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1 Introduction

Letp ≥ 5 be a prime, and℘ a place ofQ above it.We denote byGQ the absolute
Galois group Gal(Q/Q). For a finite fieldk of characteristicp, an absolutely
irreducible representationρ : GQ → GL2(k) is said to arise from a newform of
weightk and level a positive integerM if ρ is isomorphic to the reduction mod
℘ of the℘-adic representation associated to a newform of weightk and level
M. Note that then it is known thatρ also arises from a newform of weight 2
and level dividingMp2. Thus we assume without loss of generality thatρ arises
from a newform of weight 2 and level a positive integerN .

The question of “raising” the level ofρ, i.e., determining when aρ arising
from a newform of weight 2 and levelN as above also arises from a newform of
weight 2 and levelN ′, whereN dividesN ′, has beenwidely studied by numerous
mathematicians (cf. [10,8,5,2]).

In the first paper that considers this kind of question [10], as well as in most
of the papers dealing with similar questions (e.g., [2]), the cases considered
correspond toN ′/N being coprime top. Some discussion for the case where
N ′/N is divisible byp can be found in [8] and [5]. The objective of this paper is
to study further the question of level raising in the case wherep dividesN ′/N .

Let q ≥ 5 be a prime different fromp and, for any positive integerM, let
Γ0(M) andΓ1(M) denote the classical modular subgroups inSL2(Z). We prove
in this paper the following theorem:

Theorem 1 If ρ : GQ → GL2(k) is anabsolutely irreducible representation, for
k afinite field of characteristic p, that arises fromanewform inS2(Γ0(N)∩Γ1(q))

of level divisible byN , for a squarefree positive integerN coprime topq, then
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it also arises from a newform inS2(Γ0(Np
r)∩ Γ1(q)) of level divisible byNpr ,

for all integersr ≥ 3.

In most of the works studying the problem of level raising, the approach
adopted has essentially followed that in Ribet’s originalmethod in [10]. (See also
[2].) Basically, one has to study in detail the degeneracy maps and the main step
is to determine the kernel of a natural degeneracy map between some Jacobian
varieties. In the case of [10], the kernel of the degeneracy mapJ0(M)2 →
J0(Mp), whereM is not divisible byp, is determined completely with the help
of a result of Ihara and, in a certain technical sense, shown to be irrelevant (or
Eisensteinin the terminology below). WhenM is divisible byp, this kernel in
general contains an abelian variety and was studied in [5]: there it was proved
that the group of connected components of the kernel is irrelevant.

The approach we have taken in this paper to obtain the result in Theorem 1
is again similar. However, in our present case, the Jacobians used are no longer
those coming from elliptic modular curves, but from Shimura curves. We prove
an analog of Theorem 1 of [5]. In order to state this technical result in a precise
manner, we first recall some definitions.

Let B be an indefinite quaternion algebra overQ that is ramified at an even
number of primesl1, . . . , ln. ThenB has reduced discriminantD = ∏

i

li . Let

N ≥ 1 be an integer that is relatively prime toD. Suppose thats is a prime
dividingN .

The algebraBs
def= B ⊗ Qs is isomorphic to the matrix algebraM2(Qs). Let

Os,m =
(

Zs Zs

smZs Zs

)
be the canonical Eichler order of levelsmZs in M2(Qs).

We define the groupsΓ0(s
m,Zs) andΓ1(s

m,Zs) to be:

Γ0(s
m,Zs) = SL2(Zs) ∩Os,m

Γ1(s
m,Zs) = {x ∈ Γ0(s

m,Zs) | x ≡
(∗ ∗
0 1

)
modsmOs,0}.

Let O(N) be aZ-Eichler order inB of levelN . (We will simply useO for
theZ-Eichler order of level 1.) Letsm be the exact power ofs dividingN . For
such ans, let is : Q ↪→ Qs be the canonical embedding. This embedding can
be extended to an embedding, also denoted byis , of B in M2(Qs), such that
is(O(N)) is the canonical Eichler orderOs,m of level smZs ([15], pp. 108–109).
The inverse image ofΓ0(s

m,Zs) underis isO1(N), the set of elements ofO(N)

of (reduced) norm 1. Similarly, we denote byO1 the set of elements ofO of
(reduced) norm 1. Letq ≥ 5 be an auxiliary prime not dividingND. We define
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the congruence subgroupsΓ0(N,D) andΓ1(N,D) as follows:

Γ0(N,D) = {x ∈ O1(N)| is(x) ∈ Γ0(s
m,Zs)

for all s|N andiq(x) ∈ Γ1(q,Zq)} (1)

Γ1(N,D) = {x ∈ O1(N)| is(x) ∈ Γ1(s
m,Zs) for all s|N}.

Note that the definition ofΓ0(N,D) is a twisted form of the usual one.
The reason for this deviation from the usual convention is to ensure that the
congruence subgroups considered throughout this paper are torsion-free.

SinceB is unramified at the infinite place ofQ, it follows thatB ⊗Q R is
isomorphic toM2(R). Upon fixing such an isomorphism, we obtain an embed-
ding i∞ : O1(N) ↪→ SL2(R). The action ofSL2(R) on the Poincar´e upper half
planeH = {τ ∈ C| Im(τ ) > 0}((

a b

c d

)
, τ

)
�→ aτ + b

cτ + d

implies that the groupsΓi(N,D) (i = 0,1) also act onH. WhenD > 1, the
quotient{±1}Γi(N,D)\H (i = 0,1) has a natural structure of compact con-
nected Riemann surface. It is called aShimura curve, which we shall denote by
Shi(N,D). (WhenD = 1, the quaternion algebraB is thematrix algebraM2(Q).
The quotients{±1}Γi(N,1)\H (i = 0,1) are known to be non-compact. Their
compactifications are the classical modular curvesXi(N) (i = 0,1) described
in the introduction of [9].) We consider Shimura’s canonical model overQ for
these curves.

In the rest of this introduction, for the sake of clarity of notation, we restrict
our discussion to the casewherei = 1.Wenote that the same results are available
for i = 0.

Let J1(N,D) denote the Jacobian ofSh1(N,D). LetM be a positive divisor
of N . For every divisord of N/M, there is a holomorphic degeneracy map
αd : Sh1(N,D)→ Sh1(M,D) which is deduced from the mapz �→ dz onH
by passing to the quotients. By Picard functoriality, we obtain a morphism of
abelian varietiesα∗d : J1(M,D)→ J1(N,D) for eachd dividingN/M. If τ(x)
denotes the number of distinct positive divisors of a positive integerx, then let
α be the map

α :=
∏

d|N/M

α∗d : J1(M,D)τ(N/M) → J1(N,D).

Fix a primep ≥ 5 with (p,NDq) = 1. Consider the JacobiansJ1(Npr,D).
They have an action for each primer by the well-known Hecke operatorsTr ,
induced byPicard functoriality, and that isQ rational (Sect. 3 of [11] andChapter
3 of [14]). We use these operators only forr coprime toNDpq and denote the
commutative (Z-)algebra generated by these operatorsTr in the endomorphism
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ring of J1(Npr,D) by T1
Npr ,D. A maximal idealm of T1

Npr ,D is “Eisenstein” if
and only if the action ofGQ on the semisimplification of the(T1

Npr ,D/m)[GQ]-
moduleJ1(Npr,D)[m], the intersection of the kernels of the elements ofm
acting onJ1(Npr,D), factors through its maximal abelian quotient. By a Hecke
module being Eisenstein, we mean that all the maximal ideals in the support
of the module are Eisenstein (this definition of Eisenstein is the analog in our
present context of the one used in [5]: see Remark 1 after Theorem 1 ofloc. cit.).

We prove the following geometric result:

Theorem 2 LetN ≥ 4 be an integer coprime toDq and letp ≥ 5 be a prime
not dividingNDq. Then, forr ≥ 1, the group of connected components of the
kernel of the degeneracy mapα : J1(Npr,D)2 → J1(Np

r+1,D) is Eisenstein.
Further, we haveker(α)0 = {(α∗p(x),−α∗1(x)) | x ∈ J1(Np

r−1,D)}.
Remark.We remind the reader here that an exact analog of Theorem 2 remains
true if J1 is replaced byJ0.

Usingmodular symbols, ker(α)/ ker(α)0 canbeproved to beEisensteinwhen
D = 1. In Theorem 1 of [5] the proof is written forJ0, but the same proof works
for theJ1 situation. For this reason, henceforth we assumeD > 1 throughout
this paper.

Modular symbols will not yield Theorem 2 above forD > 1, for the simple
but compelling reason that forD > 1 the corresponding Shimura curves have
no cusps!

As we have proven in Theorem 2 that ker(α)/ ker(α)0 is Eisenstein in the
setting of Shimura curves, whereα is applied toJ0 instead ofJ1, we can use the
methods of [2] and [5] to raise thep-levels modp of newforms corresponding to
non-Eisenstein maximal ideals while preserving levels at other primes. Though
a more exhaustive result about producing congruences in the “(p, p) case” (see
[5]), while preserving prime-to-p levels, can be deduced from Theorem 2 and
results in [10], [2] and [5], we content ourselveswith what was stated in Theorem
1. We sketch how the proof of Theorem 1 follows, by techniques that are now
standard, from Theorem 2.

Proof of Theorem 1.This follows in the case when the number of prime divisors
of N is even from Theorem 2, withα applied toJ0 instead ofJ1, after using
the Jacquet-Langlands (JL) correspondence (cf. Sect. 5 of [2] for instance) to
switch to an indefinite quaternion algebra ramified at exactly the places dividing
N , and using methods of [5] (see proof of Theorem 2 of [5]). When the number
of prime divisors ofN is odd the corollary follows from the easy analog of
Theorem 2 for definite quaternion algebras (see Sect. 2 of [2]), together with the
JL correspondence and the methods of [5].

The rest of the paper is devoted to proving Theorem 2.
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2 The congruence kernel

Let Γ be a congruence subgroup ofO1. Let Γ̂ := lim← Γ/N , whereN runs

through all the normal subgroups of finite index inΓ . This is known as the
profinite completion ofΓ . Let Γ := lim← Γ/N , whereN runs through all the

congruence subgroups ofO1 and contained normally inΓ . Note that such anN
is automatically of finite index inΓ . The groupΓ is known as the congruence
completion ofΓ .

The congruence kernelCΓ is by definition the kernel of the natural map
Γ̂ → Γ . (See [12] for a survey on congruence kernels.) We have the following
exact sequence:

0−→ CΓ −→ Γ̂ −→ Γ −→ 0. (2)

Proposition 3 If Γ ≤ Γ ′ are congruence subgroups inO1, then the natural
mapCΓ → CΓ ′ is an isomorphism.

Proof.We begin by remarking that by considering the intersection of all the
conjugates ofΓ in O1, we get a congruence subgroupΓ ′′ that is normal in
O1 contained inΓ ′. Then if we prove that the natural mapsCΓ ′′ → CΓ and
CΓ ′′ → CΓ ′ are isomorphisms, as the latter map factors through the former map,
it follows thatCΓ → CΓ ′ is an isomorphism. Hence it is enough to prove the
statement withΓ normal inO1: we assume this to be the case. Thus we have a
surjective homomorphismΓ ′ → Γ ′/Γ asΓ is a congruence subgroup.

Consider the commutative diagram

0−→ CΓ ′ −→ Γ̂ ′ −→ Γ ′ −→ 0
↑ ι ↑ ι̂ ↑ ι

0−→ CΓ −→ Γ̂ −→ Γ −→ 0,

where the vertical maps are all induced by the inclusion ofΓ in Γ ′. The mapŝι
andι are injective. Therefore, by the Snake Lemma, it follows thatι is injective
and there is an exact sequence

0−→ CΓ ′/CΓ −→ Γ̂ ′/Γ̂ −→ Γ ′/Γ −→ 0.

In fact, the mapΓ̂ ′/Γ̂ −→ Γ ′/Γ is an isomorphism since both are isomorphic
toΓ ′/Γ . The isomorphismΓ̂ ′/Γ̂ � Γ ′/Γ follows from the fact thatΓ is afinite
indexsubgroup ofΓ ′, while the isomorphismΓ ′/Γ � Γ ′/Γ is a consequence of
the fact thatΓ is acongruencesubgroup ofΓ ′. Thus, it follows thatCΓ → CΓ ′
is actually an isomorphism.

As the congruence kernelCΓ does not dependon the choice of the congruence
subgroupΓ , we will henceforth useC to denote it.
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We write down the following exact sequence, forΓ a congruence subgroup
of O1, which follows from (2), for later use:

H 1(Γ ,Z/(Z) −→ H 1(Γ̂ ,Z/(Z) −→ H 1(C,Z/(Z)Γ̂ −→ H 2(Γ ,Z/(Z).
(3)

3 A group theory principle

We will only consider torsion-free congruence subgroupsΓ such that the corre-
sponding Riemann surfaceΓ \H has a model overQ, and denote its canonical
model overQ byXΓ .

We recall comparison isomorphisms between group, sheaf and ´etale coho-
mology groups that we need below, and the definition of Eisenstein maximal
ideals of Hecke algebras acting on these cohomology groups in each case. We
use [3] and [4] as references. Though these references work with classical mod-
ular curves (i.e., the case ofD = 1), the results that we quote (and their proofs)
are valid in the present context of Shimura curves associated to congruence sub-
groups of indefinite, non-split quaternion algebras overQ. Also note that unlike
in the references we do not have to work with parabolic cohomology as in the
case ofD > 1, the congruence subgroupsΓ are co-compact.

For a prime( we consider the cohomology ofΓ , denotedHi(Γ,Z/(Z), the
sheaf cohomology group ofXΓ , denotedHi(XΓ ,Z/(Z), and the ´etale cohomol-
ogy group ofXΓ , denotedHi

et (XΓ ,Z/(Z), for integersi (these groups vanish for
i �= 0,1,2). LetJΓ be the Jacobian ofXΓ , and we denote byJΓ [(] its (-torsion.
Then we have canonical isomorphisms of abelian groups:

Hi(Γ,Z/(Z) � Hi(XΓ ,Z/(Z), (A)

H i(XΓ ,Z/(Z) � Hi
et (XΓ ,Z/(Z), (B)

H 1(Γ,Z/(Z) � JΓ [(]. (C)

For(A), where the hypothesis thatΓ is torsion-free is necessary, and(B), we
refer to Sect. 1 of [3], while(C), where again the hypothesis thatΓ is torsion-free
gets used, is deduced from(A) and Sect. 6 (page 253) of [4]. In Sect. 3 of [3],
for Hi(Γ,Z/(Z), Hi(XΓ ,Z/(Z) andHi

et (XΓ ,Z/(Z), and Sect. 3 of [11], for
JΓ [(], endomorphisms by Hecke operatorsTr , with r a prime, are defined on
all theZ/(Z-vector spaces above. We will consider the action of all but finitely
manyTr ’s: for instance we will ignore the action ofTr ’s for placesr at which
eitherB is ramified, or at which there is a congruence condition onΓ . The Hecke
action onHi

et (XΓ ,Z/(Z) andJΓ [(], that carry an action ofGQ, isQ-rational.
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We consider theZ/(Z-algebra generated by theTr ’s in the ring of endomor-
phisms in each case, and by abuse of notation denote it byT in each case. The
isomorphisms(A) and(B) are equivariant for the action ofTr (see Sect. 1 of
[3]), as also is(C) (see (6.9a) of [4]: there the Hecke action onJΓ is defined
using Albanese functoriality, while we have defined it using Picard functoriality
(Sect. 3 of [11]), and thus the Hecke equivariance of(C) follows from [4] as the
operatorT ∗r of [4] is ourTr ).

Wedefineamaximal idealmof theHeckealgebraT actingonHi
et (XΓ ,Z/(Z)

to beEisenstein, if the action ofGQ on the semisimplification of the(T/m)[GQ]-
moduleHi

et (XΓ ,Z/(Z)[m] factors through themaximal abelian quotient ofGQ.
We define subquotients of the Hecke modulesHi

et (XΓ ,Z/(Z) to beEisenstein,
if and only if the maximal ideals in their support areEisenstein.

Using the canonical Hecke-equivariant isomorphisms(A), (B) and(C), we
define a maximal idealm for Hecke algebras acting onHi(Γ,Z/(Z), Hi(XΓ ,

Z/(Z) andJΓ [(] to beEisensteinif the corresponding maximal ideal (via the
isomorphisms above) of the Hecke algebra acting onHi

et (XΓ ,Z/(Z) in the first
two cases, andH 1

et (XΓ ,Z/(Z) in the last, is Eisenstein.We have a corresponding
definition of subquotients of these Hecke modules being Eisenstein. This is con-
sistent with the definition of the introduction because of the Hecke equivariance
of (A), (B) and(C), and as we have an isomorphism ofGQ-modules

H 1
et (XΓ ,Z/(Z) = Hom(JΓ [(], µ(), (D)

whereµ( is the Galois module of(th roots of unity.
(As a technical aside, also note that, although using the going-up theoremwe

can in a natural way considermaximal ideals “associated to”m inHecke algebras
generated by different sets of almost allTr ’s (see the discussion inSect. 7 of [11]),
because of the Cebotarev density and Brauer-Nesbitt theorems, and congruence
relations, this definition ofEisensteinis not sensitive to which set ofalmost all
Hecke operatorsTr we elect to consider the action of.)

LetA andB be torsion-free congruence subgroups ofO1, and denote byE
the group〈A,B〉 generated byA andB inO1. Note that the restrictionmaps from
any of the cohomology groupsHi(A,Z/(Z),Hi(B,Z/(Z) orHi(E,Z/(Z) to
Hi(A ∩ B,Z/(Z) are equivariant with respect to the Hecke operatorsTr for
almost all primesr (for instance all primes at which there are no congruences
conditions onA ∩ B). Thus we can pull back a maximal ideal of the Hecke
algebra generated by suchTr ’s acting on the cohomology groups (of any degree)
associated toA ∩ B, to the cohomology groups (of the same degree) associated
toA, B andE via these restriction maps.

ForΓ ≤ Γ ′ torsion-free congruence subgroups ofO1, with Γ normal inΓ ′,
and( a prime, we have the long exact sequence in cohomology:

0→ H 1(Γ ′/Γ,Z/(Z)→ H 1(Γ ′,Z/(Z)→ H 1(Γ,Z/(Z)Γ/Γ
′

→ H 2(Γ ′/Γ,Z/(Z)→ H 2(Γ ′,Z/(Z) (4)
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(see Proposition 2 of [16] for instance). We consider the standard action of the
Hecke operatorsTr ’s (for almost all primesr) on the groupsHi(Γ ′/Γ,Z/(Z)
defined analogously as in Sect. 3 of [3], which makes the long exact sequence
(4) Hecke equivariant. Then we defineH 1(Γ ′/Γ,Z/(Z) to be Eisenstein if its
image inH 1(Γ ′,Z/(Z) is Eisenstein, andH 2(Γ ′/Γ,Z/(Z) to be Eisenstein
if its image inH 2(Γ ′,Z/(Z) and the cokernel of the mapH 1(Γ ′,Z/(Z) −→
H 1(Γ,Z/(Z)Γ/Γ

′
as in (4), are both Eisenstein.

Lemma 4 ForΓ ≤ Γ ′ torsion-free congruence subgroupsofO1, withΓ normal
in Γ ′, and( a prime, the groupsHi(Γ ′/Γ,Z/(Z), for i = 1,2, are Eisenstein.

Proof. The proof follows directly from the considerations in Proposition 4 of
Sect. 3 of [2]. Namely, by the long exact sequence (4) and the Hecke equivariant
isomorphism(A) betweenH 1(Γ,Z/(Z) andH 1(XΓ ,Z/(Z) (note thatΓ is
torsion-free), it is enough to prove that the kernel and cokernel of the map

H 1(XΓ ′,Z/(Z)→ H 1(XΓ ,Z/(Z)Γ
′/Γ

are Eisenstein, and thatH 2(XΓ ′,Z/(Z) is Eisenstein. By the Hochschild-Serre
spectral sequence

Hi(Γ ′/Γ,Hj(XΓ ,Z/(Z))⇒ Hi+j (XΓ ′,Z/(Z),

this will follow if we prove thatHi(Γ ′/Γ,Hj(XΓ ,Z/(Z)) is Eisenstein for
i = 0,1,2 and j = 0,2, and thatH 2(Γ ′,Z/(Z) is Eisenstein. We claim
thatH 0(XΓ ,Z/(Z) andH 2(XΓ ,Z/(Z) (and analogouslyH 2(XΓ ′,Z/(Z)) are
Eisenstein asΓ (resp.,Γ ′) is a congruence subgroup. From Sect. 3 of [2] it
follows that the action ofGQ on the corresponding ´etale cohomology groups
H 0

et (XΓ ,Z/(Z) andH 2
et (XΓ ,Z/(Z) (andH 2

et (XΓ ′,Z/(Z)) factors through its
maximal abelian quotient, and then the Hecke equivariance of(B) proves our
claim. This proves the lemma.

We comenow to the group theoretic principle in the title of this section, which
is the analog in the present setting of the group theoretic principle of Sect. 1 of
[6], and that is the key to the proof of Theorem 2 in the next section.

Proposition 5 LetA,B be torsion-freecongruencesubgroupsofO1and letE =
〈A,B〉be thegroupgeneratedbyAandB inO1. Formanon-Eisensteinmaximal
ideal of residuecharacteristic(of theHeckealgebraactingonH 1(A∩B,Z/(Z),
the following sequence is exact:

H 1(E,Z/(Z)m → H 1(A,Z/(Z)m ⊕H 1(B,Z/(Z)m → H 1(A ∩ B,Z/(Z)m,
(5)

where the first map is the restriction while the second is the difference of the
restriction maps, and the subscriptm denotes localisation at the maximal ideal
m.
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Proof.We claim that, to prove the proposition, it is enough to prove that, for any
congruence subgroupΓ and a non-Eisenstein maximal idealm as above, we
have the isomorphism

H 1(Γ,Z/(Z)m � H 1(C,Z/(Z)Γ̂m, (6)

whereC is the congruence kernel defined at the end of Sect. 2. SinceH 1(Γ,

Z/(Z) = H 1(Γ̂ ,Z/(Z), the isomorphism (6) is an immediate consequence of
(3) and Lemma 4.

To justify the claim, first note that (6) implies that the restriction mapH 1(Γ ′,
Z/(Z)m → H 1(Γ,Z/(Z)m is injective for any congruence subgroupsΓ ≤ Γ ′
of O1. Now if res(h1) = res(h2) = g, say, withh1 ∈ H 1(A,Z/(Z)m, h2 ∈
H 1(B,Z/(Z)m andg ∈ H 1(A ∩ B,Z/(Z)m, then under the isomorphism (6),

applied withΓ = A ∩ B, g corresponds to an elementg̃ in H 1(C,Z/(Z)Â∩Bm .
But asg = res(hi) for i = 1,2, invoking (6) again we deduce thatg̃ is in fact in
H 1(C,Z/(Z)Êm, asE by definition is generated byA andB, andE is dense in
Ê. Another use of (6), this time withΓ = E, proves the claim. This completes
the proof of the proposition.

Remark.In [6], thepropositionwasproved for torsion-freecongruencesubgroups
A andB of SL2(Z). In the case ofSL2(Z), the exact sequence (5) is an easy
consequence of the exact sequence

H 1
c (〈A,B〉,Z/(Z)m → H 1

c (A,Z/(Z)m ⊕H 1
c (B,Z/(Z)m

→ H 1
c (A ∩ B,Z/(Z)m,

which in turn is a direct consequence of modular symbols. Here,m is a non-
Eisenstein maximal ideal and the subscriptc stands for compactly supported
cohomology, and by compactly supported group cohomology, wemean the com-
pactly supported cohomology of the corresponding affine curve. In the present
work we have replaced the use of modular symbols by the use of the congruence
kernel.

4 Proof of Theorem 2

We start by translating what is to be proved into statements about group co-
homology, and remind the reader that we assumeD > 1. We prefer to work
with finite coefficients, and we reduce to working with such by the following
reasoning. Recall from the introduction that we are studying the degeneracy
map α : J1(Npr,D)2 → J1(Np

r+1,D) of Theorem 2, whereJ1(Npr,D)

andJ1(Npr+1,D) are the Jacobians of the modular curvesSh1(Np
r,D) and

Sh1(Np
r+1,D), and we are denoting the connected component of ker(α), the

kernel ofα, by ker(α)0. Let x ∈ ker(α)/ ker(α)0 be an element of order(, for
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some prime(. Thus(x ∈ ker(α)0, and as ker(α)0 is an abelian variety and hence
(-divisible, there is ay ∈ ker(α)0 such that(x = (y.We deduce that there exists
x ′ in ker(α) that maps tox and such that(x ′ = 0. Thus we see that to prove
the assertion pertaining to the group of connected components of Theorem 2, it
is sufficient to compute the kernel, ker(α(), of the mapα( : J1(Npr,D)[(]2 →
J1(Np

r+1,D)[(] induced byα on the(-torsion of the Jacobians, and show that
the quotientK( := ker(α()/{(α∗p(x),−α∗1(x)) : x ∈ J1(Np

r−1,D)[(]} is Eisen-
stein, for every prime(.

We interpret the degeneracy map in the group cohomology setting. LetA =
Γ1(Np

r,D). Let π be the matrix

(
p 0
0 1

)
and letf1, f2 be elements ofH 1(A,

Z/(Z). By abuse, we again denote byα the degeneracy map on the group
cohomology;α((f1, f2)) is the elementf of H 1(Γ1(Np

r+1,D),Z/(Z) given
by f (x) = f1(x) + f2(πxπ

−1), for x ∈ Γ1(Np
r+1,D). We can also write

α((f1, f2)) as the sumα∗1f1 + α∗pf2, whereα∗1 is the restriction map andα∗p is
conjugation byπ . Note thatα∗1 andα∗p are equivariant with respect to the action
of the Hecke operatorsTr that we consider; namely,r coprime toNDpq, where
q is the auxiliary prime that occurs in (1) in the introduction (see also paragraph
before the statement of Theorem 2 in the introduction). It is the kernel ofα that
we determine.

Let α((f1, f2)) = 0. LetB = πΓ1(Np
r,D)π−1 and

E := 〈A,B〉.
It is easy to see thatE = Γ1(Np

r−1,D). Letm be any non-Eisenstein maximal
ideal of the Hecke algebra (generated by theTr ’s for r coprime toNDpq as be-
fore) acting onH 1(E,Z/(Z).Wemay also regardm, by pull back under restric-
tionmapswhichareequivariant for theTr ’s thatweconsider, asamaximal ideal of
theHeckealgebrasactingonH 1(A,Z/(Z),H 1(B,Z/(Z)andH 1(A∩B,Z/(Z).
Define elementsh1 ∈ H 1(A,Z/(Z)m andh2 ∈ H 1(B,Z/(Z)m by h1(x) :=
−f2(x) andh2(πxπ−1) := f1(x)wherefi (i = 1,2) are now considered as ele-
ments inH 1(A,Z/(Z)m. The subscriptm, as in Proposition 4 of Sect. 3, stands
for localisation at the maximal idealm. As α((f1, f2)) = 0, we conclude that
the restrictions ofh1 andh2 to H 1(A ∩ B,Z/(Z)m coincide. Applying Propo-
sition 5, it follows that there is ag ∈ H 1(E,Z/(Z)m such that its restriction
to H 1(A,Z/(Z)m andH 1(B,Z/(Z)m is h1 andh2 respectively. This together
with the isomorphism(C) of the previous section, and its Hecke equivariance,
proves thatK( is Eisenstein for every prime(, and we deduce that the group of
connected components of the degeneracy map of the theorem is Eisenstein.

After noting the identificationof the cotangent spaceof JacobiansJ1(Np
r,D)

with the spaceS2(Γ1(Np
r,D),C) of cusp forms of weight 2, and the fact that

the connected component of the kernel ofα of Theorem 2 certainly contains
{(α∗p(x),−α∗1(x)) | x ∈ J1(Np

r−1,D)}, to prove the description in Theorem 2
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of ker(α)0 to be correct, it suffices to show that iff, g ∈ S2(Γ1(Np
r,D),C)

satisfyf (z) + g(pz) = 0 for z ∈ H thenf (z) = f1(pz) andg(z) = −f1(z)
for somef1 ∈ S2(Γ1(Np

r−1,D),C). This follows from the analog of the results
of [1] for cusp forms for congruence subgroups of quaternion algebras that can
be proved directly using the adelic description of modular forms. We denote by
G the algebraic group overQ whoseQ-valued points is theB of the introduc-
tion. Then the automorphic function onG(AQ) corresponding tog is fixed under
the action of the open compact subgroups ofG(AQ) corresponding to the con-
gruence subgroupsA andB, and hence is fixed by the open compact subgroup
corresponding toE. From this the description of the connected component of
ker(α) of the theorem follows, thus finishing the proof of Theorem 2.

5 Concluding remarks

We conclude the paper with some remarks about possible refinements of Theo-
rem 2.

• The methods of this paper do not directly seem to yield more precise results
about the group of connected components that were proven to be Eisenstein
above.We would make the guess that the kernel is connected for theJ1 situa-
tion, while it is the image of the Shimura subgroup in theJ0 situation. (In fact,
it is easy to see that the kernel ofα : J0(Npr,D)2 → J0(Np

r+1,D) con-
tains{(x,−x) | x ∈ Σ(Npr,D)}, whereΣ(Npr,D) denotes the Shimura
subgroup ofJ0(Npr,D).) Indeed, in the ellipticJ0 case, in many cases when
the kernel is known to be finite, the kernel has been proven to be the image
of the Shimura subgroup (e.g., [10,8]).

• Our guess on the precise description of the kernel in our present case may
follow from a more careful study of the exact sequence (3), withΓ replaced
by A, B, A ∩ B andE, and more detailed information about congruence
subgroups ofSL2(Zp) (note that the congruence completions ofA, B andE
are identical away fromp).

• Wehave the following information about the closureΓ of the groupΓ1(Np
r,

D) (r ≥ 1) inSL2(Zp) ([13]). The dimension overZ/pZ of the cohomology
groupsHi(Γ,Z/pZ) for i = 0,1,2,3 is 1,2,2,1 respectively. Notice that
these dimensions are independent ofr ≥ 1 which may be useful in proving
a more refined version of Theorem 2.
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