to
prove that the other horizontal map is an isomorphism. The information
about Ry — Rg comes from the description of tangent spaces in terms of
Galois cohomology (4); the information about Ty — Tg comes from the
connection with congruences between modular forms.

7.2. Some preparation. We begin with two reduction steps and a defi-
nition.

One can check that if 4 is a character G — £* unramified outside £,
then thearem 6.1 holds for g if and only if it holds for 7 = 5 ® x. Indeed
if we define ¢% : R — T using 7 instead of p, then we obtain a natural
commutative diagram

Ry —Z R
J'lﬁ:: l¢'g
TE —l T;—: .

We can therefore assume that for each prime p # £ such that plg, is
reducible (i.e., P or 8§ ), we have 5’ # 0.
We also find that theorem 6.1 is well-behaved under extension of scalars.
More precisely, suppose that K’ is a finite extension of K. Defining
¢% : Ry — Tg

using K’ instead of K, we find that there is a natural commutative diagram

Ry @a O Rg;
lrbzm l%
Ty R0 & = T,
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where (' is the ring of integers of K’. One deduces from this that if theorem
6.1 holds for some K, then it holds for all . In particular, we may assume
that there is an O-algebra homomorphism Ty — O.

In view of remark 3.7, we must exercise extra care with primes p such
that g|g, is of type V . We denote by P the set of such vexing primes. (In
[W} and [TW], it is assumed that P consists only of primes which are not
congruent to —1 mod £.)

7.3. The case ¥ = §. Recall that the strategy of Wiles and Taylor-Wiles
in the “minimal case” is to choose, for each n > 1, a certain set @ = Q,,
consisting of primes congruent to 1 mod £*. These sets @ are chosen so that
R and Ry can be topologically generated as an O-algebra by r elements,
where r is the cardinality of Q. Moreover the choice is made so that Tg
and Ty can be related using their natural structure as algebras over a group
ring where the group is generated by r elements. One then proves ¢y is an
isomorphism using the arguments of §3 of [TW] and Chapter 3 of {W], or
using the Taylor-Wiles-Faltings criterion ([TW], Appendix or {DDT], §3.4).
Alternatively, using Rubin’s simplification of the isomorphism criterion (see
[dSRS]}, it suffices to choose a single set @ = @Q,, as in [TW}, where n is
made explicit.

Qur strategy is the same, but the set P introduces several complications.
A minor complication is that we use a version over O of the isomorphism
criterion (see §5 of [D]). We shall now state such a version along the lines
of Rubin’s simplification, leaving it as an exercise to make the necessary
modifications to the proof of Criterion II of [dSRS].

We fix an integer r > 0 and consider power series rings

O8] =0[[81,-.. ,8]] and  O[X)=0[X1,...,X]]
Let m denote the maximal ideal of @[[5]]. Recall that the polynomial

f@)=J=+9
=0

satisfies f(n)/(r + 1})! = length ,(O[[S]}/m") for all integers n > 1. We
also fix O-algebra homomorphisms

(6) OISl - O(X)| = R—T

with Of[X]] — R and R — T surjective. Suppose that T/(5,...,8.)T is
finitely generated as an (-module; let s denote its rank and ¢ the @-length
of its torsion.

Theorem 7.1. Suppose that there are positive integers d and N such that
l.d>st+s+t,
2. fIN)+ f(dN —d) — f(dN) > 0,
3. OS)/mN — T/m T is injective.
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Then
o RBf(S1,...,5)R—T/(5,...,8)T is an isomorphism,
o T/(S1,...,8:)T is a local complete intersection,

e s>0andt=0.

We shall apply the critericn with R = Ry and T = T, for a certain set
@ as in [TW]. We shall explain below how r, d, N and Q are to be chosen,
and the maps in (6) are to be defined.

For arbitrary X, let I denote the kernel of the map Ry — Rp. One can
check that the kernel of the natural surjection

Te/IgTs — Ty

is torsion. In particular, the rank of Tx/IsTx is independent of £, and
we denote it s’. We derote by # the O-length of the torsion submodule
of Tp/IpTp. Weset d = s't' + &' + t/, v = dim; H}(Gq,ad°5(1)) and
choose N so that the inequality of theorem 7.12 is satisfied. (Note that
F(N)+ f(dN — d) ~ f(dN) is a polynomial with leading term NT*1)
By the same Galois cohomology argument as in §4 of [TW) {or see [dSh]
or [DDT]), we choose a finite set of primes Q such that
* #Q =r,
¢ Rg can be topologically generated as an (J-algebra by r elements,
e if g € {, then the following hold:
— g =1 mod ¥,
~ p is unramified at g;
— p(Frob ;) has distinct eigenvalues.
Since Rg is generated by r elements as an -algebra, we can define
a surjective homomorphism O[[X]] — Rg. Let G denote the maximal
quotient of [] . ,(Z/qZ)* of &-power order. We endow Rpug, hence Rg,
with the structure of an O[G]-algebra as in [TW), appendix (or see [dSh]
or [DDTY)). Choosing generators g,... , g, for g, we define a surjection

o[[s]] — O[G]
S = gi-1

whose kernel is contained in m¥. We then define the ®-algebra homomor-
phism O[[S]] — O[[X]] so that the diagram

ofsll ——— Oo[X]]

0[G] Rg
conumutes,

The verification of hypothesis 3 can be viewed as the main obstacle in
improving the methods of [TW] and [W] to cover the setting of theorem 6.1.

Recall that Taylor and Wiles use a method of de Shalit to prove that (under
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their hypotheses), Tq is free over O[G] and Tg/IoTo — Ty (see §2 of
[TW] or [dShj, or see §4.3 of {DDT] for an alternative argument using the
g-expansion principle). The key observation made in [D] is that it suffices
to prove the following:

Lemma 7.2. There exists a nonzero Tg-module which is free over O[G).

The proof of the lemma is very technical and is related to the methods
of [DT}. We refer the reader to §4 of [D] for details, mentioning here only
that it relies on the Jacquet-Langlands correspondence and a cohomological
construction. We also point out that to prove the lemma and other results
used below on the fine structure of the algebras Tx, one first realizes them
as completions of Hecke algebras acting on spaces of modular forms, (See
for example §4.1 and §4.2 of [DDT}.)

To verify that the hypothesis 1 of the theorem is satisfied, one uses that
O{G] — Rq was defined so that the augmentation ideal of @[G] maps onto
Io = ker (Rg — Ryp). Thus we have

&= ranko(Tq/IqTQ) = rankng = ranko(Tp/Iqu) = s"‘

The arguments of [TW)] discussed (or [DDT] §4.3) can be used to show that
the natural map

(7) Treug/(S1,...,5)Trug — Tp
is an isomorphism (see (D}, lemma 3.3). One then deduces that

Trug/IPueTrug — Tp/Ip,

from which it follows that ¢t < ¢ and d < d'.
We now apply theorem 7.1 to conclude that

Ro/lq — To/IqTq

is an isomorphism, and these rings are complete intersections and torsion-
free over ¢). From this follows theorem 6.1 in the case & = @.

7.4. The case of arbitrary X. Qur situation now is that we have a
commutative diagram of surjective O-algebra homomorphisms

RE—M—’TE

Rg —> . T:
we know that the bottom row is an isomorphism and the rings are local
complete intersections, and we wish to prove this holds for the top row.
Recall that we have assumed the existence of a map Ty — @ of O-

algebras. Such a homomorphism necessarily corresponds to newform f
with coefficients in O such that py is a deformation of p of type 0.
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For arbitrary ©, we write pg for the kernel of Rg — @, and PBg for
the kernel of 7 : Tg — O. We consider the O-module &g = pg/pd and
the O-ideal e = To(Anny,Ps). We omit the subscript © when & = .
According to the Wiles-Lenstra criterion, Criterion I of [dSRS]|, we know
that

length (®) = length 5 (Q/n),
and we wish to prove that

length o(®5) < length (O /nx).
Using (4), one obtains as in §4.2 of [Ri2]

(8) length o($x) < length o(®) + > dp,
pEE

where d,, is the length of

o HYGp, ad"p; @0 K/O(1)) ifp # &

o O/f(ae(f)* — ¥s(£)) if p = £ does not divide Ny;

s ( otherwise.
(We have used here that py is of type 0.)

Using that Ty is Gorenstein for £ O P (Wiles’ generalization of results
of Mazur and others discussed in [Ti]}, together with Wiles’ calculations of
the change in 7 discussed in §4.3 of [Ri2], we find that

(9) length o(0/ns) > lengtho(O/ne) + Y dy,
pEL~FP

(provided £ > P). We complement this with the inequality
(10) length o(O/np) > length o (O/n) + > d,

peP
established by lemma 3.6 of [D).

Applying the Wiles-Lenstra criterion together with (8), (9) and (10), we
conclude that ®x is an isomorphism if £ 3 P. (This is all that is proved in
[D] and all that is needed for the corollaries.) We leave it as an exercise for
the reader to treat the case of arbitrary © by showing that if B, C P C X,
then ] cp (p+ 1) is an element of m5(J), where J is the annihilator in
Ty, of the kernel of Ty; — Ty_p,.
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