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The present work grew out of an entirely unsuccessful attempt to answer some basic

questions about elliptic curves over $. Start with an elliptic curve E over $, say given by a

Weierstrass equation

E: y2 = 4x3 - ax - b,

with a, b integers and a3 - 27b2 ± 0. By Mordell's theorem [Mor], the group E($) of $-rational

points is a finitely generated abelian group. The dimension of the $-vector space  E($)‚#$ is

called the Mordell Weil rank, or simply the rank, of E. Thus we get a function

{(a,b) in #2 with  a3 - 27b2 ± 0} ¨  {nonnegative integers}

defined by

(a,b) ÿ the rank of the curve y2 = 4x3 - ax - b.

It is remarkable how little we know about this function. For example, we do not know if

this function is bounded, or if there exist elliptic curves over $ of arbitrarily high rank. For a long

time, it seems to have been widely believed that this function was bounded. But over the past fifty

years, cleverer and cleverer constructions, by Nïeron [Ner-10], Mestre [Mes-11, Mes-12, Mes-

15], Nagao [Nag-20], Nagao-Kouya [Nag-Ko-21], Fermigier [Fer-22], and Martin-McMillen

[Mar-McM-23], have given curves over $ with higher and higher rank. At this writing in

October of 1999 the highest known rank is 23, and the present consensus is that there may well

exist elliptic curves over $ of arbitrarily high rank.

We might then ask if at least we can say anything about the average rank of elliptic curves.

What does this question mean? One naive but accessible formulation is this. Since  a3 - 27b2 ± 0,

we might fix a nonzero integer », and look first at the set Ell» defined as

 Ell» := {(a, b) in #2 with a3 - 27b2 = »}.

Now for each nonzero » in #, the equation

X3 - 27Y2 = »

itself is an elliptic curve over $. So it has only finitely many solutions (a, b) in integers, by a

celebrated result of Siegel giving the finiteness of the number of integral points on an elliptic curve

over $. So the set Ell» is finite. For each integer N > 0 we take the union of the sets E» for 0 < |»|

≤ N, and obtain the finite set 

Ell≤N := {(a,b) in #2 with 0 < |a3 - 27b2| ≤ N}

We now form the average

avrk≤N := (1/ùEll≤N)‡(a,b) in Ell≤N
 (rank of y2 = 4x3 - ax - b),

which is a non-negative real (in fact rational) number.

So now we have a sequence 

N ¨ avrk≤N

of nonnegative real numbers. We do not know if it has a limit. If it does     , it would be reasonable

to call its limit the average rank of elliptic curves over $. It is not even known (unconditionally, see
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[Bru] for conditional results on questions of this type) that the limsup of this sequence is finite. 

For a long time, it was widely believed that the large N limit of avrk≤N does exist, and that

its value is 1/2. Moreover, it was believed that each of the three auxiliary sequences of ratios

fraction of points in Ell≤N with rank 0,

fraction of points in Ell≤N with rank 1,

and

fraction of points in Ell≤N with rank ≥ 2,

has a limit, and that these limits are 1/2, 1/2, and 0 respectively.

Today it is still believed that each of these four sequences has a limit, but there is no longer

agreement on what their limits should be. Some numerical experiments ([Brum-McG], [Fer-EE],

[Kra-Zag], [Wa-Ta]) support the view that a positive percentage of elliptic curves have rank two

or more, i.e., that the fourth limit is nonzero. On the other hand, the philosophy of Katz-Sarnak

([Ka-Sar, RMFEM, Introduction] and [Ka-Sar, Zeroes]) suggests that the limits are as formerly

expected, and (hence) that the contradictory evidence is an artifact of too restricted a range of

computation.

At this point, we must say something about the L-function L(s, E) of an elliptic curve over

$, and about the Birch and Swinnerton Dyer conjecture. The curve E/$ has "conductor" an integer

N = NE ≥ 1 (whose exact definition need not concern us here) with the property that E/$ has

"good reduction" at precisely the primes p not dividing N. For each such p we define an integer

ap(E) by writing the number of Ép-points on the reduction as p + 1 - ap(E). The L-function L(s,

E) of E/$ is defined as an Euler product °pLp(s,f), whose Euler factor Lp(s, E) at each p not

dividing N is

(1 - ap(E)p-s + p1-2s)-1

(and with a recipe for the factors at the bad primes which need not concern us here). The Euler

product converges absolutely for Re(s) > 2, thanks to the Hasse estimate

|ap(E)| ≤ 2Sqrt(p).

It is now known, thanks to work of Wiles [Wi], Taylor-Wiles [Tay-Wi], and Breuil-

Conrad-Diamond-Taylor [Br-Con-Dia-Tay], that every elliptic curve E/$ is modular. What this

means that is that given E/$, with conductor N = NE, there exists a unique weight two cusp form f

= fE of weight two on the congruence subgroup Æ0(N) of SL(2, #) which is an eigenfunction of

the Hecke operators Tp for primes p not dividing N, whose eigenvalues are the integers ap(E),

 TpfE = ap(E)fE for every p not dividing N,

whose q-expansion at the standard cusp i‘ is q + higher terms, and which is not a modular form

on Æ0(M) for any proper divisor M of N. 

Now given aaaannnnyyyy integer N ≥ 1 and aaaannnnyyyy weight two normalized newform f on Æ0(N), i.e., a
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cusp form f on Æ0(N) which is an  eigenfunction of the Hecke operators Tp for primes p not

dividing N, with eigenvalues denoted ap(f),

 Tpf = apf,

whose q-expansion at i‘ is 

‡n≥1 anqn, a1 = 1,

and which is not a modular form on Æ0(M) for any proper divisor M of N, the L-function L(s, f)

of f is defined to be the Mellin transform of f. Thus L(s, f) is the Dirichlet series

L(s, f) =‡n≥1 ann-s.

This Dirichlet series has an Euler product °pLp(s,f) whose Euler factor Lp(s, f) at each p not

dividing N is

(1 - app-s + p1-2s)-1.

The Euler product converges absolutely for Re(s) > 2. The function L(s, f) extends to an entire

function, and when it is "completed" by a suitable Æ-factor, it satisfies a functional equation under

s ÿ 2-s. The precise result is this. One defines

Ú(s, f) := Ns/2(2π)-sÆ(s)L(s, f).

Then Ú(s, f) is entire, and satisfies a functional equation

Ú(s, f) = œ(f)Ú(2-s, f),

where œ(f) = _1 is called the sign in the functional equation.

It turns out that the Euler factors at the bad primes in L(s, E) are equal to those in L(s, fE),

so we have the identity

L(s, E) = L(s, fE).

This in turn shows that

 Ú(s, E) := Ns/2(2π)-sÆ(s)L(s, E)

extends to an entire function, and satisfies a functional equation

Ú(s, E) = œ(E)Ú(2-s, E),

with œ(E) (:= œ(fE)) = _1.

The upshot of all this discussion is that L(s, E) is holomorphic at the point s=1, so it makes

sense to speak of the order of vanishing of L(s, E) at the point s=1. The basic Birch and

Swinnerton Dyer conjecture for E/$ is the assertion that the rank of E/$ is the order of vanishing

of L(s, E) at s=1. [We say "basic" because there is a refined version which interprets not only the

order of vanishing as the rank, but also specifies the leading coefficient in the power series

expansion of L(s, E) at s=1.] It is instructive to note that the conjecture was made thirty years

before it was known in general that L(s, E) even made sense at s=1.

One calls the order of vanishing of L(s, E) at s=1 the "analytic rank" of E/$, denoted

rankan(E):

rankan(E) := order of vanishing of L(s, E) at s=1.
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What we now know about the basic Birch and Swinnertion Dyer conjecture can be stated

all too briefly:

1) if L(1, E) is nonzero, then E has rank zero.

2) if L(s, E) has a simple zero at s=1, then E has rank one.

In other words, what we know is that

rankan(E) ≤ 1 à rank(E) = rankan(E).

To emphasize how little we know, it is perhaps worth pointing out that we know neither the

a priori inequality

rank(E) ≤ rankan(E),

nor the opposite a priori inequality

rankan(E) ≤ rank(E)..

[In the "function field case", the analogue of the first a priori inequality holds trivially, cf. [Tate-

BSD], [Shio].]

In all the numerical experiments concerning rank of which we are aware, it is the analytic

rank rather than the rank which is calculated. Thus the relevance of these experiments to the rank of

elliptic curves is conditional on the truth of the Birch and Swinnerton Dyer conjecture.

A basic observation, due to Shimura (and related by him to Birch at the 1963 Boulder

conference in the context of relating twists of modular forms and elliptic curves, cf. [Bir-St]), is

that if the sign œ(E) in the functional equation of L(s, E) is -1 [respectively +1], then L(s, E) has a

zero of odd [respectively even] order at s=1. So we have the implication

œ(E) = -1 à rankan(E) is ≥1, and odd.

If the Birch and Swinnerton Dyer conjecture holds, then

œ(E) = -1 à rank(E) is ≥1, and odd.

On the other hand, if œ(E) is +1, then rank(E) is forced to be even, so iiiiffff the rank is nonzero, it is at

least two. We should point out here that the parity consequence 

rankan(E) • rank(E) mod 2

of the Birch and Swinnerton Dyer conjecture remains a conjecture, sometimes called the Parity

Conjecture [Gov-Maz].

The expectation that the average rank of elliptic curves over $ be 1/2 is based on three

ideas: first, that the Birch and Swinnerton Dyer conjecture holds for all E/$, second, that half the

elliptic curves have sign œ(E) = +1, and half have sign œ(E) = -1, and third, that for most elliptic

curves, the rank is the minimum, namely zero or one, imposed by the sign in the functional

equation.

The recent conjecture of Katz-Sarnak [Ka-Sar, RMFEM, page 14] about the distribution

of the low-lying zeroes of L(s, E) would, if true, make precise and quantify the third idea above,

that for most elliptic curves, the rank is the minimum imposed by the sign of the functional

equation. We refer to [Ka-Sar, RMFEM, 6.9 and 7.5.5] for the definitions and basic properties of

the "eigenvalue location measures" √(+,j) and √(-,j), j = 1, 2,...on %. What is important for our

immediate purposese is that these are all probability measures supported in %≥0 which are
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absolutely continuous with respect to Lebesgue measure.

In order to formulate the conjecture, we must assume the Riemann Hypothesis for the L-

functions L(s, E) of all E/$, namely that all the nontrivial zeroes of L(s, E) (i.e., all the zeroes of

Ú(s, E)) lie on Re(s) = 1. If L(s, E) has an even functional equation, its nontrivial zeroes occur in

conjugate pairs 1 _ i©E,j with 0 ≤ ©E,1 ≤ ©E,2 ≤ ©E,3 ≤.... If E has an odd functional equation,

then s=1 is a zero of L(s, E), and the remaining nontrivial zeroes of L(s, E) occur in conjugate pairs

1 _ i©E,j with 0 ≤ ©E,1 ≤ ©E,2 ≤ ©E,3 ≤....

We then normalize the heights ©E,j of these zeroes according to the conductor NE of E as

follows. We define the normalized height ë©E,j to be

 ë©E,j  := ©E,jlog(N
E

)/2π.

Now let us return to the set 

Ell≤N := {(a,b) in #2 with 0 < |a3 - 27b2| ≤ N}.

We then break up Ell≤N into two subsets

Ell≤N,_

according to the sign in the functional equation of the L-function of the E/$ given by the

corresponding Weierstrass equation. It is known to the experts, but nowhere in the literature, that

both ratios

ùEll≤N,_/ùEll≤N

tend to 1/2 as N ¨ ‘.

CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee    ((((ccccoooommmmppppaaaarrrreeee    [[[[KKKKaaaa----SSSSaaaarrrr,,,,    RRRRMMMMFFFFEEEEMMMM,,,,    ppppaaaaggggeeee    11114444]]]])))) The normalized heights of low-lying zeroes

of L-functions of elliptic curves over $ are distributed according to the measures √(_, j), in the

following sense. For any integer j ≥ 1, and for any compactly supported    continuous ^-valued

function h on %, we can calculate the integrals—% hd√(_,j) as follows:

—% hd√(-, j) = 

= limN ¨ ‘ (1/ùEll≤N,-) ‡E in Ell≤N,-
 h(ë©E,j),

and

—% hd√(+, j) = 

= limN ¨ ‘ (1/ùEll≤N,+) ‡E in Ell≤N,+
 h(ë©E,j).

What is the relevance of this conjecture to rank? Take, for each real t > 0, a continuous function

ht(x) on % which has values in the closed interval [0, 1], is supported in [-t, t], and takes the value

1 at the point x=0, for instance

        ,     .
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By the absolute continuity of √(_, j) with respect to Lebesgue measure, we have

|—% htd√(_, j)| ¨ 0 as t ¨ 0.

Choose N large enough that Ell≤N,œ is nonempty for both choices of sign œ. Denote by ∂0(x) the

characteristic function of {0} in %. Notice that we have the trivial inequality ht(x) ≥ ∂0(x) for all

real x. For the choice +, we have

(1/ùEll≤N,+) ‡E in Ell≤N,+
 h(ë©E,j)

≥(1/ùEll≤N,+) ‡E in Ell≤N,+
 ∂0(ë©E,j)

:= fraction of E in Ell≤N,+ with rankan(E) ≥ j.

For the choice -, the L function automatically vanishes once at s=1, but that zero is not on our list 0

≤ ©E,1 ≤ ©E,2 ≤ ©E,3 ≤..., so we have

(1/ùEll≤N,-) ‡E in Ell≤N,-
 h(ë©E,j)

≥(1/ùEll≤N,-) ‡E in Ell≤N,-
 ∂0(ë©E,j)

:= fraction of E in Ell≤N,- with rankan(E) ≥ j+1.

Taking the limit as N ¨‘, and setting j = 1, we find

0 = lim N ¨‘ fraction of E in Ell≤N,+ with rankan(E) ≥ 1,

and

0 = lim N ¨‘ fraction of E in Ell≤N,- with rankan(E) ≥ 2.

Therefore, if we assume in addition the Birch and Swinnerton Dyer conjecture for all E/$, we find

a precise sense in which a vanishingly small fraction of elliptic curves over $ have rank greater

than that imposed by the sign in the functional equation.

As measures on %≥0, the √(_, j) all have densities, and these densitites are the restrictions

to %≥0 of entire functions, cf. [Ka-Sar, RMFEM, 7.3.6, 7.5.5]. A signifigant difference between

the two measures √(-,1) and √(+,1) is that the density of √(-,1) vanishes to second order at the

origin x=0, while that of √(+,1) is 2 + O(x2) near x=0, cf. [Ka-Sar, RMFEM, AG.0.3 and

AG.0.5]. 

Thus the imposed zero of L(s, E) at s=1 for E of odd functional equation "quadratically

repels" the next higher zero 1 + i©E,1, while for E of even functional equation the point s=1 does

not repel the next higher zero 1 + i©E,1. This is presumably the phenomenon underlying the fact

that in the numerical experiments cited above which call into question the "average rank = 1/2"

hypothesis, what is found numerically is that about half the curves tested have odd sign, and

essentially all of these have analytic rank one, while among the other half of the curves tested,

among those with even sign, between twenty and forty percent have analytic rank two or more.

What may be happening is that, because √(-,1) quadratically repels the origin, while √(+,1) does

not repel the origin, in any given range of numerical computation, the data on ranks of curves of

odd sign will look "better" than the data on ranks of curves of even sign ["better" in supporting the

idea that elliptic curves over $ "try" to have as low a rank as their signs will allow].
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An attractive and apparently "easier" question to study is this. Fix one elliptic curve E/$,

with Weierstrass equation

E: y2 = 4x3 - ax - b

and conductor NE. For each squarefree integer D, one defines the quadratic twist ED of E by D to

be the elliptic curve over $ of equation

ED: Dy2 = 4x3 - ax - b,

or equivalently, (multiply the equation by D3 and change variables to Dx, D2y)

ED: y2 = 4x3 - aD2x - bD3.

Denote by çD the primitive quadratic Dirichlet character attached to the quadratic extension

$(¯D)/$. Thus for odd primes p not dividing D, we have

çD(p) = 1 if D is a square in Ép, -1 if not.

For all primes p which are prime to 2≠D≠NE, the ap for E and for ED are related by

ap(ED) = çD(p)ap(E).

The conductor of ED divides (a power of 2)≠D2≠NE. If, for example, we take D • 1 mod 4 and

relatively prime to N, then the conductor of ED is D2NE, and the sign in its functional equation is

related to that for E by the rule

œ(ED) = çD(-NE)œ(E).

Denote by f := fE the weight two normalized newform attached to E. The normalized

newform attached to ED is f‚çD, the unique weight two normalized newform of any level

dividing 2DNE whose Hecke eigenvalues at primes not dividing 2DNE are given by the rule

ap(ED) = çD(p)ap(E) above.

So having fixed E/$, we can now ask the same questions as above for the family of curves

ED. Thus for real X > 0, we look at the set

Sqfr≤X := {squarefree integers D with |D| ≤ X}.

On this set we have the function

D ÿ rank of ED.

We can ask whether as X ¨ ‘, the quantities

average of rank(ED) over Sqfr≤X,

fraction of D in Sqfr≤X, with rank(ED) = 0,

fraction of D in Sqfr≤X, with rank(ED) = 1,

fraction of D in Sqfr≤X, with rank(ED) ≥ 2,

have limits, and, if so, what they are. Or if not, what the limsup's might be. And a more refined

version is to break Sqfr≤X up according to the sign in the functional equation of L(s, ED) into two

sets Sqfr≤X,_, and repeat the above questions over these sets. There are almost no unconditional
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results. 

If we admit the truth of the Birch and Swinnerton Dyer conjectures for all the twists ED,

then these are questions about the behavior at s=1 of the L-functions L(s, f‚çD) as D varies. Let

us further assume the Riemann hypothesis for the L-functions L(s, f) attached to all weight two

normalized newforms f on all Æ0(N). Then we can formulate the following conjecture.

CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee    [[[[KKKKaaaa----SSSSaaaarrrr,,,,    ZZZZeeeerrrrooooeeeessss,,,,    IIIIIIII    ((((bbbb))))    aaaannnndddd    ppppgggg    22221111]]]] Fix a weight two normalized newform f on any

Æ0(N). Break up the set Sqfr≤X according to the sign in the functional equation of L(s, f‚çD)

into two subsets Sqfr≤X,_. [It is known that both the ratios

ùSqfr≤X,_/ùSqfr≤X

tend to 1/2 at X ¨ ‘.]. Then the normalized heights ë©D,j of the low-lying zeroes of the L-

functions L(s, f‚çD) are distributed according to the measures √(_, j), in the following sense. For

any integer j ≥ 1, and for any compactly supported    continuous ^-valued function h on %, we can

calculate the integrals —% hd√(_,j) as follows. 

—% hd√(-, j) = 

= limX ¨ ‘ (1/ùSqfr≤X,-) ‡D in Sqfr≤X,-
 h(ë©D,j),

and

—% hd√(+, j) = 

= limX ¨ ‘ (1/ùSqfr≤X,+) ‡D in Sqfr≤X,+
 h(ë©D,j).

Exactly as above, the truth of this conjecture for fE gives us 

0 = lim X ¨‘ fraction of D in Sqfr≤X,+ with rankan(ED) ≥ 1,

and

0 = lim X ¨‘ fraction of D in Sqfr≤X,- with rankan(ED) ≥ 2.

So if we assume in addition the Birch and Swinnerton Dyer conjecture for all the ED/$, we find

that as X ¨ ‘, 100 percent of the even twists have rank zero, that 100 percent of the odd twists

have rank one, and that the average rank of all the twists is 1/2. That this should be so was first

conjectured by Goldfeld [Go].

The numerical experiments so far seem to support this conclusion moderately well for odd

twists, but poorly for even twists. Again, the fact that √(-,1) quadratically repels the origin, while

√(+,1) does not repel the origin, may be "why" the numerical data so far is "better" for odd twists

then for even twists.

We now turn to the the situation for elliptic curves over function fields over finite fields.

Thus let k be a finite field, C/k a proper smooth geometrically connected curve, K := k(C) its

function field, and E/K an elliptic curve with non-constant j invariant. Then E/K "spreads out" to

an elliptic curve over some dense open set U of C, say π : ‰ ¨ U. By the theory of the Neron
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model, if such a spreading out exists over a given open U, it is unique. Moreover, there is a largest

such U, called the open set of good reduction for E/K. [Because E/K has non-constant j invariant,

it does not have good reduction everywhere on C.] The finite set of closed points of C at which

E/K has bad reduction will be denoted Sing(E/K). By the Neron Ogg Shafarevic criterion, the open

set of good reduction can be described as follows. Pick a prime number … invertible in K, pick

some spreading out 

π : ‰ ¨ U 

of E/K, and form the lisse rank two sheaf R1π*ä$… on U, which by Hasse [Ha] is pure of weight

one. Denoting by j : U ¨ C the inclusion, form the "middle extension" (:= direct image) sheaf Ï :=

j*R1π*ä$… on C. This sheaf Ï on C is independent of the auxiliary choice of spreading out used to

define it, and the open set of good reduction for E/K is precisely the largest open set on which Ï is

lisse. Thus Sing(E/K) as defined above is equal to Sing(Ï), the set of points of C at which Ï is not

lisse.

The L-function L(T, E/K) is defined to be the L-function of C with coefficients in Ï, itself

defined as the Euler product

L(T, Ï) := °x (det(1 - Tdeg(x)Frobx | Ïx)-1

over the closed points x of C. At each point x of good reduction, the reduction of E/K at x is an

elliptic curve éx over the residue field Éx, and

det(1 - TFrobx | Ïx) = 1 - axT + (ùÉx)T2 in #[T],

where ax is the integer defined by the equation

ax := 1 + ùÉx - ùéx(Éx).

Thus the local factors at the points of good reduction are visibly #-polynomials, independent of

the auxiliary choice of …. This is true also of the factors at the points of bad reduction [De-

Constants, 9.8].

The cohomological expression for this L-function

L(T, Ï) = °i=0,1,2(det(1 - TFrobk | Hi(Cºkäk, Ï)))(-1)i+1

simplifies. Because E/K has non-constant j invariant, the middle extension sheaf Ï is geometrically

irreducible when restricted to any dense open set of Cºkäk on which it is lisse [De-Weil II, 3.5.5].

This in turn implies that the groups Hi vanish for i±1. Thus we end up with the identity

L(T, E/K) = L(T, Ï) = det(1 - TFrobk | H1(Cºkäk, Ï)).

By Deligne [De-WeII, 3.2.3], H1(Cºkäk, Ï) is pure of weight two. Thus L(T, E/K) = L(T, Ï) lies

in 1 + T#[T] and has all its complex zeros on the circle |T| = 1/q (i.e., L(q-s, E/K) has all its zeros

on the line Re(s) = 1).

By the Mordell Weil theorem, the group E(K) is finitely generated. The (basic) Birch and

Swinnerton Dyer conjecture for E/K asserts that the rank of E(K), denoted rank(E/K), is the order
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of vanishing of L(T, E/K) at the point T = 1/q, q := ùk, or equivalently that rank(E/K) is the

multiplicity of 1 as generalized eigenvalue of Frobk on the Tate-twisted group H1(Cºkäk, Ï)(1).

We call this multiplicity the analytic rank of E/K:

rankan(E/K) := ordT=1det(1-TFrobk | H1(Cºkäk, Ï)(1)).

The group H1(Cºkäk, Ï)(1) has a natural orthogonal autoduality <,> which is preserved by

Frobk, i.e., Frobk lies in the orthogonal group O := Aut(H1(Cºkäk, Ï)(1), <,>). Now for any

element A of any orthogonal group O, its reversed characteristic polynomial 

P(T) := det(1-AT) 

satisfies the functional equation

Tdeg(P)P(1/T) = det(-A)P(T),

the sign in which is det(-A).

Applying this to Frobk, we find the functional equation of the L-function of E/K:

Tdeg(L)L(1/T, E/K) = œ(E/K)L(T, E/K),

where œ(E/K) is the the sign

œ(E/K) = det(-Frobk | H1(Cºkäk, Ï)(1)).

So just as in the number field case, we have the implications

œ(E/K) = -1 à rankan(E/K) is odd, and ≥ 1,

œ(E/K) = +1 à rankan(E/K) is even.

In the function field case, we also have an a priori inequality

rank(E/K) ≤ rankan(E/K).

[But the "parity conjecture", the assertion that we have an a priori congruence

rank(E/K) • rankan(E/K) mod 2,

is not known in either the number field or the function field case.]

What about quadratic twists of a given E/K? To define these, we suppose that the field K

has odd characteristic. Then E/K is defined by an equation

y2 = x3 + ax2 + bx + c

where x3 + ax2 + bx + c in K[x] is a cubic polynomial with three distinct roots in äK. For any

element f in K≠, the quadratic twist Ef/K is defined by the equation

fy2 = x3 + ax2 + bx + c.

Pick any dense open set U in C over which E/K has good reduction, and over which the function f

has neither zero nor pole. Then Ef/K also has good reduction over U, say πf : ‰f ¨ U, and the

lisse sheaf R1(πf)*ä$… on U is obtained from R1π*ä$… by twisting by the lisse rank one Kummer

sheaf Òç2(f) on U:

R1(πf)*ä$… = Òç2(f)‚R1π*ä$… 
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[Recall that ç2 is the unique character of order two of k≠, and Òç2(f) is the character of π1(U)

whose value on the geometric Frobenius Frobx attached to a closed point x of U with residue field

Éx is ç2(NÉx/k(f(x))). This twisting formula is the sheaf-theoretic incarnation of the relation

ax(Ef/K) = ç2(NÉx/k(f(x)))ax(E/K),

itself the function field analogue of the number field formula

ap(ED) = çD(p)ap(E).]

So if we denote by j : U ¨ C, the sheaf Ïf := j*R1(πf)*ä$… on C attached to Ef/K is related to the

sheaf Ï := j*R1π*ä$… on C attached to E/K by the rule

Ïf = j*(Òç2(f)‚j*Ï).

And the L-function of Ef/K is thus

L(T, Ef/K) = L(T, Ïf) = det(1 - TFrobk | H1(Cºkäk, Ïf)).

Thus when we start with a single elliptic curve E/K, and pick a prime number …  invertible

in K, we get a geometrically irreducible middle extension ä$…-sheaf Ï on C. To the extent that we

wish to study the LLLL----ffffuuuunnnnccccttttiiiioooonnnnssss of twists Ef/K (rather than the twists themselves, or their actual

ranks) the only input data we need to retain is the sheaf Ï. Indeed, once we have Ï, the sheaf Ïf

attached to a twist Ef/K is constructed out of Ï by the rule

Ïf = j*(Òç2(f)‚j*Ï),

for j : U ¨ C the inclusion of any dense open set on which f in invertible and on which Ï is lisse.

In the case of twists of an E/$, we twisted by squarefree integers D, and for growing real

X > 0 we successively averaged over the finitely many such D with |D| ≤ X. What is the function

field analogue? 

When the function field K is a rational function field k(¬) in one variable ¬, every element

f(¬) of K≠ can be written as f = g(¬)2h(¬), with h(¬) a polynomial in ¬ of degree d ≥ 0 which has

all distinct roots in äk (i.e., h is a square free polynomial). This expression is unique up to (g, h) ÿ

(åg, å-2h) for some å in k≠. 

So in this case, we might initially try to look at twists of a given E by aaaallllllll squarefree

polynomials in ¬ of higher and higher degree d. We might hope that for a given degree d of twist

polynomial h, the L-functions L(T, Eh/K) form some sort of reasonable family of polynomials in

T. But the degree of L(T, Eh/K) depends on more than just the degree of the square free h. It is also

sensitive to the zeros and poles of h at points of Sing(E/K), the set where E/K has bad reduction.

For this reason, it is better to abandon the crutch of polynomials and their degrees, and rather

impose in advance the behavior of the twisting function f in K≠ at all the points of Sing(E/K). 

Since we are doing quadratic twisting, the local geometric behavior at a point x in C of the



        Introduction-17

twist Ef/K sees ordx(f) only through its parity. Let us fix an effective divisor D on C and look only

at functions f on C whose divisor of poles is exactly D, and which have d := deg(D) distinct zeros

(over äk), none of which lies in Sing(E/K)¤(C-D). We denote by

Fct(C, D, d, Sing(E/K)¤(C-D)) fi L(D)

this set of functions. Then the interaction between f and Sing(E/K) can be read entirely from the

divisor D, in fact, from the parity of ordx(D) at each point x in Sing(E/K). In particular, if we want

to force local twisting at a given point x in C, in particular at a point in Sing(E/K), we have only to

be take an effective D which contains the point x with odd multiplicity. This formulation has the

advantage of working equally well over a base curve C of any genus, whereas the polynomial

formulation was tied to having @1 as the base.

The upshot is that if we fix an effective divisor D on C, then as f varies in the space 

Fct(C, D, d, Sing(E/K)¤(C-D)),

all the L-functions L(T, Ef/K) have a common degree. It turns out there is a sheaf-theoretic

explanation for this uniformity. For any effective D whose degree d satisfies d ≥ 2g+1, the space

Fct(C, D, d, Sing(E/K)¤(C-D))

is, in a natural way, the set of k-points of a smooth, geometrically connected k-scheme

X := Fct(C, D, d, Sing(E/K)¤(C-D))

of dimension d + 1 - g. And there is a lisse ä$…-sheaf 

Ì := Twistç2,C,D(Ï)

on the space X, whose stalk Ìf at a k-valued point

f in X(k) = Fct(C, D, d, Sing(E/K)¤(C-D))

is the cohomology group H1(Cºkäk, Ïf), and whose local characteristic polynomial det(1 -

TFrobk,f | Ìf) is given by

det(1 - TFrobk,f | Ìf) 

= det(1 - TFrobk,f | H
1(Cºkäk, Ïf)) = L(T, Ef/K).

Moreover, the Tate-twisted sheaf Ì(1) is pure of weight zero, and has an orthogonal autoduality,

which induces on each individual cohomology group H1(Cºkäk, Ïf)(1) the orthogonal autoduality

responsible for the functional equation of L(T, Ef/K). And for each finite extension kn/k of given

degree n, the stalks of Ì at the kn-valued points X(kn) encode the L functions of twists defined

over kn.

In this way, questions about the (distribution of the zeroes of the) L-functions L(T, Ef/K),

as f varies in the space

X(k) = Fct(C, D, d, Sing(E/K)¤(C-D)),

become questions about the sheaf 

Ì := Twistç2,C,D(Ï)
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on X. Thanks to Deligne's equidistribution theorem [Ka-Sar, RMFEM, 9.2.6], we can answer

many of these questions in terms the geometric monodromy group Ggeom attached to the sheaf Ì. 

For example, iiiiffff the group Ggeom is the full orthogonal group, we automatically get the

following results on average analytic rank.

1) The average analytic rank over kn of twists defined by f's in X(kn) tends to 1/2 as n ¨ ‘. [And

hence the average rank has a limsup ≤ 1/2 as n ¨ ‘.]

2) for each choice of œ = _1, the fraction ùX(kn)sign œ/ùX(kn) of twists with sign œ in the

functional equation tends to 1/2 as n ¨ ‘.

3) In the set ùX(kn)sign +, the fraction of twists with rankan = 0 tends to 1 as n ¨ ‘. [And hence

in the set ùX(kn)sign +, the fraction of twists with rank = 0 tends to 1 as n ¨ ‘.]

4) In the set ùX(kn)sign -, the fraction of twists with rankan = 1 tends to 1 as n ¨ ‘. [And hence

in the set ùX(kn)sign -, the fraction of twists with rank ≤ 1 tends to 1 as n ¨ ‘]

Suppose we take a sequence of effective divisors D√ on C whose degrees d√ are strictly

increasing. Then we get a sequence of smooth k-schemes

X√ := Fct(C, D√, d, Sing(E/K)¤(C-D√))

and, on each X√, a lisse sheaf Ì√, say of rank N√. The ranks N√ tend to ‘ with √. Suppose that

for every large enough √, the group Ggeom for the sheaf Ì√ on X√ is the full orthogonal group

O(N√). Then for each choice of sign œ = _1, and each choice of integer j ≥ 1, we can obtain the

eigenvalue location measure √(œ, j) as the following (weak *)double limit: the large √ limit of the

large n limit of the distribution of the j'th normalized zero of the L-functions attached to variable

points in X√(kn)sign œ.

It was with these applications in mind that we set out to prove that, at least in characteristic

p ≥ 5, as soon as the effective divisor D on C has degree d sufficiently large, then Ggeom for Ì is

the full orthogonal group. Unfortunately, this assertion is not always true. What is true is that

Ggeom is either the full orthogonal group O or the special orthogonal group SO, provided only

that E/K has nonconstant j invariant, and that

d ≥ 4g+4, and

2g - 2 + d > Max(2ùSing(E/K)(äk), 144).

[If p=3, this result remains valid provided that the sheaf Ï attached to E/K is everywhere tamely

ramified, a condition which is automatic in higher characteristic]

We prove that Ggeom is O if E/K has multiplicative reduction (i.e., unipotent local

monodromy) at some point of Sing(E/K) which is not contained in D. 

But there are cases where Ggeom is SO rather than O. If E/K does nnnnooootttt have unipotent local

monodromy at aaaannnnyyyy point of Sing(E/K), and if every point of Sing(E/K) which occurs in D does so

with even multiplicity, then Ì has even rank, say N, and an analysis of local constants, using [De-

Constants, 9.5] shows that Ggeom lies in SO(N) (and hence is equal to SO(N), for d large). cf.
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Theorem 8.5.7.

An example of an E/K with nonconstant j but with no places of multiplicative reduction, is

the twisted (by ¬(¬-1)) Legendre curve 

y2 = ¬(¬-1)x(x-1)(x-¬)

over k(¬), k := Ép, p any odd prime, which has bad reduction precisely at 0, 1, ‘, but at each of

these points the monodromy is 

(quadratic character)‚(unipotent).]

In this example, it turns out (cf. Corollary 8.6.7) that if the characteristic p is 1 mod 4, then all the

L-functions over all kn have eeeevvvveeeennnn functional equation. But, if p is 3 mod 4, then the L-functions

over even [respectively odd] degree extensions kn have even [respectively odd] functional

equations~

The Legendre curve itself,

y2 = x(x-1)(x-¬)

over k(¬), has unipotent local monodromy at both 0 and 1. And so if we twist by polynomials f(¬)

in k[¬] of any fixed degree d ≥ 146, which have all distinct roots in äk and are invertible at both 0

and 1, the resulting sheaf Ìd on Xd := Fct(@1, d‘, d, {0,1}) has Ggeom = O(Nd), with Nd equal

to 2d if d is even, and to 2d-1 if d is odd.

Now the Legendre curve makes sense over #[1/2][¬, 1/¬(¬-1)], and the space Xd makes

sense over #[1/2]. For each fixed d ≥ 146, it makes sense to vary the characteristic p, and ask

average rank questions about twists of the Legendre curve over Ép(¬) by points in Xd(Ép) as p ¨

‘. We get the same answers as we got by fixing p and looking at twists by points in Xd(Épn) as n

¨ ‘. If we vary d as well, we can recover the eigenvalue location measures √(œ,j) as well. For

each choice of sign œ and integer j ≥ 1, we can obtain the eigenvalue location measure √(œ, j) as the

following (weak *) double limit: the large d limit of the large p limit of the distribution of the j'th

normalized zero of the L-functions attached to variable points in Xd(Ép)sign œ. 

But there are some basic things we don't know, "even" about this Legendre example, and

"even" in equal characteristic p. For example, it is easy to see that for any fixed p, ùXd(Ép) ¨‘ as

d ¨‘. [Indeed, an element of Xd(Ép) is a degree d polynomial f(¬) in Ép[¬] with all distinct roots

in äÉp, which is nonzero at the points 0 and 1. For d ≥ 3, any iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee polynomial of degree d in

Ép[¬] will lie in Xd(Ép). And the number of degree d irreducibles in Ép[¬] is at least 

(p-1)(1/d)(pd - (d/2)pd/2).]

It is also easy to see that for each choice of sign œ, the ratio

ùXd(Ép)sign œ/ùXd(Ép)

tend to 1/2 as d ¨ ‘. [For d even, use [De-Const, 9.5] as in 8.5.7. For d odd, use the fact that for

å in Ép
≠ a nonsquare, and any f in Xd(Ép), the twists of the Legendre curve by f and by åf have

opposite signs in their functional equations, cf. 5.5.2, case 3).] But for p fixed, we do nnnnooootttt    kkkknnnnoooowwww
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any of the following 1) through 4).

1)The average rank of twists defined by f's in Xd(Ép) tends to 1/2 as d ¨ ‘. 

2) In the set Xd(Ép)sign - the fraction of twists with rankan = 1 tends to 1 as d ¨ ‘.

3) In the set Xd(Ép)sign - the fraction of twists with rankan = 0 tends to 1 as d ¨ ‘.

4) For each choice of sign œ and integer j ≥ 1, the eigenvalue location measure √(œ, j) is the

following (weak *) ssssiiiinnnngggglllleeee limit: the large d limit of the distribution of the j'th normalized zero of the

L-functions attached to variable points in Xd(Ép)sign œ. 

Let us now stand back and see what ingredients were required in the above discussion of

quadratic twists of E/K, an elliptic curve over a function field with a nonconstant j-invariant. The

function field K is the function field of a projective, smooth, geometrically connected curve C/k, k a

finite field. Over some dense open set U in C, E/K spreads out to an elliptic curve π : ‰ ¨ U. We

fix a prime number … invertible in k, and form the lisse sheaf R1π*ä$… on U. It is lisse of rank two,

pure of weight one, and symplectically self dual toward ä$…(-1). The assumption that the j invariant

is nonconstant is used only to insure that R1π*ä$… is geometrically irreducible on U. If k has

characteristic p ≥ 5, then R1π*ä$… is everywhere tamely ramified: this is the only way the

hypothesis p ≥ 5 is used. Denoting by j : U ¨ C the inclusion, we form the sheaf 

Ï := j*R1π*ä$…

on C. We then fix an effective divisor D on C of large degree. We form the quadratic twists Ef/K

of E/K by variable f in L(D) which have deg(D) distinct zeroes (over äk), none of which lies in D or

in Sing(Ï)¤(C-D). The L-functions of these quadratic twists are the local L-functions of a lisse

ä$…-sheaf 

Ì := Twistç2,C,D(Ï)

at the k-points of a smooth, geometrically connected k-scheme

X := Fct(C, D, d, Sing(Ï)¤(C-D))

of dimension d + 1 - g. 

The original ellliptic curve E/K occcurs oooonnnnllllyyyy through the geometrically irreducible middle

extension sheaf Ï on C. Once we have Ï, we can forget where it came from~ Our fundamental

result in the elliptic case is the determination of the geometric and arithmetic monodromy groups

attached to the lisse ä$…-sheaf 

Ì := Twistç2,C,D(Ï)

on the smooth, geometrically connected k-scheme

X := Fct(C, D, d, Sing(Ï)¤(C-D))

of dimension deg(D) + 1 - g.

In fact, we can study the L-functions of twists, by nontrivial tame characters ç of aaaannnnyyyy

order, of an    aaaarrrrbbbbiiiittttrrrraaaarrrryyyy geometrically irreducible middle extension sheaf Ï on C. Again in this
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general set up, the L-functions of such twists are the local L-functions of a lisse ä$…-sheaf 

Ì := Twistç,C,D(Ï)

at the k-points of the same smooth, geometrically connected k-scheme

X := Fct(C, D, d, Sing(Ï)¤(C-D))

of dimension deg(D) + 1 - g that occurred above for quadratic twists of elliptic curves. Again the

question is to determine the arithmetic and geometric monodromy groups attached to Ì.

The rank N of Ì := Twistç,C,D(Ï) grows with deg(D), indeed we have an a priori

inequality

N := rankÌ ≥ (2g - 2 + deg(D))rank(Ï).

One case of our main technical result (Theorems 5.5.1 and 5.6.1) is this. Suppose that Ï is

everywhere tamely ramified, and that either the order of ç is not 4 or 6, or that the rank of Ï is at

most 2. Then for any effective divisor D of large degree, the geometric monodromy group Ggeom

for Ì := Twistç,C,D(Ï) is one of the following subgroups of GL(N):

O(N)

SO(N): possible only if N is odd

Sp(N): possible only if N is even

a group containing SL(N).

We can be more precise about which cases arise for which input data (Ï, ç). Unless ç has order

two and Ï is self-dual on Cºäk, Ggeom contains SL(N). If Ï is orthogonally self dual on Cºäk, and

ç has order two, then Ì is symplectically self dual on Xºäk, and Ggeom for Ì is Sp(N). If Ï is

symplectically self dual on Cºäk, and ç has order two, then Ì us orthogonally self dual on Xºäk, and

Ggeom for Ì is either SO(N), possible only if N is even, or it is O(N).

We can drop the hypothesis that Ï be everywhere tame if we are in large characteristic (the

exact condition is p ≥ rank(Ï) + 2), and if we require in addition that the effective divisor D of

large degree contain no point where Ï is wildly ramified. [This second condition is automatic for

D's which are disjoint from the ramification of Ï.]

Fix, then, input data (Ï, ç, D) as above. As deg(D) grows, the sheaves Ì :=

Twistç,C,D(Ï) have larger and larger classical groups as their geometric monodromy groups. The

general large N limit results of Katz-Sarnak [Ka-Sar, RMFEM] then give information about the

statistical behaviour of the zeroes of the L-functions of the corresponding twists. This information

always concerns a double limit limdeg(D) ¨ ‘ limdeg(E/k) ¨ ‘. For each D we must consider,

for larger and larger finite extensions E of k, the L-functions of all twists Ï‚Òç(f) as f runs over

the E-valued points X(E) of the parameter space X = Fct(C, D, d, Sing(Ï)¤(C-D)).

We also work out some refinements of these results, where we change the inner limit. The

first refinement is twist only by "primes" in X(E), i.e., by functions f in X(E) whose divisor of

zeroes div0(f) is a single closed point of CºkE. The terminology "prime" arises as follows. In the

case when C is @1 and D is d‘, an element f in X(E) is a polynomial f(t) in E[t] of degree d which
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has d distinct roots in äE and which is invertible at the finite singularities of Ï. Such an element f is

"prime" if and only if f(t) is an irreducible polynomial in E[t]. More generally, we might twist only

by f's in X(E) whose divisor of zeroes has any pre-imposed factorization pattern. For instance, we

might twist only by f's in X(E) which "split completely" over E, i.e., by f's in X(E) which have d

distinct zeroes in C(E). 

A second refinement is to start not over a finite field, but over a ring of finite type over #,

for instance over #[1/N…]. Then just as in the case of the Legendre family discussed above, we can

look at twists by points in X(Ép) as p ¨ ‘. We get the same answers as we got by fixing p and

looking at twists by points in X(Épn) as n ¨ ‘. We can combine the two refinements. We can

twist only by primes in X√(Ép) as p ¨ ‘, or we can twist only by elements of X√(Ép) which

"split completely" over Ép. Under mild hypotheses, the double limit results remain the same. 

Still working over #[1/N], take a sequence of divisors D√ whose degrees d√ are strictly

increasing. We get thus a sequence of parameter spaces

X√ := Fct(C, D, d, Sing(Ï)¤(C-D))

over #[1/N]. We can recover the eigenvalue location measure (whichever of √(œ,j) or √(j) is

appropriate to the situation being considered) as the following (weak *) double limit: the large √

limit of the large p limit of the distribution of the j'th normalized zero of the L-functions attached to

variable points in X√(Ép). 

If we fix the prime p, and let √ ¨ ‘, then just as in the Legendre case discussed above, it is

natural to ask if we can recover the eigenvalue location measure, whichever of √(œ,j) or √(j) is

appropriate, as the following (weak *) single limit: the large √ limit of the distribution of the j'th

normalized zero of the L-functions attached to variable points in X√(Ép). 

Let us now backtrack, and describe the logical organization of this book. It falls naturally

into four parts:

Part I (Chapters 1,2,3,4): background material, used in Part II.

Part II (Chapter 5) twisting, done over an algebraically closed field

Part III (Chapters 6,7,8): twisting, done over a finite field

Part IV (Chapters 9, 10): twisting, done over schemes of finite type over #.

The first chapter is devoted to results from representation theory. It depends essentially

upon a beautiful result of Zarhin about recognizing when an irreducible Lie subalgebra of End(V)

is either Lie(SL(V)) or Lie(SO(V)) or, if dim(V) is even, Lie(Sp(V)). It also uses classical results

of Blichfeld and Mitchell about finite primitive irreducible subgroups of GL(n, ^), and modern

extensions of these results by Huffman-Wales and Zalesskii. The result of Zalesskii is explained in

some detail in an appendix to the first chapter, along with some speculations.

In the second chapter, we use the general theory of Lefschetz pencils over an algebraically

closed field to develop some basic facts about the geometry of curves, which were surely well

known in the nineteenth century.

The third chapter is concerned with induction of group representations, and with giving
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algebro-geometric criteria for induced representations to have various properties (e.g., to be

autodual, to be irreducible).

The fourth chapter is a brief review of "middle convolution" and its effect on local

monodromy as developed in [Ka-RLS]. This material depends in an essential way on Laumon's

work on Fourier Transform.

After all these preliminaries, we turn to our subject proper in Chapter 5, which is the

technical core of the book. We work over an algebraically closed field, and compute monodromy

groups of twist sheaves, using as essential ingredients results of all the previous chapters.

In Chapter 6, we explain how to formulate over a general base scheme the set up we

considered in Chapter 5.

In Chapter 7, we work over a finite field, and extract the diophantine consequences of the

monodromy results of Chapter 5. The essential ingredient here is the work of Deligne in [De-Weil

II], both his purity theorem and his equidistribution theorem. 

In Chapter 8, we give applications to average analytic rank of twists of a given elliptic

curve. This leads us into a long discussion of whether the monodromy group in question is O or

SO, and leads us to some very nice examples.

In Chapter 9, we begin to work systematically over a base which is a scheme of finite type

over #, rather than "just" a finite field. We also introduce the notion of twisting by a "prime". We

prove an equidistribution theorem for primes in divisor classes, which was presumably well

known in the late 1920's and 1930's to people like Artin, Hasse and Schmidt, but for which we do

not know a reference. We then analyze when twisting only by primes changes nothing as far as

equidistribution properties. This leads us to a simple but useful case of Goursat's Lemma.

In Chapter 10, we give "horizontal" versions (i.e., over Ép as p ¨ ‘) of all the results we

found earlier over a finite field k (where we worked over larger and larger extension fields of the

given k)

I respectfully dedicate this book to the memory of my teacher Bernard Dwork, to whom I

owe so very much.
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1111....0000 TTTTwwwwoooo    ggggeeeennnneeeerrrraaaalllliiiizzzzaaaattttiiiioooonnnnssss    ooooffff    tttthhhheeee    nnnnoooottttiiiioooonnnn    ooooffff    ppppsssseeeeuuuuddddoooorrrreeeefffflllleeeeccccttttiiiioooonnnn

(1.0.1) It will be convenient to introduce two generalizations of the notion of pseudoreflection.

Suppose we are given a finite-dimensional vector space V over a field K. We write GL(V) for

AutK(V), so long as there is no ambiguity about the field K. Recall that an element A in GL(V) is

called a pseudoreflection if its space of fixed points, Ker(A-1), has codimension one in V, or

equivalently if the quotient spaceV/Ker(A-1) has dimension one. 

(1.0.2) Given an integer r ≥ 0, and an element A in GL(V), we say that A has drop r if Ker(A-1)

has codimension r in V. In other words,

(1.0.2.1) drop of A := dim(V/Ker(A-1)).

(1.0.3) Thus the only element of drop zero is the identity, and the elements of drop one are

precisely the pseudoreflections. For A not the identity, we think of the drop of A as a measure of

how nearly A resembles a pseudoreflection: the lower its drop, the more A resembles a

pseudoreflection.

(1.0.4) A further property that any pseudoreflection A automatically satisfies is that it acts as a

scalar on the quotient space V/Ker(A-1), simply because that space is one-dimensional.

(1.0.5) We say that an element A in GL(V) is quadratic of drop r if it has drop r and if in addition

either r = 0 or the action of A on the quotient space V/Ker(A-1) is scalar, in which case which we

call this scalar the scale of A. The terminology "quadratic" goes back to Thompson [Th-QP], and

refers to the fact that, if dim(V) > r ≥ 1, the minimal polynomial of an A which is quadratic of drop

r is a quadratic polynomial, namely (T-1)(T-scale(A)). Conversely, given A in GL(V) whose

minimal polynomial is (T-1)(T-¬) for some ¬ in K≠, A is a quadratic of drop r = dim(V/Ker(A-

1)) and scale ¬.

(1.0.6) Given a group I (we have in mind an inertia group), a K-linear representation ® of I on V,

and an integer r ≥ 0, we say that ® has drop r if, denoting by VI fi V the subspace of I-invariant

vectors in V, dim(V/VI) = r. We say that ® is quadratic of drop r if either r=0 or if the action of I

on V/VI is scalar, in which case we call the linear character by which I acts on V/VI the scale of ®. 

(1.0.7) If the group I is cyclic, with generator ©, then the drop, say r, of the representation ® is

equal to the drop of the element ®(©), and the representation ® is quadratic of drop r if and only if

the element ®(©) is quadratic of drop r.

(1.0.8) What happens for a more general group? Obviously, if ® has drop r (resp. is quadratic of

drop r), then for every element © in I, ®(©) has drop ≤ r (resp. ®(©) is quadratic of drop ≤ r).

However, the converse is false in general: one cannot infer the drop of a representation just from

looking at the drops of elements. The simplest example is the subgroup of GL(2, #) consisting of

all 2≠2 integer matrices ((_1,n), (0,1)) with n in #, in its standard representation std or the direct

sum of std and a trivial representation of any size. Each element acts as a pseudoreflection or as the

identity (i.e., has drop ≤ 1), but the representation has drop two. If we take the direct sum of k

copies of such a representation, each element has drop ≤ k, but the representation has drop 2k.

Another simple example is the diagonal subgroup Æ of SL(2n+1, #) in its standard representation
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std or in the direct sum of std and a trivial representation of any size. Every element in Æ acts has

drop ≤ 2n, but the representation has drop 2n+1.

1111....1111    BBBBaaaassssiiiicccc    LLLLeeeemmmmmmmmaaaassss    oooonnnn    eeeelllleeeemmmmeeeennnnttttssss    ooooffff    lllloooowwww    ddddrrrroooopppp

DDDDrrrroooopppp    LLLLeeeemmmmmmmmaaaa    1111....1111....1111 Let K be a field, r ≥ 0 an integer, M/K a vector space of dimension m > 4r2,

and C in GL(M) an element of drop r. Suppose there exists a tensor factorization of M as V‚KW

with dim(V) = a, dim(W) = b, a ≤ b, and elements A in GL(V), B in GL(W) such that C = A‚B.

Then A is scalar. If r=0, B is also scalar. If r ≥ 1, then a divides r, and (hence) a ≤ r.

pppprrrrooooooooffff It suffices to prove the assertion after an arbitrary extension of the ground field, so we may

reduce to the case when K is algebraically closed. Write C in Jordan form as a direct sum of scalars

times unipotent Jordan blocks, say 

C = ·i (¬i‚Unip(di) on Mi), dim(Mi) denoted di. 

In this direct sum decomposition, compute Ker(C-1):

Ker(C-1 on M) =  ·i (Ker(¬i‚Unip(di) - 1) on Mi).

The kernel of ¬‚Unip(d) - 1 is zero for ¬ ± 1, and is one-dimensional for ¬=1. So we find

[‡i with ¬i = 1 (di -1)]   +   [‡i with ¬i ± 1 di] = codim Ker(C-1) = r.

Looking only at the second bracketed term, we see that the total number (counting

multiplicity) of eigenvalues of C which are not 1 is at most r.

So any list of at least r+1 eigenvalues of C contains the number 1, and any list of at least

2r+1 eigenvalues of C contains 1 as its majority listing. Fix an eigenvalue å of A. As C is A‚B,

å∫i is an eigenvalue of C for each eigenvalue ∫i of B. Notice that b ≥ 2r+1 [because ab = m > 4r2,

and b ≥ a, so if b ≤ 2r then ab ≤ b2 ≤ 4r2]. Thus among the {å∫i}i=1 to b, the most prevalent value

is 1. This means that å is the most prevalent of the 1/∫i. So eeeevvvveeeerrrryyyy eigenvalue of A is å. Replacing

A by (1/å)A, and B by åB, we reduce to the case that A is unipotent. 

Once A is unipotent, we next show it is semisimple. If not, then A has as a direct summand

a Jordan block Unip(t) of size t ≥ 2. Write the Jordan normal form of B:

B = ·i ∫iºUnip(ni),

with integers ni ≥ 1.

Then A‚B has a direct summand

·i ∫iºUnip(t)‚Unip(ni).

Now in a single summand ∫iºUnip(t)‚Unip(ni), what is the codimension of the space of

invariants? If ∫i ± 1, the invariants vanish, so the codimension is tni. 

If ∫i= 1, we claim the invariants in Unip(t)‚Unip(ni) are of dimension Min(t, ni). 

LLLLeeeemmmmmmmmaaaa    1111....1111....2222 The invariants in Unip(d)‚Unip(e) have dimesion Min(d, e). 

pppprrrrooooooooffff By symmetry, we may assume d ≥ e. The dual of Unip(d), being unipotent and

indecomposable of dimension d, is again isomorphic to Unip(d), so the invariants in in

Unip(d)‚Unip(e) are the equivariant maps from Unip(d) to Unip(e). Think of Unip(d) as
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K[T]/(T-1)d with the action of T. The equivariant maps become the K[T]-homomorphisms from

K[T]/(T-1)d to K[T]/(T-1)e. As d ≥ e, we have

HomK[T]-mod(K[T]/(T-1)d, K[T]/(T-1)e)

= HomK[T]/(T-1)d-mod(K[T]/(T-1)d, K[T]/(T-1)e),

and by "evaluation at 1" this last Hom group is just

= K[T]/(T-1)e,

which has dimension e := Min(d, e). QED for the lemma

1111....1111....3333    RRRReeeemmmmaaaarrrrkkkk    oooonnnn    LLLLeeeemmmmmmmmaaaa    1111....1111....2222 If our ground field K has characteristic zero, then we know the

Jordan decomposition of Unip(d)‚Unip(e). If d ≥ e, we have

(1.1.3.1) Unip(d)‚Unip(e) ¶ ·j=1 to e Unip(d + e - 2j).

Since a single Jordan block has a one-dimensional space of invariants, the truth of Lemma 1.1.2 in

characteristic zero is immediate from this formula.

The above formula 1.1.3.1 for the Jordan decomposition in characteristic zero of

Unip(d)‚Unip(e), d ≥ e, results from the well known formula for the tensor product of two

symmetric powers Symma(std) and Symmb(std), a ≥ b, of the standard representation std of the

algebraic group SL(2) over any field K of characteristic zero, according to which

(1.1.3.2) Symma(std)‚Symmb(std) ¶ ·j=0 to b Symma+b-2j(std).

One takes a := d-1, b := e-1, and uses the fact that for each integer n ≥ 0, the standard upper

unipotent element {(1,1), (0,1)} in SL(2, #) acts as Unip(n+1) in Symmn(std).

(1.1.4) We now return to the proof of the Drop Lemma 1.1.1. Thanks to the above Lemma 1.1.2,

the codimension of the invariants, already in the direct summand

·i ∫iºUnip(t)‚Unip(ni)

of A‚B, is

‡i with ∫i = 1tni  +  ‡i with ∫i ± 1 [tni - Min(t, ni)]

≥‡i [tni - Min(t, ni)]

≥ ‡i [tni - ni]

= ‡i (t-1)ni ≥ ‡i ni = b ≥ 2r+1 > r,

contradiction.

Thus A is scalar, so it is úa, the a≠a identity. Then C = A‚B is the direct sum of a copies of

B. So C-1 is the direct sum of a copies of B-1, and hence 

 r = codim of Ker(C-1) = a≠codim of Ker(B-1).

If r=0, we infer that B = úb, the b≠b identity. If r ≥ 1, we infer that a | r, as required. QED for the

drop lemma
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(1.1.5) We will also require the Lie algebra version of the drop lemma above.

DDDDrrrroooopppp    LLLLeeeemmmmmmmmaaaa,,,,    LLLLiiiieeee    aaaallllggggeeeebbbbrrrraaaa    vvvveeeerrrrssssiiiioooonnnn    1111....1111....6666 Let K be a field of characteristic zero, r ≥ 0 an integer,

M/K a vector space of dimension m > 4r2, C in End(M) and ¬ in K such that C - ¬ has rank r as

endomorphism of M (i.e. Ker(C-¬) has codimension r). Suppose there exists a tensor factorization

of M as V‚KW with dim(V) = a, dim(W) = b, a ≤ b, and elements A in End(V), B in End(W)

such that C = A‚1 + 1‚B. Then A is scalar. If r=0, B is also scalar. If r ≥ 1, then a divides r, and

(hence) a ≤ r.

pppprrrrooooooooffff Extend scalars from K to the fraction field K((T)) of the power series ring K[[T]] in one

variable T. Then exp(T(C-¬)) has drop r, and exp(TC) = exp(TA)‚exp(TB). Write exp(T(C-¬))

as exp(-¬T)exp(CT). Thus we have

exp(T(C-¬)) =  exp(-¬T)exp(TA)‚exp(TB) = exp(TA)‚exp(T(B-¬)).

 Now apply the drop lemma to conclude that exp(TA) is scalar, that if r = 0, then also exp(T(B-¬))

is scalar, and that if r ≥ 1, then a | r. Differentiating exp(TA) and setting T=0, we find that A is

scalar. If r=0, we find similarly that B - ¬, and hence B, is scalar. QED

1111....2222    TTTTeeeennnnssssoooorrrr    pppprrrroooodddduuuuccccttttssss    aaaannnndddd    ttttaaaammmmeeeennnneeeessssssss    aaaatttt    ‘‘‘‘

LLLLeeeemmmmmmmmaaaa    1111....2222....1111 Fix an algebraically closed field k and a prime number … which is invertible in k.

Suppose given an irreducible lisse ä$…-sheaf Ï on a dense open set U fi !1, which is tame at ‘.

Suppose that there exist lisse ä$…-sheaves Ì and Ó on U such that Ï ¶ Ì‚Ó. Then there exists a

(unique) lisse, rank one ä$…-sheaf Ò on !1 such that Ì‚Ò-1 is tame at ‘.

pppprrrrooooooooffff If char(k) = 0, take Ò = the constant sheaf ä$…, which is the unique lisse rank one ä$…-sheaf

Ò on !1.

If char(k) = p > 0, denote by P(‘) fi I(‘) the wild inertia group. Denote by Ï(‘), Ì(‘),

Ó(‘) the I(‘)-representations attached to these sheaves. Because Ï(‘) is trivial on P(‘),

Ì(‘)‚Ó(‘) is trivial on P(‘), and hence    Ì(‘) and Ó(‘) are each scalar representations, by

inverse ä$…
≠-valued characters ç and ç-1 of P(‘). The character ç is continuous on P(‘) and

invariant under I(‘)-conjugation, simply because ç is the restriction to P(‘) of the ä$…-valued

continuous central function on I(‘)

© ÿ (1/rank(Ì))Trace(©|Ì(‘)).

If we pick a topological generator ©tame of the tame quotient I(‘)tame ¶ °… not p #…(1),

we get an isomorphism of I(‘) with the semi-direct product P(‘) © <©tame> ¶ P(‘) © I(‘)tame.

Since ç on P(‘) is invariant by I(‘)-conjugation, we can extend ç to a continuous character ëç of

I(‘) by decreeing that ëç(©tame) = 1. By continuity, ç on P(‘) has finite p-power order (cf. [Ka-

Sar, RMFEM, 9.0.7]) and hence ëç has finite p-power order on I(‘). [So in fact ëç is the unique

extension of ç to a character of finite p-power order on I(‘), since the ratio of any two such

extensions is a tame character of finite p-power order of I(‘).] By the theory of the "canonical
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extension" [Ka-LG, 1.4.2], ëç extends uniquely to a lisse ä$…-sheaf Ò of rank one on !1. By

construction, Ì‚Ò-1 is tame at ‘. To see that Ò is the unique lisse sheaf on !1 with this

property, notice that the P(‘)-representation attached to any such Ò must be the character ç.

Hence the ratio of any two such Ò is lisse on !l and tame at ‘, so trivial. QED

(1.2.2) Here is a variant of the above lemma, where we work on a curve of higher genus.

LLLLeeeemmmmmmmmaaaa    1111....2222....3333 Fix an algebraically closed field k and a prime number … which is invertible in k. Let

C/k be a proper smooth connected curve. Fix a point ‘ in C(k). Fix integers r ≥ 1 and m ≥ 0.

Suppose given an irreducible lisse ä$…-sheaf Ï on a dense open set U fi C-{‘}, which is tame at

‘. Suppose that there exist lisse ä$…-sheaves Ì and Ó on U such that Ï ¶ Ì‚Ó. Then there exists

a lisse, rank one ä$…-sheaf Ò on C-{‘} such that Ì‚Ò-1 is tame at ‘. If char(k) p = > 0, we

may choose Ò to have finite p-power order.

pppprrrrooooooooffff Exactly as in the previous argument, we take Ò the constant sheaf if we are in characteristic

zero, otherwise we extend ç uniquely to a continuous character ëç of I(‘) of finite p-power order.

This time, we appeal to Harbater ([Harb-Mod], cf. also [Ka-LG, 2.1.4]) to show the existence of

a lisse, rank one Ò on C-{‘} extending ëç and still having the same finite p-power order. QED

RRRReeeemmmmaaaarrrrkkkk    1111....2222....4444 One essential difference between Lemmas 1.2.1 and 1.2.3 is that in the general case

1.2.3, the Ò is no longer unique, even if we insist that Ò have finite p-power order, as now the

ratio of any two such Ò is a p-power order character of π1(C). So if C has non-zero p-rank h,

then for every integer r such that the order of ç divides pr, there are prh possible Ò's of order

dividing pr. Only if the p-rank of C is zero do we get unicity of an Ò of p-power order. And if we

drop the requirement that Ò have finite p-power order, then Ò is indeterminate up to a character of

π1(C-{‘})tame. Already taking only characters with values in 1+…#… gives a (#…)2g of

indeterminacy.

1111....3333    TTTTeeeennnnssssoooorrrr    iiiinnnnddddeeeeccccoooommmmppppoooossssaaaabbbbiiiilllliiiittttyyyy    ooooffff    sssshhhheeeeaaaavvvveeeessss    wwwwhhhhoooosssseeee    llllooooccccaaaallll    mmmmoooonnnnooooddddrrrroooommmmiiiieeeessss    hhhhaaaavvvveeee    lllloooowwww    ddddrrrroooopppp

TTTThhhheeeeoooorrrreeeemmmm    1111....3333....1111 Fix an algebraically closed field k and a prime number … which is invertible in k.

Suppose given an integer r ≥ 1 and an irreducible lisse ä$…-sheaf Ï on a dense open set U fi !1,

which is tame at ‘. Suppose that at each finite singularity s of Ï, I(s) acts with drop ≤ r. Suppose

that there exist lisse ä$…-sheaves Ì and Ó on U with rank(Ì) ≤ rank(Ó) such that Ï ¶ Ì‚Ó. If

rank(Ï) > 4r2, then rank(Ì) = 1. 

pppprrrrooooooooffff By Lemma 1.2.1, there exists a lisse rank one ä$…-sheaf on !1 such that Ì‚Ò-1 is tame at

‘. So replacing Ì and Ó by Ì‚Ò-1 and Ó‚Ò respectively, we may assume in addition that Ì is
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tame at ‘. 

Fix a geometric point u in U, and write π1(U) for π1(U, u). View Ï, Ì, Ó as continuous

ä$…-representations of π1(U), denoted ÚÏ, ÚÌ, ÚÓ respectively. 

For any k-valued point s in S := !1 - U, and any element © of π1(U) which lies in an

inertia group I(s),.we know that ÚÏ(©) has drop ≤ r, and we have the tensor decomposition

ÚÏ(©) = ÚÌ(©)‚ÚÓ(©).

Applying the Drop Lemma 1.1.1, we see that ÚÌ is scalar on I(s), say with character ®s. By the

theory of the "canonical extension" [Ka-LG, 1.5.6] applied with the points ‘ and 0 replaced by the

points s and ‘, there exists a lisse, rank one ä$…-sheaf Òs on !1 - {s} which is tame at ‘ and

which at s gives the character ®s of I(s). So replacing Ì by Ì‚(‚s in S Òs)-1, and Ó by Ó‚(‚s in

S Òs), we may further reduce to the case where Ì is not only tame at ‘ but trivial on every finite

inertia group I(s). Therefore Ì is trivial (!1 is tamely simply connected~). Then Ï is rank(Ì)

copies of Ó. As Ï is irreducible, rank(Ì) must be one. QED

(1.3.2) We now give a slight extension of the above result to the case of projective representations. 

TTTThhhheeeeoooorrrreeeemmmm    1111....3333....3333 Fix an algebraically closed field k and a prime number … which is invertible in k.

Suppose given an integer r ≥ 1 and an irreducible lisse ä$…-sheaf Ï on a dense open set U fi !1,

which is tame at ‘. Suppose that at each finite singularity s of Ï, I(s) acts with drop ≤ r. Fix a

geometric point u in U, and write π1(U) for π1(U, u). View Ï as a continuous ä$…-representations

of π1(U), denoted ÚÏ. Suppose that ÚÏ as a projective representation of π1(U) has a tensor

factorization Å‚ı with Å and ı continuous projective  ä$…-representations of π1(U), with

dim(Å) ≤ dim(ı). If rank(Ï) > 4r2, then dim(Å) =1.

pppprrrrooooooooffff Because U is an open smooth connected curve over an algebraically closed field, H2(π1(U),

#/d#) =H2(U, #/d#) = 0 for every integer d ≥ 1. Hence there is no obstruction to lifting a

projective representation ®: π1(U) ¨ PGL(d, ä$…) to a linear representation ë®: π1(U) ¨ SL(d, ä$…).

Lift Å and ı to linear representations to SL, and interpret the lifts as lisse sheaves Ì and Ó on U.

Then Ï and Ì‚Ó are projectively equivalent linear representations. Therefore for some lisse rank

one sheaf Ò on U, we have Ï ¶ Ò‚Ì‚Ó. Now apply the previous theorem 1.3.1 to conclude that

Ò‚Ì, and hence Ì, has rank one. QED

CCCCaaaauuuuttttiiiioooonnnnaaaarrrryyyy    RRRReeeemmmmaaaarrrrkkkk    1111....3333....4444 Theorem 1.3.1 and, a fortiori, Theorem 1.3.3 are both ffffaaaallllsssseeee if we drop the

hypothesis that Ï be tame at ‘. Here are some examples to show this. 

(1.3.4.1) Choose an integer r ≥ 1 and an integer g > 2r. Pick a prime number p ≥ 2r+4, and an

algebraically closed field k of characteristic p. We will work on the affine line, with parameter t,

over the field k. Fix a prime number … ± p. We will construct Lie irreducible lisse äQ…-sheaves Ì
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and Ó of ranks r and 2g respectively on a dense open set U of !1 whose tensor product Ï :=

Ì‚Ó is Lie irreducible of rank 2gr > 4r2, such that all the finite local monodromy groups I(t), t in

!1 - U, act on Ï with drop ≤ r. We first describe the sheaf Ì. Fix a nontrivial additive character 

¥ : Ép ¨ (ä$…)≠.

Denote by Ò¥ the corresponding Artin-Schreier sheaf on !1. Take for Ì the Fourier transform

FT¥(Ò¥(tr+1)). Thus Ì is lisse of rank r on !1, and its Ggeom is given [Ka-MG, Theorem 19,

applied with n = r+1] by

SL(r), if r is odd,

Sp(r), if r is even.

We next describe Ó. Choose a monic polynomial f(x) in k[x] of degree 2g with 2g distinct roots,

and consider the one-parameter family Çt of hyperelliptic curves of genus g given by

Çt : y
2 = f(x)(x-t).

Over the open set U of !1 where f(t) is invertible, the (complete nonsingular models of the) Çt fit

together to form a proper smooth curve

π : Ç ¨ U,

and we take for Ó the lisse äQ…-sheaf R1π*äQ… on U. By [Ka-Sar, RMFEM, 10.1.12-15], Ó is

everywhere tame, all its finite monodromies have drop ≤ 1, and its Ggeom is Sp(2g). By Goursat's

lemma [Ka-ESDE, 1.8.2], Ggeom for Ì·Ó is the product group

SL(r) ≠ Sp(2g), if r is odd,

Sp(r)≠ Sp(2g), if r is even.

Therefore Ggeom for Ì‚Ó is the group

SL(r) ≠ Sp(2g) if r is odd,

(Sp(r)≠ Sp(2g))/_(1,1), if r is even,

in its Lie-irreducible representation (stdr)‚(std2g). Because Ì is lisse of rank r on all of !1, and

each finite local monodromy of Ó has drop ≤ 1, each finite local monodromy of Ì‚Ó has drop ≤

r.

(1.3.4.2) We can make even more egregious examples, by taking bbbbooootttthhhh Ì and Ó to be lisse on !1.

Choose integers r ≥ 1 and m > 4r. Pick a prime p ≥ 2m+4. With … and ¥ chosen as in 1.3.4.1, take

Ì to be the Fourier transform FT¥(Ò¥(tr+1)), and take Ó to be the Fourier transform

FT¥(Ò¥(tm+1)). By [Ka-MG, Theorem 19, applied with n = r+1 and n = m+1 respectively], Ì

[resp. Ó] is lisse on !1 of rank r [resp. rank m], and its Ggeom is the group SL(r) if r is odd,

Sp(r) if r is even [resp. the group SL(m) if m is odd, Sp(m) if m is even]. Again using Goursat's

lemma as in 1.3.4.1 above, we see that Ï := Ì‚Ó is Lie-irreducible on !1, of rank rm > 4r2, and

all the finite local monodromies of Ï have drop 0 ≤ r. 
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1111....4444    MMMMoooonnnnooooddddrrrroooommmmyyyy    ggggrrrroooouuuuppppssss    iiiinnnn    tttthhhheeee    LLLLiiiieeee----iiiirrrrrrrreeeedddduuuucccciiiibbbblllleeee    ccccaaaasssseeee

TTTThhhheeeeoooorrrreeeemmmm    1111....4444....1111 Fix an algebraically closed field k and a prime number … which is invertible in k. Let

C/k be a proper smooth connected curve, s a point in C(k). Fix an integer r with r ≥ 1. Suppose

given a Lie-irreducible lisse ä$…-sheaf Ï on a dense open set U fi C-{s}, corresponding to a

continuous ä$…-representaton ÚÏ of π1(U, u) on V := Ïu. Suppose that the action of I(s) on Ï is

quadratic of drop r, and its scale is a linear character ç of I(s), possibly trivial, which is nnnnooootttt of order

2. Then we have: 

1) If ç is trivial, then Ggeom contains a unipotent element A which is a quadratic of drop r, and

Lie(Ggeom)der contains a nilpotent element n which, as endomorphism of V, has rank r.

Moreover, n2 = 0 in End(V).

2) If ç is nontrivial, then ((Ggeom)0)der contains a semisimple element A such that for some scalar

¬ in ä$…
≠, ¬A is quadratic of drop r, and Lie(Ggeom)der contains a semisimple endomorphism f of

V with precisely two distinct eigenvalues, ¬1 and ¬2, such that f-¬1 as endomorphism of V has

rank r.

pppprrrrooooooooffff As Lie(Ggeom) acts irreducibly on V, it is reductive, and we have a direct sum

decomposition 

Lie(Ggeom) = Lie(Ggeom)der · (scalars)¤Lie(Ggeom), 

with Lie(Ggeom)der a semisimple Lie subalgebra of End(V) which acts irreducibly on V. We can

also describe Lie(Ggeom)der as the traceless matrices, i.e., as the intersection of Lie(Ggeom) with

Lie(SL(V)). 

We first prove 1). If ç is trivial, then I(s) acts by unipotent elements. As unipotent elements

in GL(V) have pro-… order, the action of the wild inertia group P(s) is trivial, and the action of I(s)

factors through its tame quotient I(s)tame. So any topological generator of I(s)tame acts as an

element, say A, which is unipotent and quadratic of drop r, and this A is the required element of of

Ggeom. If we put n := Log(A), we get a nilpotent element n of Lie(Ggeom) which, as

endomorphism of V, has rank r, and satisfies n2 = 0. As n is nilpotent, it has trace zero, so lies in

Lie(Ggeom)der.

We next prove 2). If ç is nontrivial, then we can diagonalize the action of I(s). As ç is not

of order 2, some © in I(s) acts as the diagonal matrix

B := Diag(å, å, ...., å, 1, 1, 1, ...., 1),

with some å ± _1 repeated r times, and 1 repeated rank(Ï) - r times.  Denote by K the subgoup of

GL(V) generated by B. Then K, acting by conjugation on End(V), normalizes Lie(Ggeom), and

hence it normalizes Lie(Ggeom)der, the intersection of Lie(Ggeom) with Lie(SL(V)). Thus  K

normalizes Lie(Ggeom)der, a semisimple Lie subalgebra of End(V) which acts irreducibly on V.
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We now apply Gabber's "torus trick" [Ka-ESDE, 1.0], whose statement we recall:

TTTThhhheeeeoooorrrreeeemmmm    1111....4444....2222    (Gabber). Let Ì be a semisimple Lie-subalgebra of End(V) which acts irreducibly on

V. Suppose that a diagonal subgroup K of GL(V) normalizes Ì. Let ç1, ... , çn be the n characters of

K defined by the diagonal matrix coefficients; i.e., k = Diag(ç1(k), ... ,ç1(k)) for k in K. Consider the

"torus" Ê in End(V) consisting of those diagonal matrices Diag(X1,...,Xn) whose entries satisfy the

conditions

‡Xi = 0

 Xi - Xj = Xk - Xm whenever çi/çj = çk/çm on K.

Then Ê lies in Ì.

Applying Gabber's "torus trick" to our situation, and remembering that å ± _1, we find that

Lie(Ggeom)der contains the torus of all diagonal matrices of trace zero of the form

Diag(X, X,  ...., X, Y, Y, Y, ...., Y),

X repeated r times and Y repeated rank(Ï) - r times. Thus if we define

d := rank(Ï) - r,

then Lie(Ggeom)der contains the element

Diag(d, d, ..., d, -r, -r, -r, ..., -r),

which is the required "f", and the group ((Ggeom)0)der contains the one dimensional torus

Diag(td, td, ...., td, t-r, t-r, t-r, ...,t-r).

A general element (e.g., take t not a root of unity of order dividing r+d) of this torus is the required

A. QED for 1.4.1.

TTTThhhheeeeoooorrrreeeemmmm    1111....4444....3333 Fix an algebraically closed field k and a prime number … which is invertible in k.

Suppose given an integer r ≥ 1 and a Lie-irreducible lisse ä$…-sheaf Ï on a dense open set U fi

!1, which is tame at ‘. Fix a geometric point u in U, and view Ï as a linear representation ÚÏ of

π1(U) := π1(U, u) on V := Ïu. Suppose that at each finite singularity s of Ï, I(s) acts with drop ≤

r. Suppose that for some t in @1 - U, the action of I(t) on Ï is quadratic of drop R with 1 ≤ R ≤ r,

and its scale is a linear character ç of I(t), possibly trivial, which is nnnnooootttt of order 2. Then we have

1) If rank(Ï) > 4r2, Lie(Ggeom)der is a simple Lie algebra.

2) If rank(Ï) > Max(4r2, 72R2), then Lie(Ggeom)der is either Lie(SO(V)) or Lie(SL(V)) or, if

dim(V) is even, Lie(Sp(V)). 

3) If rank(Ï) > Max(4r2, 72R2), and if the scale ç of the action of I(t) is a nontrivial character, not

of order 2, then Lie(Ggeom)der is Lie(SL(V)), i.e., Ggeom contains SL(V).

4) If rank(Ï) > Max(4r2, 72R2), then either Ggeom contains SL(V), or Ggeom is SO(V) or O(V)

or, if dim(V) is even, Sp(V). 
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5) If R = 1, and rank(Ï) > 4r2, then either Ggeom contains SL(V), or dim(V) is even and Ggeom

is Sp(V). If in addition the scale ç of the action of I(t) is a nontrivial character, not of order 2, then

Ggeom contains SL(V). 

6) Suppose that at some point t in @1 - U, some element of I(t) acts on Ï as a rrrreeeefffflllleeeeccccttttiiiioooonnnn. If rank(Ï)

> 4r2, then either Ggeom contains SL(V), or Ggeom is O(V).

pppprrrrooooooooffff We first prove 1). Let us denote Lie(Ggeom)der by Ì. Thus Ì is a semisimple Lie

subalgebra of End(V) which acts irreducibly on V. We argue by contradiction. Suppose Ì is not

simple. Then Ì is a product of some number n ≥ 2 of simple Lie algebras Ìi, i=1 to n, and the

faithful irreducible representation V of Ì is the tensor product of faithful irreducible representations

Vi of the simple factors Ìi. Take any partition of the indexing set {1, ..., n} into two disjoint

nonempty subsets Å and ı. Let us denote by ÌÅ (respectively Ìı) the product of the simple

factors Ìi with i in Å, (respectively i in ı) and by VÅ (respectively Vı) the tensor product of the

Vi with i in Å (respectively i in ı). Then Ì is ÌÅ≠Ìı, and V is VÅ‚Vı. Thus ÌÅ

(respectively Ìı) is a Lie subalgebra of End(Vı) (resp. of End(Vı)). At the expense of

interchanging Å and ı, we may assume that dim(VÅ) ≤ dim(Vı).

By parts 1) and 2) of the above result 1.4.1, we know that Ì contains an element f such that

for some scalar ¬, f-¬ has rank R, with 1 ≤ R ≤ r. Let us write f according to the decomposition of

Ì as ÌÅ≠Ìı, say f = (fÅ, fı). Viewing f, fÅ and fı as endomorphisms of V, VÅ and Vı

respectively, we have

f = fÅ‚1 + 1‚fı.

Applying the Lie algebra form 1.1.6 of the drop lemma, we conclude that fÅ is scalar, and that

dim(VÅ) | R. 

In particular, we have dim(VÅ) ≤ R ≤ r. Since dim(V) > 4r2, we have dim(Vı) > 4r >

dim(VÅ). Therefore, in any grouping of the tensor factors Vi of V into two clumps, VÅ‚Vı =

V, exactly one term VÅ has (small) dimension dividing R, and on this term fÅ is scalar. The other

term Vı has (large) dimension > 4r. In particular, exactly one of the factors has dimension

dividing R, and one does not.

We now claim there is one and only one i, say i0, for which Vi has dimension nnnnooootttt dividing

R. 

We first show that there is at least one index i0 such that Vi0
 has dimension not dividing R.

For if not, then the factorization Vi‚(‚j±iVj) shows that fi is scalar on Vi, for every i. Hence f is

scalar, in which case for any scalar ¬, f-¬ has rank either 0 or dim(V), never R. Contradiction. 

Thus there exists an index i0 with of has dimension not dividing R. Take the factorization
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of V as Vi0
 tensor ‚j±i0

Vj. It must be the second factor ‚j±i0
Vj whose dimension ‚j±i0

dim(Vj)

divides R, and so all the Vj with j ± i0 have dimension dividing R. 

The group π1(U) acts by conjugation on Ì = Lie(Ggeom)der, compatibly with its action on

V. Think of each Vi as a representation of Ì. The collection of representations {Vi}i is intrinsically

attached to the data (Ì, V), and from Vi we recover Ìi as the image of Ì in End(Vi). Among the

{Vi}i we have distinguished a particular Vi0
, the unique one whose dimension does not divide R.

Therefore π1(U) fixes the isomorphism class of Vi0
. Thus π1(U) also fixes the isomorphism class

of the complementary factor ‚j±i0
Vj. Thus we get projective representations Å and ı of π1(U) on

‚j±i0
Vj and on Vi0

 respectively, and the tensor product Å‚ı of these projective representations

is the projective representation of π1(U) on V attached to the given linear representation ÚÏ. In this

tensor factorization, Å has small dimension dividing R, and ı has large dimension ≥ 4r. Because

rank(Ï) > 4r2, and Ï is tame at ‘, we may apply the above Theorem 1.3.3 to infer that dim(Å) is

one. This means that ‚j±i0
Vj , and hence each Vj with i ± i0, has dimension one. But Vj is a

faithful representation of a simple Lie algebra, so it must have dimension at least two. This

contradiction shows that Ì is in fact simple.

To prove 2) once we know that Ì is simple, we have only to invoke the following striking

result of Zarhin.

TTTThhhheeeeoooorrrreeeemmmm    1111....4444....4444 [Zar-SLA, Theorem. 6, its proof and proof of Lemma 4] Over an algebraically

closed field k of characteristic zero, let V be a faithful irreducible representation of a simple Lie

algebra Ì. Let R ≥ 1 be an integer. View Ì as a Lie subalgebra of End(V), and suppose that there

exists a scalar ¬ in k and an element f in Ì such that, viewing f as an endomorphism of V, we have

rank(f-¬) = R. If dim(V) > 72R2, then Ì is the Lie algebra of either SO(V) or SL(V) or, if dim(V)

is even, of Sp(V).

We now prove 3). If the scale ç of the action of I(t) is not the trivial character, or a character

of order 2, the proof of Theorem 1.4.1 shows that Lie(Ggeom)der contains the element

Diag(d, d, ..., d, -R, -R, -R, ..., -R),

with d repeated R times, -R repeated d times, and d := dim(V) - R. The eigenvalues of this

element are not stable under x ÿ -x (because dim(V) = d+R > 4r2 ≥ 4R2 ≥ 4R, so d > R). But the

eigenvalues of any element of either Lie(SO(V)) or, if dim(V) is even, Lie(Sp(V)) acting on V are

stable under x ÿ -x. 

It remains to prove 4). By 3), ((Ggeom)0)der is either SL(V) or SO(V), or, if dim(V) is

even, Sp(V). If ((Ggeom)0)der is SL(V), there is nothing to prove. 

If ((Ggeom)0)der is SO(V), then Ggeom lies in the normalizer of SO(V) in GL(V). This
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normalizer is the group of orthogonal similitudes GO(V) := ´mO(V), so we have the inclusions

SO(V) fi Ggeom fi ´mO(V).

We must show that the image of π1(U) lies in O(V). For then we will have SO(V) fi Ggeom fi

O(V). As the index of SO(V) in O(V) is two, Ggeom will then be either SO(V) or O(V). The

sheaf Ï is lisse on the open set U fi !1, and tame at ‘. The quotient π1(U)tame at ‘ is

toplogically normally generated by all the inertia groups I(s) at all the finite singularities s in !1 -

U of Ï (because !1 over an algebraically closed field is tamely simply connected). So it suffices to

see that each I(s), s in !1 - U, lands in O(V) under the representation ÚÏ. Take an element © in

such an I(s), and denote by A its image under ÚÏ. We know that A has drop ≤ r, and we know

that there exists a scalar ¬ in ä$…
≠ such that ¬A lies in O(V). All but at most r of the eigenvalues of

A are equal to 1, and hence all but at most r of the eigenvalues of ¬A are equal to ¬. But given an

element of O(V), all but at most two of its eigenvalues can be grouped into [(dim(V)-1)/2] pairs of

inverses {åi, åi
-1}. Since ¬A has at most r eigenvalues not ¬, at most r of these inverse pairs {åi,

åi
-1} have either member not ¬. As 

[(dim(V)-1)/2] ≥ [(4r2)/2] = 2r2 > r, 

at least one of these inverse pairs {åi, åi
-1} must be {¬, ¬}. Thus ¬ = ¬-1, so ¬ = _1. But ¬A lies

in O(V), so _A lies in O(V), so A lies in O(V).

If dim(V) is even and ((Ggeom)0)der is Sp(V), then Ggeom lies in the normalizer of Sp(V)

in GL(V). This normalizer is the group of symplectic similitudes GSp(V) := ´mSp(V), so we have

the inclusions

Sp(V) fi Ggeom fi ´mSp(V).

Exactly as in the orthogonal case, it suffices to show that each I(s), s in !1 - U, lands in Sp(V)

under the representation ÚÏ. This is shown exactly as in the orthogonal case, now using the fact

that the eigenvalues of any element of Sp(V) fall into dim(V)/2 pairs of inverses {åi, åi
-1}. 

To prove 5), we argue as follows. We are given that Ï is Lie-irreducible, so

Lie(Ggeom)der is an irreducible semisimple Lie-subalgebra of End(V). Since R = 1, Lie(Ggeom)

and hence its intrinsic subalgebra Lie(Ggeom)der is normalized by a pseudoreflection which is not

a reflection. By a result of Gabber [Ka-ESDE, 1.5], Lie(Ggeom)der is either Lie(SL(V)) or, if

dim(V) is even, Lie(Sp(V)). Now repeat the arguments given above for 3) and 4), which used only

the inequality rank(Ï) > 2r2. 

The proof of 6) is similar to that of 5). Now Lie(Ggeom)der is normalized by a reflection,

and Gabber's result [Ka-ESDE, 1.5] tells us that Lie(Ggeom)der is either Lie(SL(V)) or



Chapter 1: "Abstract" theorems of big monodromy-36

Lie(SO(V)). Now repeat the arguments given above for 3) and 4) to conclude that either Ggeom

contains SL(V), or Ggeom is SO(V) or O(V). Since Ggeom contains a reflection, Ggeom is not

SO(V). QED

1111....5555    SSSSttttaaaatttteeeemmmmeeeennnntttt    ooooffff    tttthhhheeee    mmmmaaaaiiiinnnn    tttteeeecccchhhhnnnniiiiccccaaaallll    rrrreeeessssuuuulllltttt

TTTThhhheeeeoooorrrreeeemmmm    1111....5555....1111 Fix an algebraically closed field k and a prime number … which is invertible in k. Fix

integers r ≥ 1 and m ≥ 0. Suppose given an irreducible lisse ä$…-sheaf Ï on a dense open set U fi

!1, say U = !1 - S. For each point t in S⁄{‘} at which the action of I(t) is nontrivial and

quadratic of drop ≤ r, and with scale a character not of order 2, denote by Rt the drop at t. Define

Rmin to be the minimum of these Rt's. Define Rmin to be +‘, if there are no such points t.

Suppose that Ï satisfies the following hypotheses 1) through 7):

1) Ï is tame at ‘.

2) At every s in S, the action of the inertia group I(s) on Ï is nontrivial and has drop ≤ r. 

3) We have the inequality m < ùS.

4) There is a subset S0 fi S with ùS0 ≤ m, such that for s in S - S0, the action of I(s) on Ï is

nontrivial and quadratic of drop ≤ r, and its scale is a linear character of I(s), possibly trivial, which

is nnnnooootttt of order 2.

5) Either (r+1)~ is invertible in k, or Ï is tame at all points of S0. 

6) Either 6a) Rmin ≤ 2, or 6b) at some point t in S⁄{‘}, I(t) does not act through a finite group, or

6c) at some point t in S⁄{‘}, the action of I(t) on Ï is quadratic of drop R with 1 ≤ R ≤ r, and its

scale is a linear character of I(s), possibly trivial, which is nnnnooootttt of order 2, 3, or 4.

7) We have the inequality rank(Ï) > Max(2mr, 4r2, 72Rmin
2).

Pick a geometric point u in U, and view Ï as a continuous ä$…-representation ÚÏ of π1(U)

:= π1(U, u) on V := Ïu. Denote by Ggeom the Zariski closure of the image of π1U) in GL(V).

Then either Ggeom contains SL(V), or Ggeom is SO(V) or O(V), or, if dim(V) is even, Sp(V).

Moreover, if at any point t in @1 - U, the action of I(t) is nontrivial and quadratic of some drop <

rank(Ï), with scale a nnnnoooonnnnttttrrrriiiivvvviiiiaaaallll character nnnnooootttt of order 2, then Ggeom contains SL(V).

1111....6666    pppprrrrooooooooffff    ooooffff    TTTThhhheeeeoooorrrreeeemmmm    1111....5555....1111

(1.6.1)  It suffices to show that Ï is Lie-irreducible. For then, using hypotheses 1) through 4) and

7), the conclusion, except for the "moreover", results from Theorem 1.4.3 above. We deduce the

"moreover" as follows. Suppose that at a point t in @1 - U, the action of I(t) is nontrivial and

quadratic of drop < rank(Ï), with scale a nontrivial character not of order 2. Because the scale is a

nontrivial character, I(t) and all elements in it act semisimply. Pick an element © in I(t) such that ©2

acts nontrivially. Then the element ÚÏ(©) in Ggeom has exactly two distinct eigenvalues, 1 and

some ¬±_1. But in the group O(V) and, if dim(V) is even, in the group Sp(V), all but at most 2 of
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the eigenvalues of any element can be grouped into [(dim(V) -1)/2] pairs of inverses {å, å-1},

and the remaining one (in the case of O(odd)) or two (in the case of O(even)) are _1. Since ¬±_1,

no leftover eigenvalue can be ¬. But neither {¬, ¬} nor {1, ¬} is a pair of inverses. So the element

ÚÏ(©) cannot lie in either O(V) or Sp(V). So by the paucity of choice for Ggeom, Ggeom must

contain SL(V).

(1.6.2) To show that Ï is Lie-irreducible, we use the general fact [Ka-MG] that an irreducible

lisse ä$…-sheaf Ï on a smooth open connected curve U over an algebraically closed field k in

which … is invertible is either Lie-irreducible, or is induced from a finite etale connected covering

of U of degree d ≥ 2, or Ï is a tensor product Ì‚Ó with Ì Lie-irreducible and Ó with finite

monodromy and rank d ≥ 2. So we must show that Ï is neither induced, nor a tensor product of

type 

(1.6.2.1) (Lie-irreducible)‚(finite monodromy and rank ≥ 2).

(1.6.3) We first show that Ï is not induced from a finite etale connected covering of U of degree d

≥ 2. Here is the precise result.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    1111....6666....4444 Notations as in Theorem 1.5.1, suppose that hypotheses 1) throught 5) hold. If

rank(Ï) > 2mr, Ï is not induced from a finite etale connected covering of U of degree d ≥ 2. 

pppprrrrooooooooffff We argue by contradiction. Suppose that π : V ¨ U is a finite etale covering of degree d ≥ 2,

with V connected, and Ì is a lisse ä$…-sheaf on V such that Ï = π*Ì. Let us denote by X the

complete nonsingular model of V, and by

 äπ : X ¨ @1

the finite flat map which prolongs π. Let us fix a a point t in @1 - U, and denote by x1, ..., xn the

points of X lying over t. As representation of I(t), Ï(t) is (π*Ì)(t), which is the direct sum

Ï(t) = ·i IndI(xi)
I(t) Ì(xi).

Denote by K the function field of @1 over k, and by L the function field of X over k. Denote by Kt

and Lxi
 their completions at the indicated points, and by

π(xi) : Spec(Lxi
) ¨ Spec(Kt)

the map induced on (the spectra of) these completions. Geometrically, we have

Ï(t) = ·i π(xi)*Ì(xi).

LLLLeeeemmmmmmmmaaaa    1111....6666....4444....1111 The direct image π(xi)*Ì(xi) is tame at t if and only if π(xi)*ä$… is tame at t and Ì is

tame at xi. More precisely, we have 

Swant(π(xi)*Ì(xi)) = Swanxi
(Ì) + rank(Ì)Swant(π(xi)*ä$…).

pppprrrrooooooooffff We will use a global argument. First, pick a second point u±t in @1. By the theory of the

canonical extension [Ka-LG, 1.4.1, but with t and u playing the roles of ‘ and 0], we can find a

connected finite etale cover f : Z ¨ @1 - {u, t} with Z connected, which is tame over u, and which
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over the punctured formal neighborhood Spec(Kt) of t is isomorphic to π(xi) : Spec(Lxi
) ¨

Spec(Kt). Denote by xi (sic~) the unique point of the complete nonsingular model äZ lying over t.

Pick a point y in äZ lying over u in @1. By [Ka-LG, 2.1.6], we can find a lisse ä$…-sheaf Ìi on äZ -

{xi, y} which is tame at y and for which Ìi(xi) ¶ Ì(xi) as I(xi)-representation. Now consider the

virtual lisse sheaf of rank zero on Z given by  Ìi - rank(Ì)ä$…. Upstairs, the Euler-Poincare

formula gives

ç(Z,  Ìi - rank(Ì)ä$…) = - ‡ w in äZ - Z Swanw( Ìi - rank(Ì)ä$…)

= - ‡ w in äZ - Z Swanw( Ìi)

= -Swanxi
( Ìi)

= -Swanxi
(Ì).

But downstairs we have

ç(Z,  Ìi - rank(Ì)ä$…) = ç(@1 - {u, t}, f* Ìi - rank(Ì)f*ä$…)

= -Swant(f* Ìi - rank(Ì)f*ä$…)

(there is no Swanu by the imposed tameness of f and of Ìi over u)

= -Swant(π(xi)*Ì(xi) - rank(Ì)π(xi)*ä$…).

Thus we get

Swant(π(xi)*Ì(xi)) = Swanxi
(Ì) + rank(Ì)Swant(π(xi)*ä$…). QED

(1.6.4.2) We first apply the above Lemma 1.6.4.1 to t=‘. We know that Ï(‘) is tame, so we

get that each local map π(xi) is tame, i.e., π is tame over ‘. 

(1.6.4.3) We next show that the map π is tame, i.e., that Z/U is an everywhere tame covering.

If Ï were everywhere tame, then we would get the tameness of π from the lemma above. In

particular, if k has characteristic zero, then Ï is everywhere tame, and so π is tame. 

Now we return to the general situation

Ï(t) = ·i π(xi)*Ì(xi).

If we take I(t) invariants H0(Spec(Kt), ...), we get

Ï(t)I(t) = ·i Ì(xi)
I(xi).

Thus we have 

Ï(t)/Ï(t)I(t) ¶ ·i π(xi)*Ì(xi)/Ì(xi)
I(xi).

Denote by ei,t the degree of Lxi
/Kt, i.e., ei,t = deg(π(xi)). Then π(xi)*Ì(xi) has rank equal to

ei,trank(Ì), and Ì(xi)
I(xi) has rank at most rank(Ì). Thus we get

rank(π(xi)*Ì(xi)/Ì(xi)
I(xi)) ≥ (ei,t - 1)rank(Ì),

so an inequality

rank(Ï(t)/Ï(t)I(t)) ≥ rank(Ì)‡i(ei,t - 1).
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Suppose now we take for t a point s of S0. Then I(s) acts with drop ≤ r, so we get an inequality

r ≥ rank(Ï(s)/Ï(s)I(s)) ≥ rank(Ì)‡i(ei,s - 1).

Therefore for each individual ei,s we have the inequality

r ≥ ei,s - 1.

If k has finite characteristic p, but (r+1)~ is invertible in k, then p > r+1. Since p > r+1, we

get p > ei,s. Therefore the extension Lxi
/Ks has degree < p, so is tame. Thus π is tame over each

point s in S0.

If (r+1)~ is not invertible in k, then by hypothesis 5b), Ï is tame at each point in S0, and

hence π is tame over each point of S0. It remains to see that π is tame over each point of S -

S0. This results from the following lemma.

LLLLeeeemmmmmmmmaaaa    1111....6666....4444....3333....1111 The map π is finite etale over each point s in S at which the action of I(s) is

nontrivial and quadratic, with scale a character çs of I(s) not of order two. 

pppprrrrooooooooffff At such a point s, consider the decomposition

Ï(s)/Ï(s)I(s) ¶ ·i π(xi)*Ì(xi)/Ì(xi)
I(xi).

Thus the action of I(s) on each summand π(xi)*Ì(xi)/Ì(xi)
I(xi) is scalar, by the character çs. 

So the semisimplification (π(xi)*Ì(xi))
ss of π(xi)*Ì(xi) is a sum of copies of çs and of the

trivial character ú. But induction from a subgroup of finite index commutes with semisimplification,

so we have

π(xi)*(Ì(xi)
ss) = a sum of copies of çs and of ú.

For any representation Ó(xi) of I(xi), Ó(xi) is a direct factor of π(xi)
*π(xi)*(Ó(xi)). Apply

this to Ì(xi)
ss: we find that

Ì(xi)
ss = a sum of copies of π(xi)

*çs and of ú.

If ú is a summand of Ì(xi)
ss, then π(xi)*ú (being a summand of π(xi)*(Ì(xi)

ss)) is a sum of copies

of çs and of ú, say

π(xi)*ú = aú + bçs.

Similarly, if π(xi)
*çs is a summand of Ì(xi)

ss, then π(xi)*π(xi)
*çs = çs‚π(xi)*ú is a sum of

copies of çs and of ú, and hence π(xi)*ú is a sum of copies of ú and çs
-1, say

π(xi)*ú = aú + bçs
-1.

Suppose first çs is nontrivial. Since çs  does not have order 2, both çs and çs
-1 take

values not in #. But π(xi)*ú is a permutation representation, so its trace has values in #. Therefore

b=0, and π(xi)*ú = aú. But the I(s)-invariants in π(xi)*ú are the I(xi)-invariants in ú, so are one-

dimensional, and hence a=1. Thus π(xi) has degree one, as required.
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If çs is trivial., then π(xi)*ú = (a+b)ú, and we conclude as above that π(xi) has degree one.

QED for Lemma 1.6.4.3.1

(1.6.4.4) Thus the connected covering Z/U is everywhere tame, and is finite etale of degree d

over !1 - S0. Let us denote by M ≤ m the number of points of S0 over which Z is ramified, and

by

s1, s2, ..., sM, 

the points themselves. The monodromy group, say G, of π*ä$… is a transitive (because Z is

connected) subgroup of the symmetric group Sd. Because the covering is tame, its monodromy

group is generated by one element ©s for each of the points s in !1 at which the covering is

ramified. The conjugacy class in Sd of the element ©s is simply described in terms of the

ramification indices ei,s over s, as the product of disjoint cycles whose lengths are the ei,s.

(1.6.4.5) Now think of G as sitting in Sd. How many of the symbols {1, 2,..., d} do we use

when we write out, as a product of disjoint cycles, one of its M generators ©s? Cycles of length

one aren't written, so we use precisely

‡i such that ei,s ≥ 2 ei,s

symbols. We have the inequality

‡i such that ei,s ≥ 2 ei,s ≤ ‡i 2(ei,s - 1).

So each generator ©s requires at most 2‡i(ei,s - 1) of the symbols to write it. 

(1.6.4.6) At each of the M ≤ m points s in question, we return to the inequality

r ≥ rank(Ï(s)/Ï(s)I(s)) ≥ rank(Ì)‡i(ei,s - 1),

which we rewrite as

 2‡i(ei,s - 1) ≤ 2r/rank(Ì).

Thus each ©s requires at most 2r/rank(Ì) symbols to write it. Since there are M ≤ m generators, at

most

2Mr/rank(Ì) ≤ 2mr/rank(Ì)

symbols are used in writing all the generators. But the subgroup of Sd these elements generate acts

transitively, so certainly all of the symbols must be used in writing the generators (any unused

symbol is fixed by every generator, hence by the entire group, contradicting transitivity). So we get

d ≤ ù(symbols used in writing generators) ≤ 2mr/rank(Ì).

Crossmultiplying, we find

rank(Ï) = d≠rank(Ì) ≤ 2mr,

and this contradicts the hypothesis that rank(Ï) > 2mr. This contradiction shows that Ï is not

induced, and concludes the proof of Proposition 1.6.4. QED

(1.6.5) We next show that Ï is not a tensor product of type 

(Lie-irreducible)‚(finite monodromy and rank ≥ 2).
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Here is the precise result.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    1111....6666....6666 Notations as in Theorem 1.5.1 above, suppose that hypotheses 1) through 5)

hold, and that rank(Ï) > Max(2mr, 4r2).

1) If Ï is a tensor product of type

(Lie-irreducible)‚(finite monodromy and rank ≥ 2),

then Ï has finite monodromy which is irreducible and primitive.

2) If in addition hypothesis 6) holds, Ï does not have finite monodromy which is irreducible and

primitive. Hence, by 1), Ï is not a tensor product of type

(Lie-irreducible)‚(finite monodromy and rank ≥ 2).

pppprrrrooooooooffff 1) If Ï is a tensor product Ì‚Ó, then by Theorem 1.3.1 above the smaller dimensional

factor has dimension one. Since the finite monodromy factor has rank ≥ 2, we have Ï = Ò‚Ó,

with Ò of rank one and Ó with finite monodromy. Denote by ÚÏ, ÚÒ, and ÚÓ the

corresponding representations. We claim that Ò itself has finite monodromy, i.e, that the character

ÚÒ is of finite order. To see this, we argue as follows. Fix a point s in S = !1 - U. For an element

© in I(s), we have

ÚÏ(©) = ÚÒ(©)‚ÚÓ(©).

The eigenvalues of ÚÏ(©) are thus ÚÒ(©)≠{the eigenvalues of ÚÓ(©)}. Denote by D the order of

the finite image group ÚÓ(π1(U)). Then every eigenvalue of ÚÓ(©) is a D'th root of unity, and

hence every eigenvalue of ÚÏ(©) is of the form ÚÒ(©)≠(a D'th root of unity). But ÚÏ(©) has drop

≤ r, so most of its eigenvalues are 1. Thus ÚÒ(©) is a D'th root of unity. Therefore ÒºD is lisse of

rank one on all of !1, and hence has finite p-power order. [To see this, recall that ÚÒ takes values

in Ø¬
≠, for Ø¬ the ring of integers in some finite extension E¬ of $…. Because the subgroup of

finite index 1 + …Ø¬ of Ø¬
≠ is pro-…, ÚÒ(P(‘)) is a finite p-group, say of order q. Then ÒºDq is

lisse on !1 and tame at ‘, so trivial.] Thus Ò is a character of finite order. Hence Ï itself has finite

monodromy. By the previous proposition 1.6.4, Ï is not induced. Therefore the image ÚÏ(π1(U))

is a finite irreducible primitive (not induced) subgroup of GL(V), and this finite group is equal to

Ggeom. 

To prove 2), we argue by contradiction. Suppose then that Ggeom is a finite irreducible

primitive subgroup of GL(V), and that 6) holds.

If 6b) holds, then Ggeom is not finite, contradiction.

If 6c) holds, consider the action of I(t), which is quadratic with scale a character whose

order is not 2, 3, or 4. The scale character cannot be trivial, otherwise Ggeom contains a nontrivial

unipotent element, contradicting its finiteness. The scale character cannot have infinite order,

otherwise Ggeom contains an element 
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Diag(å,..., å, 1,....,1)

with å not a root of unity, again contradicting its finiteness. [We use here again the fact that the

scale character takes values in some Ø¬
≠, in which the group of roots of unity is finite. So if the

scale character is of infinite order, it takes a value of infinite order.]. Thus the scale character is

nontrivial and has finite order, which by assumption is ≥ 5. So Ggeom contains an element

Diag(Ω,..., Ω, 1,....,1) with Ω a primitive n'th root of unity for some n ≥ 5, occurring with multiplicity

R ≤ r. If n = 5, then by a result of Zalesskii proven in the appendix to this chapter [AZ.1], we have

rank(Ï) = 2R ≤ 2r, which contradicts the hypothesis that rank(Ï) > 4r2. So we must have n ≥ 6.

By Blichfeldt's 60o theorem [Blich-FCG, paragraph 70, Theorem 8, page 96], no finite irreducible

primitive subgroup of GL(V) contains such an element. [Blichfeldt's 60o theorem is that in a finite

irreducible primitive subgroup G of GL(N, ^), if an element g in G has an eigenvalue å such that

every other eigenvalue of © is within 60o of å (on either side, including the endpoints), then g is a

scalar.]

If 6a) holds, there exists a point t in S⁄‘ where the action of I(t) is nontrivial and quadratic

of drop Rmin ≤ 2, with scale character not of order two. Just as above, the finiteness of Ggeom

forces the scale character to be nontrivial and of finite order. Because Rmin ≤ 2, Ggeom contains

either an element Diag(Ω, 1,....,1) or an element Diag(Ω, Ω, 1,....,1) with Ω a primitive n'th root of

unity for some n ≥ 3. The first case, Diag(Ω, 1,....,1), is impossible as soon as rank(Ï) > 4, by

Mitchell's theorem [Mit], according to which a finite irreducible primitive subgroup of GL(N, ^)

containing a pseudoreflection of order n > 2 exists only if N ≤ 4. The second case, Diag(Ω, Ω,

1,....,1), is impossible for n ≥ 6 by Blichfeldt's 60o theorem cited above. It is impossible for n=5 as

soon as rank(Ï) > 4, by the result of Zalesskii [AZ.1] cited above, cf. also [Huf-Wa, Theorem 1].

It is impossible for n=4 as soon as rank(Ï) > 4, and it is impossible for n = 3 as soon as rank(Ï) >

8, according to Huffman and Wales [Huf-Wa, Theorems 2 and 3 respectively]. This concludes the

proof of Proposition 1.6.6, and, with it, the proof of Theorem 1.5.1. QED

1111....7777    AAAA    sssshhhhaaaarrrrppppeeeennnniiiinnnngggg    ooooffff    TTTThhhheeeeoooorrrreeeemmmm    1111....5555....1111    wwwwhhhheeeennnn    RRRRmmmmiiiinnnn    ====    1111    oooorrrr    wwwwhhhheeeennnn    ssssoooommmmeeee    llllooooccccaaaallll    mmmmoooonnnnooooddddrrrroooommmmyyyy    iiiissss    aaaa    rrrreeeefffflllleeeeccccttttiiiioooonnnn

TTTThhhheeeeoooorrrreeeemmmm    1111....7777....1111 Notations as in Theorem 1.5.1, suppose either that

a) Rmin = 1,

or

b) at some point. t in S⁄{‘}, some element of I(t) acts on Ï as a reflection.

Suppose that hypotheses 1) through 6) hold. Suppose further that

rank(Ï) > Max(2mr, 4r2).

In case a), either Ggeom contains SL(V), or dim(V) is even and Ggeom is Sp(V). In case b), either

Ggeom contains SL(V), or Ggeom is O(V). Moreover, if at any point t in @1 - U, an element of

I(t) acts as a pseudoreflection which is not unipotent, then Ggeom contains SL(V).
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pppprrrrooooooooffff Exactly as in the proof ofTheorem 1.5.1, we use 1.6.4 and 1.6.6 to show that Ï is Lie

irreducible. Then we apply Theorem 1.4.3, part 5) to cover case a), and  Theorem 1.4.3, part  6) to

cover case b). QED
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The main results of this appendix are Propositions AZ.1, AZ.2 and AZ.4, all due to

Zalesskii [Zal, 11.2].

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    AAAAZZZZ....1111 Over ^, suppose G is a finite irreducible primitive subgroup of GL(V) which

contains a quadratic element

© := Diag(Ω, Ω,..., Ω,1, 1, ...., 1)

of drop r, 1 ≤ r < dim(V). Suppose that Ω is a primitive fifth root of unity. Then dim(V) = 2r.

pppprrrrooooooooffff Enlarge the group by adding to it the finite group µ5 of scalars, i.e, replace G by µ5G. This

larger finite group contains G, so it acts irreducibly and primitely on V, and it contains the element

Ω2© = Diag(Ω3, Ω3,..., Ω3, Ω2, Ω2,..., Ω2).

So our result follows from

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    AAAAZZZZ....2222 Over ^, suppose G is a finite irreducible primitive subgroup of GL(V) which

contains an element

A := Diag(å, å,..., å,∫, ∫, ...., ∫)

with exactly two distinct eigenvalues, å and ∫, which are inverse primitive fifth roots of unity.

Denote by n(å) and n(∫) the multiplicities of å and ∫ as eigenvalues of A. Then å and ∫ occur with

equal multiplicity: n(å) = n(∫).

pppprrrrooooooooffff Let G1 be the normal subgroup of G generated by all the G-conjugates of A. Then V as a

representation of G1 must be isotypical, because V is an irreducible and non-induced

representation of G. So V|G1 is the direct sum of k1 ≥ 1 copies of an irreducible representation V1

of G1. Looking at the actions of A on V and on V1, we see that the original multiplicities n(å) and

n(∫) are both divisible by the integer k1, and that A acting on V1 has the same two eigenvalues å

and ∫, but with multiplicities n1(å) = n(å)/k1 and n1(∫) = n(∫)/k1. That V1 is not induced, i.e., that

G1 is a primitive irreducible subgroup of GL(V1), results from the following elementary lemma,

applied to G1 and V1.

LLLLeeeemmmmmmmmaaaa    AAAAZZZZ....3333 Over ^, suppose given a finite-dimensional vector space V. Suppose G is an

irreducible subgroup of GL(V) which is generated by finitely many elements ©i, each of which has

the following property (***):

(***)given any eigenvalue å of ©i, and given any integer k ≥ 2, there exists a k'th root of unity Ω

such that åΩ is not an eigenvalue of ©i.

Then G is a primitive irreducible subgroup of GL(V), i.e., the representation is not induced.

pppprrrrooooooooffff For an irreducible representation V of any group G, being induced is the same as having a

direct sum decomposition ("system of imprimitivity") of V as ·iVi into two or more non-zero

subspaces such that for any g in G and any index i, there exists an index j such that g maps Vi to

Vj. Expressed this way, it is clear that if we view G as a quotient of some other group Æ, and view

V as a representation of Æ, then V is induced as a G-representation if and only if it induced as a

Æ-representation.
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Denote by n the number of generators ©i, pick n distinct points ti in !1(^), and view G as a

quotient of π1(!1(^) - {t1, ..., tn}), with

a small loop around ti ÿ ©i.

View the representation V of G as a rank N := dim(V) ^-local system Ï on U := !1(^) - {t1, ...,

tn}, whose local monodromy around tj is ©j. If V is induced as a G-representation, then Ï is

induced from a connected finite etale covering π: Z ¨ U of degree d ≥ 2. Thus Ï is π*Ì for a local

system Ì on Z. As !1(^) is simply connected, the covering Z/U must be ramified above at least

one of the points ti, say over t1. Denote by x1, ..., xm the points of äZ lying over t1, and by ei the

ramification index of xi over t1. At least one of them is ≥ 2, say e1. Then a small disc centered at

x1 is mapped by π to a small disc centered at t1 in suitable local coordinates by the ei'th power

mapping [ei]. Then Ï(t1) contains [e1]*Ì(x1) as a direct summand. In terms of the eigenvalues ®i

of local monodromy group of Ì(x1), those of [e1]*Ì(x1) are all the e1'th roots of the ®i. In

particular, among the eigenvalues of ©1, which is local monodromy of Ï(t1), are all the e1'th roots

of the nonzero complex number ®1. As all of the e1'th roots of ®1 occur, any of them violates the

property (***) that ©1 was supposed to satisfy. This contradiction shows that Ï is not induced, or,

equivalently, that the representation V of G is not induced. QED

We now return to proving Proposition AZ.2. Passing from (G, V) to (G1, V1) simply

divides the multiplicities by the same factor k, and keeps the primitivity.

We continue this process. Denote by G2 the subgroup of G1 generated by all the G1-

conjugates of A. Since G2 is normal in G1, and V1 is not induced, the restriction to G2 of the

representation V1 is isotypical, say V1|G2 is the direct sum of k2 ≥ 1 copies of an irreducible

representation V2 of G2. Looking at the action of A in both V1 and V2, we see that it has the same

two eigenvalues å and ∫, and that their multiplicities n1(å) and n1(∫) in V1 are k2 times their

multiplicities n2(å) and n2(∫) in V2. The lemma AZ.3 above shows that V2 is not induced. So we

may continue in this fashion. Define Gi+1 to be the the subgroup of Gi generated by all the Gi-

conjugates of A. Since Gi+1 is normal in Gi, and Vi is not induced, the restriction to Gi+1 of the

representation Vi is isotypical, say Vi|Gi+1 is the direct sum of ki+1 ≥ 1 copies of an irreducible

representation Vi+1 of Gi+1. Looking at the action of A in both Vi and Vi+1, we see that it has the

same two eigenvalues å and ∫, and that their multiplicities ni(å) and ni(∫) in V1 are ki+1 times

their multiplicities ni+1(å) and ni+1(∫) in Vi+1 Since G is finite, this descending chain of

subgroups must stabilize: at some point we will have Gi = Gi+1. At this point, Gi is generated by

all the Gi conjugates of A. So we are reduced to proving the following Proposition.
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PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    AAAAZZZZ....4444 Over ^, suppose å and ∫ are inverse primitive fifth roots of unity, and n(å) and

n(∫) are strictly positive integers. Suppose G is a finite irreducible primitive subgroup of GL(V)

which is generated by all the G-conjugates of a single element A in G, which in GL(V) is GL(V)-

conjugate to the element

Diag(å, å,..., å,∫, ∫, ...., ∫),

in which å (resp. ∫) occurs with multiplicity n(å) (resp. n(∫)).

Then n(å) = n(∫).

pppprrrrooooooooffff We can find a G-conjugate of A, say B, which does not commute with A. For if not, A lies

in the center of G, and both of its eigenspaces are G-stable, contradicting irreducibility. Now

denote by H fi G the subgroup generated by A and B, and decompose V as a representation of H.

By Blichfeldt's "two eigenvalue argument" [Blich-FCG, paragraph 103], any irreducible H-

submodule of V has dimension ≤ 2, cf. [Zal, 11.1]. [Blichfeldt's two eigenvalue result is that, over

^, if H is a finite subgroup of GL(V) generated by two elements, each of which at most two

distinct eigenvalues, then any irreducible H-submodule of V has dimension at most two.] So we

have

V|H = (·i Wi) · (·j çj),

where the Wi are two-dimensional irreducible H-modules, and the çj are one-dimensional H-

modules. Notice for later use that each çj has order 1 or 5, since H is generated by elements of

order 5. There are some Wi in the decomposition of V|H, because V is a faithful representation of

H, and H is not abelian. 

Acting on any Wi, both A and B are conjugate in GL(Wi) to Diag(å, ∫), but do not

commute in GL(Wi). For if either A or B were scalar, or if A and B commuted in GL(Wi), Wi

would not be irreducible. 

So in order to show that n(å) = n(∫), it suffices to show that there are no çj in V|H. For

then V|H = ·i Wi, and A has eigenvalues {å, ∫} in each Wi. We now give Zalesskii's argument

for the absence of any çj's.

By Lemma AZ.3 above, Wi is not induced as a representation of H. Let us denote by H(i)

the image of H in GL(Wi). In fact, H(i) lies in SL(Wi), since each of A and B is conjugate in

GL(Wi) to Diag(å, ∫). Thus H(i) is a finite irreducible primitive subgroup of SL(Wi) generated by

two elements of order 5, each with the same eigenvalues å and ∫. Consider the image äH(i) in

PSL(Wi). It is not dihedral, as Wi is not induced. The other possibilities are A4, S4, and A5, and

of these only A5 has elements of order 5. Thus äH(i) is A5, and H(i) is its double cover in SL(Wi).

So H(i) is abstractly the group SL(2, É5), equipped with two non-commuting elements of order 5,

A(i) and B(i). H(i) is then viewed as a subgroup of SL(Wi) by a faithful irreducible two-

dimensional representation of SL(2, É5) which gives both A(i) and B(i) eigenvalues {å. ∫}.
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The group SL(2, É5) has two inequivalent irreducible two-dimensional representations,

say M1 and M2, which are Gal(ä$/$)-conjugate. Both are faithful. In the group SL(2, É5), the 24

elements of order five fall into two conjugacy classes, C1 and C2. Concretely C1 is the conjugacy

class of the upper unipotent matrix with 1 (or any nonzero square) in the upper corner, and C2 is

the conjugacy class of the upper unipotent matrix with 2 (or any nonzero non-square) in the upper

corner. The classes C1 and C2 are interchanged by conjugation by any element in GL(2, É5) with

non-square determinant. Of the two representations Mi, one, say M1, gives elements of C1

eigenvalues {å, ∫} and elements of C2 eigenvalues {å2, ∫2}. The other, M2, reverses this

assignment. Since A and B both get eigenvalues {å, ∫} in each Wi, we may describe Wi as

follows. We first take a surjective homomorphism

π(i) : H ¨ SL(2, É5)

which maps A and B to noncommuting elements A(i) and B(i) in the conjugacy class C1, and then

we embed SL(2, É5) in SL(2) by M1. We may further normalize this description of Wi as follows.

We may move A(i) by SL(2, É5)-conjugacy to Unip+(1), the upper unipotent with upper

corner 1. Having fixed A(i) as Unip+(1), we may conjugate B(i) by the centralizer of Unip+(1),

which is _1Unip+, and get B(i) to be one of the lower unipotents Unip-(1) or Unip-(-1) [Of the

12 elements in C1, exactly two, Unip+(1) and Unip+(-1), commute with Unip+(1). The remaining

10 fall into two orbits under conjugation by _1Unip+, one of which contains Unip-(1) and the

other Unip-(-1).]

With this normalization, the homomorphism

π(i) : H ¨ SL(2, É5)

is one of two possible maps, call them π(+) and π(-). The map π(+), if it exists, maps A to

Unip+(1) and B to Unip-(1). The map π(-), if it exists, maps A to Unip+(1) and B to Unip-(-1).

Depending on the relations satisfied by A and B in H, one of these maps might not exist as a

homomorphism from H to SL(2, É5).

If among the π(i) only one of π(+) or π(-) occurs, then every Wi is M«π(1). Pick an

element D in SL(2, É5) of order 6 (i.e., of trace 1). Pick an element E in H with π(1)(E) = D.

Replacing E by E25
k
 for large enough k, we may assume further that E has order prime to 5. Look

at the action of E on 

V|H = (·i Wi) · (·j çj).

Since the çj have order dividing 5, each çj(E) = 1. In each Wi, E acts as M(D). As M is faithful,

M(D) has order 6, so its eigenvalues are the the two primitive sixth roots of unity Ω6 and its

inverse. Thus E acts on V as

Diag(Ω6 repeated k times, Ω6
-1 repeated k times) · (a≠a identity),
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where k is the number of Wi and a is the number of çj occuring in V|H. But we must have a=0,

otherwise this element E, viewed in G, violates Blichfeldt's 60o theorem, since it would have all its

eigenvalues within 60o of one of its eigenvalues, namely 1. 

In this case, we can continue the analysis. Since V|H is k copies of M«π(1) and is a faithful

representation, we conclude that π(1) is an isomorphism H ¶ SL(2, É5).

If among the π(i) both π(+) and π(-) occur, then every Wi is M«π(+) or M«π(-), and both

occur, say k+ and k- times respectively. Then

V|H = (k+ copies of M«π(+)) · (k- copies of M«π(-)) ·j çj.

We claim that the the map

π(+)≠π(-) : H ¨ SL(2, É5)≠SL(2, É5)

is surjective. It suffices to show it induces a surjection

äπ(+)≠äπ(-) : H ¨ PSL(2, É5)≠PSL(2, É5),

simply because no proper subgroup of SL(2, É5)≠SL(2, É5) maps onto PSL(2, É5)≠PSL(2, É5).

By Goursat's lemma [Lang, Algebra, ex. 5 on page 75], any subgroup of a product of two simple

groups which maps onto each factor is either the whole product or the graph of an isomorphism.

We can rule out having the graph of an isomorphism, because by direct calculation äπ(+)(AB) has

order 5, while äπ(-)(AB) has order 3.

Pick an element D in SL(2, É5) of order 6, and then pick an element E in H which, under

π(+)≠π(-), maps to (D, D). As above, we may choose E to have order prime to 5. Exactly as

above, E acts on every Wi as M(D), and each çj(E) = 1. Thus E acts on V as

Diag(Ω6 repeated k times, Ω6
-1 repeated k times) · (a≠a identity),

and, exactly as above, we infer that a=0 by Blichfeldt's 60o theorem. 

In this case too, we can continue the analysis. Since V|H is k+ copies of M«π(+) and k-

copies of M«π(+), and is a faithful representation, we conclude that π(+)≠π(-) is an isomorphism

H ¶ SL(2, É5)≠SL(2, É5), under which A is the element (Unip+(1), Unip+(1)) and under which B

is the element (Unip-(1), Unip-(-1)). 

So in either case, V|H is ·i Wi. As A acts on each Wi with eigenvalues {å, ∫}, we get n(å)

= n(∫), as required. [In fact, as David Wales pointed out to me, this second case, when π(+)≠π(-)

is an isomorphism H ¶ SL(2, É5)≠SL(2, É5), does not occur. For if we take D in SL(2, É5) an

element of order 6, then the element (D, id) in H ¶ SL(2, É5)≠SL(2, É5) would act on some of the

Wi as (Ω6, Ω6
-1), and on others as the identity, contradicting Blichfeldt's 60o theorem.]QED

RRRReeeemmmmaaaarrrrkkkk    AAAAZZZZ....5555 In his survey paper [Zal,    11.2 and its proof], Zalesskii asserts that under the

hypotheses of Proposition AZ.4, G = H and G/Z(G) ¶ PSL(2, É5). We do not undertand this part
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of his argument. 

AAAAZZZZ....6666    SSSSoooommmmeeee    CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeeessss

(AZ.6.1) We end this appendix with several versions of a conjecture about what happens

with quadratic elements of order 3 or 4.

MMMMoooosssstttt    ooooppppttttiiiimmmmiiiissssttttiiiicccc    ccccoooonnnnjjjjeeeeccccttttuuuurrrreeee    AAAAZZZZ....6666....2222 Over ^, suppose G is a finite irreducible primitive subgroup of

GL(V) which contains a quadratic element

© := Diag(Ω, Ω,..., Ω,1, 1, ...., 1)

of drop r, 1 ≤ r < dim(V). Suppose that Ω is a primitive n'th root of unity, with n ≥ 3. Then dim(V)

≤ 4r.

(AZ.6.2.1) By Blichfeldt's 60o theorem [Blich-FCG, pararpaph 70, Theorem 8, page 96], this

situation cannot arise with n ≥ 6, and Zalesskii's result AZ.1 takes care of the case n=5. For n =3 or

n=4, only the cases of low r seem to be in the literature. For r=1, the case of pseudoreflections, we

have Mitchell's theorem [Mit]: dim(V) ≤ 2 if n=4, and dim(V) ≤ 4 if n=3. For r=2, we have the

Huffman and Wales results [Huf-Wa]: dim(V) ≤ 4 if n=4, and dim(V) ≤ 8 if n=3. So one could

even speculate, on the basis of this fairly limited range of numerical data, that for n = 4, we have

dim(V) ≤ 2r.

OOOOppppttttiiiimmmmiiiissssttttiiiicccc    ccccoooonnnnjjjjeeeeccccttttuuuurrrreeee    AAAAZZZZ....6666....3333 There exists an integer A ≥ 4 with the following property. Over ^,

suppose G is a finite irreducible primitive subgroup of GL(V) which contains a quadratic element

© := Diag(Ω, Ω,..., Ω,1, 1, ...., 1)

of drop r, 1 ≤ r < dim(V). Suppose that Ω is a primitive n'th root of unity, with n ≥ 3. Then dim(V)

≤ Ar.

(AZ.6.3.1) Exactly as in the proof of Zalesskii's result AZ.1, to prove either of these first two

versions of the conjecture, it suffices to treat the case where in addition the group G is generated by

all the G-conjugates of ©.

LLLLeeeessssssss    ooooppppttttiiiimmmmiiiissssttttiiiicccc    ccccoooonnnnjjjjeeeeccccttttuuuurrrreeee    AAAAZZZZ....6666....4444 There exists a polynomial P(x) in #[x] with the following

property. Over ^, suppose G is a finite irreducible primitive subgroup of GL(V) which contains a

quadratic element

© := Diag(Ω, Ω,..., Ω,1, 1, ...., 1)

of drop r, 1 ≤ r < dim(V). Suppose that Ω is a primitive n'th root of unity, with n ≥ 3. Then dim(V)

≤ P(r).

LLLLeeeeaaaasssstttt    ooooppppttttiiiimmmmiiiissssttttiiiicccc    ccccoooonnnnjjjjeeeeccccttttuuuurrrreeee    AAAAZZZZ....6666....5555 There exists a sequence {a(r)}r≥1 of integers with the following

property. Over ^, suppose G is a finite irreducible primitive subgroup of GL(V) which contains a

quadratic element

© := Diag(Ω, Ω,..., Ω,1, 1, ...., 1)

of drop r, 1 ≤ r < dim(V). Suppose that Ω is a primitive n'th root of unity, with n ≥ 3. Then dim(V)
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≤ a(r).
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2222....0000 RRRReeeevvvviiiieeeewwww    ooooffff    LLLLeeeeffffsssscccchhhheeeettttzzzz    ppppeeeennnncccciiiillllssss    [[[[SSSSGGGGAAAA    7777,,,,    XXXXVVVVIIIIIIII]]]]

(2.0.1) We work over an algebraically closed field k. Let X/k be a proper smooth connected k-

scheme of dimension n ≥ 1, and Ò on X a very ample invertible ØX-module. We embed X in

@(H0(X, Ò)), the projective space of hyperplanes in H0(X, Ò), in the usual way: x in X(k) is

mapped to the hyperplane in H0(X, Ò) consisting of those global sections of Ò which vanish at x.

Equivalently, we give ourselves X as a closed subscheme of a projective space @ in such a way that

both the following conditions are satisfied:

(2.0.1.1) Ò is ØX(1) := the pullback to X of Ø@(1),

(2.0.1.2) the restriction map induces an isomorphism

H0(@, Ø@(1)) ¶ H0(X, ØX(1)) := H0(X, Ò)

(2.0.2) A nonzero global section H of H0(@, Ø@(1)) defines a hyperplane H=0, or simply H if no

ambiguity is likely, in @. The closed subcheme of X defined as X¤H is called the corresponding

hyperplane section of X: in terms of the same global section H viewed as a global section HX of

H0(X, Ò), the hyperplace section X¤H is just the locus of vanishing of HX as section of Ò.

(2.0.3) Attached to this data, we have the dual variety X£ in the dual projective space @£: it is the

subset of @£ consisting of those hyperplanes H=0 in @ such that X¤H fails to be smooth. It is

known  (SGA 7, Expose XVII, 3.1.4) that X£ is closed and irreducible, of codimension at least

one in @£. [One sees X£ as the image by the second projection of the closed subscheme Z of

X≠@£ consisting of those pairs (x, H) such that H is tangent to X at x. The key point is that Z

viewed over X is the total space of a @r-1 bundle over X, its projective normal bundle @(NX/@), r

the codimension of X in @. Thus Z is proper and smooth over k, and dim(Z) = dim(@£). We

endow X£ with the induced reduced structure. 

(2.0.4) Recall that a k-point of a k-scheme Y of dimension n-1 is called an ordinary double point

if the complete local ring of Y at y is isomorphic to k[[x1, ..., xn]]/Q(x), where Q(x) is given by

if n=2k is even, Q(x) = ‡i=1 to k xixi+k,

if n=2k+1 is odd, Q(x) = (x2k+1)2 + ‡i=1 to k xixi+k.

(2.0.5) We denote by Good(X£) fi X£ those hyperplanes H such that the singular locus

Sing(X¤H) of X¤H is a single point, say x0, and such that X¤H has an ordinary double point at

x0. One knows [SGA 7, XVII, 3.2] that Good(X£) is open in X£. We denote by Bad(X£) fi X£

the closed complement of Good(X£).

(2.0.6) Since X£ is closed and irreducible in @£ of codimension at least one, we have: 

LLLLeeeemmmmmmmmaaaa    2222....0000....7777 Given X in @ as in 2.0.1, if Good(X£) is nonempty, or if X£ has codimension ≥ 2 in

@£, then Bad(X£) has codimension ≥ 2 in @£.
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LLLLeeeemmmmmmmmaaaa    2222....0000....8888 Given X in @ as in 2.0.1, if Good(X£) is nonempty, then X£ is  a hypersurface in

@£.

pppprrrrooooooooffff Denote by U fi @(NX/@) the inverse image of Good(X£) in the projective normal bundle.

Then U is a nonempty and hence dense open set in @(NX/@), so dim(U) = dim(@£) -1. The map U

¨ Good(X£) is bijective on k-valued points, hence dim(U) = dim(Good(X£)). As Good(X£) is a

nonempty and hence dense open set of X£, we have dim(X£) = dim(U) = dim(@£) -1. QED

(2.0.9) Recall that a Lefschetz pencil of hyperplane sections of X is a line L in @£, say (¬, µ) ÿ

¬F=µG, such that the following two conditions hold.

(2.0.9.1)  The "axis of the pencil", namely the codimension two linear subspace »of @ which

is the common intersection of any two distinct members of the pencil (so here » is F¤G) is

transverse to X, i.e., X¤» is smooth of codimension two in X. [The axis » determines the pencil,

as consisting of all the hyperplanes containing ».]

(2.0.9.2)  There is a dense open set U in @1 such that for (¬, µ) in U, X¤(¬F=µG) is smooth,

and for (¬, µ) not in U, X¤(¬F=µG) is smooth outside a single point, where it has an ordinary

double point. 

(2.0.10) Equivalently, the lines L in @£ which are Lefschetz pencils of hyperplane sections

of X are precisely those lines which satisfy the following three conditions.

(2.0.10.a) The axis » of L is transverse to X.

(2.0.10.2) L is not entirely contained in the dual variety X£.

(2.0.10.3) L¤Bad(X£) is empty.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    2222....0000....11111111 Given X in @ as in 2.0.1 above, suppose Bad(X£) has codimension ≥ 2 in @£.

Then we have:

1) The lines L in @£ which are Lefschetz pencils of hyperplane sections of X form a nonvoid (and

hence dense) open set in the Grassmannian Gr(1, @£) of all lines in @£.

2) Let H be hyperplane such that X¤H is smooth. In the Grassmannian Gr(1, @£)H of all lines in

@£ which pass through H, the Lefschetz pencils of hyperplane sections of X form a nonvoid (and

hence dense) open set in Gr(1, @£)H 

3) Let H be hyperplane such that X¤H has isolated singularities. In the Grassmannian Gr(1, @£)H

of all lines in @£ which pass through H, there is a dense open set U such that any L in U has the

following three properties:

3a) the axis » of L is transverse to X,

3b) L is not entirely contained in the dual variety X£,
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3c) L¤Bad(X£) is either empty, if H lies in Good(X£), or  L¤Bad(X£) consists of H

alone, if H lies in Bad(X£).

pppprrrrooooooooffff For 1), note that each of the conditions 2.0.10.1-3 separately defines a nonvoid (and hence

dense) open set in the Grassmannian, cf. [SGA 7, XVII, proof of 3.2.1]. For 2), it suffices to

show that the dense open sets of Gr(1, @£) defined by the conditions 2.0.10.1-3 separately each

have nonvoid intersection with Gr(1, @£)H. For 2.0.10.1, there exist hyperplanes G transverse to

X¤H, and for any such G the pencil ¬G = µH satisfies 1a). Condition 2.0.10.2 holds on all of

Gr(1, @£)H, since H does not lie in X£. The lines through H which violate 2.0.10.3 are the image

Z of the proper scheme Bad(X£) under the map F ÿ the line joining F to H. Thus Z is closed, and

it has dimension dim(Z) ≤ dim(Bad(X£)) ≤ dim(@£) - 2, while Gr(1, @£)H has dimension

dim(@£) - 1.

For 3), we argue as follows. Conditions 3a) and 3b) each define open sets in Gr(1, @£)H.

To obtain an L in Gr(1, @£)H for which 3a) holds, it suffices find a hyperplane G such that

X¤H¤G is smooth (then take for L the line joining H to G). Such a G exists because X¤H has

only isolated singularities: take a G which passes through none of the singular points of X¤H, and

which does not lie in the closure in @£ of the dual variety of (X¤H)smooth. To exhibit a line L

through H which does not lie entirely in X£, take a hyperplane F not in X£, and take for L the line

joining H to F. 

We now turn to condition 3c). Suppose first that H lies in Good(X£). Then 3c) also defines

a dense open set in Gr(1, @£)H, which one sees exactly as one saw in proving 2) above.

It remains to consider condition 3c) in the case in which H lies in Bad(X£). In this case, we

claim that the set, call it Í, of lines L in Gr(1, @£)H for which L¤Bad(X£) consists of H alone,

ccccoooonnnnttttaaaaiiiinnnnssss a dense open set. The excluded lines through H are the image in Gr(1, @£)H of the

scheme Bad(X£) - {H} under the map F ÿ the line joining F to H. This image need not be closed,

but its closure Z has dimension ≤ dim(Bad(X£)) ≤ dim(@£) - 2, while dim(Gr(1, @£)H) =

dim(@£) - 1. Thus Í contains the dense open set Gr(1, @£)H - Z. QED

RRRReeeemmmmaaaarrrrkkkk    2222....0000....11112222  It is the case 2) which is most commonly given, cf. [SGA 7, XVII, 3.2.8].

However, for our applications, 3) will be equally useful.

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn    2222....0000....11113333 Let H be hyperplane such that X¤H has at worst isolated singularities. By a

pencil through H which is LLLLeeeettttsssscccchhhheeeettttzzzz    oooouuuuttttssssiiiiddddeeee    ooooffff    HHHH we mean a line L through H which satisfies 3a),

3b), and 3c) of 2.0.11. 
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(2.0.14) In general, if we are given a pencil (¬, µ) ÿ ¬F=µG of hyperplanes in @ whose axis

is transverse to X, we form the incidence variety ëX := the closed subscheme of X≠@1 consisting of

pairs (x, (¬,µ)) such that ¬F(x)=µG(x), and map it to @1 by the second projection. Because » is

transverse to X, ëX is smooth, being the blowup of X along the smooth subvariety X¤F¤G.

TTTThhhheeeeoooorrrreeeemmmm    2222....0000....11115555 Suppose that Bad(X£) has codimension ≥ 2 in @£, and suppose that for every k-

valued point x in X, we have X£± Hypx, the hyperplane in @£ consisting of all hyperplanes

through x. Suppose we are given a hyperplane H such that X¤H has at worst isolated singularities.

Suppose further that we are given a finite set S of k-valued points of X, none of which lies in

X¤H. Then in the Grassmannian Gr(1, @£)H of all lines through H, there is a dense open set U

such that every line L in U satisfies the following conditions:

1) the pencil defined by L is Lefschetz outside of H,

2) Consider the map f: ëX ¨ @1 defined by the pencil. View S as lying in ëX, by viewing X - X¤H

as lying in ëX. Then the points s in S lie in distinct fibres of the map f: ëX ¨ @1, and each of these

fibres f-1(f(s)) is smooth.

pppprrrrooooooooffff Intrinsically, we may view the map f: ëX ¨ @1 as having target the line L: for a point x in X

- X¤», f(x) Ÿ L is the unique point of intersection of L with the hyperplane Hypx in @£ of all

hyperplanes throught x. We already know that there is a dense open set U1 in Gr(1, @£)H such

that every line in U1 satisfies 1). We will show that there exists a dense open set U2
 in Gr(1, @£)H

such that every line in U1 satisfies 2). Then the required U will be U1¤U2.

For each point s in S, we have X£ ± Hyps, hence X£¤Hyps has codimension at least two

in @£. The hyperplanes {Hyps}s in S in @£ are all distinct, simply because s ÿ Hyps is the the

canonical bijection {points in @} ¶ {hyperplanes in @£). So for each pair si, sj of distinct points of

S, the intersection Hypsi
¤Hypsj

 has codimension two in @£. The desired dense open set U2 in

Gr(1, @£)H consists of those lines L through H which do not intersect the closed set 

Z := ⁄s in S {X£¤Hyps} ⁄i±j Hypsi
¤Hypsj

in @£. The key point is that Z is a closed set of codimension at least two in @£, and Z does not

contain H (since H contains none of the points s in S). The set U2 is open by [EGA IV, Part 3,

13.1.5]. It is nonempty because if not, every line through H meets Z, and hence the map

Z ¨ Gr(1, @£)H, z ÿ the line joining H to z

is surjective, which is impossible since dim(Z) < dim(Gr(1, @£)H). QED 
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2222....1111    TTTThhhheeee    dddduuuuaaaallll    vvvvaaaarrrriiiieeeettttyyyy    iiiinnnn    tttthhhheeee    ffffaaaavvvvoooorrrraaaabbbblllleeee    ccccaaaasssseeee

(2.1.1) We have the following basic result:

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    2222....1111....2222 [SGA 7, XVII, 3.3, 3.5] Given X in @ as above, suppose that either dim(X) is

even, or that char(k) ± 2. Suppose further that there exists a k-valued point x of X, and a

hyperplane H such that X¤H contains x, and such that X¤H has an ordinary double point at x.

Then X£ is an irreducible hypersurface in @£, and Good(X£) is its smooth locus (X£)smooth. 

CCCCoooorrrroooollllllllaaaarrrryyyy    2222....1111....3333 Hypotheses as in Proposition 2.1.2, Bad(X£) is the singular locus Sing(X£), and

hence Bad(X£) has codimension ≥ 2 in @£.

LLLLeeeemmmmmmmmaaaa    2222....1111....4444 (compare [Ka-Spacefill, Lemma 12]) Hypotheses as in Proposition 2.1.2 above,

given a k-valued point x of X, there exists a hyperplane H which contains x and for which X¤H

is smooth.

pppprrrrooooooooffff Given x, denote by Hypx fi @£ the hyperplane consisting of all hyperplanes H in @ which

contain x. Those H in Hypx for which X¤H is smooth form an open set U in Hypx. We must

show that U is nonempty. If not, then we have an inclusion Hypx fi X£. Since X£ is an

irreducible hypersurface in @£, we must have Hypx = X£. Then X£ is smooth, and hence, by

[SGA 7, XVII, 3.3, 3.5], the map from the projective normal bundle @(NX/@) to X£ is an

isomorphism. Thus Hypx = X£ ¶ @(NX/@) is a projective bundle over X, with fibre @r-1, r being

the codimension of X in @. [The careful reader at this point will ask what happens if r=0, i.e., if X

is @ itself. But this case is ruled out by the hypothesis of the Proposition that X has a hyperplane

section which has an ordinary double point somewhere: if X were @, every hyperplane section

would be smooth. ] 

If r = 1, then X£ ¶ X, and so X is isomorphic to a hyperplane. But X, being smooth of

codimension one in @, is a smooth hypersurface in @, say of degree d. The degree d cannot be one,

because we have assumed that X is embedded in @(H0(X, Ò)), which for X a hyperplane would

require taking the ambient space to be X itself, i.e., we would in fact have r = 0. If d ≥ 3, or if d=2

and dim(X) is even, then X is not isomorphic to a hyperplane, because its middle Betti number (say

with ä$… coefficients, … any prime invertible in k) exceeds that of a hyperplane. If dim(X) ≥ 3 and d

≥ 2, again X is not isomorphic to a hyperplane, because,as Ofer Gabber explained to me, its degree

d is an intrinsic invariant. Namely, for X a smooth hypersurface in @ of dimension n ≥ 3, Pic(X) is

#, with a unique generator L which is ample, namely the restriction to X of Ø@(1). The dim(X)-

fold self-intersection Ln of the unique ample generator is d, the degree of X in @.

For r=1, this leaves only the case when d=2 and dim(X)=1, a case in which X iiiissss

isomorphic to a hyperplane. The characteristic is not 2 and the field k is algebraically closed, so our

smooth quadric X is given, in suitable projective coordinates in the ambient @ = @2, by the equation
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‡i=0 to 2 (Xi)
2 = 0.

We will see directly from the equation that we do not have X£ fi Hypx for any point x in X,

indeed we do not have X£ fi Hypx for any point x in @2. At the point (1, i, 0) of X, the tangent

hyperplane to X has equation

X0 + iX1 = 0.

At the point (1, -i, 0), the tangent hyperplane has equation

X0 - iX1 = 0.

So any point on both these tangent hyperplanes has X0 = X1 = 0. Repeating this argument with the

points (1, 0, _i), we see that any point on all tangent hyperplanes has X0 = X1 = X2 = 0, but there

is no such point in @. This concludes the proof in the r=1 case.

So suppose now that r ≥ 2, pick a prime number … invertible in k, and consider the Leray

spectral sequence for the projective bundle π

π

Hypx = X£ ¶ @(NX/@)     ¨ X.

We first remark that X must be simply connected. Indeed, @r-1 is simply connected, so the

projection π, being a Zariski-locally trivial @r-1 bundle, induces an isomorphism on fundamental

groups: as the total space Hypx is itself simply connected, we infer that X is simply connected.

Therefore the lisse sheaves Riπ*$… on X are all constant, with value

Riπ*$… ¶ Hi(@r-1, $…)X ¶ 0 if i odd or i > 2r-2

¶ $…(-i/2) if i even in [0, 2r-2].

Therefore the Leray spectral sequence has E2 terms given by

E2
p,q = Hp(X, Rqπ*$…) = Hp(X, $…)ºHq(@r-1, $…),

and it abuts to Hp+q(Hypx, $…). Now because π is projective and smooth, the pullback map π*:

Hp(X, $…) ¨ Hp(Hypx, $…) is injective. Therefore Hp(X, $…) vanishes unless p is even. From

the formula for E2, we see in turn that E2
p,q vanishes unless both p and q are even. As the

differential dr has bidegree (r, 1-r), it follows that the spectral sequence must degenerate at E2.

[Alternatively, we could appeal to the general result that Leray degenerates at E2 for any proper

smooth map with a proper smooth base, by a reduction to the case when k is the algebraic closure

of a finite field. One then uses the fact that, by Deligne's Weil II, E2
p,q is pure of weight p+q, and

dr, being Galois-equivariant, respects weight, so being of bidegree (r, 1-r) must vanish.]

From the degeneration, applied with p+q=2, we get

1 = b2(Hypx) = dimE2
2,0 + dimE2

0,2 = b2(X) + b2(@r-1) = b2(X) + 1,
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and thus b2(X) = 0. This is impossible for a projective smooth connected X/k of dimension n ≥ 1,

since the class of a hyperplane is a nonzero element of H2(X, $…(1)). QED

RRRReeeemmmmaaaarrrrkkkk    2222....1111....5555 If dim(X) = n is odd ≥ 3, a much shorter proof of Lemma 2.1.4 is to observe that the

degree of the dual variety X£ is eeeevvvveeeennnn (and hence X£ is not isomorphic to a hyperplane). Indeed, by

[SGA7, XVIII, 3.2], the degree of the dual variety X£ is equal to

(-1)n(ç(X) + ç(X¤») - 2ç(X¤(general hyperplane H)).

If X is odd-dimensional, so is X¤», and hence both ç(X) and ç(X¤») are even. We do not know

an analogous shorter argument for X of even dimension. 

(2.1.6) We should also point out that in characteristic two, there are smooth X's of every odd

dimension whose dual variety iiiissss a hyperplane. Namely, in @2n, the variety X of equation

(X0)2 = ‡i=1 to n XiXn+i

has dual variety X£ the hyperplane in the dual projective space consisting of all linear forms ‡i=0 to

2naiXi with a0 = 0. So in this example, X£ is Hypz for the point z = (1, 0, 0, 0,...0) in @, but the

point z does not lie in X.

(2.1.7) Here is one criterion which insures that X£ is not contained in Hypx for any k-valued

point x in X. It will be used in the later discussion of Lefschetz pencils on curves, see 2.3.4.

LLLLeeeemmmmmmmmaaaa    2222....1111....8888 Given X in @ as in 2.0.1, suppose that for any k-valued point x of X, there exists a

k-valued point y of X, and a hyperplane H in @, such that X¤H is singular at y, and such that

X¤H does not contain x. Then X£ is not contained in Hypx for any k-valued point x in X.

pppprrrrooooooooffff This is a tautology. QED

(2.1.9) In the rest of this chapter, we will study the case when X is a curve, and ¬F = µG is a

pencil on X whose axis » is transverse to X. In this case, X¤» will be empty, ëX will be X, and the

mapping of ëX = X to @1 defined by the pencil is x ÿ (G(x), F(x)), or more simply the rational

function G/F. 

2222....2222    LLLLeeeeffffsssscccchhhheeeettttzzzz    ppppeeeennnncccciiiillllssss    oooonnnn    ccccuuuurrrrvvvveeeessss    iiiinnnn    cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc    nnnnooootttt    2222

(2.2.1) In this section, we work over an algebraically closed field k in which 2 is invertible, and we

take C/k a proper, smooth, connected curve, whose genus we denote g. Any effective divisor D on

C of degree ≥ 2g+1 is very ample, i.e., the invertible sheaf Ò(D) := the inverse ideal sheaf I(D)-1

is very ample, cf. [Hart, IV, 3.2 (b)].

LLLLeeeemmmmmmmmaaaa    2222....2222....2222 Fix an effective divisor D on C with deg(D) ≥ 2g+2, and use it to embed C in @. For

every k-valued point P on C, there exists a hyperplane H in @ such that C¤H has an ordinary

double point at P.

pppprrrrooooooooffff In the embedding by L(D) := H0(C, Ò(D)), a hyperplane section C¤H of C is the zero set of
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a nonzero element of L(D) (zero set aaaassss section of Ò(D)). A hyperplane H such that C¤H has an

ordinary double point at P is precisely the zero-locus on C of a nonzero element f of L(D) :=

H0(C, Ò(D)) which, as section of Ò(D), has a double zero at P. To see that such f exist, notice that

the elements of L(D) with at least a double zero at P form the subspace L(D - 2P) of L(D), while

those with at least a triple zero at P form the subspace L(D - 3P). Because deg(D) ≥ 2g+2, both

D-2P and D-3P have degree ≥ 2g-1, so by Riemann Roch we have

…(D-2P) = deg(D-2P) + 1 - g = deg(D) -1 -g,

…(D-3P) = deg(D-3P) + 1 - g = deg(D) -2 -g.

Therefore L(D - 3P) is a hyperplane in L(D - 2P), and any element of L(D - 2P) - L(D - 3P) is

an f with a double zero (as section of Ò(D)) at P. QED

(2.2.3) For degree 2g+1, we have:

LLLLeeeemmmmmmmmaaaa    2222....2222....4444 Suppose that C has genus g ≥ 1. Fix an effective divisor D on C with deg(D) =

2g+1, and use it to embed C in @. For all but at most finitely many k-valued point P on C, there

exists a hyperplane H in @ such that C¤H has an ordinary double point at P.

pppprrrrooooooooffff Exactly as above, what we must prove is that for most points P in C(k), we have …(D-2P) >

…(D-3P). Since deg(D-2P) = 2g-1 > 2g-2, we have

…(D-2P) = deg(D-2P) + 1 - g = deg(D) -1 -g.

But D-3P has degree 2g-2, so

…(D-3P) = deg(D-3P) + 1 - g + …(K -(D-3P)) 

= deg(D) -2 -g + …(K + 3P -D). 

We must show that …(K + 3P -D) = 0 for most P. Since K + 3P -D has degree zero, …(K + 3P -

D) > 0 if and only if K + 3P -D is a principal divisor. Consider the map C ¨ Jac0(C) defined by

P ÿ the class of K + 3P -D.

We claim this map has finite fibres (in which case only the finitely many P which map to the origin

have …(K + 3P -D) > 0, and we are done). If not, then some fibre is infinite, and hence is all of C,

i.e., the map is constant, which means in turn that for any two points P and Q in C(k), we have

3(P-Q) = 0 in Jac0(C). Fix Q. The map 

P ÿ P-Q 

is a map from C ÿ Jac0(C) which lands in the finite set of points of order 3, hence is constant,

hence (evaluate at P) has value 0, i.e., we find that the divisor P-Q is principal, say P-Q = div(f),

in which case f is an isomorphism from C to @1, which is impossible since g ≥ 1. QED

(2.2.5) In view of these lemmas 2.2.2 and 2.2.3, all the hypotheses of Proposition 2.1.2 of the

previous section are satisfied, if deg(D) ≥ Max(2g+1, 2). Hence Theorem 2.0.15 of the last section

holds. We apply it in the following way. We begin with our effective divisor D of degree ≥

Max(2g+1, 2). We take for H the hyperplane defined by the vanishing of the section 1 of I-1(D),

so C¤H is just D itself. To specify a pencil which passes through H and whose axis is transverse
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to C (i.e., whose axis is empty) is to give a second function f in L(D) := H0(C, I-1(D)) whose

divisor of poles is precisely D (i.e., whose zeroes, as section of I-1(D), are disjoint from D). The

resulting map of C to @1 is given by the ratio f/1 of these sections, i.e., it is given by f viewed as a

rational function on C. 

TTTThhhheeeeoooorrrreeeemmmm    2222....2222....6666 Let k be an algebraically closed field in which 2 is invertible, and let C/k be a

projective, smooth connected curve, of genus denoted g. Fix an effective divisor D on C of degree

d ≥ 2g+1. Fix a finite subset S of C - D. Then in L(D) viewed as the k-points of an affine space

of dimension d+1-g, there is a dense open set U such that any f in U has the following properties:

1) the divisor of poles of f is D, and f is Lefschetz on C-D, i.e., if we view f as a finite flat map of

degree d from C - D to !1, then the differential df on C-D has only simple zeroes, and f separates

the zeroes of df (i.e., if å and ∫ in C - D are zeroes of df, f(å) = f(∫) if and only if å = ∫. Put

another way, all but finitely many of the fibres of f over !1 consist of d distinct points, and the

remaining fibres consist of d-1 distinct points, d-2 of which occur with multiplicity 1, and one

which occurs with multiplicity 2.

2) f separates the points of S, i.e., f(s1) = f(s2) if and only if s1 = s2, and f is finite etale in a

neighborhood of each fibre f-1f(s)). Put another way, there are ùS fibres over !1 which each have

d points and which each contain a single point of S.

pppprrrrooooooooffff If deg(D) ≥ Max(2g+1, 2), this is Theorem 2.0.15, specialized to curves. If g=0 and deg(D)

= 1, then D is a single point, say ‘, C-D is !1,= Spec(k[x]), L(D) is {1, x}, and the open set U

consists of all functions ax+b with a, b in k and a±0. QED

RRRReeeemmmmaaaarrrrkkkk    2222....2222....7777 It is surely possible to prove this result entirely in the world of curves, but we

believe that seeing it in the general context of Lefschetz pencils clarifies and simplifies what is

going on. Caveat emptor. 

LLLLeeeemmmmmmmmaaaa    2222....2222....8888 Hypotheses and notations as in Theorem 2.2.6 above, suppose the effective divisor

D, which is the fibre of f over ‘ in @1, is ‡ aiPi with each ai invertible in k. For f in the dense

open set U, f viewed as map of C - D to !1 has 2g-2 + ‡ (1 + ai) singular fibres over !1, or

equivalently, df has 2g-2 + ‡ (1 + ai) zeroes.

pppprrrrooooooooffff Because each ai is prime to p, df has a pole of order 1+ ai at Pi. Since the canonical bundle

has degree 2g-2, the total number of zeroes of df, or what is the same, the number of singular

fibres over !1, is 2g-2 + ‡(1 + ai).QED

2222....3333    TTTThhhheeee    ssssiiiittttuuuuaaaattttiiiioooonnnn    ffffoooorrrr    ccccuuuurrrrvvvveeeessss    iiiinnnn    aaaarrrrbbbbiiiittttrrrraaaarrrryyyy    cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc

(2.3.1) Let C/k be a proper smooth connected curve over an algebraically closed field k. Fix an

effective divisor D of degree d ≥ 2g+3, and use Ò(D) to embed C in @.
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LLLLeeeemmmmmmmmaaaa    2222....3333....2222    Let C/k be as in 2.3.1 above. Suppose d ≥ 2g+3. For every k-valued point P on C,

there exists a hyperplane H in @ such that C¤H has an ordinary double point at P and such that

C¤H is lisse outside of P. Moreover, the set of such H is an open dense set in the space of all

hyperplanes tangent to C at P.

pppprrrrooooooooffff The hyperplanes H tangent to C at P are the points of the projective space @(L(D-2P)£) of

lines in L(D-2P). In @(L(D-2P)£), those for which C¤H does not have an ordinary double point

at P are the points of the codimension one (by Riemann-Roch) subspace @(L(D-3P)£). In

@(L(D-2P)£), the hyperplanes H  for which C¤H has a singularity at a point Q ± P are the points

of the codimension two (by Riemann-Roch) subspace @(L(D-2P - 2Q)£). 

We claim that In @(L(D-2P)£), the union „ over all Q (including Q=P) of the subspaces

@(L(D-2P - 2Q)£) is closed of codimension at least one. To see this, notice that there is a vector

bundle ıitanP on C whose fibre over Q is L(D-2P-2Q). [Start with the line bundle Ò(D-2P) on

C, and on C≠C form the line bundle 

Ò0 :=(pr1
*Ò(D-2P))‚I(»)º2, 

which on C≠Q is Ò(D-2P-2Q), a line bundle of degree d-4 > 2g-2. Then R1pr2*Ò0 = 0, and

pr2*Ò0 is the desired vector bundle ıitanP on C, whose formation commutes with arbitrary

change of base on C.] The total space of the associated projective bundle @(BitanP
£) is the closed

subscheme W of C≠@£ consisting of all pairs (Q, H) with H in @(L(D-2P - 2Q)£), and „ is the

image of W under the second projection. Since W is proper and smooth over k of dimension =

dim@(L(D-2P)£) - 1, „ is closed of codimension at least one in @(L(D-2P)£).

Thus the set of hyperplanes H in @ such that C¤H has an ordinary double point at P and

such that C¤H is lisse outside of P are precisely the points of @(L(D-2P)£) which do not lie in in

the proper closed subset „⁄@(L(D-3P)£). QED

CCCCoooorrrroooollllllllaaaarrrryyyy    2222....3333....3333 Suppose d ≥ 2g+3. The dual variety C£ has codimension one in @£. In C£, the set

Good(C£) consisting of those hyperplanes H such that C¤H has just one singular point, and that

one singular point is an ordinary double point, is a dense open set.

pppprrrrooooooooffff    The dual variety C£ has codimension at least one in @£. If the dual variety had codimension

two or more in @£, we could find a Lefschetz pencil on C with no singular fibres (i.e., we could

find a line L in @£ which did not meet C£). The associated map to @1 would make C a finite etale

connected covering of @1 of degree d ≥ 2g+3 > 1, contradicting the fact that @1 is simply

connected.

Once we know the dual variety is a hypersurface, it suffices to show that the hyperplanes H

such that C¤H has either two or more singularities, or has a singularity worse than an ordinary

double point, form a closed set of codimension at least 2 in @£. Those with at least two singular
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points, or with one singularity which is a contact of order 4 or more, are the union Ù of the

@(L(D-2P-2Q)£) over all points (P, Q) in C≠C. Those with a singularity worse than on ordinary

double point are the union Á of the @(L(D-3P)£) over all points P in C.

We first deal with Ù. On C≠C, there is a vector bundle ıitan whose fibre at (P, Q) is L(D-

2P-2Q).  [Start with the line bundle Ò(D) on C, and on C≠C≠C form the line bundle 

Ò0 :=(pr1
*Ò(D))‚I(»1,2)º2‚I(»1,3)º2,

where »1,2 and »1,3 are the indicated partial diagonals. On C≠P≠Q, this line bundle is is Ò(D-

2P-2Q), a line bundle of degree d-4 > 2g-2. Then R1pr2,3*Ò0 = 0, and pr2,3*Ò0 is the desired

vector bundle ıitan on C≠C, whose formation commutes with arbitrary change of base on C≠C.]

The total space of the associated projective bundle @(Bitan£) is the closed subscheme X of

C≠C≠@£ consisting of all triples (P, Q, H) with H in @(L(D-2P - 2Q)£), and Ù is the image of X

under the third projection. Since X is proper and smooth over k of dimension dim@£ - 2, Ù is

closed of codimension at least two in @£.

We deal similarly with Á. On C there is a vector bundle Triple whose fibre at P is L(D-

3P). The total space of the associated projective bundle @(Triple£) is the closed subscheme Y of

C≠@£ consisting of all pairs (P, H) with H in @(L(D-3P)£), and Á is the image of Y under the

second projection. Since Y is proper and smooth over k of dimension dim@£ - 2, Á is closed of

codimension at least two in @£. QED

LLLLeeeemmmmmmmmaaaa    2222....3333....4444 Suppose d ≥ 2g+3. For every k-valued point P on C, and for every k-valued point

Q± P on C, there exists a hyperplane H in @ such that C¤H is singular at Q, and such that C¤H

does not contain P.

pppprrrrooooooooffff The hyperplanes H tangent to C at Q are the points of @(L(D-2Q)£), a projective space of

dimension d -2- g ≥ g + 1. Among all such H, those passing through P are in the subspace

@(L(D-2Q - P)£). As d ≥ 2g+2, this is a subspace of codimension one. QED

LLLLeeeemmmmmmmmaaaa    2222....3333....5555 Suppose d ≥ 2g+3. For every k-valued point P on C, there exists a hyperplane H

through P such that C¤H is smooth.

pppprrrrooooooooffff Given P, denote by HypP fi @£ the hyperplane consisting of all hyperplanes H in @ which

contain P. If no H in HypP had C¤H smooth, we would have HypP fi C£. As C£ is irreducible

of codimension at most 1, this would force HypP = C£, and this in turn would force C£ fi HypP.

But by the previous lemma, there are H in C£ which do not contain P. QED

2222....4444    LLLLeeeeffffsssscccchhhheeeettttzzzz    ppppeeeennnncccciiiillllssss    oooonnnn    ccccuuuurrrrvvvveeeessss    iiiinnnn    cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc    2222
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(2.4.1) We begin with the characteristic two version of Theorem 2.0.15.

TTTThhhheeeeoooorrrreeeemmmm    2222....4444....2222 Let k be an algebraically closed field of characteristic 2, and let C/k be a projective,

smooth connected curve, of genus denoted g. Fix an effective divisor D on C of degree d ≥ 2g+3.

Suppose that D = ‡ aiPi. Fix a finite subset S of C - D. Then in L(D) viewed as the k-points of

an affine space of dimension d+1-g, there is a dense open set U such that any f in U has the

following properties:

1) the divisor of poles of f is D, and f is Lefschetz on C-D, i.e., if we view f as a finite flat map of

degree d from C - D to !1, then all but finitely many of the fibres of f over !1 consist of d

distinct points, and the remaining fibres consist of d-1 distinct points, d-2 of which occur with

multiplicity 1, and one which occurs with multiplicity 2.

2) f separates the points of S, i.e., f(s1) = f(s2) if and only if s1 = s2, and f is finite etale in a

neighborhood of each fibre f-1f(s)). Put another way, there are ùS fibres over !1 which each have

d points and which each contain a single point of S.

pppprrrrooooooooffff By Corollary 2.3.3 to Lemma 2.3.2 above, we know that C£ is a hypersurface and that

Good(C£) is nonempty, and hence (by Lemma 2.0.7) that Bad(C£) has codimension at least two in

@£. By Lemma 2.3.4 (and the tautologous Lemma 2.1.8), we know that C£ is not contained in

HypP for any k-valued point P in C. Then by Theorem 2.0.15, we get a dense open set U1 in

L(D) such that every f in U1 satisfies 1) and 2). QED

(2.4.3) The problem with this result is that it tells us nothing about the zeroes of the differential df

of a function f in the open set U. This deficiency is remedied by the following theorem, which is

the main result of this section.

TTTThhhheeeeoooorrrreeeemmmm    2222....4444....4444 Let k be an algebraically closed field of characteristic 2, and let C/k be a projective,

smooth connected curve, of genus denoted g. Fix an effective divisor D on C of degree d ≥ 6g+3.

Suppose that D = ‡ aiPi with each ai odd. Fix a finite subset S of C - D. Then in L(D) viewed as

the k-points of an affine space of dimension d+1-g, there is a dense open set U such that any f in

U has the following properties:

1a) the divisor of poles of f is D, and f is Lefschetz on C-D, i.e., if we view f as a finite flat map of

degree d from C - D to !1, then all but finitely many of the fibres of f over !1 consist of d

distinct points, and the remaining fibres consist of d-1 distinct points, d-2 of which occur with

multiplicity 1, and one which occurs with multiplicity 2.

1b) The differential df has g-1 + ‡i ((1+ai)/2) distinct zeroes in C-D, and each zero is a double

zero.

2) f separates the points of S, i.e., f(s1) = f(s2) if and only if s1 = s2, and f is finite etale in a

neighborhood of each fibre f-1f(s)). Put another way, there are ùS fibres over !1 which each have

d points and which each contain a single point of S.

2222....5555    CCCCoooommmmmmmmeeeennnnttttssss    oooonnnn    TTTThhhheeeeoooorrrreeeemmmm    2222....4444....4444
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(2.5.1) Before giving the proof of the theorem, let us explain what problems we are fighting

against in characteristic 2. In any other characteristic, once 1a) and 2) hold, then (as noted in

Lemma 2.2.8 above) df has 

2g-2 + ‡i (1+ai)

distinct zeroes, each of which is simple. 

(2.5.2) The first problem is that in characteristic 2, for any function f on C, either df = 0, or df has

all its zeroes and poles of eeeevvvveeeennnn order. To see this, pick any k-valued point P on C, and any local

parameter t at P, and expand f as a Laurent series in t, say 

f = ‡b(n)tn = ‡b(2n)t2n + ‡b(2n+1)t2n+1.

Because we are in characteristic 2, we get

 df = ‡b(2n+1)t2ndt.

(2.5.3) So we might hope that, if 1a) and 2) hold, then in characteristic two 1b) holds as well. But

1b) can fail spectactularly, even when 1a) and 2) hold.

(2.5.4) To illustrate most simply, consider the case when C is @1, and D is the divisor (2k+1)‘,

for some integer k ≥ 2. The function f(x) := x2 + x2k+1 has divisor of poles D, and as a map of

C-D = !1 to !1, f is Lefschetz. Indeed, there is only point x0 at which df (= x2kdx) vanishes,

namely x0 = 0, and the fibre of f over the corresponding critical value f(x0) = 0 is the zero set of 

x2 + x2k+1 = x2(x2k-1 - 1),

which consists of 2k distinct points. But df has a single zero of order 2k, whereas 1b) calls for df

to have g-1 + (1+2k+1)/2 = k distinct zeroes, each of multiplicity 2. 

2222....6666    PPPPrrrrooooooooffff    ooooffff    TTTThhhheeeeoooorrrreeeemmmm    2222....4444....4444

(2.6.1) By Theorem 2.4.2 above, we get a dense open set U1 in L(D) such that every f in U1

satisfies 1a) and 2). 

(2.6.2) To complete the proof, it suffices to show that there is a dense open set U2 in L(D) such

that for f in U2, f has polar divisor D and df has g-1 + ‡i ((1+ai)/2) distinct zeroes in C-D, each a

double zero. For then any f in the dense open set U := U1¤U2 will satisfy all of 1a), 1b), and 2).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    2222....6666....3333 Let k be an algebraically closed field of characteristic 2, and let C/k be a

projective, smooth connected curve, of genus denoted g. Fix an effective divisor D = ‡ aiPi on C

of degree d ≥ 6g+3. Suppose that each ai is odd. Then in L(D) viewed as the k-points of an affine

space of dimension d+1-g, there is a dense open set U2 such that for f in U2, f has polar divisor D

and its differential df has g-1 + ‡i ((1+ai)/2) distinct zeroes in C-D, each a double zero. 

pppprrrrooooooooffff The proof is based upon the fact that in characteristic two, the canonical bundle ¿1
C/k on a

curve has a canonical square root, an observation that goes back to Mumford [Mum-TCAC].

Indeed, on an affine open piece Spec(A) of C which it etale over !1
k := Spec(k[x]) by a local

coordinate x, the derivation d/dx on A has square zero, and both its kernel and its image consist
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precisely of the squares in A. In particular, for any f in A, df/dx is a square in A. So if we cover C

by affine opens Ëi := Spec(Ai), each etale over !1
k := Spec(k[xi]) by a local coordinate xi, then

¿1
C/k is locally free with basis dxi on Spec(Ai). The transition functions fi,j defining ¿1

C/k with

respect to this covering are the ratios dxi/dxj on Ëi¤Ëj. The key point is that these transition

functions are ssssqqqquuuuaaaarrrreeeessss, being of the form df/dx, and hence have unique square roots on Ëi¤Ëj, say

fi,j = (gi,j)
2. The uniqueness guaranteess that the gi,j form a 1-cocycle, and the line bundle Ò they

define is the desired square root of the canonical bundle.

To put this into useful perspective, let us consider the more general situation of a smooth

scheme X over a perfect field k of characteristic p > 0. We introduce the absolute Frobenius

endomorphism F : X ¨ X, which on affine opens Spec(A) is f ÿ fp on A. Then finding a p'th

root of any line bundle on C amounts to descending it through F, i.e., writing it as F*(Ò) (= Òºp)

for some line bundle Ò on C. Now there is a general result of Cartier, that to descend a

quasicoherent sheaf ˜ on X/k through the absolute Frobenius F is to give on ˜ an integrable

connection 

^ : ˜ ¨ ˜‚¿1
X/k

of p-curvature zero, cf. [Ka-NCMT, 5.1]. 

Any connection is linear over the subsheaf of ØX consisting of p'th powers. Equivalently,

if we take direct image by F, the connection map

^ : F*˜ ¨ F*(˜‚¿1
X/k)

is ØX-linear. Its kernel ˆ := F*˜^ is thus a quasicoherent sheaf on X. Using the integrability

and the fact that the p-curvature is zero, one shows that the canonical map F*ˆ ¨ ˜ is an

isomorphism.

Let us return to our C/k of characteristic 2, and to the canonical square root Ò of the

canonical bundle. The integrable connection of 2-curvature zero on ¿1
C/k whose horizontal

sections (F*¿1
C/k)^ are Ò is precisely the integrable connection 

^ : ¿1
C/k ¨ ¿1

C/k‚¿1
C/k

given locally on Spec(Ai), Ai etale over k[xi], by defining ^ to be the map fdxi ÿ df‚dxi. This

local description makes global sense precisely because the transition functions dxj/dxi are ssssqqqquuuuaaaarrrreeeessss.

The local horizontal sections are precisely (squares)dxi, and these are in turn precisely the exact

forms [simply because f2dx = d(f2x)]. More intrinsically, the local expression of the connection ^

is

^(fdg) := df‚dg.

Because the local horizontal sections of F*¿1
C/k are the image of the exterior differentiation map
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d: F*ØC ¨ F*¿1
C/k,

we have a short exact sequence of locally free ØC-modules

(2.6.3.1) 0 ¨ ØC ¨ F*ØC ¨ Ò ¨ 0,

where the map F*ØC ¨ Ò is f ÿ Sqrt(df).

Now take any divisor E on C, and tensor this short exact sequence with I-1(E). Since

F*(I-1(E)) = I-1(2E), the middle term will be I-1(E)‚F*ØC ¶ F*F*(I-1(E)) = F*(I-1(2E)), and

we get

(2.6.3.2) 0 ¨ I-1(E) ¨ F*(I-1(2E)) ¨ Ò‚I-1(E) ¨ 0.

Here Ò‚I-1(E) is the canonical descent of I-1(2E)‚¿1
C/k, and the map F*(I-1(2E)) ¨ Ò‚I-

1(E) is f ÿ Sqrt(df).

We now specialize this discussion to our effective divisor D = ‡aiPi of degree d ≥ 6g+3,

all of whose coefficients ai are odd. Since the ai are all odd, exterior differentiation defines a map

F*I-1(‡aiPi ) ¨ F*(I-1(‡ (ai + 1)Pi)‚¿1
C/k).

because the ai are odd, each ai + 1 is even, and exterior differentiation induces a map

F*(I-1(‡ (ai + 1)Pi) ¨ F*(I-1(‡ (ai + 1)Pi)‚¿1
C/k).

This last map has precisely the same image as the one above, since we have only enlarged the

source by allowing certain squares. 

We have have a short exact sequence

0 ¨I-1(‡ ((ai + 1)/2)Pi) ¨ F*(I-1(‡ (ai + 1)Pi) ¨ 

¨ I-1(‡ ((ai + 1)/2)Pi)‚Ò ¨ 0.

which is just the exact sequence 2.6.3.2 above, with E taken to be the divisor

E = ‡ ((ai + 1)/2)Pi.

In view of the coincidence of images above, we also have a short exact sequence

0 ¨I-1(‡ ((ai - 1)/2)Pi) ¨ F*I-1(‡aiPi) ¨ 

¨ I-1(‡ ((ai + 1)/2)Pi)‚Ò ¨ 0.

The map

F*I-1(‡aiPi) ¨ I-1(‡ ((ai + 1)/2)Pi)‚Ò

is f ÿ Sqrt(df). Its kernel consists of the squares in F*(I-1(‡aiPi), and these are precisely

(remember each ai is odd) the squares of local sections of I-1(‡ ((ai - 1)/2)Pi).

In this context, we can now come to grips with showing that there is a dense open set U2

of global sections of F*I-1(‡aiPi) for which df has precisely g-1 +‡((ai + 1)/2) zeroes, each of

which is a double zero. It is equivalent to show that there is a dense open set U2 of global sections
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of F*I-1(‡aiPi) for which Sqrt(df) as global section of I-1(‡ ((ai + 1)/2)Pi)‚Ò has all its zeroes

simple (the number of zeros will then be g-1 +‡((ai + 1)/2), which is the degree of I-1(‡ ((ai +

1)/2)Pi)‚Ò.

As f runs over the global sections of I-1(‡aiPi), the differentials df as global sections of

I-1(‡ (ai + 1)Pi)‚¿1
C/k have no common zeroes. Indeed, by Theorem 2.4.2, part 1), a general

global section f1 of I-1(‡aiPi) has exact divisor of poles ‡aiPi, and hence df as section of I-1(‡

(ai + 1)Pi)‚¿1
C/k is invertible near each Pi. But given any finite subset S of C - D, there is a

dense open set of f's such that df is invertible near each s in S. Take S to be the zeroes of some df1,

and f2 to have df2 invertible both at the Pi and at the s in S. Then df1 and df2 have no common

zeroes.

Therefore as f runs over the global sections of F*I-1(‡aiPi), the global sections Sqrt(df) of

I-1(‡ ((ai + 1)/2)Pi)‚Ò have no common zeroes. From the long exact cohomology sequence

attached to the short exact sequence

0 ¨I-1(‡ ((ai - 1)/2)Pi) ¨ F*I-1(‡aiPi) ¨ 

¨ I-1(‡ ((ai + 1)/2)Pi)‚Ò ¨ 0,

we get a four term short exact sequence

0 ¨ H0(C, I-1(‡ ((ai - 1)/2)Pi)) ¨ H0(C, F*I-1(‡aiPi))¨ 

¨ H0(C, I-1(‡ ((ai + 1)/2)Pi)‚Ò) ¨ H1(C, I-1(‡ ((ai - 1)/2)Pi)) ¨ 0.

The next term is

H1(C, F*I-1(‡aiPi)) ¶ H1(C, I-1(‡aiPi)) = 0,

the vanishing because ‡aiPi has degree ≥ 6g+3 > 2g-2. In our four-term exact sequence, we

rewrite the second nonzero term:

H0(C, F*I-1(‡aiPi)) ¶ H0(C, I-1(‡aiPi)).

The first nonzero map

H0(C, I-1(‡ ((ai - 1)/2)Pi)) ¨ H0(C, I-1(‡aiPi))

is simply the squaring map, f ÿ f2. The second nonzero map is f ÿ Sqrt(df). The last term is

H1(C, I-1(‡ ((ai - 1)/2)Pi)), dual to a subspace of the holomorphic 1-forms, and so of dimension

≤ g. [For example, if all ai = 1, the last term will be H1(C, Ø).].

Thus our situation is the following. We have a line bundle

Ò1 := I-1(‡ ((ai + 1)/2)Pi)‚Ò,

whose degree is ≥ 4g+1 (because ≥ (d+1)/2 + (g-1) ≥ (6g+4)/2 + (g-1)). Inside H0(C, Ò1) we

have a linear subspace V, of codimension at most g, whose elements have no common zeroes
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(namely, the image of H0(C, I-1(‡aiPi)) under the map f ÿ Sqrt(df)). We wish to show that for v

in a dense open set ◊ of V, v as section of Ò1 has all simple zeroes. (We then take U2 to be the

inverse image of ◊ in H0(C, I-1(‡aiPi)).) This results from the following elementary lemma.

LLLLeeeemmmmmmmmaaaa    2222....6666....4444 Let k be an algebraically closed field, C/k a proper smooth connected curve of genus

g, Ò a line bundle of degree d ≥ 4g+1, and V fi H0(C, Ò) a linear subspace of codimension ≤ g.

Suppose that the elements of V have no common zeroes. Then the set ◊ fi V consisting of those v

in V such that v as section of Ò1 has all simple zeroes is a dense open set of V.

pppprrrrooooooooffff First, let us remark that inside @(H0(C, Ò)£), the non-zero sections with all zeroes simple

form a dense open set, say Ë. [Its complement is the image of the total space of the projective

bundle over C with fibre @(H0(C, Ò‚I(2P))£) over the point P.] We must show that ◊ := V¤Ë

is nonempty. 

Pick two nonzero elements v0 and v1 in ◊ which have no common zero. Denote by D the

divisor of zeroes of v0. Then the map f ÿ fv0 is an isomorphism from I-1(D) to Ò, which carries

the global section 1 of I-1(D) to the global section v0 of Ò, and which carries some function f1 in

H0(C, I-1(D)) to the global section v1. Because v0 and v1 have no common zeroes as sections of

Ò, the functions f1 and 1 have no common zeroes as sections of H0(C, I-1(D)). More concretely,

f1 has its divisor of poles precisely equal to D.

Thus we are reduced to the case when Ò is I-1(D), with D an effective divisor of degree d

≥ 4g+1, and when the linear subspace V of H0(C, I-1(D)) contains the function 1. Because d ≥

2g, the functions f in H0(C, I-1(D)) with exact divisor of poles D form a dense open set, say U.

[The complement of U is the union, over the finitely many points P which occur in D, of the

subspaces H0(C, I-1(D-P)), each of which has codimension 1 because deg(D) ≥ 2g.]

The open set V¤U of V is nonempty (it contains f1), and hence is a dense open set of V. 

If the ground field k has characteristic zero, pick any f in V¤U. Then df is nonzero

(because f is non-constant), and hence has finitely many zeroes in C-D. Then for any ¬ in k which

is not one of the finitely many critical values of f on C-D, the function f - ¬ lies in V and has all its

zeroes simple. Thus f - ¬ lies in ◊.

If the ground field k has characteristic p > 0, then we can repeat the same argument unless

the f we choose in V¤U is a p'th power. Since f has divisor of poles D, f is a p'th power only if D

= pE for some (uniquely determined) effective divisor E, and f is gp for some g in H0(C, I-1(E)). 

If every f in V¤U is a p'th power, then 

V¤U fi p'th powers of elements of H0(C, I-1(E)).

This leads to a contradiction, as follows. Comparing dimensions, we find

dim(V) ≤ dimH0(C, I-1(E)).
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A nonzero global section of  I-1(E) has deg(E) zeroes, so we have the trivial inequality

dimH0(C, I-1(E)) ≤ 1 + deg(E) = 1 + d/p.

On the other hand, V has codimension at most g in H0(C, I-1(D)), so

dim(V) ≥ d + 1 - g - g = d + 1 - 2g.

Thus we get the inequality

d + 1 - 2g ≤ 1 + d/p,

or

d(p-1)/p ≤ 2g,

i.e., 

d ≤ 2gp/(p-1) ≤ 4g,

contradiction. QED

2222....7777    AAAApppppppplllliiiiccccaaaattttiiiioooonnnn    ttttoooo    SSSSwwwwaaaannnn    ccccoooonnnndddduuuuccccttttoooorrrrssss    iiiinnnn    cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc    2222

TTTThhhheeeeoooorrrreeeemmmm    2222....7777....1111 Let k be an algebraically closed field of characteristic 2, and let C/k be a projective,

smooth connected curve, of genus denoted g. Fix an effective divisor D on C of degree d ≥ 6g+3.

Suppose that D = ‡ aiPi with each ai odd. Fix a finite subset S of C - D. Let f be any function in

the open set U of Theorem 2.4.4. View f as a finite flat map of C-D to !1, and form the sheaf Ï

:= f*ä$… on !1. Then Ï is tame at ‘. At each critical value å of f in !1, consider the I(å)-

representation Ï(å). Then I(å) acts on Ï(å) by a reflection of Swan conductor 1, i.e.,

Ï(å)/Ï(å)I(å) is 1-dimensional, and I(å) acts on  Ï(å)/Ï(å)I(å) by a character of order 2 having

Swan conductor 1.

pppprrrrooooooooffff That Ï is tame at ‘ is immediate from the fact that f has a pole of order prime to the

characteristic at each point of D. Because f is Lefschetz on C-D, for each critical value å of Ï in

!1, I(å) acts on Ï(å) by a reflection. The only question is to compute its Swan conductor. We

have

Swanå(Ï(å)) = Swanå(Ï(å)/Ï(å)I(å)),

so what we must show is that each Swanå(Ï(å)) = 1. Since the character Ï(å)/Ï(å)I(å) has order

2 and we are in characteristic 2, we have an a priori inequality

Swanå(Ï(å)) ≥ 1.

Because df has g-1 +‡(1+ai)/2 zeroes, and f is Lefschetz, there are this many critical values. Thus

it suffices to show that

‡å in CritVal(f) (1 + Swanå(Ï(å)) = 2g-2+‡(1+ai).

To show this, view C - D - ⁄åf-1(å) as a degree d finite etale covering of !1 - CritVal(f). Each

fibre over a critical point å has d-1 instead of d points, so the Euler characteristic upstairs is given

by

ç(C - D - ⁄åf-1(å), ä$…) = 2 - 2g - ù(Dred) - (d-1)ùCritVal(f).
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Computing downstairs, using the Euler-Poincare formula and remembering that Ï is tame at ‘, we

get

ç(C - D - ⁄åf-1(å), ä$…) = ç(!1 - CritVal(f), Ï)

= d(1 - ùCritVal(f)) - ‡å in CritVal(f) Swanå(Ï(å)).

Equating these two expressions for ç(C - D - ⁄åf-1(å), ä$…), we get

2 - 2g - ù(Dred) - (d-1)ùCritVal(f)=

= d(1 - ùCritVal(f)) - ‡å in CritVal(f) Swanå(Ï(å)).

Cancelling the like term -dùCritVal(f), we get

2 - 2g - ù(Dred) +ùCritVal(f)= d - ‡å in CritVal(f) Swanå(Ï(å)),

or, what is the same, 

‡å in CritVal(f) (1 + Swanå(Ï(å)) = 2g-2 + ù(Dred) + d,

which is precisely the desired equality

‡å in CritVal(f) (1 + Swanå(Ï(å)) = 2g-2+‡(1+ai). QED

RRRReeeemmmmaaaarrrrkkkk    2222....7777....2222 Suppose we take an f which satisfies conditions 1a) and 2) of Theorem 2.4.4, but not

necessarily 1b). The above argument gives the equality

‡å in CritVal(f) (1 + Swanå(Ï(å)) = 2g-2+‡(1+ai).

Therefore Swanå(Ï(å) =1 for every critical point å if and only if f satisfies condition 1b) as well.
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3333....0000    TTTThhhheeee    ttttwwwwoooo    ssssoooorrrrttttssss    ooooffff    iiiinnnndddduuuuccccttttiiiioooonnnn

(3.0.1) Let G be a group, H fi G a subgroup, R a commutative ring, and V a left R[H]-module.

There are two standard notions of the induction of V from H to G. The first, which we call

"standard" induction, is 

(3.0.1.1) IndH
G(V) := R[G]‚R[H]V,

with its structure of left R[G]module through the first factor.

The second, which we call Mackey induction, is

(3.0.1.2) MaIndH
G(V) := Homleft R[H]-mod(R[G], V) 

= Homleft H-sets(G, V),

which becomes a left R[G]-module by defining

(Lgƒ)(x) := ƒ(xg).

(3.0.2) For standard induction, we get, for any left R[G]-module W, one version of Frobenius

reciprocity:

(3.0.2.1)  Homleft R[H]-mod(V, W|H)

¶ Homleft R[G]-mod(IndH
G(V), W),

the isomorphism being ¥ ÿ (the map gºv ÿ g¥(v)). Taking for W the trivial R[G] module R with

trivial G-action, we get an isomorphism of coinvariants

(3.0.2.2) VH ¶ (IndH
G(V))G.

(3.0.3) For Mackey induction, we get the other version of Frobenius reciprocity:

(3.0.3.1) Homleft R[H]-mod(W|H, V)

¶ Homleft R[G]-mod(W, MaIndH
G(V)),

the isomorphism being ¥ ÿ (the map w ÿ (g ÿ ¥(gw))). Taking for W the trivial R[G] module R

with trivial G-action, we get an isomorphism of invariants

(3.0.3.2) VH ¶ (MaIndH
G(V))G.

(3.0.4) When H has finite index in G, these two constructions are isomorphic, as follows. Define

an R-linear map

(3.0.4.1) T : Homleft H-sets(G, V) ¨ R[G]‚R[H]V

as follows. Pick any set of right coset representatives gi for HyG, i.e. G is the disjoint union of the

right cosets Hgi. Given an element ƒ in Homleft H-sets(G, V), define T(ƒ) to be the element

(3.0.4.2) T(ƒ) := ‡(gi)
-1‚ƒ(gi)

in R[G]‚R[H]V. This map T is visibly an isomorphism of the underlying R-modules, each of

which is ù(G/H) copies of V. 

(3.0.5) To see that T is well-defined independent of the choice of right coset representatives gi,

notice that any other right coset representatives are of the form higi for some hi in H. Then compute

‡(higi)
-1‚ƒ(higi) = ‡(gi)

-1(hi)
-1‚hiƒ(gi) = ‡(gi)

-1‚ƒ(gi).
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To see that T is a homomorphism of left R[G]-modules, fix a in G, ƒ in Homleft H-sets(G, V).

Then 

T(La(ƒ)) := ‡(gi)
-1‚(Laƒ)(gi) = ‡(gi)

-1‚ƒ(gia) 

= a(‡a-1(gi)
-1‚ƒ(gia)) = a((‡(gia)-1‚ƒ(gia)) =a(T(ƒ)),

where we compute T(ƒ) using the right coset representatives gia.

(3.0.6) If H is not assumed of finite index in G, then the above construction T establishes an

isomorphism from the submodule of Homleft H-sets(G, V) consisting of elements whose support

is a finite union of right cosets of H in G, with R[G]‚R[H]V.

(3.0.6) When H is of finite index in G, we write IndH
G(V) for "the" induction, and we have two

Frobenius reciprocity isomorphisms:

(3.0.6.1)  Homleft R[H]-mod(V, W|H)

¶ Homleft R[G]-mod(IndH
G(V), W),

and

(3.0.6.2) Homleft R[H]-mod(W|H, V)

¶ Homleft R[G]-mod(W, IndH
G(V)).

3333....1111    IIIInnnndddduuuuccccttttiiiioooonnnn    aaaannnndddd    dddduuuuaaaalllliiiittttyyyy 

(3.1.1) Let H be a group, R a commutative ring, and V a left R[H]-module whose underlying R-

module is free of finite rank. Denote by V£ the dual ("contragredient") representation. Its

underlying R-module is

V£ := HomR-mod(V, R),

and the left H-action on V£ is defined as follows: given an R-linear map ƒ : V ¨ R, we define

hƒ to be the R-linear map v ÿ ƒ(h-1v). Thus the canonical pairing

< , > : V ≠ V£ ¨ R

<v, ƒ> := ƒ(v),

has the equivariance property that for all h in H, v in V, ƒ in V£,

<hv, hƒ> = <v, ƒ>.

(3.1.2) Equivalently, suppose we are given two left R[H]-modules V and W, both of whose

underlying R-modules are free of finite rank, and an R-bilinear pairing

< , > : V ≠ W ¨ R

which is H-equivariant: 

<hv, hw> = <v, w>.

If this pairing makes V and W R-duals of each other, then V and W are the contradgredients of

each other.

LLLLeeeemmmmmmmmaaaa    3333....1111....3333 Given V and W as in 3.1.2 above which are contragredients of each other, with
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pairing < , >H, suppose that H is a subgroup of finite index in G. Then IndH
G(V) and IndH

G(W)

are contragredients of each other:

 IndH
G(V)£ ¶ IndH

G(V£).

pppprrrrooooooooffff The simplest way to see this is think of induction as Mackey induction, and to write down <

, >G a priori. To do this, pick a set of coset representatives gi for for HyG. Given maps of left H-

sets 

f1 : G ¨ V and f2 : G ¨ W, we define

< , >G : IndH
G(V) ≠ IndH

G(W) ¨ R

by

<f1, f2>G := ‡ <f1(gi), f2(gi)>H.

This pairing visibly makes the underlying R-modules R-duals of each other.

This pairing is independent of the choice of coset representatives gi. Indeed, any other

choice is higi for some elements hi in H, and for this new choice the individual summands remain

unchanged:

<f1(higi), f2(higi)>H = <hf1(gi), hf2(gi)>H = <f1(gi), f2(gi)>H.

The pairing thus defined is G-equivariant. For a in G, 

<Laf1, Laf2>G := ‡ <(Laf1)(gi), (Laf2)(gi)>H

= ‡ <f1(gia), f2(gia)>H.

This last sum is simply the expression of <f1, f2>G using the right coset representatives gia. QED

CCCCoooorrrroooollllllllaaaarrrryyyy    3333....1111....4444    Hypotheses and notations as in 3.1.3, If V is orthogonally (respectively

symplectically) self dual, then IndH
G(V) is orthogonally (respectively symplectically) self dual.

pppprrrrooooooooffff If the form < , >H on V≠V is symmetric (respectively strongly alternating, i.e. if <v,v>H = 0

for all v in V) then the bilinear form <f1, f2>G is symmetric (respectively strongly alternating).

QED

3333....2222    IIIInnnndddduuuuccccttttiiiioooonnnn    aaaassss    ddddiiiirrrreeeecccctttt    iiiimmmmaaaaggggeeee

(3.2.1) Suppose X and Y are connected schemes, and f : X ¨ Y is a finite etale map. Then H :=

π1(X, any base point x) is an open subgroup of finite index in G := π1(Y, the base point f(x)). If R

is a topological ring, for instance É… or äÉ… or #… or $… or ä$…, we may view a continuous

representation V of H on, say, a free R-module of finite rank, as (the stalk at x of) a lisse sheaf Ï

of R-modules on X. The direct image f*Ï is the lisse sheaf of R-modules on Y corresponding to

the induction of V from H to G. For Ì a lisse sheaf of R-modules on Y, corresponding to a

continuous representation W of G, W|H corresponds to the lisse sheaf f*Ì on X. So viewed, the

second (and less standard) form of Frobenius reciprocity becomes the standard adjunction

isomorphism

(3.2.1.1) HomX(f*Ì, Ï) ¶ HomY(Ì, f*Ï),
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while the first (and more standard) form of Frobenius reciprocity becomes the exotic adjunction

isomorphism

(3.2.1.2) HomX(Ì, f~Ï) ¶ HomY(f~Ì, Ï),

cf. [SGA4, XVIII, 3,1,4,3].

3333....3333    AAAA    ccccrrrriiiitttteeeerrrriiiioooonnnn    ffffoooorrrr    tttthhhheeee    iiiirrrrrrrreeeedddduuuucccciiiibbbbiiiilllliiiittttyyyy    ooooffff    aaaa    ddddiiiirrrreeeecccctttt    iiiimmmmaaaaggggeeee

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    3333....3333....1111    ((((IIIIrrrrrrrreeeedddduuuucccciiiibbbblllleeee    IIIInnnndddduuuuccccttttiiiioooonnnn    CCCCrrrriiiitttteeeerrrriiiioooonnnn)))) Let k be an algebraically closed field, C1/k and

C2/k two smooth connected curves, and f: C1 ¨ C2 a finite flat map of degree d ≥ 1 which is

generically etale. Let … be a prime number invertible in k, and let Ï be an irreducible middle

extension ä$…-sheaf on C1, i.e., Ï is the extension by direct image of a lisse irreducible ä$…-sheaf

on a dense open set of C1. Suppose that Sing(Ï), the set of points at which Ï is not lisse, is

nonempty. Suppose further that for some s in Sing(Ï), the fibre f-1(f(s)) consists of d distinct

points, only one of which lies in Sing(Ï). Then f*Ï on C2 is an irreducible middle extension.

pppprrrrooooooooffff We first recall why f*Ï is a middle extension. Let U2 in C2 be a dense open set over which f

is finite etale, and such that f-1(U2) does not meet Sing(Ï) (i.e., such that Ï is lisse on f-1(U2)).

Then we have a commutative diagram

 j1

f-1(U2) ¨ C1

  ëf  Ñ       Ñ  f

     U2 ¨ C2

j2.

Here Ï is j1*j1
*Ï, so f*Ï is f*j1*j1

*Ï = j2*ëf*j1
*Ï. The sheaf ëf*j1

*Ï on U2 is lisse (Ï is lisse on

f-1(U2), and ëf is finite etale), and it is equal to j2
*f*Ï (commutation of f* with localization on the

base). Thus f*Ï is j2*j2
*f*Ï, as required.

It remains to prove that f*Ï is irreducible on U2. By assumption, Ï|f-1(U2) is a

continuous irreducible ä$…-representation of π1(f-1(U2)), an open subgroup of finite index d in

π1(U2). The lisse sheaf (f*Ï)|U2 is the induced representation of π1(U2), and is therefore

completely reducible (because we have coefficients ä$… of characteristic zero: this complete

reducibility can fail for äÉ… coefficients, just think of taking […]*É… for the …-th power map of ´m to

itself). 

So f*Ï on U2 is irreducible if and only if HomU2
(f*Ï, f*Ï) is one-dimensional, or

equivalently, has dimension < 2. By adjunction, we have

HomU2
(f*Ï, f*Ï) =Homf-1(U2)(f

*f*Ï, Ï).



Chapter 3: Induction-74

Once again, f*f*Ï is completely reducible on f-1(U2), and the dimension of Homf-1(U2)(f
*f*Ï,

Ï) is the multiplicity of Ï in f*f*Ï.

So what we must show is that Ï·Ï is not a direct summand of f*f*Ï. To see this, we will show

that already as representations of the inertia group I(s), Ï·Ï is not a direct summand of f*f*Ï.

Recall that f is etale at every point of the fibre f-1(f(s)), and that Ï is lisse at every point of this

fibre except for the point s itself. Therefore as a representation of I(s), f*f*Ï is the direct sum of

Ï(s) and of d-1 trivial rank(Ï)-dimensional representations of I(s). Because Ï(s) is a nontrivial

representation of I(s), we claim that Ï(s)·Ï(s) is not a direct summand of Ï(s)·(trivial). Indeed, if

it were, then by Jordan Holder the semisimplification of Ï(s) would be trivial, i.e., Ï(s) would be a

unipotent representation of I(s), i.e., a homomorphism from I(s).to the group of upper unipotent

matrices. If Ï(s) is nontrivial, then some element © of I(s) has a nontrivial Jordan normal form.

From the theory of Jordan normal form we see that even after restriction to the cyclic subgroup

<©>, Ï(s)·Ï(s) is not a direct summand of Ï(s)·(trivial). QED

RRRReeeemmmmaaaarrrrkkkk    3333....3333....2222 If Sing(Ï)finite is empty, f*Ï need not be irreducible (e.g., for Ï the constant sheaf

ä$…, ä$… is always a direct factor of f*ä$…). 

3333....4444    AAAAuuuuttttoooodddduuuuaaaalllliiiittttyyyy    aaaannnndddd    iiiinnnndddduuuuccccttttiiiioooonnnn

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    3333....4444....1111 Hypotheses and notations as in the Irreducible Induction Criterion 3.3.1 above, Ï

on C1 is self-dual if and only if f*Ï on C2 is self-dual. If both are self-dual, either they are both

orthogonally self-dual, or they are both symplectically self-dual.

pppprrrrooooooooffff The implication à is Corollary 3.1.4 above. For the converse, suppose that f*Ï is self-dual,

but that Ï is not self dual. We arrive at a contradiction as follows. We know that f*Ï is irreducible,

and hence that Ï occurs in f*f*Ï as a direct summand. Because f*Ï is self dual, we have f*Ï ¶

(f*Ï)£ ¶ f*(Ï£). Therefore Ï£ occurs in f*f*Ï as a direct summand. If Ï is not isomorphic to

Ï£, then Ï·Ï£ is a direct summand of f*f*Ï. Looking at stalks at s, we get that Ï(s)·Ï(s)£ is a

direct summand of Ï(s)·(trivial), which leads to a contradiction exactly as in the proof of 3.3.1

above. 

Suppose now that Ï and f*Ï are both self-dual. Since they are both irreducible, each

admits a unique (up to a ä$…
≠-factor) autoduality, and that autoduality is either symplectic or

orthogonal. By Corollary 3.1.4 above, once Ï is self-dual, either orthogonally or symplectically,

f*Ï is autodual of the same sort. QED

3333....5555    AAAA    ccccrrrriiiitttteeeerrrriiiioooonnnn    ffffoooorrrr    bbbbeeeeiiiinnnngggg    iiiinnnndddduuuucccceeeedddd

(3.5.0) We work over an algebraically closed field K of characteristic zero. We are given a group G
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and a subgroup H fi G of finite index. Given a K-representation Ú: H ¨ GL(W) of H, denote by 

chÚ : H ¨ K

its character

chÚ(h) := Trace(Ú(h)).

Extend the function chÚ by zero to all of G, i.e., consider the function

ch~Ú : G ¨ K

defined by

ch~Ú(g) = chÚ(g), if g lies in H,

ch~Ú(g) = 0 if g does not lie in H.

Denote by IndH
G(Ú), or simply Ind(Ú), the G-representation IndH

G(W). One sees easily from

the definitions that the character of Ind(Ú) is the function on G defined by

chInd(Ú)(g) := ‡© rep's of G/H ch~Ú(©h©-1).

Thus the character of Ind(H) is supported in  ⁄g in G gHg-1. 

(3.5.1) Suppose now in addition that H is a nnnnoooorrrrmmmmaaaallll subgroup of G. Then the character of Ind(Ú)

vanishes outside of H. To what extent is it true that an irreducible representation ® of G whose

character is supported in a normal subgroup H fi G of finite index is induced from H? Here is a

very partial answer.

TTTThhhheeeeoooorrrreeeemmmm    3333....5555....2222 Suppose H fi G is a normal subgroup of finite index, and that the quotient group

G/H  has squarefree order N ≥ 2. Suppose given ® : G ¨ GL(V) an irreducible, finite-

dimensional representation of G, whose character ch® is supported in H. Then there exists an

irreducible representation Ú of H such that ® ¶ IndH
G(Ú). If in addition dim(®) = ù(G/H), then Ú

is a (linear) character of H, i.e.,. dim(Ú) = 1

pppprrrrooooooooffff Because ® is irreducible, it is completely reducible. Because H is normal in G (or because H

is of finite index in G and char(K) = 0), ®|H is completely reducible, say

®|H = ‡i=1 to r niÚi.

Because H is normal in G, and ® is irreducible on G, the various Úi are all G-conjugate, and all the

ni have a common value n:

®|H = ‡i=1 to r nÚi.

Recall that for any completely reducible finite-dimensional K-representation Ú of H,

Ind(Ú) is complete reducible on G. (Since K is of characteristic zero, it suffices to check complete

reducibility of the restriction of Ind(Ú) to any normal subroup Æ in G of finite index; if we take Æ

to be H itself, we are looking at Ind(W)|H, which is the direct sum ·© rep's of G/H Ú(©) of

conjugates of Ú.) 

For any two completely reducible finite dimensional K- representations ® and ß of G, we

denote as usual
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<π, ß>G := dimKHomK[G]-mod(π, ß),

and similarly for H. Frobenius reciprocity now takes the following numerical form: for π

(respectively †) a completely reducible finite dimensional K- representation of G (respectively of

H), we have

<†, π|H>H = <Ind(†), π>G 

We now apply this to our situation. Recall that

®|H = ‡i=1 to r nÚi.

Thus

<®|H, ®|H>H := <‡i=1 to r nÚi, ‡i=1 to r nÚi>H = ‡i=1 to r n
2 = r≠n2.

On the other hand, Frobenius reciprocity gives

<®|H, ®|H>H = <IndH
G(®|H), ®>G.

On the other hand, by the "projection formula", we have

IndH
G(®|H) ¶ ®‚KIndH

G(úH).

Now IndH
G(úH) is the regular representation of G/H, viewed as a representation of G. So its

character vanishes outside of H, and is equal to ù(G/H) at every h in H. Since the character of ® is

itself supported in H, we have

chInd(®|H) = ù(G/H)≠ch® = chù(G/H) copies of ®.

Because completely reducible representations over an algebraically closed field of characteristic

zero are determined up to isomorphism by their characters, we find

IndH
G(®|H) ¶ ù(G/H) copies of ®.

Returning to the inner products above, we get

<®|H, ®|H>H = <IndH
G(®|H), ®>G = <ù(G/H) copies of ®, ®>G.= ù(G/H).

Comparing the two evaluations of <®|H, ®|H>H, we find

r≠n2 = ù(G/H).

But ù(G/H) is squarefree, so we infer that n=1, r = ù(G/H). Thus ®|H is the direct sum of ù(G/H)

distinct irreducibles Úi of H, which are transitively permuted by G-conjugation. This means

precisely that H is the stabilizer of the isomorphism class of any single Úi, and that for each i we

have

® ¶ IndH
G(Úi).

Once we know this, taking dimensions we get

dim(®) = ù(G/H)dim(Ú),

which makes obvious the final assertion of the theorem. QED

RRRReeeemmmmaaaarrrrkkkk    3333....5555....3333 Suppose that the group G in Theorem 3.5.2 above is a topological group, H is an

open and closed normal subgroup of finite index, K is a topogical field, and the representation ® is

continuous in the sense that, in some (or equivalently, in every) K-basis of the representation
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space, say V, of ®, each matrix coefficient of ® is a continuous K-valued function on G. Then each

representation Úi of H is continuous. Indeed, in a suitable basis of V, ®|H is block diagonal, with

blocks the Úi. So in this basis each matrix coefficient of each Úi is the restriction to H of a matrix

coefficient of ®, hence is continuous.
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4444....0000 RRRReeeevvvviiiieeeewwww    ooooffff    mmmmiiiiddddddddlllleeee    aaaaddddddddiiiittttiiiivvvveeee    ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn::::    tttthhhheeee    ccccllllaaaassssssss    ∏∏∏∏ccccoooonnnnvvvv

(4.0.1) We fix a prime number …. We work on !1 over an algebraically closed field k in which …  is

invertible. We wish to define a certain class ∏conv of irreducible middle extension ä$…-sheaves Ï

on !1. Given an irreducible middle extension ä$…-sheaf Ï on !1 (or equivalently a non-punctual

irreducible perverse sheaf K = Ï[1] on !1), denote by 

(4.0.1.1) S := Sing(Ï)finite 

the finite set of points in !1 at which Ï is not lisse. 

(4.0.2) We say that Ï lies in ∏conv if

(4.0.2.1) rank(Ï) + ùS + ‡t in S⁄{‘} Swant(Ï) ≥ 3.

(4.0.3) If k has characteristic zero, then among all irreducible middle extensions Ï, only the

constant sheaf ä$… and the Kummer sheaves Òç(x-å), (ç a nontrivial character of π1
tame(´m), å

in !1(k)) fail to lie in ∏conv. Equivalently, in characteristic zero, an irreducible middle extension Ï

lies in ∏conv if and only if ùS ≥ 2. 

(4.0.4) If k has characteristic p > 0, then among all irreducible middle extensions Ï, only the

constant sheaf ä$…, the Kummer sheaves Òç(x-å) as above, and the Artin-Schreier sheaves

Ò¥(åx) (¥ a nontrivial additive character of Ép, å in !1(k)) fail to lie in ∏conv. 

(4.0.5) In [Ka-RLS, 3.3.3 and 4.3.10, where the objects in ∏conv are called "of type 2d)"], it is

shown that the class ∏conv is stable by middle additive convolution with Kummer sheaves

j*Òç(x) on !1, ç any nontrivial character of π1
tame(´m), and j the inclusion of ´m into !1. Let

us recall the basic setup. Given Ï in ∏conv, and a Kummer sheaf Òç(x) as above, form the

perverse sheaves K := Ï[1] and L := j*Òç(x)[1] on !1. On !2 with its two projections to !1,

form the external tensor product K$L := (pr1
*K)‚(pr2

*L). By the sum map 

(4.0.5.1) sum: !2 ¨ !1,

form the two flavors of total direct image, Rsum~(K$L) and Rsum*(K$L). Because Ï is in

∏conv, both Rsum~(K$L) and Rsum*(K$L) are perverse. The middle additive convolution

K*mid+L is defined to be the image, in the category of perverse sheaves, of the canonical "forget

supports" map:

(4.0.5.2) K*mid+L := Image(Rsum~(K$L) ¨ Rsum*(K$L)).

One knows that K*mid+L is of the form Ì[1] for an irreducible middle extension Ì in ∏conv. We

write

(4.0.5.3) Ì = Ï*mid+Òç.

4444....1111    EEEEffffffffeeeecccctttt    oooonnnn    llllooooccccaaaallll    mmmmoooonnnnooooddddrrrroooommmmyyyy

(4.1.1) We now recall the relations between the local monodromies of Ï and Ì. For any point t in
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@1, we denote by Ï(t) and Ì(t) the representations of the inertia group I(t) attached to Ï and Ì

respectively. Given any ä$…-representation M(t) of I(t), we have its direct sum break ("upper

numbering") decomposition [Ka-GKM, 1.1] into I(t)-stable pieces

(4.1.1.1) M(t) = ·å ≥ 0 in $ M(t)(break=å).

If we collect the terms according as to whether å=0 or å >0, we get the coarser decomposition

(4.1.1.2) M(t) = M(t)tame · M(t)wild.

(4.1.2) Denote by Rep(I(t), ä$…) the category of finite-dimensional continuous ä$…-representations

of I(t). For any subset ı of $≥0, denote by Rep(I(t), ä$…)(breaks in ı) the full subcategory of

objects all of whose breaks lie in ı. When k has characteristic p > 0, Laumon [Lau-TFC, 2.4] has

defined local Fourier transform functors

(4.1.2.1) FTloc(t, ‘) : Rep(I(t), ä$…) ¨ Rep(I(‘), ä$…)

with the following properties.

(4.1.3) For t in !1, FTloc(t, ‘) is an equivalence

(4.1.3.1) FTloc(t, ‘) : Rep(I(t), ä$…) ¶ Rep(I(‘), ä$…)(breaks ≤ 1),

which interchanges objects of dimension b having all breaks a/b with objects of dimension a+b

having all breaks a/(a+b).

(4.1.4) For t= ‘, FTloc(‘, ‘) kills Rep(I(‘), ä$…)(breaks ≤ 1), and induces an autoequivalence of

Rep(I(‘), ä$…)(breaks > 1), which interchanges objects of dimension a having all breaks (a+b)/a

wth objects of dimension b having all breaks (a+b)/b.

(4.1.5) In terms of these local Fourier Transform functors, we can define, in characteristic p > 0,

local convolution functors as follows. 

(4.1.6) For t in !1, we define

(4.1.6.1) MCçloc(t) : Rep(I(t), ä$…) ¨ Rep(I(t), ä$…)

to be the autoequivalence

(4.1.6.2) FTloc(t, ‘)-1«(M ÿ M‚Òäç(x))«FTloc(t, ‘),

where äç denotes the inverse character. The local convolution functor MCäçloc(t) is a quasi-inverse

to MCçloc(t).

(4.1.7) For t=‘, we define 

(4.1.7.1)

MCçloc(‘) : Rep(I(‘), ä$…)(breaks > 1) ¨ Rep(I(‘), ä$…)(breaks > 1)

to be the autoequivalence

(4.1.7.2) FTloc(‘, ‘)-1«(M ÿ M‚Òäç(x))«FTloc(‘, ‘).

Its quasi-inverse is MCäçloc(‘).

(4.1.8) These functors preserve both dimensions and breaks. On ttttaaaammmmeeee objects M in Rep(I(t), ä$…), t

in !1, MCçloc(t) is just the functor
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M ÿ M‚Òç(x-t),

cf. [Ka-RLS, proof of 3..36] On objects which are not tame, MCçloc(t) is not given by this rule in

general, cf. [Ka-RLS, 3.4] for a discussion of this point.

(4.1.9) In characteristic zero, we ddddeeeeffffiiiinnnneeee, for t in !1, MCçloc(t) to be the functor on Rep(I(t), ä$…)

given by

M ÿ M‚Òç(x-t),

Using the relation of middle additive convolution to Fourier transform, Laumon's results on

the local structure of Fourier transform, and, if the characteristic is zero, a "reduction to

characteristic p" argument, we find

TTTThhhheeeeoooorrrreeeemmmm    4444....1111....11110000 [Ka-RLS, 3.3.5-6 and 4.3,11] Given Ï in ∏conv and a nontrivial Kummer sheaf

Òç(x), put Ì := Ï*mid+Òç.in ∏conv. 

1) For t in !1, the I(t)-representations Ï(t) and Ì(t) are related as follows:

Ì(t)/Ì(t)I(t) ¶ MCçloc(t)(Ï(t)/Ï(t)I(t)).

1a) We have an isomorphism of tame I(t)-representations

Ì(t)tame/Ì(t)I(t) ¶ (Ï(t)tame/Ï(t)I(t))‚Òç(x-t).

1b) We have an equality of dimensions

dimÌ(t)wild = dimÏ(t)wild.

1c) We have an equality of dimensions

dim Ì(t)/Ì(t)I(t) = dim Ï(t)/Ï(t)I(t) 

2) The I(‘)-representations Ï(‘) and Ì(‘) are related as follows.

2a) There exists a tame I(‘)-representation M such that

Ï(‘)tame = M/MI(‘), 

Ì(‘)tame = (M‚Òç(x))/(M‚Òç(x))
I(‘).

2b) We have an isomorphism of I(‘)-representations

Ì(‘)(0 < break ≤ 1) ¶ Ï(‘)(0 < break ≤ 1).

2c) We have an isomorphism of I(‘)-representations

dim Ì(‘)(breaks > 1) = MCçloc(‘)(Ï(‘)(breaks > 1)) 

2d) We have an equality of dimensions

dim Ì(‘)wild = dim Ï(‘)wild 

pppprrrrooooooooffff If k has characteristic zero, then Ï and Ì are necessarily tame, and this is [Ka-RLS, 4.3.11],

proven by reducing to the characteristic p > 0 case. If k has characteristic p > 0, this is just a

spelling out of [Ka-RLS, 3.3.5], using the discussion in the proof of [Ka-RLS, 3.3.6] to identify

more precisely what happens on the tame parts. QED

CCCCoooorrrroooollllllllaaaarrrryyyy    4444....1111....11111111 Hypotheses and notations as in 4.1.10, the action of I(‘) on Ì(‘) is nnnnooootttt

semisimple, and hence does nnnnooootttt factor through a finite quotient of I(å), if any of the following
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conditions is satisfied.

1) Ï(‘)I(‘) ± 0, i.e., Ï(‘)tame has a unipotent Jordan block of dimension ≥ 1.

2) Ï(‘)tame‚Òä®(x) has a unipotent Jordan block of dimension ≥ 2, for some ® ± äç, ® nontrivial.

3) Ï(‘)tame‚Òç(x) has a unipotent Jordan block of dimension ≥ 3.

4) Ï(‘)wild is not I(‘)-semisimple.

pppprrrrooooooooffff If 1) holds, then from the isomorphism Ï(‘)tame = M/MI(‘) we see that M has a direct

summand which is a unipotent Jordan block U of dimension ≥ 2. Then U‚Òç(x) is a direct

summand of M‚Òç(x). But (U‚Òç(x))
I(‘) = 0, so U‚Òç(x) is a direct summand of

(M‚Òç(x))/(M‚Òç(x))
I(‘) ¶ of Ì(‘).

If 2) holds, then M has a direct summand U‚Ò®(x) with U a unipotent Jordan block of

dimension ≥ 2, and hence Ì(‘) has a direct summand U‚Ò®(x)‚Òç(x).

If 3) holds, then M has a direct summand U‚Òäç(x) with U a unipotent Jordan block of

dimension d ≥ 3. Hence M‚Òç(x) has a direct summand U, and hence Ì(‘)tame has a direct

summand U/UI(‘), which is a unipotent Jordan block of dimension d-1 ≥ 2.

Suppose 4) holds. If Ï(‘)(0 < slopes ≤ 1) is not I(‘)-semisimple, neither is the

isomorphic representation Ì(‘)(0 < slopes ≤ 1). Suppose Ï(‘)(slopes > 1) is not I(‘)-

semisimple. As MCçloc(‘) is an autoequivalence, it preserves non-semisimplicity, so

Ì(‘)(slopes > 1) is not I(‘)-semisimple. QED

4444....2222    CCCCaaaallllccccuuuullllaaaattttiiiioooonnnn    ooooffff    MMMMCCCCççççlllloooocccc((((åååå))))    oooonnnn    cccceeeerrrrttttaaaaiiiinnnn    wwwwiiiilllldddd    cccchhhhaaaarrrraaaacccctttteeeerrrrssss

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    4444....2222....1111 Let k be an algebraically closed field of characteristic p  > 0, å in !1(k), … a

prime ± p. Let ç and ® be (ä$…)
≠-valued characters of I(å). Suppose that ç is nontrivial of order

prime to p, and suppose that ® is nontrivial of p-power order. Put n := Swan(®). Then for some

nontrivial character ë® of I(å) of p-power order and the same Swan conductor n, we have

MCçloc(å)(®) = çn+1ë®.

pppprrrrooooooooffff By additive translation, we first reduce to the case å = 0. We then use a global argument.

Any character ® of p-power order of I(0) has a canonical extension to a character of p-power

order of π1(@1 - (0), cf [Ka-LG, 1.4.2]. View this canonical extension as a lisse rank one ä$…-

sheaf on @1 - {0}, restrict it to ´m, and denote by Ï in ∏conv its middle extension to !1. Denote

by Ó in ∏conv the middle additive convolution

Ó := Ï*mid+Òç.

Directly from the definitions, one sees that Ó is lisse on ´m of rank n+1. 

Now apply the results on local monodromy of middle additive convolutions recalled in
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Theorem 4.1.10 above. We have an isomorphism of I(0)-representations

Ó(0)/Ó(0)I(0) = MCçloc(0)(®).

Because MCçloc(0) preserves both dimensions and breaks, we see that Ó(0)/Ó(0)I is a (one-

dimensional) character of I(0), whose Swan conductor is n.

The local monodromy of Ó at ‘ is

Ó(‘) ¶ Òç‚(unipotent pseudoreflection of size n+1).

Now consider the lisse rank one ä$…-sheaf det(Ó) on ´m. As I(0)-representation, it is

MCçloc(0)(®) = Ó(0)/Ó(0)I(0) [simply because Ó(0)I(0) has codimension 1 in Ó(0)]. As I(‘)-

representation, it is Òçn+1. Hence Òç-n-1‚det(Ó) is lisse of rank one on @1 - (0), so must have

p-power order (because @1 - (0) is tamely simply connected). Its restriction to I(0) is the required

character ë®. QED

CCCCoooorrrroooollllllllaaaarrrryyyy    4444....2222....2222 Let k be an algebraically closed field of characteristic 2, å in !1(k). Let ç and ® be

(ä$…)≠-valued characters of I(å). Suppose that ç is nontrivial of odd order, and suppose that ® has

order 2 and Swan(®) = 1.Then for some nontrivial character ë® of I(å) of order 2 and Swan

conductor 1, we have

MCçloc(å)(®) = ç2ë®.

Thus MCçloc(å)(®) is a character of order 2≠(order of ç) ≥ 6.

pppprrrrooooooooffff The only point to remark is that, in any finite characteristic p, non-trivial characters of I(å) of

p-power order having Swan conductor < p are all of order p, as one sees from [Ka-GKM,

8.5.7.1] and an obvious induction. Therefore ë® has order 2. Since ç has odd order, ç2 has the same

odd order, whence the asserted order of MCçloc(å)(®). QED
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5555....0000 FFFFaaaammmmiiiilllliiiieeeessss    ooooffff    ttttwwwwiiiissssttttssss::::    bbbbaaaassssiiiicccc    ddddeeeeffffiiiinnnniiiittttiiiioooonnnnssss    aaaannnndddd    ccccoooonnnnssssttttrrrruuuuccccttttiiiioooonnnnssss

(5.0.1) In this section, we make explicit the "families of twists" we will be concerned with. We fix

a an algebraically closed field k, a proper smooth connected curve C/k whose genus is denoted g,

and a prime number … invertible in k. We also fix an integer r ≥ 1, and an irreducible middle

extension ä$…-sheaf Ï on C of generic rank r. This means that for some dense open set U in C,

with j : U ¨ C the inclusion, Ï|U is a lisse sheaf of rank r on U which is irreducible in the sense

that the corresponding r-dimensional ä$…-representation of π1(U) is irreducible, and Ï on C is

obtained from the lisse irreducible sheaf Ï|U on U by direct image: Ï ¶ j*(Ï|U) := j*j*Ï. 

(5.0.2) We say that Ï is self-dual if for every dense open set U on which it is lisse, Ï|U is self-

dual as lisse sheaf, i.e., isomorphic to its contragredient. It is equivalent to say that the perverse

sheaf Ï[1] on C is self-dual, but we will not need this more sophisticated point of view.

(5.0.3) The finite set of points of C at which Ï fails to be lisse, i.e., the set of points x for which

the inertia group I(x) acts nontrvially on Ï, will be denoted Sing(Ï), the set of "singularities" of Ï.

Thus Ï is lisse on C - Sing(Ï), and Sing(Ï) is minimal with this property.

(5.0.4) We fix an effective divisor D = ‡aiPi on C, whose degree d := ‡ai satisfies d ≥ 2g+1.

Some or all or none of the points Pi may lie in Sing(Ï). We denote by L(D) the Riemann Roch

space H0(C, I-1(D)), and we view L(D) as a space of functions (maps to !1) on the open curve C

- D. 

(5.0.5) Corresponding to the choice of D as the "points at ‘" of C, we break up the set Sing(Ï) as

the disjoint union

(5.0.5.1) Sing(Ï) := Sing(Ï)finite ‹ Sing(Ï)‘

where

(5.0.5.2) Sing(Ï)finite := Sing(Ï)¤(C-D),

(5.0.5.3) Sing(Ï)‘ := Sing(Ï)¤D.

LLLLeeeemmmmmmmmaaaa    5555....0000....6666 Given a finite subset S of C-D, denote by 

Fct(C, d, D, S) fi L(D)

the set of nonzero functions f in L(D) with the following property:

the divisor of zeroes of f, f-1(0), consists of d = degree(D) distinct points, none of which

lies in S⁄D.

Then Fct(C, d, D, S) is (the set of k-points of) a dense open set in L(D) (viewed as the set of k-

points of an affine space !d+1-g over k).

pppprrrrooooooooffff The projective space @(L(D)£) of lines in L(D) is the space of effective divisors of degree d

which are linearly equivalent to D. In the space Symd(C) of all effective divisors of degree D,

those consisting of d distinct points, none of which lies in S⁄D, form an open set, say U1. When

we map Symd(C) to Jacd(C), the fibre over the class of D is @(L(D)£). The intersection of this

fibre with U1 is an open set U2 in @(L(D)£). The inverse image U3 of this set in L(D) - {0} is the
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set Fct(C, d, D, S) in L(D), which is thus open. 

To see that U3 is nonempty, we argue as follows. Suppose there exists a function f in L(D)

whose divisor of poles is D and whose differential df is nonzero. Then for any t in k which is not a

value taken by f on either S or on the set of zeroes in C-D of df, the function f-t lies in U3 (it is

nonzero on S, and it has simple zeroes because it has no zeroes in common with df). 

Why does such an f exist? By Riemann-Roch, for each point Pi in D, L(D - Pi) is a

hyperplane in L(D): as k is infinite, L(D) is not the union of finitely many hyperplanes. So we can

find a function f in L(D) whose divisor of poles is D. If any of the coefficients ai in D = ‡aiPi is

invertible in k, then df is non-zero, because at Pi it has a pole of order 1+ai. If all ai vanish in k,

then k has charactertistic p, all the ai are divisible by p, say ai = pbi, and D = pD0, for D0 the

divisor D0 := ‡i biPi. If df vanishes, then f=gp for some g in L(D0). In this case, pick a function g

in L(D - P1) whose divisor of poles is D-P1 (still possible by Riemann-Roch). Then dg is

nonzero (it has a pole of order a1 at P1). For all but finite many values of t in k, f - tg still has

divisor of poles D. For any such t, f - tg is the desired function. QED

RRRReeeemmmmaaaarrrrkkkk    5555....0000....7777 Perhaps the simplest example to keep in mind is this. Take C to be @1, and take D to

be d‘. So here C-D is !1 = Spec[k[X]), and Fct(C, d, D, S) is all the polynomials of degree d in

one variable X with d distinct zeroes, none of which lies in S. 

(5.0.8) We now turn to our final piece of data, a nontrivial ä$…
≠-valued character ç of finite order n

≥ 2 of the tame fundamental group of ´m/k, corresponding to a lisse rank one ä$…-sheaf Òç on

´m. The order n of ç is necessarily invertible in k, indeed π1
tame(´m/k) is the inverse limit of the

groups µN(k) over those N invertible in k, corresponding to the various Kummer coverings x ÿ

xn of ´m by itself. 

(5.0.9) When k has positive characteristic, the Òç's having given order n are obtained concretely as

follows. Take any finite subfield Éq of k which contains the n'th roots of unity (i.e., q•1 mod n),

and take a character ç : (Éq)≠ ä̈$…
≠ of order n. View ´m/Éq as an (Éq)≠-torsor over itself by the

map ("Lang isogeny")

(5.0.9.1) 1 - Frobq : x ÿ x1-q,

and push out this torsor by the character ç : (Éq)≠ ä̈$…
≠ to obtain a lisse rank one Òç on ´m/Éq,

Its pullback to ´m/k is an Òç of the same order n on ´m/k, and every Òç of order n on ´m/k is

obtained this way.

(5.0.10) Given f in Fct(C, d, D, Sing(Ï)finite), we may view f as mapping the open curve C
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- D - f-1(0) to ´m, and we form the lisse rank one ä$…-sheaf Òç(f) := f*Òç on C - D - f-1(0).

When no ambiguity is likely, we will also denote by Òç(f) the extension by direct imgage of this

sheaf to all of C. We then "twist" Ï by Òç(f). This means that we pass to the open set

j : C - D - f-1(0) - Sing(Ï)finite fi C,

 on which both Ï and Òç(f) are lisse, on that open set we form Ï‚Òç(f), and then we take the

direct image j*(Ï‚Òç(f)) to C.  Notice that this twisted sheaf j*(Ï‚Òç(f)) on C is itself an

irreducible middle extension.

(5.0.11)  Since at each point of f-1(0) and at each point of Sing(Ï)finite one of the factors Ï

or Òç(f) is lisse, the sheaf j*(Ï‚Òç(f)) | C-D is the literal tensor product Ï‚Òç(f) | C-D. Thus

if we denote by j‘: C - D ¨ C the inclusion, j*(Ï‚Òç(f)) as defined above is obtained from the

literal tensor product Ï‚Òç(f) | C-D by taking direct image across Dred: j*(Ï‚Òç(f)) =

j‘*(Ï‚Òç(f)). This alternate interpretation will be used later, in 5.2.4 and 5.2.5.

(5.0.11) We then form the cohomology groups Hi(C, j*(Ï‚Òç(f))) with coefficients in the

twist j*(Ï‚Òç(f)). Our eventual goal is to study the variation of these cohomology groups as f

varies. But first we must establish some basic properties of these groups for a fixed f.

5555....1111    BBBBaaaassssiiiicccc    ffffaaaaccccttttssss    aaaabbbboooouuuutttt    tttthhhheeee    ggggrrrroooouuuuppppssss    HHHHiiii((((CCCC,,,,    jjjj****((((ÏÏÏÏ‚‚‚‚ÒÒÒÒçççç((((ffff))))))))))))

LLLLeeeemmmmmmmmaaaa    5555....1111....1111 Hypotheses and notations as in 5.0.1, 5.0.4, 5.0.8, and 5.0.10 above, the cohomology

groups Hi(C, j*(Ï‚Òç(f))) vanish for i±1.

pppprrrrooooooooffff The Hi vanish for cohomological dimension reasons for i not in [0, 2]. For i=0, we have 

H0(C, j*(Ï‚Òç(f))) := H0(C - D - f-1(0) - Sing(Ï)finite, Ï‚Òç(f)).

This group vanishes because Ï‚Òç(f) is lisse on the open curve, it is irreducible (Ï is irreducible,

and Òç(f) has rank one) and nontrivial (because Ï‚Òç(f) is nontrivially ramified at each of the d

points of f-1(0)). So the H0 is the invariants in a nontrivial irreducible representation, so vanishes.

Similarly, the birational invariance of H2
c gives

H2(C, j*(Ï‚Òç(f))) := H2
c(C - D - f-1(0) - Sing(Ï)finite, Ï‚Òç(f)),

which is the Tate-twisted coinvariants in the same representation, so also vanishes. QED

(5.1.2) We next compute the dimension of H1(C, j*(Ï‚Òç(f))), for f in Fct(C, d, D,

Sing(Ï)finite). Given a point x in C(k), and a lisse sheaf Ó on some dense open set of C, we

denote by Ó(x) the representation of I(x) given by Ó (strictly speaking, given by the pullback of

Ó to the spectrum of the x-adic completion of the function field of C), and by Ó(x)I(x), or simply

ÓI(x), the invariants in this representation. We will write Ó/ÓI(x) for Ó(x)/Ó(x)I(x). We will
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write

(5.1.2.1) dropx(Ó) := dropx(Ó(x)) := dim(Ó/ÓI(x)).

For any of the Pi occurring in D = ‡aiPi, and any f with divisor of poles D, the I(Pi)-

representation (Òç(f))(Pi) depends only on çai, as follows. Choose a uniformizing parameter at Pi,

and use it to identify the complete local ring of C at Pi with the complete local ring k[[1/X]] (sic) of

@1 at ‘, and to identify the inertia group I(Pi) with I(‘). Consider the lisse sheaf Òçai := Òçai(X)

on ´m. Then (Òç(f))(Pi) as I(Pi)-representation is just (Òçai)(‘) as I(‘)-representation. When

we want to indicate unambiguously that we are thinking of (Òçai)(‘) as an I(Pi)-representation by

some choice of uniformizer as above, we will denote it (Òçai)(‘, Pi).

LLLLeeeemmmmmmmmaaaa    5555....1111....3333 Hypotheses and notations as in 5.1.1 above, for any f in Fct(C, d, D, Sing(Ï)finite),

we have the dimension formula 

(5.1.3.1) h1(C, j*(Ï‚Òç(f))) 

= (2g-2 + deg(D))rank(Ï)

+ ‡Pi in Dred Swan
Pi

(Ï) + ‡s in Sing(Ï)finite
Swan

s
(Ï).

+ ‡s in Sing(Ï)finite
 drops(Ï)

+ ‡Pi in Dred dropPi
(Ï(Pi)º(Òçai)(‘, Pi)),

and the inequality

(5.1.3.2)

h1(C, j*(Ï‚Òç(f))) ≥ (2g-2 + deg(D))rank(Ï) + ùSing(Ï)finite.

pppprrrrooooooooffff The inequality 5.1.3.2 is an immediate consequence of the asserted dimension formula

5.1.3.1 and the observation that drops(Ï) ≥ 1 at each point in Sing(Ï)finite. By Lemma 5.1.1, we

have

h1(C, j*(Ï‚Òç(f))) = - ç(C, j*(Ï‚Òç(f))).

At each of the deg(D) distinct zeroes of f, Ï is lisse and Òç(f) is ramified, so -ç(C, j*(Ï‚Òç(f)))

is equal to

= - çc(C - f-1(0) - D - Sing(Ï)finite, Ï‚Òç(f))

-‡s in Sing(Ï)finite
 dim(Ï(s)I(s))

- ‡Pi in Dred dim((Ï(Pi)º(Òçai)(‘, Pi))
I(Pi)).

Now use the Euler-Poincare formula to write this as

 = (2g-2 + deg(D) + ùDred + ùSing(Ï)finite)rank(Ï)

+ ‡Pi in Dred Swan
Pi

(Ï) + ‡s in Sing(Ï)finite
Swan

s
(Ï).
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-‡s in Sing(Ï)finite
 dim(Ï(s)I(s))

- ‡Pi in Dred dim((Ï(Pi)º(Òçai)(‘, Pi))
I(Pi))

= (2g-2 + deg(D))rank(Ï)

+ ‡Pi in Dred Swan
Pi

(Ï) + ‡s in Sing(Ï)finite
Swan

s
(Ï).

+ ‡s in Sing(Ï)finite
 drops(Ï)

+ ‡Pi in Dred dropPi
(Ï(Pi)º(Òçai)(‘, Pi)). QED

5555....2222    PPPPuuuuttttttttiiiinnnngggg    ttttooooggggeeeetttthhhheeeerrrr    tttthhhheeee    ggggrrrroooouuuuppppssss    HHHH1111((((CCCC,,,,    jjjj****((((ÏÏÏÏ‚‚‚‚ÒÒÒÒçççç((((ffff))))))))))))

CCCCoooonnnnssssttttrrrruuuuccccttttiiiioooonnnn----PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....2222....1111 (compare [Ka-RLS, 2.7.2]) Hypotheses and notations as in 5.0.1,

5.0.4, 5.0.8 and 5.0.10 above, There is a natural lisse ä$…-sheaf Ì on the space

 Fct(C, d, D, Sing(Ï)finite) 

whose stalk at f is the cohomology group H1(C, j*(Ï‚Òç(f))). More precisely, over the parameter

space 

X := Fct(C, d, D, Sing(Ï)finite),

consider the proper smooth curve Ç := C≠X, and in it the relative divisor Î defined at "time f" by

Dred + Sing(Ï)finite + f-1(0). Then Î is finite etale over the base of constant degree

ù(Dred) + ù(Sing(Ï)finite) + d.

On Ç - Î, we have the lisse sheaf Ï‚Òç(f). Denote the projection

π : Ç - Î ¨ Fct(C, d, D, Sing(Ï)finite).

We have the following results.

1) The sheaves Riπ~(Ï‚Òç(f)) on Fct(C, d, D, Sing(Ï)finite) vanish for i±1, and R1π~(Ï‚Òç(f))

is lisse.

2) The sheaves Riπ*(Ï‚Òç(f)) on Fct(C, d, D, Sing(Ï)finite) vanish for i±1, and

R1π*(Ï‚Òç(f)) is lisse, and of formation compatible with arbitrary change of base.

3) The image Ì of the natural "forget supports" map 

R1π~(Ï‚Òç(f)) ¨ R1π*(Ï‚Òç(f)) 

is lisse, of formation compatible with arbitrary change of base. The stalk of Ì at the k-valued point

"f" of Fct(C, d, D, Sing(Ï)finite) is the cohomology group H1(C, j*(Ï‚Òç(f))).

4) If the irreducible middle extension Ï on C is orthogonally (respectively symplectically) self-

dual, and ç has order two, then the lisse sheaf Ì on X is symplectically (respectively orthogonally)

self-dual.

5) The rank of Ì is equal to
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rank(Ì)= (2g-2 + deg(D))rank(Ï)

+ ‡Pi in Dred Swan
Pi

(Ï) + ‡s in Sing(Ï)finite
Swan

s
(Ï).

+ ‡s in Sing(Ï)finite
 drops(Ï)

+ ‡Pi in Dred dropPi
(Ï(Pi)º(Òçai)(‘, Pi)),

6) We have the inequality

rank(Ì) ≥ (2g-2 + deg(D))rank(Ï) + ùSing(Ï)finite.

pppprrrrooooooooffff 1) By proper base change and the previous lemma, we have the vanishing of the

Riπ~(Ï‚Òç(f)) for i±1. To show that R1π~(Ï‚Òç(f)) is lisse, we apply Deligne's semicontinuity

theorem [Lau-SC, 2.1.2], according to which it suffices show the #-valued function which

attaches to each k-valued point "f" of the base the sum of the Swan conductors of Ï‚Òç(f) at all

the points at infinity,

f ÿ ‡Pi in Dred Swan
Pi

(Ï‚Òç(f)) 

+ ‡s in Sing(Ï)finite
Swan

s
(Ï‚Òç(f))

 ‡x in f-1(0)Swan
x

(Ï‚Òç(f)),

is constant. As Òç(f) is rank one and everywhere tame, and Ï is lisse at every point of f-1(0), the

terms at points of f-1(0) all vanish, and those at other points don't see the Òç(f). Thus the function

is equal to the constant

‡Pi in Dred Swan
Pi

(Ï) + ‡s in Sing(Ï)finite
Swan

s
(Ï).

Assertion 2) results by Poincare duality from 1) for the dual sheaf Ï£‚Òäç(f). Once we have 1)

and 2), Ì is lisse and of formation compatible with arbitrary change of base, being the image of a

map of such sheaves on a smooth base X. That Ì has the asserted stalk at "f" amounts, by base

change, to the fact that H1(C, j*(Ï‚Òç(f))) is the image of the "forget supports" map

H1
c(C - D - f-1(0) - Sing(Ï)finite, Ï‚Òç(f)) 

¨ H1(C - D - f-1(0) - Sing(Ï)finite, Ï‚Òç(f)).

Assertion 4) results from 1), 2) and 3), by Poincare duality and standard properties of cup

product. Because Ì is lisse, assertions 5) and 6) result from Lemma 5.1.3, applied to any single f in

the parameter space Fct(C, d, D, Sing(Ï)finite). QED

NNNNoooottttaaaattttiiiioooonnnn    5555....2222....2222 When we want to keep in mind the twist genesis of the lisse sheaf Ì on Fct(C, d, D,

Sing(Ï)finite) constructed in 5.2.1 above, we will denote it Twistç,C,D(Ï):

(5.2.2.1) Ì := Twistç,C,D(Ï).
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RRRReeeemmmmaaaarrrrkkkk    5555....2222....3333 It will also be convenient to have the following variant on the above description of

the sheaf Ì := Twistç,C,D(Ï) on the space

X :=Fct(C, d, D, Sing(Ï)finite). 

Start as before with the lisse irreducible sheaf Ï‚Òç(f) on Ç - Î. The base X is itself lisse, of

dimension d + 1 - g, so Ï‚Òç(f)[d+2-g] is perverse irreducible on Ç-Î. Denote by j : Ç - Î ¨

Ç the inclusion, and form the middle extension j~*(Ï‚Òç(f)[d+2-g]). Then according to [Ka-

RLS, 2.7.2], if we denote by äπ : Ç ¨ X the projection, we have

Ì[d+1-g] = Räπ*j~*(Ï‚Òç(f)[d+2-g])

= image(Rπ~(Ï‚Òç(f)[d+2-g]) ¨ Rπ*(Ï‚Òç(f)[d+2-g])),

where the image is taken in the category of perverse sheaves on X.

LLLLeeeemmmmmmmmaaaa    5555....2222....4444 With the notations of 5.2.1, denote by 

j1 : Ç - Î ¨ Ç - Dred≠X = (C - D)≠X

the inclusion. Then the middle extension of Ï‚Òç(f)[d+2-g] by j1 is the [shifted] literal tensor

product

(j1)~*(Ï‚Òç(f)[d+2-g]) = Ï‚Òç(f)[d+2-g]

on (C-D)≠X. Its formation commutes with arbitrary change of base on X.

pppprrrrooooooooffff We are forming the middle extension across two disjoint smooth divisors in (C - D)≠X,

namely f=0 and Sing(Ï)finite≠X. Consider the inclusions

j2 : Ç - Î ¨ Ç - Dred≠X - Sing(Ï)finite≠X,

j3 : Ç - Dred≠X - Sing(Ï)finite≠X ¨  Ç - Dred≠X.

Under j2, we are extending across the divisor f=0. The sheaf Ï is lisse on the target Ç - Dred≠X -

Sing(Ï)finite≠X, so we have

(j2)~*(Ï‚Òç(f)[d+2-g]) ¶ Ï‚(j2)~*(Òç(f)[d+2-g]).

To see that (j2)~*(Òç(f)[d+2-g]) = (j2~Òç(f))[d+2-g] amounts to showing that j2*Òç(f) vanishes

on f=0 (for then j2*Òç(f) is lisse on f=0, and hence (j2)~*(Òç(f)[d+2-g]) = (j2*Òç(f))[d+2-g],

but this latter is (j2~Òç(f))[d+2-g]). But near any point of f=0, f is part of a system of coordinates

(f, coordinates for X), so by the Kunneth formula we are reduced to the fact that for j : ´m ¨ !1

the inclusion, we have j~Òç ¶ j*Òç.

When we extend by j3, across Sing(Ï)finite≠X, Òç(f) is lisse in a neighborhood of this

divisor, we we may pull it out, and then we are reduced, by Kunneth, to the fact that on Ï on C-D

is its own middle extension across Sing(Ï)finite. QED

VVVVaaaarrrriiiiaaaannnntttt    CCCCoooonnnnssssttttrrrruuuuccccttttiiiioooonnnn    ooooffff    ÌÌÌÌ    ::::====    TTTTwwwwiiiissssttttçççç,,,,CCCC,,,,DDDD((((ÏÏÏÏ))))    5555....2222....5555 (compare [Ka-RLS, 2.7.2]) Notations as in

5.2.1 above, over the parameter space 
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X := Fct(C, d, D, Sing(Ï)finite),

consider the proper smooth curve Ç := C≠X over X and in it the product divisor Dred≠X. On the

open curve Ç - Dred≠X = (C - D)≠X, form the literal tensor product sheaf Ï‚Òç(f). Denote by

j‘ : (C - D)≠X ¨ C≠X

the inclusion.

Denote by

pr2 : (C - D)≠X ¨ X = Fct(C, d, D, Sing(Ï)finite)

and

äπ : C≠X ¨ X

the projections. Then

1) The sheaves Ripr2~(Ï‚Òç(f)) on Fct(C, d, D, Sing(Ï)finite) vanish for i±1, and

R1pr2~(Ï‚Òç(f)) is lisse.

2) The sheaves Ripr2*(Ï‚Òç(f)) on Fct(C, d, D, Sing(Ï)finite) vanish for i±1, and

R1pr2*(Ï‚Òç(f)) is lisse, and of formation compatible with arbitrary change of base.

3) The perverse object Ì[d+1-g] on X is given by

Ì[d+1-g] = Räπ*j‘~*(Ï‚Òç(f)[d+2-g])

= image(Rpr2~(Ï‚Òç(f))[d+2-g] ¨ Rpr2*(Ï‚Òç(f))[d+2-g]).

pppprrrrooooooooffff For 1), we see the vanishing fibre by fibre. The lisseness results from part 1) of the 5.2.1 via

the long cohomology sequence for Rpr2~ attached to the short exact sequence of sheaves

0 ¨ j1~j1
*(Ï‚Òç(f)) ¨ Ï‚Òç(f) 

¨ Ï‚Òç(f) | (Sing(Ï)finite≠X ¨ 0.

For 2), denote by Ï£ the middle extension sheaf dual to Ï. By Lemma 5.2.4 above, applied to Ï£

and äç, Ï£‚Òäç(f)[d+2-g] is its own middle extension from Ç-Î, so it is the Verdier dual of

Ï‚Òç(f)[d+2-g]. So 2) for Ï‚Òç(f)) results from 1) for Ï£‚Òäç(f) by Poincare duality. For 3),

we already know (5.2.3) that 

Ì[d+1-g] = Räπ*j~*(Ï‚Òç(f)[d+2-g])

for j the inclusion of Ç - Î into Ç. So by the transitity of middle extension (j~*= j‘~*«j1~*) and

Lemma 5.2.4, we get

Ì[d+1-g] = Räπ*j‘~*(Ï‚Òç(f)[d+2-g]).

That Räπ*j‘~*(Ï‚Òç(f)[d+2-g]) is the image of the canonical map

Rpr2~((Ï‚Òç(f))[d+2-g]) ¨ Rpr2*((Ï‚Òç(f))[d+2-g])

is [Ka-RLS, 2.7.2]. QED
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5555....3333    FFFFiiiirrrrsssstttt    pppprrrrooooppppeeeerrrrttttiiiieeeessss    ooooffff    ttttwwwwiiiisssstttt    ffffaaaammmmiiiilllliiiieeeessss::::    rrrreeeellllaaaattttiiiioooonnnn    ttttoooo    mmmmiiiiddddddddlllleeee    aaaaddddddddiiiittttiiiivvvveeee    ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn    oooonnnn    !!!!1111

(5.3.1) We begin with a direct image formula, which, although elementary, is a fundamental

reduction tool in what is to follow.

(5.3.2) Fix f in Fct(C, d, D, Sing(Ï)finite). Thus f is a finite flat map from C-D to !1 =

Spec(k[X]) of degree d, whose fibre over 0 consists of d distinct points, none of which lies in

Sing(Ï)finite. Denote by CritPt(f) fi C-D the finite set of points in C-D at which df vanishes.

Define

(5.3.2.1) CritVal(f, Ï) := f(CritPt(f)) ⁄ f(Sing(Ï)finite),

a finite subset of !1. Then for t in !1 - CritVal(f, Ï), the function t-f lies in Fct(C, d, D,

Sing(Ï)finite), and so we have a morphism

(5.3.2.2) !1 - CritVal(f, Ï) ¨ Fct(C, d, D, Sing(Ï)finite)

given by t ÿ t-f. 

(5.3.3) What is the relation to convolution? We first explain the idea. For a good value t0 of t, the

stalk of Ì at t0-f is the cohomology group

H1(C. j‘*(Ï‚Òç(t0 - f))) = image of the "forget supports" map

Hc
1(C-D, Ï‚Òç(t0 - f)) ¨ H1(C-D, Ï‚Òç(t0 - f)).

Compute these cohomology groups on C-D by first mapping C-D to !1 by f. Since Òç(t0 - f) is

f*Òç(t0-X), the projection formula gives

Hc
1(C-D, Ï‚Òç(t0 - f)) = Hc

1(!1, (f*Ï)‚Òç(t0 -X)),

H1(C-D, Ï‚Òç(t0 - f)) = H1(!1, (f*Ï)‚Òç(t0 -X)).

So we get

H1(C. j‘*(Ï‚Òç(t0 - f)) = image of the "forget supports" map

Hc
1(!1, (f*Ï)‚Òç(t0 -X)) ¨ H1(!1, (f*Ï)‚Òç(t0 -X)).

If we denote by j‘ : !1 ¨ @1 the inclusion, this image is just H1(@1, j‘*((f*Ï)‚Òç(t0 -X))).

According to [Ka-RLS, 2.8.5], there is an open dense set in !1 such that for t0 in this dense open

set, H1(@1, j‘*((f*Ï)‚Òç(t0 -X))) is the stalk at t0 of the [shifted] middle additive convolution

of f*Ï with Òç. 

(5.3.4) Here is the precise result.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....3333....5555 Hypotheses and notations as in 5.2.1, fix f in Fct(C, d, D, Sing(Ï)finite), viewed

as a map from C-D to !1. Form the direct image sheaf f*(Ï|C-D) on !1. The object f*(Ï|C-
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D)[1] on !1 is perverse. For j : ´m ¨ !1 the inclusion, form the sheaf j*Òç = j~Òç on !1, and

the perverse object j*Òç[1] on !1. Consider the middle additive convolution [Ka-RLS, 2.9]

f*(Ï|C-D)[1]*mid+j*Òç[1]

on !1. On !1 - CritVal(f, Ï) we have a canonical isomorphism

([t ¨ t - f]*Ì)[1] ¶ (f*(Ï|C-D)[1])*mid+j*Òç[1].

pppprrrrooooooooffff The sheaf Ï on C-D is a middle extension, so Ï[1] on C-D is perverse. Since f is a finite

map, f*(preverse) is perverse.

We use the description of Ì[d+1-g] as

 image(Rpr2~((Ï‚Òç(f))[d+1-g]) ¨ Rpr2*((Ï‚Òç(f))[d+1-g]))

on Fct(C, d, D, Sing(Ï)finite). This description commutes with arbitrary change of base, so ([t ¨ t

- f]*Ì)[1] is

 image(Rpr2~((Ï‚Òç(t-f))[1]) ¨ Rpr2*((Ï‚Òç(t-f))[1])),

pr2 the projection of (C-D)≠(!1 - CritVal(f, Ï)) to !1 - CritVal(f, Ï). Now factor this

projection the composition of 

f≠id: (C-D)≠(!1 - CritVal(f, Ï)) ¨ !1≠(!1 - CritVal(f, Ï))

with the projection

pr2,! : !1≠(!1 - CritVal(f, Ï))¨ (!1 - CritVal(f, Ï)).

Since f is finite, we have f~ = f* = Rf*. The key point is that

Òç(t-f)= (f≠id)*Òç(t-X)

and hence by the projection formula we find

Rpr2~(Ï‚Òç(t-f)) = Rpr2~(Ï‚(f≠id)*Òç(t-X))

= Rpr2,!~((f≠id)~(Ï‚(f≠id)*Òç(t-X)))

= Rpr2,!~((f~Ï)‚Òç(t-X))

= Rpr2,!~((f*Ï)‚Òç(t-X)).

Similarly we find

Rpr2*((Ï‚Òç(t-f)) = Rpr2,!*((f*Ï)‚Òç(t-X)).

Thus we get that ([t ¨ t - f]*Ì)[1] is

 image(Rpr2~((Ï‚Òç(t-f))[1]) ¨ Rpr2*((Ï‚Òç(t-f))[1]))

 = image(Rpr2,!~((f*Ï)‚Òç(t-X))[1] ¨ Rpr2,!*((f*Ï)‚Òç(t-X))[1])).

This last image is the restriction to !1 - CritVal(f, Ï) of the middle additive convolution of f*Ï

and Òç, thanks to [Ka-RLS, 2.7.2 and 2.8.4]. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....3333....6666 Hypotheses and notations as in 5.2.1, suppose we are in one of the following

situations:
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1a) Sing(Ï)finite is nonempty, deg(D) ≥ 2g+1, and char(k) ± 2.

1b) Sing(Ï)finite is nonempty, deg(D) ≥ 2g+3, and char(k) = 2.

2a) deg(D) ≥ 4g+2, and char(k) ± 2.

2b) deg(D) ≥ 4g+6, and char(k) = 2.

Then the lisse ä$…-sheaf Ì on Fct(C, d, D, Sing(Ï)finite) is irreducible (or zero).

pppprrrrooooooooffff Suppose first that Sing(Ï)finite is nonempty. If char(k) ± 2 [resp. if char(k) = 2] pick a

function f in Fct(C, d, D, Sing(Ï)finite) which also lies in the dense open set U of Theorem 2.2.6

[resp. Theorem 2.4.2], applied with S taken to be Sing(Ï)finite. Thus f as map from C-D to !1 is

of Lefschetz type, and for each s in Sing(Ï)finite, the fibre f-1(s) consists of d distinct points, only

one of which lies in Sing(Ï)finite. By the Irreducible Induction Criterion 3.3.1, f*(Ï|C-D) is an

irreducible middle extension on !1. By [Ka-RLS, 2.9.7], the middle additive convolution

(f*(Ï|C-D)[1])*mid+j*Òç[1] on !1 is perverse irreducible. Hence its restriction to any dense

open set of !1 is perverse irreducible (or zero). 

We now turn to the case in which either char(k) ± 2 and deg(D) ≥ 4g+2, or char(k) = 2 and

deg(D) ≥ 4g+6. Write D as the sum of two effective divisors D = D1 + D2, with both Di having

degree ≥ 2g+1 (resp. ≥ 2g+3 if char(k) = 2).

Since deg(D1) ≥ 2g+1 (resp. ≥ 2g+3 if char(k) = 2), we may choose a function f1 in Fct(C,

deg(D1), D1, Sing(Ï)⁄Dred). Thus f1 lies in L(D1), its divisor of poles is D1, and it has deg(D1)

distinct zeroes, none of which lies in either Sing(Ï) or in D. Fix one such f1.

As deg(D2) ≥ 2g+1 if char(k) ± 2 [resp. ≥ 2g+3 if char(k) = 2], we may pick a function f2

in Fct(C, deg(D2), D2, Sing(Ï)⁄Dred⁄f1
-1(0)) which lies in the open set U of Theorem 2.2.6 if

char(k) ± 2 [resp. in the open set U of Theorem 2.4.2 if char(k) = 2] with respect to S the set f1
-

1(0)⁄(Dred - D2
red). 

Thus f2 has divisor of poles D2, it has deg(D2) distinct zeroes, none of which lies in

Sing(Ï)⁄Dred⁄f1
-1(0), and for each zero å of f1, the f2-fibre containing it, f2

-1(f2(å)),

consists of deg(D2) distinct points, of which only å is a zero of f1, and none of which lies in D.

For any such f2, the product f1f2 lies in the space Fct(C, d, D, Sing(Ï)finite). Moreover, for most

scalars t, the product f1(t - f2) lies in the space Fct(C, d, D, Sing(Ï)finite). Thus for fixed f1 and

f2, we have a map

!1 - CritVal(f2, Ï‚Òç(f1)) ¨ Fct(C, d, D, Sing(Ï)finite),

t ÿ f1(t - f2).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....3333....7777    Given an effective D of degree d ≥ 4g+2 (resp. d ≥ 4g+6 if char(k) = 2), write it
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as D1+D2 with both Di effective of deg(Di) ≥ 2g+1 (resp. ≥ 2g+3 if char(k) = 2). Fix 

f1 in Fct(C, deg(D1), D1, Sing(Ï)⁄Dred). 

Fix a function f2 in Fct(C, deg(D2), D2, Sing(Ï)⁄Dred⁄f1
-1(0)) which also lies in the open set

U of Theorem 2.2.6 if char(k) ± 2 [resp. in the open set U of Theorem 2.4.2 if char(k) = 2] with

respect to the set S := f1
-1(0)⁄(Sing(Ï)¤(C-D2)). View f2 as a finite flat map from C - D2 to

!1. For i=1,2, denote by

ji : C - D ¨ C - Di

the inclusion. Start with the sheaf Ï‚Òç(f1) on C- D, form its direct image j2*(Ï‚Òç(f1)) on

C-D2, and take its direct image f2*j2*j(Ï‚Òç(f1)) on !1. The object f2*j2*(Ï‚Òç(f1))[1] on

!1 is perverse. For j : ´m ¨ !1 the inclusion, form the sheaf j*Òç = j~Òç on !1, and the

perverse object j*Òç[1] on !1. Consider the middle additive convolution [Ka-RLS, 2.9]

f2*j2*(Ï‚Òç(f1))[1]*mid+j*Òç[1]

on !1. On !1 - CritVal(f2, Ï‚Òç(f1)), we have a canonical isomorphism

([t ÿ f1(t - f2)]*Ì)[1] ¶ (f2*j2*j1
*(Ï‚Òç(f1))[1])*mid+j*Òç[1].

pppprrrrooooooooffff    ooooffff    5555....3333....7777 We work over the space

T := !1 - CritVal(f2, Ï‚Òç(f1)).

For i=1, 2, denote by ji,‘ the inclusion

ji.‘: C - Di ¨ C.

We know that ([t ÿ f1(t - f2)]*Ì)[1] on T is given by in terms of the projections

pr2,D : (C-D)≠T ¨ T

and

pr2 : C≠T ¨ T

as

image(Rpr2,D~((Ï‚Òç(f1(t-f2)))[2]) ¨ Rpr2,D*((Ï‚Òç(f1(t-f2)))[2]))

 = Rpr2*((j‘≠id)~*(Ï‚Òç(f1(t-f2))[2]))

 = Rpr2*((j2,‘≠id)~*(j2≠id)~*(Ï‚Òç(f1(t-f2))[2])).

Now (j2≠id)~*(Ï‚Òç(f1(t-f2))[1]) means extending across points which are in D1 but not in D2,

and Òç(t-f2) is lisse near such points. So 

(j2≠id)~*(Ï‚Òç(f1(t-f2))[1]) = j2*(Ï‚Òç(f1))[1]‚Òç(t-f2).
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Thus ([t ÿ f1(t - f2)]*Ì)[1] on T is

 = Rpr2*(j2,‘≠id)~*((j2*(Ï‚Òç(f1))[1]‚Òç(t-f2)[1]).

Denote  äf2 := f2 viewed as a map of C to @1. Compute Rpr2* by factoring pr2 as

äf2≠id: C≠T ¨@1≠T 

followed by

 pr2,@: @1≠T ¨T.

Thus 

 = Rpr2*(j2,‘≠id)~*(j2*(Ï‚Òç(f1))[1]‚Òç(t-f2)[1]).

= Rpr2,@*(f2≠id)*(j2,‘≠id)~*(j2*(Ï‚Òç(f1))[1]‚Òç(t-f2)[1])

In terms of the inclusion

j! : !1 ¨ @1

and

f2 : C-D2 ¨ !1

we have a cartesian diagram

    j2,‘

    C - D2 ¨ C

f2      Ñ          Ñ äf2

        !1  ¨ @1

    j!

in which the horizontal maps are affine open immersions, and the vertical maps are finite. So we

have

(äf2≠id)*(j2,‘≠id)~* = (j!≠id)~*(f2≠id)~*.

So we get

= Rpr2,@*(äf2≠id)*(j2,‘≠id)~*(j2*(Ï‚Òç(f1))[1]‚Òç(t-f2)[1])

= Rpr2,@*(j!≠id)~*(f2≠id)*(j2*(Ï‚Òç(f1))[1]‚Òç(t-f2)[1]).

Now Òç(t-f2) is f2
*Òç(t-X), so by the projection formula we may rewrite this last expression as

= Rpr2,@*(j!≠id)~*(Òç(t-X)[1]‚(f2*j2*(Ï‚Òç(f1))[1])).

By [Ka-RLS, 2.9.2], this is (restriction to T of) the asserted middle convolution. QED for 5.3.7

Once we have Proposition 5.3.7, then to prove the irreduciblity of Ì it suffices to show that

f2*j2*j1
*(Ï‚Òç(f1)) is an irreducible middle extension. This is immediate from the Irreducible
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Induction Criterion 3.3.1, since the singularities of j2*j1
*(Ï‚Òç(f1)) on C - D2 include the

deg(D1) distinct zeroes of f1, and the f2-fibre containing each of these zeroes consists of deg(D2)

distinct points, precisely one of which, namely that zero, is a singularity of j2*j1
*(Ï‚Òç(f1)).

QED

5555....4444    TTTThhhheeeeoooorrrreeeemmmmssss    ooooffff    bbbbiiiigggg    mmmmoooonnnnooooddddrrrroooommmmyyyy    iiiinnnn    cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc    nnnnooootttt    2222

TTTThhhheeeeoooorrrreeeemmmm    5555....4444....1111 Let k be an algebraically closed field of characteristic not 2, C/k a proper, smooth

connected curve of genus g. Suppose that D = ‡aiPi is an effective divisor of degree d ≥ 2g+1,

with all ai invertible in k. Let Ï be an irreducible middle extension sheaf on C with Sing(Ï)finite :=

Sing(Ï)¤(C-D) nonempty. Suppose that either Ï is everywhere tame, or that Ï is tame at all

points of D and that the characteristic p is either zero or a prime p ≥ rank(Ï) + 2. Suppose that the

following inequalities hold:

if rank(Ï) = 1, 2g-2+d ≥ Max(2ùSing(Ï)finite, 4rank(Ï)).

if rank(Ï) ≥ 2, 2g-2+d ≥ Max(2ùSing(Ï)finite, 72rank(Ï)).

Fix a nontrivial character ç whose finite order n ≥ 2 is invertible in k. Form the lisse sheaf 

Ì := Twistç,C,D(Ï) 

on the space Fct(C, d, D, Sing(Ï)finite).

If n is 4 or 6, suppose in addition that either rank(Ï) ≤ 2, or that there is a point Pi in D at

which we have Ï(Pi)
I(Pi) ± 0, or that there is a finite singularity ∫ in Sing(Ï)finite at which

Ï(∫)/Ï(∫)I(∫) as I(∫)-representation does not have finite monodromy. Pick a function f in Fct(C,

d, D, Sing(Ï)finite) which also lies in the dense open set U of Theorem 2.2.6 applied with S taken

to be Sing(Ï)finite. Thus f as map from C-D to !1 is of Lefschetz type, and for each s in

Sing(Ï)finite, the fibre f-1(s) consists of d distinct points, only one of which lies in Sing(Ï)finite.

Consider the lisse ä$…-sheaf Ó on !1 - CritVal(f, Ï) given by 

Ó := [t ÿ t-f]*Ì,

 i.e., by

t ÿ H1(C, j*(Ï‚Òç(t-f)).

Its geometric monodromy group Ggeom is either Sp or SO or O, or Ggeom contains SL. If Ï is

orthogonally (respectively symplectically) self-dual, and ç has order 2, then Ggeom is Sp

(respectively SO or O). If ç has order ≥ 3, then Ggeom contains SL.

pppprrrrooooooooffff Let us put r:= rank(Ï), m := ù Sing(Ï)finite. We have seen (5.3.5) that Ó is the restriction to
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!1 - CritVal(f, Ï) of the middle additive convolution of f*Ï and Òç. 

Let us put

Ï1 := f*Ï.

We have seen above (in the proof of 5.3.6) that Ï1 is an irreducible middle extension on !1.

Notice that Ï1 lies in the class ∏conv, cf. 4.0.2, because its rank is ≥ 3. [Indeed, its rank is

d≠rank(Ï) ≥ d. If g > 0, then the hypothesis that d ≥ 2g+1 gives d ≥ 3. If g = 0, the hypothesis

2g-2+d ≥ Max(2ùSing(Ï)finite, 4rank(Ï)).

gives d ≥ 6.]

The sheaf Ï1 is tame at ‘, because Ï is tame at all the poles of f, and the poles of f all have

order prime to p. Moreover, the I(‘)-invariants are given by

Ï1(‘)I(‘) ¶ ·points Pi in D Ï(Pi)
I(Pi).

Over each critical value å of f, Ï is lisse, and f-å has one and only one double zero, so the

local monodromy of Ï1 at å is quadratic of drop r, with scale the unique character of order 2:

Ï1(å)/Ï1(å)I(å) ¶ r copies ofÒç2(x-å).

Over the m images ∂ = f(∫) of points ∫ in Sing(Ï)finite, f is finite etale, and ∫ is the unique

point of Sing(Ï)finite in the fibre, so the local monodromy of Ï1 at ∂ has drop ≤ r. More precisely,

we have

Ï1(∂)/Ï1(∂)I(∂) ¶ Ï(∫)/Ï(∫)I(∫),

where we use f to identify I(∂) with I(∫). 

At all other points of !1, i.e., on !1 - CritVal(f, Ï), Ï1 is lisse. Moreover, if Ï is

everywhere tame on C, then Ï1 is everywhere tame. Now form Ó, the middle additive convolution

of Ï1 with Òç. Thus Ó is tame at ‘ (by 4.1.10, part 2d)), and it is everywhere tame if Ï is

everywhere tame (by 4.1.10, parts 1b) and 2d)). By 5.2.1, part 6), we have the inequality

rank(Ó) ≥ (2g-2 + d)r + ùSingfinite(Ï) > (2g-2 + d)r.

The local monodromy of Ó at the m images ∂ = f(∫) of points ∫ in Sing(Ï)finite has drop ≤

r, by 4.1.10, part 1c), and is given by

Ó(∂)/Ó(∂)I(∂) ¶ MCçloc(∂)(Ï(∫)/Ï(∫)I(∫) as I(∂)-rep'n). 

The local monodromy of Ó at each critical value å of f is quadratic of drop r, with scale the

character çç2:

Ó(å)/Ó(å)I(å) ¶ Òç(x-å)‚(r copies of Òç2(x-å))

¶ r copies of Òçç2(x-å).

The key observation here is that çç2 is nnnnooootttt of order two, and that f hhhhaaaassss critical points (because their

number, the number of zeroes of df, is
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2g-2+ ‡i(1+ai) > 2g-2+d > 2ùSing(Ï)finite > 2 > 0).

Suppose first that ç has order n ≥ 2, but not 4 or 6. Then çç2 does not have order 2, 3, or

4. Then the conclusion follows from Theorem 1.5.1 with hypothesis 6c), applied to (r, m, Ó).

Suppose next that rank(Ï) ≤ 2. Then the conclusion follows from Theorem 1.5.1 with

hypothesis 6a), applied to (r, m, Ó).

Suppose next that at some point Pi in D, Ï(Pi)
I(Pi) ±0. Then Ï1(‘)I(‘) ± 0. Then by

Corollary 4.1.11, the action of I(‘) on Ó is not semisimple, hence does not factor through a finite

quotient. Then the conclusion follows from Theorem 1.5.1 with hypothesis 6b) at t=‘, applied to

(r, m, Ó).

Suppose finally that there is a finite singularity ∫ in Sing(Ï)finite at which Ï(∫)/Ï(∫)I(∫) as

I(∫)-representation does not have finite monodromy. Then at the point ∂=f(∫), Ó(∂)/Ó(∂)I(∂) and

hence Ó itself does not have finite monodromy (because Ó(∂)/Ó(∂)I(∂) ¶ Òç(x-

∂)‚(Ï(∫)/Ï(∫)I(∫)), and ç has finite order). So again the conclusion follows fromTheorem 1.5.1

with hypothesis 6b) at t=∂ (and Theorem 1.7.1, if r=1), applied to (r, m, Ó). QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....4444....2222 Hypotheses and notations as in Theorem 5.4.1 above, suppose that ç has order

2, but Ï is not self dual. Then Ggeom contains SL.

pppprrrrooooooooffff If not, then by the paucity of choice, Ggeom is contained in either Sp or O, and hence Ó is

self-dual. But Ó is the middle convolution of f*Ï and Òç. As ç has order 2, we recover f*Ï as

the middle convolution of Ó and Òç. As ç has order 2, Òç is self-dual. As both Ó and Òç are

self-dual, so is their middle convolution, f*Ï. By Proposition 3.4.1, the autoduality of f*Ï implies

that of Ï, contradiction. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....4444....3333 Hypotheses and notations as in Theorem 5.4.1 above, suppose that ç has order

2, and that Ï is symplectically self dual. 

1) Suppose there exists a finite singularity ∫ of Ï, i.e., a point ∫ in Sing(Ï)¤(C-D), such that the

following two conditions hold.

1a) Ï is tame at ∫.

1b) Ï(∫)/Ï(∫)I(∫) has odd dimension.

Then the group Ggeom for the sheaf Ó is the full orthogonal group O.

2) Suppose that Ï is everywhere tame. Then Ggeom for Ó is the special orthogonal group SO if

and only if Ï(∫)/Ï(∫)I(∫) has even dimension for every finite singularity ∫ of Ï.

pppprrrrooooooooffff In terms of Ï1 := f*Ï, Ó on !1 - CritVal(f, Ï) is (the restriction from !1 of) the middle

convolution Ï1*Òç. We already know that Ggeom for Ó is either SO or O, so we have only to

see whether det(Ó) is trivial or not. Since det(Ó) is either trivial or of order 2, it is ttttaaaammmmeeee on  !1 -

CritVal(f, Ï). Hence det(Ó) is trivial if and only if it is trivial on every ffffiiiinnnniiiitttteeee inertia group I(©), © in

CritVal(f, Ï). 
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At © which is a critical value å of f, we have seen that the local monodromy of Ï1 at å is

quadratic of drop r := rank(Ï), with scale the unique character of order 2:

Ï1(å)/Ï1(å)I(å) ¶ r copies ofÒç2(x-å).

The local monodromy of Ó = Ï1*Òçat å is given by

Ó(å)/Ó(å)I(å) ¶ (Ï1(å)/Ï1(å)I(å))‚Òç(x-å)

¶ r copies of ú,

this last equality because ç is the quadratic character ç2. From this we calculate 

det(Ó(å)) = det(Ó(å)/Ó(å)I(å)) = ú.

Thus the local monodromy of det(Ó) is trivial at all the critical values of f.

At © which is the image ∂ = f(∫) of a point ∫ in Sing(Ï)finite, we have seen that

Ï1(∂)/Ï1(∂)I(∂) ¶ Ï(∫)/Ï(∫)I(∫)

where we use f to identify I(∂) with I(∫). Using this identification, the local monodromy of Ó =

Ï1*Òçat ∂ is

Ó(∂)/Ó(∂)I(∂) ¶ MCçloc(∂)(Ï(∫)/Ï(∫)I(∫) as I(∂)-rep'n).

If Ï is tame at ∫, we have

Ó(∂)/Ó(∂)I(∂) ¶ (Ï(∫)/Ï(∫)I(∫))‚Òç(x-∂).

We then readily compute 

det(Ó(∂)) = det(Ó(∂)/Ó(∂)I(∂)) 

= det((Ï(∫)/Ï(∫)I(∫))‚Òç(x-∂))

= det((Ï(∫)/Ï(∫)I(∫)))‚(Òç(x-∂))
dim(Ï(∫)/Ï(∫)I(∫)).

But we have

det((Ï(∫)/Ï(∫)I(∫))) = det(Ï(∫)) = ú,

this last equality because Ï is symplectic, and Sp fi SL. Thus we find det(Ó(∂)) =

(Òç(x-∂))
dim(Ï(∫)/Ï(∫)I(∫)).

Thus det(Ó) is nontrivial at the image ∂ = f(∫) of a point ∫ in Sing(Ï)finite at which Ï is

tame, if and only if Ï(∫)/Ï(∫)I(∫) has odd dimension. This proves 1). 

Suppose now that Ï is everywhere tame. We already know that det(Ó) is trivial at all the

critical values of f, so det(Ó) is trivial if and only if it is trivial at every ∂ = f(∫), ∫ in Sing(Ï)finite.

For Ï everywhere tame, this triviality at every ∂ = f(∫) means precisely that Ï(∫)/Ï(∫)I(∫) has even

dimension for all finite singularities ∫ of Ï. QED

RRRReeeemmmmaaaarrrrkkkk    5555....4444....4444 Here is an example to show that part 2) of the above proposition can fail if we drop

the hypothesis that Ï be everywhere tame. We fix an even integer 2n ≥ 2, and work over äÉp for a

any prime p ≥ 2n+2. Fix a nontrivial ä$…-valued additive character ¥ of Ép Denote by Kl2n the



Chapter 5: Twist sheaves and their monodromy-100

standard Kloosterman sheaf in 2n variables: thus Kl2n is the lisse sheaf of rank 2n on ´m/Ép

whose trace function at a point å in E≠, E a finite extension E of Ép, is

Trace(Frobå,E | Kl2n) = -‡x1x2...x2n=å in E ¥(‡xi).

One knows that Kl2n is symplectically self-dual. 

Take Ï the middle extension of the lisse sheaf [x ÿ 1/x]*Kl2n on ´m. One knows that

Kl2n(‘) is a totally wild irreducible representation of I(‘), all of whoses slopes are 1/2n. Thus Ï

is totally wild at zero, and hence Ï(0)/Ï(0)I(0) has even dimension 2n.

We take C to be @1/äÉp, D to be d‘ for a sufficiently large integer d prime to p, ç to be the

quadratic character ç2, and Ï as above. Then Sing(Ï)finite is {0}, and, as noted above,

Ï(0)/Ï(0)I(0) has even dimension 2n. None the less, we will see that Ggeom for Ó is the full

orthogonal group O. More precisely, with ∂ := f(0), we will show that det(Ó) is nontrivial at ∂. To

simplify the notations, let us replace f by f - ∂, so that f(0) = 0. Then we have

Ó(0)/Ó(0)I(0) ¶ MCçloc(0)(Ï(0)/Ï(0)I(0)).

We will show that det(Ó(0)) is Òç. We have

det(Ó(0)) = det(Ó(0)/Ó(0)I(0)) = det(MCçloc(0)(Ï(0)/Ï(0)I(0))).

We will calculate MCçloc(0)(Ï(0)/Ï(0)I(0)) by a global argument. The sheaf Ï on !1 lies

in ∏conv of 4.0.2. We define

 Ì := Ï*midÒç.in ∏conv. 

Then by Theorem 4.1.10, part 1) we have

Ì(0)/Ì(0)I(0) ¶ MCçloc(0)(Ï(0)/Ï(0)I(0)).

Thus 

det(Ó(0)) = det(MCçloc(0)(Ï(0)/Ï(0)I(0)))

= det(Ì(0)/Ì(0)I(0))

= det(Ì(0)).

Hence we are reduced to showing that det(Ì(0)) is Òç.

Applying Fourier transform FT (:= FT¥) to the defining equation

 Ì := Ï*mid+Òç,

we obtain

FT(Ì) = j*(FT(Ï)‚Òç | ´m).

The key observation is that, because Ï is [x ÿ 1/x]*Kl2n, we have

FT(Ï) ¶ Kl2n+1,

a remark due to Deligne [De-AFT, 7.1.4] and developed in [Ka-ESDE, 8.1.12 and 8.4.3]. Thus

we find
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FT(Ì) = j*(FT(Ï)‚Òç | ´m) = j~Kl2n+1(ç, ç, ...., ç).

We can calculate FT(j~Kl2n+1(ç, ç, ...., ç)) as a hypergeometric sheaf of type (1, 2n+1), cf. [Ka-

ESDE, 9.3.2 with d=1]. The result is

FT(j~Kl2n+1(ç, ç, ...., ç)) ¶ j*Óyp(ú; ç, ...,ç). 

Since FT is involutive, we find a geometric isomorphism

[x ÿ -x]*Ì ¶  j*Óyp(ú; ç, ...,ç). 

So to show that det(Ì(0)) is Òç, it is equivalent to show that det(Óyp(ú; ç, ...,ç))(0) is Òç.

The sheaf Óyp(ú; ç, ...,ç) is lisse on ´m. Its local monodromy at ‘ is Òç‚Unip(2n+1),

whose determinant is Òç (remember ç is ç2). Its local monodromy at 0 is ú·W, where W has rank

2n and all slopes 1/2n. Since all slopes at 0 are < 1, det(Óyp(ú; ç, ...,ç)) is tame at 0. Thus

det(Óyp(ú; ç, ...,ç)) is lisse on ´m, tame at both 0 and ‘, and agrees with Òç at ‘. Therefore we

have a global isomorphism

det(Óyp(ú; ç, ...,ç)) ¶ Òç on ´m/äÉp.

In particular, det(Óyp(ú; ç, ...,ç))(0) is Òç.

Here is a further elaboration on this sort of counterexample. With 2n, p and d fixed as

above, choose further an oooodddddddd integer k ≥ 1 which is prime to p. Now define Ï to be the middle

extension of the lisse sheaf [x ÿ 1/xk]*Kl2n on ´m. Then Sing(Ï)finite is {0}, Ï is totally wild

at 0, and Ï(0)/Ï(0)I(0) has even dimension 2n. Using [Ka-ESDE, 9.3.2 with d=k], a similar

argument now shows that Ó has Ggeom the full orthogonal group, and that det(Ó) is nontrivial at

0. 

(5.4.5) We will now give another one-parameter family of twists with big monodromy Before

stating the result, we need an elementary lemma.

LLLLeeeemmmmmmmmaaaa    5555....4444....6666 Let k be an algebraically closed field of any characteristic, C/k a proper, smooth

connected curve of genus g. Suppose that D = ‡aiPi is an effective divisor of degree d. Suppose

d1 and d2 are positive integers with d1 + d2 = d. If k has characteristic p > 0, suppose further that

d2/d ≤ (p-1)/p. Then we can write D as a sum of effective divisors D1 + D2 with D2 of degree

either d2 or d2 +1, such that D2 = ‡ciPi, has all its nonzero ci invertible in k.

pppprrrrooooooooffff If k has characteristic zero, any writing of D as a sum of effective divisors D1 + D2 with D2

of degree d2 does the job. 

If k has characteristic p > 0, put ¬ := d2/d. For real x ≥ 0, we denote its "floor" and

"ceiling"

[x]fl := the greatest integer ≤ x,

[x]ce := the least integer ≥ x.
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Since ¬ ≤ 1, we have, for each i,

ai ≥ [¬ai]ce ≥ ¬ai ≥ [¬ai]fl.

We define effective divisors Dfl and Dce by

Dfl := ‡i [¬ai]flPi, Dce := ‡i [¬ai]cePi.

Thus D ≥ Dce ≥ Dfl, and deg(Dce) ≥ d2 ≥ deg(Dfl). For each i, the coefficients [¬ai]ce and [¬ai]fl

are either equal or differ by 1. So we can choose, for each i, either [¬ai]ce and [¬ai]fl, call it bi, so

that the  "intermediate" divisor Dint := ‡ibiPi has degree d2. Clearly 

Dce ≥ Dint ≥ Dfl. 

If Dint has all its nonzero bi invertible in k, we take D2 to be Dint. Then D2 will have

degree d2.

If some of the nonzero bi are divisible by p, we modify Dint as follows. First of all, if p

divides a nonzero bi, then bi ≥ p, so bi - 1 is positive and prime to p. What about bi + 1? It is

prime to p, but is bi + 1 ≤ ai? In other words, is bi < ai? The answer is yes, because if not, then bi

= ai. But ai ≥ [¬ai]ce ≥ bi, so we would have ai = [¬ai]ce. This means in turn that ¬ai > ai - 1, i.e.,

1 > ai(1-¬). But p divides bi, so ai ≥ p, and so 1 > p(1-¬), which contradicts the hypothesis ¬ ≤

(p-1)/p. 

So each nonzero bi that is divisible by p can be either increased by 1 or decresased by 1 and

continue to lie in the range [0, ai]. If there are evenly many indices i whose bi is divisible by p,

increase half of them by 1 and decrease the other half by 1, to get the desired D2: it has degree d2.

If there are oddly many bi divisible by p, group all but one in pairs, and in each pair increase one

member by 1 and decrease the other by 1. Increase the leftover by 1. This gives a D2 of degree

1+d2. QED

RRRReeeemmmmaaaarrrrkkkk    5555....4444....7777 The example of a divisor D of the form ‡i pPi, which has all its ai = p, shows that

the hypothesis d2/d ≤ (p-1)/p cannot be relaxed. The example of a divisor D of the form dP, and

the choice d2 = p, shows that we cannot insist that D2 have degree d2.

CCCCoooorrrroooollllllllaaaarrrryyyy    5555....4444....8888 Let k be an algebraically closed field, C/k a proper, smooth connected curve of

genus g. 

1) Suppose that D = ‡aiPi is an effective divisor of degree d ≥ 4g+5. Then we can write D as a

sum of effective divisors D1 + D2 with degrees d1 ≥ 2g+2 and d2 ≥ 2g+2, such that D2 = ‡ciPi

has all its nonzero ci invertible in k.

2) Suppose that D = ‡aiPi is an effective divisor of degree d ≥ 4g+4. Then we can write D as a

sum of effective divisors D1 + D2 with degrees d1 ≥ 2g+2 and d2 ≥ 2g+1, such that D2 = ‡ciPi

has all its nonzero ci invertible in k.

3) Fix an integer A ≥ 0. Suppose that D = ‡aiPi is an effective divisor of degree d ≥ Max(6g+9,
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6A + 11), and that the characteristic is not two. Then we can write D as a sum of effective divisors

D1 + D2 both of whose degrees d1 and d2 are at least 2g+2, such that D2 = ‡ciPi has all its

nonzero ci invertible in k, and such that 2g - 2 + d > 2(A+d1).

pppprrrrooooooooffff Assertion 1) is immediate from the lemma, with initial choice d2 = 2g+2. 

For 2), write D as the sum of effective divisors E + F with E of degree e = 4g+2, and F of

degree f ≥ 2. Apply the lemma to E and the initial choice d2 := [e/2]. Then we end up with E2 of

degree either [e/2] or [e/2]+1 (both of which are ≥ [e/2] = 2g+1), and E1 of degree either e - [e/2]

or e -1 - [e/2] (both of which are ≥ [e/2] - 1 = 2g). Then D1 := E1 + F, D2 := E2, is the desired

decomposition.

For 3), we apply the lemma with the initial choice d2 := [2d/3], allowed because the

characteristic is not two. We end up with D2 of degree d2 either [2d/3] or [2d/3]+1, both of which

are ≥ (2d-2)/3 and both of which are ≤ (2d+3)/3. Then D1 has degree d1 either d - [2d/3] or d -

1- [2d/3], both of which are ≥ (d-3)/3, and both of which are ≤ (d+2)/3. So both D1 and D2 have

degree at least (d-3)/3 ≥ 2g+2. We also have

2g - 2 + d - 2(A+d1) = 2g - 2 + d1 + d2 - 2(A+d1) 

= d2 - d1 + 2g - 2 - 2A

≥ d2 - d1 -2A - 2

≥ (2d-2)/3 - (d+2)/3 - 2A - 2

= (d-4)/3 - 2A - 2

≥ (6A +7)/3 - 2A - 2 > 0,

as required. QED

TTTThhhheeeeoooorrrreeeemmmm    5555....4444....9999    Let k be an algebraically closed field of characteristic not 2, C/k a proper, smooth

connected curve of genus g. Suppose that D = ‡aiPi is an effective divisor of degree d ≥ 4g+4.

Write D as a sum of effective divisors D1 + D2 of degrees d1 ≥ 2g+2 and d2 ≥ 2g+1, such that

D2 = ‡ciPi has all its nonzero ci invertible in k. 

Let Ï be an irreducible middle extension sheaf on C. Suppose that either Ï is everywhere

tame, or that Ï is tame at all points of D and that the characteristic p is either zero or a prime p ≥

rank(Ï) + 2. Suppose that the following inequalities hold:

if rank(Ï) = 1, 2g - 2 + d > Max( 2ù(Sing(Ï)¤(C-D2)), 4rank(Ï)),

if rank(Ï) ≥ 2, 2g - 2 + d > Max( 2ù(Sing(Ï)¤(C-D2)), 72rank(Ï)).

Fix a nontrivial character ç of finite order n ≥ 2. If n is 3, 4 or 8 and the curve C has genus

g=0, suppose in addition that D1 and D2 are chosen so that d2 ≥ 2. (Such a choice is always

possible if g=0 by Corollary 5.8.4, part 1), because d-2 = 2g-2+d > 72rank(Ï) ≥ 72, hence d ≥ 75
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> 4g+5). If n is 6, suppose in addition that rank(Ï) ≤ 2. If n is 4, suppose in addition that rank(Ï)

≤ 2 and that

2g - 2 + d > 2(ù(Sing(Ï)¤(C-D2)) + d1).

Fix a function

f1 in Fct(C, deg(D1), D1, Sing(Ï)⁄Dred). 

Fix a function f2 in Fct(C, deg(D2), D2, Sing(Ï)⁄Dred⁄f1
-1(0)) which also lies in the open set

U of Theorem 2.2.6 with respect to the set S := f1
-1(0)⁄(Sing(Ï)¤(C-D2)). Consider the lisse

ä$…-sheaf Ó on !1 - CritVal(f2, Ï‚Òç(f1)) given by [t ÿ f1(t-f2)]*Ì, i.e., by

t ÿ H1(C, j*(Ï‚Òç(f1(t-f2))).

Its geometric monodromy group Ggeom is either Sp or SO or O or a group between SL and GL. If

Ï is orthogonally (respectively symplectically) self-dual, and ç has order 2, then Ggeom is Sp

(respectively SO or O). If ç has order ≥ 3, then Ggeom contains SL....

pppprrrrooooooooffff Suppose first n ± 4. Put r:= rank(Ï), m := ù(Sing(Ï)¤(C-D2)). We have seen in

Proposition 5.3.7 that Ó is the restriction to  !1 - CritVal(f2, Ï‚Òç(f1)) of the middle additive

convolution of f2*((Ï‚Òç(f1)) and Òç.

Let us put

Ï1 := f2*((Ï‚Òç(f1)).

As already noted at the end of the proof of 5.3.6, the Irreducible Induction Criterion 3.3.1 shows

that Ï1 is an irreducible middle extension sheaf. The sheaf Ï1 lies in the class ∏conv, because it

has at least d1 ≥ 2g+2 ≥ 2 finite singularities, namely the d1 distinct images by f2 of the d1 distinct

zeroes of f1. It is tame at ‘, because Ï is tame at all the poles of f2, and the poles of f2 all have

order prime to p.

Over each critical value å of f2, Ï‚Òç(f1) is lisse, and f2-å has one and only one double

zero, so the local monodromy of Ï1 at å is quadratic of drop r, with scale the unique character of

order 2:

Ï1(å)/Ï1(å)I(å) ¶ r copies ofÒç2(x-å).

[The number of critical points of f2 is 2g-2 + ‡i (1+ci). This number is strictly positive unless

g=0 and d2 = 1. This exceptional case (g=0, d2=1) is not allowed if n is 3 or 8.]

Over the m images ∂ = f2(∫) of points ∫ in Sing(Ï)¤(C-D2), f2 is finite etale, and ∫ is the

unique point of Sing(Ï)¤(C-D2) in the fibre, so the local monodromy of Ï1 at ∂ has drop ≤ r.

More precisely, we have
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Ï1(∂)/Ï1(∂)I(∂) ¶ Ï(∫)/Ï(∫)I(∫),

where we use f2 to identify I(∂) with I(∫). 

Over each of the d1 images © = f2(Ω) of the zeroes of f1, f2 is finite etale, Ω is the only zero

of f1 in its f2-fibre, and Ï is lisse. Thus Ï‚Òç(f1) is lisse at all but the point Ω in the fibre f2
-

1(©). At Ω the local monodomy of Ï‚Òç(f1) is quadratic of drop r, with scale the character

Òç(uniformizer at Ω) of I(Ω). Thus the local monodromy of Ï1 at © is quadratic of drop r, with

scale the character Òç(x-©) of I(©).

At all other points of !1, i.e., on !1 - CritVal(f2, Ï‚Òç(f1)), Ï1 is lisse. Moreover, if Ï

is everywhere tame on C, then Ï1 is everywhere tame. Now form Ó, the middle additive

convolution of Ï1 with Òç:

Ó := Ï1*mid+Òç.

Thus (by 4.1.10, 2d) and 1b)) Ó is tame at ‘, and it is everywhere tame if Ï is everywhere tame.

Its rank is given by (5.2.1, part 5))

rank(Ó)= (2g-2 + d)r

+ ‡Pi in Dred Swan
Pi

(Ï) + ‡s in Sing(Ï)finite
Swan

s
(Ï).

+ ‡s in Sing(Ï)finite
 drops(Ï)

+ ‡Pi in Dred dropPi
(Ï(Pi)º(Òçai)(‘, Pi)),

where we have written Sing(Ï)finite for Sing(Ï)¤(C-D).

In particular, we have the inequality (5.2.1, part 6))

rank(Ó) ≥ (2g-2 + d)r.

The local monodromy of Ó at the m images ∂ = f2(∫) of points ∫ in Sing(Ï)¤(C-D2) has

drop ≤ r, by (4.1.10, part 1c, applied to Ï1).

The local monodromy of Ó at each critical value å of f2 is quadratic of drop r, with scale

the character çç2:

Ó(å)/Ó(å)I(å) ¶ Òç(x-å)‚(r copies of Òç2(x-å))

¶ r copies of Òçç2(x-å).

Over each of the d1 images © = f2(Ω) of the zeroes of f1, the local monodromy of Ó at © is

quadratic of drop r, with scale the character Òç2(x-©) of I(©).

With the exception of at most m points of !1, namely the images by f2 of points in

Sing(Ï)¤(C-D2), the local monodromy of Ó is quadratic of drop r, with scale a character not of

order 2. Indeed, at the critical values of f2, çç2 is not of order 2 (ç being nontrivial), and at the d1

images of the zeroes of f1, ç2 is not of order 2 (because the order n of ç is assumed to be not 4).
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If n is 3 or 8, then f2 has critical points, and at those critical points the local monodromy is

quadratic of drop r, with scale a character of order 6 or 8 respectively. 

If n ≥ 2 is not 3, 4, 6, or 8, then ç2 is either trivial or has order at least five. So at each of

the d1 images of the zeroes of f1, the local monodromy is quadratic of drop r, with scale a character

not of order 2, 3, or 4.

If n is 6, we have assumed r ≤ 2. So at each of the d1 images of the zeroes of f1, local

monodromy is quadratic of drop r ≤ 2 with scale a character of order 3.

The conclusion now follows from Theorem 1.5.1 (and Theorem 1.7.1, if r=1), applied to

the data (r, m, Ó). 

Suppose now that n is 4. Our Ï1 is still perverse irreducible, and in the class ∏conv. The

difficulty with the case n=4 is this: at the d1 images © = f2(Ω) of the zeroes of f1, the local

monodromy of Ó at © is quadratic of drop r, with scale the character Òç2(x-©) of I(©). But for ç

of order 4, ç2 is the quadratic character, and so these d1 points will be part of the excluded "at all

but at most m points" in hypothesis 4) of Theorem 1.5.1. To overcome this difficulty, we assume

both that rank(Ï) ≤ 2,and that

2g - 2 + d >2(ù(Sing(Ï)¤(C-D2)) + d1).

We put r:= rank(Ï), m := ù(Sing(Ï)¤(C-D2)) + d1. We have noted above that rank(Ó) ≥ (2g-2 +

d)r, so we have

rank(Ó) > Max(2mr, 72r2).

With the exception of at most m points of !1, namely the images by f2 of points in

Sing(Ï)¤(C-D2) and the d1 images by f2 of the zeroes of f1, the local monodromy of Ó is

quadratic of drop r, with scale a character not of order 2 (in fact, of order 4). Indeed, the remaining

finite singularities of Ó are at the critical values of f2, where the local monodromy is quadratic of

drop r, with scale çç2, which has order 4. [The number of critical values is 2g-2 + ‡i (1+ci). This

number is strictly positive unless g=0 and d2 = 1. This exceptional case (g=0, d2=1) is not allowed

if n is 4.]

Because we have assumed r ≤ 2 in this n=4 case, the result now follows from Theorem

1.5.1 (and Theorem 1.7.1, if r=1), applied to the data (r, m, Ó). QED

Exactly as in Proposition 5.4.2 above, we have

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....4444....11110000 Hypotheses and notations as in Theorem 5.4.9 above, suppose that ç has order

2, but Ï is not self dual. Then Ggeom contains SL.

pppprrrrooooooooffff If not, then exactly as in the proof of Proposition 5.4.2, we infer that f2*(Ï‚Òç(f1)) is self-

dual, and then that Ï‚Òç(f1), and hence Ï, are self-dual. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....4444....11111111 Hypotheses and notations as in Theorem 5.4.9 above, suppose that ç has order

2, and that Ï is symplectically self dual. 
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1) Suppose there exists a D2-finite singularity ∫ of Ï, i.e., a point ∫ in Sing(Ï)¤(C-D2), such that

the following two conditions hold.

1a) Ï is tame at ∫.

1b) Ï(∫)/Ï(∫)I(∫) has odd dimension.

Then the group Ggeom for the sheaf Ó is the full orthogonal group O.

2) Suppose that Ï is everywhere tame. Then Ggeom for Ó is the special orthogonal group SO if

and only if Ï(∫)/Ï(∫)I(∫) has even dimension for every D2-finite singularity ∫ of Ï.

pppprrrrooooooooffff This is proven by essentially recopying the proof of 5.4.3, applied to the sheaf Ï‚Òç(f1)

and the function f2 (remember that f1 is chosen to be invertible at ∫, so Òç(f1) is lisse at ∫). QED

5555....5555    TTTThhhheeeeoooorrrreeeemmmmssss    ooooffff    bbbbiiiigggg    mmmmoooonnnnooooddddrrrroooommmmyyyy    ffffoooorrrr    ÌÌÌÌ    ::::====    TTTTwwwwiiiissssttttçççç,,,,CCCC,,,,DDDD((((ÏÏÏÏ))))    oooonnnn FFFFcccctttt((((CCCC,,,,    dddd,,,,    DDDD,,,,    SSSSiiiinnnngggg((((ÏÏÏÏ))))ffffiiiinnnniiiitttteeee))))    iiiinnnn

cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc    nnnnooootttt    2222 

TTTThhhheeeeoooorrrreeeemmmm    5555....5555....1111 Let k be an algebraically closed field in which 2 is invertible. Fix a prime number …

which is invertible in k. Fix a character ç of finite order n ≥ 2 of the tame fundamental group of

´m/k. Let C/k be a proper smooth connected curve of genus g. Fix an irreducible middle extension

ä$…-sheaf Ï on C. If n is 4 or 6, suppose rank(Ï) ≤ 2. Let D = ‡aiPi be an effective divisor of

degree d on C. Suppose that either

1a) d ≥ 2g+1, all ai are invertible in k, Sing(Ï)¤(C-D) is nonempty, and the following inequalities

hold:

if rank(Ï) = 1, 2g - 2 + d ≥ Max(2ù(Sing(Ï)¤(C-D)), 4rank(Ï)),

if rank(Ï) ≥ 2, 2g - 2 + d ≥ Max(2ù(Sing(Ï)¤(C-D)), 72rank(Ï)),

or

1b) d ≥ 4g+4, the following inequalities hold:

if rank(Ï) = 1, 2g - 2 + d > Max(2ùSing(Ï), 4rank(Ï)),

if rank(Ï) ≥ 2, 2g - 2 + d > Max(2ùSing(Ï), 72rank(Ï)),

and, if n=4,

d ≥ Max(6g+9, 6ùSing(Ï) + 11).

Suppose further that

2) either Ï is everywhere tame, or Ï is tame at all points of D and the characteristic p is either zero

or p ≥ rank(Ï) + 2. 
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Then the lisse sheaf Ì on Fct(C, d, D, Sing(Ï)finite) given by

f ÿ H1(C, j*(Ï‚Òç(f)),

has Ggeom given as follows:

a) If Ï is orthogonally self-dual, and ç has order 2, then Ggeom is Sp.

b) If Ï is symplectically self-dual, and ç has order 2, then Ggeom is either SO or O.

c) If either Ï is not self-dual or if ç has order > 2, then Ggeom contains SL.

pppprrrrooooooooffff If ç has order two and Ï is orthogonally (respectively symplectically) self-dual, then Ì is

symplectically (resp. orthogonally) self dual, and we have priori inclusions 

Ggeom fi Sp (resp. Ggeom fi O).

In general, we have an a priori inclusion

Ggeom fi GL.

Given a smooth connected curve U/k and a map

π : U ¨ Fct(C, d, D, Sing(Ï)finite),

we have an a priori inclusion

Ggeom(π*Ì on U) fi Ggeom(Ì on Fct(C, d, D, Sing(Ï)finite)).

So it suffices to produce a π such that Ggeom(π*Ì on U) contains, in the three cases, the groups

Sp, SO, and SL respectively. This is precisely what we have done in Theorem 5.4.1 (under

hypotheses 1a) and 2)) and in Theorem 5.4.9 (under hypotheses 1b) and 2)). QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....5555....2222 Hypotheses and notations as in Theorem 5.5.1 above, suppose that ç has order

2, and that Ï is symplectically self dual. 

1) Suppose that there exists a finite singularity ∫ of Ï, i.e., a point ∫ in Sing(Ï)¤(C-D), such that

the following two conditions hold.

1a) Ï is tame at ∫.

1b) Ï(∫)/Ï(∫)I(∫) has odd dimension.

Then the group Ggeom for the sheaf Ì is the full orthogonal group O.

2) Suppose we are in case 1b) of Theorem 5.5.1, and that there exists a singularity ∫ of Ï (but here

we do nnnnooootttt assume that ∫ lies in C-D) such that the following two conditions hold.

2a) Ï is tame at ∫.

2b) Ï(∫)/Ï(∫)I(∫) has odd dimension.

Suppose further that we can write D as the sum of two effective divisors D1 + D2 of degrees d1 ≥

2g+2 and d2 ≥ 2g+1, such that D2 = ‡ciPi has all its nonzero ci invertible in k and such that ∫ Ÿ C

- D2. Then the group Ggeom for the sheaf Ì is the full orthogonal group O.

3) Suppose that the sheaf Ì has odd rank. Then the group Ggeom for the sheaf Ì is the full

orthogonal group O.
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pppprrrrooooooooffff If we are in case 1a) of Theorem 5.5.1, then Assertion 1) results from Propostion 5.4.3. If

we are in case 1b) of Theorem 5.5.1, then Assertion 1) is a special case of Assertion 2), thanks to

Corollary 5.4.8, part 2). Assertion 2) results from Proposition 5.4.11. For assertion 3), we argue as

follows. We know that Ggeom for Ì contains SO and is contained in O. To show that Ggeom is

O, it suffices to find a one-parameter family 

π : ´m ¨ Fct(C, d, D, Sing(Ï)finite) 

such that det(π*Ì) is nontrivial on ´m. 

Fix aaaannnnyyyy f in Fct(C, d, D, Sing(Ï)finite), and consider the map

π : ´m ¨ Fct(C, d, D, Sing(Ï)finite) 

defined by

t ÿ tf.

Thus π*Ì is the lisse sheaf on ´m given by

t ÿ H1(C, j*(Ï‚Òç(tf)) = Òç(t)‚H1(C, j*(Ï‚Òç(f)).

If Ì has odd rank, then π*Ì is the direct sum of an odd number of copies of Òç(t), and hence, ç

being ç2, det(π*Ì) ¶ Òç(t). QED

QQQQuuuueeeessssttttiiiioooonnnn    5555....5555....3333 Outside the cases covered by Proposition 5.5.2, we do not know a general, a priori

way to distinguish the SO and O cases. The sheaf det(Ì) on Fct(C, d, D, Sing(Ï)finite) is a

character of order dividing 2 of π1(Fct(C, d, D, Sing(Ï)finite)), or, if we like, an element in

H1(Fct(C, d, D, Sing(Ï)finite), µµµµ2).

What is it?

5555....6666    TTTThhhheeeeoooorrrreeeemmmmssss    ooooffff    bbbbiiiigggg    mmmmoooonnnnooooddddrrrroooommmmyyyy    iiiinnnn    cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc    2222

TTTThhhheeeeoooorrrreeeemmmm    5555....6666....1111 Let k be an algebraically closed field of characteristic 2, C/k a proper, smooth

connected curve of genus g. Suppose that D = ‡aiPi is an effective divisor of degree d ≥ 6g+3,

with all ai odd. Let Ï be an irreducible middle extension sheaf on C with Sing(Ï)finite :=

Sing(Ï)¤(C-D) nonempty. Suppose that Ï is everywhere tame. Suppose that the degree d is so

large that the following inequalities hold:

if rank(Ï) = 1, 2g - 2 + d ≥ Max(2ù(Sing(Ï)¤(C-D)), 4rank(Ï)),

if rank(Ï) ≥ 2, 2g - 2 + d ≥ Max(2ù(Sing(Ï)¤(C-D)), 72rank(Ï)),

Fix a nontrivial character ç of odd finite order n ≥ 3. Pick a function f in Fct(C, d, D,

Sing(Ï)finite) which also lies in the dense open set U of Theorem 2.4.4 applied with S taken to be

Sing(Ï)finite. Thus f as map from C-D to !1 is of Lefschetz type, each finite monodromy of f*ä$…
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is a reflection of Swan conductor 1 (by 2.7.1), and for each s in Sing(Ï)finite, the fibre f-1(s)

consists of d distinct points, only one of which lies in Sing(Ï)finite. Consider the lisse ä$…-sheaf

Ó on !1 - CritVal(f, Ï) given by 

Ó := [t ÿ t-f]*Ì,

 i.e., by

t ÿ H1(C, j*(Ï‚Òç(t-f)).

Its geometric monodromy group Ggeom contains SL.

pppprrrrooooooooffff The argument is quite similar to the one given for Theorem 5.4.1. 

Thus r:= rank(Ï), m := ù Sing(Ï)finite, Ï1 := f*Ï, and Ó is the restriction to !1 -

CritVal(f, Ï) of the middle additive convolution of Ï1 and Òç. We know that the function f has 

g-1 + ‡(1+ai)/2 ≥ (d+1)/2 - 1 ≥ (6g+4)/2 - 1 ≥ 1

critical points, and as many critical values. Over each critical value å of f, Ï is lisse, so the local

monodromy of Ï1 at å is quadratic of drop r, with scale a character ®å of I(å) of order 2 and Swan

conductor 1:

Ï1(å)/Ï1(å)I(å) ¶ r copies of ®å.

Over the m images ∂ = f(∫) of points ∫ in Sing(Ï)finite, f is finite etale, and ∫ is the unique

point of Sing(Ï)finite in the fibre, so the local monodromy of Ï1 at ∂ has drop ≤ r. More precisely,

we have

Ï1(∂)/Ï1(∂)I(∂) ¶ Ï(∫)/Ï(∫)I(∫),

where we use f to identify I(∂) with I(∫). 

At all other points of !1, i.e., on !1 - CritVal(f, Ï), Ï1 is lisse. As Ï is everywhere tame

on C, Ï1 is tame except at the critical values of Ï. Now form Ó, the middle additive convolution of

Ï1 with Òç. Thus (by 4.1.10, 2d), 1b) and 1c) Ó is tame at ‘, it is tame outside the critical values

of f, and it is lisse outside ‘, the critical values of f, and the m images ∂ = f(∫) of points ∫ in

Sing(Ï)finite. Its rank is given by (5.2.1 part 5))

rank(Ó)= (2g-2 + d)r

+ ‡Pi in Dred Swan
Pi

(Ï) + ‡s in Sing(Ï)finite
Swan

s
(Ï).

+ ‡s in Sing(Ï)finite
 drops(Ï)

+ ‡Pi in Dred dropPi
(Ï(Pi)º(Òçai)(‘, Pi)).

In particular, we have the inequality (5.2.1, part 6))

rank(Ó) ≥ (2g-2 + d)r + ùSingfinite(Ï) > (2g-2 + d)r.

The local monodromy of Ó at the m images ∂ = f(∫) of points ∫ in Sing(Ï)finite is tame

and has drop ≤ r, by (4.1.10, part 1c). It is given by



Chapter 5: Twist sheaves and their monodromy-111

Ó(∂)/Ó(∂)I(∂) ¶ MCçloc(∂)(Ï(∫)/Ï(∫)I(∫) as I(∂)-rep'n). 

The local monodromy of Ó at each critical value å of f is quadratic of drop r, with scale a

character MCçloc(å)(®å) whose order, twice the order of ç by 4.2.2, is ≥ 6. Thus

Ó(å)/Ó(å)I(å) ¶ r copies of a character of order ≥ 6.

The conclusion follows from Theorem 1.5.1 with hypothesis 6c) (and Theorem 1.7.1 if r=1),

applied to (r, m, Ó), with S - S0 the critical values of f, and S0 the m images ∂ = f(∫) of points ∫

in Sing(Ï)finite  QED

TTTThhhheeeeoooorrrreeeemmmm    5555....6666....2222    Let k be an algebraically closed field of characteristic 2, C/k a proper, smooth

connected curve of genus g. Suppose that D = ‡aiPi is an effective divisor of degree d ≥ 12g+7.

Write D as a sum of effective divisors D1 + D2 both of whose degrees d1 and d2 are at least 6g+3,

such that D2 = ‡ciPi has all its nonzero ci odd. Let Ï be an irreducible middle extension sheaf on

C. Suppose that Ï is everywhere tame. Suppose that the following inequalities hold:

if rank(Ï) = 1, 2g - 2 + d ≥ Max(2ù(Sing(Ï)¤(C-D2)), 4rank(Ï)),

if rank(Ï) ≥ 2, 2g - 2 + d > Max( 2ù(Sing(Ï)¤(C-D2)), 72rank(Ï)).

Fix a nontrivial character ç of odd finite order n ≥ 3. 

Fix a function

f1 in Fct(C, deg(D1), D1, Sing(Ï)⁄Dred). 

Fix a function f2 in Fct(C, deg(D2), D2, Sing(Ï)⁄Dred⁄f1
-1(0)) which also lies in the open set

U of Theorem 2.4.4 with respect to the set S := f1
-1(0)⁄(Sing(Ï)¤(C-D2)). Consider the lisse

ä$…-sheaf Ó on !1 - CritVal(f2, Ï‚Òç(f1)) given by [t ÿ f1(t-f2)]*Ì, i.e., by

t ÿ H1(C, j*(Ï‚Òç(f1(t-f2))).

Its geometric monodromy group Ggeom contains SL....

pppprrrrooooooooffff The argument is quite similar to the one given for Theorem 5.4.9.We will indicate the

modifications which must be made. 

Put r:= rank(Ï), m := ù(Sing(Ï)¤(C-D2)), Ï1 := f2*(Ï‚Òç(f1)). We have seen in

Proposition 5.3.7 that Ó is the restriction to  !1 - CritVal(f2, Ï‚Òç(f1)) of the middle additive

convolution of Ï1 and Òç.

We have seen above (end of the proof of 5.3.6) that by the Irreducible Induction Criterion

3.3.1, Ï1 is an irreducible middle extension sheaf. It is tame at ‘, because Ï is tame at all the poles

of f2, and the poles of f2 all have odd order.
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We know that the function f2 has 

g-1 + ‡(1+ci)/2 ≥ (d2+1)/2 - 1 ≥ (6g+4)/2 - 1 ≥ 1

critical points, and as many critical values. Over each critical value å of f2, Ï1 is lisse, so the local

monodromy of Ï1 at å is quadratic of drop r, with scale a character ®å of I(å) of order 2 and Swan

conductor 1:

Ï1(å)/Ï1(å)I(å) ¶ r copies of ®å.

Over the m images ∂ = f2(∫) of points ∫ in Sing(Ï)¤(C-D2), f2 is finite etale, and ∫ is the

unique point of Sing(Ï)¤(C-D2) in the fibre, so the local monodromy of Ï1 at ∂ has drop ≤ r.

More precisely, we have

Ï1(∂)/Ï1(∂)I(∂) ¶ Ï(∫)/Ï(∫)I(∫),

where we use f2 to identify I(∂) with I(∫). 

Over each of the d1 images © = f2(Ω) of the zeroes of f1, f2 is finite etale, Ω is the only zero

of f1 in its f2-fibre, and Ï is lisse. Thus Ï‚Òç(f1) is lisse at all but the point Ω in the fibre f2
-

1(©). At Ω the local monodomy of Ï‚Òç(f1) is quadratic of drop r, with scale the character

Òç(uniformizer at Ω) of I(Ω). Thus the local monodromy of Ï1 at © is quadratic of drop r, with

scale the character Òç(x-©) of I(©).

At all other points of !1, i.e., on !1 - CritVal(f2, Ï‚Òç(f1)), Ï1 is lisse. As Ï is

everywhere tame on C, Ï1 is tame outside the critical values of f2. Now form Ó, the middle

additive convolution of Ï1 with Òç. Thus(by 4.1.10, 2d), 1b) and 1c)) Ó is tame at ‘, it is tame

outside the critical values of f2, and it is lisse on !1 - CritVal(f2, Ï‚Òç(f1)). Its rank is given by

(5.2.1, part 5))

rank(Ó)= (2g-2 + d)r

+ ‡Pi in Dred Swan
Pi

(Ï) + ‡s in Sing(Ï)finite
Swan

s
(Ï).

+ ‡s in Sing(Ï)finite
 drops(Ï)

+ ‡Pi in Dred dropPi
(Ï(Pi)º(Òçai)(‘, Pi)),

where we have written Sing(Ï)finite for Sing(Ï)¤(C-D).

In particular, we have the inequality (5.2.1, part 6))

rank(Ó) ≥ (2g-2 + d)r.

The local monodromy of Ó at the m images ∂ = f2(∫) of points ∫ in Sing(Ï)¤(C-D2) is

tame and has drop ≤ r, by 4.1.10 parts 1b) and 1c).

The local monodromy of Ó at each critical value å of f2 is quadratic of drop r, with scale a

character MCçloc(å)(®å) whose order, twice the order of ç by 4.2.2, is ≥ 6. Thus
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Ó(å)/Ó(å)I(å) ¶ r copies of a character of order ≥ 6.

Over each of the d1 images © = f2(Ω) of the zeroes of f1, the local monodromy of Ó at © is

quadratic of drop r, with scale the character Òç2(x-©) of I(©), whose order, that of ç, is ≥ 3.

With the exception of at most m points of !1, namely the images by f2 of points in

Sing(Ï)¤(C-D2), the local monodromy of Ó is quadratic of drop r, with scale a character not of

order 2. The conclusion follows from Theorem 1.5.1 with hypothesis 6c) (and Theorem 1.7.1, if

r=1), applied to (r, m, Ó), with S - S0 the critical values of f together with the d1 images © = f2(Ω)

of the zeroes of f1, and S0 the m images ∂ = f(∫) of points ∫ in Sing(Ï)¤(C-D2). QED

5555....7777    TTTThhhheeeeoooorrrreeeemmmmssss    ooooffff    bbbbiiiigggg    mmmmoooonnnnooooddddrrrroooommmmyyyy    ffffoooorrrr    ÌÌÌÌ    ::::====    TTTTwwwwiiiissssttttçççç,,,,CCCC,,,,DDDD((((ÏÏÏÏ))))    oooonnnn FFFFcccctttt((((CCCC,,,,    dddd,,,,    DDDD,,,,    SSSSiiiinnnngggg((((ÏÏÏÏ))))ffffiiiinnnniiiitttteeee))))    iiiinnnn

cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc    2222 

TTTThhhheeeeoooorrrreeeemmmm    5555....7777....1111 Let k be an algebraically closed fieldof characteristic 2. Fix a prime number … which

is invertible in k. Fix a nontrivial character ç of finite odd order n ≥ 3. Let C/k be a proper smooth

connected curve of genus g. Fix an irreducible middle extension ä$…-sheaf Ï on C. Let D = ‡aiPi

be an effective divisor of degree d on C. Suppose that either

1a) d ≥ 6g+3, all ai are odd, Sing(Ï)¤(C-D) is nonempty, and the following inequalities hold:

if rank(Ï) = 1, 2g - 2 + d ≥ Max(2ù(Sing(Ï)¤(C-D)), 4rank(Ï)),

if rank(Ï) ≥ 2, 2g - 2 + d ≥ Max(2ù(Sing(Ï)¤(C-D)), 72rank(Ï)),

or

1b) d ≥ 12g+7, and the following inequalities hold:

if rank(Ï) = 1, , 2g - 2 + d > Max(2ùSing(Ï), 4rank(Ï)).

if rank(Ï) ≥ 2, 2g - 2 + d > Max(2ùSing(Ï), 72rank(Ï)).

Suppose further that

2) Ï is everywhere tame.

Then for the lisse sheaf Ì on Fct(C, d, D, Sing(Ï)finite) given by

f ÿ H1(C, j*(Ï‚Òç(f)),

Ggeom contains SL.

pppprrrrooooooooffff This follows from Theorems 5.6.1 and 5.6.2 above in exactly the same way that Theorem

5.5.1 followed from Theorems 5.4.1 and 5.4.9. QED
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6666....0000    AAAA    lllleeeemmmmmmmmaaaa    oooonnnn    rrrreeeellllaaaattttiiiivvvveeee    CCCCaaaarrrrttttiiiieeeerrrr    ddddiiiivvvviiiissssoooorrrrssss

(6.0.1).The following lemma is standard. We include it for ease of reference.

LLLLeeeemmmmmmmmaaaa    6666....0000....2222 Let T be an arbitrary scheme, X/T a proper smooth T-scheme with geometrically

connected fibres everywhere of dimension N, Ò an invertible ØX-module, and L in H0(X, Ò) a

global section. Suppose L is nonzero on each geometric fibre of X/T, i.e., for every geometric point

t of T, the image Lt of L in H0(Xt, Òt) is nonzero. Then the locus "L = 0 as section of Ò", call it Z,

is a Cartier divisor in X, which is flat over T.

pppprrrrooooooooffff The question is Zariski local on T, which we may assume affine, say T = Spec(R). All the

data (X/R, Z/R, L) is of finite presentation over R, so we may reduce to the case where R is

noetherian, then to the case where R is noetherian local, then to the case where R is complete

noetherian local, and finally to the case where R is complete noetherian local with algebraically

closed residue field k. 

It suffices to show that, over any such R, the sheaf map

         ≠L

Ò-1 ¨ ØX

is injective on X. Indeed, for any ideal I in R, R/I is again complete noetherian local with

algebraically closed residue field, so after the base change R ¨ R/I we will again have the

injectivity of

        ≠L

Ò-1/IÒ-1 ¨ ØX/IØX

This means precisely that the short exact sequence

    ≠L

0 ¨ Ò-1 ¨ ØX ¨ ØX/fÒ-1 = ØZ ¨ 0

remains exact after any base change R ¨ R/I. Because Ò-1 and ØX are flat over R, the Tor

sequence gives a four term exact sequence

0 ¨ Tor1
R(ØZ, R/I) ¨ Ò-1/IÒ-1 ¨ ØX/IØX ¨ ØZ/IØZ ¨ 0.

Therefore Tor1
R(ØZ, R/I) = 0 for any ideal I in R, i.e., ØZ is flat over R, as required. 

To show that multiplication by L : Ò-1 ¨ ØX is injective on X, we argue as follows. If

not, there is some closed point x in X over whose complete local ring ØX,x
¢ the map 

L : Ò-1 ‚ØX
ØX,x

¢ ¨ ØX,x
¢ 

is not injective. If we pick a basis e of the source, which is a free, rank one ØX,x
¢-module, then

Le is an element of ØX,x
¢ which is nonzero in ØX,x

¢/˜RØX,x
¢. We must show that Le is not a

zero divisor in ØX,x
¢. The closed point x in X lies over the closed point of Spec(R), so x has

residue field k. Because X/T is smooth of relative dimension N, there exists ëx in X(R) which lifts x
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in X(k), and we have an isomorphism of local rings

ØX,x
¢ ¶ R[[X1, ..., XN]].

Our element Le in R[[X1, ..., XN]], say Le § ‡w rwXw, reduces mod ˜R to a nonzero element

of k[[X1, ..., XN]]. We claim that any such element of R[[X1, ..., XN]] is not a zero divisor. 

This is an elementary application of the Weierstrass preparation theorem. At least one of its

coefficients rw is a unit in R. The minumum |w| such that rw is a unit in R is the "Weierstrass

degree" of ‡w rwXw, call it n. After a suitable linear change of variables, we may assume the

monomial (XN)n occurs with coefficient 1. Now view R[[X1, ..., XN]] as RN-1[[XN]], with

RN-1 the power series ring R[[X1, ..., XN-1]]. By the Weierstrass Preparation Theorem, the

element Le is the product of a unit with a Weierstrass polynomial in XN of degree n, 

(XN)n + ‡i ≤ n-1 mi(XN)i 

with all mi in the maximal ideal of RN-1. But no Weierstrass polynomial in XN is a zero divisor in

RN-1[[XN]]. Indeed, suppose for some g in RN-1[[XN]] we have

((XN)n + ‡i mi(XN)i)g = 0,

then

(XN)ng = - (‡i mi(XN)i)g.

Suppose we have already established that g has all coefficients in the k'th power of the maximal

ideal of RN-1. Then the equation above shows that (XN)ng, and hence g itself, has all coefficients

in the k+1'st power. Proceeding in this way, we conclude that all coefficients of g lie in ¤k

(˜RN-1
)k = {0}. QED

6666....1111    TTTThhhheeee    ssssiiiittttuuuuaaaattttiiiioooonnnn    wwwwiiiitttthhhh    ccccuuuurrrrvvvveeeessss

(6.1.1) We fix an arbitrary scheme T, which will play the role of a parameter space in what

follows. We fix an integer g ≥ 0, and a relative curve C/T of genus g. More precisely, we fix

(6.1.1.1) π : C ¨ T,

a proper smooth morphism whose fibres are geometrically connected curves of genus g. We

suppose given an integer d ≥ 2g-1 and an effective Cartier divisor D in C which is finite and flat

over T of degree d.

LLLLeeeemmmmmmmmaaaa    6666....1111....2222 Let T be a scheme, g ≥ 0 an integer, and

π : C ¨ T,

a proper smooth morphism whose fibres are geometrically connected curves of genus g. Suppose

given an integer d ≥ 1 and an effective Cartier divisor D in C which is finite and flat over T of

degree d. Suppose we are given a global section f of H0(C, I-1(D)) which is nonzero on each

geometric fibre of C/T. Then the locus "f=0 as section of I-1(D)", call it Z, is an effective Cartier

divisor in C, finite and flat over T of rank d.

pppprrrrooooooooffff We already know that Z/T is a relative Cartier divisor in C/T, flat over T. Because Z is closed
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in C, Z is proper over T. Then Z/T is finite, because it has finite fibres. Thus Z/T is finite and flat.

One sees that it is finite and flat of degree d by looking at fibres. QED

LLLLeeeemmmmmmmmaaaa    6666....1111....3333 Hypotheses as in Lemma 6.1.2, suppose in addition that d ≥ 2g - 1. Consider the

functor on T-schemes Y/T given by

Y/T ÿ the set of global sections of H0(CY, I-1(D)Y) which are nonzero on each

geometric fibre of CY/Y.

This functor is represented by a T-scheme L(D)nonzero/T, namely the complement of the zero

section in the total space of the vector bundle on T of rank d+1-g given by π*(I-1(D)).

pppprrrrooooooooffff The only point is that because d > 2g-2, π*(I-1(D)) on T is a locally free ØT-module

whose formation commutes with arbitrary change of base on T. 

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn    6666....1111....4444 Hypotheses as in Lemma 6.1.2 above, a global section f of H0(C, I-1(D)) is said

to have d distinct zeroes if it is nonzero on each geometric fibre of C/T  and if Z, the locus "f=0 as

section of I-1(D)", is finite etale over Y.

LLLLeeeemmmmmmmmaaaa    6666....1111....5555 Hypotheses as in Lemma 6.1.2, suppose in addition that d ≥ 2g - 1. Consider the

functor on T-schemes Y/T given by

Y/T ÿ the set of global sections of H0(CY, I-1(D)Y) which have d distinct zeroes. 

This functor is represented by a T-scheme L(D)d dist zeroes/T, which is an open set in

L(D)nonzero/T.

pppprrrrooooooooffff If make the base change from T to Y := L(D)nonzero/T, we acquire the universal global

section funiv which is nonzero on geometric fibres. Over this base space Y, we have the finite flat

scheme Z/Y. Its structure sheaf ØZ is an ØY-algebra which is a locally free ØY-module of rank d.

Then L(D)d dist zeroes/T is the open subscheme of Y over which Z/Y is finite etale. Locally on Y,

if we pick an Ø basis of ØZ, say e1, ..., ed, L(D)d dist zeroes/T is the open set where the

discriminant

detd≠d(TraceØY
(eiej))

is invertible. QED

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn    6666....1111....7777 Hypotheses as in Lemma 6.1.2 above, we say a global section f of H0(C, I-1(D))

is invertible near D, or has exact divisor of poles D, if the following condition is satisfied.

Multiplication by f defines an ØC-linear map

    ≠f

ØC/I(D) ¨ I-1(D)/ØC.
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Taking π*, we get an ØT-linear map "f|D"

f|D :  π*(ØC/I(D)) ¨ π*(I-1(D)/ØC)

between locally free ØT-modules of the same rank d. We require that f|D be an isomorphism. [If

locally on T we take ØT-bases of source and target, we can calculate the determinant of f|D.

Locally on T, this determinant is well-defined in ØT, up to multiplication by an invertible section

of ØT.We require that this determinant be everywhere invertible on T.]

LLLLeeeemmmmmmmmaaaa    6666....1111....7777 Hypotheses as in Lemma 6.1.2, suppose in addition that d ≥ 2g - 1. Consider the

functor on T-schemes Y/T given by

Y/T ÿ the set of global sections of H0(CY, I-1(D)Y) which are invertible near DY.

This functor is represented by a T-scheme L(D)inv near D/T. Locally on T, L(D)inv near D/T is a

principal open set in L(D)nonzero/T. pppprrrrooooooooffff If make the base change from T to Y :=

L(D)nonzero/T, we acquire the universal global section funiv which is nonzero on geometric

fibres. Over this base space Y, we have the map funiv|DY

funiv|DY :  πY*(ØCY
/I(DY)) ¨ πY*(I-1(DY)/ØCY

)

 of locally free ØY-modules of rank d. Our functor is represented by the open set of Y where the

"determinant" of funiv|DY is invertible. QED

DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn    6666....1111....8888 Hypotheses as in Lemma 6.1.2, suppose we are given in addition an integer s ≥ 0

and an effective Cartier divisor S in C/T, which is finite and flat over T of degree s (with the

convention that S is empty if s = 0), and which is scheme-theoretically disjoint from D. A global

section f of H0(C, I-1(D)) is said to be invertible near S if the following conditions hold. If s = 0,

we require only that f be nonzero on each geometric fibre of C/T. If s ≥ 1, multiplication by f

defines an ØC-linear endomorphism of ØS := ØC/I(S). Taking π*, we get an ØT-linear

endomorphism "f|S"

f|S : π*(ØC/I(S)) ¨ π*(ØC/I(S))

of of locally free ØT-modules of the same rank s. We require that f|S be an isomorphism. Here we

have a true endomorphism, so we can speak of det(f|S) as a global section of ØT. We require that

this determinant be an invertible global section of ØT.

LLLLeeeemmmmmmmmaaaa    6666....1111....9999    Hypotheses as in Lemma 6.1.2, suppose we are given in addition an integer s ≥ 0 and

an effective Cartier divisor S in C/T, which is finite and flat over T of degree s (with the convention

that S is empty if s = 0), and which is scheme-theoretically disjoint from D. Suppose that d ≥ 2g -
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1. Consider the functor on T-schemes Y/T given by

Y/T ÿ the set of global sections of H0(CY, I-1(D)Y) which are invertible near DY aaaannnndddd

invertible near SY.

This functor is represented by a T-scheme L(D)inv near D and S/T, which is a principal open set

in  L(D)inv near D/T for s ≥ 1, and which is equal to L(D)inv near D/T for s = 0.

pppprrrrooooooooffff If s = 0, there is nothing to prove. If s ≥ 1, make the base change from T to Y := L(D)inv

near D/T. We acquire the universal global section funiv which is invertible near D. Over this base

space Y, our functor is represented by the open set of Y where det(funiv|SY) is invertible. QED

LLLLeeeemmmmmmmmaaaa    6666....1111....11110000    Hypotheses as in Lemma 6.1.2, suppose we are given in addition an integer s ≥ 0

and an effective Cartier divisor S in C/T, which is finite and flat over T of degree s (with the

convention that S is empty if s = 0), and which is scheme-theoretically disjoint from D. Suppose

that d ≥ 2g - 1. Consider the functor on T-schemes Y/T given by

Y/T ÿ the set of global sections f of H0(CY, I-1(D)Y) which are invertible near DY aaaannnndddd

invertible near SY, and which have d distinct zeroes.

This functor is represented by a T-scheme

Fct(C, d, D, S)

which is open in both L(D)inv near D and S and in L(D)d dist zeroes. 

pppprrrrooooooooffff Indeed, the functor Fct(C/T, d, D, S) is represented by the fibre product over L(D)nonzero

of the open subschemes

L(D)inv near D and S ≠L(D)nonzero
 L(D)d dist zeroes. QED

RRRReeeemmmmaaaarrrrkkkk    6666....1111....11111111 When T is the spec of an algebraically closed field, the set of k-valued points of the

k-scheme Fct(C, d, D, S) is precisely the space Fct(C, d, D, S). The possibility of taking T to be

the spec of a finite field k will be absolutely essential in the chapters which follow..

6666....2222    CCCCoooonnnnssssttttrrrruuuuccccttttiiiioooonnnn    ooooffff    tttthhhheeee    ttttwwwwiiiisssstttt    sssshhhheeeeaaaaffff    ÌÌÌÌ    ::::====TTTTwwwwiiiissssttttçççç,,,,CCCC,,,,DDDD((((ÏÏÏÏ))))    wwwwiiiitttthhhh    ppppaaaarrrraaaammmmeeeetttteeeerrrrssss

(6.2.1) We fix a prime number …, and a normal and connected #[1/…]-scheme T. We assume

further that T is a "good scheme" in the sense of [Ka-RLS, 4.0], i.e., that T admits a map of finite

type to a scheme which is regular of dimension ≤ 1. We fix an integer g ≥ 0, and a curve C/T of

genus g, i.e., we fix

(6.2.1.1) π : C ¨ T,

a proper smooth morphism whose fibres are geometrically connected curves of genus g. 

(6.2.2) We suppose given an integer d0 ≥ 1 and an effective Cartier divisor D0 in C which is finite

etale over T of degree d0. We further suppose given an integer d ≥ 2g+1 and an effective Cartier

divisor D in C which is finite and flat over T of degree d, such that

(6.2.2.1) Dred = (D0)red.
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[Thus etale locally on T, D0 is a disjoint union of sections, D0 = ‹i Pi, and the divisor D is ‡aiPi

for some choice of strictly positive integers ai with ‡i ai = d..]

(6.2.3) We also suppose given an integer s ≥ 0 and an effective Cartier divisor S in C - D which is

finite etale over T of degree s, with the convention that if s = 0 then S is empty. We may also view

S as an effective Cartier divisor in C which is finite etale over T of degree s, and which is disjoint

from D0. [Thus etale locally on T, S is a disjoint union of sections, S = ‹j Qj, D0 is a disjoint

union of sections, D0 = ‹i Pi, the divisor D is ‡aiPi, and for all i and j, Pi and Qj are disjoint.]

(6.2.4) Our last data is an integer r ≥ 1 and a lisse ä$…-sheaf Ï of rank r on C - D - S, about

which we make the following two hypotheses:

(6.2.4.1) For each geometric point t of T, the lisse ä$…-sheaf Ït or rank r on Ct - Dt - St is

irreducible.

(6.2.4.2) For variable geometric points t of T, the compact Euler characteristic çc(Ct - Dt - St, Ït)

is a constant function of t.

(6.2.5) Notice that all of the conditions we have imposed are stable under arbitrary change of base

on T.

RRRReeeemmmmaaaarrrrkkkk    6666....2222....6666 If, for each geometric point t in T, the lisse sheaf Ït on the open curve Ct - Dt - St

is everywhere tame, then condition 6.2.4.2 holds trivially, for then 

çc(Ct - Dt - St, Ït) = rçc(Ct - Dt - St) = r(2 - 2g - d0 - s).

If the generic point of our normal connected scheme T is (the spectrum of) a field of characteristic

zero, this tameness is automatic, cf. [Ka-SE, 4.7.1].

RRRReeeemmmmaaaarrrrkkkk    6666....2222....7777 To understand better condition 6.2.4.2 in a less trivial case, suppose in addition that

the divisors D0 and S are disjoint unions of sections of C/T, say D0 = ‹i Pi and S = ‹j Qj, and

that the divisor D is ‡aiPi. By the Euler-Poincare formula, we have

 çc(Ct - Dt - St, Ït) 

= rçc(Ct - Dt - St) - ‡i SwanPi(t)
(Ït) - ‡j SwanQj(t)

(Ït)

=r(2 - 2g - d0 - s)- ‡i SwanPi(t)
(Ït) - ‡j SwanQj(t)

(Ït).

So condition 6.2.4.3 certainly holds if each of the Swan terms SwanPi(t)
(Ït) and SwanQj(t)

(Ït) is

a constant function of t. By Deligne's semicontinuity theorem [Lau-SC, 2.1.1], each of these Swan

terms separately is constructible and lower semicontinuous in t. Therefore 6.2.4.2 holds if and only

if each Swan term is itself a constant function of t. 

(6.2.8) Now choose an integer n invertible on T, and suppose T is given a structure of #[1/n, Ωn]-

scheme. (Here we write #[1/n, Ωn] for the ring #[1/n, X]/(”n(X)), where ”n(X) denotes the n'th

cyclotomic polynomial. Given a character

(6.2.8.1) ç : µn(#[1/n, ≈n]) ¨ (ä$…)≠

of order n, we get a lisse rank one ä$…-sheaf on ´m/#[1/n, Ωn] by pushing out by ç the Kummer
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torsor

[-n] : ´m ¨ ´m,

   x ÿ x-n,

whose structural group is µn(#[1/n, ≈n]). By pullback, we get Òç on ´m/T.

From the data (C/T, D, S) we construct the space 

X := Fct(C, d, D, S)/T.

On CX := C≠TX, we have the universal section f of I-1(DX), its zero locus Z/X, and the open

curve

CX - DX - SX - Z.

If we think of f as a section of the structural sheaf of CX - DX, then we may view CX - DX -

SX - Z as being 

(CX - DX - SX)[1/f].

Then f is an invertible function on CX - DX - SX - Z, so we may form the lisse rank one ä$…-

sheaf Òç(f) := f*Òç.

(6.2.9) We denote by 

p : CX - DX - SX - Z ¨ X

 the structural morphism, just as in 5.2.1 (but p was denoted π there).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    6666....2222....11110000 Given data (C/T, D, S, …, r, Ï, ç) satisfying all the hypotheses made above in

6.2.1-4 and 6.2.8-9, we have the following results.

1) The sheaves Rip~(Ï‚Òç(f)) on X vanish for i±1, and R1p~(Ï‚Òç(f)) is lisse.

2) The sheaves Rip*(Ï‚Òç(f)) on X vanish for i±1, and R1p*(Ï‚Òç(f)) is lisse, and of

formation compatible with arbitrary change of base.

3) The image Ì of the natural "forget supports" map 

R1p~(Ï‚Òç(f)) ¨ R1p*(Ï‚Òç(f)) 

is lisse, of formation compatible with arbitrary change of base on X. In particular, the formation of

Ì commutes with arbitrary base change on T. Thus when we base change to a geometric point of

T, i.e., to a point of T with values in the spec of an algebraically closed field k, we recover the

construction of 5.2.1.

4) If, for some integer w, the lisse sheaf Ï on C - D - S carries an orthogonal (respectively

symplectic) autoduality toward ä$…(-w),

< . > : Ï ≠ Ï ¨ ä$…(-w),

and ç has order two, then the Poincare duality pairing on X,

R1p~(Ï‚Òç(f)) ≠ R1p*(Ï‚Òç(f)) ¨

¨ R2p~(Ï‚Ï) ¨ R2p~(ä$…(-w)) ¶ ä$…(-w-1),



Chapter 6: Dependence on parameters-121

deduced from cup product and < . >, induces on Ì a symplectic (respectively orthogonal)

autoduality toward ä$…(-w-1) on X,

< , > : Ì ≠ Ì ¨  ä$…(-w-1).

pppprrrrooooooooffff Simply repeat the proof of 5.2.1. QED
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7777....0000    TTTThhhheeee    ggggeeeennnneeeerrrraaaallll    sssseeeetttt    uuuupppp    oooovvvveeeerrrr    aaaa    ffffiiiinnnniiiitttteeee    ffffiiiieeeelllldddd::::    rrrreeeellllaaaattttiiiioooonnnn    ooooffff    tttthhhheeee    sssshhhheeeeaaaaffff    ÌÌÌÌ    ::::====    TTTTwwwwiiiissssttttçççç,,,,CCCC,,,,DDDD((((ÏÏÏÏ))))    ttttoooo    LLLL    ffffuuuunnnnccccttttiiiioooonnnnssss    ooooffff

ttttwwwwiiiissssttttssss

(7.0.1) In this section, we work over a ffffiiiinnnniiiitttteeee field k, of cardinality q and characteristic p. We fix a

proper, smooth, geometrically connected curve C/k of genus g, an effective divisor D on C of

degree d ≥ 2g+1, a prime number … invertible in k, an integer r ≥ 1, and a geometrically irreducible

middle extension ä$…-sheaf Ï on C of generic rank r. We denote by Sing(Ï) fi C the finite set of

closed points of C at which Ï is not lisse, and by Sing(Ï)finite the intersection Sing(Ï)¤(C-D).

The space 

(7.0.1.1) X := Fct(C, d, D, Sing(Ï)finite)

has a natural structure of scheme over k, cf. Proposition 6.1.10. For any extension field E/k, the E-

valued points X(E) consist of those functions f in H0(CºkE, I-1(D)) whose divisor of zeroes f-

1(0) is both disjoint from D⁄Sing(Ï)finite and finite etale of degree d over E.

(7.0.2) We also fix a nontrivial ä$…-valued multiplicative character

(7.0.2.1) ç: k≠ ¨ ä$…
≠,

and denote by Òç the corresponding Kummer sheaf on ´m/k.

(7.0.3) The construction 5.2.1, carried out over the finite field k instead of over äk, provides us with

a lisse ä$…-sheaf 

Ì := Twistç,C,D(Ï) 

on X := Fct(C, d, D, Sing(Ï)finite), cf.Proposition 6.2.10. 

(7.0.4) The fundamental diophantine property of Ì is this. Given any finite extension field E/k

inside äk, and any f in X(E), the stalk Ìf of Ì at (the geometric point "f as äk-valued point" lying

over) f is the cohomology group

Ìf = H1(Cºkäk, j*(Ï‚Òç(f))),

and the action of FrobE,f on Ìf is the action of FrobE on this cohomology group. Thus we have

det(1 - TFrobE,f | Ì) 

= det(1 - TFrobE | H1(Cºkäk, j*(Ï‚Òç(f)))).

RRRReeeemmmmaaaarrrrkkkk    7777....0000....5555 By Chebotarev, any lisse ä$…-sheaf Ó on X is determined up to semisimplification

by all its local characteristic polynomials of Frobenius det(1 - TFrobE,f | Ó). Applying this fact to

Ì, and remembering that Ì is irreducible, we see that Ì is in fact determined up to isomorphism by

its fundamental diophantine property.

(7.0.6) We can also think of Ì as the sheaf whose local characteristic polynomials at E-valued

points f in X(E), 

(7.0.6.1) det(1 - TFrobE,f | Ì), 

are the global L functions of CºkE with coefficients in j*(Ï‚Òç(f)). Indeed, the sheaf

j*(Ï‚Òç(f)) on CºkE is a geometrically irreducible middle extension, which is not geometrically
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constant (because f has simple zeroes at points where Ï is lisse). Therefore we have

(7.0.6.2) Hi(Cºkäk, j*(Ï‚Òç(f))) = 0 for i ± 1.

The L-function of CºkE with coefficients in j*(Ï‚Òç(f)) is, by the Lefschetz Trace Formula,

given by the alternating product

(7.0.6.3) L(CºkE, j*(Ï‚Òç(f)))(T)

= °i=0,1,2det(1 - TFrobE | Hi(Cºkäk, j*(Ï‚Òç(f))))
(-1)i+1

.

In view of the above vanishing (7.0.6.2) of Hi for i ± 1, we have

(7.0.6.4) L(CºkE, j*(Ï‚Òç(f)))(T)

= det(1 - TFrobE | H1(Cºkäk, j*(Ï‚Òç(f))))

= det(1 - TFrobE,f | Ì) 

(7.0.7) Put

(7.0.7.1) N := rank(Ì).

(7.0.8) We fix an embedding “: ä$… ¨ ^. We further suppose that Ï is “-pure, of integer weight

denoted w. This means that for every finite extension E of k, every E-valued point x of C at which

Ï is lisse, and every eigenvalue ¬ of FrobE,x on Ï, we have

|“(¬)| = (ùE)w/2.

Because Ï is “-pure of weight w, Ì is “-pure of weight w+1, thanks to Deligne [De-WeII, 3.2.3]. 

(7.0.9) We also fix a choice åk of (ùk)-1/2 in ä$…, which may or may not map by “ to the positive

square root. This choice allows us to perform Tate twists by half-integers. In the notation of [Ka-

Sar, RMFEM, 9.0.11], Ï(n/2) is Ï‚∫deg, for ∫ := (åk)n. Thus Ï(w/2) and Ì((w+1)/2) are both

“-pure of weight zero.

7777....1111    AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss    ttttoooo    eeeeqqqquuuuiiiiddddiiiissssttttrrrriiiibbbbuuuuttttiiiioooonnnn

(7.1.1) Suppose we are given data (C/k, D, …, r, Ï, ç, “, w) as in the previous section 7.0. We wish

to apply Deligne's general equidistribution theorem [De-WeII, 3.5.3], cf. also [Ka-GKM, 3.6] and

[Ka-Sar, RMFEM, 9.2.6], to Ì. For this, we need to know the group Ggeom for Ì :=

Twistç,C,D(Ï). To this end, we suppose that after extension of scalars from k to äk, our data (C/k,

D, …, r, Ï, ç) satisfies all the hypotheses of Theorem 5.5.1, if char(k) is odd, or of Theorem 5.7.1,

if char(k) is two. Thus Ggeom for Ì is either Sp(N) or SO(N) or O(N) or a group containing

SL(N). We now discuss each of these cases separately, in order of increasing complexity.

7777....2222    TTTThhhheeee    SSSSLLLL    ccccaaaasssseeee

(7.2.1) Let us first examine in greater detail the case when Ggeom contains SL(N) (and the

hypotheses of section 7.0 are in force). Because Ì lives over a finite field k and is irreducible, we

know [De-WeII, 1.3.9] that Ggeom is a semisimple group. But the only semisimple groups

between SL(N) and GL(N) are the groups
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(7.2.1.2) GL√(N) := {A in GL(N) | det(A)√ = 1}

for √ ≥ 1 an integer. Therefore for some integer √ ≥ 1 we have

(7.2.1.3) Ggeom = GL√(N).

(7.2.2) Suppose that the parameter space X admits a k-rational point f. Then if we twist Ì by an

N'th root ∫ of 1/det(Frobk,f | Ìf), the resulting lisse sheaf Ìº∫deg is “-pure of weight zero, and all

its Frobenii land in Ggeom. We should remark here that the quantity (7.2.2.1) (-

1)Ndet(Frobk,f | Ìf) = det(-Frobk,f | Ìf) =

= det(-Frobk | H1(Cºkäk, j*(Ï‚Òç(f))))

is the constant in the functional equation for the L-function 

(7.2.2.2) L(CºkE, j*(Ï‚Òç(f)))(T).

As such, it is a product, over the closed points of C, of local constants, cf. [De-Const] and [Lau-

TFC]. At least in favorable cases, these local constants are eminently computable, cf. 7.9.5 and

8.9.2. In this sense, the recipe in 7.2.2 above for ∫ is an "explicit" one.

(7.2.3) We take 

(7.2.3.1) K := U√(N) := {A in U(N) | det(A)√ = 1},

a maximal compact subgroup of Ggeom(^). For each finite extension E/k inside äk, and each f in

X(E), we denote by ø(E, f) the Frobenius conjugacy class in K attached to Ìº∫deg at the E-valued

point f of X. Thus

(7.2.3.2) det(1 - Tø(E, f)) := “(det(1 - TFrobE,f | Ìº∫deg))

= “(det(1 - T∫deg(E/k)FrobE,f | H
1(Cºkäk, j*(Ï‚Òç(f))))).

(7.2.4) This equality 7.2.3.2 of characteristic polynomials determines ø(E, f) as a conjugacy class in

K. By Deligne's general equidistribution theorem [De-WeII, 3.5.3], cf. also [Ka-GKM, 3.6] and

[Ka-Sar, RMFEM, 9.2.6], as ùE ¨ ‘, the conjugacy classes 

{ø(E, f)}f in X(E)

become equidistributed for Haar measure in the space Kù of conjugacy classes in K.

(7.2.5) What happens if we do not assume that the parameter space X admits a k-rational point?

We can still prove the existence of a ∫ such that all Frobenii for Ìº∫deg land in Ggeom. Simply

replace Frobk,f by any element © of π1(X) which maps onto Frobk in π1(Spec(k)) = Gal(äk/k), and

take for ∫ an N'th root of 1/det(© | Ì). For any such ∫, Ìº∫deg is “-pure of weight zero (because

for an “-pure lisse sheaf, its weight is equal to its determinental weight, cf. [De-WeII, 1.3.5].

(7.2.6) Here is a more concrete version of the above recipe for a suitable ∫. For each n ≥ 1, denote

by kn fi äk the extension of k of degree n. For each n >> 0, X has a kn-valued point, say fn. Take ∫

an N'th root of 
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(7.2.6.1) det(Frobkn,fn
 | Ì)/det(Frobkn+1,fn+1

 | Ì). 

7777....3333    TTTThhhheeee    SSSSpppp    ccccaaaasssseeee

(7.3.1) Let us next consider the case in which Ï(w/2) is orthogonally self dual on C/k, and ç has

order 2 (and the hypotheses of section 7.0 are in force). Then, by Poincare duality, Ì((w+1)/2) is

symplectically self dual on X. The field k must have char(k) ± 2, simply because ç has order 2. By

hypothesis, Theorem 5.5.1 holds, so Ì has Ggeom = Sp(N). Thus the lisse sheaf Ì((w+1)/2) is “-

pure of weight zero, and all its Frobenii land in Ggeom. In this case we take

(7.3.1.1) K := USp(N),

a maximal compact subgroup of Ggeom(^). For each finite extension E/k inside äk, and each f in

X(E), we denote by ø(E, f) the Frobenius conjugacy class in K attached to Ì((w+1)/2) at the E-

valued point f of X. Thus

(7.3.1.2) det(1 - Tø(E, f)) := “(det(1 - TFrobE,f | Ì((w+1)/2)))

= “(det(1 - Tåk
deg(E/k)(w+1)FrobE,f | H

1(Cºkäk, j*(Ï‚Òç(f))))).

(7.3.2) This equality 7.3.1.2 of characteristic polynomials determines ø(E, f) as a conjugacy class in

K. By Deligne's general equidistribution theorem [De-WeII, 3.5.3], cf. also [Ka-GKM, 3.6] and

[Ka-Sar, RMFEM, 9.2.6], as ùE ¨ ‘, the conjugacy classes 

{ø(E, f)}f in X(E) 

become equidistributed for Haar measure in the space Kù of conjugacy classes in K.

7777....4444    TTTThhhheeee    OOOO    oooorrrr    SSSSOOOO    ccccaaaasssseeee

(7.4.1) Let us finally consider the case in which Ï(w/2) is symplectically self dual on C/k, and ç

has order 2 (and the hypotheses of section 7.0 are in force). Then, by Poincare duality, Ì((w+1)/2)

is orthogonally self dual as a lisse sheaf on X. The field k must have char(k) ± 2, simply because ç

has order 2. By hypothesis, Theorem 5.5.1 holds, so Ì has Ggeom either SO(N) or O(N). 

(7.4.2) If Ggeom is O(N), then the lisse sheaf Ì((w+1)/2) is “-pure of weight zero, and all its

Frobenii land in Ggeom. See Proposition 5.5.2 for various conditions which insure that Ggeom is

O(N) rather than SO(N). In particular, recall that Ggeom is O(N) if N is odd.

(7.4.3) If Ggeom is SO(N), we have

(7.4.3.1) SO(N) = Ggeom fi Garith fi O(N),

where we write Garith for the Zariski closure of the image of π1(X) under the (orthogonal)

representation corresponding to Ì((w+1)/2). Thus Garith is SO(N) if and only if det(Ì((w+1)/2))

is arithmetically trivial. In any case, we know that det(Ì((w+1)/2)) is of order 1 or 2, and that it is

geometrically trivial (because Ggeom fi SO(N)). Thus we have

(7.4.3.2)  det(Ì((w+1)/2)) = œdeg,

for œ = _1. [So for k2/k the quadratic extension of k inside äk, the pullback of Ì to Xºkk2 will

always have Garith = Ggeom = SO(N), independently of whether œ is 1 or -1.]
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(7.4.4) If Ggeom is SO(N), we can compute œ in principle as follows. If the parameter space X has

a k-rational point f, then

(7.4.4.1) œ = det(Frobk,f | Ì((w+1)/2)).

If there is no k-rational point in X, there will be an E-rational point of X for any finite extension

E/k of high enough degree. If we take E of oooodddddddd degree over k, and an f in X(E), then we still have

the recipe

(7.4.4.2) œ = det(FrobE,f | Ì((w+1)/2)).

(7.4.5) If Ggeom is SO(N) and œ = 1, then all Frobenii for Ì((w+1)/2) land in Ggeom = SO(N).

(7.4.6) If Ggeom is SO(N) and œ is -1, then Garith = O(N) contains Ggeom = SO(N) with index

two. The Frobenius conjugacy classes FrobE,f land in O-(N) for E/k of odd degree, and they land

in SO(N) for E/k of even degree.

(7.4.7) Suppose we do not know whether Ggeom is SO or O. Here is a computional way to sort

out which of the three cases

(7.4.7.1) Ggeom = O(N) = Garith,

(7.4.7.2) Ggeom = SO(N) fi Garith = O(N),

(7.4.7.3) Ggeom = SO(N) = Garith,

Ì((w+1)/2) is in. The question is whether the character of order dividing 2 of π1(X) given by

det(Ì((w+1)/2)) is nontrivial or not, both arithmetically (i.e., on π1(X)) and geometrically (i.e., on

π1
geom(X)). 

CCCCoooommmmppppuuuuttttaaaattttiiiioooonnnnaaaallll    aaaallllggggoooorrrriiiitttthhhhmmmm    7777....4444....8888 Pick a large finite extension E/k of odd degree. For each f in X(E),

compute det(FrobE,f | Ì((w+1)/2)), which a priori is _1. If both 1 and -1 occur as f varies in

X(E), we are in the first case 7.4.7.1. If only -1 occurs, we are in the second case 7.4.7.2. If only

+1 occurs, we are in the third case 7.4.7.3. [The point is that in the second case we will get only -

1, and in third case we will get only +1, whatever the odd degree extension E/k with X(E)

nonempty. If E is large, then Chebotarev for det(Ì((w+1)/2)) on X guarantees that, if we are in the

first case, then both signs 1 and -1 occur as f varies over X(E)]

(7.4.9) Here is a minor variation on 7.4.8, when X(k) is non-empty. 

CCCCoooommmmppppuuuuttttaaaattttiiiioooonnnnaaaallll    aaaallllggggoooorrrriiiitttthhhhmmmm    7777....4444....11110000,,,,    wwwwhhhheeeennnn    XXXX((((kkkk))))    iiiissss    nnnnoooonnnn----eeeemmmmppppttttyyyy    Take a large finite extension E/k of even

degree. We are in the first case 7.4.7.1.if and only if both signs occur as f varies in X(E). If only

+1 occurs, then Ggeom is SO(N), In this case, we compute œ as det(Frobk,f | Ì((w+1)/2)) at any

single k-rational point of X.

(7.4.11) Let us denote by K fi Karith maximal compact subgroups of Ggeom(^) and of

Garith(^). So we are in one of the three cases:

(7.4.11.1) K = O(N, %) = Karith,
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(7.4.11.2) K = SO(N, %) fi Karith = O(N, %),

(7.4.11.3) K = SO(N, %) = Karith.

For each finite extension E/k inside äk, and each f in X(E), we denote by ø(E, f) the Frobenius

conjugacy class in Karith attached to Ì((w+1)/2) at the E-valued point f of X. Thus

(7.4.11.4) det(1 - Tø(E, f)) := “(det(1 - TFrobE,f | Ì((w+1)/2)))

= “(det(1 - Tåk
deg(E/k)(w+1)FrobE,f | H

1(Cºkäk, j*(Ï‚Òç(f))))).

(7.4.12) If Karith is O(N, %), this equality 7.4.11.4 of characteristic polynomials determines

ø(E, f) as a conjugacy class in Karith. If Karith = SO(N, %), this equality of characteristic

polynomials only determines ø(E, f) in SO(N, %) up to conjugation by the ambient group O(N, %).

(7.4.13) If K = Karith, then by Deligne's general equidistribution theorem [De-WeII, 3.5.3],

cf. also [Ka-GKM, 3.6] and [Ka-Sar, RMFEM, 9.2.6], as ùE ¨ ‘, the conjugacy classes {ø(E,

f)}f in X(E) become equidistributed for Haar measure in the space Kù of conjugacy classes in K.

(7.4.14) If K = SO(N, %) but Karith = O(N, %), the space O(N, %)ù of conjugacy classes

in O(N, %) is a disjoint union

 O+(N, %)ù ‹ O-(N, %)ù,

where we write Oœ(N, %)ù for the set of conjugacy classes of determinant œ. In this case, Deligne's

general equidistribution theorem [De-WeII, 3.5.3], cf. also [Ka-Sar, RMFEM, 9.7.10], tells us

that as ùE ¨ ‘ through fields E/k whose degree over k has fixed parity œ = (-1)deg(E/k), the

conjugacy classes {ø(E, f)}f in X(E) become equidistributed for Haar measure in the space Oœ(N,

%)ù.

(7.4.15) If K = Karith = O(N), the equidistribution as ùE ¨ ‘ of the conjugacy classes

{ø(E, f)}f in X(E) in 

O(N, %)ù = O+(N, %)ù ‹ O-(N, %)ù

amounts to two finer statements of equidistribution. To state them, we take the Haar measure on

O(N, %) of total mass 2, restrict it to each of O_(N, %), and take its direct image to O_(N, %)ù.

We call this "Haar measure of total mass one" on O_(N, %)ù. For each finite extension E/k, and

each value of œ = _1, denote by Xœ(E) the subset of X(E) consisting of those points f in X(E) such

that

det(FrobE,f | Ì((w+1)/2)) = œ.

For each choice of œ = _1, as ùE ¨ ‘, we have

ùXœ(E)/ùX(E) ¨ 1/2,

(by Chebotarev applied to det(Ì((w+1)/2))). Therefore, for each choice of œ = _1, as ùE ¨ ‘ the

conjugacy classes {ø(E, f)}f in Xœ(E) become equidistributed for Haar measure of total mass one
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on the space Oœ(N, %)ù.

(7.4.16) When K = Karith = O(N), there is another way to index the decomposition

(7.4.16.1) O(N, %)ù = O+(N, %)ù ‹ O-(N, %)ù.

Namely, we define

(7.4.16.2) Osign œ(N) := {A in O(N) with det(-A) = œ}.

Thus for even N there is nothing new, Osign œ(N) = Oœ(N). But if N if odd, then Osign œ(N) =

O-œ(N). The reason to consider this Osign œ(N) decomposition is that for an orthogonal F, it is

det(-F) rather than det(F) which is the sign in the functional equation.

(7.4.17) For the sake of completeness, we restate the equidistribution for this breakup (still

assuming K = Karith = O(N)). For each finite extension E/k, and each value of œ = _1, denote by

Xsign œ(E) the subset of X(E) consisting of those points f in X(E) such that

det(-FrobE,f | Ì((w+1)/2)) = œ.

For each choice of œ = _1, as ùE ¨ ‘,

ùXsign œ(E)/ùX(E) ¨ 1/2,

and the conjugacy classes {ø(E, f)}f in Xsign œ(E) become equidistributed for the Haar measure of

total mass one on the space Osign œ(N, %)ù.

7777....5555    IIIInnnntttteeeerrrrlllluuuuddddeeee::::    aaaa    lllleeeemmmmmmmmaaaa    oooonnnn    ttttaaaammmmeeeennnneeeessssssss    aaaannnndddd    ccccoooommmmppppaaaattttiiiibbbblllleeee    ssssyyyysssstttteeeemmmmssss

LLLLeeeemmmmmmmmaaaa    7777....5555....1111 Let k be a finite field of characteristic p, U/k a smooth, geometrically connected

curve, and w an integer. Suppose for each prime …±p we are given a lisse $…-sheaf Ï… on U,

which is pure of weight w. Suppose the sheaves {Ï…}…±p form a $-compatible system, in the

sense that for each finite extension E/k, and each point x in U(E), the characteristic polynomial

det(1 - TFrobE,x | Ï…)

has coefficients in $, independent of …±p. Then we have the following results.

1) All the sheaves Ï… have the same rank, say r. 

2) Denote by C the complete nonsingular model of U, j : U ÿ C the inclusion. If for a single …±p

the sheaf j*Ï… is everywhere tame on C, then for every …±p the sheaf j*Ï… is everywhere tame on

C.

3) If p ≥ r+2, all the sheaves {j*Ï…}…±p are everywhere tame on C.

pppprrrrooooooooffff For 1), we get r as the common degree of any single characteristic polynomial of Frobenius.

For 2), we use a fundamental result of Deligne [De-Const, 9.8], which tells us for each "point at

infinity" y in (C-U)(äk), and each element © in the inertia group I(y), the trace of the action of © on

Ï… lies in #, independent of …±p. But Ï… is tame at y if and only if the trace of the action of every ©

in P(y) on Ï… is r. For 3), we use 2) to reduce to finding a single …±p for which j*Ï… is everywhere
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tame. Since Ï… as $…-representation of the compact group π1(U) admits a #…-form, it suffices to

pick an … such that the pro-finite group GL(r, #…) is prime to p, or equivalently, such that the finite

group GL(r, É…) is prime to p. The order of GL(r, É…) is 

°√=0 to r-1 (…r - …√) = …r(r-1)/2≠°i=1 to r (…
i - 1).

Take a prime … whose reduction mod p is a generator of the cyclic group Ép
≠. Since p-1 > r, each

factor …i - 1 is prime to p. QED

7777....6666    AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss    ttttoooo    LLLL----ffffuuuunnnnccccttttiiiioooonnnnssss    ooooffff    qqqquuuuaaaaddddrrrraaaattttiiiicccc    ttttwwwwiiiissssttttssss    ooooffff    eeeelllllllliiiippppttttiiiicccc    ccccuuuurrrrvvvveeeessss    aaaannnndddd    ooooffff    tttthhhheeeeiiiirrrr    ssssyyyymmmmmmmmeeeettttrrrriiiicccc

ppppoooowwwweeeerrrrssss    oooovvvveeeerrrr    ffffuuuunnnnccccttttiiiioooonnnn    ffffiiiieeeellllddddssss

(7.6.1) We continue to work over a ffffiiiinnnniiiitttteeee field k, of cardinality q and odd characteristic p. We fix a

proper, smooth, geometrically connected curve C/k of genus g, and a prime number … invertible in

k. Over the function field k(C), we are given an elliptic curve E/k(C) with nnnnoooonnnnccccoooonnnnssssttttaaaannnntttt j invariant.

We denote by 

(7.6.1.1) j : U fi C 

the inclusion of any dense open set of C over which E/k(C) extends to an elliptic curve π: ‰ ¨ U. 

(7.6.2) The sheaf R1π*ä$… on U is lisse of rank 2, pure of weight one, and part of a $-compatible

system, hence everywhere tame if p ≥ 5. If p=3, we aaaassssssssuuuummmmeeee that R1π*ä$… is everywhere tame. The

sheaf R1π*ä$…(1/2) on U is lisse of rank 2, pure of weight zero, and symplectically self-dual. We

define 

(7.6.2.1) Ï := j*R1π*ä$…(1/2)

on C. By the Neron-Ogg-Shafarevic criterion of good reduction [S-T, GR], the open set on

which Ï is lisse is the largest open set over which E/k(C) has good reduction:

Sing(Ï) = Sing(E/k(C)).

(7.6.3) For every integer n ≥ 0, the lisse sheaf Symmn(R1π*ä$…(1/2)) on U is lisse of rank n+1,

pure of weight zero, and everywhere tame. It is symplectically self-dual if n is odd, and it is

orthogonally self-dual if n is even. Because E/k(C) has nonconstant j invariant, the sheaf

R1π*ä$…(1/2) has Ggeom = SL(2), cf. [De-WeII, 3.5.5]. This has the consequence that for every

integer n ≥ 0, Symmn(R1π*ä$…(1/2)) is geometrically irreducible (because the symmetric powers of

the standard two-dimensional representation of SL(2) are irreducible). For odd (respectively even)

n, Symmn(R1π*ä$…(1/2)) is symplectically (respectively orthogonally) self dual. 

(7.6.4) For every integer n ≥ 0, we define a geometrically irreducible middle extension sheaf Ïn on

C by

(7.6.4.1) .Ïn := j*Symmn(R1π*ä$…(1/2)).

Thus Ï1 is the Ï defined above. For every n ≥ 0, we have

(7.6.4.2) Sing(Ïn) fi Sing(Ï) = Sing(E/k(C)).

(7.6.5) Suppose that at some point x in C(äk), the action of the local monodromy group I(x) on Ï is
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unipotent and nontrivial, or equivalently [S-T, GR] that E has multiplicative reduction at x. At such

a point, the action of I(x) is automatically tame (because by unipotence its image is pro-…). If we

pick a topological generator of the tame quotient Itame(x) of I(x), then © acts on Ï(x) by a single

unipotent Jordan block of size two, Unip(2).

(7.6.6) At any point x in C(äk) where E has multiplicative reduction, a topological generator © of

I(x)tame acts by Symmn(Unip(2)) = Unip(n+1), a single unipotent Jordan block of size n+1. Thus

we have

(7.6.6.1) Ïn(x)/Ïn(x)I(x) ¶ Unip(n)

as representation of I(x). In particular, we have the dimension formula

(7.6.6.2) dim(Ïn(x)/Ïn(x)I(x)) = n.

TTTThhhheeeeoooorrrreeeemmmm    7777....6666....7777 Let k be a finite field of odd characteristic, C/k a proper, smooth, geometrically

connected curve  of genus g, … a prime number … invertible in k, “ an embedding of ä$… into ^. Let

E/k(C) be an elliptic curve E/k(C) with nonconstant j invariant, such that that R1π*ä$… is

everywhere tame. Let D√, √ ≥ 1, be a sequence of effective divisors in C, whose degrees d√ ≥

2g+1 are strictly increasing. 

Denote by 

j : U fi C 

the inclusion of any dense open set of C over which E/k(C) extends to an elliptic curve π: ‰ ¨ U,

and put, for each n ≥ 0,

.Ïn := j*Symmn(R1π*ä$…(1/2)).

For each pair of integers (√ ≥ 1, n ≥ 0), denote

X√,n := Fct(C, d√, D√, Sing(Ïn)finite).

Denote by Ì√,n := Twistç2,C,D√
(Ïn) the lisse sheaf on Xn,√ constructed out of Ïn and the

quadratic character ç2 of k≠ by the recipe of 5.2.1, but carried out over k instead of äk, cf. 6.2.10.

Denote by N√,n the rank of Ì√,n. Thus

N√,n ≥ (2g - 2 + d√)(n+1).

Then we have the following results.

1) Fix an even integer n ≥ 0. Take √ sufficiently large that we have

d√ ≥ 4g+4,

and

2g - 2 + d√ > Max(2ùSing(Ï1)(äk), 72(n+1)).

The lisse sheaf Ì√,n(1/2) on X√,n is “-pure of weight zero and symplectically self-dual, and

Ggeom = Sp(N√,n). Put K:= USp(N√,n), a maximal compact subgroup of Ggeom(^). For each
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finite extension E/k inside äk, and each f in X√,n(E), we denote by ø(E, f) the Frobenius conjugacy

class in USp(N√,n) attached to Ì√,n(1/2) at the E-valued point f of X√,n. Thus

det(1 - Tø(E, f)) := “(det(1 - TFrobE,f | Ì√,n(1/2))).

As ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in X√,n(E) become equidistributed for Haar measure

in the space USp(N√,n)ù of conjugacy classes in USp(N√,n).

2) Fix an odd integer n ≥ 0. Suppose that for every √, there is a äk-valued point in C - D√ at which

E has multiplicative reduction. Take √ sufficiently large that we have

d√ ≥ 4g+4,

and

2g - 2 + d√ > Max(2ùSing(Ï1)(äk), 72(n+1)).

The lisse sheaf Ì√,n(1/2) on X√,n is “-pure of weight zero and orthogonally self-dual, and Ggeom

= O(N√,n). Put K:= O(N√,n, %), a maximal compact subgroup of Ggeom(^). For each finite

extension E/k inside äk, and each f in X√,n(E), we denote by ø(E, f) the Frobenius conjugacy class

in O(N√,n, %) attached to Ì√,n(1/2) at the E-valued point f of X√,n. Thus

det(1 - Tø(E, f)) := “(det(1 - TFrobE,f | Ì√,n(1/2))).

As ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in X√,n(E) become equidistributed for Haar measure

in the space O(N√,n, %)ù of conjugacy classes in O(N√,n, %).

pppprrrrooooooooffff By assumption, Ï1 and hence all the sheaves Ïn are everywhere tame. Since ç is not of

order 4 or 6, Theorem 5.5.1 will apply to Ì√,n provided only that d√ ≥ 4g+4 and

2g - 2 + d√ > Max(2ùSing(Ïn)(äk), 72rank(Ïn)).

Now rank(Ïn) = n+1, and Sing(Ïn) fi Sing(Ï1), so this last inequality will hold if

2g - 2 + d√ > Max(2ùSing(Ï1)(äk), 72(n+1)).

Assertion 1) is thus an instance of the Sp case 7.3 of the preceeding discussion. In assertion 2), the

hypothesis of multiplicative reduction at a point x of C - D√ gives

dim(Ïn(x)/Ïn(x)I(x)) = n.

As n is odd, Proposition 5.5.2, part 1) shows that Ggeom is O(N√,n) rather than SO(N√,n). Once

we have this, assertion 2) becomes an instance of the Ggeom = O = Garith case 7.4.15 of the

preceeding discussion. QED

7777....7777    AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss    ttttoooo    LLLL----ffffuuuunnnnccccttttiiiioooonnnnssss    ooooffff    PPPPrrrryyyymmmm    vvvvaaaarrrriiiieeeettttiiiieeeessss    

TTTThhhheeeeoooorrrreeeemmmm    7777....7777....1111 Let k be a finite field of odd characteristic, C/k a proper, smooth, geometrically
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connected curve of genus g, … a prime number … invertible in k, “ an embedding of ä$… into ^. Let D

be an effective divisor in C, whose degree d satisfies

d ≥ 4g+4 

and

2g - 2 + d > 4.

Take Ï to be the constant sheaf ä$… on C. Thus Ï is everywhere lisse of rank one, pure of weight

zero, and orthogonally self-dual.

Denote

X := Fct(C, d, D, &).

Denote by Ì := Twistç2,C,D(ä$…) the lisse sheaf on X constructed out of Ï := ä$… and the

quadratic character ç2 of k≠ by the recipe of 5.2.1, but carried out over k instead of äk, cf. 6.2.10.

Concretely, for E/k a finite extension of k, and f in X(E), the stalk Ìf of Ì at f is H1(Cºkäk,

j*Òç2(f)), the H1 of the Prym variety attached to the double cover C(f1/2) of CºkE, or

equivalently the odd part of H1(C(f1/2)ºEäk, ä$…).

Denote by N the rank of Ì. Thus

N ≥ 2g - 2 + d.

Then the lisse sheaf Ì(1/2) on X is “-pure of weight zero and symplectically self-dual, and Ggeom

= Sp(N). Put K:= USp(N), a maximal compact subgroup of Ggeom(^). For each finite extension

E/k inside äk, and each f in X(E), denote by ø(E, f) the Frobenius conjugacy class in USp(N)

attached to Ì(1/2) at the E-valued point f of X. Thus

det(1 - Tø(E, f)) := “(det(1 - TFrobE,f | Ì(1/2)))

= “(det(1 - TFrobE | H1
c(Cºkäk, j*Òç2(f))(1/2))).

As ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in X(E) become equidistributed for Haar measure in

the space USp(N)ù of conjugacy classes in USp(N).

pppprrrrooooooooffff This is a special case of the Sp discussion 7.3 above. QED

7777....8888    FFFFaaaammmmiiiilllliiiieeeessss    ooooffff    hhhhyyyyppppeeeerrrreeeelllllllliiiippppttttiiiicccc    ccccuuuurrrrvvvveeeessss    aaaassss    aaaa    ssssppppeeeecccciiiiaaaallll    ccccaaaasssseeee If the curve C is @1, then the Prym variety

attached to the double cover C(f1/2) of CºkE is simply the Jacobian of the hyperelliptic curve of

equation y2 = f(x). So the sheaf Ì in this case is just the H1 along the fibres in the family of

hyperelliptic curves {y2 = f(x)}f in X over the space X :=Fct(@1, d, D, &). As @1 has genus g=0,

we find that Ì has Ggeom the full symplectic group, provided only that the effective D has degree

d ≥ 7. If we successively take for D the divisor d‘, d = 7, 8, 9, ..., we recover [Ka-Sar, RMFEM,

10.1.18.3 and 10.1.18.5] in every genus g ≥ 3.
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7777....9999    AAAApppppppplllliiiiccccaaaattttiiiioooonnnn    ttttoooo    LLLL----ffffuuuunnnnccccttttiiiioooonnnnssss    ooooffff    çççç----ccccoooommmmppppoooonnnneeeennnnttttssss    ooooffff    JJJJaaaaccccoooobbbbiiiiaaaannnnssss    ooooffff    ccccyyyycccclllliiiicccc    ccccoooovvvveeeerrrriiiinnnnggggssss    ooooffff    ddddeeeeggggrrrreeeeeeee    nnnn    ≥≥≥≥    3333

iiiinnnn    oooodddddddd    cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc

TTTThhhheeeeoooorrrreeeemmmm    7777....9999....1111 Let k be a finite field of odd characteristic p, C/k a proper, smooth, geometrically

connected curve  of genus g, … a prime number … invertible in k, “ an embedding of ä$… into ^. Let 

ç : k≠ ¨ ä$…
≠

be a nontrivial character of k≠, of order n ≥ 3. Define

m := the order of ç≠ç2.

[Thus if n is odd, m = 2n, if n is 2d with d odd then m = d, and if n is divisble by 4 then m = n.]

Let D be an effective divisor in C, whose degree d satisfies

d ≥ 4g+4, 

and

2g - 2 + d > 4.

Take Ï to be the constant sheaf ä$… on C. Thus Ï is everywhere lisse of rank one, and pure

of weight zero.

Denote

X := Fct(C, d, D, &).

Denote by Ì := Twistç,C,D(ä$…) the lisse sheaf on X constructed out of Ï := ä$… and the character

ç of k≠ by the recipe of 5.2.1, but carried out over k instead of äk, cf. 6.2.10. Concretely, for E/k a

finite extension of k, and f in X(E), the stalk Ìf of Ì at f is 

Ìf = H1
c(Cºkäk, j*Òç(f)),

the ç-component of H1(C(f1/n)ºEäk, ä$…).

Denote by N the rank of Ì. Thus

N ≥ 2g - 2 + d.

Suppose further that one of the following three conditions is satisfied:

a) n is odd,

b) n • 0 mod 4,

c) n is even, n/2 is odd, and over äk, D = ‡aiPi with each ai odd.

Then the lisse sheaf Ì on X is “-pure of weight one, and Ggeom is the group 

GLm(N) := {A in GL(N) | det(A)m = 1}

pppprrrrooooooooffff Write D as the sum of effective divisors D1 + D2 with degrees d1 ≥ 2g+2 and d2 ≥ 2g+1,

such that D2 = ‡ciPi has all its nonzero ci invertible in k. This is possible by Corollary 5.4.8, part

2). If g=0, do this so that d2 ≥ 2. (If g = 0, then d ≥ 6 > 4g+5, so we may apply Corollary 5.4.8,

part 1).)

Pick f1 and f2 as in the statement of Theorem 5.4.9. Then the pullback Ó := [t ÿ f1(t-
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f2)]*Ì of Ì√ to !1 - CritVal(f2, Ï‚Òç(f1)) has Ggeom containing SL(N). Moreover, f2 has at

least one critical value, and the local monodromy of Ó at each critical value of f2 is a

pseudoreflection of determinant ç≠ç2, a character of order m. The local monodromy of Ó at the

image under f2 of each zero of f1 is a pseudoreflection of determinant ç2, a character of order

dividing m. The sheaf Ó has no other finite singularities, and is tame at ‘. Therefore det(Ó) as a

character of π1
geom is generated by its local monodromies at finite distance, so has order m. Since

n ≥ 3, we have m ≥ 3. By the paucity of choice, Ggeom for Ó is GLm(N).

Therefore Ggeom for Ì itself contains GLm(N). So it suffices to show that we have an a

priori inclusion Ggeom fi GLm(N), i.e., to prove the following lemma.

LLLLeeeemmmmmmmmaaaa    7777....9999....2222 Hypotheses and notations as in Theorem 7.9.1 above, det(Ì)ºm is geometrically

trivial. 

pppprrrrooooooooffff Suppose first that either a) or b) holds. Then m is the number of roots of unity in the field

$(ç), and the result follows from the fact that Ì is part of a $(ç)-compatible system of lisse

sheaves on X, cf. [Ka-ACT, the "trivial" part of the proof of 5.2 bis]. 

Suppose now that c) holds. Then n = 2m with m odd. All the ai are nonzero mod n,

because they are all odd. The idea is to use the argument of [Ka-ACT, 5.2 bis]. The sheaf Ì was

constructed as the image of the natural "forget supports" map 

Ì~(ç) := R1π~(Òç(f)) ¨ R1π*(Òç(f)) := Ì*(ç).

Because all the ai are nonzero mod n, this map is an isomorphism, as one verifies by checking fibre

by fibre. In other words, we have

Ì~(ç) ¶ Ì(ç).

So it suffices to show that det(Ì~(ç))ºm is geometrically constant. 

If we replace ç by the quadratic character ç2 of k≠, and form the analogous sheaves Ì~(ç2)

and Ì(ç2), we have

Ì~(ç2) ¶ Ì(ç2),

because all the ai are odd. But Ì(ç2) is symplectic, so det(Ì(ç2)) and hence det(Ì~(ç2)) are

geometrically trivial. So it suffices to show that we have a geometric isomorphism

det(Ì~(ç))ºm ¶ det(Ì~(ç2))ºm.

This results from the "change of ¬, reduction mod ¬, change of ç" argument of [Ka-ACT, 5.2 bis],

which is valid independent of any hypotheses on the ai. QED

((((7777....9999....3333))))  What happens in Theorem7.9.1 above if we allow ç to have order n ≥ 3 with n = 2m with

m odd, m ≥ 3, but do not make any hypothesis on D? The order of ç≠ç2 is m, but $(ç) contains n

= 2m roots of unity. The compatible system argument of [Ka-ACT, the "trivial" part of the proof
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of 5.2 bis] shows that det(Ì)º2m is geometrically trivial. The argument in the proof of

Theorem7.9.1 concerning Ó remains valid, and shows that det(Ó) has geometric order m. Thus

Ggeom for Ì is either GLm(N) or it is GL2m(N). In fact, both cases arise. Here is the precise

result.

TTTThhhheeeeoooorrrreeeemmmm    7777....9999....4444 Notations as in Theorem 7.9.1, suppose that ç has order n ≥ 3 with n = 2m and m

odd, m ≥ 3. If there exists an index i such that ai is even but not divisible by n, then Ggeom for 

Ì := Twistç,C,D(ä$…)

 is GL2m(N). If there exists no such index i, i.e., if every ai is either odd or divisible by n, then

Ggeom for Ì is GLm(N).

pppprrrrooooooooffff Since ç is of order n ≥ 3, we know already that Ggeom for Ì is either GLm(N) or it is

GL2m(N). We need only determine whether or not det(Ì)ºm is geometrically trivial.

Because we are trying to determine Ggeom, we may extend scalars from k to any finite

extension E/k (and simultaneously replace ç by the character ç«NormE/k). Thus it suffices to treat

universally the case in which D = ‡aiPi with each Pi a k-valued point of C. Moreover, we know

that det(Ì)ºm has, geometrically, order either one or two. We may and will further assume that k is

large enough that, in addition, both of the following conditions hold:

1) det(Ì)ºm is geometrically trivial if and only if det(Ì)ºm is constant on the set of k-valued

points f in X(k). 

2) ùX(k)/ùL(D) > 1/2.

For a nontrivial character ® of k≠, of order denoted order(®), denote by Div(®) fi Dred the

set of those points Pi whose coefficient ai is divisible by order(®). 

Given f in X(k), we have the sheaf Ò®(f) on (C-D)[1/f]. Denote by 

j : (C-D)[1/f] ¨ C

the inclusion  We have a short exact sequence of sheaves on C,

0 ¨ j~Ò®(f) ¨ j*Ò®(f) ¨ ·Pi in Div(®) (j*Ò®(f))|Pi ¨ 0.

At each Pi in Div(®), (j*Ò®(f))|Pi is a skyscraper sheaf of rank one at Pi, on which Frobk,Pi
 acts

as a scalar. This scalar is computed in terms of the auxiliary choice of a uniformizing parameter πi

at Pi as follows. In the local ring ØC,Pi
, one forms the unit

ëfi := f≠(πi)
ai.

Its value ëfi(Pi) in the residue field k is nonzero (because f has a pole of order ai at Pi) and it well-

defined in k≠/(k≠)order(®), independent of the auxiliary choice of πi (because ai • 0 mod

order(®)). Then we have
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Frobk,Pi
 | (j*Ò®(f))|P = ®(ëfi(Pi)).

The long exact cohomology sequence gives a short exact sequence 

0 ¨ H0(C‚käk, ·Pi in Div(®) (j*Ò®(f))|Pi) ¨ 

¨ H1(C‚käk, j~Ò®(f)) ¨ H1(C‚käk, j*Ò®(f)) ¨ 0.

This in turn gives 

det(Frobk,f | Ì~(®)) = det(Frobk,f | Ì(®))(°Pi in Div(®) ®(ëfi(Pi))).

Now take ® to be successively ç and the quadratic character, ç2. We obtain

det(Frobk,f | Ì~(ç)) = det(Frobk,f | Ì(ç))(°Pi in Div(ç) ç(ëfi(Pi)))

and

det(Frobk,f | Ì~(ç2)) = det(Frobk,f | Ì(ç2))(°Pi in Div(ç2) ç2(ëfi(Pi))).

Raise each of these relations to the m'th power, and remember that çm = (ç2)m =ç2. We get

det(Frobk,f | Ì~(ç2))m/det(Frobk,f | Ì~(ç))m 

= det(Frobk,f | Ì(ç2))m/det(Frobk,f | Ì(ç))m ≠

≠(°Pi in Div(ç2) - Div(ç) ç2(ëfi(Pi))).

We have already remarked above that det(Ì~(ç2))ºm/det(Ì~(ç))ºm is geometrically constant, so

the left hand side is a constant function of f in X(k). As Ì(ç2) is symplectic, the factor

det(Frobk,f | Ì(ç2))m

is a constant function of f in X(k). Thus

det(Frobk,f | Ì(ç))m/(°Pi in Div(ç2) - Div(ç) ç2(ëfi(Pi)))

is a constant function of f in X(k). Therefore det(Ì(ç))ºm is geometrically constant if and only if

the expression

(°Pi in Div(ç2) - Div(ç) ç2(ëfi(Pi))) 

= ç2(°Pi in Div(ç2) - Div(ç) ëfi(Pi))

is a constant function of f in X(k). 

The set Div(ç2) - Div(ç) consists precisely of those Pi in D such that ai is even but not

divisible by n. If this set is empty, then det(Ì(ç))m is geometrically constant, as required.

Suppose that 

E := Div(ç2) - Div(ç)

 is nonempty. We must show that as f varies in X(k), the expression 

(°Pi in E ç2(ëfi(Pi)))

is not constant. Equivalently, we must show that as f varies in X(k), the product °Pi in E ëfi(Pi) in

k≠ assumes both square and nonsquare values. If ùE is odd, this is easy to see. Indeed, given f in
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X(k), consider also åf, for f in k≠ which is a nonsquare. If ùE is even, we must work a bit harder.

Here is an argument which works irrespective of the cardinality of E, but just requires E to be

nonempty.

Each Pi in E has multiplicity ai in D which is eeeevvvveeeennnn (and nonzero mod n). In particular, for

each Pi in E, we have

ai - 1 ≥ ai/2.

Thus we have

deg(D - E) ≥ deg(D)/2 ≥ 2g+2 > 2g-2.

Now consider the map

L(D) ¨ °Pi in E k,

f in L(D) ¨ °Pi in E ëfi(Pi).

This is a linear map, whose kernel is L(D - E). So we have a left exact sequence

0 ¨ L(D - E) ¨ L(D) ¨ °Pi in E k.

Since both D and D-E have degree > 2g-2, a dimension count shows that the last map is

surjective:

L(D) n °Pi in E k.

Let us denote by L(D)(≠) the subset of L(D) which, under the above map, lands in °Pi in E k≠.

Thus

L(D)(≠) = L(D) - ⁄P in E L(D - P),

L(D)(≠) n °Pi in E k≠.

We next restrict this last map to X(k) fi L(D)(≠). 

X(k) ¨ °Pi in E k≠.

Suppose that for every f in X(k), °Pi in E ëfi(Pi) is a square [resp. a nonsquare] in k. Denote

by Æ the subset of °Pi in E k≠ consisting of those tuples whose product is a square [resp. a

nonsquare]. For each © in Æ, denote by X(k)(©) its inverse image in X(k). Then X(k)(©) lies in

L(D)(©), the inverse image of © in L(D). Now L(D)(©) is an additive torsor under L(D-E), so it

has cardinality that of L(D-E). So we have a trivial inequality

ùX(k)(©) ≤ ùL(D)(©) = ùL(D-E).

Summing over Æ, which has cardinality (1/2)(q - 1)ùE, we find

ùX(k) = ‡© ùX(k)(©) ≤ ùL(D-E)ùÆ 

≤ ùL(D)≠q-ùE≠(1/2)(q - 1)ùE 

≤ (1/2)ùL(D)((q-1)/q)ùE < (1/2)ùL(D).

This inequality contradicts the assumption that k was large enough that ùX(k)/ùL(D) > 1/2.

Therefore the expression
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(°Pi in Div(ç2) - Div(ç) ç2(ëfi(Pi)))

assumes both values _1 as f varies over X(k). This in turn shows that det(Ì(ç))ºm is not

geometrically constant. QED

(7.9.4) We now wish to give explicit equidistribution results for sheaves 

Ì(ç) := Twistç,C,D(ä$…)

on X constructed above, ç of order n ≥ 3. We have determined that Ggeom for Ì(ç) is of the form

GL√(N), with √ usually equal to m := the order of ç≠ç2, but sometimes √ can be n. We know that

√ = m except in the case that n = 2m with m odd, m ≥ 3, and, over äk, D is ‡aiPi with each ai either

odd or divisible by n, in which case √ = n.

AAAArrrriiiitttthhhhmmmmeeeettttiiiicccc    DDDDeeeetttteeeerrrrmmmmiiiinnnnaaaannnntttt    FFFFoooorrrrmmmmuuuullllaaaa    7777....9999....5555 Let k be a finite field of odd characteristic p, C/k a proper,

smooth, geometrically connected curve  of genus g, … a prime number … invertible in k, “ an

embedding of ä$… into ^. Let 

ç : k≠ ¨ ä$…
≠

be a nontrivial character of k≠, of order n. 

Let D be an effective divisor in C, whose degree d satisfies

d ≥ 4g+4, 

and

2g - 2 + d > 4.

Suppose that, over äk, D is ‡aiPi. Consider the following product of Gauss sums:

Const(ç, D) := œ(ç2, D)qg-1(-G(¥, ç))d(°i (-G(¥, ç-ai))).

Here ¥ is any nontrivial ä$…-valued additive character of k, and we define, for any ä$…-valued

character ® of k≠, possibly trivial,

G(¥, ®) := ‡x in k≠ ¥(x)®(x).

[Thus G(¥, ú) = -1.] The quantity œ(ç2, D) is defined to be

œ(ç2, D) = ç2(-1)
S

, for 

S := (1/2)(‡i with ai even ai) +(1/2)(‡i with ai odd (1 + ai)).

Equivalently, œ(ç2, D) is that choice of _1 such that

Const(ç2, D) = an integer power of q.

The quantity Const(ç, D) lies in $(ç), and does not depend on the auxiliary choice of ¥ used to

define it (because d = ‡ ai).

Take Ï to be the constant sheaf ä$… on C. Thus Ï is everywhere lisse of rank one, and pure

of weight zero.
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Denote

X := Fct(C, d, D, &).

Denote by 

Ì(ç) := Twistç,C,D(ä$…)

the lisse sheaf on X constructed out of Ï := ä$… and the character ç of k≠ by the recipe of 5.2.1, but

carried out over k instead of äk, cf. 6.2.10. Concretely, for E/k a finite extension of k, and f in X(E),

the stalk Ìf of Ì at f is H1(Cºkäk, j*Òç(f)),the ç-component of H1(C(f1/n)ºEäk, ä$…).

Denote by 

√ := the geometric order of det(Ì(ç)). 

Then we have the following arithmetic determinant formula. 

det(Ì(ç))º√ = ∫deg for ∫ = Const(ç, D)√.

pppprrrrooooooooffff If ç is ç2, then Ì(ç2)(1/2) is symplectic, and pure of weight zero, so √ = 1, the rank of

Ì(ç2) is even, and det(Ì(ç2)) is given by ∫deg for ∫ = qrank(Ì(ç2))/2. So the assertion is correct

in this case.

If ç has order n ≥ 3, then what we are asserting is that for every finite extension E/k, and

every f in X(E), the ratio

det(FrobE | H1(Cºkäk, j*Òç(f)))/Const(ç, D)deg(E/k)

is a root of unity of order dividing √. 

Let us first treat the easy case, in which √ is the number of roots of unity in the field $(ç).

Since both numerator and denominator lie in $(ç), we need only show that the ratio is a root of

unity. So we may replace the numerator by

det(-FrobE | H1(Cºkäk, j*Òç(f))),

which is the reciprocal of the constant in the functional equation for the L-function of CºkE with

coefficients in j*Òç(f). This is an abelian L-function, with everywhere tame character, and its

constant is a product of usual gauss sums, as explained in Tate's thesis, cf. [De-Const, 5.9 and

5.10]. By using the Hasse-Davenport theorem to control the behavior of -G(¥, ®) under field

extension, it is an elementary exercise,to check that, up to roots of unity, the reciprocal of our

Const(ç, D)deg(E/k) agrees with the global constant for the L-function of CºkE with coefficients

in j*Òç(f). 

The harder case is that in which n = 2m with m odd, and every ai either odd or divisible by

n. Here we must show that for every finite extension E/k, and every f in X(E), the ratio

det(FrobE | H1(Cºkäk, j*Òç(f)))
m/Const(ç, D)mdeg(E/k),

a priori _1 by the above argument, is in fact 1 rather than -1. Let us denote by Dodd the set of Pi

in D whose ai is odd. Then the points in D but not in Dodd all have their ai divisible by n. Let us

denote
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U := (C - Dodd)ºkE - (zeroes of f).

So for ® any character of k≠ of the form 

ç2≠(a character of order dividing m),

j*Ò®(f) is a lisse rank one sheaf on U, extended by zero to all of CºkE. For any finite extension

E1/E, and and E1-valued point P in Dred - Dodd, i.e., a point of CºkE1 at which f has a pole of

order divisible by n, pick a uniformizing parameter π at P, and define ëf(P) in E1
≠ to be the

reduction mod π of the π-adic unit f/πordP(f). Then ëf(P) is well-defined in (E1)≠/(n'th powers)

independent of the auxiliary choice of uniformizing parameter π, and FrobE1,P | j*Ò®(f) is the

scalar

FrobE1,P | j*Ò®(f) = ®(NormE1/k(ëf(P))).

Thus, for any such ® we have

H*(Cºkäk, j*Ò®(f)) = H*
c(UºEäk, j*Ò®(f)),

and these groups vanish for i ± 1.

The idea is to show that for all such ®, the ratio

Ratio(®) := det(FrobE | H1
c(UºEäk, j*Ò®(f)))

m/Const(®, D)mdeg(E/k),

a priori _1, is in fact 1. We proceed by induction on the number of distinct odd primes dividing the

order of ç. If there are none, then ç is ç2 and we are done. In carrying out the induction, we have

ç = ®≠Ú, with Ú a character of some odd …-power order, and ® of order prime to …. We then pick a

finite place ¬|… of $(ç). As #[ç]-valued functions on k≠, ® • ®≠Ú mod ¬. In Ratio(®) and in

Ratio(®≠Ú), both numerator and denominator are ¬-adic units, and we have congruences

det(FrobE | H1
c(UºEäk, j*Ò®(f))) 

• det(FrobE | H1
c(UºEäk, j*Ò(®≠Ú)(f))) mod ¬,

and

Const(®, D) • Constr(®≠Ú, D) mod ¬.

So we find a congruence

Ratio(®) • Ratio(®≠Ú) mod ¬.

Since both ratios are _1, we infer that we have an equality

Ratio(®) = Ratio(®≠Ú).

Proceeding in this way, we eventually get Ratio(ç) = Ratio(ç2). QED

EEEExxxxpppplllliiiicccciiiitttt    EEEEqqqquuuuiiiiddddiiiissssttttrrrriiiibbbbuuuuttttiiiioooonnnn    CCCCoooorrrroooollllllllaaaarrrryyyy    7777....9999....6666 Hypotheses and notations as in 7.9.5 above, suppose ç

has order n ≥ 3. Denote by N the rank of Ì(ç), and by √ the geometric order of det(Ì(ç)). Put K :=

U√(N) := {A in U(N) | det(A)√ = 1}, a maximal compact subgroup of Ggeom(^). Denote by å
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any N'th root of 1/Const(ç, D). Then Ìº(å)deg is pure of weight zero, and has Garith = Ggeom.

For each finite extension E/k inside äk, and each f in X(E), we denote by ø(E, f) the Frobenius

conjugacy class in U√(N) attached to Ìº(å)deg at the E-valued point f of X√. Thus

det(1 - Tø(E, f)) := “(det(1 - TFrobE,f | Ìº(å)deg ))

= “(det(1 - (å)deg(E/k)TFrobE | H1
c(Cºkäk, j*Òç(f)))).

As ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in X(E) become equidistributed for Haar measure in

the space U√(N)ù of conjugacy classes in U√(N).

7777....11110000    AAAApppppppplllliiiiccccaaaattttiiiioooonnnn    ttttoooo    LLLL----ffffuuuunnnnccccttttiiiioooonnnnssss    ooooffff    çççç----ccccoooommmmppppoooonnnneeeennnnttttssss    ooooffff    JJJJaaaaccccoooobbbbiiiiaaaannnnssss    ooooffff    ccccyyyycccclllliiiicccc    ccccoooovvvveeeerrrriiiinnnnggggssss    ooooffff    oooodddddddd    ddddeeeeggggrrrreeeeeeee

nnnn    ≥≥≥≥    3333    iiiinnnn    cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc    2222

(7.10.1) The results in this case are very similar to those we found above in odd

characteristic.

TTTThhhheeeeoooorrrreeeemmmm    7777....11110000....2222 Let k be a finite field of characteristic 2, C/k a proper, smooth, geometrically

connected curve  of genus g, … a prime number … invertible in k, “ an embedding of ä$… into ^. Let 

ç : k≠ ¨ ä$…
≠

be a nontrivial character of k≠, of (necessarily odd) order n ≥ 3. 

Let D be an effective divisor in C, whose degree d satisfies

d ≥ 12g + 7

(and hence 2g - 2 + d > 4 automatically). Over äk, write D as ‡i aiPi.

Take Ï to be the constant sheaf ä$… on C. Thus Ï is everywhere lisse of rank one, and pure

of weight zero.

Denote

X := Fct(C, d, D, &).

Denote by 

Ì := Twistç,C,D(ä$…)

the lisse sheaf on X constructed out of Ï := ä$… and the character ç of k≠ by the recipe of 5.2.1, but

carried out over k instead of äk, cf. 6.2.10. Concretely, for E/k a finite extension of k, and f in

X√(E), the stalk Ìf of Ì at f is H1
c(Cºkäk, j*Òç(f)),the ç-component of H1(C(f1/n)ºEäk, ä$…).

Denote by N the rank of Ì. Thus

N ≥ 2g - 2 + d.

Then the lisse sheaf Ì on X is “-pure of weight one, and Ggeom is the group 

GL2n(N) := {A in GL(N) | det(A)2n = 1}.

Define

Const(ç, D) := qg-1(-G(¥, ç))d°i (-G(¥, ç-ai)).
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Denote by å any N'th root of 1/Const(ç, D). Then Ìº(å)deg is pure of weight zero, and has Garith

= Ggeom. For each finite extension E/k inside äk, and each f in X(E), we denote by ø(E, f) the

Frobenius conjugacy class in U2n(N) attached to Ìº(å)deg  at the E-valued point f of X√. Thus

det(1 - Tø(E, f)) := “(det(1 - TFrobE,f | Ìº(å)deg ))

= “(det(1 - (å)deg(E/k)TFrobE | H1
c(Cºkäk, j*Òç(f)))).

As ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in X(E) become equidistributed for Haar measure in

the space U2n(N)ù of conjugacy classes in U2n(N).

pppprrrrooooooooffff That Ggeom for Ì contains SL(N) is a special case of Theorem 5.7.1. Because Ì is part of a

$(ç)-compatible system, and 2n is the number of roots of unity in $(ç), det(Ì)º2n is

geometrically trivial, and hence Ggeom lies in GL2n(N). To show that Ggeom contains GL2n(N),

we argue as follows. Exactly as in the proof of Theorem 5.6.2, a pullback Ó of Ì to !1 -

CritVal(f2, Ï‚Òç(f1)) has local monodromy at each critical value of f2 a pseudoreflection whose

determinant has order 2n, and Ggeom for Ó contains SL(N). Therefore Ggeom for Ó contains

GL2n(N), and hence Ggeom for Ì contains GL2n(N).

Exactly as in the proof of 7.9.5, Tate's theory of local constants for abelian L-functions

shows that we have an isomorphism det(Ì)º2n ¶ (Const(ç, D)2n)deg. Therefore if we take å to

be any N'th root of 1/Const(ç, D), then Ìº(å)deg is pure of weight zero, and has Garith = Ggeom.

Then apply Deligne's equidistribution theorem, cf. [Ka-Sar, RMFEM, 9.2.6]. QED
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8888....0000    TTTThhhheeee    bbbbaaaassssiiiicccc    sssseeeettttttttiiiinnnngggg

(8.0.1) In this section, we work over a finite field k of oooodddddddd characteristic. We give ourselves data

(C/k, D, …, r, Ï, ç, “, w) as in 7.0. We suppose that after extension of scalars from k to äk, our data

(C/k, D, …, r, Ï, ç) satisfies all the hypotheses of Theorem 5.5.1.

(8.0.2) We further suppose that Ï(w/2) is symplectically self dual on C/k, and that ç has order 2.

Then, by Poincare duality, Ì((w+1)/2) is orthogonally self dual as a lisse sheaf on 

X := Fct(C, d, D, Sing(Ï)finite). 

By Theorem 5.5.1, Ì has Ggeom either SO(N) or O(N). 

8888....1111    DDDDeeeeffffiiiinnnniiiittttiiiioooonnnnssss    ooooffff    tttthhhhrrrreeeeeeee    ssssoooorrrrttttssss    ooooffff    aaaannnnaaaallllyyyyttttiiiicccc    rrrraaaannnnkkkk

(8.1.1)  Given a finite extension E/k, and f in X(E), we define the aaaannnnaaaallllyyyyttttiiiicccc    rrrraaaannnnkkkk of Ì at (E, f),

denoted rankan(Ì, E, f), to be the order of vanishing of

det(1 - TFrobE,f | Ì((w+1)/2))

at T = 1, i.e., rankan(Ì, E, f) is the multiplicity of 1 as generalized eigenvalue of FrobE,f |

Ì((w+1)/2):

rankan(Ì, E, f) := ordT=1det(1 - TFrobE,f | Ì((w+1)/2)).

(8.1.2) For each n ≥ 1, denote by En/E the extension of E of degree n.

(8.1.3) We define the qqqquuuuaaaaddddrrrraaaattttiiiicccc    aaaannnnaaaallllyyyyttttiiiicccc    rrrraaaannnnkkkk of Ì at (E, f), denoted rankquad, an(Ì, E, f) to be the

sum of the orders of vanishing of

det(1 - TFrobE,f | Ì((w+1)/2))

at T = 1 and at T = -1, i.e., rankquad, an(Ì, E, f) is the sum of the multiplicities of 1 and of -1 as

generalized eigenvalues of FrobE,f | Ì((w+1)/2). More simply, 

rankquad, an(Ì, E, f) := rankan(Ì, E2, f).

(8.1.4) We define the ggggeeeeoooommmmeeeettttrrrriiiicccc    aaaannnnaaaallllyyyyttttiiiicccc    rrrraaaannnnkkkk of Ì at (E, f), denoted rankgeom, an(Ì, E, f), to be

the sum of the orders of vanishing of

det(1 - TFrobE,f | Ì((w+1)/2))

at all roots of unity., i.e., rankgeom, an(Ì, f) is the sum of the multiplicities of all roots of unity as

generalized eigenvalues of FrobE,f | Ì((w+1)/2).More simply, 

rankgeom, an(Ì, E, f) := limn ¨ ‘rankan(Ì, En~, f).

8888....2222    RRRReeeellllaaaattttiiiioooonnnn    ttttoooo    MMMMoooorrrrddddeeeellllllll----WWWWeeeeiiiillll    rrrraaaannnnkkkk

(8.2.1) The terminology "analytic rank" is motivated by the Birch and Swinnerton Dyer

conjectures for the ranks of abelian varieties over function fields with finite constant fields.

Suppose the sheaf Ï arises as the middle extension of the H1 along the fibres of (the spreading out

to some dense open set in C of) an abelian variety A/K, K the function field k(C). For each finite

extension E/k and each f in X(E), we form the quadratic twist of A by f, getting an abelian variety

A‚ç2(f)/EK. The Birch and Swinnerton Dyer conjecture for A‚ç2(f)/EK asserts that its

Mordell-Weil rank is given by
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rankMW(A‚ç2(f)/EK) = rankan(Ì, E, f).

This same BSD conjecture, applied now to the same twist but viewed over E2K, says

rankMW(A‚ç2(f)/E2K) = rankquad, an(Ì, E, f).

Because we assume that A/K has a geometrically irreducible Ï, A/K has no fixed part, even over

äEK, and neither does any quadratic twist of it. Therefore (A‚ç2(f))(äEK) is a finitely generated

group. So writing äEK as the increasing union of finite constant field extensions En~K of EK, the

BSD conjecure applied to all of these predicts that

rankMW(A‚ç2(f)/äEK) = rankgeom, an(Ì, E, f).

(8.2.2) In the function field over a finite field case, we have a priori inequalities

0 ≤ rankMW(A‚ç2(f)/EK) ≤ rankan(Ì, E, f),

0 ≤ rankMW(A‚ç2(f)/E2K) ≤ rankquad, an(Ì, E, f),

0 ≤ rankMW(A‚ç2(f)/äEK) ≤ rankgeom, an(Ì, E, f).

8888....3333    TTTThhhheeeeoooorrrreeeemmmmssss    oooonnnn    aaaavvvveeeerrrraaaaggggeeee    aaaannnnaaaallllyyyyttttiiiicccc    rrrraaaannnnkkkkssss,,,,    aaaannnndddd    oooonnnn    aaaavvvveeeerrrraaaaggggeeee    MMMMoooorrrrddddeeeellllllll----WWWWeeeeiiiillll    rrrraaaannnnkkkk

(8.3.1) Under the hypotheses introduced in 8.0 above, we know that Ì((w+1)/2) is orthogonally

self dual, and that Ggeom is either SO or O. Thus we have

SO fi Ggeom fi Garith fi O.

See Proposition 5.5.2 for various conditions which insure that Ggeom is O(N) rather than SO(N).

In particular, recall that Ggeom is O(N) if N is odd.

(8.3.2) We will consider successively the three possibilities:

Ggeom = Garith= O,

Ggeom = Garith= SO.

Ggeom = SO, Garith= O.

TTTThhhheeeeoooorrrreeeemmmm    8888....3333....3333 Hypotheses as in 8.0 above, suppose Ggeom is the full orthogonal group O. If we

take the limit over finite extensions E/k large enough that X(E) is nonempty, we get the following

tables of limit formulas. In these tables, the number in the third column is the limit, as ùE ¨ ‘, of

the average value of the quantity in the second column over all f's in the set named in the first

column.

X(E) rankan(Ì, E, f) 1/2,

X(E) rankquad, an(Ì, E, f) 1,

X(E) rankgeom, an(Ì, E, f) 1.

More precisely, for each finite extension E/k, and each value of œ = _1, denote by Xsign œ(E) the

subset of X(E) consisting of those points f in X(E) such that
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det(-FrobE,f | Ì((w+1)/2)) = œ.

Then we have the following table of limit formulas:

IIIIffff    NNNN    iiiissss    eeeevvvveeeennnn::::

Xsign -(E) rankan(Ì, E, f) 1,

Xsign +(E) rankan(Ì, E, f) 0,

Xsign -(E) rankquad, an(Ì, E, f) 2,

Xsign +(E) rankquad, an(Ì, E, f) 0,

Xsign -(E) rankgeom, an(Ì, E, f) 2,

Xsign +(E) rankgeom, an(Ì, E, f) 0.

IIIIffff    NNNN    iiiissss    oooodddddddd::::

Xsign -(E) rankan(Ì, E, f) 1,

Xsign +(E) rankan(Ì, E, f) 0,

Xsign -(E) rankquad, an(Ì, E, f) 1,

Xsign +(E) rankquad, an(Ì, E, f) 1,

Xsign -(E) rankgeom, an(Ì, E, f) 1,

Xsign +(E) rankgeom, an(Ì, E, f) 1.

pppprrrrooooooooffff Denote by N the rank of Ì. The sheaf Ì((w+1)/2) is given to us as a lisse ä$…-sheaf. Any

such sheaf is obtained by extension of scalars from a lisse F¬-sheaf, for F¬ some finite extension

of $… [Ka-Sar, RMFEM, 9.07]. So each characteristic polynomial

det(1 - TFrobE,f | Ì((w+1)/2))

is a degree N polynomial over F¬. But F¬ has only finitely many extensions inside äF¬ of degree ≤

N, so all the reciprocal roots of all these characteristic polynomials all lie in a finite extension

L¬/F¬. But L¬ contains only finitely many roots of unity, say M = ùµ‘(L¬).

Via the given embedding “ : ä$… ¨ ^, the polynomial

“det(1 - TFrobE,f | Ì((w+1)/2))

is the characteristic polynomial of a unique conjugacy class ø(E, f) in O(N, %).

Our first task is to define the rrrreeeedddduuuucccceeeedddd    cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc    ppppoooollllyyyynnnnoooommmmiiiiaaaallll

Rdet(1 - T©)

for an element © in O(N, %), cf. [deJ-Ka, 6.7].
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If N is even, then every element © in Osign -(N, %) has both _1 as eigenvalues, and we

define

Rdet(1 - T©) := det(1 - T©)/(1 - T2), © in  Osign -(N, %), N even.

If N is even and © lies in Osign +(N, %), we define

Rdet(1 - T©) := det(1 - T©), © in Osign +(N, %), N even.

If N is odd,  then every element © in Osign œ(N, %) has -œ as an eigenvalue and we define

Rdet(1 - T©) := det(1 - T©)/(1 + œT), © in Osign œ(N, %), N odd.

The function © ÿ Rdet(1 - T©) is a continuous central function on O(N, %) with values in

the space of %-polynomials of degree ≤ N.

We denote by Z the closed set of O(N, %) defined by the vanishing of the function

© ÿ °≈ in µM(^) Rdet(1 - ©≈).

The set Z is visibly invariant by O(N, %)-conjugation, and has measure zero for Haar measure, cf.

[deJ-Ka, 6.9].

For each © in O(N, %), and each integer n ≥ 1, we define

multn(©) := the sum of the multiplicities of all n'th roots of unity as eigenvalues of

©.

The functions mult1, mult2 and multM are each bounded central #-valued functions on

O(N, %), which are continuous outside of Z. Outside of Z, they agree with the following locally

constant functions on O(N, %):

Osign -(N, %) Osign +(N, %) Osign -(N, %) Osign +(N, %)

N even N even N odd N odd

mult1 1 0 1 0

mult2 2 0 1 1

multM 2 0 1 1

The key point about these multiplicity functions is this. For any finite extension E/k and any

point f in X(E), we have

rankan(Ì, E, f) = mult1(ø(E, f)),

rankquad, an(Ì, E, f) = mult2(ø(E, f)),

rankgeom, an(Ì, E, f) = multM(ø(E, f)).

For each finite extension E/k, and each value of œ = _1, denote by Xsign œ(E) the subset of

X(E) consisting of those points f in X(E) such that

det(-FrobE,f | Ì((w+1)/2)) = œ.

For each choice of œ = _1, as ùE ¨ ‘,

ùXsign œ(E)/ùX(E) ¨ 1/2,
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and the conjugacy classes {ø(E, f)}f in Xsign œ(E) become equidistributed for the Haar measure of

total mass one on the space Osign œ(N, %)ù. There is a standard extension of this result, to more

general functions, cf. [Ka-Sar, RMFEM, AD11.4], which will be useful for us below. Let Z be

any closed subset of O(N)% of Haar measure zero which is stable by O(N)%-conjugation, and let

g be a bounded, ^-valued central function on O(N)% whose restriction to O(N)% - Z is

continuous. For such a function g we still have the integral formula

—O(N, %) g(A)dA = lim ùE ¨ ‘ (1/ùX(E))‡f in X(E) g(ø(E, f)).

If we apply this to g≠(char function of Osign œ(N, %)), we get the integral formula

—Osign œ(N, %) g(A)dA 

= lim ùE ¨ ‘ (1/ùXsign œ(E))‡f in Xsign œ(E) g(ø(E, f)),

in which the dA on Osign œ(N, %) is the restriction of Haar measure, but now normalized to give

Osign œ(N, %) mass one.

We need only take for g successively the functions mult1, mult2, and multM. Their

averages over Frobenii ø(E, f) are precisely the average analytic ranks in question. Their integrals

are easy to compute, since these functions agree, outside a set of measure zero, with the locally

constant functions mult1, mult2 and multM in the table above. QED

CCCCoooorrrroooollllllllaaaarrrryyyy    8888....3333....4444 Hypotheses as in Theorem 8.3.3 above, suppose in addition that the sheaf Ï arises

as the middle extension of the H1 along the fibres of (the spreading out to some dense open set in

C of) an abelian variety A/K, K the function field k(C). Then we have the following tables of

limsup results for the average Mordell Weil ranks of quadratic twists. In these tables, the number in

the third column is an upper bound for the limsup, as ùE ¨ ‘, of the average value of the quantity

in the second column over all f's in the set named in the first column. In those cases where the

limsup is 0, the limit exists and is zero, and in those cases we have written "= 0" in the third

column.

X(E)) rankMW(A‚ç2(f)/EK) ≤ 1/2,

X(E) rankMW(A‚ç2(f)/E2K) ≤ 1,

X(E) rankMW(A‚ç2(f)/äEK) ≤ 1.

More precisely, for each finite extension E/k, and each value of œ = _1, denote by Xsign œ(E) the

subset of X(E) consisting of those points f in X(E) such that

det(-FrobE,f | Ì((w+1)/2)) = œ.

Then as ùE ¨ ‘, ùXsign œ(E)/ùX(E) ¨ 1/2, and we have the following tables:
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IIIIffff    NNNN    iiiissss    eeeevvvveeeennnn::::

Xsign -(E) rankMW(A‚ç2(f)/EK) ≤ 1,

Xsign +(E) rankMW(A‚ç2(f)/EK) = 0,

Xsign -(E) rankMW(A‚ç2(f)/E2K) ≤ 2,

Xsign +(E) rankMW(A‚ç2(f)/E2K) = 0,

Xsign -(E) rankMW(A‚ç2(f)/äEK) ≤ 2,

Xsign +(E) rankMW(A‚ç2(f)/äEK) = 0.

IIIIffff    NNNN    iiiissss    oooodddddddd::::

Xsign -(E) rankMW(A‚ç2(f)/EK) ≤ 1,

Xsign +(E) rankMW(A‚ç2(f)/EK) = 0,

Xsign -(E) rankMW(A‚ç2(f)/E2K) ≤ 1,

Xsign +(E) rankMW(A‚ç2(f)/E2K) ≤ 1,

Xsign -(E) rankMW(A‚ç2(f)/äEK) ≤ 1,

Xsign +(E) rankMW(A‚ç2(f)/äEK) ≤ 1.

pppprrrrooooooooffff Immediate from Theorem 8.3.3 and the a priori inequalities 8.2.2 bounding Mordell Weil

rank by analytic rank. QED 

EEEExxxxaaaammmmpppplllleeee    8888....3333....4444....1111 Suppose in 8.3.4 we take for A/K an elliptic curve E/K which has multiplicative

reduction at some äk-valued point ∫ of C-D. Then Ï has unipotent nontrival monodromy at ∫. By

Proposition 5.5.2, part 1), Ì has Ggeom the full orthogonal group O(N).

(8.3.5) We now turn to the two cases where Ggeom is SO rather than O. Recall from Proposition

5.5.2 that if Ggeom is SO, then the rank N of of Ì is even. 

TTTThhhheeeeoooorrrreeeemmmm    8888....3333....6666 Hypotheses as in 8.0 above, suppose Ggeom = Garith = SO. For every finite

extension E/k, Xsign -(E) is empty, and we get the following we get the following table of limit

formulas. In the table, the number in the third column is the limit, as ùE ¨ ‘, of the average value

of the quantity in the second column over all f's in the set named in the first column.
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Xsign +(E) rankan(Ì, E, f) 0,

Xsign +(E) rankquad, an(Ì, E, f) 0,

Xsign +(E) rankgeom, an(Ì, E, f) 0.

pppprrrrooooooooffff As N is even and Garith is SO(N) = Osign +(N, %), all ø(E, f) lie in and are equidistributed

in Osign +(N, %), where all three mult functions (introduced in the proof of Theorem 8.3.3) vanish

outside Z. QED

CCCCoooorrrroooollllllllaaaarrrryyyy    8888....3333....7777 Hypotheses as in Theorem 8.3.6 above, suppose in addition that the sheaf Ï arises

as the middle extension of the H1 along the fibres of (the spreading out to some dense open set in

C of) an abelian variety A/K, K the function field k(C). Then we have the following the following

table of limit formulas (same format as in 8.3.6 above) for the average Mordell Weil ranks of

quadratic twists.

Xsign +(E) rankMW(A‚ç2(f)/EK) 0,

Xsign +(E) rankMW(A‚ç2(f)/E2K) 0,

Xsign +(E) rankMW(A‚ç2(f)/äEK) 0.

pppprrrrooooooooffff Immediate from Theorem 8.3.6 and the a priori inequalities 8.2.2 bounding Mordell Weil

rank by analytic rank. QED 

TTTThhhheeeeoooorrrreeeemmmm    8888....3333....8888 Hypotheses as in 8.0 above, suppose Ggeom = SO and Garith = O. For finite

extensions E/k of eeeevvvveeeennnn degree, Xsign -(E) is empty, and we get the following following table of

limit formulas over E/k of even degree. In the table, the number in the third column is the limit, as

ùE ¨ ‘ over extensions E/k of eeeevvvveeeennnn degree, of the average value of the quantity in the second

column over all f's in the set named in the first column.

Xsign +(E) rankan(Ì, E, f) 0,

Xsign +(E) rankquad, an(Ì, E, f) 0,

Xsign +(E) rankgeom, an(Ì, E, f) 0.

 For finite extensions E/k of oooodddddddd degree, Xsign +(E) is empty, and we get the following table of

limit formulas over E/k of odd degree. In the table, the number in the third column is the limit, as

ùE ¨ ‘ over extensions E/k of oooodddddddd degree, of the average value of the quantity in the second

column over all f's in the set named in the first column.
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Xsign -(E) rankan(Ì, E, f) 1,

Xsign -(E) rankquad, an(Ì, E, f) 2,

Xsign -(E) rankgeom, an(Ì, E, f) 2.

pppprrrrooooooooffff For E/k of even degree, the ø(E, f) land in and are equidistributed in Osign +(N, %) where all

three mult functions vanish outside Z. For E/k of odd degree, the ø(E, f) land in and are

equidistributed in Osign -(N, %) where the three mult functions are respectively the constants 1, 2,

2 outside Z. QED

CCCCoooorrrroooollllllllaaaarrrryyyy    8888....3333....9999 Hypotheses as in Theorem 8.3.8 above, suppose in addition that the sheaf Ï arises

as the middle extension of the H1 along the fibres of (the spreading out to some dense open set in

C of) an abelian variety A/K, K the function field k(C). Then we have the following results for the

Mordell Weil ranks of quadratic twists.

For finite extensions E/k of eeeevvvveeeennnn degree, Xsign -(E) is empty, and we get the following table of

limit formulas over E/k of even degree. In the table, the number in the third column is the limit, as

ùE ¨ ‘ over extensions E/k of eeeevvvveeeennnn degree, of the average value of the quantity in the second

column over all f's in the set named in the first column.

Xsign +(E) rankMW(A‚ç2(f)/EK) 0,

Xsign +(E) rankMW(A‚ç2(f)/E2K) 0,

Xsign +(E) rankMW(A‚ç2(f)/äEK) 0.

 For finite extensions E/k of oooodddddddd degree, Xsign +(E) is empty, and we get the following table of

upper bounds for limsups over E/k of odd degree.In the table, the number in the third column is an

upper bound for the limsup, as ùE ¨ ‘ over extensions E/k of oooodddddddd degree, of the average value of

the quantity in the second column over all f's in the set named in the first column.

Xsign -(E) rankMW(A‚ç2(f)/EK) ≤ 1,

Xsign -(E) rankMW(A‚ç2(f)/E2K) ≤ 2,

Xsign -(E) rankMW(A‚ç2(f)/âEK) ≤ 2.

8888....4444    EEEExxxxaaaammmmpppplllleeeessss    ooooffff    iiiinnnnppppuuuutttt    ÏÏÏÏ''''ssss    wwwwiiiitttthhhh    ssssmmmmaaaallllllll    GGGGggggeeeeoooommmm

(8.4.1) We wish to give examples of abelian schemes p : Å ¨ U , U a dense open set in C, such

that the middle extension Ï of R1p*ä$… is geometrically irreducible. The simplest way to do this is
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to exhibit families of curves π : Á ¨ U whose R1π*ä$… is not only geometrically irreducible, but

has Ggeom the full symplectic group Sp(2d). One then takes for p : Å ¨ U the family of

Jacobians. In this case R1π*ä$… = R1p*ä$…. We refer to [Ka-Sar, RMFEM, Chapter 10] for a

plethora of examples of such families of curves. [In those examples, the base is an open set V in

@1. After any nonconstant map f: C ¨ @1, the pullback family over f-1(V) still has Ggeom =

Sp(2d), simply because Sp(2d) is connected.] In fact, in most "natural" examples where we know

that Ï is geometrically irreducible, we know it because we can show Ggeom is Sp(2d). 

(8.4.2) However, there is a general procedure to construct, for every integer d ≥ 2, examples of d-

dimensional abelian varieties A/K for whose Ï the group Ggeom is a quite small irreducible

subgroup of Sp(2d). Begin with a dense open set U in C, and an elliptic curve ‰/U whose j-

invariant is non-constant. Given an integer d ≥ 2, pick a finite subgroup Æ of the orthogonal group

O(d, #) such that Æ acts irreducibly on ^d. [For instance, we might take Æ to be the symmetric

group Sd+1 in its augmentation representation.] Pick an integer N such that the maximal prime-

to-p quotient of Æ is generated by N elements. Shrink U if necessary, so that (C-U)(äk) consists of

at least N+1 points. SSSSuuuuppppppppoooosssseeee there exists a finite etale Æ-torsor

V ¨ U

such that V/k is geometrically connected. Then we take the abelian scheme ‰d/U, think of ‰d as

‰º##d, and twist it by the covering V/U, having Æ act on ‰º##d as (idE)º(given rep. of Æ on

#d). This twisted abelian scheme is a d-dimensional Å/U. Its Ï(Å/U) is canonically a tensor

product

Ï(Å/U) = Ï(‰/U)‚((ä$…)d as Æ-representation).

In terms of this decomposition, Ggeom is the irreducible subgroup SL(2)‚Æ of Sp(2d). This

follows from a form of Goursat's Lemma, cf. 9.7.3, and the fact that Ï(‰/U) has Ggeom the

ccccoooonnnnnnnneeeecccctttteeeedddd group SL(2).

(8.4.3) Can we construct a finite etale Æ-torsor

V ¨ U

such that V/k is geometrically connected? The answer if yes, iiiiffff we allow ourselves a finite

extension of the constant field. By the positive solution to the Abhyankar Conjecture [Harb-AC],

we know that Æ is a quotient of π1(Uºkäk), i.e., there exists a connected finite etale galois Æ-torsor

V ¨ Uºkäk.

Since äk is the union of finite extensions of k, for some finite extension k1 of k, this diagram

descends to a connected Æ-torsor

V1 ¨ Uºkk1.

Thus we get a d-dimensional Å/Uºkk1  whose Ï | Uºkk1 has Ggeom the irreducible subgroup

SL(2)‚(Æ acting on (ä$…)d) of Sp(2d).
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(8.4.4) We do not know if we can avoid the necessity of making a finite constant field extension

k1/k in general. But there are some elementary cases where no constant field extension is

necessary. Here is one such example.

(8.4.5)  Suppose that the characteristic p does not divide d(d+1). Then the finite flat map

f : !1 ¨ !1

f : X ÿ (-1/d)(Xd+1 - (d+1)X)

is weakly supermorse, cf. [Ka-ACT, 5.5.2]. [This means that the d+1 = deg(f) is prime to p, that

the differential df has d distinct zeroes, and that f separates these zeroes. Here the zeroes of df are

the d'th roots of unity, and f(≈) = ≈ for ≈ any d'th root of unity.] The polynomial f makes !1 - f-

1(µd) a finite etale covering of !1 - µd of degree d+1. The lisse sheaf Ï on the base !1 - µd

defined as

Ï := Kernel of Trace : f*ä$… ¨ ä$…

is then an irreducible tame reflection sheaf, whose Ggeom is the full symmetric group Sd+1, cf

[Ka-ACT, 5.5.3.6] and [Ka-ESDE, proof of 7.10.2.3]. [In more down to earth terms, over Ép(T),

the equation

(-1/d)(Xd+1 - (d+1)X) = T

has galois group Sd+1, and keeps this same galois group over äÉp(T).]

Thus we get an Sd+1-torsor

V ¨ !1 - µd 

with V/Ép geometrically connected.

(8.4.6) Now pick a prime number …1 > Max(2g, d+1). At the expense of shrinking U, we may

assume that C-U contains a closed point ∏ of degree …1. Take a nonconstant function g in L(∏)

(possible by Riemann-Roch). Then g has a simple pole at ∏ and no other poles. So it defines a

finite flat generically etale map of C to @1ºÉp
k of degree …1. At the expense of further shrinking U,

we may assume that g maps U to (!1 - µd)ºÉp
k. Since …1 is prime to (d+1)~, a linear disjointness

argument shows that the pullback by

g : U ¨ !1 - µd

of the Sd+1-torsor

VºÉp
k ¨ (!1 - µd)ºÉp

k

is an  Sd+1-torsor

g*V ¨ U

whose total space remains geometrically connected. 

(8.4.7) There is another way to to construct abelian schemes 
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p : Å ¨ U

of any dimension d ≥ 2 over open sets U of @1 such that the middle extension Ï of R1p*ä$… is

geometrically irreducible, but whose Ggeom is a quite small irreducible subgroup of Sp(2d)

(though not as small as in the previous construction). We start with a dense open set V in @1, and

an elliptic curve π : ‰ ¨ V whose j invariant is nonconstant. We form the (geometrically

irreducible, because j is nonconstant) middle extension Ï1 of R1π*ä$…. Again because ‰/V has

nonconstant j invariant, ‰/V has bad reduction at some point of @1 - V. By the Neron-Ogg-

Shafarevich criterion of good reduction, the middle extension Ï1 is not everywhere lisse on @1,

i.e., Sing(Ï1) is nonempty. At the expense of extending the ground field k, we may assume that

Sing(Ï1) contains a k-rational point, and that @1 - Sing(Ï1) contains at least d-1 k-rational

points. Pick one point P1 in Sing(Ï1)(k), and pick d-1 distinct k-rational points P2, ..., Pd in @1 -

Sing(Ï1). Pick a coordinate x for the source @1 such that none of the Pi is ‘. Then consider the

function

f(x) := 1/°i(x - x(Pi)).

This function is a finite flat map of degree d from @1 to itself, which is finite etale over ‘ in the

target (and hence finite etale over some dense open set of the target). In the fibre f-1(‘), there is

precisely one point, namely P1, in Sing(Ï1). So by the Irreducible Induction Criterion 3.3.1, the

direct image f*Ï1 on the target @1 is a geometrically irreducible middle extension, of generic rank

2d. This sheaf f*Ï1 is precisely the middle extension sheaf Ï attached to a the spreading out of a

certain d-dimensional abelian variety A over the function field k(t) of the target @1. Namely,

denote by E/k(x) the generic fibre of the elliptic curve ‰/V we started with. Then the A in question

is the Weil restriction of scalars, from k(x) to k(t), t := f(x), of E.

A := Rk(x)/k(t)(E).

Over the galois closure k(x)gal/k(t) of the separable extension k(x)/k(t), A becomes the product of

the d conjugates of E/k(x) by the d embeddings of k(x) into k(x)gal which are the identity on k(t).

This means that for (the spreading out of) our A/k(t), the connected component (Ggeom)0 lies in

the d-fold product of SL(2) with itself.

8888....5555    CCCCrrrriiiitttteeeerrrriiiiaaaa    ffffoooorrrr    wwwwhhhheeeennnn    GGGGggggeeeeoooommmm    iiiissss    SSSSOOOO    rrrraaaatttthhhheeeerrrr    tttthhhhaaaannnn    OOOO

(8.5.1) This section is a complement to Proposition 5.5.2 and to the discussion in section 7.4. We

continue to work over a finite field k of oooodddddddd characteristic. We fix data 

(C/k, D, …, r, Ï, ç2, “, w) 

as in 8.0.1-2. We also fix a choice åk of Sqrt(q) in ä$…, and agree to use powers of this åk in

forming Tate twists by half-integers. Thus r is even, and Ï(w/2) is symplectically self dual and “-

pure of weight zero. 
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(8.5.2) We now make two further assumptions. 

(8.5.2.1) Ï is everywhere tamely ramified. 

(8.5.2.2) The degree d of the divisor D satisfies

d ≥ 4g+4, and

2g - 2 + d > Max(2ùSing(Ï), 72r).

The first assumption, that Ï is everywhere tame, is essential. The second assures us that Theorem

5.5.1 applies, whatever the effective divisor D.

(8.5.3) We form the sheaf

Ì := Twistç2,C,D(Ï).

We know that Ì((w+1)/2) is orthogonally self dual as a lisse sheaf on 

X := Fct(C, d, D, Sing(Ï)finite). 

(8.5.4) By Theorem 5.5.1, Ì has Ggeom either SO(N) or O(N), N being rank(Ì). We wish to give

some more criteria to decide which of these two cases we are in. The idea is very simple. As

explained in section 7.4, we can numerically decide this question by computing the determinants of

Frobenii acting on various stalks Ìf((w+1)/2) of Ì((w+1)/2) over various extension fields, and

seeing how their signs vary. For any finite extension E/k, and any f in X(E), the stalk Ìf((w+1)/2)

is the cohomology group

Ìf((w+1)/2) := H1(Cºkäk, j*(Ï‚Òç2(f)))((w+1)/2),

and the action of FrobE,f on Ìf is the action of FrobE on this cohomology group. As explained in

7.0.6.4, this leads to

L(CºkE, j*(Ï‚Òç2(f))((w+1)/2))(T)

= det(1 - TFrobE | H1(Cºkäk, j*(Ï‚Òç2(f))((w+1)/2)))

= det(1 - TFrobE,f | Ìf((w+1)/2)) 

Thus det(-FrobE,f | Ìf((w+1)/2)) is the ssssiiiiggggnnnn    iiiinnnn    tttthhhheeee    ffffuuuunnnnccccttttiiiioooonnnnaaaallll    eeeeqqqquuuuaaaattttiiiioooonnnn of the L-function L(CºkE,

j*(Ï‚Òç2(f))((w+1)/2))(T). Equivalently, the constant 

(8.5.4.1)

œ(E, Ï‚Òç2(f)) := 1/det(- FrobE | H1(Cºkäk, j*(Ï‚Òç2(f)))

is equal to the product of the sign in the functional equation times an integral power of åE : =

åk
deg(E/k).

(8.5.5) In principle, we can use the theory of local constants ([De-Const], [Lau-TFC]) to compute

this sign, or more precisely to see whether or not it varies with f in a fixed X(E). In practice, this is

not so easy to carry out, and that is why in Theorem 8.5.7 below the hypotheses are somewhat

restrictive.

(8.5.6) Recall from 7.4 that we have Ggeom = O(N) if and only if the sign varies as f runs over
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X(E) for any (or for every) sufficiently large finite extension E/k. We have Ggeom = SO = Garith

(for Ì((w+1)/2)) if and only if the constant is always +1 for every f over every finite extension.

And we have Ggeom = SO but Garith = O if and only if the constant is equal to (-1)deg(E/k) for

every f in every X(E).

TTTThhhheeeeoooorrrreeeemmmm    8888....5555....7777 Hypotheses as in 8.5.1 and 8.5.2 above, suppose in addition that each point of

Sing(Ï) occurs in D with even (possibly zero) multiplicity. Then we have the following results.

1) If at every geometric point ∫ of Sing(Ï), dim(Ï/ÏI(∫)) is even, then Ì((w+1)/2)) has Ggeom =

SO. Moreover, Garith is SO if œ(k, Ï) = an integral power of åk, and Garith is O if œ(k, Ï) is (-

1)≠(an integral power of åk).

2) If there exists a geometric point ∫ of Sing(Ï) for which dim(Ï/ÏI(∫)) is odd, then Ì((w+1)/2))

has Ggeom = O = Garith.

pppprrrrooooooooffff The key point is this. For f in any X(E), Òç2(f) and Ï have ddddiiiissssjjjjooooiiiinnnntttt    rrrraaaammmmiiiiffffiiiiccccaaaattttiiiioooonnnn on CºkE.

This disjointness allows us to apply Deligne's formula [De-Const, 9.5] (valid without assuming Ï

part of a compatible system, thanks to Laumon [Lau-TFC, 3.2.1.1]) to compute the ratio of signs

œ(E, Ï‚Òç2(f)((w+1)/2))/œ(E, Ï((w+1)/2)).

To carry this out, extend scalars from k to E, and work over E. Denote by EK the function

field of CºkE. At each closed point x of CºkE, we denote by Ï(x) and Òç2,E(f)(x) the

representations of the decomposition group D(x) given by Ï and by Òç2(f) respectively. We also

pick a uniformizing parameter πx at x. We use local class field theory to view continuous (ä$…)
≠-

valued characters of Dx as characters of EKx
≠, where EKx denotes the x-adic completion of EK.

Because Ï is everywhere tame, its artin conductor ax(Ï) at x is just its drop as a

representation of the inertia group I(x):

ax(Ï) = dim(Ï(x)/Ï(x)I(x)).

Because Òç2(f) is everywhere tame, and ç2 is the quadratic character, we have 

ax(Òç2(f)) = 0 if ordx(f) is even,

ax(Òç2(f)) = 1 if ordx(f) is odd.

Deligne's formula [De-Const, 9.5] is

œ(E, Ï‚Òç2(f))/œ(E, Ï) 

= [œ(E, Òç2(f))/œ(E, ä$…)]r ≠ [°x in Sing(Ï) Òç2(f)(x)((πx)ax(Ï))]

≠ [°x in Sing(Òç2(f))
 (detÏ(x))((πx)ax(Òç2(f)))].

Let us make several observations. The first is that since we are trying to track the variation
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of the sign, and no power of åE is a nontrivial root of unity, we may work in the quotient group of

(ä$…)
≠ by the multiplicative subgroup generated by åE. We will write a § b if a/b is an integral

power of åE. We have

œ(E, Ï‚Òç2(f)) § œ(E, Ï‚Òç2(f)((w+1)/2)),

œ(E, Ï) § œ(E, Ï((w+1)/2)).

The second is that since Ï(w/2) is symplectically self dual, det(Ï(w/2)) is trivial, or

equivalently, det(Ï) = ä$…(-wr/2). So for every closed point x, every value of detÏ(x) as character

of Kx
≠ is an integer power of (ùk(x))wr/2, and hence an integer power of åE. So we can throw

away the last product if we work modulo powers of åE, and we find

œ(E, Ï‚Òç2(f))/œ(E, Ï) 

§ [œ(E, Òç2(f))/œ(E, ä$…)]r ≠ [°x in Sing(Ï) Òç2,(f)
(x)((πx)ax(Ï))].

Next we observe that because Òç2,E(f)(x) is a character of order two, the terms indexed by

a point x in Sing(Ï) with ax(Ï) even are all identically 1, and the terms with ax(Ï) odd don't

change if in each we replace ax(Ï) by 1. Finally, we observe that both the sheaves ä$… and Òç2(f),

or more precisely their middle extensions from dense opens where they are lisse, are orthogonally

self dual on CºkE. So by Poincare duality, both of the cohomology groups 

H1(Cºkäk, j*Òç2(f))(1/2) and H1(Cºkäk, ä$…)(1/2)

are symplectically self dual. Therefore we have

œ(E, j*Òç2(f)(1/2)) = œ(E, ä$…(1/2)) = 1.

Therefore we have

œ(E, j*Òç2(f)) § œ(E, j*Òç2(f)(1/2)) = 1,

 œ(E, ä$…) § œ(E, ä$…(1/2)) = 1.

So we find the following § formula for our ratio of constants.

œ(E, Ï‚Òç2(f))/œ(E, Ï) 

§°x in Sing(Ï) with ax(Ï) odd Òç2(f)(x)((πx)ax(Ï)).

 §°x in Sing(Ï) with ax(Ï) odd Òç2(f)(x)(πx).

With this formula in hand, we can proceed in a straightforward way. Suppose first there are

nnnnoooo points where the drop ax(Ï) is odd. Then the formula gives

œ(E, Ï‚Òç2(f)) § œ(E, Ï),

or equivalently, an equality of signs

œ(E, Ï‚Òç2(f)((w+1)/2)) = œ(E, Ï((w+1)/2)).
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So for each given finite extension E/k, the sign does not vary as f varies in X(E). This lack of

variation implies that Ì((w+1)/2) has its Ggeom equal to SO. To determine whether its Garith is O

or SO, we must see if the common sign for all f in X(E) depends on the degree of E/k, or not. To

do this, we may replace k by any extension of itself of odd degree, and this allows us to assume

that X(k) is nonempty. So we pick an f in X(k). We already know (5.5.2) that if Ggeom is SO,

then Ì has even rank. So we have

œ(E, Ï((w+1)/2)) 

= œ(E, Ï‚Òç2(f)((w+1)/2)) 

:= det(-FrobE | H1(Cºkäk, Ï‚Òç2(f)((w+1)/2)))

= det(FrobE | H1(Cºkäk, Ï‚Òç2(f)((w+1)/2)))

= det((Frobk)deg(E/k) | H1(Cºkäk, Ï‚Òç2(f)((w+1)/2)))

= det(Frobk | H1(Cºkäk, Ï‚Òç2(f)((w+1)/2)))deg(E/k)

= det(-Frobk | H1(Cºkäk, Ï‚Òç2(f)((w+1)/2)))deg(E/k)

= œ(k, Ï‚Òç2(f)((w+1)/2))deg(E/k)

= œ(k, Ï((w+1)/2))deg(E/k).

 Since œ(k, Ï((w+1)/2)) is _1, and is § œ(k, Ï), we see that the sign varies as (-1)deg(E/k) if and

only if œ(k, Ï) § 1. This completes the proof of 1).

In order to prove 2), it suffices to find a single finite extension E/k such that as f varies over

X(E), the sign changes. So we may extend scalars and reduce to the case where all the points in

Sing(Ï) are k-rational. At each of them, we pick a uniformizing parameter πx. Our starting point is

the basic formula derived above: for E/k a finite extension, and f in X(E), we have

œ(E, Ï‚Òç2(f))/œ(E, Ï) 

 §°x in Sing(Ï) with ax(Ï) odd Òç2(f)(x)(πx).

But now we are assuming that there are points x in Sing(Ï) with ax(Ï) odd. At each point x in

Sing(Ï), the ratio f/(πx)ordx(f) is a unit in EKx which mod squares of units is independent of the

auxiliary choice of uniformizing parameter. [This holds because ordx(f) is even at each point x in

Sing(Ï). Indeed, if x lies in D, then f has an even order pole at x, and if x is in Sing(Ï)¤(C-D),

then f is a unit at x.] In terms of this unit f/(πx)ordx(f), we have the tautological but key identity

Òç2(f)(x)(πx) = ç
2
«NormE/k(the value in E≠ of f/(πx)ordx(f) at x).

To achieve some economy of notation, for x in Sing(Ï) and any f in L(D)ºkE, we define

ëf(x) := the value in E of f/(πx)ordx(f) at x.

Thus for f in X(E) we have
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œ(E, Ï‚Òç2(f))/œ(E, Ï) § °x in Sing(Ï) with ax(Ï) odd ç2,E(ëf(x)).

For fixed  x in Sing(Ï), the map

Linx: L(D) ¨ k,

 f ÿ ëf(x),

is a linear form on the k-vector space L(D), and its formation commutes with extension of ground

field k. Now X as variety over k is a dense open set in LLLL((((DDDD)))), the affine variety over k whose E-

valued points are L(D)ºkE for every E/k. Each of the linear forms Linx is an invertible function on

the open set X, as is their product 

° := °x in Sing(Ï) with ax(Ï) odd Linx. 

So we may form the lisse, rank one Kummer sheaf Òç2(°) on X. In terms of this Kummer sheaf,

we have, for every finite extension E/k and every f in X(E), 

œ(E, Ï‚Òç2(f))/œ(E, Ï) § FrobE,f | Òç2(°).

So the sign varies as f varies over X(E) for large E if and only if Òç2(°) is not geometrically

constant on X. Now Òç2(°) is geometrically constant on X if and only if on Xºkäk, the function

° is the ssssqqqquuuuaaaarrrreeee of another function. The function ° is the restriction to X of the function ° on

LLLL((((DDDD)))). Since Xºkäk is open dense in the normal connected äk-scheme LLLL((((DDDD))))ºkäk, if ° = F2 for some

function F on  Xºkäk, or even for some F in the function field of Xºkäk, that function F must lie in

the coordinate ring of LLLL((((DDDD))))ºkäk. 

To see this, we argue as follows. The coordinate ring of LLLL((((DDDD))))ºkäk. is a polynomial ring R in

several variables over äk, and ° is the product of several nonzero linear forms in R. Now R is a

U.F.D., and each nonzero linear form is an irreducible element of R.To show that their product is

not a square, it suffices to show that the linear forms Linx for two different points x are not R≠ =

äk≠-multiples of each other. Then our ° is a product of distinct mod R≠ irreducibles, and so by

unique factorization it is not a square in R.

But D has large degree, so is very ample. Concretely, it embeds C(äk) into the set of

hyperplanes in L(D)ºkäk, by the map

x in C(äk) ÿ the hyperplane in H0(Cºkäk, Ø(-D)) consisting of the 

sections which vanish at x.

And for x in Sing(Ï), its hyperplane is precisely the kernel of the linear form Linx. Therefore the

various linear forms Linx for x in Sing(Ï) are all distinct mod R≠ irreducibles. Therefore no

nonempty partial product of them is a square. This shows that Òç2(°).is not geometrically

constant on Xºkäk, and completes the proof. QED
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8888....6666    AAAAnnnn    iiiinnnntttteeeerrrreeeessssttttiiiinnnngggg    eeeexxxxaaaammmmpppplllleeee

(8.6.0) Let k be a finite field of odd characteristic, … a prime number invertible in k. Over the

rational function field K = k(¬), we begin with the Legendre curve

y2 = x(x-1)(x-¬).

(8.6.1) Then we form its quadratic twist by ¬(¬-1). This is the curve

y2 = ¬(¬-1)x(x-1)(x-¬),

which we will name E/K in the following discussion. This curve has good reduction outside of {0,

1, ‘}, We denote by

π : ‰ ¨ @1 - {0,1,‘}

the resulting elliptic curve over @1 - {0,1,‘}.

(8.6.2) Recall that, denoting by 

j : @1 - {0,1,‘} ¨ @1

the inclusion, we formed R1π*ä$… on @1 - {0,1,‘}, and defined

Ï := j*R1π*ä$….

The local monodromy of Ï | @1 - {0,1,‘} is Òç2
‚Unip(2) at each of 0, 1, ‘. However, it will be

convenient in what follows to pay closer attention to questions of …-adic rationality. With this in

mind, we define

Ï… :=  j*R1π*$….

Thus Ï… is the natural $…-form of the ä$…-sheaf Ï we have been dealing with throughout.

(8.6.3) For each eeeevvvveeeennnn integer d ≥ 144, we define a divisor Dd in @1 by Dd:= d‘, and form the

sheaf

Ìd := Twistç2,@1,Dd
(Ï)

on the space

Xd := Fct(@1, D, d, {0,1})

of degree d polynomials in ¬ with invertible discriminant and which are invertible at both 0 and 1.

The Tate-twisted sheaf Ìd(1) is orthogonally self-dual. According to Theorem 8.5.7, part 1), the

group Ggeom for Ìd(1) is SO(2d). Moreover, the group Garith for Ìd(1) is SO(2d) if the sign in

the functional equation for the L-function of E/K is +1, and it is O(2d) if this sign is -1.

(8.6.4) So for each odd prime p, it is natural to ask: what is the sign œ in the functional equation of

the L-function of E/Ép(¬), for E the curve

y2 = ¬(¬-1)x(x-1)(x-¬)?

In terms of the sheaf Ï… on @1/Ép, this sign is

det(-Frobp | H1(@1ºäÉp, Ï…)(1))
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= det(-Frobp | H1(@1ºäÉp, Ï…))/prank(Ï…).

TTTThhhheeeeoooorrrreeeemmmm    8888....6666....5555 The sign œ(p) := det(-Frobp | H1(@1ºäÉp, Ï…)(1)) is given by

œ(p) = 1 if p • 1 mod 4, 

œ(p) = -1 if p • 3 mod 4.

(8.6.6) Before giving the proof, in 8.7 below, we give the main application.

CCCCoooorrrroooollllllllaaaarrrryyyy    8888....6666....7777 In the situation of 8.6.3, fix an odd prime p, and consider for each eeeevvvveeeennnn integer d ≥

144 the divisor Dd := d‘, and the sheaf

Ìd := Twistç2,@1,Dd
(Ï)

on the space

Xd := Fct(@1, D, d, {0,1))/Ép.

The Tate-twisted sheaf Ìd(1) is orthogonally self-dual, with group Ggeom= SO(2d). The group

Garith for Ìd(1) is SO(2d) if p • 1 mod 4, and it is O(2d) if if p • 3 mod 4.

8888....7777    PPPPrrrrooooooooffff    ooooffff    TTTThhhheeeeoooorrrreeeemmmm    8888....6666....5555    

(8.7.0) The sheaf Ï… is everywhere tame on @1. On @1 - {0,1,‘} it is lisse of rank 2, and its stalk

vanishes at each of 0,1,‘. So the Euler Poincare formula gives

ç(@1ºäÉp, Ï…) = ç((@1 - {0,1,‘})ºäÉp)≠rank(Ï) = -2.

Because Ï… is an irreducible middle extension of generic rank > 1, the groups H0(@1ºäÉp, Ï…) and

H2(@1ºäÉp, Ï…) vanish, so we find that

dim H1(@1ºäÉp, Ï…) = 2.

(8.7.1) Applying the Lefshetz trace formula to Ï… on @1, we have, for any finite extension E/Ép, 

-Trace(FrobE | H1(@1ºäÉp, Ï…)) = ‡å in @1(E) Trace(FrobE,¬ | Ï…,å).

The stalk Ï…,å vanishes at 0, 1, ‘. At any other å in @1(E), ‰å is an elliptic curve over E, and

Trace(FrobE,¬ | Ï¬) is 

Trace(FrobE,¬ | Ï¬) = ùE + 1 - ù‰å(E)

= ùE - ù{(x,y) in E2 with y2 = å(å-1)x(x-1)(x-å)}

= - ‡x in E ç2,E(å(å-1)x(x-1)(x-å)),

where we have written ç2,E for the quadratic character of E≠.

Thus we find 

Trace(FrobE | H1(@1ºäÉp, Ï)) = - ‡å ±0,1 in E Trace(FrobE,å | Ï…,å)

= ‡å ±0,1 in E ‡x in E ç2,E(å(å-1)x(x-1)(x-å)).

(8.7.2) But with the usual convention that ç2,E(0) = 0, we can rewrite this as
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Trace(FrobE | H1(@1ºäÉp, Ï)) 

= ‡å,x in E ç2,E(å(å-1)x(x-1)(x-å)).

(8.7.3) In order to see more clearly what is going on here, we will give the more neutral name "y"

to the variable "å". Thus we have 

Trace(FrobE | H1(@1ºäÉp, Ï)) 

= ‡x,y in E ç2,E(x(x-1)y(y-1)(x-y)).

(8.7.4) Now consider the affine surface S in !3 over # with coordinates x, y, z 

S : z2 = x(x-1)y(y-1)(x-y).

In order to highlight its symmetry, let us denote by P(t) in #[t] the one-variable polynomial

P(t) := t(t-1).

In terms of P, the equation of S is

S : z2 = P(x)P(y)(x-y).

For any finite field E of any odd characteristic p, we have the usual character sum calculation

ùS(E) = ‡x,y in E ù{square roots in E of P(x)P(y)(x-y)}

= ‡x,y in E (1 + ç2,E(P(x)P(y)(x-y)))

= (ùE)2 + ‡x,y in E ç2,E(P(x)P(y)(x-y))

= (ùE)2 + Trace(FrobE | H1(@1ºäÉp, Ï)).

(8.7.5) Now the sheaf Ï… on @1 makes uniform sense over #[1/2…]: it is lisse on @1 - {0, 1, ‘},

(necessarily) tame along 0, 1, and ‘, and extended by zero to all of @1. Therefore (cf. [Ka-SE,

4.7.1]), the cohomology groups H1(@1ºäÉp, Ï…) for variable p ± 2 or … are the stalks at the

(geometric points over the) closed points of a lisse sheaf Ó… on #[1/2…], whose geometric generic

fibre is H1(@1ºä$, Ï…). Or in more down to earth language, H1(@1ºä$, Ï…) is a two-dimensional

$…-representation ®gal,… of Gal(ä$/$) which is unramified outside of 2…, and in which the

Frobenius conjugacy classes Frobp at primes not 2 or … have characteristic polynomials given by

det(1 - TFrobp | Ó…) = det(1 - T®gal,…(Frobp)) 

= det(1 - TFrobE | H1(@1ºäÉp, Ï…)).

Moreover, H1(@1ºä$, Ï…)(1) is orthogonally self dual, and pure of weight zero.

(8.7.6) The trace formula above thus says

Trace(®gal,…(Frobp)) = ‡x,y in E ç2,E(P(x)P(y)(x-y)).

The right hand side is visibly an integer, independent of …. So the representations ®gal,… form a

compatible system of two-dimensional …-adic representations.

(8.7.7) Let us next observe that if p • 3 mod 4, or more generally if we work over a finite field E

in which -1 is not a square, then
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‡x,y in E ç2,E(P(x)P(y)(x-y)) = 0.

Indeed, interchanging x and y does not change the sum, but changes the sign of P(x)P(y)(x-y). As

-1 is a nonsquare in E, this interchange also changes the sign of each term ç2,E(P(x)P(y)(x-y)).

Thus the sum is an integer which equal to minus itself.

(8.7.8)  So we have

Trace(®gal,…(Frobp)) = 0 if p • 3 mod 4, p±2 or ….

(8.7.9) Let us view ®gal,… as a two-dimensional $…-representation of π1(Spec(#[1/2…])) on

H1(@1ºä$, Ï…). By Chebotarev, the vanishing of Trace(®gal,…(Frobp)) for p • 3 mod 4 implies its

vanishing outside the entire "Gaussian" subgroup π1(Spec(#[i,1/2…])) of index two. [Indeed, the

function © ÿ f(©) on π1(Spec(#[1/2…])) which is defined as

f(©) := Trace(®gal,…(©)), if © is in π1(Spec(#[i,1/2…])),

f(©) := 0, if © is not in π1(Spec(#[i,1/2…])),

is a continuous central function, which agrees with the continuous central function © ÿ

Trace(®gal,…(©)) on all Frobenii, so these two functions must coincide.]

The Tate-twisted Ó…(1), i.e., the representation ®gal,…(1) on H1(@1ºä$, Ï)(1), is pure of

weight zero, and orthogonally self-dual. 

LLLLeeeemmmmmmmmaaaa    8888....7777....11110000 The representation ®gal,…(1) is irreducible. 

pppprrrrooooooooffff We first show that ®gal,…(1) is completely reducible. Indeed, consider the Zariski closure G

in the orthogonal group O(2) of the image of π1(Spec(#[1/2…])) under ®gal,…(1). The only Zariski

closed subgroups of O(2) are O(2), SO(2), and finite groups, all of which are reductive, so the

group G is reductive, and hence ®gal,…(1) is completely reducible. 

Thus if ®gal,…(1) is reducible, it is (after extension of scalars from $… to ä$…) the direct sum

of two characters, say ß · †. For every p • 3 mod 4, p ± …, we saw in 8.7.8 that 

Trace(®gal,…(1)(Frobp)) = 0.

Thus for every p • 3 mod 4, p ± …, we have

ß(Frobp) = - †(Frobp).

Let us denote by ç4 the _1-valued character of π1(Spec(#[1/2])) defined by the quadratic

extension $(i)/$: concretely, for odd primes p we have

ç4(Frobp) = 1 if p • 1 mod 4,

= -1 if p • 3 mod 4.

We observe that †/ß = ç4 on π1(Spec(#[1/2])). Indeed, †ç4/ß is trivial oooouuuuttttssssiiiiddddeeee the Gaussian

subgroup π1(Spec(#[i,1/2…])) of index two. Therefore †ç4/ß is trivial on all of π1(Spec(#[1/2…])).

[If H fi G is any proper subgroup of any group, every element h of H is of the form A-1B for two

elements A and B in G but not in H: pick any single g not in H, and write h = g-1(gh). So if a
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linear character of G is trivial outside of H, it is trivial.] 

Thus if ®gal,…(1) is reducible, it is of the form ß · ßç4. Because ®gal,…(1) is orthogonal,

its determinant has order dividing two. So ß2ç4 has order dividing two, hence ß2 has order

dividing two, hence ß and ßç4 each take values which are fourth roots of unity. Therefore, every

value of Trace(®gal,…(1)) lies in #[i], and in particular is an algebraic integer. But this is not the

case. If … ± 5, we readily calculate

Trace(®gal,…(1)(Frob5)) 

= (1/5)‡å ±0,1 in É5
 ‡x in É5

 ç2,E(å(å-1)x(x-1)(x-å))

= -6/5.

If … = 5, we compute 

Trace(®gal,…(1)(Frob13))

= (1/13)‡å ±0,1 in É13
 ‡x in É13

 ç2,E(å(å-1)x(x-1)(x-å))

= 10/13.

Therefore ®gal,…(1) is irreducible. QED for 8.7.10

(8.7.11) So ®gal,…(1) is an irreducible orthogonal representation of π1(Spec(#[1/2…])) of

dimension two, whose trace function vanishes outside on the Gaussian subgroup

π1(Spec(#[i,1/2…])). By Theorem 3.5.2, there exists a ä$…-valued character ß of the Gaussian

subgroup π1(Spec(#[i,1/2…])) such that (after extension of scalars from $… to ä$…) ®gal,…(1) =

Ind(ß). The character ß is pure of weight zero. We claim that ®gal,…(1) |π1(Spec(#[i,1/2…])) is ß ·

äß, for äß the inverse character to ß. [The notation äß is slightly abusive: it is only on Frobenii that ß

and äß need take complex conjugate values after any embedding of ä$… into ^.] To see this, recall

from the proof of 3.5.2 that

®gal,…(1) |π1(Spec(#[i,1/2…])) = ß + †,

for two distinct characters ß and † of π1(Spec(#[i,1/2…])). We know that ß + † = äß + ä† (because

Trace(®gal,…(1)) takes rational values on Frobenii). So either † = äß as asserted, or both ß and †

have order dividing two. In this latter case, Trace(®gal,…(1)) |π1(Spec(#[i,1/2…])) would take only

the values 0 and _2. But we have seen above that the traces of Frobp for p=5 and p=13 both fail to

be algebraic integers. Therefore ®gal,…(1) |π1(Spec(#[i,1/2…])) is ß · äß.

(8.7.12) In particular, det(®gal,…(1)) is trivial on the Gaussian subgroup π1(Spec(#[i,1/2…])).

On the other hand, det(®gal,…(1)) is nontrivial: otherwise ®gal,…(1) would have image in the abelian

group SO(2), and so would be reducible.

(8.7.13) Therefore det(®gal,…(1)) is the unique nontrivial character of

π1(Spec(#[1/2…]))/π1(Spec(#[i,1/2…])) = Gal($(i)/$), i.e., it is the quadratic character of Gal(ä$/$)

cut out by $(i). Explicitly, for odd primes p ± …, we have
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det(®gal,…(1)(Frobp)) = 1 if p • 1 mod 4,

     = -1 if p • 3 mod 4. QED

8888....8888    EEEExxxxpppplllliiiicccciiiitttt    ddddeeeetttteeeerrrrmmmmiiiinnnnaaaattttiiiioooonnnn    ooooffff    tttthhhheeee    rrrreeeepppprrrreeeesssseeeennnnttttaaaattttiiiioooonnnn    ®®®®ggggaaaallll,,,,…………

(8.8.0) We now explain the numerical coincidence we found in 8.7.4, that for S the affine surface

over # with equation

S : z2 = x(x-1)y(y-1)(x-y),

we had, for every finite field E of odd characteristic, and every prime number … invertible in E, the

identity of traces

Trace(FrobE | H1(@1ºäE, Ï…)) = ùS(E) - (ùE)2.

It has a simple cohomological explanation: it is just the Lefschetz Trace Formula for the surface S.

LLLLeeeemmmmmmmmaaaa    8888....8888....1111 Let k be a field in which 2 is invertible, äk an algebraic closure of k, … a prime

invertible in k. The compact cohomology groups Hc
i(Sºäk, $…) as Gal(äk/k)-modules are given by

Hc
4(Sºäk, $…) ¶ $…(-2),

Hc
2(Sºäk, $…) ¶ H1(@1ºäk, Ï…),

Hc
i(Sºäk, $…) = 0 for all other i.

pppprrrrooooooooffff To clarify what is going on, in the equation for S, rename the variables x, y, z as ¬, x, y, so S

is now the affine surface

y2 = ¬(¬-1)x(x-1)(x-¬).

View S as sitting over the affine ¬ line, say

f: S ¨ !1,

(¬, x, y) ÿ ¬.

Consider the Leray spectral sequence

E2
a,b = Hc

a(!1ºäk, Rbf~$…) à Hc
a+b(Sºäk, $…).

Over the open set !1[1/¬(¬-1)] of the base, the induced map

f : S[1/¬(¬-1)] ¨ !1[1/¬(¬-1)]

is ‰ - {0} ¨ | !1[1/¬(¬-1)], for π : ‰ ¨ !1[1/¬(¬-1)] the twisted Legendre family. Since

removing a single point from a projective smooth geometrically connected curve does not change

its Hc
1 or its Hc

2, we have

R1f~$… | !1[1/¬(¬-1)] = R1π~$… | !1[1/¬(¬-1)]

= R1π*$… | !1[1/¬(¬-1)] = Ï… | !1[1/¬(¬-1)],

and 

R2f~$… | !1[1/¬(¬-1)] ¶ $…(-1).

Since an affine smooth curve has vanishing Hc
0, proper base change  gives us 

R0f~$… | !1[1/¬(¬-1)] = 0
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Over the points ¬=0 and ¬=1, the fibre of f is the (non-reduced) affine curve in x,y space with

equation y2 = 0. But etale cohomology does not see nilpotents, so these special fibres might as well

be !1's, whose Hc
0 and Hc

1 both vanish, and Hc
2 is $…(-1).

Denote by j : !1[1/¬(¬-1)] ¨!1 the inclusion. Proper base change gives

R0f~$… = 0 on !1,

R1f~$… = j~j
*R1f~$… = j~j

*Ï….

The sheaf Ï… also vanishes over ¬=0 and ¬=1, so we have

R1f~$… = Ï… | !1.

As the sheaf Ï… also vanishes over the point ¬=‘ in @1, we have

H1(@1ºäk, Ï…) = Hc
1(!1ºäk, Ï… | !1).

Thus we have

H1(@1ºäk, Ï…) = Hc
1(!1ºäk, R1f~$…).

All the geometric fibres of f, when reduced, are irreducible curves, so we have

R2f~$… ¶ $…(-1).

With this data in hand, we easily compute the E2 terms in the spectral sequence. All the

sheaves Rif~$… on !1 are middle extensions on an affine smooth curve, so we have

E2
0,b = 0 for all b.

Among all the sheaves Rif~$…, only R1f~$… (¶ Ï… | !
1) is not geometrically constant. As

Hc
1(!1ºäk, $…) vanishes, we have

E2
1,b = 0 for b±1,

E2
1,1 = H1(@1ºäk, Ï…).

The sheaf R1f~$… (¶ Ï… | !
1) is an irreducible middle extension of rank 2, so its Hc

2 vanishes,

and so we find

E2
2,b = 0 for b±2,

E2
2,2 = Hc

2(!1ºäk, $…(-1)) ¶ $…(-2).

With such a paucity of nonzero E2 terms, the spectral sequence degenerates at E2, and

gives the asserted values for the compact cohomology groups of S. QED

(8.8.2)  When we view H1(@1ºäk, Ï…) as Hc
2(Sºäk, $…), the cup-product pairing

H1(@1ºäk, Ï…) ≠ H1(@1ºäk, Ï…) ¨ $…(-2)

becomes the cup-product pairing
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Hc
2(Sºäk, $…) ≠ Hc

2(Sºäk, $…) ¨ Hc
4(Sºäk, $…) ¶ $…(-2).

Since the pairing on H1(@1ºäk, Ï…) is nondegenerate, we find that the cup-product pairing on

Hc
2(Sºäk, $…) is non-degenerate. Since S is an affine and singular surface, this non-degeneracy

seems highly non-obvious.

(8.8.3) As we saw in the proof of 8.8.1, S[1/¬(¬-1)] is ‰ - {0} for 

π : ‰ ¨ !1[1/¬(¬-1)] 

the twisted Legendre family, whose affine equation is

y2 = ¬(¬ - 1)x(x - 1)(x - ¬).

(8.8.4) There is a canonical way to complete π : ‰ ¨ !1[1/¬(¬-1)] to an elliptic surface

äπ : é ¨ @1,

(i.e., é is a projective smooth geometrically connected surface, and äπ coincides with π over @1 -

{0, 1, ‘}) in such a way that the fibres over the three points 0, 1, ‘ are the Kodaira-Neron special

fibres of the elliptic curve y2 = ¬(¬ - 1)x(x - 1)(x - ¬) considered successively over the complete

fields k((¬)), k((1-¬)) and k((1/¬)). 

(8.8.5) Over each of these fields, this curve is of type I*2. [Over k((¬)) we rewrite the equation as

(¬y)2 = (¬-1)(¬x)(¬x - ¬)(¬x - ¬2),

so in new variables X = -¬x and Y = ¬y/Sqrt(1-¬) we have

Y2 = X(X + ¬)(X + ¬2).

Over k((t)) with t either 1-¬ or 1/¬, similar changes of variable bring our curve to the form

Y2 = X(X - t)(X - t2).]

The Tate algorithm [Sil-ATEC, page 366] shows that over each of 0, 1, ‘, the special fibre

consists of seven @1's over k, of which four are reduced and three have multiplicty two, with a total

of six crossing points, arranged as

* *
******************************

* *
*********** ************

* *
*********** ************

* *

(8.8.6) Suppose we start over Ép, for an odd prime p, and pick a prime … ± p. Then over any finite

field k of characteristic p, we have

(8.8.6.1) ùé(k) = ù((π-1{0, 1, ‘})(k)) + ù(π-1(!1[1/¬(¬-1)])(k))

= 3(7(ùk) + 1) + ù‰(k)

= 3(7(ùk) + 1) + ù(!1[1/¬(¬-1)](k)) + ù(‰ - {0})(k)

= 3(7(ùk) + 1) + ù(!1[1/¬(¬-1)](k)) + ù(S[1/¬(¬-1)](k))

= 3(7(ùk) + 1) + (ùk - 2) + ùS(k) - 2(ùk)
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=20ùk + 1 + ùS(k)

=20ùk + 1 + (ùk)2 + Trace(Frobk | H1(@1ºäk, Ï…)).

(8.8.7) Using the Weil Conjectures, we infer that the Betti numbers of é are 1, 0, 22, 0, 1. 

(8.8.8) On the other hand, the minimal projective nonsingular model of the affine surface S is a K3

surface. Indeed, it is the K3 surface "X4", which is the (minimal resolution of the) double covering

of @2 branched along XYZ(X-Y)(X-Z)(Y-Z), cf. [Beu-St, page 283, case Å]. Being a K3

surface, X4 is an absolutely minimal model of its function field. What is the relation between é and

X4? Since é is also a projective nonsingular model of S, the tautological birational map from é to

X
4 is, by the absolute minimality of X4, a morphism. Any birational morphism between projective

smooth surfaces is a successions of blowings up of points. But é has middle Betti number 22, the

same as the K3 surface X4, so there can be no blowings up. Thus é ¶ X4. 

(8.8.9) According Beukers and Stienstra [Beu-St, page 292], elaborating a theorem of Shioda and

Inose [Shio-In, Thm. 6], for any odd prime p the zeta function of X4/Ép is equal to

1/(1 - T)Pp(T)(1 - pT)20(1-p2T)

for Pp(T) the quadratic polynomial given by

1 - 2(a2 - b2)T + p2T2, if p • 1 mod 4, p = a2 + b2, a odd,

1 - p2T2, if p •3 mod 4.

In particular, ùX4(Ép) is given by:

1 + 20p + p2 + 2(a2 - b2), if p • 1 mod 4, p = a2 + b2, a odd,

1 + 20p + p2, if p • 3 mod 4.

Comparing with our formulas for ùé(Ép) in 8.8.6.1, we find

(8.8.9.1) Trace(Frobk | H1(@1ºäk, Ï…)) = 2(a2 - b2), if p = a2 + b2, with a odd,

Trace(Frobk | H1(@1ºäk, Ï…)) = 0, if p • 3 mod 4.

(8.8.10) These explicit formulas have a simple meaning in terms of the representation ®gal.

Denote by ®4 the grossencharacter of $(i) of conductor 2+2i attached to the elliptic curve y2 = x3

- x, given explicitly on ideals of #[i] which are prime to 2 by the formula ç4(I) = å where å is the

unique generator of the ideal I which satisfies å • 1 mod 2+2i. Fix a prime … and an embedding of

$(i) into ä$…. Then ®4 gives rise to a ä$…-valued character ®4,… of π1(Spec(#[i, 1/2…]) with the

following property. For each gaussian prime π not dividing 2…, with π • 1 mod 2+2i, we have

®4,…(Frobπ) = π.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    8888....8888....11111111 The two-dimensional representation ®gal,… of π1(Spec(#[1/2…])) afforded by

H1(@1ºä$, Ï…), is Ind((®4,…)2), the induction of (®4,…)2 from π1(Spec(#[i, 1/2…])) to

π1(Spec(#[1/2…])). 
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pppprrrrooooooooffff We have shown in 8.7.10 above that ®gal,… is irreducible. Hence ®gal is semisimple. The

induction of a linear character (or of any semisimple ä$…-representation) from a subgroup of finite

index is semisimple. So Ind((®4,…)
2) is a semisimple representation. The two representations ®gal,…

and Ind((®4,…)
2) of π1(Spec(#[1/2…]) have the same trace function on all Frobenius elements, by

8.8.9.1. By Chebotarev, their trace functions are equal. Hence these two representations have

isomorphic semisimplifications. As both representations are semisimple, they are isomorphic. QED

8888....9999    AAAA    ffffaaaammmmiiiillllyyyy    ooooffff    iiiinnnntttteeeerrrreeeessssttttiiiinnnngggg    eeeexxxxaaaammmmpppplllleeeessss

(8.9.0) Let us return to the situation of 8.6. Thus k is a finite field of odd characteristic, … is a prime

number invertible in k, and over @1 - {0, 1, ‘} with parameter ¬ we consider the twisted Legendre

family of elliptic curves 

π : ‰ ¨ @1 - {0, 1, ‘},

given by the affine equation

y2 = ¬(¬ - 1)x(x - 1)(x - ¬).

We denote by j :  @1 - {0, 1, ‘} ¨ @1 the inclusion. For each oooodddddddd integer n ≥ 1, we consider the

lisse sheaf

Ï1 := R1π*ä$… 

on @1 - {0, 1, ‘}. Then Ï1 is lisse of rank 2, pure of weight one, and symplectically self-dual

toward ä$…(-1). Along the sections 0, 1 and ‘ of C/T, the local monodromy of Ï is 

(the quadratic character)‚(unipotent nontrivial). 

For each oooodddddddd integer m ≥ 1, take Ïm := Symm(Ï1). Thus Ïm is lisse of even rank m+1, pure of

weight m, and orthogonally selfdual toward ä$…(-m). Because Ï1 has Ggeom = SL(2), Ïm is

geometrically irreducible. Its local monodromy along the sections 0, 1, ‘ is

(the quadratic character)‚(a single unipotent Jordan block).

Thus Ïm is everywhere tame, and at each of its singularities, the dimension of Ïm/(Ïm)I is the

even integer m+1.

(8.9.1) For each eeeevvvveeeennnn integer d ≥ 144, we define a divisor Dd in @1 by Dd:= d‘, and form the

lisse sheaf

Ìd,m := Twistç2,@1,Dd
(j*Ïm)

on the space

Xd := Fct(@1, D, d, {0,1})

of degree d polynomials in ¬ with invertible discriminant and which are invertible at both 0 and 1.

The Tate-twisted sheaf Ìd,m((m+1)/2) is orthogonally self-dual, of rank (m+1)(d+1) . According

to Theorem 8.5.7, part 1), for d >> 0, the group Ggeom for Ìd,m((m+1)/2) is SO((m+1)(d+1)).

Moreover, for any such d, the group Garith for Ìd,m((m+1)/2) is SO((m+1)(d+1)) if and only if
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the sign in the functional equation for the L-function of j*Ïm((m+1)/2) on @1ºk is +1. In 8.6.5 we

determined this sign for the case m=1 by a global number field argument. Here we give a different

proof, based on the theory of local constants, which works for all m.

TTTThhhheeeeoooorrrreeeemmmm    8888....9999....2222 Hypotheses and notations as above, for any finite field k of odd characteristic, any

prime number … invertible in k, and any odd integer m ≥ 1, the sign in the functional equation for

the L-function of j*Ïm((m+1)/2) on @1ºk is given by

det(-Frobk | H1(@1ºäk, j*Ïm((m+1)/2))) = ç2(-1)(m+1)/2.

[Recall that ç2(-1) is equal to

+1, if ùk • 1 mod 4,

-1, if ùk • 3 mod 4.]

pppprrrrooooooooffff Since we are trying to determine a sign, and no power of ùk is a root of unity, we may work

in the multiplicative group (ä$…)
≠/(ùk)#. We write a § b if a/b is an integer power of ùk. By [De-

Const, 7.9], valid here because Ïm is part of a compatible system, the constant in the functional

equation is given by

1/det(-Frobk | H1(@1ºäk, j*Ïm((m+1)/2))) 

= °v in @1 œ(Vm,v, ¥v, µv),

the product over the closed points v of @1ºk. Here Vm,v denotes the restriction of Ïm((m+1)/2) to

the decomposition group Dv at v, and ¥v and µv are the local components of a nontrivial additive

character ¥ of, and of Haar measure µ of total mass one on, the quotient additive group AK/K of

the adeles AK of K := k(¬) by the discrete subgroup K. We can make these choices so that µv

gives the integer ring Øv total mass one for all but finitely many v, and gives it mass an integer

power of ùk for every v. We get an explicit choice of ¥ as follows. Pick a nonzero meromorphic

one-form ∑ on @1ºk, and a nontrivial additive character ¥0 of k. Then we get a global ¥ by

defining ¥x(f) := ¥0(Tracek(v)/k(Resv(f∑))). We will choose ∑ so that it has simple poles at each

of 0, 1, ‘, with residue +1 at each. 

With these choices, we first claim that for each v other than 0, 1, ‘, we have

œ(Vm,v, ¥v, µv) § 1.

At such v, Vm,v is unramified of even rank m+1, and symplectically self-dual toward ä$…(1). So

det(Vm,v) ¶  ä$…((m+1)/2). By the transformation formulas [De-Const, 5.3 and 5.4], œ(Vm,v, ¥v,

µv) is, up to § equivalence, independent of the choice of measure µv giving Øv mass an integer

power of ùk, and independent of the choice of local character ¥v. Choose ∑ to have neither zero

nor pole at v, and choose µv to give Øv mass one. Then œ(Vm,v, ¥v, µv) = 1. This follows from



Chapter 8: Average order of zero in twist families-170

[De-Const, 5.5.3], applied with its W taken to be Vm,v and its V taken to be ú, and [De-Const,

5.9], applied with its ç taken to be ú.

At v any of the three points 0, 1, ‘, Vm,v has even rank m+1, and is symplectically self-

dual toward ä$…(1). So det(Vm,v) ¶ ä$…((m+1)/2). By [De-Const,5.3 and 5.4], œ(Vm,v, ¥v, µv) is,

up to § equivalence, independent of the choice µv giving Øv measure an integer power of ùk, and

independent of the choice of local character ¥v. 

For odd m ≥ 1, we have

Vm,v = Symm(V1,v)((1-m)/2).

So we have

œ(Vm,v, ¥v, µv) § œ(Symm(V1,v), ¥v, µv).

Now V1,v(-1) is just the H1 of the twisted Legendre curve

y2 = ¬(¬ - 1)x(x - 1)(x - ¬),

viewed as a representation of the decomposition group Dv. Over k((¬)), 1-¬ is a square, and the

twisted Legendre curve is isomorphic to

y2 = (-¬)x(x - 1)(x - ¬).

Over k((1-¬)), ¬ = 1 - (1-¬) is a square, and the twisted Legendre curve is isomorphic to

y2 = (¬-1)x(x - 1)(x - ¬).

Over k((1/¬)), ¬(¬-1) is a square, and the twisted Legendre curve is isomorphic to

y2 = x(x - 1)(x - ¬).

Now consider the Legendre curve itself,

y2 = x(x - 1)(x - ¬),

over k(¬). One sees from the Tate algorithm [Sil-ATEC, page 366] that it has split multiplicative

reduction of type I2 at ¬=1, so its H1 has unipotent local monodromy at ¬=1, and as a

representation of D1 it has (H1)I ¶ ä$…, and H1/(H1)I ¶ ä$…(-1). Now V1,1(-1) as representation

of D1 is Òç2(¬-1)‚(this H1), so V1,1(-1) as D1-representation is an extension of the two

characters

Òç2(¬-1), Òç2(¬-1)(-1).

At ¬=0, one sees from the Tate algorithm [Sil-ATEC, page 366] that the Legendre curve has

multiplicative reduction of type I2, and this reduction is split if and only if -1 is a square in k.  So

its H1 has unipotent local monodromy at ¬=0, and as a representation of D0 it has (H1)I ¶ Òç2(-

1), and H1/(H1)I ¶ Òç2(-1)(-1). Now V1,0(-1) as representation of D0 is Òç2(-¬)‚(this H1),

so V1,0(-1) as D0-representation is an extension of the two characters
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Òç2(¬), Òç2(¬)(-1).

At ¬=‘, take t := 1/¬ as uniformizing parameter. In the new x, y variables tx and t2y, the Legendre

curve becomes

y2 = tx(x - 1)(x - t).

Thus the Legendre curve over k((1/¬)) is the -t = -1/¬ twist of a curve with split multiplicative

reduction of type I2 at ¬=‘. As already noted, our twisted curve is isomorphic to the Legendre

curve over k((1/¬)). So V1,‘(-1) as D‘-representation is an extension of the two characters

Òç2(-1/¬), Òç2(-1/¬)(-1).

So for each odd m ≥ 1, Vm,v is a successive extension of various Tate twists of the single

character

Òç2(¬), at v=0,

Òç2(¬-1), at v=1,

Òç2(-1/¬), at v=‘.

The key point is that each of these characters is rrrraaaammmmiiiiffffiiiieeeedddd. So at v any of 0, 1, ‘, our local œ

constants are equal to the local œ0 constants. Local œ0 constants (but not in general the local œ

constants) are multiplicative in short exact sequences, cf. [Lau-TFC, 3.1.5.7]. So in the notations

of [De-Const, 8.12] or [Lau-TFC, 3.1.5.6-7], we have

œ(Vm,v, ¥v, µv) = œ0(Vm,v, ¥v, µv)

§ œ0(Òç2(¬), ¥v, µv)m+1 § œ(Òç2(¬), ¥v, µv)m+1 at v=0.

Similarly, we have

œ(Vm,v, ¥v, µv) § œ(Òç2(¬-1), ¥v, µv)m+1, at v=1,

œ(Vm,v, ¥v, µv) § œ(Òç2(-1/¬), ¥v, µv)m+1, at v=‘.

Denote by G(ç2, ¥0) the quadratic Gauss sum for k:

G(ç2, ¥0) := ‡x in k≠ ç2(x)¥0(x).

For ¥v given by an ∑ with a simple pole at v with residue 1, and µv giving Øv mass ùk, we have

[De-Const, 5.10.1-2]

œ(Òç2(-¬), ¥v, µv) = -G(ç2, ¥0) at v=0,

œ(Òç2(1-¬), ¥v, µv) = - G(ç2, ¥0) at v=1,

œ(Òç2(1/¬), ¥v, µv) = - G(ç2, ¥0) at v=‘.

Thus we find

1/det(-Frobk | H1(@1ºäk, j*Ïm((m+1)/2))) 
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§ (- G(ç2, ¥0))3(m+1).

= (G(ç2, ¥0)2)3(m+1)/2

= (ç2(-1)(ùk))3(m+1)/2

§ ç2(-1)3(m+1)/2

§ ç2(-1)(m+1)/2. QED

8888....11110000    AAAAnnnnooootttthhhheeeerrrr    ffffaaaammmmiiiillllyyyy    ooooffff    eeeexxxxaaaammmmpppplllleeeessss

(8.10.1) In this section, we work over a finite field k in which 6 is invertible. Fix ∂ in k≠,

and denote by ˜∂,k the affine curve over k in (g2, g3)-space defined by the equation

˜∂,k : (g2)3 - 27(g3)2 = ∂.

Over ˜∂,k, we have the family of elliptic curves

π : ‰ ¨ ˜∂,k,

with ‰ - {0} given by the affine equation

y2 = 4x3 - g2x - g3.

The pair (‰, ∑ := dx/2y) over ˜∂,k is the universal elliptic curve with differential (E, ∑) over a k-

scheme with »(E, ∑) = ∂, cf. [Ka-Maz, 10.13.3].

(8.10.2) The moduli space ˜∂,k is itself the complement of the origin in an elliptic curve

E∂,k. We denote by

j : ˜∂,k = E∂,k - {0} ¨ E∂,k

the inclusion. In the following discussion, we will often refer to the origin of E∂,k as the point at ‘

of ˜∂,k.

(8.10.3) Fix a prime number … invertible in k, and form the lisse rank two ä$…-sheaf R1π*ä$…

on ˜∂,k. This sheaf has its Ggeom the group SL(2), because the curve ‰/˜∂,k has nonconstant

j-invariant (namely j = 1728(g2)3/∂) which has a pole of order six at ‘. The reduction type at ‘ is

easily checked to be I*6. After we quadratically twist this curve by -g2/2g3, it is of type I6, with

split multiplicative reduction at ‘. So R1π*ä$… as representation of the inertia group I(‘) at ‘

(remember, ‘ is the origin on E∂,k) is

Òç2(-g2/2g3)‚Unip(2).

As a representation of the decomposition group D(‘) at ‘, R1π*ä$… is an extension of the two

characters

Òç2(-g2/2g3), Òç2(-g2/2g3)(-1).

(8.10.4) For any odd integer m ≥ 1, the sheaf Symm(R1π*ä$…) on ˜∂,k is lisse of rank

m+1, pure of weight m, geometrically irreducible, and symplectically self-dual toward ä$…(-m). As
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representation of I(‘), it is

Òç2(-g2/2g3)‚Unip(m+1).

As a representation of the decomposition group D(‘) at ‘, it is an extension of the m+1 characters

Òç2(-g2/2g3), Òç2(-g2/2g3)(-1),..., Òç2(-g2/2g3)(-m).

TTTThhhheeeeoooorrrreeeemmmm    8888....11110000....5555 Hypotheses and notations as above, for any finite field k of odd characteristic, any

prime number … invertible in k, and any odd integer m ≥ 1, the sign in the functional equation of the

L-function of j*Symm(R1π*ä$…)((m+1)/2) on E∂,k is given by

det(-Frobk | H1(˜∂,kºäk, j*Symm(R1π*ä$…)((m+1)/2))) 

= ç2(-1)(m+1)/2,

= +1, if ùk • 1 mod 4,

= (-1)(m+1)/2, if ùk • 3 mod 4.

pppprrrrooooooooffff The proof is entirely similar to the proof of Theorem 8.9.2. QED

CCCCoooorrrroooollllllllaaaarrrryyyy    8888....11110000....6666 Fix a strictly increasing sequence of postive even integers 0 < d1 < d2 .... For

each √, denote by D√ the divisor d√‘ on E∂,k (remember, ‘ is the origin on E∂,k). Fix an odd

integer m ≥ 1. Form the twist sheaf

Ì√,m := Twistç2, E∂,k, D√
(j*Symm(R1π*ä$…)((m+1)/2))

on the space X√ := Fct(E∂,k, D√, &). This sheaf is lisse of rank (m+1)(d√ + 1), pure of weight

zero, and othogonally self-dual. For each d√ ≥ 72(m+1), Ggeom for Ì√,m is SO((m+1)(d√ + 1)),

and Garith for Ì√,m is 

SO((m+1)(d√ + 1)), if -1 is a square in k,

O((m+1)(d√ + 1)), if -1 is nnnnooootttt a square in k.

pppprrrrooooooooffff For each odd m, j*Symm(R1π*ä$…)((m+1)/2) is lisse of even rank m+1 outside of the point

‘, where it is tame, and its inertial invariants vanish. The assertion then follows from Theorem

8.5.7, part 1), applied to j*Symm(R1π*ä$…)((m+1)/2), and the preceding theorem, which gives the

sign in its functional equation. QED
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9999....0000    CCCCoooonnnnssssttttrrrruuuuccccttttiiiioooonnnn    ooooffff    ssssoooommmmeeee    SSSSdddd    ttttoooorrrrssssoooorrrrssss

(9.0.1) In this section, we work over an arbitrary scheme T, which will play the role of a parameter

scheme in what follows. We fix a proper, smooth, geometrically connected curve C/T of genus g,

and an integer d ≥ 2g+1. We denote by Jacd(C/T), or simply Jacd, the open and closed subscheme

of PicC/T formed by divisor classes of degree d. We denote by Divd(C/T) the space of eeeeffffffffeeeeccccttttiiiivvvveeee

divisors in C of degree d. Thus for any T-scheme Y, a Y-valued point of Divd(C/T) is a closed

subscheme of C≠TY which is finite and locally free over Y of rank d. The scheme Divd(C/T) is

naturally isomorphic to the scheme Symd(C/T), the quotient of Cd, the d-fold fibre product of C

with itself over T, by the symmetric group Sd, cf. [SGA 4, XVII, 6.3.9]. We have natural

morphisms

Cd ¨ Divd(C/T) ¨ Jacd(C/T)

of smooth T-schemes. The first map is finite and flat of rank d~, and the second map is a @d-g

bundle. 

(9.0.2) We denote by

EtaleDivd(C/T) fi Divd(C/T)

the open subscheme of Divd(C/T) whose Y-valued points are the closed subschemes of C≠TY

which finite etale over Y of rank d. [More concretely, if T is the spec of an algebraically closed

field k, the k-valued points of EtaleDivd(C/T) are the effective divisors of degree d which consist

of d distinct points.] 

(9.0.3) We denote by

(Cd)all dist fi (C/T)d

the open subscheme of Cd whose Y-valued points are those d-tuples of points Qi in C(Y) which

are pairwise disjoint, i.e., for each 1 ≤ i < j ≤ d, the scheme-theoretic intersection Qi¤Qj in C≠TY

is empty. Thus we have a cartesian diagram

(Cd)all dist fi Cd

Ñ      Ñ

EtaleDivd(C/T) fi Divd(C/T).

The first vertical map above,

(Cd)all dist ¨ EtaleDivd(C/T)

is a finite etale Sd-torsor.

(9.0.4) Now suppose we are given an effective relative Cartier divisor Z in C. We denote by 

EtaleDivd(C/T, Z) fi EtaleDivd(C/T)

the open subscheme of EtaleDivd(C/T) whose Y-valued points are the closed subschemes of
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C≠TY which are finite etale over T of rank d and disjoint from Z≠TY. [More concretely, the

geometric points of EtaleDivd(C/k) are the effective divisors of degree d which consist of d distinct

points, all of which lie in C - Z.]

(9.0.5) Inside (Cd)all dist we have the open subscheme

 ((C - Z)d)all dist fi (Cd)all dist 

whose Y-valued points consist of d-tuples of pairwise disjoint sections Qi in C(Y), all of which

are disjoint from Z≠TY. We have a cartesian diagram of finite etale Sd-torsors

(9.0.5.1)  ((C - Z)d)all dist fi (Cd)all dist 

Ñ Ñ

EtaleDivd(C/k, Z) fi EtaleDivd(C/k).

(9.0.6) Fix an effective relative Cartier divisor D of degree d in C, and an effective relative Cartier

divisor S of C - D of degree s ≥ 0. We will take the effective relative Cartier divisor Z above to be

D + S:

Z := D + S.

(9.0.7) We have the morphisms

(9.0.7.1) ((C - Z)d)all dist 

Ñ

EtaleDivd(C/T, Z) 

Ñ

Jacd(C/T).

The divisor class of D is a T-valued point of Jacd(C/T), and we view this point as a morphism

(9.0.7.2) T ¨ Jacd(C/T).

By means of this morphism, we pull back the diagram 9.0.7.1, and obtain a Cartesian diagram

(9.0.7.3)

((C - Z)d)all dist, § D fi  ((C - Z)d)all dist 

Ñ Ñ

Div(C, d, D, S) fi EtaleDivd(C/T, Z) 

Ñ Ñ

T  ¨ Jacd(C/T)

which ddddeeeeffffiiiinnnneeeessss the closed T-subschemes

((C - Z)d)all dist, § D fi  ((C - Z)d)all dist 

and

Div(C, d, D, S) fi EtaleDivd(C/T, Z) 
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(9.0.8) Thus Div(C, d, D, S) is the T-scheme whose Y-valued points are the effective relative

Cartier divisors of degree d in C which are linearly equivalent to D and which, fppf locally on the

base, consist of d distinct points, each of which lies in C - Z. 

The top left vertical map in the Cartesian diagram 9.0.7.3 above,

((C - Z)d)all dist, § D ¨ Div(C, d, D, S),

is a finite etale Sd-torsor. The target Div(C, d, D, S) as T-scheme is a fibre-by-fibre open dense

set in the projective bundle over T of relative dimension d-g which is the fibre over the class of D

in the projective bundle Cd ¨ Jacd(C/T). Thus Div(C, d, D, S) is smooth over T of relative

dimension d-g, with geometrically connected fibres. Consequently, ((C - Z)d)all dist, § D is a

smooth T-scheme, all of whose fibres are smooth and equidimensional of dimension d - g.

(9.0.8) We have already constructed, in 6.1.10, the T-scheme

Fct(C, d, D, S)

of functions in L(D) which have d distinct zeroes, all disjoint from Z := D+S. Thus there is a

natural map

Fct(C, d, D, S) ¨ Div(C, d, D, S)

f ÿ the divisor of zeroes of f,

which makes Fct(C, d, D, S) a Zariski-locally trivial ´m-bundle over Div(C, d, D, S).

(9.0.9) We now return to the finite etale galois Sd-torsor

((C - Z)d)all dist, § D 

Ñ 

Div(C, d, D, S).

We pull back this covering by the natural map

Fct(C, d, D, S) ¨ Div(C, d, D, S)

f ÿ the divisor of zeroes of f,

to get a finite etale galois Sd-torsor

Split(C, d, D, S) := Fct(C, d, D, S) ≠Div(C, d, D, S) ((C - Z)d)all dist, § D

Ñ Õpr1

Fct(C, d, D, S).

Thus Split(C, d, D, S) is a smooth T-scheme, all of whose fibres are smooth and equidimensional

of dimension d + 1 - g.

(9.0.10) The notation Split(C, d, D, S) is inspired by the case when T is the spec of a field k,

C is @1 and D is d‘. Then a k-valued point f of Fct(C, d, D, S) is a polynomial over K of degree

d in over variable, say T, with d distinct roots, none of which lies in S. A k-valued point of

Split(C, d, D, S) lying over f is an ordered list of d distinct numbers å1, ..., åd in k which form a

complete factorization, or "splitting" of f, in the sense that
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f(T) = (elt. of K≠)≠°i(T - åi).

Still with T the spec of a field k, in the case of a more general situation (C, D), a k-valued point of

Split(C, d, D, S) lying over a k-valued point f of Fct(C, d, D, S) is an ordered list of d distinct

points Q1, ..., Qd in (C - D - S)(k) which form a "splitting" of the divisor of zeroes of f in the

sense that 

div
0
(f) = ‡i Qi

(or equivalently that div(f) = ‡i Qi - D, but we prefer to focus on the divisor of zeroes of f).

9999....1111    TTTThhhheeeeoooorrrreeeemmmmssss    ooooffff    ggggeeeeoooommmmeeeettttrrrriiiicccc    ccccoooonnnnnnnneeeecccctttteeeeddddnnnneeeessssssss

TTTThhhheeeeoooorrrreeeemmmm    9999....1111....1111 Hypotheses and notations as in the previous section 9.0, the smooth T-schemes 

((C - Z)d)all dist, § D and Split(C, d, D, S),

which are everywhere of relative dimensions d-g and d+1-g respectively, have geometrically

connected (and hence irreducible, because smooth) fibres.

pppprrrrooooooooffff Since Split(C, d, D, S) is a Zariski-locally trivial ´m,T-bundle over ((C - Z)d)all dist, § D, it

suffices to show that ((C - Z)d)all dist, § D as T-scheme has geometrically connected fibres. By a

standard argument based on the fact that all our data is of finite presentation over T, we reduce to

the case when T is affine and of finite type over Spec(#). Covering Spec(#) by Spec(#[1/2]) and

Spec(#[1/691]), we may assume further that some prime number … is invertible on T. Denote by

π: ((C - Z)d)all dist, § D ¨ T

the structural morphism, and form the sheaf R2(d-g)π~ä$… on T. At any geometric point t of T, the

dimension of the stalk at t of this sheaf is the number of irreducible components in the fibre π-1(t).

Thus the set of points of T whose geometric fibre is irreducible is the set of points of T where the

stalk of this sheaf is one-dimensional. By the constructibility of R2(d-g)π~ä$…, it suffices to show

that this sheaf has a one-dimensional stalk at every (geometric point over every) closed point. Thus

it suffices to treat the case when T is the spec of a finite field k. Since the question is geometric, we

may replace k by a finite extension, and suppose further that C(k) is nonempty.

Define 

h := dim Hc
2(d-g)((((C - D-S)d)all dist, § D)ºkäk, ä$…).

Thus h is also the number of connected components of

(((C - D-S)d)all dist, § D)ºkäk.

All of these connected components are defined over some finite extension L of k. Over L, each is

smooth and geometrically connected, of dimension d-g. So by Lang-Weil, for each finite

extension E/L, we have the estimate

|ù(((C - D-S)d)all dist, § D)(E) - h(ùE)d-g | = O((ùE)d-g - 1/2).

Thus to prove the geometric connectedness, we need only prove that for every finite extension E/k,

we have an inequality
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ù(((C - D-S)d)all dist, § D)(E) ≤ (ùE)d-g + O((ùE)d-g - 1/2).

To prove this inequality, we consider the morphism of k-schemes

Cd ¨ Jacd(C/k), (Q1, ..., Qd) ÿ class of ‡i Qi,

and denote by

(Cd)§D fi Cd

the fibre over the k-valued point class(D) in Jacd(C/k). Thus we have an open immersion

((C - D-S)d)all dist, § D fi (Cd)§D. 

In particular, we have, for every finite extension E/k, an inclusion

(((C - D-S)d)all dist, § D)(E) fi ((Cd)§D)(E).

So it suffices to prove that, for every finite extension E/k, and every E-rational divisor class D of

degree d, we have

ù((Cd)§D)(E) = (ùE)d-g + O((ùE)d-g - 1/2).

This results from the following theorem, applied to CºkE/E.

TTTThhhheeeeoooorrrreeeemmmm    9999....1111....2222 Given integers g ≥ 0 and d ≥ 2g+1, there exists an explicit constant 

Const(g, d) := 2d for g=0, 

 := (2g-2)d + (2d+2g)Max(2g, 4), if g ≥ 1,

such that given a finite field k with ùk ≥ 16g2, a proper, smooth, geometrically connected curve

C/k of genus g with C(k) nonempty, and a divisor D of degree d on C, we have

|ù((Cd)§D)(k) - (ùk)d-g| ≤ Const(g,d)(ùk)d-g - 1/2.

pppprrrrooooooooffff Fix a k-rational point P on C. Using P, we get a morphism

π : Cd ¨ Jac0(C/k), 

π(Q1, ..., Qd) := class of ‡i (Qi - P).

We also get an isomorphism

Jacd(C/k) ¨ Jac0(C/k),

D ÿ D - dP.

So ((Cd)§D)(k) is the set of k-rational points of the fibre of π over the k-rational point D - dP of

Jac0(C/k). So we may restate the theorem as

TTTThhhheeeeoooorrrreeeemmmm    9999....1111....2222    bbbbiiiissss Given integers g ≥ 0 and d ≥ 2g+1, there exists an explicit constant 

Const(g, d) := 2d for g=0, 

       := (2g-2)d + (2d+2g)Max(2g, 4), if g ≥ 1,

with the following property. Given a finite field k with ùk ≥ 16g2, a proper, smooth, geometrically

connected curve C/k of genus g, and a point P in C(k), form the map

π : Cd ¨ Jac0(C/k), 

π(Q1, ..., Qd) := class of ‡i (Qi - P).
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For any divisor class D of degree zero on C, viewed as a k-point of Jac0(C/k), we have

|ù(π-1(D))(k) - (ùk)d-g| ≤ Const(g,d)(ùk)d-g - 1/2.

pppprrrrooooooooffff If g = 0, then C is @1, Jac0(C/k) is a single point, ù(π-1(D))(k) is (ùk + 1)d points, and we

may take Const(g,d) to be 2d.

Suppose now that g ≥ 1. Let us denote by J/k the Jacobian Jac0(C/k), and by F the

Frobenius Frobk. The key idea is to use the Lang torsor

1 - F : J ¨ J,

which makes J a finite etale geometrically connected galois covering of itself, with galois group the

group J(k) of rational points. Fix a prime … invertible in k. For each ä$…
≠-valued character ® of the

abelian group J(k), denote by Ò® the lisse, rank one, pure of weight zero, ä$…-sheaf on J obtained

from the Lang torsor by extension of the structural group by ®. At any k-valued point D in J(k),

we have

Trace(Frobk,D | Ò®) = ®(D).

Moreover, Ò® is geometrically nontrivial if and only if ® is nontrivial.

By orthogonality of characters of finite abelian groups, the characteristic function ID of an

element D in J(k) is given by the sum

ID = (1/ùJ(k))‡® ä®(D)®.

Therefore we have

ù(π-1(D))(k) = (1/ùJ(k))‡® ä®(D)‡(Q1, ..., Qd) in Cd(k) ®(‡i (Qi - P)).

We move the term corresponding to the trivial character to the other side of this equality to obtain

ù(π-1(D))(k) - (ùC(k))d/ùJ(k) 

=(1/ùJ(k))‡® nontriv ä®(D)‡(Q1, ..., Qd) in Cd(k) ®(‡i (Qi - P)).

At this point we need the following fundamental estimate:

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    9999....1111....3333 Notations as in 9.1.2, if ® is a nontrivial character of J(k) we have the estimate

|‡(Q1, ..., Qd) in Cd(k) ®(‡i (Qi - P))| ≤ (2g-2)d(ùk)d/2.

pppprrrrooooooooffff The sum in question is the d'th power of the sum for d=1:

‡(Q1, ..., Qd) in Cd(k) ®(‡i (Qi - P)) = (‡Q in C(k) ®(Q - P))d.

So what we must prove is the estimate

|‡Q in C(k) ®(Q - P)| ≤ (2g-2)(ùk)1/2.

Let us denote by ƒ : C ¨ J the embedding ƒ(Q) := class of Q - P. Then ƒ induces an

isomorphism of abelianized geometric fundamental groups

(ƒ*)ab : π1(Cºkäk)ab ¶ π1(Jºkäk)ab = π1(Jºkäk).

Therefore ƒ*Ò® is geometrically nontrivial on C. As ƒ*Ò® is lisse of rank one on C, we have 
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ç(Cºkäk, ƒ*Ò®) = ç(Cºkäk, ä$…) = 2-2g. Because ƒ*Ò® is geometrically nontrivial on C

and lisse of rank one, we have

H0(Cºkäk, ƒ*Ò®) = 0 = H2(Cºkäk, ƒ*Ò®).

Thus h1(Cºkäk, ƒ*Ò®) = 2g-2, and, by Deligne, H1(Cºkäk, ƒ*Ò®) is pure of weight one. 

The Lefschetz Trace Formula gives

‡Q in C(k) ®(Q - P) = -Trace(Frobk | H1(Cºkäk, ƒ*Ò®)),

so we get the required estimate

|‡Q in C(k) ®(Q - P)| ≤ (2g-2)(ùk)1/2. QED

We now conclude the proof of Theorem 9.1.2bis. Using this estimate for each of the (ùJ(k)

- 1) nontrivial characters ®, we get

(9.1.3.1) |ù(π-1(D))(k) - (ùC(k))d/ùJ(k)| ≤ (2g-2)d(ùk)d/2.

By Weil, we have

(1 - 2g(ùk)-1/2)d  ≤ (ùC(k)/ùk)d ≤ (1 + 2g(ùk)-1/2)d,

and

(1 + (ùk)-1/2)2g ≤ ùJ(k)/(ùk)g ≤ (1 - (ùk)-1/2)2g.

Thus

(ùC(k))d/ùJ(k) ≥ (ùk)d-g(1 - 2g(ùk)-1/2)d/(1 + (ùk)-1/2)2g.

≥ (ùk)d-g(1 - 2g(ùk)-1/2)d(1 - (ùk)-1/2)2g

(using the inequality 1/(1+x) ≥ 1 - x for real x in [0, 1])

and

(ùC(k))d/ùJ(k) ≤ (ùk)d-g(1 + 2g(ùk)-1/2)d/(1 - (ùk)-1/2)2g

≤ (ùk)d-g(1 + 2g(ùk)-1/2)d(1 + 4(ùk)-1/2)2g,

(using the inequality 1/(1-x) ≤ 1+4x for real x in [0, 1/Sqrt(2)]).

These inequalities in turn imply

(ùC(k))d/ùJ(k) ≥ (ùk)d-g(1 - 2g(ùk)-1/2)d+2g,

and

(ùC(k))d/ùJ(k) ≤ (ùk)d-g(1 + Max(2g,4)(ùk)-1/2)d+2g.

For real x in [0, 1], and any integer n ≥ 1, we have the inequality

(1 - x)n ≥ 1 - (2n -1)x ≥ 1 - 2nx.

Since ùk ≥ 16g2, we may apply this with x = 2g(ùk)-1/2, and we find

(ùC(k))d/ùJ(k) ≥ (ùk)d-g(1 - 2g(ùk)-1/2)d+2g

≥ (ùk)d-g(1 - (2d+2g)2g(ùk)-1/2).

For real x in [0, 1], and any integer n ≥ 1, we have the inequality

(1 + x)n ≤ 1 + (2n -1)x ≤ 1 + 2nx.
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Since ùk ≥ 16g2 and g ≥ 1, we may apply this with x = Max(2g,4)(ùk)-1/2, and we find

(ùC(k))d/ùJ(k) ≤ (ùk)d-g(1 + Max(2g,4)(ùk)-1/2)d+2g.

≤ (ùk)d-g(1 + (2d+2g)Max(2g,4)(ùk)-1/2).

Thus we have

|(ùC(k))d/ùJ(k) - (ùk)d-g| ≤ (2d+2g)Max(2g,4)(ùk)d-g-1/2.

Combining this with the previous estimate (9.1.3.1),

|ù(π-1(D))(k) - (ùC(k))d/ùJ(k)| ≤ (2g-2)d(ùk)d/2,

we get

|ù(π-1(D))(k) - (ùk)d-g| 

≤ (2g-2)d(ùk)d/2 + (2d+2g)Max(2g,4)(ùk)d-g-1/2.

But d ≥ 2g+1, so d/2 ≤ d - g - 1/2, so we have

|ù(π-1(D))(k) - (ùk)d-g| ≤ Const(g, d)(ùk)d-g-1/2,

with

Const(g, d) := (2g-2)d + (2d+2g)Max(2g,4). QED for 9.1.2bis

CCCCoooorrrroooollllllllaaaarrrryyyy    9999....1111....4444 Let k be a finite field, C/k a proper, smooth, geometrically connected curve of

genus g. For any integer d ≥ 2g+1, the natural map

Cd ¨ Jacd(C/k)

has geometrically irreducible fibres.

pppprrrrooooooooffff The morphism π : Cd ¨ Jacd(C/k) is flat, being the composition of the finite flat map Cd ¨

Symd(C/k) with the projective bundle Symd(C/k) ¨ Jacd(C/k). Both source and target of π are

smooth and equidimensional, of dimensions d and g respectively. So every fibre of π is a local

complete intersection, equidimensional of dimension d-g. Therefore our diophantine estimate

9.1.2, together with Lang-Weil, shows that π has geometrically irreducible fibres. QED

9999....2222    IIIInnnntttteeeerrrrpppprrrreeeettttaaaattttiiiioooonnnn    iiiinnnn    tttteeeerrrrmmmmssss    ooooffff    ggggeeeeoooommmmeeeettttrrrriiiicccc    mmmmoooonnnnooooddddrrrroooommmmyyyy    ggggrrrroooouuuuppppssss

TTTThhhheeeeoooorrrreeeemmmm    9999....2222....1111 Hypotheses and notations as in 9.0, suppose further that T is connected. Consider

the finite etale Sd-torsor

Split(C, d, D, S) 

Ñ 

Fct(C, d, D, S).

1) For any geometric point t of T, and any geometric point ≈t of Fct(C, d, D, S)t = Fct(Ct, d, Dt,

St), the classifying map

®split,t : π1(Fct(C, d, D, S)t, ≈t) ¨ Sd

for the pulback Sd torsor
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Split(Ct, d, Dt, St) 

Ñ 

Fct(Ct, d, Dt, St)

is surjective.

2) For any geometric point ≈ of Fct(C, d, D, S), the corresponding group homomorphism

®split : π1(Fct(C, d, D, S), ≈) ¨ Sd

which "classifies" this finite etale Sd-torsor is surjective.

pppprrrrooooooooffff 1) The surjectivity is equivalent to the connectedness of the totat space Split(Ct, d, Dt, St).

This connectedness is proven in Theorem9.1.1 above. Assertion 2) is a formal consequence of 1).

Indeed, the question is independent of the choice of the base point ≈, which we will now choose

conveniently. Pick a geometric point t of T, and a geometric point ≈t of Fct(C, d, D, S)t = Fct(Ct, d,

Dt, St). Then ®split,t is the composite group homomorphism

inclusion*    ®split

π1(Fct(C, d, D, S)t, ≈t)     ¨     π1(Fct(C, d, D, S), ≈t)   ¨  Sd.

As the composite ®split,t is surjective by part 1), ®split itself must be surjective. QED

(9.2.2) We now wish to translate the above result into one about geometric monodromy groups of

lisse sheaves. To do this in as straightforward a way as possible, for each integer d ≥ 1, denote by

πd the d-dimensional representation of Sd on linear forms in d variables,

πd : Sd ¨ O(d, #) fi GL(d, #).

We can push out the Sd-torsor

Split(C, d, D, S) 

Ñ 

Fct(C, d, D, S).

by πd, and we obtain on the space Fct(C, d, D, S) a sheaf Íd of free #-modules of rank d which

is literally locally constant in the etale topology. For any prime number …, we can form 

Íd,… := Íd‚#ä$…,

which is now a lisse ä$…-sheaf on Fct(C, d, D, S) which is literally locally constant in the etale

topology on Fct(C, d, D, S). It is “-pure of weight zero for every “, since every eigenvalue of every

Frobenius is a root of unity of order dividing d~.

CCCCoooorrrroooollllllllaaaarrrryyyy    9999....2222....3333 Hypotheses as in Theorem 9.2.1, suppose in addition that T is a normal connected

scheme which is of finite type over #[1/…] for some prime …. Denote by X the space

X := Fct(C, d, D, S).
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Thus X/T is smooth of relative dimension d+1-g, with geometrically connected fibres. Consider

the lisse, rank d ä$…-sheaf 

Í := Íd,… 

on X. Denote by ˙ the generic point of T, by ä̇  a geometric generic point of T, and by ≈ a geometric

point of Xä˙. Denote by

®Í : π1(X, ≈) ¨ Sd fi GL(d, ä$…)

the representation of π1(X, ≈) which Í "is". For every finite field k, and every k-valued point t of

T, the group Ggeom for Ít := the restriction of Í to Xt/k is (conjugate in GL(d, ä$…) to) Sd.

pppprrrrooooooooffff This is the special case of Theorem 9.2.1 in which T is the spec of a finite field. QED

9999....3333    RRRReeeellllaaaattttiiiioooonnnn    ttttoooo    """"sssspppplllliiiittttttttiiiinnnngggg    ooooffff    pppprrrriiiimmmmeeeessss""""

(9.3.1) Let k be a finite field, and t a k-valued point of T. Given a finite extension E/k, and an E-

valued point of Xt

f in Xt(E) := Fct(Ct, d, Dt, St)(E),

its Frobenius conjugacy class

®split(FrobE,f) in (Sd)ù

has a straightforward description in terms of how the divisor of zeroes of f, div0(f), "factors" over

E. We are given that, over äE, div0(f) consists of d distinct points in Ct(äE). Break the set of these

points into orbits under Gal(äE/E), i.e., write div0(E) as a sum of distinct closed points of CtºkE,

say

div0(f) = ‡i ∏i.

The degrees ni of the closed points ∏i are the cardinalities of the orbits of Gal(äE/E) acting on

div0(f)(äE). These degrees ni form an unordered partition of d. The Frobenius conjugacy class

®split(FrobE,f) in (Sd)ù

is the conjugacy class named by this partition of d, namely the conjugacy class of a product of

disjoint cycles of lengths the ni.

(9.3.2) We say that f is a pppprrrriiiimmmmeeee in Xt(E) if its Frobenius conjugacy class is a d-cycle, or

equivalently if its divisor of zeroes is a single closed point in CtºkE (necessarily of degree d). [For

example, in the case when Ct is @1 and D is d‘, a prime f in Xt(E) is precisely an irreducible

polynomial of degree d in E[T] which is invertible on S.] We denote by

Xt,prime(E) fi Xt(E)

the set of primes in Xt(E).

(9.3.3) More generally, for any conjugacy class (:= partition of d) ß in Sd, we say that f in Xt(E) is

of splitting type ß if its Frobenius conjugacy class ®split(FrobE,f) in (Sd)ù is in the class ß. We
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denote by

Xt,ß-split(E) fi Xt(E)

the set of elements of Xt(E) of splitting type ß. 

(9.3.4) So in this somewhat cumbersome terminology, a prime in Xt(E) is an element of splitting

type ß for ß the class of a d-cycle (the partition d=d of d). At the other extreme, if we take for ß

the conjugacy class {e}, corresponding to the partition d = ‡ 1, we get the notion of a totally split f

in Xt(E), a function whose zeroes are d distinct E-rational points.

9999....4444    DDDDiiiissssttttrrrriiiibbbbuuuuttttiiiioooonnnn    ooooffff    pppprrrriiiimmmmeeeessss    iiiinnnn    tttthhhheeee    ssssppppaaaacccceeeessss    XXXXtttt::::====FFFFcccctttt((((CCCCtttt,,,,    dddd,,,,    DDDDtttt,,,,    SSSStttt))))

(9.4.1) Before stating the main result 9.4.4 of this section, we must recall two definitions [Ka-Sar,

RMFEM, 9.2.6 5) and 4)]. We fix a prime number …. Given an algebraically closed field k in which

… is invertible, and X/k a smooth connected k-scheme of dimension d, we define the non-negative

integer A(X) by

A(X) := ‡i<2d hc
i(X, ä$…).

Given a lisse ä$…-sheaf Ï on X, we define the non-negative integer C(X, Ï) as follows. There

exists a finite extension E¬ of $… with integer ring Ø¬ and residue field É¬, a lisse torsion-free

Ø¬-form ÏØ¬
 of Ï, and a finite etale π : Y ¨ X, Y not necessarily connected, such that

ÏØ¬
‚Ø¬

É¬ becomes trivial after pullback to Y. For each choice (E¬, ÏØ¬
, Y) of such data, we

define

C(X, Ï, E¬, ÏØ¬
, Y) := ‡i hc

i(Y, É¬).

We define C(X, Ï) to be the minimum value of C(X, Ï, E¬, ÏØ¬
, Y) over all choices of (E¬, ÏØ¬

,

Y).

(9.4.2) Both of these quantities remain bounded when the data moves in a family.

UUUUnnnniiiiffffoooorrrrmmmmiiiittttyyyy    LLLLeeeemmmmmmmmaaaa    9999....4444....3333 Let T be a normal connected #[1/…]-scheme of finite type, X/T a smooth

T-scheme with geometrically connected fibres of dimension d, Ï a lisse ä$…-sheaf on X. There

exist non-negative integers A(X/T) and C(X/T, Ï) such that for every geometric point t of T, we

have

A(Xt) ≤ A(X/T),

C(Xt, Ï|Xt) ≤ C(X/T, Ï).

pppprrrrooooooooffff See [Ka-Sar, RMFEM, 9.3.3 and 9.3.4]. QED

TTTThhhheeeeoooorrrreeeemmmm    9999....4444....4444 Hypotheses and notations as in Corollary 9.2.3, we have the following results. For

any finite field k with Card(k) ≥ 4A(X/T)2, any conjugacy class ß in Sd, any k-valued point t of

T, and any finite extension E/k, we have
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|ùXt,ß-split(E)/ùXt(E)  -  ùß/d~| ≤ 2C(X/T, Í)d~/(ùE)1/2.

In particular, taking ß to be the class of a d-cycle, we have

|ùXt,prime(E)/ùX
t
(E)  -  1/d| ≤ 2C(X/T, Í)d~/(ùE)1/2.

pppprrrrooooooooffff Apply Deligne's equidistribution theorem [Ka-Sar, RMFEM, 9.7.13], with the data

(…, X/S, Ï, “, G, Garith)

of [Ka-Sar, RMFEM, 9.7.10] taken to be

(…, X/T, Í, any “, G = Garith = Sd inside GL(d)).

In the notations of [Ka-Sar, RMFEM, 9.7.13], K = Karith = Sd, © is the unique element of the.

group Æ = {e}, and we take for W the conjugacy class ß. We have already observed that Í is “-

pure of weight zero. That the other hypotheses [Ka-Sar, RMFEM, 9.7.2.1-3] hold is precisely the

content of Corollary 9.2.3 above. QED

9999....5555    EEEEqqqquuuuiiiiddddiiiissssttttrrrriiiibbbbuuuuttttiiiioooonnnn    tttthhhheeeeoooorrrreeeemmmmssss    ffffoooorrrr    ttttwwwwiiiissssttttssss    bbbbyyyy    pppprrrriiiimmmmeeeessss::::    tttthhhheeee    bbbbaaaassssiiiicccc    sssseeeettttuuuupppp    oooovvvveeeerrrr    aaaa    ffffiiiinnnniiiitttteeee    ffffiiiieeeelllldddd

(9.5.1) In order to clarify the simple underlying structure, we will first consider a slightly

simplified abstract situation.We give ourselves a finite field k, a smooth, geometrically connected

k-scheme X/k, a geometric point ≈ of X, a prime number … invertible in k, a field embedding “ : ä$…

¨ ^, and a lisse ä$…-sheaf Ï on X of rank r, which is “-pure of weight zero. We denote by 

˘
Ï

 : π1(X, ≈) ¨ GL(Ï≈) ¶ GL(r, ä$…)

the homomorphism corresponding to the lisse sheaf Ï. We denote by Ggeom,Ï the Zariski closure

in GL(Ï≈) of the image of π1
geom(X, ≈) := π1(Xºkäk, ≈) under ˘Ï. We denote by Garith,Ï the the

Zariski closure in GL(Ï≈) of the image of π1
arith(X, ≈) := π1(X, ≈) under ˘Ï.  Thus Ggeom,Ï is a

closed normal subgroup of Garith,Ï. 

(9.5.2) We make the hypothesis that Ggeom,Ï is of finite index in Garith,Ï, and we denote by S

the finite quotient group:

S := Garith.Ï/Ggeom,Ï.

The group S is a finite cyclic group, because it is a finite quotient of the pro-cyclic group

π1
arith(X, ≈)/π1

geom(X, ≈) ¶ Gal(äk/k). Thus S has a canonical generator, the image of the

geometric Frobenius Frobk in Gal(äk/k). Thus S = #/(ùS)#. We will speak of elements of S as

"degrees mod ùS".

(9.5.3) We pick maximal compact subgroups K of Ggeom,Ï(^) and Karith of Garith,Ï(^) with K

fi Karith. Then Karith/K ¶ S. We denote by dk the Haar measure on Karith which gives K total

mass one (and so gives Karith total mass ùS). For each s in S, we denote by Karith,s fi Karith the

coset sK. The surjective homomorphism

Karith ¨ S
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induces a map of spaces of conjugacy classes

(Karith)ù ¨ Sù = S.

For each s in S, we denote by (Karith,s)ù fi (Karith)ù the inverse image of s by this map. 

(9.5.4) Fix one element s in S. For E/k any finite extension whose degree is congruent to s mod

ùS, and any x in X(E), the element “(˘
Ï

(FrobE,x))ss in Garith,Ï(^) is conjugate in Garith,Ï(^) to

an element ø(E, x) of Karith,s, and this element ø(E, x) is itself well defined up to Karith-

conjugacy. By Deligne's equistribution theorem [Ka-Sar, RMFEM, 9.7.10], we know that for any

continuous ^-valued central function f on Karith, we have the limit formula

(9.5.4.1) —Karith,s 
f(k)dk = limùE ¨ ‘, deg(E/k) • s mod ùS (1/ùX(E))‡x in X(E) f(ø(E, x)),

the limit taken over finite extensions E/k of degree • s mod ùS and large enough that X(E) is

nonempty. More precisely, for Ú any finite-dimensional representation of Karith, and any finite

extension E/k of degree • s mod ùS with Card(E) ≥ 4A(Xºkäk)2, we have the estimate

(9.5.4.2)

|—Karith,s 
Trace(Ú(k))dk - (1/ùX(E))‡x in X(E) Trace(Ú(ø(E, x)))|

≤ 2C(Xºkäk, Ï)dim(Ú)/Card(E)1/2.

(9.5.5) We also give ourselves a ffffiiiinnnniiiitttteeee group Æ, and a homomorphism

® : π1(X, ≈) ¨ Æ.

We suppose that

®(π1
geom(X, ≈)) = Æ.

We choose a faithful ä$… representation of the finite group Æ, and view it as a lisse ä$…-sheaf ÍÆ on

X which becomes trivial on a finite etale covering (the one determined by Ker(®)).

(9.5.6) For each conjugacy class © in Æ, and each finite extension E/k, we denote by

X©(E) fi X(E)

the set of points x in X(E) such that the Frobenius conjugacy class ®(FrobE,x) lies in the class ©. 

(9.5.7) Applying [Ka-Sar, RMFEM, 9.7.2.13], we find that for any finite extension E/k with

Card(E) ≥ 4A(Xºkäk)2, and any conjugacy class © in Æ, we have

(9.5.7.1)) |ùX©(E)/ùX(E)  -  ù©/ùÆ| ≤ 2C(Xºkäk, ÍÆ)ùÆ/(ùE)1/2.

LLLLeeeemmmmmmmmaaaa    9999....5555....8888 For Card(E) > Max(4A(Xºkäk)2, 4C(Xºkäk, ÍÆ)2(ùÆ)4), both X(E) and X©(E) are

nonempty.

pppprrrrooooooooffff We recall that for Card(E) > 4A(Xºkäk)2, we have Card(X(E)) ≥ (1/2)Card(E)dim(X), so

certainly X(E) is nonempty. Thus we will have X©(E) nonempty provided 2C(Xºkäk,

ÍÆ)ùÆ/(ùE)1/2 < 1/ùÆ, or, what is same, provided that
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Card(E) > 4C(Xºkäk, ÍÆ)2(ùÆ)4. QED

(9.5.9) Now let us return our attention to Deligne's equidistribution theorem for Ï:

—Karith,s 
f(k)dk = limùE ¨ ‘, deg(E/k) • s mod ùS (1/ùX(E))‡x in X(E) f(ø(E, x)),

the limit taken over finite extensions E/k of degree • s mod ùS and large enough that X(E) is

nonempty. Fix a conjugacy class © in Æ. We are interested in the extent this formula remains true if

we replace, in its right hand side, the average over X(E) by the average over X©(E). In other

words, when is it true that

—Karith,s 
f(k)dk = limùE ¨ ‘, deg(E/k) • s mod ùS (1/ùX©(E))‡x in X©(E) f(ø(E, x)),

the limit now taken over finite extensions E/k of degree • s mod ùS large enough that X©(E) is

nonempty.

(9.5.10) To answer this question, we must consider the homomorphism

˘Ï ≠ ® : π1(X, ≈) ¨ Ggeom,Ï(ä$…) ≠ Æ.

Denote by Ggeom,Ï≠Æ the Zariski closure of (˘Ï ≠ ®)(π1
geom(X, ≈)) in Ggeom,Ï ≠ Æ. Denote

by Garith,Ï≠Æ the Zariski closure of (˘Ï ≠ ®)(π1
arith(X, ≈)) in Garith,Ï ≠ Æ.

TTTThhhheeeeoooorrrreeeemmmm    9999....5555....11111111 Suppose the group Ggeom,Ï≠Æ is equal to the product Ggeom,Ï ≠ Æ. Then

Garith,Ï≠Æ is equal to the product Garith,Ï ≠ Æ. For every s in S, every conjugacy class © in Æ,

and every continuous ^-valued central function f on Karith, we have the limit formula

—Karith,s 
f(k)dk = limùE ¨ ‘, deg(E/k) • s mod ùS (1/ùX©(E))‡x in X©(E) f(ø(E, x)),

the limit taken over finite extensions E/k of degree • s mod ùS large enough that X©(E) is

nonempty, e.g, Card(E) > Max(4A(Xºkäk)2, 4C(Xºkäk, ÍÆ)2(ùÆ)4).

pppprrrrooooooooffff The group Garith for Ï≠Æ lies in the product Garith,Ï ≠ Æ and projects onto each factor. It

contains as a subgroup the group Ggeom for  Ï≠Æ, which by hypothesis is the product Ggeom,Ï

≠ Æ. Thus Garith,Ï≠Æ is a group between Ggeom,Ï ≠ Æ and Garith,Ï ≠ Æ which maps onto

Garith,Ï, so must be the product Garith,Ï ≠ Æ.

Pick any faithful linear ä$…-representation Ú of Æ, say of dimension n, and denote by ÍÆ

the lisse ä$…-sheaf on X of rank n attached to the composite homomorphism

Ú«® : π1(X) ¨ Æ ¨ GL(n, ä$…).

We now apply Deligne's equidistribution theorem as recalled above to the direct sum sheaf

Ï·ÍÆ. The group Ggeom,Ï·ÍÆ
 is, by hypothesis, the product group Ggeom,Ï ≠ Æ.As we have

just seen above, Garith,Ï·ÍÆ
 is the product group Garith,Ï ≠ Æ. A maximal compact subgroup of

Ggeom,Ï ≠ Æ is K≠Æ, and a maximal compact subgroup of Garith,Ï·ÍÆ
 is Karith≠Æ. 

Fix a conjugacy class © in Æ, and denote by
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I© : Æ ¨ ^

the indicator function of the conjugacy class ©. Denote by dg the total mass one Haar measure on

Æ. Given a continuous ^-valued central function f on Karith, the product function f≠I© on

Karith≠Æ is a continuous ^-valued central function. For each s in S, Deligne's equidistribution

theorem [Ka-Sar, RMFEM, 9.7.10] for Ï·ÍÆ gives

—Karith,s≠Æ f(k)I©(g)dkdg

= limùE ¨ ‘, deg(E/k) • s mo(1/ùX(E))‡x in X(E) f(ø(E, x))I©(®(FrobE,x)),

the limit taken over finite extensions E/k of degree •s mod ùS large enough that X(E) is nonempty.

More explicitly, this limit formula says

(ù©/ùÆ)—Karith,s 
f(k)dk = limùE ¨ ‘, deg(E/k) • s mod ùS (1/ùX(E))‡x in X

©
(E) f(ø(E, x)),

the limit taken over finite extensions E/k of degree •s mod ùS large enough that X(E) is nonempty.

We also know from 9.5.7.1 that

(ùÆ/ù©) = limùE ¨ ‘ (ùX(E)/ùX
©

(E)),

the limit taken over finite extensions E/k large enough that X
©

(E) is nonempty. In particular,we

have

(ùÆ/ù©) = limùE ¨ ‘ (ùX(E)/ùX
©

(E)),

the limit taken over finite extensions E/k of degree •s mod ùS large enough that X(E) is nonempty.

Multiplying together these two limit formulas, we get the assertion. QED

9999....6666    EEEEqqqquuuuiiiiddddiiiissssttttrrrriiiibbbbuuuuttttiiiioooonnnn    tttthhhheeeeoooorrrreeeemmmmssss    ffffoooorrrr    ttttwwwwiiiissssttttssss    bbbbyyyy    pppprrrriiiimmmmeeeessss::::    uuuunnnniiiiffffoooorrrrmmmmiiiittttiiiieeeessss    wwwwiiiitttthhhh    rrrreeeessssppppeeeecccctttt    ttttoooo    ppppaaaarrrraaaammmmeeeetttteeeerrrrssss    iiiinnnn    tttthhhheeee

bbbbaaaassssiiiicccc    sssseeeettttuuuupppp    aaaabbbboooovvvveeee

(9.6.1) In this section, we consider the following situation. We are given a prime number …, a field

embedding “ : ä$… ¨ ^, a connected normal #[1/…]-scheme T of finite type, a smooth T-scheme

X/T with geometrically connected fibres of dimension d, a lisse ä$…-sheaf Ï on X of rank r ≥ 1, a

finite group Æ, and a finite etale galois Æ-torsor Y/X on X. We choose a faithful ä$…-linear

representation of Æ, and push out Y/X by this representation to obtain a lisse ä$…-sheaf ÍÆ on X

which becomes trivial on Y. We fix two (not necessarily connected) semisimple ä$…-algebraic

subgroups G fi Garith of GL(r). We suppose that G is a normal subgroup of Garith of finite index,

and that the quotient group Garith/G is a finite cyclic group S. We fix maximal compact subgroups

K in G(^) and Karith in Garith(^), with K fi Karith. We make the following hypothesis:

(9.6.2) For every finite field k, and every k-valued point t of T, there exists a constant åk,t in

(ä$…)≠ such that 

1)the lisse sheaf on Xt/k given by Ït‚(åk,t)
deg is “-pure of weight zero, 
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2) the group Ggeom for Ït‚(åk,t)
deg is (conjugate in GL(r) to) G,

3) under the representation ®t of π1(Xt) corresponding to Ït‚(åk,t)
deg, the entire group π1(Xt)

lands in Garith, i.e., we have ®t(π1(Xt)) fi Garith.

4) The group Ggeom for the direct sum Ït‚(åk,t)
deg · ÍÆ,t on Xt is the product group (Ggeom

for Ït‚(åk,t)
deg)≠Æ.

5) There exists a surjective homomorphism

a : π1(T) ¨ S

with the following property. For each finite field k, each k-valued point t in T(k), and each k-

valued point x in Xt(k), the image in S of ®t(Frobk,x) is A(Frobk,t).

TTTThhhheeeeoooorrrreeeemmmm    9999....6666....3333 Notations and hypotheses as in 9.6.1-2 above, fix an element s in S, and a

conjugacy class © in Æ. For each finite field k and each k-valued point t of T such that A(Frobk,t)

= s, and each k-valued point x of Xt with Frobenius conjugacy class © in Æ, denote by ø(k, t, åk,t,

x) the Frobenius conjugacy class in Karith,s attached to the point x and the lisse sheaf

Ït‚(åk,t)
deg on Xt. Fix a continuous ^-valued central function f on Karith. Fix any sequence of

data (ki, ti in T(ki)) in which the ki are finite fields with

Card(ki) > Max(4A(X/T)2, 4C(X/T, ÍÆ)2(ùÆ)4)

whose cardinalities form a strictly increasing sequence, and in which, for each i, A(Frobki,ti
) = s.

We have the limit formula

—Karith,s 
f(k)dk = limi ¨ ‘ (1/ùXti,©

(ki))‡x in Xti,©
(ki)

 f(ø(ki, ti, åki,ti, 
x)).

pppprrrrooooooooffff For each (k, t in T(k)), denote by S(k,t) fi S the subgroup of S generated by the image of

®t(π1(Xt)). Equivalently, S(k,t) is the subgroup of S generated by the element A(Frobk,t). Denote

by GS(k,t) the algebraic group

G fi GS(k,t) fi Garith

which is the inverse image of S(k,t) in Garith under the projection 

Garith ¨ Garith/G  = S.

Denote by KS(k,t) the compact group

K fi KS(k,t) fi Karith

which is the inverse image of S(k,t) under the projection

Karith ¨ Karith/K = S.

Thus KS(k,t) is a maximal compact subgroup of GS(k,t). In terms of the cosets Karith,s, we have

KS(k,t) = ‹s in S(k,t) Karith,s.
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On Xt, we have the lisse sheaf Ït‚(åk,t)
deg, whose Ggeom is G and whose Garith is

GS(t,k). We also have the finite etale Æ-torsor Yt/Xt, and its pushout sheaf ÍÆ on X. By

assumption 4), π1(Xt)
geom maps onto Æ. We have already seen (9.5.7.1) that on each fibre Xt, we

have

|ùXt,©(k)/ùXt(k)  -  ù©/ùÆ| ≤ 2C(Xtºkäk, ÍÆ,t)ùÆ/(ùk)1/2.

By the Uniformity Lemma 9.4.3, the constants C(Xtºkäk, ÍÆ,t) are all bounded by some C(X/T,

ÍÆ), so we get the uniform estimate

|ùXt,©(k)/ùXt(k)  -  ù©/ùÆ| ≤ 2C(X/T, ÍÆ)ùÆ/(ùk)1/2.

In particular, we have the limit formula

ùÆ/ù© = limi ¨ ‘ ùXti
(ki)/ùXti,©

(ki).

It remains only to show that for any continuous central function F(k, ©) on Karith≠Æ, we

have the limit formula

—Karith,s≠Æ F(k, g)dkdg = limi ¨ ‘ (1/ùXti
(ki))‡x in X

ti
(ki)

 F(ø(ki, ti, åki,ti, 
x), ©(k,x)).

For then we take F(k, g) := f(g)I©(g), where I© is the characteristic function of the conjugacy class

Æ. The above limit formula specializes to

(ù©/ùÆ)—Karith,s 
f(k)dk = limi ¨ ‘ (1/ùXti

(ki))‡x in X
ti, ©

(ki)
 f(ø(ki, ti, åki,ti, 

x)).

One then multiplies this limit formula with the limit formula

ùÆ/ù© = limi ¨ ‘ ùXti
(ki)/ùXti,©

(ki).

above.

How do we show that 

—Karith,s≠Æ F(k, g)dkdg = limi ¨ ‘ (1/ùXti
(ki))‡x in X

ti
(ki)

 F(ø(ki, ti, åki,ti, 
x), ©(k,x))

for any continuous central function F(k, g) on Karith≠Æ? It suffices to treat the case when F is the

trace of a finite-dimensional representation Ú of Karith≠Æ. 

For each (k, t in T(k)) with A(Frobk,t) = s, we apply Deligne's equidistribution theorem

[Ka-Sar, RMFEM, 9.7.10] to the sheaf Ït‚(åk,t)
deg · ÍÆ,t on Xt. Its Ggeom is G≠Æ and its

Garith is GS(k,t)≠Æ, with compact forms K≠Æ fi KS(k,t)≠Æ. We restrict the representation Ú to

KS(k,t)≠Æ. For Card(k) ≥ 4A(X/T)2, and t in T(k) with A(Frobk,t) = s, we have the estimate

|—Karith,s≠Æ Trace(Ú(k,g))dkdg 

- (1/ùXt(k))‡x in X
t
(k) F(ø(k, t, åk,t, x), ©(k,x))|

≤ 2C(Xtºkäk, Ït‚(åk,t)
deg · ÍÆ,t)dim(Ú)/Card(k)1/2.

The trivial but key observation here is that  on Xtºkäk, the sheaf Ït‚(åk,t)
deg is isomorphic to Ït
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(because (åk,t)
deg is geometrically constant). So by the Uniformity Lemma 9.4.3, we have the

uniform estimate

|—Karith,s≠Æ Trace(Ú(k,g))dkdg - (1/ùXt(k))‡x in X
t
(k) F(ø(k, t, åk,t, x), ©(k,x))|

≤ 2C(Xtºkäk, Ït·ÍÆ,t)dim(Ú)/Card(k)1/2.

≤ 2C(X/T, Ï·ÍÆ)dim(Ú)/Card(k)1/2.   QED

(9.6.4) Also quite useful is the following special case Æ = {e} of the above result, which is a slight

variant of [Ka-Sar, RMFEM, 9.7.10].

TTTThhhheeeeoooorrrreeeemmmm    9999....6666....5555 Suppose given a prime …, a field embedding “ : ä$… ¨ ^, a connected normal

#[1/…]-scheme T of finite type, a smooth T-scheme X/T with geometrically connected fibres of

dimension d, and a lisse ä$…-sheaf Ï on X of rank r ≥ 1 We fix two (not necessarily connected)

semisimple ä$…-algebraic subgroups G fi Garith of GL(r). We suppose that G is a normal

subgroup of Garith of finite index, and that the quotient group Garith/G is a finite cyclic group S.

We fix maximal compact subgroups K in G(^) and Karith in Garith(^), with K fi Karith. We

make the following hypothesis:

For every finite field k, and every k-valued point t of T, there exists a constant åk,t in

(ä$…)≠ such that 

1)the lisse sheaf on Xt/k given by Ït‚(åk,t)
deg is “-pure of weight zero, 

2) the group Ggeom for Ït‚(åk,t)
deg is (conjugate in GL(r) to) G,

3) under the representation ®t of π1(Xt) corresponding to Ït‚(åk,t)
deg, the entire group π1(Xt)

lands in Garith, i.e., we have ®t(π1(Xt)) fi Garith.

4) There exists a surjective homomorphism

a : π1(T) ¨ S

with the following property. For each finite field k, each k-valued point t in T(k), and each k-

valued point x in Xt(k), the image in S of ®t(Frobk,x) is A(Frobk,t).

With these hypotheses, fix an element s in S. For each finite field k, each k-valued point t of T

with A(Frobk,t) = s, and each k-valued point x of Xt, denote by ø(k, t, åk,t, x) the Frobenius

conjugacy class in Karith,s attached to the point x and the lisse sheaf Ït‚(åk,t)
deg on Xt. Fix a

continuous ^-valued central function f on Karith. Fix any sequence of data (ki, ti in T(ki)) in

which the ki are finite fields with

Card(ki) > 4A(X/T)2
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whose cardinalities form a strictly increasing sequence, and in which, for each i, A(Frobki,ti
) = s.

We have the limit formula

—Karith,s 
f(k)dk = limi ¨ ‘ (1/ùXti

(ki))‡x in Xti
(ki)

 f(ø(ki, ti, åki,ti, 
x)).

More precisely, for Ú any finite-dimensional representation of Karith, any finite field k with

Card(k) ≥ 4A(Xºkäk)2, and any t in T(k) with A(Frobk,t) = s, we have the estimate

|—Karith,s 
Trace(Ú(k))dk - (1/ùXt(k))‡x in Xt(k) Trace(Ú(ø(k, t, åk,t, x)))|

≤ 2C(Xºkäk, Ï)dim(Ú)/Card(k)1/2.

pppprrrrooooooooffff Take Æ to be the trivial group in Theorem9.6.3. QED

9999....7777    AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss    ooooffff    GGGGoooouuuurrrrssssaaaatttt''''ssss    LLLLeeeemmmmmmmmaaaa

(9.7.1) We now explore some conditions which guarantee that the group Ggeom,Ï≠Æ is equal to

the product Ggeom,Ï ≠ Æ. The key point is that Ggeom,Ï≠Æ is a Zariski-closed subgroup of

Ggeom,Ï ≠ Æ which maps onto both factors.

LLLLeeeemmmmmmmmaaaa    9999....7777....2222    ((((GGGGoooouuuurrrrssssaaaatttt)))) Let G/^ be an algebraic group of finite type over an algebraically closed

field of characteristic zero. Let Æ be a finite group (viewed as algebraic group over ^ by means of

some faithful linear representation). Let H be a Zariski closed subgroup of G≠Æ which maps onto

each factor. Then there exists a closed normal subgroup G1 of G with G0 fi G1, and a normal

subgroup Æ1 fi Æ, such that H is the inverse image in G≠Æ of the graph of an isomorphism

between G/G1 and Æ/Æ1.

pppprrrrooooooooffff Since H maps onto G, dim(H) ≥ dim(G). But H fi G≠Æ with Æ finite, so dim(H) ≤

dim(G≠Æ) = dim(G). Therefore dim(H) = dim(G≠Æ). As H is a closed subgroup of G≠Æ, the

identity component H0 of H must be the identity component (G≠Æ)0 = G0≠{e} of G≠Æ. Therefore

H contains G0≠{e}. So H is the inverse image in G≠Æ of some subgroup äH of the finite group

(G/G0)≠Æ which maps onto both factors of (G/G0)≠Æ. This reduces us to treating universally the

case when the group G is finite, in which case this is the classical Goursat Lemma, cf. [Lang,

Algebra, ex. 5 on page 75] QED

CCCCoooorrrroooollllllllaaaarrrryyyy    9999....7777....3333 Hypotheses as in 9.7.2, if G is connected, then H is G≠Æ.

CCCCoooorrrroooollllllllaaaarrrryyyy    9999....7777....4444 Hypotheses as in 9.7.2, suppose Æ is the symmetric group Sd with d ≥ 5. If G/G0

has no quotient group of order two, then H is G≠Æ.

pppprrrrooooooooffff Either H is G≠Æ or it is the inverse image of the graph of an isomorphism between a
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nontrivial quotient of G/G0 and a nontrivial quotient of Sd. The only nontrivial quotients of Sd are

Sd itself and Sd/Ad ¶ {_1}, both of which admit quotients of order 2. Since G/G0 admits no such

quotient, we must have H = G≠Æ by the paucity of choice. QED

9999....8888    IIIInnnntttteeeerrrrlllluuuuddddeeee::::    ddddeeeettttaaaaiiiilllleeeedddd    ddddiiiissssccccuuuussssssssiiiioooonnnn    ooooffff    tttthhhheeee    OOOO((((NNNN))))≠≠≠≠SSSSdddd    ccccaaaasssseeee

(9.8.1) This last corollary, 9.7.4, is of no use if G is the orthogonal group O(N), and Æ is Sd with

d ≥ 5. 

TTTThhhheeeeoooorrrreeeemmmm    9999....8888....2222 Let k be a field, X/k a smooth, geometrically connected k-scheme, ≈ a geometric

point of X, … a prime invertible in k, and Ï a lisse, orthogonally self-dual ä$…-sheaf on X of some

rank N, corresponding to a representation

˘Ï : π1(X, ≈) ¨ O(N),

 whose Ggeom is the full orthogonal group O(N). Let

® : π1
geom(X, ≈) n Sd

be a surjective homomorphism onto the symmetric group Sd for some d ≥ 5. Let us denote by 

sgn(®) : π1
geom(X, ≈) n Sd/Ad = {_1}

the {_1}-valued character of π1
geom(X, ≈) obtained by composing ® with the sign character of

Sd, and by

Òsgn(®)

the corresponding lisse rank one ä$…-sheaf on Xºkäk. Then we have the following possibilities for

Ggeom,Ï≠®
.

1) Suppose that the lisse rank one ä$…-sheaves Òsgn(®) and det(Ï) are isomorphic on Xºkäk, i.e.,

suppose that the two {_1}-valued characters of π1
geom(X, ≈) given by sgn(®) and by det(˘Ï) are

equal. Then Ggeom,Ï≠®
 is the subgroup of O(N)≠Sd of all elements (A,ß) with det(A) = sgn(ß).

2) Suppose that Òsgn(®) and det(Ï) are not geometrically isomorphic, i.e. suppose that sgn(®) ±

det(˘Ï) as characters of π1
geom(X, ≈). Then Ggeom,Ï≠®

 is the the entire product O(N)≠Sd 

pppprrrrooooooooffff Since the only nontrivial quotient of O(N)/O(N)0 = {_1} is {_1}, and Sd has unique

quotient {_1} by the sign character, either Ggeom,Ï≠®
 is the the entire product O(N)≠Sd, or it is

the subgroup of O(N)≠Sd consisting of all elements (A, ß) with det(A) = sgn(ß). 

In the latter case, the characters (A, ß) ÿ det(A) and (A, ß) ÿ sgn(ß) coincide on

Ggeom,Ï≠®
. In particular these characters coincide on elements (˘Ï(©), ®(©)) with © in

π1
geom(X, ≈). This means exactly that det(˘Ï) = sgn(®) on π1

geom(X, ≈). 

In the former case, the two characters det(˘Ï) and sgn(®) on π1
geom(X, ≈) must be
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distinct, otherwise by the Zariski density of (˘Ï≠®)(π1
geom(X, ≈)) the two characters (A, ß) ÿ

det(A) and (A, ß) ÿ sgn(ß) would coincide on Ggeom,Ï≠®
 = O(N)≠Sd, which they do not.

QED

9999....9999    AAAApppppppplllliiiiccccaaaattttiiiioooonnnn    ttttoooo    ttttwwwwiiiisssstttt    sssshhhheeeeaaaavvvveeeessss

TTTThhhheeeeoooorrrreeeemmmm    9999....9999....1111 Let k be an algebraically closed field in which 2 is invertible. Fix a prime number …

which is invertible in k. Denote by ç2 the unique character of order 2 of the tame fundamental

group of ´m/k. Let C/k be a proper smooth connected curve of genus g. Fix an irreducible middle

extension ä$…-sheaf Ï on C, which is symplectically self-dual. Let D = ‡aiPi be an effective

divisor of degree d on C. Suppose that

1) d ≥ 4g+4,

and

2g - 2 + d > Max(2ùSing(Ï), 72rank(Ï)).

2) Either Ï is everywhere tame, or Ï is tame at all points of D and the characteristic p is either zero

or p ≥ rank(Ï) + 2. 

3) There exists a finite singularity ∫ of Ï, i.e., a point ∫ in Sing(Ï)¤(C-D), such that the following

two conditions hold.

3a) Ï is tame at ∫.

3b) Ï(∫)/Ï(∫)I(∫) has odd dimension.

Consider the lisse sheaf Ì on Fct(C, d, D, Sing(Ï)finite) given by

f ÿ H1(C, j*(Ï‚Òç(f)),

whose Ggeom is, by Theorem 5.5.1, the full orthogonal group O. The lisse rank one sheaf det(Ì)

on Fct(C, d, D, Sing(Ï)finite) is not the restriction to Fct(C, d, D, Sing(Ï)finite) of a lisse sheaf on

the larger space Fct(C, d, D, &).

pppprrrrooooooooffff Pick f1 and f2 as in the proof of 5.4.9. Consider the pullback 

Ó := [t ÿ f1(t - f2)]*Ì

to !1 - CritVal(f2, Ï‚Òç(f1)). At the point t = f2(∫), det(Ó) has nontrivial local monodromy (the

character of order two), cf 5.4.11.

On the other hand, the function f1(f2(∫) - f2) on C has d distinct zeroes, all disjoint from

D, i.e., the function f1(f2(∫) - f2) lies in Fct(C, d, D, &). To see this, recall that f1 was chosen to

lie in Fct(C, deg(D1), D1, Sing(Ï)⁄Dred), so f1 has d1 distinct zeroes, all disjoint from D. Then

f2 was required to lie in Fct(C, deg(D2), D2, Sing(Ï)⁄Dred⁄f1
-1(0)) and to lie in the open set U
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of Theorem 2.2.6 with respect to the set 

S := f1
-1(0)⁄(Sing(Ï)¤(C-D2)).

The point ∫ lies in S, so f2 - f2(∫) has d2 distinct zeroes, all disjoint from D. Also, f2 is injective

on the set f1
-1(0)⁄(Sing(Ï)¤(C-D2)), so it is injective on the subset f1

-1(0)⁄{∫}. Therefore

f2(∫) - f2 is nonzero at every zero of f1. Thus, f1(f2(∫) - f2) has d distinct zeroes, all disjoint from

D. In other words, f1(f2(∫) - f2) lies in Fct(C, d, D, &).

Now suppose there exists a lisse sheaf Ò on Fct(C, d, D, &) whose restriction to Fct(C, d,

D, Sing(Ï)finite) is det(Ì). Then the pullback [t ÿ f1(t - f2)]*Ò is lisse at t=f2(∫), precisely

because the function f1(f2(∫) - f2) lies in Fct(C, d, D, &). But this same pullback is det(Ó), which

is not lisse at f2(∫), contradiction. QED

CCCCoooorrrroooollllllllaaaarrrryyyy    9999....9999....2222 Notations and hypotheses as in Theorem 9.9.1 above, denote by

®split : π1(Fct(C, d, D, Sing(Ï)finite), ≈) ¨ Sd

the homomorphism attached to the finite etale Sd-torsor 

Split(C, d, D, Sing(Ï)finite) ¨ Fct(C, d, D, Sing(Ï)finite).

Then Ggeom,Ì≠®split
 is the product group O≠Sd.

pppprrrrooooooooffff In view of Theorem 9.8.2, we need only show that det(Ì) is not isomorphic to Òsgn(®split)

as lisse sheaf on the space

Fct(C, d, D, Sing(Ï)finite).

But Òsgn(®split)
 is the restriction to Fct(C, d, D, Sing(Ï)finite) of a lisse sheaf on Fct(C, d, D, &),

since the finite etale Sd-torsor 

Split(C, d, D, Sing(Ï)finite) ¨ Fct(C, d, D, Sing(Ï)finite)

is the restriction to Fct(C, d, D, Sing(Ï)finite) of the finite etale Sd-torsor 

Split(C, d, D, &) ¨ Fct(C, d, D, &).

In view of the above theorem, det(Ì) is not such a restriction, hence cannot be isomorphic to

Òsgn(®split)
 as lisse sheaf on Fct(C, d, D, Sing(Ï)finite). QED

9999....11110000    EEEEqqqquuuuiiiiddddiiiissssttttrrrriiiibbbbuuuuttttiiiioooonnnn    tttthhhheeeeoooorrrreeeemmmmssss    ffffoooorrrr    ttttwwwwiiiissssttttssss    bbbbyyyy    pppprrrriiiimmmmeeeessss,,,,    oooovvvveeeerrrr    ffffiiiinnnniiiitttteeee    ffffiiiieeeellllddddssss

(9.10.1) In this section, we put ourselves in the situation of 7.0, and give ourselves data

(C/k, D, …, r, Ï, ç, “, w). We suppose that that after extension of scalars from k to äk, our data (C/k,

D, …, r, Ï, ç) satisfies all the hypotheses of Theorem 5.5.1 or Theorem 5.6.1 are satisfied. 

TTTThhhheeeeoooorrrreeeemmmm    9999....11110000....2222 Hypotheses as in 9.10.1 above, suppose that Ggeom for Ì is the group SL√(N)

for some oooodddddddd integer √. Choose ∫ such that Ìº∫deg is “-pure of weight zero, and all its Frobenii

land in Ggeom. 
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1) Fix a conjugacy class ß in the symmetric group Sd. As E runs over finite extensions of k with

ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in Xß-split(E) become equidistributed for Haar measure

in the space U√(N)ù of conjugacy classes in U√(N).

2) As E runs over finite extensions of k with ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in

Xprime(E) become equidistributed for Haar measure in the space U√(N)ù of conjugacy classes in

U√(N). 

pppprrrrooooooooffff Assertion 1) results from 9.7.4 and 9.5.11. Assertion 2) is the special case of 1) in which we

take for ß the class of a d-cycle. QED

TTTThhhheeeeoooorrrreeeemmmm    9999....11110000....3333     Hypotheses as in 9.10.1 above, suppose that Ì((w+1)/2) is symplectically self

dual on X, and suppose that Ggeom for Ì is the group Sp(N).

1) Fix a conjugacy class ß in the symmetric group Sd. As E runs over finite extensions of k with

ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in Xß-split(E) become equidistributed for Haar measure

in the space USp(N)ù of conjugacy classes in USp(N). 

2) As E runs over finite extensions of k with ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in

Xprime(E) become equidistributed for Haar measure in the space USp(N)ù of conjugacy classes in

USp(N).

pppprrrrooooooooffff Assertion 1) results from 9.7.3 and 9.5.11. Assertion 2) is the special case of 1) in which we

take for ß the class of a d-cycle. QED

TTTThhhheeeeoooorrrreeeemmmm    9999....11110000....4444 Hypotheses as in 9.10.1 above , suppose that Ì((w+1)/2) is orthogonally self dual

on X. Suppose that Ggeom = Garith = SO(N) for Ì((w+1)/2).

1) Fix a conjugacy class ß in the symmetric group Sd. As E runs over finite extensions of k with

ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in Xß-split(E) become equidistributed for Haar measure

in the space SO(N)ù of conjugacy classes in SO(N). 

2) As E runs over finite extensions of k with ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in

Xprime(E) become equidistributed for Haar measure in the space SO(N)ù of conjugacy classes in

SO(N).

pppprrrrooooooooffff Assertion 1) results from 9.7.3 and 9.5.11. Assertion 2) is the special case of 1) in which we

take for ß the class of a d-cycle. QED

TTTThhhheeeeoooorrrreeeemmmm    9999....11110000....5555 Hypotheses as in 9.10.1 above, suppose that Ì((w+1)/2) is orthogonally self dual

on X, and suppose that Ggeom for Ì is the group O(N). Suppose further that det(Ì) on Xºkäk is
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not the restriction to Xºkäk of a lisse sheaf on Fct(C, d, D, &)ºkäk, cf. 9.9.1 for examples.

1) Fix a conjugacy class ß in the symmetric group Sd. As E runs over finite extensions of k with

ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in Xß-split(E) become equidistributed for Haar measure

in the space O(N)ù of conjugacy classes in O(N). 

2) As E runs over finite extensions of k with ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in

Xprime(E) become equidistributed for Haar measure in the space O(N)ù of conjugacy classes in

O(N).

pppprrrrooooooooffff Assertion 1) results from 9.8.2, 9.9.2, and 9.5.11. Assertion 2) is the special case of 1) in

which we take for ß the class of a d-cycle. QED

(9.10.6) Let us spell this out in terms of the decomposition

O(N, %)ù = Osign +(N, %)ù ‹ Osign -(N, %)ù.

CCCCoooorrrroooollllllllaaaarrrryyyy    9999....11110000....7777 Hypotheses as in 9.10.5, we have:

1) Fix a conjugacy class ß in Sd, and a sign œ = _1. For each finite extension E/k, denote by Xsign

œ(E) the subset of X(E) consisting of those points f in X(E) such that

det(-FrobE,f | Ì((w+1)/2)) = œ.

Denote by Xsign œ, ß-split(E) the subset of X(E) given by

Xsign œ, ß-split(E) := Xsign œ(E) ¤ Xß-split(E).

As ùE ¨ ‘,

ùXsign œ(E)/ùX(E) ¨ (1/2)≠(ùß/d~),

and the conjugacy classes {ø(E, f)}f in Xsign œ, ß-split(E) become equidistributed for Haar

measure of total mass one on the space Osign œ(N, %)ù.

2) Fix a sign œ = _1. As ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in Xsign œ, prime(E) become

equidistributed for Haar measure of total mass one on the space Osign œ(N, %)ù.

pppprrrrooooooooffff Assertion 1) is obtained by applying the equidistribution statement 1) of Theorem 9.10.5 to

the integration of continuous central functions on O(N, %) which are supported in Osign œ(N, %).

Assertion 2) is the special case of 1) where we take for ß the class of a d-cycle. QED

TTTThhhheeeeoooorrrreeeemmmm    9999....11110000....8888 Hypotheses as in 9.10.1, suppose that Ì((w+1)/2) is orthogonally self dual on X.

Suppose that Ì((w+1)/2) has Ggeom = SO(N) and Garith = O(N). Then we have:

1) The rank N of Ì is even.

2) Fix a conjugacy class ß in the symmetric group Sd, and a sign œ = _1. As E runs over finite

extensions of k with (-1)deg(E/k) = œ and ùE ¨ ‘, the conjugacy classes {ø(E, f)}f in Xß-

split(E) become equidistributed for Haar measure in the space Osign œ(N, %)ù.
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3) Fix a sign œ = _1. As E runs over finite extensions of k with ùE ¨ ‘ and (-1)deg(E/k) = œ, the

conjugacy classes {ø(E, f)}f in Xprime(E) become equidistributed for Haar measure in the space

Osign œ(N, %)ù.

pppprrrrooooooooffff Assertion 1) results from 5.5.2, part 3). Assertion 2) results from 9.7.3 and 9.5.11.

Assertion 3) is the special case of 2) where we take for ß the class of a d-dycle. QED

9999....11111111    AAAAvvvveeeerrrraaaaggggeeee    aaaannnnaaaallllyyyyttttiiiicccc    rrrraaaannnnkkkkssss    ooooffff    ttttwwwwiiiissssttttssss    bbbbyyyy    pppprrrriiiimmmmeeeessss    oooovvvveeeerrrr    ffffiiiinnnniiiitttteeee    ffffiiiieeeellllddddssss

(9.11.1) We first give the result in the case when Ggeom is the full orthogonal group.

TTTThhhheeeeoooorrrreeeemmmm    9999....11111111....2222 Hypotheses and notations as in Theorem 9.10.5 and Corollary 9.10.7 above, fix a

conjugacy class ß in the symmetric group Sd. If we take the limit over finite extensions E/k large

enough that the sets Xß-split(E) and Xsign œ, ß-split(E) are all nonempty, we get the following

tables of limit formulas. In these tables, the number in the third column is the limit, as ùE ¨ ‘, of

the average value of the quantity in the second column over all f's in the set named in the first

column.

Xß-split(E) rankan(Ì, E, f) 1/2

Xß-split(E) rankquad, an(Ì, E, f) 1

Xß-split(E) rankgeom, an(Ì, E, f) 1.

More precisely, when we break up Xß-split(E) according to the sign œ in the functional

equation, we have the following tables of limit values (same format as above).

iiiiffff    NNNN    iiiissss    eeeevvvveeeennnn

Xsign -, ß-split(E) rankan(Ì, E, f) 1,

Xsign +, ß-split(E) rankan(Ì, E, f) 0,

Xsign -,ß-split(E) rankquad, an(Ì, E, f) 2,

Xsign +,ß-split(E) rankquad, an(Ì, E, f) 0,

Xsign -,ß-split(E) rankgeom, an(Ì, E, f) 2,

Xsign +,ß-split(E) rankgeom, an(Ì, E, f) 0
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iiiiffff    NNNN    iiiissss    oooodddddddd

Xsign -, ß-split(E) rankan(Ì, E, f) 1,

Xsign +, ß-split(E) rankan(Ì, E, f) 0,

Xsign -,ß-split(E) rankquad, an(Ì, E, f) 1,

Xsign +,ß-split(E) rankquad, an(Ì, E, f) 1,

Xsign -,ß-split(E) rankgeom, an(Ì, E, f) 1,

Xsign +,ß-split(E) rankgeom, an(Ì, E, f) 1.

If we take ß to be the conjugacy class of a d cycle in Sd, then the set Xß-split(E) becomes

Xprime(E), and Xsign œ, ß-split(E) becomes Xsign œ, prime(E).

pppprrrrooooooooffff Combine the equidistribution statements of Theorem 9.10.5 and Corollary 9.10.7 with the

proof of Theorem 8.3.3. QED

(9.11.3) We now give the analogous result in the remaining cases.

TTTThhhheeeeoooorrrreeeemmmm    9999....11111111....4444 Hypotheses and notations as in Theorem 9.10.4, fix a conjugacy class ß in the

symmetric group Sd. For every finite extension E/k, Xsign -(E) is empty. If we take the limit over

finite extensions E/k large enough that Xß-split(E) = Xsign +,ß-split(E) is nonempty, we get the

following tables of limit formulas. In these tables, the number in the third column is the limit, as ùE

¨ ‘, of the average value of the quantity in the second column over all f's in the set named in the

first column.

Xß-split(E) rankan(Ì, E, f) 0

Xß-split(E) rankquad, an(Ì, E, f) 0

Xß-split(E) rankgeom, an(Ì, E, f) 0.

pppprrrrooooooooffff Combine the equidistribution statement of Theorem 9.10.4 with the proof of 8.3.6 QED

TTTThhhheeeeoooorrrreeeemmmm    9999....11111111....5555 Hypotheses and notations as in Theorem 9.10.8, fix a conjugacy class ß in the

symmetric group Sd, and a sign œ = _1. For every finite extension E/k with (-1)deg(E/k)= œ, we

have Xsign œ(E) = X(E), and Xsign -œ(E) is empty. If we take the limit all finite extensions E/k

with (-1)deg(E/k) = œ and large enough that the sets Xß-split(E) = Xsign œ,ß-split(E) are all

nonempty, we get the following tables of limit formulas. In these tables, the number in the third

column is the limit, as ùE ¨ ‘ over fields E/k with

(-1)deg(E/k) = œ, of the average value of the quantity in the second column over all f's in the set

named in the first column.
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œœœœ    ====    ----1111

Xsign -, ß-split(E) rankan(Ì, E, f) 1,

Xsign -,ß-split(E) rankquad, an(Ì, E, f) 2,

Xsign -,ß-split(E) rankgeom, an(Ì, E, f) 2,

œœœœ    ====    ++++1111

Xsign +, ß-split(E) rankan(Ì, E, f) 0,

Xsign +,ß-split(E) rankquad, an(Ì, E, f) 0,

Xsign +,ß-split(E) rankgeom, an(Ì, E, f) 0

pppprrrrooooooooffff Combine the equidistribution statement of Theorem 9.10.8 with the proof of 8.3.8 QED
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11110000....0000 TTTThhhheeee    bbbbaaaassssiiiicccc    hhhhoooorrrriiiizzzzoooonnnnttttaaaallll    sssseeeettttuuuupppp

(10.0.1) We fix a prime number …, an integer n ≥ 2, and a character

ç : µn(#[1/…n, Ωn]) ¨ (ä$…)≠

of order n. We fix a nnnnoooonnnneeeemmmmppppttttyyyy connected normal #[1/…n, Ωn]-scheme T of finite type. We fix a

proper, smooth, geometrically connected curve C/T of genus g. We suppose given an effective

Cartier divisor S in C which is finite etale over T of degree s ≥ 0 (with the convention that S is

empty if e = 0). We suppose given a lisse ä$…-sheaf Ï on C - S of rank r ≥ 1. If n is 4 or 6, we

suppose that r ≤ 2. We suppose given an integer w, and a field embedding “ : ä$… ¨ ^, such that Ï

is “-pure of weight w. We suppose that for each geometric point t in T, the following three

conditions are satisfied.

1) the sheaf Ït := Ï|(C-S)t on (C-S)t is geometrically irreducible,

2) Denoting by jt : (C-S)t ¨ Ct the inclusion, the irreducible middle extension (jt)*Ït on Ct is not

lisse at any point of Singt, i.e., 

St = Sing((jt)*Ït).

3) either Ït is tame at each point of St, or (r+1)~ is invertible in the residue field ˚(t) at t.

(10.0.2) We further suppose that for variable geometric points t in T, the Euler characteristic

çc((C-S)t, Ït)

is a constant function of t. Recall [Ka-SE, 4.7.1] that if the generic point ot T has characteristic

zero, then each Ït is automatically everywhere tame, and the Euler characteristic çc((C-S)t, Ït) is

constant, given by

çc((C-S)t, Ït) = (2 - 2g - s)r.

(10.0.3) Given an effective Cartier divisor D in C, finite and flat over T of degree d, we say

that D is adapted to the data (C/T, S, Ï) if, etale locally on T, we have the following situation. 

1) There are pairwise disjoint sections Pi of C/T such that D is ‡aiPi for some strictly positive

integers ai with ‡ai = d.

2) There are pairwise disjoint sections Qj of C/T such that S is ‡Qj, and, for each pair (i, j), either

Pi = Qj or Pi is disjoint from Qj. 

3) Ï is tamely ramified along each section Pi which lies in S. [Notice that Ï is lisse near any Pi

which does not lie in S.]

(10.0.4) If all these conditions are satisfied, then for variable geometric points t in T, the

Euler characteristic

çc((C-S - D)t, Ït)

is a constant function of t. If in addition d ≥ 2g+1, then Proposition 6.2.10 applies to the data (C/T,

D, S - S¤D, …, r, Ï| (C - D - S), ç), and so we may form the lisse sheaf Ì on the smooth T-

scheme
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X := Fct(C, d, D, S - S¤D)/T.

We denote this sheaf

Ì := Twistç,C/T,D(Ï).

Because Ï is “-pure of weight w, Ì is “-pure of weight w+1.

(10.0.5) We suppose given a sequence of effective Cartier divisors D√ in C, D√ finite and

flat over T of degree d√ ≥ 1, with the degrees d√ strictly increasing

d1 < d2 < d3 ... < d√ < d√+1 < ...

such that each D√ is adapted to the the data (C/T, S, Ï). Suppose that each d√ is large enough that

the following inequalities hold:

d√ ≥ 12g + 7,

d√ ≥ Max(6g+9, 6s + 11),

2g - 2 + d√ > Max(2s, 72r).

(10.0.6) For each √, Proposition 6.2.10 applies, and we form the lisse sheaf

Ì√ := Twistç,C/T,D√
(Ï)

of rank

N√ ≥ r(2g - 2 + d√)

on the smooth T-scheme

X√ := Fct(C, d, D√, S - S¤D√)/T.

The sheaf Ì√ is “-pure of weight w+1.

(10.0.7) For each geometric point t of T of residue characteristic not 2 [resp. 2], and each √,

the data (Ct, Dt
, …, r, (jt)*Ït, ç) satisfies all the hypotheses of Theorem 5.5.1 [resp. Theorem

5.6.1]. So for the sheaf Ì√,t on X√,t := Fct(Ct, d, D√,t, St - St¤D√,t), its group Ggeom either

contains SL(N√), or is equal to one of SO(N√) or O(N√) or, if N√ is even, Sp(N√). 

AAAAuuuuttttoooodddduuuuaaaalllliiiittttyyyy    LLLLeeeemmmmmmmmaaaa    11110000....0000....8888 Given data (C/T, S, Ï) as in 10.0.1 above, suppose in addition that for

all geometric points t of T, Ït is everywhere tame (a condition which holds automatically if the

generic point of T has characteristic zero). Then the following conditions are equivalent.

1) For every geometric point t of T, the irreducible lisse sheaf Ït on Ct - St is self-dual [resp.

orthogonally self dual, resp. symplectically self-dual].

2) There exists a geometric point t of T such that the irreducible lisse sheaf Ït on Ct - St is self-

dual [resp. orthogonally self dual, resp. symplectically self-dual].

pppprrrrooooooooffff We first prove the equivalence of 1) and 2) for self-duality alone. Fix a geometric point t in

T. Since Ït is irreducible on Ct - St, it is self dual if and only if there exists a non-zero sheaf map

from Ït to its dual (Ït)
£ (for by the irreducibility, any such nonzero map must be an

isomorphism), or equivalently, if and only if there exists a non-zero sheaf map from (Ït)
£ to Ït.
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Thus Ït is self-dual if and only if the cohomology group H0(Ct - St, (Ït‚Ït)
£) is nonzero, or

equivalently (Poincare duality), if and only if the compactly supported cohomology group Hc
2(Ct

- St, Ït‚Ït) is nonzero. 

Denote by π : C - S ¨ T the structural morphism. By proper base change, Hc
2(Ct - St,

Ït‚Ït) is the stalk at t of the sheaf R2π~(Ï‚Ï). By Deligne's semicontinuity theorem [Lau-SC],

the tameness of each Ït, and hence of each Ït‚Ït, on Ct - St, guarentees that all the higher direct

images Riπ~(Ï‚Ï) are lisse sheaves on T. As T is connected, the lisse sheaf R2π~(Ï‚Ï) on T

vanishes if and only its stalk at a single point vanishes. 

Suppose now that Ït is self-dual. It is orthogonally self-dual if and only if Hc
2(Ct - St,

Sym2(Ït)) is nonzero, and it is symplectically self-dual if and only if Hc
2(Ct - St, Ú

2(Ït)) is

nonzero. Once again, both Sym2(Ït) and Ú2(Ït) are tame, so both R2π~(Sym2(Ï)) and

R2π~(Ú
2(Ï)) are lisse on T, and we conclude as above. QED

TTTThhhheeeeoooorrrreeeemmmm    11110000....0000....9999 Hypotheses and notations as in 10.0.1-5, pick a finite extension E¬ of $… which

contains the n'th roots of unity (n := the order of ç), and large enough that Ï has an E¬-form.

[Thus each Ì√ has an E¬-form.] Denote by µ(E¬) the number of roots of unity in E¬. Then we

have the following results.

1) (the SL case) Suppose that either n ≥ 3, or that for every geometric point t of T, Ït is not self-

dual. Then for each √, and for each geometric point t in T, there exists a divisor m√,t of µ(E¬) such

that the group Ggeom for Ì√,t is GLm√,t
(N√). Moreover, for each √ there exists a dense open set

U√ of T on which the function t ÿ m√,t is constant, say with value m√. Every m√,t divides the

generic value m√.

2) (the Sp case) Suppose that ç has order 2, and that for every geometric point t of T,Ït is

orthogonally self-dual. Then for each √, N√ is even, and for each geometric point t in T, the group

Ggeom for Ì√,t is Sp(N√), and the group Ggeom for Ì√,t · (®split) is the product group

Sp(N√)≠Sd√
.

3) (the O case) Suppose that ç has order 2, and that for every geometric point t of T, Ït is

symplectically self-dual. Suppose also that for each √ and each geometric point t in T, there is a

point ∫t in St - St¤D√,t at which Ït is tame, and for which

Ït(∫t)/Ï(∫t)
I(∫t) has odd dimension. 

Then for each √, and for each geometric point t in T, the group Ggeom for Ì√,t is O(N√), and the

group Ggeom for Ì√,t · (®split) is the product group O(N√)≠Sd√
.
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4) (the strongly SO case) Suppose that ç has order 2, that the weight w is odd, that Ï is

symplectically self-dual toward ä$…(-w), and that Ï is everywhere tame. Suppose also that for

each √ and each geometric point t in T, each point of St occurs in D√,t with even (possibly zero)

multiplicity. Suppose further that for each point ∫t in St, 

Ït(∫t)/Ï(∫t)
I(∫t) has even dimension. 

Suppose further that for each finite field k, and each k-valued point t0 of T, we have

det(-Frobk,t0
 | H1(Ct0

ºäk, jt0*Ït0
((w+1)/2))) = 1.

Then for each √, Ì√,t0
((w+1)/2)) has Ggeom = Garith = SO(N√), and Ì√,t0

((w+1)/2)) · (®split)

has Ggeom = Garith = SO(N√)≠Sd√
.

5) (the SO/O case) Suppose that ç has order 2, that the weight w is odd, that Ï is symplectically

self-dual toward ä$…(-w), and that Ï is everywhere tame. Suppose also that for each √ and each

geometric point t in T, each point of St occurs in D√,t with even (possibly zero) multiplicity.

Suppose further that for each point ∫t in St, 

Ït(∫t)/Ï(∫t)
I(∫t) has even dimension. 

Denote by A the group homomorphism

A : π1(T) ¨ {_1}

given by det(R1π*(j*Ï((w+1)/2))), π : C ¨ T the structural morphism: concretely, for each finite

field k, and each k-valued point t0 of T, we have

det(-Frobk,t0
 | H1(Ct0

ºäk, jt0*Ït0
((w+1)/2))) = A(Frobk,t0

).

Suppose that the homomorphism A is nnnnoooonnnnttttrrrriiiivvvviiiiaaaallll.... [The case of trivial A is precisely the strongly SO

case above.]

Then for each √, Ì√,t0
((w+1)/2)) has Ggeom = SO(N√), and Ì√,t0

((w+1)/2)) · (®split) has

Ggeom = SO(N√)≠Sd√
.

Moreover, Garith for Ì√,t0
((w+1)/2)) · (®split) is equal to

SO(N√)≠Sd√
, if A(Frobk,t0

) = +1,

O(N√)≠Sd√
, if A(Frobk,t0

) = -1.

pppprrrrooooooooffff Statements 2), 3), 4) and 5) are fibrewise assertions, which have been proven in 5.5.1, 5.5.2,

9.5.11, 9.7.3, and 9.8.2. Statement 1) is a bit more delicate. Let us fix √. In 5.5.1 and 5.7.1, we

have proven that for each geometric point t in T, the group Ggeom for Ì√,t contains SL(N√). So

either Ggeom is the full group GL(N√), or it is GLm√,t
(N√) for some integer m√,t ≥ 1. By Pink's

semicontinuity theorem [Ka-ESDE, 8.18.2] applied to det(Ì√), there is a dense open set U√ in T
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over which all the det(Ì√,t) have the same Ggeom, and for every t in T, Ggeom for Ì√,t is a

subgroup of the generic Ggeom. Given this semicontinuity, it suffices to show that for every finite

field k, every k-valued point t0 of T, det(Ì√,t) has finite order dividing µ(E¬). The point is that Xt0

is a smooth, geometrically connected k-scheme, and det(Ì√,t0) is an (E¬)≠-valued valued

character of its entire fundamental group. But one knows [De-WeII, 1.3.4] that the restriction of

any such character to the geometric fundamental group is of finite order. Since this character has

values in E¬, its finite order must be a divisor of µ(E¬). QED

11110000....1111    DDDDeeeeffffiiiinnnniiiittttiiiioooonnnn    ooooffff    ssssoooommmmeeee    mmmmeeeeaaaassssuuuurrrreeeessss

(10.1.1) We denote by Um(N), USp(N) (if N is even) and O(N, %) the standard compact

forms of the complex groups GLm(N, ^), Sp(N, ^), and O(N, ^) respectively, and by Um(N)ù,

USp(2N)ù and O(N, %)ù their spaces of conjugacy classes. An agreeable feature of the ä$…-

algebraic groups GLm(N), Sp(N), and O(N) is that for G any of these, the normalizer of G in the

ambient GL(N) is ´mG. An agreeable feature shared by the compact groups Um(N), USp(N) and

O(N, %) is that in each, two elements are conjugate if and only if they have the same (reversed)

characteristic polynomial det(1 - TA) in the given N-dimensional representation. 

(10.1.2) Now let us put ourselves under the hypotheses and notations of Theorem 10.0.9

above. 

(10.1.3) TTTThhhheeee    SSSSLLLL    ccccaaaasssseeee Fix √. For each finite field k, and each k-valued point t of T, pick å√,k,t in

(ä$…)
≠ such that Ì√,t‚(å√,k,t)

deg on on X√,t/k is “-pure of weight zero, and all its Frobenii land in

Ggeom = GL
m√,t

(N√). Then for each k-valued point x in Xt, 

det(1 - Tå√,k,tFrobk,t,x | Ì√)

is the (reversed) characteristic polynomial of a unique conjugacy class 

ø(k, t, x, å√,k,t) in Um√,t
(N√)ù,

called its Frobenius conjugacy class. We define a Borel probability measure 

µ(k, t, å√,k,t) 

on Um√,t
(N√)ù to be the average, over X√,t(k), of the delta measures attached to each of these

Frobenius conjugacy classes:

µ(k, t, å√,k,t) := (1/ùX√,t(k))‡x in X√,t(k).∂(ø(k, t, x, å√,k,t)).

(10.1.4) TTTThhhheeee    SSSSpppp    aaaannnndddd    OOOO    ccccaaaasssseeeessss Fix √. For each finite field k, and each k-valued point t of T, pick

å√,k,t in (ä$…)≠ such that Ì√,t‚(å√,k,t)
deg on X√,t/k is “-pure of weight zero, and all its Frobenii

land in Ggeom = Sp(N√) (resp. in Ggeom = O(N√). Then for each k-valued point x in Xt, 

det(1 - Tå√,k,tFrobk,t,x | Ì√)
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is the (reversed) characteristic polynomial of a unique conjugacy class

ø(k, t, x, å√,k,t) in USp(N√)ù (resp. in O(N√, %)ù),

called its Frobenius conjugacy class. We define the Borel probability measure 

µ(k, t, å√,k,t) 

on Sp(N√)ù (resp. on O(N√, %)ù) to be the average, over X√,t(k), of the delta measures attached to

each of these Frobenius conjugacy classes:

µ(k, t, å√,k,t) := (1/ùX√,t(k))‡x in X√,t(k).∂(ø(k, t, x, å√,k,t)).

Now fix in addition a conjugacy class ß√ in the symmetric group Sd√
. The space X√,t,ß√-split(k)

is nonempty for ùk sufficiently large, by 9.4.4. Whenever X√,t,ß√-split(k) is nonempty, we define

a Borel probability measure

µ(k, t, å√,k,t, ß√-split) 

on Sp(N√)ù (resp. on O(N√, %)ù) to be the average, now over X√,t,ß√-split(k), of the delta

measures attached to each of these Frobenius conjugacy classes:

µ(k, t, å√,k,t, ß√-split)

:= (1/ùX√,t(k))‡x in X√,t,ß√-split(k).∂(ø(k, t, x, å√,k,t)).

If we are in the O case, we can further split things up according to the sign in the functional

equation. Thus for each choice of sign œ, we can form the measures

µ(k, t, å√,k,t, sign œ) on Osign œ(N√, %)ù

and 

µ(k, t, å√,k,t, ß√-split, sign œ) on Osign œ(N√, %)ù

respectively, as soon as X√,t,sign œ(k) and X√,t,ß√-split,sign œ(k) are nonempty respectively.

(10.1.5) TTTThhhheeee    ssssttttrrrroooonnnnggggllllyyyy    SSSSOOOO    ccccaaaasssseeee

Fix √. For each finite field k, and each k-valued point t of T, pick å√,k,t in (ä$…)
≠ either

choice of _(ùki)
(-w-1)/2, allowing us to define Ì√,ti

((w+1)/2), on X√,ti
. Then Ì√,t‚(å√,k,t)

deg

on X√,t/k is “-pure of weight zero, and all its Frobenii land in Ggeom = SO(N√). For each k-

valued point x in Xt, we denote by

ø(k, t, x, å√,k,t) in SO(N√, %)ù

its Frobenius conjugacy class. [In this SO case, we still have the identity

det(1 - Tø(k, t, x, å√,k,t)) = det(1 - Tå√,k,tFrobk,t,x | Ì√),

but this identity only defines ø(k, t, x, å√,k,t) as an element of SO taken up to O-conjugation, i.e.,

it only defines ø(k, t, x, å√,k,t) as an element of SO(N√, %)¤O(N√, %)ù.] We define the Borel

probability measure 
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µ(k, t, å√,k,t) 

on SO(N√)ù to be the average, over X√,t(k), of the delta measures attached to each of these

Frobenius conjugacy classes:

µ(k, t, å√,k,t) := (1/ùX√,t(k))‡x in X√,t(k).∂(ø(k, t, x, å√,k,t)).

Now fix in addition a conjugacy class ß√ in the symmetric group Sd√
. The space X√,t,ß√-split(k)

is nonempty for ùk sufficiently large by 9.4.4. Whenever X√,t,ß√-split(k) is nonempty, we define

a Borel probability measure

µ(k, t, å√,k,t, ß√-split) 

on SO(N√)ùto be the average, now over X√,t,ß√-split(k), of the delta measures attached to each of

these Frobenius conjugacy classes:

µ(k, t, å√,k,t, ß√-split)

:= (1/ùX√,t(k))‡x in X√,t,ß√-split(k).∂(ø(k, t, x, å√,k,t)).

(10.1.6) TTTThhhheeee    SSSSOOOO////OOOO    ccccaaaasssseeee

Fix √. Fix a sign œ = _1. For each finite field k, and each k-valued point t of T with

A(Frobk,t) = œ, pick å√,k,t in (ä$…)≠ either choice of _(ùki)
(-w-1)/2 allowing us to define

Ì√,ti
((w+1)/2), on X√,ti

. Then Ì√,t‚(å√,k,t)
deg on X√,t/k is “-pure of weight zero and

orthogonally self-dual of even rank N√, with Ggeom = SO(N√). For each k-valued point x in

X√,t, we denote by

ø(k, t, x, å√,k,t) in Osign œ(N√, %)ù

its Frobenius conjugacy class. We define the Borel probability measure 

µ(k, t, å√,k,t) 

on Osign œ(N√, %)ù to be the average, over X√,t(k), of the delta measures attached to each of these

Frobenius conjugacy classes:

µ(k, t, å√,k,t) := (1/ùX√,t(k))‡x in X√,t(k).∂(ø(k, t, x, å√,k,t)).

Now fix in addition a conjugacy class ß√ in the symmetric group Sd√
. The space X√,t,ß√-split(k)

is nonempty for ùk sufficiently large by 9.4.4. Whenever X√,t,ß√-split(k) is nonempty, we define

a Borel probability measure

µ(k, t, å√,k,t, ß√-split) 

on Osign œ(N√, %)ù to be the average, now over X√,t,ß√-split(k), of the delta measures attached

to each of these Frobenius conjugacy classes:

µ(k, t, å√,k,t, ß√-split)
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:= (1/ùX√,t(k))‡x in X√,t,ß√-split(k).∂(ø(k, t, x, å√,k,t)).

TTTThhhheeeeoooorrrreeeemmmm    11110000....1111....7777 Hypotheses and notations as Theorem 10.0.9, we have the following results.

1) Suppose we are in the SL case. Fix √. Suppose in addition that for eeeevvvveeeerrrryyyy geometric point t in T,

the lisse sheaf Ì√,t on Xt has Ggeom = GLm√
(N√).Take any sequence of data

(ki, ti, √,ki,ti
)

with 

ki a finite field of cardinality ≥ 4A(X√/T)2,

ti a ki-valued point T, 

å√,ki,ti
 in (ä$…)≠ such that all Frobenii of Ì√‚(åki,ti,√

)deg land in GLm√
(N√)

in which i ÿ ùki is strictly increasing. Then the sequence of measures µ(ki, ti, å√,ki,ti
) on

Um√
(N√)ù tends weak * to (the direct image from Um√

(N√) of) normalized Haar measure. In

other words, For any continuous ^-valued central function f(g) on Um√
(N√), we have the

integration formula

—Um√
(N√) f(g)dg = limi¨‘ —Um√

(N√) f(g)dµ(ki, ti, å√,ki,ti
)

= limi¨‘ (1/ùX√,ti
(ki))‡x in X√,ti

(ki)
 f(ø(ki, ti, x, å√,ki,ti

)).

2) Suppose we are in the Sp or O case. Fix √, and fix a conjugacy class in the symmetric group

Sd√
. Take any sequence of data

(ki, ti, å√,ki,ti
)

with 

ki a finite field, ùki > Max(4A(X√/T)2, 4C(X√/T, ÍÆ)2(ùÆ)4)

ti a ki-valued point T, 

å√,ki,ti
 in (ä$…)≠ such that all Frobenii of Ì√‚(åki,ti,√

)deg land in Sp(N√) (resp. in

O(N√))

in which i ÿ ùki is strictly increasing. Then the two sequences of measures µ(ki, ti, å√,ki,ti
) and

µ(ki, ti, å√,ki,ti
, ß√-split) on USp(N√)ù (resp. on O(N√, %)ù) each tend weak * to (the direct

image from USp(N√) (resp. from O(N√, %)) of) normalized Haar measure. In the O case, the

sequences of measures

µ(k, t, å√,k,t, sign œ) on Osign œ(N√, %)ù

and 
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µ(k, t, å√,k,t, ß√-split, sign œ) on Osign œ(N√, %)ù

each tend weak * to Haar measure on Osign œ(N√, %)ù normalized now to give Osign œ(N√, %)ù

total mass one.

3) Suppose we are in the strongly SO case. Fix √, and fix a conjugacy class in the symmetric group

Sd√
. Take any sequence of data

(ki, ti, √,ki,ti
)

with 

ki a finite field, ùki > Max(4A(X√/T)2, 4C(X√/T, ÍÆ)2(ùÆ)4)

ti a ki-valued point T, 

å√,ki,ti
 in (ä$…)≠ either choice of _(ùki)

(-w-1)/2,

in which i ÿ ùki is strictly increasing. Then the two sequences of measures µ(ki, ti, å√,ki,ti
) and

µ(ki, ti, å√,ki,ti
, ß√-split) on SO(N√)ù each tend weak * to (the direct image from SO(N√) of)

normalized Haar measure.

4) Suppose we are in the SO/O case. Fix √, fix a sign œ = _1, and fix a conjugacy class in the

symmetric group Sd√
. Take any sequence of data

(ki, ti, √,ki,ti
)

with 

ki a finite field, ùki > Max(4A(X√/T)2, 4C(X√/T, ÍÆ)2(ùÆ)4)

ti a ki-valued point T such that A(Frobki,ti
) = œ,

å√,ki,ti
 in (ä$…)≠ either choice of _(ùki)

(-w-1)/2,

in which i ÿ ùki is strictly increasing. Then the two sequences of measures µ(ki, ti, å√,ki,ti
) and

µ(ki, ti, å√,ki,ti
, ß√-split) on Osign œ(N√)ù each tend weak * to Haar measure on Osign œ(N√,

%)ù normalized to give Osign œ(N√, %)ù total mass one.

pppprrrrooooooooffff Assertion 1) is a restatement of 9.5.11, with Æ there taken to be the trivial group {e}.

Assertion 2) is a restatement of Theorems 9.10.3 and Corollary 9.10.7. Assertions 3) and 4) are

restatements of Theorems 9.10.4 and 9.10.8 respectively. . QED

11110000....2222    SSSSoooommmmeeee    bbbbaaaassssiiiicccc    eeeexxxxaaaammmmpppplllleeeessss    ooooffff    ddddaaaattttaaaa    ((((CCCC////TTTT,,,,    SSSS,,,,    ÏÏÏÏ,,,,    DDDD√√√√''''ssss))))    wwwwhhhheeeerrrreeee    aaaallllllll    tttthhhheeee    hhhhyyyyppppooootttthhhheeeesssseeeessss    aaaabbbboooovvvveeee    aaaarrrreeee    ssssaaaattttiiiissssffffiiiieeeedddd

10.2.1    SSSSLLLL    eeeexxxxaaaammmmpppplllleeeessss 

(10.2.1.1) This first example is the "universal" form of the situation considered in Theorem

7.9.1. Fix an integer n ≥ 3, a prime …, a (ä$…)
≠-valued character ç of order n of the group
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µn(#[1/n, Ωn]), and an integer g ≥ 2. Denote by ˜g,3K the moduli space of genus g curves with a

level 3K structure, cf. [Ka-Sa, RMFEM, 10.6], and denote by Çuniv/˜g,3K the universal genus

g curve with level 3K structure. For each integer m ≥ 1, denote by g̃,3K,m := (Çuniv/˜g,3K)m

the m-fold fibre product of Çuniv with itself over ˜g,3K. This space ˜g,3K,m is the moduli

space of genus g curves with both a level 3K structure and with an ordered list of m points P1, ...,

Pm, not necessarily distinct. Denote by ˜g,3K,m dist the open set in ˜g,3K,m where, for all i±j,

Pi and Pj are disjoint. Thus ˜g,3K,m dist is the moduli spaces of curves of genus g with both a

3K structure and with an ordered list of m distinct points P1, ..., Pm. Denote by

Çuniv,m/˜g,3K,m dist the universal curve. We take 

T := ˜g,3K,m dist≠##[1/…n, Ωn],

and we take C/T to be universal curve Çuniv,m≠##[1/…n, Ωn]. We take S to be empty, and Ï to be

the constant sheaf ä$…. We take D√ to be any divisor of the form ‡i=1 to nai,√Pi where the Pi are the

tautological points, and where the ai,√ are non-negative integers with ‡iai,√ ≥ 4g+4 and increasing

with √. If n is 2≠(odd), require further that each ai,√ is  either odd or divisible by n. In this case, the

common value of Ggeom for Twistç,C/T,D√
(ä$…) on all geometric fibres of X√,/T is GLµ(N√),

where µ is the order of the character ç≠ç2. [So µ is 2n if n is odd, µ is n/2 if n is 2≠(odd), and µ is

n if n • 0 mod 4).]

(10.2.2) SSSSpppp    aaaannnndddd    OOOO    eeeexxxxaaaammmmpppplllleeeessss In all these examples, we take n=2. We begin with three elliptic curve

examples.

(10.2.2.1) Take n=2, T = Spec(#[1/2…]), C/T = @1/T, S is {0,1,‘}. The open curve C - S is

thus Spec(#[1/2…, ¬, 1/¬(¬-1)]. Take Ï1 to be R1π~ä$… for π the structural morphism of the

Legendre family Leg/(C-S) of elliptic curves

y2 = x(x-1)(x-¬).

Then Ï1 is lisse of rank 2 on C-S, pure of weight one, and symplectically self-dual toward ä$…(-

1). Along the sections 0 and 1 of C/T, Ï has unipotent nontrivial local monodromy.Along the

section ‘, its monodromy is (the quadratic character)‚(unipotent nontrivial). For each intger n ≥ 1,

take Ïn := Symn(Ï1). Thus Ïn is lisse of rank n+1, pure of weight n, and autodual toward ä$…(-

n), by an autoduality which is symplectic for odd n, and orthogonal for even n. The local

monodromy along the sections 0 and 1 is a single unipotent Jordan block. The local monodromy

along ‘ is a single unipotent Jordan block for n even, and (the quadratic character)‚(a single

unipotent Jordan block) for n odd. We take for D√ the divisor d√‘. So here we are performing

quadratic twists of the Ïn's by polynomials in ¬ of degree d√ which have d√ distinct zeroes, none

of which is 0 or 1. For n odd (resp. for n even), the sheaves Twistç2,C/T,D√
(Ïn) have Ggeom the
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full orthogonal group (resp. the full symplectic group) on each geometric fibre of X√/T.

(10.2.2.2) In a similar vein, we might take some level m ≥ 3, and then take T = Spec(#[1/m…,

Ωm]), C/T the compactified moduli space ä̃ m[1/m…] of elliptic curves with level m structure of

determinant Ωm over #[1/m…, Ωm]-schemes, S the cusps. We take 

π : ‰univ,m ¨ ˜m[1/m…] = C-S

the universal curve, and Ï1 := R1π~ä$…. Once again Ï1 is lisse of rank 2 on C-S, pure of weight

one, and symplectically self-dual toward ä$…(-1). Its local monodromy along each cusp is

unipotent nontrivial. For each intger n ≥ 1, take Ïn := Symn(Ï1). Thus Ïn is lisse of rank n+1,

pure of weight n, and autodual toward ä$…(-n), by an autoduality which is symplectic for odd n,

and orthogonal for even n. The local monodromy along each cusp is a single unipotent Jordan

block. Take the D√s' to be divisors concentrated at the cusps. When n is odd, Ïn is symplectic. In

this case, we must require that each divisor D√ omits at least one cusp (so that there is a finite

singularity where the drop is of odd dimension, which in turn will insure that for each t,

Twistç2,C/T,D√
(Ïn) has Ggeom the full orthogonal group. When n is even, Ïn is orthogonal, and

for each t in T the sheaf Twistç2,C/T,D√
(Ïn) has Ggeom the full symplectic group.

(10.2.2.3) Take K to be an absolutely finitely generated subfield of ^, CK/K a proper smooth

geometrically connected curve over K, with function field L/K, and E/L an elliptic curve over L.

We make one hypothesis on E/L, namely that at K-valued point PK of CK, i.e. at some discrete

valuation of L/K with residue field K, E/L has multiplicative reduction. We can find a dense open

set UK in CK and an elliptic curve EK/UK whose generic fibre is E/L. [Concretely, take the Neron

model ‰K/CK of E/L and take UK to be the open set of CK over which the Neron model is an

elliptic curve.] Fix a prime number …. We can then find

a) a subring R of K in which 2… in invertible, which is finitely generated as a #[1/2…]-algebra

and which is smooth over #, 

b) a proper smooth curve C/R with geometrically connected fibres, and an R-valued point P

in C(R) which extends PK,

c) an effective divisor S in C which is finite etale over R, contains P, and whose open

complement U := C - S has generic fibre UK/K, 

d) and an elliptic curve π : E ¨ U which extends EK/UK. 

We take T := Spec(R), C/T and S/T as above, and for lisse sheaf Ï1 on U we take R1π*ä$…. We

take for the D√ effective divisors whose supports (D√)red lie in S-P (this insures that on each

geometric fibre of (C - D√)/T, there is a point (namely P) at which Ï1 has nontrivial unipotent

monodromy. We take Ïn := Symn(Ï1), and proceed as in examples 1) and 2) above.
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(10.2.2.4) We now give two examples involving hyperelliptic curves.

(10.2.2.5) Fix an integer m ≥ 2, and take T to be the open set in !m≠´m/#[1/2…], with coordinates

a0, a1, ..., am over which the degree m polynomial in one variable

f(x) := ‡i aix
i

has invertible discriminant » (i.e., has d distinct roots). Take C/T to be @1/T, S to be 

{zeroes of f}, if m is even

{‘} ⁄ {zeroes of f}, if m is odd.

Take Ï0 on @1 - S to be Òç2(f(x)), which is orthogonally self dual, and pure of weight zero. Take

D√ to be the divisor d√‘. Then for each t in T, Twistç2,C/T,D√
(Ï0) has Ggeom the full

symplectic group. Concretely, for fixed t in T, corresponding to a numerical choice of polynomial f,

X√,t is the space of polynomials p(x) of degree d√ with all distinct roots and with g.c.d.(p(x), f(x))

= 1. Over this space we are looking at the family of hyperelliptic curves

y2 = f(x)p(x),

parameterized by the polynomial p(x), and our Twistç2,C/T,D√
(Ï0) is the H1 along the fibres in

this family.

(10.2.2.6) Notations as in 10.2.2.5 above, take Ï0,~ to be the extension by zero to !1 of (the

restriction to !1 - !1¤S of) Ï0. Define Ï1 on !1 - !1¤S to be the lisse sheaf which is the

restriction from !1 of the middle convolution of Ï0,~ with Òç2
 on !1. The rank of Ï1 is m if m is

even, m-1 if m is odd. For each t Ï1,t has Ggeom the full symplectic group Sp(m) if m is even,

Sp(m-1) is m is odd. Local moonodromy of Ï1 along each of the m zeroes of f is a unipotent

pseudoreflection (transvection). Local monodromy along ‘ is 

(the quadratic character)‚(a unipotent pseudoreflection)

if m is even. If m is odd, local monodromy along ‘ is scalar, the quadratic character. Take D√ to be

the divisor d√‘. Then for each t in T, Twistç2,C/T,D√
(Ï1) has Ggeom the full orthogonal group.

Here is a more geometric description of the sheaf Ï1. Over T as in 4) above, consider (!1

- !1¤S)/T with parameter ¬, i.e., consider !1[1/f(¬)]/T. Over this !1[1/f(¬)]/T, we have the

complete nonsingular model π: Ç ¨ !1[1/f(¬)]/T of the hyperelliptic curve with equation

y2 = f(x)(¬ - x).

Then Ï1 is the sheaf R1π*ä$… on !1[1/f(¬)]/T. The interpretation of the twist sheaf

Twistç2,C/T,D√
(Ï1) is this. For fixed t in T, corresponding to a numerical choice of polynomial f,

X√,t is the space of polynomials p(¬) of degree d√ with all distinct roots and with g.c.d.(p(¬), f(¬))
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= 1. The twist sheaf Twistç2,C/T,D√
(Ï1) on X√,t gives the L-functions of the quadratic twists, by

polynomials of degree d√ in ¬ with all distinct roots and with g.c.d.(p(¬), f(¬)) = 1, of the Jacobian

of the hyperelliptic curve.y2 = f(x)(¬ - x), viewed as curve over the ¬-line.

(10.2.3) SSSSttttrrrroooonnnnggggllllyyyy    SSSSOOOO    eeeexxxxaaaammmmpppplllleeeessss

(10.2.3.1) Take n=2, T = Spec(#[i, 1/2…]), C/T = @1/T, S = {0,1,‘}. The open curve C - S is

thus Spec(#[1/2…, ¬, 1/¬(¬-1)]). Take Ï1 to be R1π~ä$… for π the structural morphism of the

ttttwwwwiiiisssstttteeeedddd Legendre family of elliptic curves

y2 = ¬(¬-1)x(x-1)(x-¬).

Then Ï1 is lisse of rank 2 on C-S, pure of weight one, and symplectically self-dual toward ä$…(-

1). Along the sections 0, 1 and ‘ of C/T, the local monodromy of Ï is 

(the quadratic character)‚(unipotent nontrivial). 

For each oooodddddddd integer m ≥ 1, take Ïm := Symm(Ï1). Thus Ïm is lisse of even rank m+1, pure of

weight m, and orthogonally selfdual toward ä$…(-m). Its local monodromy along the sections 0, 1,

‘ is

(the quadratic character)‚(a single unipotent Jordan block).

Suppose each d√ is eeeevvvveeeennnn, and take for D√ the divisor d√‘. So here we are performing quadratic

twists of the Ïm's by polynomials in ¬ of even degree d√ which have d√ distinct zeroes, none of

which is 0 or 1. For each odd m, Twistç2,C/T,D√
(Ïm) has rank (m+1)(d√ + 1). By 8.5.7, for √

>> 0, Ggeom for Twistç2,C/T,D√
(Ïn) is the group SO((m+1)(d√ + 1)) on each geometric fibre of

X√/T. By 8.9.2, for each finite field k and each k-valued point of T, the sheaf

Twistç2,C/T,D√
(Ïm) on X√ºTk has Garith = SO((m+1)(d√ + 1)). Indeed, if T = Spec(#[i, 1/2…])

admits a k-valued point, then k has odd characteristic not …, and k contains a primitive fourth root

of unity. Thus ùk • 1 mod 4, and we apply 8.9.2. 

(10.2.3.2) Take n=2, T = Spec(#[1/2…]), C/T = @1/T, S = {0,1,‘}. For each positive integer

m • 3 mod 4, take Ïm from the example 10.2.3.1 above, and take the D√ as in that example. By

8.5.7 and 8.9.2, for each finite field k of odd characteristic not …, the sheaf Twistç2,C/T,D√
(Ïm)

on X√ºTk has Ggeom = Garith = the group SO((m+1)(d√ + 1)). 

(10.2.3.3) Take n=2, T = Spec(#[i, 1/6…, », 1/»]), C/T = E»/T the elliptic curve whose affine

equation in (g2, g3)-space is

(g2)3 - 27(g3)2 = »,

S = {‘}, the origin on E». On C - S, take Ï1 to be R1π~ä$… for π the structural morphism of the

univeral family of elliptic curves with differential (E, ∑) with discriminant »
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y2 = 4x3 - g2x - g3.

Then Ï1 is lisse of rank 2 on C-S, pure of weight one, and symplectically self-dual toward ä$…(-

1). Along the identity section ‘ of C/T, the local monodromy of Ï is 

(the quadratic character)‚(unipotent nontrivial). 

For each oooodddddddd integer m ≥ 1, take Ïm := Symm(Ï1). Thus Ïm is lisse of even rank m+1, pure of

weight m, and orthogonally selfdual toward ä$…(-m). Its local monodromy along the identity

section ‘ is

(the quadratic character)‚(a single unipotent Jordan block).

Suppose each d√ is eeeevvvveeeennnn, and take for D√ the divisor d√‘. So here we are performing quadratic

twists of the Ïm's by polynomials in x and y which have a pole at ‘ of even degree d√ and which

have d√ distinct zeroes. For each odd m, Twistç2,C/T,D√
(Ïm) has rank (m+1)(d√ + 1). By 8.5.7,

for √ >> 0, Ggeom for Twistç2,C/T,D√
(Ïn) is the group SO((m+1)(d√ + 1)) on each geometric

fibre of X√/T. By 8.10.6, for each finite field k and each k-valued point of T, the sheaf

Twistç2,C/T,D√
(Ïm) on X√ºTk has Garith = SO((m+1)(d√ + 1)). Indeed, if T = Spec(#[i, 1/6…])

admits a k-valued point, then k has characteristic prime to 6…, and k contains a primitive fourth root

of unity. Thus ùk • 1 mod 4, and we apply 8.10.6. 

(10.2.3.4) Take n=2, T = T = Spec(#[1/6…, », 1/»]), C/T = E»/T, S = {‘}, the origin on E».

For each positive integer m • 3 mod 4, take Ïm from the example 10.2.3.3 above, and take the D√

as in that example. By 8.5.7 and 8.10.6, for each finite field k of characteristic prime to 6…, the

sheaf Twistç2,C/T,D√
(Ïm) on X√ºTk has Ggeom = Garith = the group SO((m+1)(d√ + 1)). 

(10.2.4) SSSSOOOO////OOOO    eeeexxxxaaaammmmpppplllleeeessss

(10.2.4.1) Take n=2, T = Spec(#[1/2…]), C/T = @1/T, S = {0,1,‘}. For each positive integer

m • 1 mod 4, take Ïm from the example 10.2.3.1 above, and take the D√ as in that example. By

8.5.7 and 8.9.2, for each finite field k of odd characteristic not …, the sheaf Twistç2,C/T,D√
(Ïm)

on X√ºTk has Ggeom = SO((m+1)(d√ + 1)). If ùk • 1 mod 4, then  Garith = Ggeom =

SO((m+1)(d√ + 1))., but if ùk • 3 mod 4, then Garith is O((m+1)(d√ + 1)).

(10.2.4.2) Take n=2, T = T = Spec(#[1/6…, », 1/»]), C/T = E»/T, S = {‘}, the origin on E».

For each positive integer m • 1 mod 4, take Ïm from the example 10.2.3.3 above, and take the D√

as in that example. By 8.5.7 and 8.10.6, for each finite field k of characteristic prime to 6…, the

sheaf Twistç2,C/T,D√
(Ïm) on X√ºTk has Ggeom = SO((m+1)(d√ + 1)). If ùk • 1 mod 4, then

Garith = Ggeom = SO((m+1)(d√ + 1))., but if ùk • 3 mod 4, then Garith is O((m+1)(d√ + 1)).

(10.2.5) MMMMoooorrrreeee    SSSSLLLL    eeeexxxxaaaammmmpppplllleeeessss
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(10.2.5.1) We take n ≥ 3 oooodddddddd, ç : µn(#[1/n…, Ωn]) ¨ (ä$…)
≠ a character of order n. Pick an

integer m ≥ 2. Take T to be the open set in !m≠´m/#[1/2n…, Ωn], with coordinates a0, a1, ..., am

over which the degree m polynomial in one variable

f(x) := ‡i aix
i

has invertible discriminant » (i.e., has d distinct roots). Take C/T to be @1/T, S to be 

{zeroes of f}, if m is • 0 mod n,

{‘} ⁄ {zeroes of f} if m is nonzero mod n.

Take Ï0 on @1 - S to be Òç(f(x)). Take D√ to be the divisor d√‘. 

Concretely, for fixed t in T, corresponding to a numerical choice of polynomial f, X√,t is

the space of polynomials p(x) of degree d√ with all distinct roots and with g.c.d.(p(x), f(x)) = 1.

Over this space we are looking at the family of curves

yn = f(x)p(x),

parameterized by the polynomial p(x). The group µn acts (by moving y) on this family, and our

Twistç2,C/T,D√
(Ï0) is the ç-component of the H1 along the fibres in this family.

We claim that for each t in T, Twistç,C/T,D√
(Ï0) has Ggeom the group GL2n(N√). By

Pink's semicontinuity result [Ka-ESDE, 8.18.2], it suffices to check at t (lying over) a finite field

valued point of T. So we may assume that T is Spec(k) with k a finite field. We must show that

det(Ì√) is geometrically of order 2n. Because we took n to be odd, 2n is the number of roots of

unity in the field $(ç). We use the "compatible system over $(ç)" argument of [Ka-ACT, the

"trivial" part of the proof of 5.2 bis], already used in 7.9.2, 7.9.3 and 7.10.2, to see that det(Ì√)º2n

is trivial. We use a one parameter family of twists of the form t ÿ (t - p1(x))p2(x) to get a curve in

X√ along which Ì√ has some local monodromies which are pseudoreflections of determinant

ç≠ç2, cf. 5.4.9. So already det(Ì√) has geometric order at least 2n along this curve, and hence

det(Ì√) is geometrically of order 2n on X√, as required.

(10.2.5.2) Notations as in 10.2.5.1 above, take Ï0,~ to be the extension by zero to !1 of (the

restriction to !1 - !1¤S of) Ï0. Define Ï1 on !1 - !1¤S to be the lisse sheaf which is the

restriction from !1 of the middle convolution of Ï0,~ with Òç on !1. The rank of Ï1 is m unless

m • -1 mod n, in which case the rank is m-1. Local moonodromy of Ï1 along each of the m

zeroes of f is a pseudoreflection of determinant ç2. Local monodromy along ‘ is 

ç‚(a pseudoreflection of determinant çm)

unless m • -1 mod n. If m • -1 mod n, local monodromy along ‘ is scalar, the character ç. For

each t Ï1,t has Ggeom the group GLn(m) unless m • -1 mod n, and in that case Ggeom is

GLn(m-1). To see this, use the fact that Ggeom contains SL, and then use the local monodromy
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information to compute the tame sheaf det(Ï1,t).

Take D√ to be the divisor d√‘. For each t in T, Ì√ := Twistç,C/T,D√
(Ï1) has Ggeom the

group GL2n(N√). One sees this by using the fact that Ggeom contains SL, and then computing the

geometric order of det(Ì√,t) at finite field valued points t of T by the argument used in the previous

example. The compatible system argument again shows that det(Ì√,t)
º2n is geometrically trivial.

The same sort of one parameter family of twists as used above again produces a curve in X√,t

along which Ì√,t has some local monodromies which are pseudoreflections of determinant ç≠ç2,

and one concludes exactly as above.

11110000....3333    AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss    ttttoooo    aaaavvvveeeerrrraaaaggggeeee    rrrraaaannnnkkkk

TTTThhhheeeeoooorrrreeeemmmm    11110000....3333....1111 Suppose we have Ï on (C-S)/T satisfying all the hypotheses of Theorem 10.0.9,

part 3). Fix √, and fix a conjugacy class ß√ in the symmetric group Sd√
. Take any sequence of data

(ki, ti, å√,ki,ti
)

with 

ki a finite field, ùki > Max(4A(X√/T)2, 4C(X√/T, ÍSd√
)2(d√~)4)

ti a ki-valued point T, 

å√,ki,ti
 in (ä$…)

≠ such that all Frobenii of Ì√‚(åki,ti,√
)deg land in O(N√), i.e., å√,ki,ti

 is

aaaannnnyyyy choice of a square root of (ùki)
-w-1, allowing us to define Ì√,ti

((w+1)/2), on X√,ti
,

in which i ÿ ùki is strictly increasing. Then we have the following table of limit formulas. In these

tables, the number in the third column is the limit, as i ¨ ‘, of the average value of the quantity in

the second column over all f's in the set named in the first column. 

X√,ti,ß√-split(ki) rankan(Ì√,ti
, ki, f) 1/2,

X√,ti,ß√-split(ki) rankquad, an(Ì√,ti
, ki, f) 1,

X√,ti,ß√-split(ki) rankgeom, an(Ì√,ti
, ki, f) 1.

More precisely, for each finite extension E/k, and each value of œ = _1, denote by X√,ti,ß√-split,

sign œ(ki) the subset of X√,ti,ß√-split(ki) consisting of those points f in X√,ti,ß√-split(ki) such

that

det(-å√,ki,ti
Frobki,f

 | Ì√) = œ.
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Then we have the following table of limit formulas. In these tables, the number in the third column

is the limit, as i ¨ ‘, of the average value of the quantity in the second column over all f's in the

set named in the first column. 

IIIIffff    NNNN√√√√    iiiissss    eeeevvvveeeennnn::::

X√,ti,ß√-split, sign -(ki) rankan(Ì√,ti
, ki, f) 1,

X√,ti,ß√-split, sign +(ki) rankan(Ì√,ti
, ki, f) 0,

X√,ti,ß√-split, sign -(ki) rankquad, an(Ì√,ti
, ki, f) 2,

X√,ti,ß√-split, sign +(ki) rankquad, an(Ì√,ti
, ki, f) 0,

X√,ti,ß√-split, sign -(ki) rankgeom, an(Ì√,ti
, ki, f) 2,

X√,ti,ß√-split, sign +(ki) rankgeom, an(Ì√,ti
, ki, f) 0.

IIIIffff    NNNN√√√√    iiiissss    oooodddddddd::::

X√,ti,ß√-split, sign -(ki) rankan(Ì√,ti
, ki, f) 1,

X√,ti,ß√-split, sign +(ki) rankan(Ì√,ti
, ki, f) 0,

X√,ti,ß√-split, sign -(ki) rankquad, an(Ì√,ti
, ki, f) 1,

X√,ti,ß√-split, sign +(ki) rankquad, an(Ì√,ti
, ki, f) 1,

X√,ti,ß√-split, sign -(ki) rankgeom, an(Ì√,ti
, ki, f) 1,

X√,ti,ß√-split, sign +(ki) rankgeom, an(Ì√,ti
, ki, f) 1.

pppprrrrooooooooffff Immediate from Theorem 10.1.7, part 2), and the proof of 8.3.3. QED

RRRReeeemmmmaaaarrrrkkkk    11110000....3333....2222 Notice that rankan(Ì√,ti
, ki, f) is defined as the order of vanishing at T=1 of det(1 -

TF | Ì√,ti,f
((w+1)/2)), and that Ì√,ti

((w+1)/2) was ddddeeeeffffiiiinnnneeeedddd to be Ì√,ti
‚(å√,ki,ti

)deg. In other

words, the analytic rank in question is the order of vanishing of

det(1 - T Frobki,f
 |Ì√)

at the point T = å√,ki,ti
 So this notion ddddeeeeppppeeeennnnddddssss on wwwwhhhhiiiicccchhhh    cccchhhhooooiiiicccceeee of square root of (ùki)

-w-1 we

take for å√,ki,ti
. The quadratic and geometric analytic ranks do not depend on this choice. The

reader may at first be disturbed that our results on average analytic rank apply equally to order of

vanishing at the two different points, but there is no contradiction. On the compact group O(N√,
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%), A ÿ -A is a (measure-preserving) involution which interchanges the functions 

A ÿ order of vanishing of det(1-TA) at T=1

and

A ÿ order of vanishing of det(1-TA) at T=-1.

In the case when Ï arises as the H1 along the fibres of a family of abelian varieties, its weight w is

1, and it is the choice (ùki)
-1 of square root of (ùki)

-2 which must be taken in defining Ì√(1) in

the Birch and Swinnerton-Dyer conjecture. This problem did not arise in our earlier discussion

8.1.1 of average rank over a fixed finite field k, because earlier (7.0.9) we chose a square root åk

of ùk, and agreed to use powers of åk whenever we needed square roots of integer powers of ùk. 

TTTThhhheeeeoooorrrreeeemmmm    11110000....3333....3333 Suppose we have Ï on (C-S)/T satisfying all the hypotheses of Theorem 10.0.9,

part 4). Then Ì√ is orthogonally self dual toward ä$…(-w-1). Fix √, and fix a conjugacy class ß√

in the symmetric group Sd√
. Take any sequence of data

(ki, ti, å√,ki,ti
)

with 

ki a finite field, ùki > Max(4A(X√/T)2, 4C(X√/T, ÍSd√
)2(d√~)4)

ti a ki-valued point T, 

å√,ki,ti
 in (ä$…)≠ is either choice of _(ùki)

(-w-1)/2,

in which i ÿ ùki is strictly increasing. Each set X√,ti,sign - is empty. We have the following table

of limit formulas. In these tables, the number in the third column is the limit, as i ¨ ‘, of the

average value of the quantity in the second column over all f's in the set named in the first column. 

X√,ti,ß√-split(ki) rankan(Ì√,ti
, ki, f) 0,

X√,ti,ß√-split(ki) rankquad, an(Ì√,ti
, ki, f) 0,

X√,ti,ß√-split(ki) rankgeom, an(Ì√,ti
, ki, f) 0.

pppprrrrooooooooffff Immediate from Theorem 10.1.7, part 3), and the proof of 8.3.6. QED

TTTThhhheeeeoooorrrreeeemmmm    11110000....3333....4444 Suppose we have Ï on (C-S)/T satisfying all the hypotheses of Theorem 10.0.9,

part 5). Then Ì√ is orthogonally self dual toward ä$…(-w-1). Fix √, fix a sign œ = _1, and fix a

conjugacy class ß√ in the symmetric group Sd√
. Take any sequence of data

(ki, ti, å√,ki,ti
)

with 
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ki a finite field, ùki > Max(4A(X√/T)2, 4C(X√/T, ÍSd√
)2(d√~)4)

ti a ki-valued point T, with A(Frobki,ti
) = œ,

å√,ki,ti
 in (ä$…)≠ is either choice of _(ùki)

(-w-1)/2,

in which i ÿ ùki is strictly increasing. We have the following table of limit formulas. In these

tables, the number in the third column is the limit, as i ¨ ‘, of the average value of the quantity in

the second column over all f's in the set named in the first column. 

œœœœ    ====    ++++1111

X√,ti,ß√-split(ki) rankan(Ì√,ti
, ki, f) 0,

X√,ti,ß√-split(ki) rankquad, an(Ì√,ti
, ki, f) 0,

X√,ti,ß√-split(ki) rankgeom, an(Ì√,ti
, ki, f) 0.

œœœœ    ====    ----1111

X√,ti,ß√-split(ki) rankan(Ì√,ti
, ki, f) 1,

X√,ti,ß√-split(ki) rankquad, an(Ì√,ti
, ki, f) 1,

X√,ti,ß√-split(ki) rankgeom, an(Ì√,ti
, ki, f) 2.

pppprrrrooooooooffff Immediate from Theorem 10.1.7, part 4), and the proof of 8.3.8. QED

11110000....4444    IIIInnnntttteeeerrrrlllluuuuddddeeee:::: RRRReeeevvvviiiieeeewwww    ooooffff    GGGGUUUUEEEE    aaaannnndddd    eeeeiiiiggggeeeennnnvvvvaaaalllluuuueeee    llllooooccccaaaattttiiiioooonnnn    mmmmeeeeaaaassssuuuurrrreeeessss

(10.4.1) Fix an integer r ≥ 1 and an offset vector c = (c(1), ..., c(r)) in #r:

0 < c(1) < c(2) < ... < c(r).

Define c(0) := 0. Given an integer N > c(r), a closed subgroup K of U(N), and an element A in K,

write the eigenvalues of A as eiƒ(j) with angles ƒ(j), j = 1 to N lying in [0, 2π):

0 ≤ ƒ(1) ≤ ƒ(2) ≤ ... ≤ ƒ(N) < 2π.

Then extend the definition of ƒ(j) to all integers j by requiring

ƒ(j + N) = ƒ(j) + 2π.

From the angles ƒ(j), we next define spacing vectors in %r. For k = 1 to N, the k'th spacing vector

with offsets c attached to A, denoted sk(offsets c), is the vector in %r whose i'th component is

(N/2π)(ƒ(k + c(i)) - ƒ(k + c(i-1))).

The Borel probability measure on %r

µ(A, K, offsets c)
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is defined to be

(1/N)‡k = 1 to N (delta measure at sk(offsets c)),

cf. [Ka-Sa, RMFEM, 1.0]. 

(10.4.2) For any nonvoid open set K0 of K, One can make sense of the expected value

µ(K0, offsets c) of these measures µ(A, K, offsets c) as A varies over K. Formally,

µ(K0, offsets c) := —K0
 µ(A, K, offsets c)dA,

where dA denotes the Haar measure on K, normalized to give K0 measure one, cf. [Ka-Sa,

RMFEM, 1.1]. This expected value measure is a Borel probability measure on %r.

(10.4.3) The GUE measure µ(univ, offsets c) is the Borel probability measure on %r which

is the large N limit of the measures µ(U(N), offsets c), cf. [Ka-Sa, RMFEM, 1.2.1] for the precise

statement. The universality of µ(univ, offsets c) is this. For each large N separately take H(N) fi

U(N) to be any of 

1) any closed subgroup with SU(N) fi H(N) fi U(N),

2) any closed subgroup with SO(N) fi H(N) fi U(1)\O(N),

3) O-(N),

4) any closed subgroup with USp(N) fi H(N) fi U(1)\USp(N).

Then µ(U(N), offsets c) is the large N limit of the measures µ(H(N), offsets c), cf. [Ka-Sa,

RMFEM, 1.2.3 and 1.2.6] for a precise statement.

(10.4.4) The definition of the eigenvalue location measures √(c), √(-, c) and √(+, c) on %r

attached to the offset vector c is more involved, and requires a case by case discussion.

(10.4.5) To define √(c), we begin with U(N) for large N. Given A in U(N), again write its

eigenvalues as eiƒ(j) with angles ƒ(j) = ƒ(j)(A), j = 1 to N lying in [0, 2π):

0 ≤ ƒ(1) ≤ ƒ(2) ≤ ... ≤ ƒ(N) < 2π.

Define the normalized angles ø(j)(A) of A to be the real numbers in [0, N) defined by

ø(j)(A) := (N/2π)ƒ(j)(A), for j = 1 to N.

Define a map

Fc : U(N) ¨ %r

by

Fc(A) := (ø(c(1))(A), ø(c(2))(A),..., ø(c(r))(A)).

Then we define the Borel probability measure √(U(N), c) on %r to be the direct image by Fc of the

total mass one Haar measure on U(N):

√(U(N), c) := Fc*(total mass one Haar mesure on U(N)).

(10.4.6) Similarly, for any of the closed subgroups Un(N) between SU(N) and U(N), we

define 

√(Un(N), c) := Fc*(total mass one Haar mesure on Un(N)).

If we pick, separarately for each large N, H(N) to be either U(N) or some Un(N), then the large N
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limit of the measures √(H(N), c) exists as a Borel probability measure on %r, cf [Ka-Sa, RMFEM,

AD 4.3 and AD 10.2].

(10.4.7) To define √(_, c) we need to distinguish yet more cases. Suppose first we look at

G(2N) which is either USp(2N) or SO(2N). For both these groups, the eigenvalues of any element

A occur in N inverse pairs e_iƒ(j) with angles

0 ≤ ƒ(1) ≤ ƒ(2) ≤ ... ≤ ƒ(N) ≤ π.

We define the normalized angles

ø(j)(A) := (N/π)ƒ(j)(A), for j = 1 to N.

For N > c(r), we again define 

Fc : G(2N) ¨ %r

by

Fc(A) := (ø(c(1))(A), ø(c(2))(A),..., ø(c(r))(A)).

Then we define the Borel probability measure √(G(2N), c) on %r as the direct image by Fc of the

total mass one Haar measure on G(2N):

√(G(2N), c) := Fc*(total mass one Haar mesure on G(2N)).

(10.4.8) For O-(2N), every element has both _1 as eigenvalues. The other 2N-2

eigenvalues occur in N-1 inverse pairs e_iƒ(j) with angles

0 ≤ ƒ(1) ≤ ƒ(2) ≤ ... ≤ ƒ(N-1) ≤ π.

We define the normalized angles

ø(j)(A) := (N/π)ƒ(j)(A), for j = 1 to N-1.

For N-1 > c(r), we define

Fc : O-(2N) ¨ %r

by

Fc(A) := (ø(c(1))(A), ø(c(2))(A),..., ø(c(r))(A)).

Then we define the Borel probability measure √(O-(2N), c) on %r as √(O-(2N), c) :=

Fc*(total mass one Haar mesure on O-(2N)).

(10.4.9) For O_(2N+1), every element A admits the indicated choice of _1 as an eigenvalue,

and the other 2N eigenvalues occur in N inverse pairs inverse pairs e_iƒ(j) with angles

0 ≤ ƒ(1) ≤ ƒ(2) ≤ ... ≤ ƒ(N) ≤ π.

We define the normalized angles

ø(j)(A) := ((N + 1/2)/π)ƒ(j)(A), for j = 1 to N.

For N > c(r), we define

Fc : O_(2N+1) ¨ %r

by

Fc(A) := (ø(c(1))(A), ø(c(2))(A),..., ø(c(r))(A)).



Chapter 10: Horizontal results-222

Then we define the Borel probability measure √(O_(2N+1), c) on %r as 

√(O_(2N+1), c) := Fc*(total mass one Haar mesure on O_(2N+1)).

(10.4.10) Having made the relevant definitions, we can now state the large N limit theorems

for these measures. The measures

√(USp(2N), c)

on %r have a large N limit, denoted √(-, c). To state the result for orthononal groups, we pass to

the Osign œ notation. For each choice of œ = _ 1, we put

Osign œ(N) := {A in O(N) with det(-A) = œ}.

The measures

√(Osign -(N), c)

have the same large N limit √(-, c) as the measures √(USp(2N), c). The measures

√(Osign +(N), c)

have a large N limit, denoted √(+, c), on %r. All three measures

√(c), √(-, c), √(+, c)

are Borel probability measures on %r which are absolutely continuous with respect to Lebesgue

measure, cf [Ka-Sa, RMFEM, AD 4.3, AD 4.4.1, and AD 10.2].

11110000....5555    AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss    ttttoooo    GGGGUUUUEEEE    ddddiiiissssccccrrrreeeeppppaaaannnnccccyyyy

TTTThhhheeeeoooorrrreeeemmmm    11110000....5555....1111 Fix an integer r ≥ 1 and an offset vector c = (c(1), ..., c(r)) in #r. Fix an integer 1

≤ ˚ ≤ r, and a surjective linear map

π: %r ¨ %˚.

Denote

µ := µ(univ, offsets c).

Suppose we are in one of the first three cases (SL, Sp, O, or strongly SO) of Theorem 10.1.7. In

the SL case, assume further that for each √, the group Ggeom for Ì√,t on Xt is constant in t.

Denote by N√ the rank of Ì√., and denote by K(N√) the closed subgroup of U(N√) which is the

chosen compact form of the common value of Ggeom for all the Ì√,t's.

Pick any sequence (ki, ti) of of pairs

(a finite field ki, a ki-valued point ti of T)

in which i ÿ ùki is a strictly increasing sequence. For each √, the sets Xti
(ki) are nonempty for

large enough i. For each such i we pick an å√,ki,ti
 as in (the corresponding case of) 10.1.7 and

form the measure

µ(ki, ti, å√,ki,ti
)

on K(N√)ù.
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For each √ large enough that N√ > c(r), form, for each element A in K(N√), the spacing

measure on %r

µ√(A) := µ(A, K(N√), offsets c).

Then take its direct image

π*µ√(A)

to %˚. Form the discrepancy [Ka-Sa, RMFEM, 1.0.10] 

discrep(π*µ, π*µ√(A))

between this measure on %˚ and the direct image π*µ of the GUE measure, and view its formation

as a continuous %-valued central function

A  ÿ Discrep(A) := discrep(π*µ, π*µ√(A))

on K(N√). Consider the integral

—K(N√) Discrep(A)dµ(ki, ti, å√,ki,ti,√
)(A)

:= (1/ùX√,ti
(ki))‡x in X√,ti

(ki)
 Discrep(ø(ki, ti, x, å√,ki,ti

)).

Then the double limit

lim√¨‘limi ¨‘ —K(N√) Discrep(A)dµ(ki, ti, åki,ti,√
)(A)

vanishes. More precisely, given œ > 0, there exists an explicit constant N(œ, r, c π) such that if N√ ≥

N(œ, r, c π), we have

limi ¨‘ —K(N√) Discrep(A)dµ(ki, ti, åki,ti,√
)(A)

 ≤ (N√)œ - (1/(2r+4)).

If we are in the Sp case or the O case, we can in addition pick a conjugacy class ß√ in Sd√

for each √. Then we can consider the sequences of measures

µ(ki, ti, åki,ti,√
, ß√-split) on K(N√)ù.

The above results are also valid for this sequence of measures.

In the O case, we can also make a single choice of sign œ, and so we can consider the two

sequences of measures

µ(ki, ti, åki,ti,√
, sign œ) on Osign œ(N√, %)ù

µ(ki, ti, åki,ti,√
, ß√-split, sign œ) on Osign œ(N√, %)ù.

The above results are also valid for these sequences of measures.

pppprrrrooooooooffff This is immediate from Theorem 10.1.7, thanks to [Ka-Sa, RMFEM, 12.1.3]. QED

TTTThhhheeeeoooorrrreeeemmmm    11110000....5555....2222 Fix an integer r ≥ 1 and an offset vector c = (c(1), ..., c(r)) in #r. Fix an integer 1

≤ ˚ ≤ r, and a surjective linear map

π: %r ¨ %˚.
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Denote

µ := µ(univ, offsets c).

Suppose we are in the SO/O case of Theorem 10.1.7. Pick a sign œ = _1. Denote by N√ the rank of

Ì√.

Pick any sequence (ki, ti) of of pairs

(a finite field ki, a ki-valued point ti of T)

in which i ÿ ùki is a strictly increasing sequence and in which A(Frobki,ti
) = œ for every i. For

each √, the sets Xti
(ki) are nonempty for large enough i. For each such i we pick an å√,ki,ti

 as in

the SO/O case of 10.1.7, and form the measure

µ(ki, ti, å√,ki,ti
)

on Osign œ(N√, %)ù.

For each √ large enough that N√ > c(r), form, for each element A in Osign œ(N√, %), the

spacing measure on %r

µ√(A) := µ(A, Osign œ(N√, %), offsets c).

Then take its direct image

π*µ√(A)

to %˚. Form the discrepancy [Ka-Sa, RMFEM, 1.0.10] 

discrep(π*µ, π*µ√(A))

between this measure on %˚ and the direct image π*µ of the GUE measure, and view its formation

as a continuous %-valued central (i.e., invariant by O(N√, %) conjugation) function

A  ÿ Discrep(A) := discrep(π*µ, π*µ√(A))

on Osign œ(N√, %). Consider the integral

—Osign œ(N√, %) Discrep(A)dµ(ki, ti, å√,ki,ti,√
)(A)

:= (1/ùX√,ti
(ki))‡x in X√,ti

(ki)
 Discrep(ø(ki, ti, x, å√,ki,ti

)).

Then the double limit

lim√¨‘limi ¨‘ —Osign œ(N√, %) Discrep(A)dµ(ki, ti, åki,ti,√
)(A)

vanishes. More precisely, given œ > 0, there exists an explicit constant N(œ, r, c π) such that if N√ ≥

N(œ, r, c π), we have

limi ¨‘ —Osign œ(N√, %) Discrep(A)dµ(ki, ti, åki,ti,√
)(A)

 ≤ (N√)œ - (1/(2r+4)).

Pick a conjugacy class ß√ in Sd√
 for each √, and consider the sequences of measures
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µ(ki, ti, åki,ti,√
, ß√-split) on Osign œ(N√, %)ù.

Then the above results are also valid for this sequence of measures.

pppprrrrooooooooffff This is immediate from Theorem 10.1.7, thanks to [Ka-Sa, RMFEM, 12.1.3]. QED

11110000....6666    AAAApppppppplllliiiiccccaaaattttiiiioooonnnn    ttttoooo    eeeeiiiiggggeeeennnnvvvvaaaalllluuuueeee    llllooooccccaaaattttiiiioooonnnn    mmmmeeeeaaaassssuuuurrrreeeessss

TTTThhhheeeeoooorrrreeeemmmm    11110000....6666....1111 Fix an integer r ≥ 1 and an offset vector c = (c(1), ..., c(r)) in #r. Suppose we are

in one of the cases of Theorem 10.1.7. In the SL case, assume further that for each √, the group

Ggeom for Ì√,t on Xt is constant in t. In the SO/O case, pick a sign œ = _1.

Pick any sequence (ki, ti) of of pairs

(a finite field ki, a ki-valued point ti of T)

in which i ÿ ùki is a strictly increasing sequence. If we are in the SO/O case, assume in addition

that

A(Frobki,ti
) = œ, for every i.

For each √, the sets Xti
(ki) are nonempty for large enough i, and for each such i we pick an å√,ki,ti

as in (the corresponding case of) 10.1.7, and form the measure

µ(ki, ti, å√,ki,ti
)

on 

Um√
(N√)ù, in the SL case,

USp(N√)ù, in the Sp case,

O(N√, %)ù, in the O case,

SO(N√, %)ù, in the strongly SO case,

Osign œ(N√, %)ù, in the SO/O case,

If we are in the Sp case, we can in addition pick a conjugacy class ß√ in Sd√
 for each √.

Then we can consider the sequences of measures

µ(ki, ti, åki,ti,√
, ß√-split) on USp(N√)ù.

In the O case, we can pick a conjugacy class ß√ in Sd√
 for each √, and we can also make a single

choice of sign œ. So we can consider the two sequences of measures

µ(ki, ti, åki,ti,√
, sign œ) on Osign œ(N√, %)ù

µ(ki, ti, åki,ti,√
, ß√-split, sign œ) on Osign œ(N√, %)ù.

Then we have the following integration formulas. Fix a continuous function h of compact support

on %r.

1) If we are in the SL case, we can compute —%r hd√(c) as the double limit



References-226

lim√¨‘ limi¨‘—Um√
(N√) h(Fc(A))dµ(ki, ti, å√,ki,ti

)(A).

2) If we are in the Sp case, we can compute —%r hd√(-,c) as the double limit

lim√¨‘ limi¨‘—USp(N√) h(Fc(A))dµ(ki, ti, å√,ki,ti
)(A),

or as the double limit

lim√¨‘ limi¨‘—USp(N√) h(Fc(A))dµ(ki, ti, å√,ki,ti
, ß√-split)(A).

3) If we are in the O case, then for either choice of sign œ, we can compute —%r hd√(œ,c) as the

double limit

lim√¨‘ limi¨‘—Osign œ(N√) h(Fc(A))dµ(ki, ti, å√,ki,ti
,sign œ)(A),

or as the double limit

lim√¨‘ limi¨‘

—Osign œ(N√) h(Fc(A))dµ(ki, ti, å√,ki,ti
, ß√-split,sign œ)(A).

4) If we are in the SO/O case, and have chosen the sign œ, we can compute —%r hd√(œ,c) as the

double limit

lim√¨‘ limi¨‘—Osign œ(N√) h(Fc(A))dµ(ki, ti, å√,ki,ti
)(A),

or as the double limit

lim√¨‘ limi¨‘—Osign œ(N√) h(Fc(A))dµ(ki, ti, å√,ki,ti
, ß√-split)(A).

pppprrrrooooooooffff This is immediate from Theorem 10.1.7, thanks to [Ka-Sa, RMFEM, AD 4.3, AD 10.2 and

AD 11.4]. QED
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