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1 Introduction

Let p > 5 be a prime, angh a place ofQ above it. We denote b§q the absolute
Galois group GalQ/Q). For a finite fieldk of characteristicp, an absolutely
irreducible representation: Gqo — GL (k) is said to arise from a newform of
weightk and level a positive intege¥ if p is isomorphic to the reduction mod
g of the p-adic representation associated to a newform of welgud level
M. Note that then it is known that also arises from a newform of weight 2
and level dividingM p?. Thus we assume without loss of generality thafrises
from a newform of weight 2 and level a positive integér

The question of “raising” the level @i, i.e., determining when a arising
from a newform of weight 2 and lev@l as above also arises from a newform of
weight 2 and leveN’, whereN dividesN’, has been widely studied by numerous
mathematicians (cf. [10,8,5,2]).

In the first paper that considers this kind of question [10], as well as in most
of the papers dealing with similar questions (e.g., [2]), the cases considered
correspond taV’/N being coprime tgyp. Some discussion for the case where
N'/N is divisible by p can be found in [8] and [5]. The objective of this paper is
to study further the question of level raising in the case wipede/idesN’/N.

Letg > 5 be a prime different fronp and, for any positive intege¥, let
I'n(M) andI (M) denote the classical modular subgroupSin(Z). We prove
in this paper the following theorem:

Theorem 1 If p : Go — GL (k) is an absolutely irreducible representation, for
k afinite field of characteristic p, that arises from a newform§iti o (N)NI1(q))
of level divisible byV, for a squarefree positive integ@f coprime topg, then
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it also arises from a newform isL (Io(Np") N I'1(g)) of level divisible by p”,
for all integersr > 3.

In most of the works studying the problem of level raising, the approach
adopted has essentially followed that in Ribet’s original method in [10]. (See also
[2].) Basically, one has to study in detail the degeneracy maps and the main step
is to determine the kernel of a natural degeneracy map between some Jacobian
varieties. In the case of [10], the kernel of the degeneracy o )> —
Jo(Mp), whereM is not divisible byp, is determined completely with the help
of a result of Ihara and, in a certain technical sense, shown to be irrelevant (or
Eisensteirin the terminology below). Whe is divisible by p, this kernel in
general contains an abelian variety and was studied in [5]: there it was proved
that the group of connected components of the kernel is irrelevant.

The approach we have taken in this paper to obtain the result in Theorem 1
is again similar. However, in our present case, the Jacobians used are no longer
those coming from elliptic modular curves, but from Shimura curves. We prove
an analog of Theorem 1 of [5]. In order to state this technical result in a precise
manner, we first recall some definitions.

Let 5 be an indefinite quaternion algebra ogthat is ramified at an even
number of primeg, ... ,l,. Then has reduced discrimina® = []/;. Let

N > 1 be an integer that is relatively prime 1. Suppose that is ia prime
dividing N.

The algebras LB ® Q, is isomorphic to the matrix algebrd,(Q;). Let
Osm = Sfés 2 be the canonical Eichler order of leve!Z, in M>(Q,).
We define the groupby(s™, Z,) and Iy (s™, Z,) to be:

FO(Sm’ ZA) = SLZ(ZA) N Ox,m

*

(™, Zy) ={x € Io(s™,Zy) | x = (S 1) mods™ Oy o}

Let O(N) be az-Eichler order in53 of level N. (We will simply useO for
the Z-Eichler order of level 1.) Let™ be the exact power of dividing N. For
such ary, leti; : Q — Q, be the canonical embedding. This embedding can
be extended to an embedding, also denoted, bgf B in M»(Q,), such that
i;(O(N)) is the canonical Eichler ordé€v; ,, of levels™Z, ([15], pp. 108-109).
The inverse image afy(s™, Z,) underi, is O'(N), the set of elements @ (N)
of (reduced) norm 1. Similarly, we denote I§* the set of elements aP of
(reduced) norm 1. Lej > 5 be an auxiliary prime not dividingy D. We define
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the congruence subgroups(N, D) and I (N, D) as follows:

Io(N, D) = {x € O(N)|is(x) € To(s™, Zy)
forall s|N andi, (x) € I'i(q,Z,)} D
(N, D) = {x € OYN)|i,(x) € I(s™, Z,) for all s|N}.

Note that the definition of o(N, D) is a twisted form of the usual one.
The reason for this deviation from the usual convention is to ensure that the
congruence subgroups considered throughout this paper are torsion-free.

SinceB is unramified at the infinite place @, it follows that3 ®q R is
isomorphic toM,(R). Upon fixing such an isomorphism, we obtain an embed-
dingi : OY(N) < SL,(R). The action of SLo(R) on the Poincaa upper half
planeH = {t € C| Im(z) > 0}

ab at+b

((C d)’T) e +d
implies that the group$; (N, D) (i = 0, 1) also act or{. WhenD > 1, the
quotient{1}I;(N, D)\H (i = 0, 1) has a natural structure of compact con-
nected Riemann surface. It is calle@himura curvewhich we shall denote by
Sh; (N, D). (WhenD = 1, the quaternion algebftais the matrix algebra/>(Q).
The quotient£+1} (N, D\H (i = 0, 1) are known to be non-compact. Their
compactifications are the classical modular cur¥g@V) (i = 0, 1) described
in the introduction of [9].) We consider Shimura’s canonical model @édor
these curves.

In the rest of this introduction, for the sake of clarity of notation, we restrict
our discussion to the case where 1. We note that the same results are available
fori =0.

Let J1(N, D) denote the Jacobian 6%, (N, D). Let M be a positive divisor
of N. For every divisord of N/M, there is a holomorphic degeneracy map
ag 2 Shi(N, D) — Shi(M, D) which is deduced from the map+— dz onH
by passing to the quotients. By Picard functoriality, we obtain a morphism of
abelian varieties; : J1(M, D) — J1(N, D) for eachd dividing N/M. If (x)
denotes the number of distinct positive divisors of a positive integéren let
« be the map

a:= [] af: M, D™ — (N, D).
dIN/M

Fix a primep > 5 with (p, NDg) = 1. Consider the Jacobiadg(Np”, D).
They have an action for each primeby the well-known Hecke operatois,
induced by Picard functoriality, and thaQsrational (Sect. 3 of [11] and Chapter
3 of [14]). We use these operators only focoprime toN Dpg and denote the
commutative Z-)algebra generated by these operaforisn the endomorphism
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ring of J1(Np”, D) by T%,p,’D. A maximal idealm of T%,p,’D is “Eisenstein” if
and only if the action oG on the semisimplification of theTy, . ,/m)[Gql-
module J1(Np”, D)[m], the intersection of the kernels of the elementsof
acting onJ1(Np", D), factors through its maximal abelian quotient. By a Hecke
module being Eisenstein, we mean that all the maximal ideals in the support
of the module are Eisenstein (this definition of Eisenstein is the analog in our
present context of the one used in [5]: see Remark 1 after Theoretod. oft.).

We prove the following geometric result:

Theorem 2 Let N > 4 be an integer coprime t®q and letp > 5 be a prime
not dividing N Dq. Then, forr > 1, the group of connected components of the
kernel of the degeneracy map: J1(Np", D)*> — Ji(Np'*1, D) is Eisenstein.
Further, we havéer(x)? = {(o;(x), —a(x)) | x € Ju(Np'~1, D)}.

RemarkWe remind the reader here that an exact analog of Theorem 2 remains
true if J; is replaced by/.

Using modular symbols, kéx) / ker(«)° can be proved to be Eisenstein when
D = 1. In Theorem 1 of [5] the proof is written fok, but the same proof works
for the J; situation. For this reason, henceforth we assuie 1 throughout
this paper.

Modular symbols will not yield Theorem 2 above fbr> 1, for the simple
but compelling reason that fdp > 1 the corresponding Shimura curves have
no cusps!

As we have proven in Theorem 2 that key/ ker(«)° is Eisenstein in the
setting of Shimura curves, whetds applied toJy instead of/;, we can use the
methods of [2] and [5] to raise thelevels modp of newforms corresponding to
non-Eisenstein maximal ideals while preserving levels at other primes. Though
a more exhaustive result about producing congruences in(thej case” (see
[5]), while preserving prime-tgs levels, can be deduced from Theorem 2 and
results in[10], [2] and [5], we content ourselves with what was stated in Theorem
1. We sketch how the proof of Theorem 1 follows, by techniques that are now
standard, from Theorem 2.

Proof of Theorem 1This follows in the case when the number of prime divisors
of N is even from Theorem 2, with applied toJp instead ofJ;, after using

the Jacquet-Langlands (JL) correspondence (cf. Sect. 5 of [2] for instance) to
switch to an indefinite quaternion algebra ramified at exactly the places dividing
N, and using methods of [5] (see proof of Theorem 2 of [5]). When the number
of prime divisors ofN is odd the corollary follows from the easy analog of
Theorem 2 for definite quaternion algebras (see Sect. 2 of [2]), together with the
JL correspondence and the methods of [5].

The rest of the paper is devoted to proving Theorem 2.
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2 The congruence kernel

Let I" be a congruence subgroup 6f. Let I" := lim I"/A/, whereA runs

through all the normal subgroups of finite index ih This is known as the
profinite completion off". Let I" := lim I"'/N, where\ runs through all the

congruence subgroups 6f and contained normally ifi. Note that such a)y
is automatically of finite index id”". The groupl” is known as the congruence
completion ofr".

The congruence kernél - is by definition the kernel of the natural map
I" — T . (See [12] for a survey on congruence kernels.) We have the following
exact sequence:

0—Cr—I—T—0. (2

Proposition 3 If I' < I'" are congruence subgroups @', then the natural
mapCr — Cr is an isomorphism.

Proof. We begin by remarking that by considering the intersection of all the
conjugates ofl" in O, we get a congruence subgrodiy that is normal in
O?! contained inI™’. Then if we prove that the natural maps» — Cr and
Cr» — Cpareisomorphisms, as the latter map factors through the former map,
it follows thatC — C is an isomorphism. Hence it is enough to prove the
statement with™” normal inO*: we assume this to be the case. Thus we have a
surjective homomorphismh’ — I'’/I" asI” is a congruence subgroup.

Consider the commutative diagram

0— Cr — " — T" —0
O M M

0O— Cr — I' — I' —0,

where the vertical maps are all induced by the inclusiofr @f I’. The maps
andr are injective. Therefore, by the Snake Lemma, it follows thatnjective
and there is an exact sequence

0— Cr/Cpr —> I'")[ — T’)T —> 0.

In fact, the map™/I" —> T7/T is an isomorphism since both are isomorphic
toI"’/I". The isomorphisnd™/I" ~ I’/ T follows from the fact thaf” is afinite
indexsubgroup of ™', while the isomorphisni”/T" ~ I'’/I" is a consequence of
the fact thatl” is acongruencesubgroup off’. Thus, it follows thatC- — C

is actually an isomorphism.

As the congruence kern€l- does not depend on the choice of the congruence
subgroupl”, we will henceforth us€ to denote it.
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We write down the following exact sequence, fora congruence subgroup
of O, which follows from (2), for later use:

HYT,Z/02) — HNI",2/¢2) — HY(C,Z/t2)" — HAT,Z/¢2).
3)

3 A group theory principle

We will only consider torsion-free congruence subgrofipsuch that the corre-
sponding Riemann surfadé\’H has a model ove®, and denote its canonical
model overQ by X r.

We recall comparison isomorphisms between group, sheaétaie coho-
mology groups that we need below, and the definition of Eisenstein maximal
ideals of Hecke algebras acting on these cohomology groups in each case. We
use [3] and [4] as references. Though these references work with classical mod-
ular curves (i.e., the case 6f = 1), the results that we quote (and their proofs)
are valid in the present context of Shimura curves associated to congruence sub-
groups of indefinite, non-split quaternion algebras @eAlso note that unlike
in the references we do not have to work with parabolic cohomology as in the
case ofD > 1, the congruence subgroupsare co-compact.

For a primeZ we consider the conomology &f, denotedH'(I", Z/¢Z), the
sheaf cohomology group &f-, denotedd’ (X -, Z/£Z), and theetale cohomol-
ogy group ofX -, denoted’, (X -, Z /£Z), for integers (these groups vanish for
i #0,1,2). LetJr be the Jacobian of -, and we denote by [¢] its £-torsion.

Then we have canonical isomorphisms of abelian groups:

H(I',Z/¢Z) ~ H (X,Z/tZ), (A)
H(Xp,Z/0Z) ~ H! (Xr,Z/tZ), (B)
HYTI,Z/0Z) ~ Jr[e). (©)

For (A), where the hypothesis thatis torsion-free is necessary, afRl), we
referto Sect. 1 of [3], whiléC), where again the hypothesis thats torsion-free
gets used, is deduced fropd) and Sect. 6 (page 253) of [4]. In Sect. 3 of [3],
for H(I',Z/¢Z), H(Xr,Z/¢Z) andH! (X, Z/¢Z), and Sect. 3 of [11], for
Jr[£], endomorphisms by Hecke operatdis with r a prime, are defined on
all thezZ /¢Z-vector spaces above. We will consider the action of all but finitely
many7,’s: for instance we will ignore the action @t.'s for placesr at which
either is ramified, or at which there is a congruence conditiofoithe Hecke
action onH!,(X, Z/¢Z) andJr[¢], that carry an action ofiq, is Q-rational.
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We consider th& /¢Z-algebra generated by thig’s in the ring of endomor-
phisms in each case, and by abuse of notation denoteTitihyeach case. The
isomorphismg A) and (B) are equivariant for the action df. (see Sect. 1 of
[3]), as also is(C) (see (6.9a) of [4]: there the Hecke action Hn is defined
using Albanese functoriality, while we have defined it using Picard functoriality
(Sect. 3 of [11]), and thus the Hecke equivariancé®ffollows from [4] as the
operator?* of [4] is our T,.).

We define amaximal ideat of the Hecke algebraacting onH!, (X r, Z /¢Z)
to beEisensteinif the action ofG g on the semisimplification of th@ /m)[Ggl-
moduIeHe"l(Xp, Z/¢Z)[m] factors through the maximal abelian quotientaf.

We define subquotients of the Hecke moduWEs( X -, Z /¢Z) to beEisenstein
if and only if the maximal ideals in their support déenstein

Using the canonical Hecke-equivariant isomorphigay (B) and(C), we
define a maximal ideah for Hecke algebras acting o’ (I", Z/¢Z), H' (X,
Z/¢Z) and J-[£] to beEisensteinf the corresponding maximal ideal (via the
isomorphisms above) of the Hecke algebra actingfnX -, Z/¢Z) in the first
two cases, anﬂljt (Xr,Z/¢Z)inthelast, is Eisenstein. We have a corresponding
definition of subquotients of these Hecke modules being Eisenstein. This is con-
sistent with the definition of the introduction because of the Hecke equivariance
of (A), (B) and(C), and as we have an isomorphism@§-modules

HY(Xr,Z/€Z) = Hom(Jr[£], we), (D)

wherey, is the Galois module ofth roots of unity.

(As atechnical aside, also note that, although using the going-up theorem we
canin a natural way consider maximal ideals “associatechtm’Hecke algebras
generated by different sets of almost&lk (see the discussionin Sect. 7 of [11]),
because of the Cebotarev density and Brauer-Nesbitt theorems, and congruence
relations, this definition oEisensteiris not sensitive to which set @fmost all
Hecke operatorg, we elect to consider the action of.)

Let A and B be torsion-free congruence subgroupgdf and denote byt
the group(A, B) generated byt andB in ©'. Note that the restriction maps from
any of the cohomology groups‘(A, Z/¢Z), H (B, Z/tZ) or H'(E,Z/tZ) to
H'(A N B,Z/tZ) are equivariant with respect to the Hecke operafréor
almost all primes- (for instance all primes at which there are no congruences
conditions onA N B). Thus we can pull back a maximal ideal of the Hecke
algebra generated by suglis acting on the cohomology groups (of any degree)
associated ta N B, to the cohomology groups (of the same degree) associated
to A, B andE via these restriction maps.

For I' < I'’ torsion-free congruence subgroups®, with I" normal inr™,
and¢ a prime, we have the long exact sequence in cohomology:

0— HYI'')I',Z/¢Z) — HNI"',Z/tZ) — HXTI,Z2/tZ)"/"
— H*(I'')I",Z/¢Z) — H*(I'"',Z/4Z) (4)
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(see Proposition 2 of [16] for instance). We consider the standard action of the
Hecke operatorg,’s (for almost all primes-) on the groups?(I"’/I", Z/€Z)
defined analogously as in Sect. 3 of [3], which makes the long exact sequence
(4) Hecke equivariant. Then we defide'(I"’/I", Z /£Z) to be Eisenstein if its
image inH(I"', Z/¢Z) is Eisenstein, and{?(I"'/I",Z/¢Z) to be Eisenstein

if its image in H2(I"', Z/¢Z) and the cokernel of the ma'(I"’, Z/¢Z) —
HYI,Z/¢Z2)"/T" asin (4), are both Eisenstein.

Lemma 4 For I' < I'' torsion-free congruence subgroupg®f, with I" normal
in I'’, and¢ a prime, the group$/(I"’'/I", Z/£2), for i = 1, 2, are Eisenstein.

Proof. The proof follows directly from the considerations in Proposition 4 of
Sect. 3 of [2]. Namely, by the long exact sequence (4) and the Hecke equivariant
isomorphism(A) betweenH(I",Z/¢Z) and HY(X,Z/¢Z) (note thatl” is
torsion-free), it is enough to prove that the kernel and cokernel of the map

HYXp,Z2/eZ) - HYXp,Z/02)"'"

are Eisenstein, and th&2(X 1, Z/£Z) is Eisenstein. By the Hochschild-Serre
spectral sequence

H(I''/T, H (Xr,Z/€Z)) = H™ (X', Z2/€Z),

this will follow if we prove thatH!(I"'/I", H/ (X, Z/tZ)) is Eisenstein for

i =0/1,2andj = 0,2, and thatH?(I"", Z/¢Z) is Eisenstein. We claim
that HO(X -, Z/¢Z) andH?*(X -, Z/¢Z) (and analogousIy{/?(X +, Z/£Z)) are
Eisenstein ag” (resp.,I"’) is a congruence subgroup. From Sect. 3 of [2] it
follows that the action ofzg on the correspondingtale cohomology groups
H%(Xr,Z/¢Z) and H2(Xr, Z/¢Z) (and H2 (X, Z/£Z)) factors through its
maximal abelian quotient, and then the Hecke equivariand® bproves our
claim. This proves the lemma.

We come now to the group theoretic principle in the title of this section, which
is the analog in the present setting of the group theoretic principle of Sect. 1 of
[6], and that is the key to the proof of Theorem 2 in the next section.

Proposition 5 LetA, B betorsion-free congruence subgroupédfand letE =
(A, B) bethe group generated Byand B in O'. For m a non-Eisenstein maximal
ideal of residue characteristicof the Hecke algebra acting df*(ANB, Z /£Z),
the following sequence is exact:

HYE,Z/tZ)n — HYA,Z/tZ) ® HY(B,Z/Z)m — HY AN B,Z/{Z)m,
®)
where the first map is the restriction while the second is the difference of the

restriction maps, and the subscript denotes localisation at the maximal ideal
m.
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Proof.We claim that, to prove the proposition, it is enough to prove that, for any
congruence subgroup and a non-Eisenstein maximal idealas above, we
have the isomorphism

HNI, Z/0Z)m ~ HY(C, Z2/¢Z)L, (6)

whereC is the congruence kernel defined at the end of Sect. 2. SiH¢E,
Z/tZ) = HY(I",Z/4Z), the isomorphism (6) is an immediate consequence of
(3) and Lemma 4.

To justify the claim, first note that (6) implies that the restriction nABlgI ™,
Z/0Z)w — HYI,Z/Z), is injective for any congruence subgroufs< I’
of OL. Now if res(h1) = res(hy) = g, say, withhy € HY (A, Z/€Z)y, ho €
HY(B,Z/tZ)m andg € H'(A N B, Z/{Z)m, then under the isomorphism (6),
applied withl" = A N B, g corresponds to an elemeftn H(C, Z/¢Z)4"5.
Butasg = res(h;) fori = 1, 2, invoking (6) again we deduce thats in fact in
HY(C,Z/e2)E, asE by definition is generated by and B, andE is dense in
E. Another use of (6), this time witl" = E, proves the claim. This completes
the proof of the proposition.

Remarklin [6], the proposition was proved for torsion-free congruence subgroups
A and B of SL,(Z). In the case o6L,(2), the exact sequence (5) is an easy
consequence of the exact sequence

HX(A, B),Z/tZ)m — HXNA,Z/Z)m ® HX(B,Z/tZ)m
— HYANB,Z/tZ)m,

which in turn is a direct consequence of modular symbols. Hares a non-
Eisenstein maximal ideal and the subscrigtands for compactly supported
cohomology, and by compactly supported group cohomology, we mean the com-
pactly supported cohomology of the corresponding affine curve. In the present
work we have replaced the use of modular symbols by the use of the congruence
kernel.

4 Proof of Theorem 2

We start by translating what is to be proved into statements about group co-
homology, and remind the reader that we assuie 1. We prefer to work

with finite coefficients, and we reduce to working with such by the following
reasoning. Recall from the introduction that we are studying the degeneracy
mapa : Ji(Np", D)> — Ji(Np'*, D) of Theorem 2, where/y(Np’, D)

and Jy(Np'*, D) are the Jacobians of the modular cunss(Np”, D) and
Shi(Np'*1, D), and we are denoting the connected component abkethe
kernel ofa, by ker)°. Letx € ker(a)/ ker(a)® be an element of ordet, for
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some primée. Thustx € ker(e)?, and as ke)? is an abelian variety and hence
¢-divisible, there is @ e ker()® such thatx = £y. We deduce that there exists
x" in ker(e) that maps tor and such thatx’ = 0. Thus we see that to prove
the assertion pertaining to the group of connected components of Theorem 2, it
is sufficient to compute the kernel, Key), of the mapw, : Jo(Np”, D)[{]> —
Ji(Np'+1, D)[¢] induced byx on the¢-torsion of the Jacobians, and show that
the quotientk, := ker(Olg)/{(Ol;(x), —aj(x)) : x € Ji(Np'~1, D)[€]} is Eisen-
stein, for every primé.

We interpret the degeneracy map in the group cohomology settingt ket

I''(Np", D). Let r be the matrix| l(; 2 and let f1, f» be elements off1(A,

Z/tZ). By abuse, we again denote lythe degeneracy map on the group
cohomology;x((f1, f2)) is the elementf of HX(I(Np'+1, D), Z/¢Z) given
by f(x) = fi(x) + fo(mxn™Y), for x € I (Np"™*, D). We can also write
a((f1, f2)) as the sum; f1 + o, f2, whereqs; is the restriction map an@l; is
conjugation byr. Note thatxj ande; are equivariant with respect to the action
of the Hecke operatorg. that we consider; namely,coprime toN Dpq, where
g is the auxiliary prime that occurs in (1) in the introduction (see also paragraph
before the statement of Theorem 2 in the introduction). It is the kerreklodt
we determine.

Leta((f1, f»)) =0.LetB =nIy(Np", D)r~tand

E = (A, B).

It is easy to see thaf = I'y(Np'~1, D). Letm be any non-Eisenstein maximal
ideal of the Hecke algebra (generated byTjis for r coprime toN Dpq as be-
fore) acting onH(E, Z/¢Z). We may also reganah, by pull back under restric-
tion maps which are equivariant for tiigs that we consider, as a maximal ideal of
the Hecke algebras acting it (A, Z/¢Z), HY (B, Z/¢Z)andH'(ANB, Z /{Z).
Define elementé, € HY(A,Z/¢Z)y, andhy, € HY(B,Z/LZ)m by hi(x) =
— fo(x) andhy(mxm 1) ;= fi(x) wheref; (i = 1, 2) are now considered as ele-
ments inH(A, Z/£Z)m. The subscrip, as in Proposition 4 of Sect. 3, stands
for localisation at the maximal ideah. As a((f1, f2)) = 0, we conclude that
the restrictions ofi; andh, to HY(A N B, Z/¢Z), coincide. Applying Propo-
sition 5, it follows that there is g € HY(E, Z/¢Z)y, such that its restriction
to HY(A,Z/¢Z), and HY(B, Z/¢Z)m is hy andh, respectively. This together
with the isomorphism(C) of the previous section, and its Hecke equivariance,
proves thaik, is Eisenstein for every prim& and we deduce that the group of
connected components of the degeneracy map of the theorem is Eisenstein.
After noting the identification of the cotangent space of Jacobigiiép”, D)
with the spaces,(I(Np”, D), C) of cusp forms of weight 2, and the fact that
the connected component of the kernelxobf Theorem 2 certainly contains
{(ay(x), —ai(x)) | x € Ji(Np'~t, D)}, to prove the description in Theorem 2
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of ker(w)° to be correct, it suffices to show thatff g € So(I'(Np”, D), C)
satisfy f(z) + g(pz) = 0 forz € H then f(z) = fi(pz) andg(z) = — f1(2)

for somefy € So(I'(Np'~1, D), C). This follows from the analog of the results

of [1] for cusp forms for congruence subgroups of quaternion algebras that can
be proved directly using the adelic description of modular forms. We denote by
G the algebraic group ové) whoseQ-valued points is thé of the introduc-

tion. Then the automorphic function @h(Ag) corresponding tg is fixed under

the action of the open compact subgroup&eh ) corresponding to the con-
gruence subgroups and B, and hence is fixed by the open compact subgroup
corresponding taz. From this the description of the connected component of
ker(a) of the theorem follows, thus finishing the proof of Theorem 2.

5 Concluding remarks

We conclude the paper with some remarks about possible refinements of Theo-
rem 2.

e The methods of this paper do not directly seem to yield more precise results
about the group of connected components that were proven to be Eisenstein
above. We would make the guess that the kernel is connected fér $itaa-
tion, while itis the image of the Shimura subgroup in fgsituation. (In fact,
it is easy to see that the kernel@f: Jo(Np", D)?> — Jo(Np'+1, D) con-
tains{(x, —x) | x € X(Np", D)}, whereX (Np", D) denotes the Shimura
subgroup of/o(Np”, D).) Indeed, in the elliptidy case, in many cases when
the kernel is known to be finite, the kernel has been proven to be the image
of the Shimura subgroup (e.g., [10,8]).

e Our guess on the precise description of the kernel in our present case may
follow from a more careful study of the exact sequence (3), wWitteplaced
by A, B, AN B and E, and more detailed information about congruence
subgroups 06L»(Z,) (note that the congruence completionsdofB andE
are identical away fronp).

e We have the following information about the closuref the groupl (Np”,

D) (r = 1)inSL2(Z,) ([13]). The dimension ovex / pZ of the cohomology
groupsH(I',Z/pZ) fori = 0,1, 2,3 is 1,2,2,1 respectively. Notice that
these dimensions are independent of 1 which may be useful in proving
a more refined version of Theorem 2.

AcknowledgementsWe owe to T.N. Venkataramana the suggestion of using congruence kernels
to prove the group theoretic principle of [6]. We thank J-P. Serre for helpful correspondence, and
the referee as well as the communicating editor, K. Ribet, for numerous suggestions towards the
improvement of the manuscript. The first named author would like to thank the National University
of Singapore for its hospitality and financial support for the period during which this work was
carried out.



394

C. Khare, S. Ling

References

1.
2.

3.

4.

10.

11.

12.

13.

14.

15.

16.

Atkin, A. and Lehner, J.: Hecke operators B M). Math. Ann.185(1970), 134-160

Diamond, F. and Taylor, R. Nonoptimal levels of madodular representations.

Invent. Math.115(1994), 435-462

Hida, H.: Congruences of cusp forms and special values of their zeta functions.

Invent. Math.63(1981), 225-261

Hida, H.: On congruence divisors of cusp forms as factors of the special values of their zeta
functions. Invent. Math64 (1981), 221-262

. Khare, C.: Congruences between cusp forms:(fhep) case. Duke Math. B0 (1995),

31-68 (see also Correction to: “Congruences between cusp form& th case”. Duke
Math. J.85(1996), pp 271)

. Khare, C.: Maps between Jacobians of modular curves. J. Number T62(1997),

107-114

. Ling, S.: Shimura subgroups of Jacobians of Shimura curves. Proc. Amer. Matii18oc.

(1993), 385-390

. Ling, S.: Congruences between cusp forms and the geometry of Jacobians of modular curves.

Math. Ann.295(1993), 111-133

. Ling, S. and Oestez| J.: The Shimura subgroup @§(N). Astérisquel196-197(1991),

171-203

Ribet, K.: Congruence relations between modular forms. In: Proceedings ICM 1983, PWN,
Warsaw, 1984, 503-514

Ribet, K.: On modular representations of @lQ) arising from modular forms.

Invent. Math.100(1990), 431-476

Serre, J-P.: Groupes de congruence (é'spt. Bass, H. Matsumoto, J. Mennicke, J. Milnor,

C. Moore). £minaire Bourbaki 1966/6330 (= Collected Works, Volume 2, article number
77)

Serre, J-P.: E-mail communication. 1 June 1999.

Shimura, G.: Introduction to the arithmetic theory of automorphic forms. Publ. Math. Soc.
Japanll, Princeton University Press, 1971

Vigréras, M.-F.: Arithnetique des algbres de quaternions. Lecture Notes in Ma8i00.
Berlin, New York: Springer, 1980

Washington, L.: Galois cohomology. In: Modular Forms and Fermat’s Last Theorem. G. Cor-
nell, J.H. Silverman, G. Stevens (eds), Springer (1997), 101-120



