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The present work grew out of an entirely unsuccessful attempt to answer some basic
questions about elliptic curves over Q. Start with an elliptic curve E over Q, say given by a
Weierstrass equation

E: y2=4x3—ax—b,
with a, b integers and a3 — 27b2 % 0. By Mordell's theorem [Morl, the group E(Q) of Q—rational
points is a finitely generated abelian group. The dimension of the Q—vector space E(Q)®,Q is
called the Mordell Weil rank, or simply the rank, of E. Thus we get a function

{(a,b) in 72 with a3 —27b2 = 0} — {nonnegative integers}
defined by

(a,b) — the rank of the curve y2 =4x3 —ax - b.

It is remarkable how little we know about this function. For example, we do not know if
this function is bounded, or if there exist elliptic curves over QQ of arbitrarily high rank. For a long
time, it seems to have been widely believed that this function was bounded. But over the past fifty
years, cleverer and cleverer constructions, by Néron [Ner—101, Mestre [Mes—11, Mes—12, Mes—
151, Nagao [Nag—201, Nagao—Kouya [Nag—Ko-211, Fermigier [Fer—221, and Martin—-McMillen
[Mar—McM-231, have given curves over Q with higher and higher rank. At this writing in
October of 1999 the highest known rank is 23, and the present consensus is that there may well
exist elliptic curves over Q of arbitrarily high rank.

We might then ask if at least we can say anything about the average rank of elliptic curves.

What does this question mean? One naive but accessible formulation is this. Since a3 — 27b2 #0,
we might fix a nonzero integer A, and look first at the set Ell defined as
Ell, = {(a, b) in Z2 with a3 - 27b% = A}.
Now for each nonzero A in Z, the equation
X3 -27Y2=A
itself is an elliptic curve over Q. So it has only finitely many solutions (a, b) in integers, by a

celebrated result of Siegel giving the finiteness of the number of integral points on an elliptic curve
over Q. So the set Ell 5 is finite. For each integer N >0 we take the union of the sets E for 0 <Al

<N, and obtain the finite set
Ellcy = {(a,b) in Z2 with 0 < la3 - 27b2 < N}
We now form the average
avikeN = (IH#EI<N)Z o by in Elly (rank of y2 = 4x3 — ax — b),
which is a non—negative real (in fact rational) number.

So now we have a sequence
N — avrken

of nonnegative real numbers. We do not know if it has a limit. If it does , it would be reasonable
to call its limit the average rank of elliptic curves over Q. It is not even known (unconditionally, see
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[Brul for conditional results on questions of this type) that the limsup of this sequence is finite.
For a long time, it was widely believed that the large N limit of avrk<py does exist, and that

its value is 1/2. Moreover, it was believed that each of the three auxiliary sequences of ratios
fraction of points in EllSN with rank O,

fraction of points in Ell<jy with rank 1,

and
fraction of points in Ell<py with rank > 2,

has a limit, and that these limits are 1/2, 1/2, and O respectively.

Today it is still believed that each of these four sequences has a limit, but there is no longer
agreement on what their limits should be. Some numerical experiments ([Brum—McG], [Fer-EE],
[Kra—Zagl, [Wa—Tal) support the view that a positive percentage of elliptic curves have rank two
or more, i.e., that the fourth limit is nonzero. On the other hand, the philosophy of Katz—Sarnak
([Ka—Sar, RMFEM, Introduction] and [Ka—Sar, Zeroes]) suggests that the limits are as formerly
expected, and (hence) that the contradictory evidence is an artifact of too restricted a range of
computation.

At this point, we must say something about the L—function L(s, E) of an elliptic curve over
Q, and about the Birch and Swinnerton Dyer conjecture. The curve E/Q has "conductor" an integer
N = Ng 2 1 (whose exact definition need not concern us here) with the property that E/Q has

"good reduction" at precisely the primes p not dividing N. For each such p we define an integer
ap(E) by writing the number of [Fp—points on the reductionasp + 1 — ap(E). The L—function L(s,
E) of E/Q is defined as an Euler product Hpr(s,f), whose Euler factor Lp(s, E) at each p not
dividing N is

(1 - ap@)p~S +p! 727
(and with a recipe for the factors at the bad primes which need not concern us here). The Euler
product converges absolutely for Re(s) > 2, thanks to the Hasse estimate

Iap(E)I < 2Sqrt(p).

It is now known, thanks to work of Wiles [Wil, Taylor—-Wiles [Tay—Wil, and Breuil—-
Conrad—Diamond-Taylor [Br—Con—-Dia—Tay], that every elliptic curve E/Q is modular. What this
means that is that given E/Q, with conductor N = N, there exists a unique weight two cusp form f
= fg of weight two on the congruence subgroup I'g(N) of SL(2, Z) which is an eigenfunction of

the Hecke operators T, for primes p not dividing N, whose eigenvalues are the integers ap(E),

p
Tpr = ap(E)fE for every p not dividing N,

whose q—expansion at the standard cusp iee is q + higher terms, and which is not a modular form

on I'g(M) for any proper divisor M of N.

Now given any integer N > 1 and any weight two normalized newform f on I'5(N), i.e., a
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cusp form f on I'n(N) which is an eigenfunction of the Hecke operators Tp for primes p not

dividing N, with eigenvalues denoted ap(f),

Tpf = apf,

whose gq—expansion at iee is
Zh>1 apq™ ag =1,
and which is not a modular form on I'g(M) for any proper divisor M of N, the L—function L(s, f)
of f is defined to be the Mellin transform of f. Thus L(s, f) is the Dirichlet series
L(s, f) =X >1 apn>.
This Dirichlet series has an Euler product Hpr(s,f) whose Euler factor Lp(s, f) at each p not
dividing N is
(1 - app_s " p1—2s)—1.
The Euler product converges absolutely for Re(s) > 2. The function L(s, f) extends to an entire
function, and when it is "completed" by a suitable I'—factor, it satisfies a functional equation under
s — 2—s. The precise result is this. One defines
A(s, f) 1= NS2(27)ST(s)L(s, f).
Then A(s, f) is entire, and satisfies a functional equation
A(s, ) = e(AQ2-s, 1),
where £(f) = £1 is called the sign in the functional equation.
It turns out that the Euler factors at the bad primes in L(s, E) are equal to those in L(s, fp),

so we have the identity
L(s, E) = L(s, ff).
This in turn shows that
As, E) := NS2(21) ST (s)L(s, E)
extends to an entire function, and satisfies a functional equation
A(s, E) = e(E)A(2-s, E),
with &(E) (:= &(fg)) = 1.

The upshot of all this discussion is that L(s, E) is holomorphic at the point s=1, so it makes
sense to speak of the order of vanishing of L(s, E) at the point s=1. The basic Birch and
Swinnerton Dyer conjecture for E/Q is the assertion that the rank of E/Q is the order of vanishing
of L(s, E) at s=1. [We say "basic" because there is a refined version which interprets not only the
order of vanishing as the rank, but also specifies the leading coefficient in the power series
expansion of L(s, E) at s=1.11It is instructive to note that the conjecture was made thirty years
before it was known in general that L(s, E) even made sense at s=1.

One calls the order of vanishing of L(s, E) at s=1 the "analytic rank" of E/Q, denoted
rank,, . (E):

rank, ,(E) := order of vanishing of L(s, E) at s=1.
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What we now know about the basic Birch and Swinnertion Dyer conjecture can be stated

all too briefly:

1) if L(1, E) is nonzero, then E has rank zero.

2) if L(s, E) has a simple zero at s=1, then E has rank one.
In other words, what we know is that

rank, (E) < 1 = rank(E) = rank,,(E).

To emphasize how little we know, it is perhaps worth pointing out that we know neither the
a priori inequality

rank(E) < rank,(E),
nor the opposite a priori inequality

rank, (E) < rank(E)..
[In the "function field case", the analogue of the first a priori inequality holds trivially, cf. [Tate—
BSD], [Shiol.]

In all the numerical experiments concerning rank of which we are aware, it is the analytic
rank rather than the rank which is calculated. Thus the relevance of these experiments to the rank of
elliptic curves is conditional on the truth of the Birch and Swinnerton Dyer conjecture.

A basic observation, due to Shimura (and related by him to Birch at the 1963 Boulder
conference in the context of relating twists of modular forms and elliptic curves, cf. [Bir=St]), is
that if the sign €(E) in the functional equation of L(s, E) is —1 [respectively +11, then L(s, E) has a
zero of odd [respectively evenl order at s=1. So we have the implication

&(E) = -1 = rank,,(E) is 21, and odd.
If the Birch and Swinnerton Dyer conjecture holds, then

€(E) = -1 = rank(E) is 21, and odd.
On the other hand, if €(E) is +1, then rank(E) is forced to be even, so if the rank is nonzero, it is at
least two. We should point out here that the parity consequence

rank, . (E) = rank(E) mod 2
of the Birch and Swinnerton Dyer conjecture remains a conjecture, sometimes called the Parity
Conjecture [Gov—Mazl.

The expectation that the average rank of elliptic curves over Q be 1/2 is based on three
ideas: first, that the Birch and Swinnerton Dyer conjecture holds for all E/Q, second, that half the
elliptic curves have sign €(E) = +1, and half have sign €(E) = -1, and third, that for most elliptic
curves, the rank is the minimum, namely zero or one, imposed by the sign in the functional
equation.

The recent conjecture of Katz—Sarnak [Ka—Sar, RMFEM, page 14] about the distribution
of the low—lying zeroes of L(s, E) would, if true, make precise and quantify the third idea above,
that for most elliptic curves, the rank is the minimum imposed by the sign of the functional
equation. We refer to [Ka—Sar, RMFEM, 6.9 and 7.5.5] for the definitions and basic properties of
the "eigenvalue location measures" v(+,j) and v(—,j), j = 1, 2,...on R. What is important for our
immediate purposese is that these are all probability measures supported in R>(y which are
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absolutely continuous with respect to Lebesgue measure.

In order to formulate the conjecture, we must assume the Riemann Hypothesis for the L—
functions L(s, E) of all E/Q, namely that all the nontrivial zeroes of L(s, E) (i.e., all the zeroes of
A(s, E)) lie on Re(s) = 1. If L(s, E) has an even functional equation, its nontrivial zeroes occur in
conjugate pairs 1 iVE,j with 0 < YE,1SYE2SYE3 S If E has an odd functional equation,
then s=1 is a zero of L(s, E), and the remaining nontrivial zeroes of L(s, E) occur in conjugate pairs
1t iVE,j with 0 < YE,1SYE2SVE3 S

We then normalize the heights YE, of these zeroes according to the conductor N of E as
follows. We define the normalized height 5’E,j to be

7’E,j = yE’jlog(NE)/Zﬂ.
Now let us return to the set
Elly := {(a,b) in Z2 with 0 < la3 — 27b2I < N}.
We then break up Ell<p into two subsets
Ellan +
according to the sign in the functional equation of the L—function of the E/Q given by the

corresponding Weierstrass equation. It is known to the experts, but nowhere in the literature, that
both ratios

#E N H/#EN<N
tend to 1/2 as N — oo,
Conjecture (compare [Ka—Sar, RMFEM, page 14]) The normalized heights of low—lying zeroes
of L—functions of elliptic curves over Q are distributed according to the measures v(, j), in the
following sense. For any integer j = 1, and for any compactly supported continuous C—valued
function h on R, we can calculate the in‘[egralsj[R hdv(z,)) as follows:

Jg hdv(=, j) =

=limy _, o (I#EleN 2) Zg Blly h(yg j)-
and
[g hdv(+, j) =

= limy; _, o (I#EleN 4) Zg iy By, "OVE )

What is the relevance of this conjecture to rank? Take, for each real t >0, a continuous function
h¢(x) on R which has values in the closed interval [0, 11, is supported in [-t, t], and takes the value

1 at the point x=0, for instance

N



Introduction—11

By the absolute continuity of v(, j) with respect to Lebesgue measure, we have
g hdv(&, j)l = 0 as t — 0.
Choose N large enough that Ell<y; ¢ is nonempty for both choices of sign €. Denote by d(x) the
characteristic function of {0} in R. Notice that we have the trivial inequality h(x) 2 6(x) for all
real x. For the choice +, we have
1/ #EHSN,+) ZE in Ell hG’E, j)
2(1/ #EHSN,+) ZE in Ell gy | 50(7’E,j)
:= fraction of E in Ell«y  with rank,,(E) > j.
For the choice —, the L function automatically vanishes once at s=1, but that zero is not on our list O
<YE.1S7YE2S7YE3 S, 80 we have
(AMENN ) 2 in i hOE,j)
2(1/ #EHSN,—) ZE in Bl _ 506’E,j)
:= fraction of E in Ell« _ with rank, ,(E) 2 j+1.
Taking the limit as N —eo, and setting j = 1, we find
0 =lim y _,., fraction of E in Ell<y; , with rank,,(E) > 1,
and
0 =lim y _y, fraction of E in Ell<yy _ with rank,,,(E) > 2.
Therefore, if we assume in addition the Birch and Swinnerton Dyer conjecture for all E/Q, we find
a precise sense in which a vanishingly small fraction of elliptic curves over Q have rank greater

than that imposed by the sign in the functional equation.
As measures on R>(), the v(%, j) all have densities, and these densitites are the restrictions

to Ry of entire functions, cf. [Ka—Sar, RMFEM, 7.3.6, 7.5.51. A signifigant difference between
the two measures v(—,1) and v(+,1) is that the density of v(—,1) vanishes to second order at the

origin x=0, while that of v(+,1) is 2 + O(x2) near x=0, cf. [Ka—Sar, RMFEM, AG.0.3 and
AG.0.51.

Thus the imposed zero of L(s, E) at s=1 for E of odd functional equation "quadratically
repels" the next higher zero 1 + iVE,l’ while for E of even functional equation the point s=1 does

not repel the next higher zero 1 + iyg 1. This is presumably the phenomenon underlying the fact

that in the numerical experiments cited above which call into question the "average rank = 1/2"
hypothesis, what is found numerically is that about half the curves tested have odd sign, and
essentially all of these have analytic rank one, while among the other half of the curves tested,
among those with even sign, between twenty and forty percent have analytic rank two or more.
What may be happening is that, because v(—,1) quadratically repels the origin, while v(+,1) does
not repel the origin, in any given range of numerical computation, the data on ranks of curves of
odd sign will look "better" than the data on ranks of curves of even sign ["better" in supporting the
idea that elliptic curves over Q "try" to have as low a rank as their signs will allow .
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An attractive and apparently "easier" question to study is this. Fix one elliptic curve E/Q,
with Weierstrass equation

E: y2:4x3—ax—b
and conductor Nf. For each squarefree integer D, one defines the quadratic twist Epy of E by D to
be the elliptic curve over Q of equation
Ep: Dy2 =4x3 —ax — b,
or equivalently, (multiply the equation by D3 and change variables to Dx, D2y)
Ep: y2 = 4x3 — aD?x - bDS.
Denote by y1y the primitive quadratic Dirichlet character attached to the quadratic extension

Q(ED)/Q. Thus for odd primes p not dividing D, we have

Xxp(p) = 1if D is a square in [Fp, -1 if not.

For all primes p which are prime to 2XDXNF, the ap for E and for E are related by
ap(Ep) = Yp(P)ay(E).
The conductor of Epy divides (a power of 2)><D2><NE. If, for example, we take D = 1 mod 4 and
relatively prime to N, then the conductor of Epy is DZNE, and the sign in its functional equation is
related to that for E by the rule
&(Ep) = xp(-Np)e(E).

Denote by f := ff the weight two normalized newform attached to E. The normalized
newform attached to Epy is f®yy, the unique weight two normalized newform of any level
dividing 2DNE whose Hecke eigenvalues at primes not dividing 2DNg, are given by the rule
ap(ED) = )(D(p)ap(E) above.

So having fixed E/QQ, we can now ask the same questions as above for the family of curves
Ep. Thus for real X >0, we look at the set

Sqfr<yx := {squarefree integers D with IDI < X}.

On this set we have the function
D — rank of ED.

We can ask whether as X — oo, the quantities
average of rank(Epy) over Sqfr<y,

fraction of D in Sqfr<y, with rank(Ep) =0,
fraction of D in Sqfr<y, with rank(Ep) =1,
fraction of D in Sqfr<y, with rank(Ep) = 2,

have limits, and, if so, what they are. Or if not, what the limsup's might be. And a more refined
version is to break Sqfr<y up according to the sign in the functional equation of L(s, Ep) into two

sets Sqfr<y +, and repeat the above questions over these sets. There are almost no unconditional
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results.
If we admit the truth of the Birch and Swinnerton Dyer conjectures for all the twists Ep,

then these are questions about the behavior at s=1 of the L—functions L(s, f{®yy) as D varies. Let

us further assume the Riemann hypothesis for the L—functions L(s, f) attached to all weight two
normalized newforms f on all I'5(N). Then we can formulate the following conjecture.

Conjecture [Ka—Sar, Zeroes, II (b) and pg 211 Fix a weight two normalized newform f on any
['(N). Break up the set Sqfr<y according to the sign in the functional equation of L(s, f®y )

into two subsets SqerX,-_F- [Tt is known that both the ratios

#SqerX,i ASqfrax
tend to 1/2 at X — oo.]. Then the normalized heights 5’D,j of the low-lying zeroes of the L—
functions L(s, f®yp) are distributed according to the measures v(z, j), in the following sense. For

any integer j = 1, and for any compactly supported continuous C—valued function h on R, we can
calculate the integrals I[R hdv(z,)) as follows.

[g hdv(=, j) =
=limy _ o, (1/#SqerX’_) 2o Sqfr oy _ h(i/D’j),
and
[g hdv(+, j) =
=limy _, o, (I/#Sqfr<x ) 2D in Sqfrey 4 h6’D,j)-
Exactly as above, the truth of this conjecture for ff gives us
0=1lim y _,, fraction of D in SqerX’ 4 with rank, ,(Ep) 2 1,
and

0=1lim yx _,, fraction of D in Sqfr<y _ with rank, (Ep) = 2.
So if we assume in addition the Birch and Swinnerton Dyer conjecture for all the E/Q, we find

that as X — oo, 100 percent of the even twists have rank zero, that 100 percent of the odd twists
have rank one, and that the average rank of all the twists is 1/2. That this should be so was first
conjectured by Goldfeld [Gol.

The numerical experiments so far seem to support this conclusion moderately well for odd
twists, but poorly for even twists. Again, the fact that v(—,1) quadratically repels the origin, while
v(+,1) does not repel the origin, may be "why" the numerical data so far is "better" for odd twists
then for even twists.

We now turn to the the situation for elliptic curves over function fields over finite fields.
Thus let k be a finite field, C/k a proper smooth geometrically connected curve, K := k(C) its
function field, and E/K an elliptic curve with non—constant j invariant. Then E/K "spreads out" to
an elliptic curve over some dense open set U of C, say 7 : & — U. By the theory of the Neron
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model, if such a spreading out exists over a given open U, it is unique. Moreover, there is a largest
such U, called the open set of good reduction for E/K. [Because E/K has non—constant j invariant,
it does not have good reduction everywhere on C.] The finite set of closed points of C at which
E/K has bad reduction will be denoted Sing(E/K). By the Neron Ogg Shafarevic criterion, the open
set of good reduction can be described as follows. Pick a prime number ¢ invertible in K, pick
some spreading out
mn:&E—-U

of E/K, and form the lisse rank two sheaf RIN*Q ¢ on U, which by Hasse [Hal is pure of weight
one. Denoting by j : U — C the inclusion, form the "middle extension" (:= direct image) sheaf ¥ :=
j*RITF*@ ¢ on C. This sheaf ¥ on C is independent of the auxiliary choice of spreading out used to
define it, and the open set of good reduction for E/K is precisely the largest open set on which ¥ is
lisse. Thus Sing(E/K) as defined above is equal to Sing(F), the set of points of C at which ¥ is not
lisse.

The L—function L(T, E/K) is defined to be the L—function of C with coefficients in 7, itself
defined as the Euler product

L(T, F) := 1, (det(1 - TI&X)Frob, | 7,)~!

over the closed points x of C. At each point x of good reduction, the reduction of E/K at x is an
elliptic curve [y over the residue field Fy, and

det(1 — TFroby | 7)) = 1 — a, T + (#F,)TZ in ZIT),
where a, is the integer defined by the equation

ay =1+ #Fy — #E,(Fy).

Thus the local factors at the points of good reduction are visibly Z—polynomials, independent of
the auxiliary choice of ¢. This is true also of the factors at the points of bad reduction [De—
Constants, 9.81.

The cohomological expression for this L—function

L(T, F) =Tl , ,(det(1 — TFroby | H(Cek, 7))~ 1
simplifies. Because E/K has non—constant j invariant, the middle extension sheaf ¥ is geometrically
irreducible when restricted to any dense open set of Ceik on which it is lisse [De-Weil I, 3.5.5].

)i+1

This in turn implies that the groups H! vanish for i#1. Thus we end up with the identity

L(T, E/K) = L(T, %) = det(1 — TFroby| H(Csy k;, 7).
By Deligne [De-Well, 3.2.31, Hl(C®kE F) is pure of weight two. Thus L(T, E/K) = L(T, ¥) lies
in 1 + TZIT] and has all its complex zeros on the circle ITl = 1/q (i.e., L(q~, E/K) has all its zeros
on the line Re(s) = 1).

By the Mordell Weil theorem, the group E(K) is finitely generated. The (basic) Birch and
Swinnerton Dyer conjecture for E/K asserts that the rank of E(K), denoted rank(E/K), is the order
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of vanishing of L(T, E/K) at the point T = 1/q, q := #k, or equivalently that rank(E/K) is the
multiplicity of 1 as generalized eigenvalue of Froby on the Tate—twisted group Hl(C®kE F)(1).
We call this multiplicity the analytic rank of E/K:

rank,, ,(E/K) := ordp_det(1-TFroby | HI(C®kE, FHD)).

The group Hl(C®kk_, F)(1) has a natural orthogonal autoduality <,> which is preserved by

Froby, i.e., Froby lies in the orthogonal group O := Aut(Hl(C®kE, F)(1), <,>). Now for any
element A of any orthogonal group O, its reversed characteristic polynomial
P(T) := det(1-AT)
satisfies the functional equation
Tdee(P)p(1/T) = det(-A)P(T),
the sign in which is det(—A).
Applying this to Froby, we find the functional equation of the L—function of E/K:
Tdeg(LIL(1/T, E/K) = e(B/K)L(T, E/K),
where €(E/K) is the the sign
e(E/K) = det(—Froby | H(Cek, 7)(1)).
So just as in the number field case, we have the implications
€(E/K) = -1 = rank,,(E/K) is odd, and > 1,
e(E/K) = +1 = rank,,(E/K) is even.
In the function field case, we also have an a priori inequality
rank(E/K) < rank,,(E/K).
[But the "parity conjecture", the assertion that we have an a priori congruence
rank(E/K) = rank,,(E/K) mod 2,

is not known in either the number field or the function field case.]
What about quadratic twists of a given E/K? To define these, we suppose that the field K

has odd characteristic. Then E/K is defined by an equation

y2 =3 + ax2

where x> + ax? + bx + ¢ in K[x]is a cubic polynomial with three distinct roots in K. For any

+ax“+bx+c

element f in K, the quadratic twist E¢/K is defined by the equation

fy2 3 2 4bx +c.

Pick any dense open set U in C over which E/K has good reduction, and over which the function f

=X +ax

has neither zero nor pole. Then Ef/K also has good reduction over U, say g 8f — U, and the
lisse sheaf Rl(ﬂf)*(lj ¢ on U is obtained from Rlﬂ*@ ¢ by twisting by the lisse rank one Kummer
sheaf 'EXz(f) on U:

Rl(ﬂf)*(ﬁ( = LXZ(f)@DRl]T*Q(
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[Recall that y is the unique character of order two of k%, and LX »(P) is the character of 7r1(U)

whose value on the geometric Frobenius Frob, attached to a closed point x of U with residue field

Fy is XZ(N[FX /k(£(x))). This twisting formula is the sheaf—theoretic incarnation of the relation

ay(EfK) = xo(NF _/(f(x))ay (E/K),
itself the function field analogue of the number field formula
an(Ep) =xp(P)ap(E).]
So if we denote by j: U — C, the sheaf ¢ := j*Rl(nf)*Q ¢ on C attached to E¢/K is related to the

sheaf ¥ := j*RIﬂ'*Q ¢ on C attached to E/K by the rule
. K
And the L—function of E¢K is thus
L(T, EgK) = L(T, F¢) = det(1 — TFroby | H(Cek, 7).

Thus when we start with a single elliptic curve E/K, and pick a prime number ¢ invertible
in K, we get a geometrically irreducible middle extension Q ¢—sheaf # on C. To the extent that we
wish to study the L—functions of twists E¢/K (rather than the twists themselves, or their actual
ranks) the only input data we need to retain is the sheaf . Indeed, once we have ¥, the sheaf ¥

attached to a twist E¢/K is constructed out of ¥ by the rule
. Kk
Fr=3+(Ly, 0% F),

for j : U — C the inclusion of any dense open set on which f in invertible and on which #is lisse.

In the case of twists of an E/Q, we twisted by squarefree integers D, and for growing real
X >0 we successively averaged over the finitely many such D with IDI < X. What is the function
field analogue?

When the function field K is a rational function field k(1) in one variable A, every element
f(1) of KX can be written as f = g(?t)zh(l), with h(A) a polynomial in A of degree d = 0 which has
all distinct roots in k (i.e., h is a square free polynomial). This expression is unique up to (g, h) —
(ag, a_zh) for some « in kKX

So in this case, we might initially try to look at twists of a given E by all squarefree
polynomials in A of higher and higher degree d. We might hope that for a given degree d of twist
polynomial h, the L-functions L(T, E}/K) form some sort of reasonable family of polynomials in
T. But the degree of L(T, E;,/K) depends on more than just the degree of the square free h. It is also

sensitive to the zeros and poles of h at points of Sing(E/K), the set where E/K has bad reduction.
For this reason, it is better to abandon the crutch of polynomials and their degrees, and rather

impose in advance the behavior of the twisting function f in K* at all the points of Sing(E/K).
Since we are doing quadratic twisting, the local geometric behavior at a point x in C of the
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twist E¢/K sees ord,(f) only through its parity. Let us fix an effective divisor D on C and look only

at functions f on C whose divisor of poles is exactly D, and which have d := deg(D) distinct zeros
(over k), none of which lies in Sing(E/K)N(C-D). We denote by

Fct(C, D, d, Sing(E/K)N(C-D)) c L(D)
this set of functions. Then the interaction between f and Sing(E/K) can be read entirely from the
divisor D, in fact, from the parity of ord, (D) at each point x in Sing(E/K). In particular, if we want

to force local twisting at a given point x in C, in particular at a point in Sing(E/K), we have only to
be take an effective D which contains the point x with odd multiplicity. This formulation has the
advantage of working equally well over a base curve C of any genus, whereas the polynomial

formulation was tied to having P! as the base.
The upshot is that if we fix an effective divisor D on C, then as f varies in the space
Fct(C, D, d, Sing(E/K)N(C-D)),
all the L—functions L(T, E¢K) have a common degree. It turns out there is a sheaf—theoretic

explanation for this uniformity. For any effective D whose degree d satisfies d = 2g+1, the space
Fct(C, D, d, Sing(E/K)N(C-D))
is, in a natural way, the set of k—points of a smooth, geometrically connected k—scheme
X := Fct(C, D, d, Sing(E/K)N(C-D))
of dimension d + 1 — g. And there is a lisse Q—sheaf
G = Twisth,C’D(T)
on the space X, whose stalk G¢ at a k—valued point
fin X(k) = Fct(C, D, d, Sing(E/K)N(C-D))
is the cohomology group HI(C®kk_, ¥¢), and whose local characteristic polynomial det(1 —
TFrobk,f | Gy) is given by
det(1 — TFroby ¢ G¢)
= det(1 — TFroby¢ | HI(Ceyk, 7p) = L(T. E¢K).
Moreover, the Tate—twisted sheaf G(1) is pure of weight zero, and has an orthogonal autoduality,
which induces on each individual cohomology group HI(C®k1Z, F¢)(1) the orthogonal autoduality
responsible for the functional equation of L(T, E¢/K). And for each finite extension k,/k of given
degree n, the stalks of G at the k—valued points X(k;,) encode the L functions of twists defined
over k.
In this way, questions about the (distribution of the zeroes of the) L-functions L(T, E¢K),

as f varies in the space
X(k) = Fet(C, D, d, Sing(E/K)N(C-D)),
become questions about the sheaf
G = Twist)(z’C’D((f)
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on X. Thanks to Deligne's equidistribution theorem [Ka—Sar, RMFEM, 9.2.61, we can answer

many of these questions in terms the geometric monodromy group G attached to the sheaf G.

geom

For example, if the group G is the full orthogonal group, we automatically get the

geom
following results on average analytic rank.
1) The average analytic rank over k;, of twists defined by f's in X(k,,) tends to 1/2 as n — oo. [And

hence the average rank has a limsup < 1/2 as n — eo.]
2) for each choice of € = 1, the fraction #X(k

functional equation tends to 1/2 as n — oe.
3) In the set #X(k the fraction of twists with rank,, =0 tends to 1 as n — eo. [And hence

in the set #X(kn)sign 4
4) In the set #X(k
in the set #X(kn)sign -

Suppose we take a sequence of effective divisors D,, on C whose degrees d,, are strictly

nsign e/#X(ky) of twists with sign & in the

n)sign +>
the fraction of twists with rank = 0 tends to 1 as n — oo.]

n)sign _, the fraction of twists with rankan =1 tends to 1 as n — . [And hence

the fraction of twists with rank < 1 tends to 1 as n — oo]

increasing. Then we get a sequence of smooth k—schemes
X, := Fct(C, D, d, Sing(E/K)N(C-D,)))
and, on each X, a lisse sheaf G,, say of rank N,,. The ranks N,, tend to « with v. Suppose that

for every large enough v, the group G for the sheaf G,, on X, is the full orthogonal group

eom
O(N,)). Then for each choice of sign £g= *1, and each choice of integer j > 1, we can obtain the
eigenvalue location measure v(g, j) as the following (weak *)double limit: the large v limit of the
large n limit of the distribution of the j'th normalized zero of the L—functions attached to variable
points in Xv(kn)sign e

It was with these applications in mind that we set out to prove that, at least in characteristic
geom for G is

the full orthogonal group. Unfortunately, this assertion is not always true. What is true is that

p =5, as soon as the effective divisor D on C has degree d sufficiently large, then G

Ggeom is either the full orthogonal group O or the special orthogonal group SO, provided only

that E/K has nonconstant j invariant, and that

d >4g+4, and

2g — 2 + d > Max(2#Sing(E/K)(k), 144).
[If p=3, this result remains valid provided that the sheaf # attached to E/K is everywhere tamely
ramified, a condition which is automatic in higher characteristicl

We prove that Ggeom is O if E/K has multiplicative reduction (i.e., unipotent local

monodromy) at some point of Sing(E/K) which is not contained in D.

But there are cases where Ggeom is SO rather than O. If E/K does not have unipotent local

monodromy at any point of Sing(E/K), and if every point of Sing(E/K) which occurs in D does so
with even multiplicity, then G has even rank, say N, and an analysis of local constants, using [De—

Constants, 9.5] shows that Ggeom lies in SO(N) (and hence is equal to SO(N), for d large). cf.
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Theorem 8.5.7.

An example of an E/K with nonconstant j but with no places of multiplicative reduction, is
the twisted (by A(A—1)) Legendre curve

y2 = AA=Dx(x=1)(x=A)
over k(d), k := [Fp, p any odd prime, which has bad reduction precisely at 0, 1, e, but at each of
these points the monodromy is
(quadratic character)®(unipotent).]

In this example, it turns out (cf. Corollary 8.6.7) that if the characteristic p is 1 mod 4, then all the
L—functions over all k, have even functional equation. But, if p is 3 mod 4, then the L—functions
over even [respectively odd] degree extensions k,, have even [respectively odd] functional
equations!

The Legendre curve itself,

y2 = x(x=1)(x=1)

over k(A), has unipotent local monodromy at both 0 and 1. And so if we twist by polynomials f(A)
in k[A] of any fixed degree d > 146, which have all distinct roots in k and are invertible at both 0
and 1, the resulting sheaf G4 on X4 := Fct([Pl, deo, d, {0,1}) has G = O(Ny), with Ny equal
to 2d if d is even, and to 2d—1 if d is odd.

Now the Legendre curve makes sense over Z[1/21[A, 1/A(A-1)], and the space X4 makes

geom

sense over Z[1/21. For each fixed d > 146, it makes sense to vary the characteristic p, and ask
average rank questions about twists of the Legendre curve over [Fp(l) by points in Xd([Fp) asp—

oo, We get the same answers as we got by fixing p and looking at twists by points in Xd([Fpn) asn

— oo, If we vary d as well, we can recover the eigenvalue location measures v(g,j) as well. For
each choice of sign € and integer j = 1, we can obtain the eigenvalue location measure v(g, j) as the
following (weak *) double limit: the large d limit of the large p limit of the distribution of the j'th
normalized zero of the L—functions attached to variable points in Xd([Fp)sign e

But there are some basic things we don't know, "even" about this Legendre example, and

"even" in equal characteristic p. For example, it is easy to see that for any fixed p, #Xj(F ;) —oo as

)
P
d —oo. [Indeed, an element of Xd([Fp) is a degree d polynomial f(A) in [Fp [A] with all distinct roots
in Fp, which is nonzero at the points 0 and 1. For d > 3, any irreducible polynomial of degree d in
[Fp [A] will lie in Xd([Fp). And the number of degree d irreducibles in [Fp[/\] is at least

(p-D(1/d)(pd - (@/2)pd2).]
It is also easy to see that for each choice of sign €, the ratio
#Xd(ﬂ:p)sign 8/#Xd([Fp)
tend to 1/2 as d — . [For d even, use [De—Const, 9.5] as in 8.5.7. For d odd, use the fact that for

ain [pr a nonsquare, and any f in Xd([Fp), the twists of the Legendre curve by f and by af have

opposite signs in their functional equations, cf. 5.5.2, case 3).1 But for p fixed, we do not know
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any of the following 1) through 4).

1)The average rank of twists defined by f's in Xd([Fp) tends to 1/2 as d — oo,
2) In the set X 3(F
3) In the set Xd([Fp)sign -
4) For each choice of sign € and integer j = 1, the eigenvalue location measure v(g, j) is the

following (weak *) single limit: the large d limit of the distribution of the j'th normalized zero of the
L—functions attached to variable points in X 4(IF

plsign — the fraction of twists with rank,, = 1 tends to 1 as d — co.

the fraction of twists with rankan =0tendsto 1l asd — oo.

p)sign €

Let us now stand back and see what ingredients were required in the above discussion of
quadratic twists of E/K, an elliptic curve over a function field with a nonconstant j—invariant. The
function field K is the function field of a projective, smooth, geometrically connected curve C/k, k a
finite field. Over some dense open set U in C, E/K spreads out to an elliptic curve 7 : & — U. We

fix a prime number ¢ invertible in k, and form the lisse sheaf Rlﬂ*Q ¢ on U. Itis lisse of rank two,

pure of weight one, and symplectically self dual toward Q ¢(=1). The assumption that the j invariant
is nonconstant is used only to insure that RIN*Q ¢ 18 geometrically irreducible on U. If k has

characteristic p = 5, then Rlﬂ*@ ¢ 1s everywhere tamely ramified: this is the only way the
hypothesis p = 5 is used. Denoting by j : U — C the inclusion, we form the sheaf

F = j*Rlﬂ*Q !
on C. We then fix an effective divisor D on C of large degree. We form the quadratic twists E¢/K

of E/K by variable f in L(D) which have deg(D) distinct zeroes (over k), none of which lies in D or
in Sing(¥)N(C-D). The L—functions of these quadratic twists are the local L—functions of a lisse
Q/—sheaf

G = Twisth,C’D(T)

at the k—points of a smooth, geometrically connected k—scheme
X := Fct(C, D, d, Sing(¥)N(C-D))
of dimensiond + 1 — g.

The original ellliptic curve E/K occcurs only through the geometrically irreducible middle
extension sheaf ¥ on C. Once we have ¥, we can forget where it came from! Our fundamental
result in the elliptic case is the determination of the geometric and arithmetic monodromy groups
attached to the lisse Q—sheaf

G = Twisth,C’D(T)
on the smooth, geometrically connected k—scheme

X := Fet(C, D, d, Sing(¥)N(C-D))
of dimension deg(D) + 1 — g.

In fact, we can study the L—functions of twists, by nontrivial tame characters y of any
order, of an arbitrary geometrically irreducible middle extension sheaf 7 on C. Again in this
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general set up, the L—functions of such twists are the local L—functions of a lisse Q ¢—sheaf

G = TWiSt)(,C,D(T)
at the k—points of the same smooth, geometrically connected k—scheme

X := Fct(C, D, d, Sing(#)N(C-D))
of dimension deg(D) + 1 — g that occurred above for quadratic twists of elliptic curves. Again the
question is to determine the arithmetic and geometric monodromy groups attached to G.

The rank N of G := TwistX,C,D(?) grows with deg(D), indeed we have an a priori

inequality

N :=rankG > (2g — 2 + deg(D))rank(¥).
One case of our main technical result (Theorems 5.5.1 and 5.6.1) is this. Suppose that F is
everywhere tamely ramified, and that either the order of y is not 4 or 6, or that the rank of ¥ is at

most 2. Then for any effective divisor D of large degree, the geometric monodromy group G geom

for G .= TWiSt)(,C,D(T) is one of the following subgroups of GL(N):

O(N)

SO(N): possible only if N is odd

Sp(N): possible only if N is even

a group containing SL(N).
We can be more precise about which cases arise for which input data (7, x). Unless y has order
two and F is self—dual on Cek, Ggeom contains SL(N). If Fis orthogonally self dual on Cek, and

x has order two, then G is symplectically self dual on Xek, and Ggeom for G is Sp(N). If Fis

symplectically self dual on Cek, and y has order two, then G us orthogonally self dual on Xek, and

Ggeom for G is either SO(N), possible only if N is even, or it is O(N).

We can drop the hypothesis that ¥ be everywhere tame if we are in large characteristic (the
exact condition is p = rank(F) + 2), and if we require in addition that the effective divisor D of
large degree contain no point where ¥ is wildly ramified. [This second condition is automatic for
D's which are disjoint from the ramification of ¥.1

Fix, then, input data (7, y, D) as above. As deg(D) grows, the sheaves G :=
TwistX’C,D(?) have larger and larger classical groups as their geometric monodromy groups. The

general large N limit results of Katz—Sarnak [Ka—Sar, RMFEM  then give information about the
statistical behaviour of the zeroes of the L—functions of the corresponding twists. This information
always concerns a double limit limdeg(D) oo hmdeg(E/k) _y oo FoOr each D we must consider,
for larger and larger finite extensions E of k, the L—functions of all twists T@LX(D as f runs over
the E—valued points X(E) of the parameter space X = Fct(C, D, d, Sing(¥)N(C-D)).

We also work out some refinements of these results, where we change the inner limit. The
first refinement is twist only by "primes" in X(E), i.e., by functions f in X(E) whose divisor of
zeroes div(y(f) is a single closed point of CeyE. The terminology "prime" arises as follows. In the

case when C is P! and D is deo, an element f in X(E) is a polynomial f(t) in Elt] of degree d which
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has d distinct roots in E and which is invertible at the finite singularities of #. Such an element f is
"prime" if and only if f(t) is an irreducible polynomial in Elt]. More generally, we might twist only
by f's in X(E) whose divisor of zeroes has any pre—imposed factorization pattern. For instance, we
might twist only by f's in X(E) which "split completely" over E, i.e., by f's in X(E) which have d
distinct zeroes in C(E).

A second refinement is to start not over a finite field, but over a ring of finite type over Z,
for instance over Z[1/Nf1. Then just as in the case of the Legendre family discussed above, we can
look at twists by points in X([Fp) as p — o=. We get the same answers as we got by fixing p and

looking at twists by points in X([Fpn) as n — co. We can combine the two refinements. We can
twist only by primes in XV([Fp) as p — oo, or we can twist only by elements of Xv([Fp) which

"split completely" over [F... Under mild hypotheses, the double limit results remain the same.

p
Still working over Z[1/N], take a sequence of divisors D,, whose degrees d,, are strictly
increasing. We get thus a sequence of parameter spaces
X, = Fct(C, D, d, Sing(F)"(C-D))
over Z[1/N1. We can recover the eigenvalue location measure (whichever of v(€,j) or v(j) is
appropriate to the situation being considered) as the following (weak *) double limit: the large v
limit of the large p limit of the distribution of the j'th normalized zero of the L—functions attached to

).
p
If we fix the prime p, and let v — oo, then just as in the Legendre case discussed above, it is

variable points in X, (F

natural to ask if we can recover the eigenvalue location measure, whichever of v(g,j) or v(j) is
appropriate, as the following (weak *) single limit: the large v limit of the distribution of the j'th

).
p
Let us now backtrack, and describe the logical organization of this book. It falls naturally

normalized zero of the L—functions attached to variable points in X, (F

into four parts:

Part I (Chapters 1,2,3,4): background material, used in Part II.

Part II (Chapter 5) twisting, done over an algebraically closed field

Part III (Chapters 6,7,8): twisting, done over a finite field

Part IV (Chapters 9, 10): twisting, done over schemes of finite type over Z.

The first chapter is devoted to results from representation theory. It depends essentially
upon a beautiful result of Zarhin about recognizing when an irreducible Lie subalgebra of End(V)
is either Lie(SL(V)) or Lie(SO(V)) or, if dim(V) is even, Lie(Sp(V)). It also uses classical results
of Blichfeld and Mitchell about finite primitive irreducible subgroups of GL(n, C), and modern
extensions of these results by Huffman—Wales and Zalesskii. The result of Zalesskii is explained in
some detail in an appendix to the first chapter, along with some speculations.

In the second chapter, we use the general theory of Lefschetz pencils over an algebraically
closed field to develop some basic facts about the geometry of curves, which were surely well
known in the nineteenth century.

The third chapter is concerned with induction of group representations, and with giving
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algebro—geometric criteria for induced representations to have various properties (e.g., to be
autodual, to be irreducible).

The fourth chapter is a brief review of "middle convolution" and its effect on local
monodromy as developed in [Ka—RLS]. This material depends in an essential way on Laumon's
work on Fourier Transform.

After all these preliminaries, we turn to our subject proper in Chapter 5, which is the
technical core of the book. We work over an algebraically closed field, and compute monodromy
groups of twist sheaves, using as essential ingredients results of all the previous chapters.

In Chapter 6, we explain how to formulate over a general base scheme the set up we
considered in Chapter 5.

In Chapter 7, we work over a finite field, and extract the diophantine consequences of the
monodromy results of Chapter 5. The essential ingredient here is the work of Deligne in [De—Weil
IT1, both his purity theorem and his equidistribution theorem.

In Chapter 8, we give applications to average analytic rank of twists of a given elliptic
curve. This leads us into a long discussion of whether the monodromy group in question is O or
SO, and leads us to some very nice examples.

In Chapter 9, we begin to work systematically over a base which is a scheme of finite type
over Z, rather than "just" a finite field. We also introduce the notion of twisting by a "prime". We
prove an equidistribution theorem for primes in divisor classes, which was presumably well
known in the late 1920's and 1930's to people like Artin, Hasse and Schmidt, but for which we do
not know a reference. We then analyze when twisting only by primes changes nothing as far as
equidistribution properties. This leads us to a simple but useful case of Goursat's Lemma.

In Chapter 10, we give "horizontal" versions (i.e., over [Fp as p — oo) of all the results we

found earlier over a finite field k (where we worked over larger and larger extension fields of the
given k)

I respectfully dedicate this book to the memory of my teacher Bernard Dwork, to whom I
owe so very much.



Chapter 1: "Abstract" theorems of big monodromy—24

1.0 Two generalizations of the notion of pseudoreflection

(1.0.1) It will be convenient to introduce two generalizations of the notion of pseudoreflection.
Suppose we are given a finite—dimensional vector space V over a field K. We write GL(V) for
Autg (V), so long as there is no ambiguity about the field K. Recall that an element A in GL(V) is

called a pseudoreflection if its space of fixed points, Ker(A—1), has codimension one in V, or
equivalently if the quotient spaceV/Ker(A-1) has dimension one.

(1.0.2) Given an integer r = 0, and an element A in GL(V), we say that A has drop r if Ker(A-1)
has codimension r in V. In other words,

(1.0.2.1) drop of A :=dim(V/Ker(A-1)).

(1.0.3) Thus the only element of drop zero is the identity, and the elements of drop one are
precisely the pseudoreflections. For A not the identity, we think of the drop of A as a measure of
how nearly A resembles a pseudoreflection: the lower its drop, the more A resembles a
pseudoreflection.

(1.0.4) A further property that any pseudoreflection A automatically satisfies is that it acts as a
scalar on the quotient space V/Ker(A-1), simply because that space is one—dimensional.

(1.0.5) We say that an element A in GL(V) is quadratic of drop r if it has drop r and if in addition
either r = 0 or the action of A on the quotient space V/Ker(A—1) is scalar, in which case which we
call this scalar the scale of A. The terminology "quadratic" goes back to Thompson [Th—QP], and
refers to the fact that, if dim(V) >r > 1, the minimal polynomial of an A which is quadratic of drop
r is a quadratic polynomial, namely (T—1)(T—scale(A)). Conversely, given A in GL(V) whose
minimal polynomial is (T—1)(T-A) for some A in KX, A is a quadratic of drop r = dim(V/Ker(A—
1)) and scale A.

(1.0.6) Given a group I (we have in mind an inertia group), a K—linear representation p of [on V,

and an integer r = 0, we say that p has drop r if, denoting by VIV the subspace of I-invariant
vectors in V, dim(V/VI) =r1. We say that p is quadratic of drop r if either r=0 or if the action of I

on V/Vlis scalar, in which case we call the linear character by which I acts on V/V] the scale of p-
(1.0.7) If the group I is cyclic, with generator 7y, then the drop, say r, of the representation p is
equal to the drop of the element p(y), and the representation p is quadratic of drop r if and only if
the element p(y) is quadratic of drop r.

(1.0.8) What happens for a more general group? Obviously, if p has drop r (resp. is quadratic of
drop r), then for every element y in I, p(y) has drop < r (resp. p(y) is quadratic of drop <r).
However, the converse is false in general: one cannot infer the drop of a representation just from
looking at the drops of elements. The simplest example is the subgroup of GL(2, Z) consisting of
all 2x2 integer matrices ((x1,n), (0,1)) with n in Z, in its standard representation std or the direct
sum of std and a trivial representation of any size. Each element acts as a pseudoreflection or as the
identity (i.e., has drop < 1), but the representation has drop two. If we take the direct sum of k
copies of such a representation, each element has drop <k, but the representation has drop 2k.
Another simple example is the diagonal subgroup I' of SL(2n+1, Z) in its standard representation
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std or in the direct sum of std and a trivial representation of any size. Every element in I" acts has
drop < 2n, but the representation has drop 2n+1.

1.1 Basic Lemmas on elements of low drop

Drop Lemma 1.1.1 Let K be a field, r = 0 an integer, M/K a vector space of dimension m > 4r2,
and C in GL(M) an element of drop r. Suppose there exists a tensor factorization of M as V&g W
with dim(V) = a, dim(W) = b, a <b, and elements A in GL(V), B in GL(W) such that C = A®B.
Then A is scalar. If r=0, B is also scalar. If r > 1, then a divides r, and (hence) a <r.
proof It suffices to prove the assertion after an arbitrary extension of the ground field, so we may
reduce to the case when K is algebraically closed. Write C in Jordan form as a direct sum of scalars
times unipotent Jordan blocks, say
C =&, (4;®Unip(d;) on M;), dim(M;) denoted d;.

In this direct sum decomposition, compute Ker(C-1):

Ker(C-1 on M) = ®; (Ker(4;®Unip(d;) — 1) on M;).
The kernel of A®@Unip(d) — 1 is zero for A # 1, and is one—dimensional for A=1. So we find
[ i =1 d; -DI + X i %1 d;] = codim Ker(C-1) =r.

Looking only at the second bracketed term, we see that the total number (counting
multiplicity) of eigenvalues of C which are not 1 is at most r.
So any list of at least r+1 eigenvalues of C contains the number 1, and any list of at least

2r+1 eigenvalues of C contains 1 as its majority listing. Fix an eigenvalue a of A. As C is A®B,

af; is an eigenvalue of C for each eigenvalue S; of B. Notice that b > 2r+1 [because ab =m > 4r2,

and b > a, so if b < 2r then ab < b2 < 4r2]. Thus among the {aB;}i=1 o b- the most prevalent value
is 1. This means that « is the most prevalent of the 1/8;. So every eigenvalue of A is @. Replacing

A by (1/@)A, and B by aB, we reduce to the case that A is unipotent.
Once A is unipotent, we next show it is semisimple. If not, then A has as a direct summand
a Jordan block Unip(t) of size t > 2. Write the Jordan normal form of B:
B = (‘Bl ﬁi®Unip(ni),
with integers n; > 1.
Then A®B has a direct summand
®; B;®Unip()®Unip(n;).
Now in a single summand B;eUnip(t)®Unip(n;), what is the codimension of the space of
invariants? If 8; # 1, the invariants vanish, so the codimension is tn;.
If B;= 1, we claim the invariants in Unip(t)®Unip(n;) are of dimension Min(t, n;).
Lemma 1.1.2 The invariants in Unip(d)®Unip(e) have dimesion Min(d, ).
proof By symmetry, we may assume d > e. The dual of Unip(d), being unipotent and
indecomposable of dimension d, is again isomorphic to Unip(d), so the invariants in in
Unip(d)®Unip(e) are the equivariant maps from Unip(d) to Unip(e). Think of Unip(d) as
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KITI/(T-1)d with the action of T. The equivariant maps become the K[Tl-homomorphisms from
K[T]/(T—l)d to KITI/(T-1)€. As d > e, we have

HomK[T]_mOd(K[T]/(T—l)d, KITI/(T-1)®)

= Homy [T (T—1)d—mod KITU(T-1)4, KITI(T-1)°),
and by "evaluation at 1" this last Hom group is just

=KITI(T-1)°,
which has dimension e := Min(d, e). QED for the lemma
1.1.3 Remark on Lemma 1.1.2 If our ground field K has characteristic zero, then we know the
Jordan decomposition of Unip(d)®Unip(e). If d > e, we have
(1.1.3.1) Unip(d)®Unip(e) = ®j=1 t0e UNIP(d + € — 2).

Since a single Jordan block has a one—dimensional space of invariants, the truth of Lemma 1.1.2 in
characteristic zero is immediate from this formula.

The above formula 1.1.3.1 for the Jordan decomposition in characteristic zero of
Unip(d)®Unip(e), d = e, results from the well known formula for the tensor product of two
symmetric powers Symm&(std) and Symmb(std), a = b, of the standard representation std of the
algebraic group SL(2) over any field K of characteristic zero, according to which
(1.1.3.2) Symm&(std)®SymmP(std) = ®_010h Symm&+b=2j(std).

One takes a :=d-1, b :=e—1, and uses the fact that for each integer n = 0, the standard upper
unipotent element {(1,1), (0,1)} in SL(2, Z) acts as Unip(n+1) in Symm"(std).

(1.1.4) We now return to the proof of the Drop Lemma 1.1.1. Thanks to the above Lemma 1.1.2,
the codimension of the invariants, already in the direct summand
®; B;®Unip()®Unip(n;)

of A®B, is
2 with =1t + 2 with B %1 [tn; — Min(t, ny)]
> [tn; — Min(t, n;)]
>, [tn; — nyl
=2 (t=-Dn; 2 Y nj =b22r+1 >,
contradiction.

Thus A is scalar, soitis 1 o the axa identity. Then C = A®B is the direct sum of a copies of

B. So C-1 is the direct sum of a copies of B—1, and hence
r = codim of Ker(C-1) = axcodim of Ker(B-1).
If r=0, we infer that B = T},, the bxb identity. If r > 1, we infer that a | r, as required. QED for the

drop lemma
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(1.1.5) We will also require the Lie algebra version of the drop lemma above.
Drop Lemma, Lie algebra version 1.1.6 Let K be a field of characteristic zero, r > 0 an integer,

M/K a vector space of dimension m > 4r2, C in End(M) and A in K such that C — A has rank r as
endomorphism of M (i.e. Ker(C—A) has codimension r). Suppose there exists a tensor factorization
of M as V®W with dim(V) = a, dim(W) =b, a<b, and elements A in End(V), B in End(W)
such that C = A®1 + 1®B. Then A is scalar. If r=0, B is also scalar. If r > 1, then a divides r, and
(hence) a<r.
proof Extend scalars from K to the fraction field K((T)) of the power series ring KI[T1]in one
variable T. Then exp(T(C-A)) has drop r, and exp(TC) = exp(TA)®exp(TB). Write exp(T(C-1))
as exp(—AT)exp(CT). Thus we have

exp(T(C-1)) = exp(—AT)exp(TA)®exp(TB) = exp(TA)®exp(T(B-A)).
Now apply the drop lemma to conclude that exp(TA) is scalar, that if r = 0, then also exp(T(B-2Q))
is scalar, and that if r > 1, then a | r. Differentiating exp(TA) and setting T=0, we find that A is
scalar. If r=0, we find similarly that B — A, and hence B, is scalar. QED

1.2 Tensor products and tameness at oo

Lemma 1.2.1 Fix an algebraically closed field k and a prime number ¢ which is invertible in k.
Suppose given an irreducible lisse Q ¢—sheaf ¥ on a dense open set U A 1, which is tame at oo,
Suppose that there exist lisse Q ¢—sheaves G and H on U such that ¥ = G®H. Then there exists a

(unique) lisse, rank one Q ¢—sheaf £ on Al such that Q@L‘l is tame at oo,
proof If char(k) = 0, take £ = the constant sheaf Q ¢» Which is the unique lisse rank one Q ¢—sheaf

LonAlL
If char(k) = p > 0, denote by P(ec) < I(e0) the wild inertia group. Denote by F(e0), G(o0),
TH(0) the I(e0)—representations attached to these sheaves. Because F(co) is trivial on P(0),

G(0)®H(o) is trivial on P(e0), and hence G(e) and H(eo) are each scalar representations, by

1

inverse Q fx—valued characters y and Y~ " of P(ec). The character y is continuous on P(e0) and

invariant under I(sc)—conjugation, simply because y is the restriction to P(s) of the Q ¢—Vvalued

continuous central function on I(eo)
v+ (1/rank(G)) Trace(ylG(e)).
If we pick a topological generator y3Me of the tame quotient I(co)taMe ~ [T £ ot p Z,(1),

we get an isomorphism of I(eo) with the semi—direct product P(eo) y <y3MEs = P(o0) y (c0)taMme,
Since y on P(e0) is invariant by I(ec)—conjugation, we can extend y to a continuous character y of

I(e0) by decreeing that ¥(y'3™€) = | By continuity, y on P(co) has finite p—power order (cf. [Ka—
Sar, RMFEM, 9.0.7]) and hence ¥ has finite p—power order on I(e). [So in fact ¥ is the unique
extension of y to a character of finite p—power order on I(0), since the ratio of any two such
extensions is a tame character of finite p—power order of I(e0).] By the theory of the "canonical
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extension" [Ka-LG, 1.4.21], ¥ extends uniquely to a lisse Q ¢—sheaf L of rank one on A 1 By
construction, Q@L“l is tame at oo. To see that £ is the unique lisse sheaf on Al with this
property, notice that the P(eo)—representation attached to any such £ must be the character y.

Hence the ratio of any two such £ is lisse on Al and tame at oo, 50 trivial. QED

(1.2.2) Here is a variant of the above lemma, where we work on a curve of higher genus.

Lemma 1.2.3 Fix an algebraically closed field k and a prime number ¢ which is invertible in k. Let
C/k be a proper smooth connected curve. Fix a point e in C(k). Fix integersr = 1 and m = 0.
Suppose given an irreducible lisse Q ¢—sheaf F on a dense open set U  C—{co}, which is tame at

oo, Suppose that there exist lisse Q —sheaves G and H on U such that ¥ = GRH. Then there exists
a lisse, rank one @(—sheaf L on C—{=} such that g@L‘l is tame at oo, If char(k) p =>0, we

may choose L to have finite p—power order.

proof Exactly as in the previous argument, we take £ the constant sheaf if we are in characteristic
zero, otherwise we extend y uniquely to a continuous character y of I(eo) of finite p—power order.
This time, we appeal to Harbater ([Harb—Mod], cf. also [Ka-LG, 2.1.4]) to show the existence of
a lisse, rank one £ on C—{e} extending } and still having the same finite p—power order. QED
Remark 1.2.4 One essential difference between Lemmas 1.2.1 and 1.2.3 is that in the general case
1.2.3, the £ is no longer unique, even if we insist that £ have finite p—power order, as now the
ratio of any two such £ is a p—power order character of 1(C). So if C has non—zero p-rank h,

then for every integer r such that the order of y divides p', there are prh possible L's of order

dividing p'. Only if the p—rank of C is zero do we get unicity of an £ of p—power order. And if we
drop the requirement that £ have finite p—power order, then £ is indeterminate up to a character of

ﬂl(C—{oo})tame. Already taking only characters with values in 1+/Z, gives a (Z ()Zg of

indeterminacy.
1.3 Tensor indecomposability of sheaves whose local monodromies have low drop

Theorem 1.3.1 Fix an algebraically closed field k and a prime number ¢ which is invertible in k.
Suppose given an integer r > 1 and an irreducible lisse Q ¢—sheaf ¥ on a dense open set U Al,

which is tame at oo. Suppose that at each finite singularity s of 7, I(s) acts with drop <r. Suppose
that there exist lisse Q ¢—sheaves G and H on U with rank(G) < rank(H) such that ¥ = GOH. If

rank(F) > 4r2, then rank(G) = 1.

proof By Lemma 1.2.1, there exists a lisse rank one Q ¢—sheaf on Al such that g@L‘l is tame at

oo, So replacing G and ‘H by g@l}‘l and H® L respectively, we may assume in addition that G is
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tame at oo,
Fix a geometric point u in U, and write 7r{(U) for 7{(U, u). View ¥, G, H as continuous

Q—representations of 711 (U), denoted A Ag, Aqrespectively.

For any k—valued pointsin S := Al - U, and any element y of 777 (U) which lies in an
inertia group I(s),.we know that A¢(y) has drop <r, and we have the tensor decomposition
A ) = Ag(V)®Ag(y).
Applying the Drop Lemma 1.1.1, we see that Ag is scalar on I(s), say with character p¢. By the
theory of the "canonical extension" [Ka—LG, 1.5.6] applied with the points o and O replaced by the

points s and oo, there exists a lisse, rank one Q ¢—sheaf L on Al - {s} which is tame at e and

which at s gives the character pg of I(s). So replacing G by G&(®,;, ¢ LS)_I, and H by H®(®

s L), we may further reduce to the case where G is not only tame at o but trivial on every finite

s in

inertia group I(s). Therefore G is trivial (Al is tamely simply connected!). Then ¥ is rank(G)
copies of H. As F is irreducible, rank(G) must be one. QED

(1.3.2) We now give a slight extension of the above result to the case of projective representations.
Theorem 1.3.3 Fix an algebraically closed field k and a prime number ¢ which is invertible in k.
Suppose given an integer r > 1 and an irreducible lisse Q ¢—sheaf ¥ on a dense open set U c A 1 ,
which is tame at . Suppose that at each finite singularity s of F, I(s) acts with drop <r. Fix a
geometric point u in U, and write 71(U) for 71(U, u). View ¥ as a continuous Q y—representations
of 71(U), denoted A¢= Suppose that Ag-as a projective representation of 771 (U) has a tensor

factorization A®B with A and B continuous projective Q ¢—representations of 771 (U), with
dim(A) < dim(B). If rank(F) > 4r2, then dim(A) =1.

proof Because U is an open smooth connected curve over an algebraically closed field, H2(7T1(U),

Z/d7) =H2(U, Z7/d7) = 0 for every integer d = 1. Hence there is no obstruction to lifting a
projective representation p: 1(U) — PGL(d, Q p) to a linear representation p: 71 (U) — SL(d, Q 0
Lift A and B to linear representations to SL, and interpret the lifts as lisse sheaves G and H on U.
Then ¥ and G®H are projectively equivalent linear representations. Therefore for some lisse rank
one sheaf £ on U, we have ¥ = L®G®H. Now apply the previous theorem 1.3.1 to conclude that
L®@G, and hence G, has rank one. QED

Cautionary Remark 1.3.4 Theorem 1.3.1 and, a fortiori, Theorem 1.3.3 are both false if we drop the
hypothesis that # be tame at co. Here are some examples to show this.

(1.3.4.1) Choose an integer r = 1 and an integer g > 2r. Pick a prime number p = 2r+4, and an
algebraically closed field k of characteristic p. We will work on the affine line, with parameter t,
over the field k. Fix a prime number ¢ # p. We will construct Lie irreducible lisse Q ,—sheaves G
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and H of ranks r and 2g respectively on a dense open set U of A whose tensor product ¥ :=

G®®H is Lie irreducible of rank 2gr > 4r2, such that all the finite local monodromy groups I(t), t in

Al - U, act on ¥ with drop <r. We first describe the sheaf G. Fix a nontrivial additive character
v, > @~

Denote by Ll/, the corresponding Artin—Schreier sheaf on A I Take for G the Fourier transform

FT¢(£¢(tr+1))' Thus G is lisse of rank r on Al, and its G is given [Ka—MG, Theorem 19,

applied with n = r+11 by
SL(r), if r is odd,
Sp(r), if r is even.
We next describe H. Choose a monic polynomial f(x) in klx] of degree 2g with 2g distinct roots,

geom

and consider the one—parameter family C; of hyperelliptic curves of genus g given by
Cy 1 y2 = f(x)(x-).
Over the open set U of Al where f(t) is invertible, the (complete nonsingular models of the) C; fit

together to form a proper smooth curve
n:C—U,

and we take for F the lisse Qf—sheaf Rlﬂ*(j( on U. By [Ka—Sar, RMFEM, 10.1.12-151, H is
everywhere tame, all its finite monodromies have drop < 1, and its G
lemma [Ka—ESDE, 1.8.2], Ggeom

SL(r) x Sp(2g), if r is odd,

Sp(r)x Sp(2g), if r is even.
Therefore Ggeom for G®H is the group

SL(r) X Sp(2g) if r is odd,

(Sp(r)x Sp(2g))/+(1,1), if r is even,

in its Lie—irreducible representation (stdr)®(std2g). Because G is lisse of rank r on all of Al, and

geom is Sp(2g). By Goursat's

for G®H is the product group

each finite local monodromy of /H has drop < 1, each finite local monodromy of G&H has drop <
I.

(1.3.4.2) We can make even more egregious examples, by taking both G and H to be lisse on Al
Choose integers r > 1 and m > 4r. Pick a prime p = 2m+4. With ¢ and ¢ chosen as in 1.3.4.1, take
G to be the Fourier transform FTw(Lw(trH)), and take HH to be the Fourier transform

FT'J’(L'J’(th))' By [Ka-MG, Theorem 19, applied with n = r+1 and n = m+1 respectivelyl, G

[resp. H1is lisse on Al of rank r [resp. rank m], and its G is the group SL(r) if r is odd,

geom
Sp(r) if r is even [resp. the group SL(m) if m is odd, Sp(m) if m is evenl. Again using Goursat's

2

lemma as in 1.3.4.1 above, we see that F := G&H is Lie—irreducible on Al, of rank rm > 4r<, and

all the finite local monodromies of ¥ have drop 0 <r.
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1.4 Monodromy groups in the Lie—irreducible case

Theorem 1.4.1 Fix an algebraically closed field k and a prime number ¢ which is invertible in k. Let
C/k be a proper smooth connected curve, s a point in C(k). Fix an integer r with r = 1. Suppose
given a Lie—irreducible lisse Q ¢—sheaf ¥ on a dense open set U ¢ C—{s}, corresponding to a

continuous Q g—representaton Ag-of 71(U, u) on V := #,,. Suppose that the action of I(s) on ¥ is

quadratic of drop r, and its scale is a linear character y of I(s), possibly trivial, which is not of order
2. Then we have:
1) If y is trivial, then G

Lie(Ggeo
Moreover, n2=0in End(V).
2) If y is nontrivial, then ((G

geom contains a unipotent element A which is a quadratic of drop r, and

m)der contains a nilpotent element n which, as endomorphism of V, has rank r.

m)0)der contains a semisimple element A such that for some scalar

ge0
A in Q,%, AA is quadratic of drop r, and Lie(Ggeom
V with precisely two distinct eigenvalues, A1 and A5, such that f—A; as endomorphism of V has

)4eT contains a semisimple endomorphism f of

rank r.
proof As Lie(Ggeom) acts irreducibly on V, it is reductive, and we have a direct sum

decomposition

Lie(Ggeom) =Lie(G )der @ (scalars)NLie(G

geom geom)’

with Lie(G T a semisimple Lie subalgebra of End(V) which acts irreducibly on V. We can

)de
geom
also describe Lie(ngeom)der as the traceless matrices, i.e., as the intersection of Lie(Ggeom) with
Lie(SL(V)).

We first prove 1). If y is trivial, then I(s) acts by unipotent elements. As unipotent elements
in GL(V) have pro—/ order, the action of the wild inertia group P(s) is trivial, and the action of I(s)

factors through its tame quotient I(s)'a™€, So any topological generator of I(s)!aM€ acts as an
element, say A, which is unipotent and quadratic of drop r, and this A is the required element of of

Ggeom' If we put n := Log(A), we get a nilpotent element n of Lie(Ggeom) which, as
endomorphism of V, has rank r, and satisfies n2=0.Asnis nilpotent, it has trace zero, so lies in
Lie(G geom)®°".

We next prove 2). If y is nontrivial, then we can diagonalize the action of I(s). As y is not
of order 2, some vy in I(s) acts as the diagonal matrix
B :=Diag(e, a, ....,a, 1,1, 1, ..., 1),
with some @ # £1 repeated r times, and 1 repeated rank(¥) — r times. Denote by K the subgoup of
geom)’ and
)4eT the intersection of Lie(Ggeom) with Lie(SL(V)). Thus K

GL(V) generated by B. Then K, acting by conjugation on End(V), normalizes Lie(G

hence it normalizes Lle(Ggeom

normalizes Lie(G , a semisimple Lie subalgebra of End(V) which acts irreducibly on V.

)der
geom
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We now apply Gabber's "torus trick" [Ka—ESDE, 1.01, whose statement we recall:
Theorem 1.4.2 (Gabber). Let G be a semisimple Lie—subalgebra of End(V) which acts irreducibly on
V. Suppose that a diagonal subgroup K of GL(V) normalizes G. Let x1, ... , ¥ be the n characters of
K defined by the diagonal matrix coefficients; i.e., k = Diag(y1(k), ... ,x1(k)) for k in K. Consider the
"torus" 7 in End(V) consisting of those diagonal matrices Diag(Xj.,...,Xp,) whose entries satisfy the
conditions

2X;=0

X = X = Xx — Xy whenever Xi/)(j = Yk/Xm on K.
Then 7 lies in G.

Applying Gabber's "torus trick" to our situation, and remembering that @ # +1, we find that

Lie(G,.....)der

contains the torus of all diagonal matrices of trace zero of the form
Diag(X, X, ... X, Y,Y, Y, ... Y),
X repeated r times and Y repeated rank(¥) — r times. Thus if we define
d :=rank(¥) —r,
contains the element
Diag(d, d, ..., d, -1, -1, -, ..., —1),
)O)der

geom

then Lie(Ggeom)der

which is the required "f", and the group ((G contains the one dimensional torus

geom
Diag(td, ¢d, ..., ¢, T, T, T, e,

A general element (e.g., take t not a root of unity of order dividing r+d) of this torus is the required

A. QED for 1.4.1.

Theorem 1.4.3 Fix an algebraically closed field k and a prime number ¢ which is invertible in k.
Suppose given an integer r = 1 and a Lie—irreducible lisse Q f—sheaf ¥ on a dense open set U
Al, which is tame at c. Fix a geometric point u in U, and view ¥ as a linear representation Agof
n1(U) :=71(U, u) on V := ;. Suppose that at each finite singularity s of ¥, I(s) acts with drop <
r. Suppose that for some t in P! - U, the action of I(t) on ¥ is quadratic of drop R with 1 <R <,
and its scale is a linear character y of I(t), possibly trivial, which is not of order 2. Then we have
1) If rank(F) > 4r2, Lie(Ggeom)der is a simple Lie algebra.

2) If rank(F) > Max(4r2, 72R?), then Lie(G
dim(V) is even, Lie(Sp(V)).

3) If rank(F) > Max(4r2, 72R2), and if the scale y of the action of I(t) is a nontrivial character, not
of order 2, then Lie(Ggeom)der is Lie(SL(V)), i.e., G contains SL(V).

4) If rank(F) > Max(4r2, 72R2), then either G
or, if dim(V) is even, Sp(V).

geom)der 1s either Lie(SO(V)) or Lie(SL(V)) or, if

geom

contains SL(V), or G 1s SO(V) or O(V)

geom geom
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5) If R = 1, and rank(¥) > 4r2, then either Ggeom contains SL(V), or dim(V) is even and Ggeom

is Sp(V). If in addition the scale y of the action of I(t) is a nontrivial character, not of order 2, then

Ggeom contains SL(V).

6) Suppose that at some point t in pl - U, some element of I(t) acts on ¥ as a reflection. If rank(%)
> 4r2, then either G contains SL(V), or Ggeom is O(V).

geom)der by G. Thus G is a semisimple Lie

subalgebra of End(V) which acts irreducibly on V. We argue by contradiction. Suppose G is not
simple. Then G is a product of some number n > 2 of simple Lie algebras G;, i=1 to n, and the

geom

proof We first prove 1). Let us denote Lie(G

faithful irreducible representation V of G is the tensor product of faithful irreducible representations
V; of the simple factors G;. Take any partition of the indexing set {1, ..., n} into two disjoint

nonempty subsets A and B. Let us denote by G 4 (respectively Gg) the product of the simple
factors G; with i in A, (respectively i in 8) and by V 4 (respectively V g) the tensor product of the
V; with i in A (respectively i in B). Then G is G AXGg, and V is V &V g. Thus G 4
(respectively Gg) is a Lie subalgebra of End(V g) (resp. of End(V g)). At the expense of
interchanging A and B, we may assume that dim(V g) < dim(Vg).

By parts 1) and 2) of the above result 1.4.1, we know that G contains an element f such that
for some scalar A, f=A has rank R, with 1 <R <r. Let us write f according to the decomposition of
G as G gqXGg, say f = (f g, fg). Viewing f, f # and fg as endomorphisms of V, Vg and Vg

respectively, we have
f=f4®1 + 1®fg.

Applying the Lie algebra form 1.1.6 of the drop lemma, we conclude that f 4 is scalar, and that
dim(V #) IR.

In particular, we have dim(V #) <R <r. Since dim(V) > 4r2

, we have dim(Vg) > 4r >
dim(V ). Therefore, in any grouping of the tensor factors V; of V into two clumps, V 4®V g =
V, exactly one term V 4 has (small) dimension dividing R, and on this term f & is scalar. The other
term V g has (large) dimension > 4r. In particular, exactly one of the factors has dimension

dividing R, and one does not.
We now claim there is one and only one i, say i), for which V; has dimension not dividing

R.
We first show that there is at least one index i( such that V; 0 has dimension not dividing R.
For if not, then the factorization Vi®(®j¢ivj) shows that fj is scalar on Vj, for every i. Hence f is

scalar, in which case for any scalar A, f—A has rank either O or dim(V), never R. Contradiction.
Thus there exists an index i¢y with of has dimension not dividing R. Take the factorization
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of V as Vi tensor ®j¢i V. It must be the second factor ®j¢i V: whose dimension ®j

0 0J 0 J iio

divides R, and so all the Vj with j # i) have dimension dividing R.

The group 71 (U) acts by conjugation on G = Lie(G

dim(V;)

geom)der, compatibly with its action on

V. Think of each V; as a representation of G. The collection of representations {V;}; is intrinsically
attached to the data (G, V), and from V; we recover G; as the image of G in End(V;). Among the

{V;}; we have distinguished a particular V; 0 the unique one whose dimension does not divide R.
Therefore 71 (U) fixes the isomorphism class of V; o Thus 71 (U) also fixes the isomorphism class

of the complementary factor ®j¢i OVj. Thus we get projective representations A and 8 of 71(U) on

®j¢i OVj and on V; 0 respectively, and the tensor product AXPB of these projective representations
is the projective representation of 711(U) on V attached to the given linear representation A In this
tensor factorization, A has small dimension dividing R, and $ has large dimension = 4r. Because

rank(%) > 4r2, and ¥ is tame at o, we may apply the above Theorem 1.3.3 to infer that dim(A) is

one. This means that ®j¢i OVj , and hence each Vj with i # i(y, has dimension one. But Vj isa

faithful representation of a simple Lie algebra, so it must have dimension at least two. This
contradiction shows that G is in fact simple.

To prove 2) once we know that G is simple, we have only to invoke the following striking
result of Zarhin.
Theorem 1.4.4 [Zar—SLA, Theorem. 6, its proof and proof of Lemma 41 Over an algebraically
closed field k of characteristic zero, let V be a faithful irreducible representation of a simple Lie
algebra G. Let R = 1 be an integer. View G as a Lie subalgebra of End(V), and suppose that there
exists a scalar A in k and an element f in G such that, viewing f as an endomorphism of V, we have
rank(f-A) = R. If dim(V) > 72R2, then G is the Lie algebra of either SO(V) or SL(V) or, if dim(V)
is even, of Sp(V).

We now prove 3). If the scale y of the action of I(t) is not the trivial character, or a character
of order 2, the proof of Theorem 1.4.1 shows that Lie(Ggeom)der
Diag(d, d, ..., d, -R, =R, —-R, ..., -R),
with d repeated R times, —R repeated d times, and d := dim(V) — R. The eigenvalues of this
element are not stable under x — —x (because dim(V) = d+R > 4r2 > 4R? > 4R, so d > R). But the

eigenvalues of any element of either Lie(SO(V)) or, if dim(V) is even, Lie(Sp(V)) acting on V are
stable under x — —x.

contains the element

It remains to prove 4). By 3), (G gear)?)9ET is either SL(V) or SO(V), or, if dim(V) is

geom
even, Sp(V). If ((Ggeom)O)der is SL(V), there is nothing to prove.

If ((Gz(:,’eom)o)der is SO(V), then G lies in the normalizer of SO(V) in GL(V). This

geom
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normalizer is the group of orthogonal similitudes GO(V) := G,,O(V), so we have the inclusions
SO(V) c Ggeom < G,,O(V).

We must show that the image of 771 (U) lies in O(V). For then we will have SO(V) c G

O(V). As the index of SO(V) in O(V) is two, G

geom &

geom will then be either SO(V) or O(V). The

sheaf ¥ is lisse on the open set U = Al, and tame at o. The quotient 1 (U)tame atee jg

toplogically normally generated by all the inertia groups I(s) at all the finite singularities s in Al -
U of ¥ (because Al over an algebraically closed field is tamely simply connected). So it suffices to
see that each I(s), s in Al - U, lands in O(V) under the representation Ag_-. Take an element y in
such an I(s), and denote by A its image under Ag We know that A has drop <r, and we know

that there exists a scalar A in Q /X such that AA lies in O(V). All but at most r of the eigenvalues of

A are equal to 1, and hence all but at most r of the eigenvalues of AA are equal to A. But given an
element of O(V), all but at most two of its eigenvalues can be grouped into [(dim(V)—1)/2] pairs of

inverses {«;, ai_l }. Since AA has at most r eigenvalues not A, at most r of these inverse pairs {«;,
ai_l} have either member not A. As
[(dim(V)=1)/2] > [(412)/2] = 212 > 1,
at least one of these inverse pairs {q;, ai_l} must be {A, A}. Thus A = 7(‘1, so A ==*1. But AA lies
in O(V), so A lies in O(V), so A lies in O(V).
If dim(V) is even and ((Ggeom) )T is Sp(V), then Ggeom
in GL(V). This normalizer is the group of symplectic similitudes GSp(V) := G,Sp(V), so we have

lies in the normalizer of Sp(V)

the inclusions

Sp(V) cG < G, Sp(V).

eom
Exactly as in the orthogonal case, i suffices to show that each I(s), s in Al - U, lands in Sp(V)
under the representation Ag_-. This is shown exactly as in the orthogonal case, now using the fact
that the eigenvalues of any element of Sp(V) fall into dim(V)/2 pairs of inverses {¢;, ai_l}.
To prove 5), we argue as follows. We are given that ¥ is Lie—irreducible, so
Lie(Ggeom)der is an irreducible semisimple Lie—subalgebra of End(V). Since R =1, Lie(Ggeom)

)der

and hence its intrinsic subalgebra Lie(Ggeom is normalized by a pseudoreflection which is not

a reflection. By a result of Gabber [Ka—ESDE, 1.51, Lie(Ggeom)der is either Lie(SL(V)) or, if
dim(V) is even, Lie(Sp(V)). Now repeat the arguments given above for 3) and 4), which used only
the inequality rank(¥F) > 2r2.

The proof of 6) is similar to that of 5). Now Lie(G

and Gabber's result [Ka—ESDE, 1.5] tells us that Lie(G

georn)der is normalized by a reflection,

geom)der is either Lie(SL(V)) or
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Lie(SO(V)). Now repeat the arguments given above for 3) and 4) to conclude that either G
contains SL(V), or G 18 SO(V) or O(V). Since G
SO(V). QED

geom

contains a reflection, G is not

geom geom geom

1.5 Statement of the main technical result
Theorem 1.5.1 Fix an algebraically closed field k and a prime number ¢ which is invertible in k. Fix
integers r > 1 and m > 0. Suppose given an irreducible lisse Q ¢—sheaf F on a dense open set U

Al say U= Al —S. For each point t in SU{e<} at which the action of I(t) is nontrivial and
quadratic of drop <r, and with scale a character not of order 2, denote by R, the drop at t. Define

Riin to be the minimum of these R's. Define R },j;, to be +oo, if there are no such points t.

Suppose that ¥ satisfies the following hypotheses 1) through 7):

1) Fis tame at oo,

2) Atevery s in S, the action of the inertia group I(s) on ¥ is nontrivial and has drop <r.

3) We have the inequality m < #S.

4) There is a subset S S with #S) < m, such that for s in S — Sy, the action of I(s) on Fis

nontrivial and quadratic of drop <r, and its scale is a linear character of I(s), possibly trivial, which
is not of order 2.
5) Either (r+1)! is invertible in k, or  is tame at all points of S,.

6) Either 6a) R;,;,, <2, or 6b) at some point t in SU{ee}, I(t) does not act through a finite group, or

6¢) at some point t in SU{ec}, the action of I(t) on ¥ is quadratic of drop R with 1 <R <r, and its
scale is a linear character of I(s), possibly trivial, which is not of order 2, 3, or 4.

7) We have the inequality rank(¥) > Max(2mr, 4r2, 72Rmin2)'

Pick a geometric point u in U, and view F as a continuous Q ¢-Tepresentation Ag:of 71(U)
:=m1(U,u) on V :=F,,. Denote by Ggeom the Zariski closure of the image of 77U) in GL(V).
Then either Ggeom contains SL(V), or Ggeom is SO(V) or O(V), or, if dim(V) is even, Sp(V).

Moreover, if at any point t in P! - U, the action of I(t) is nontrivial and quadratic of some drop <

rank(¥), with scale a nontrivial character not of order 2, then Ggeom contains SL(V).

1.6 proof of Theorem 1.5.1
(1.6.1) It suffices to show that # is Lie—irreducible. For then, using hypotheses 1) through 4) and
7), the conclusion, except for the "moreover", results from Theorem 1.4.3 above. We deduce the

"moreover" as follows. Suppose that at a point t in P! - U, the action of I(t) is nontrivial and

quadratic of drop < rank(¥), with scale a nontrivial character not of order 2. Because the scale is a

nontrivial character, I(t) and all elements in it act semisimply. Pick an element v in I(t) such that ),2

acts nontrivially. Then the element Ag(y) in G has exactly two distinct eigenvalues, 1 and

geom
some A#t1. But in the group O(V) and, if dim(V) is even, in the group Sp(V), all but at most 2 of
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the eigenvalues of any element can be grouped into [(dim(V) —1)/2] pairs of inverses {«, ol ¥
and the remaining one (in the case of O(odd)) or two (in the case of O(even)) are 1. Since A#t1,
no leftover eigenvalue can be A. But neither {A, A} nor {1, A} is a pair of inverses. So the element
Ag{y) cannot lie in either O(V) or Sp(V). So by the paucity of choice for Ggeom’ Ggeom must
contain SL(V).

(1.6.2) To show that ¥ is Lie—irreducible, we use the general fact [Ka—MG] that an irreducible
lisse Q ¢—sheaf ¥ on a smooth open connected curve U over an algebraically closed field k in

which 7 is invertible is either Lie—irreducible, or is induced from a finite etale connected covering
of U of degree d > 2, or ¥ is a tensor product GRH with G Lie—irreducible and H with finite
monodromy and rank d = 2. So we must show that ¥ is neither induced, nor a tensor product of

type

(1.6.2.1) (Lie—irreducible)®(finite monodromy and rank > 2).

(1.6.3) We first show that ¥ is not induced from a finite etale connected covering of U of degree d
> 2. Here is the precise result.

Proposition 1.6.4 Notations as in Theorem 1.5.1, suppose that hypotheses 1) throught 5) hold. If
rank(¥) > 2mr, ¥ is not induced from a finite etale connected covering of U of degree d = 2.

proof We argue by contradiction. Suppose that 7 : V — U is a finite etale covering of degree d > 2,
with V connected, and G is a lisse Q ¢—sheaf on V such that ¥ = 7xG. Let us denote by X the

complete nonsingular model of V, and by

7:X - Pl
the finite flat map which prolongs . Let us fix a a point t in P! - U, and denote by X1, ..., X, the
points of X lying over t. As representation of I(t), 7(t) is (m«G)(t), which is the direct sum

F10 = &; Indy )1V G0xy).

Denote by K the function field of P! over k, and by L the function field of X over k. Denote by K;
and LXi their completions at the indicated points, and by
n(xp) Spec(LXi) — Spec(Ky)
the map induced on (the spectra of) these completions. Geometrically, we have
F(t) = &; n(x*G(X;).
Lemma 1.6.4.1 The direct image 7(x;)+G(x;) is tame at t if and only if ﬂ(Xi)*Q ¢istame attand G is

tame at x;. More precisely, we have
Swan(7(xj)*G(x;)) = Swanxi(g) + rank(g)Swant(ﬂ(xi)*Q 0

proof We will use a global argument. First, pick a second point u#t in pl. By the theory of the
canonical extension [Ka—LG, 1.4.1, but with t and u playing the roles of e and 01, we can find a

connected finite etale cover f: Z — Pl — {u, t} with Z connected, which is tame over u, and which
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over the punctured formal neighborhood Spec(Ky) of t is isomorphic to 7(x;) : Spec(LXi) —
Spec(Ky). Denote by x; (sic!) the unique point of the complete nonsingular model Z lying over t.
Pick a point y in Z lying over u in P1. By [Ka—LG, 2.1.6], we can find a lisse Q (—sheaf G;onZ -
{X;, y} which is tame at y and for which G;(x;) = G(x;) as I(xj)—representation. Now consider the
virtual lisse sheaf of rank zero on Z given by G; — rank(G)Q ¢- Upstairs, the Euler—Poincare
formula gives
X(Z, Gi—1ank(G)Qp) = — X\ in 7 — 7 SWany,( G; — rank(G)Q)
== 2 yinZ -z SWany( Gy
= —Swanxi( Gy
= —Swanxi(g).
But downstairs we have
X(Z, G- rank(G)Qy) = x(P! - {u, 1}, f+ G; - rank(G) Q)
= -Swan(fx G — rank(G)f+Q,)
(there is no Swan,; by the imposed tameness of f and of G; over u)
= —Swan(7(x;)xG(x;) — rank(G)m(x;)=Qp).
Thus we get
Swan((x;)+G(x;)) = Swanxi(g) + rank(g)Swant(n(xi)*@[). QED
(1.6.4.2) We first apply the above Lemma 1.6.4.1 to t=co. We know that #(eo) is tame, so we
get that each local map 7(x;) is tame, i.e., 7 is tame over oo.

(1.6.4.3) We next show that the map r is tame, i.e., that Z/U is an everywhere tame covering.
If ¥ were everywhere tame, then we would get the tameness of 7 from the lemma above. In
particular, if k has characteristic zero, then ¥ is everywhere tame, and so 7 is tame.
Now we return to the general situation
F(O) = ©; 1(x))+G (X))
If we take I(t) invariants HO(Spec(Kt), ...), we get
FOIO = &; Gx! 7).
Thus we have
FOFOIO = @; 1(x)+G(x)IGx) XD
Denote by ejt the degree of in/Kt’ ie., e t= deg(n(x;)). Then 7(x;)xG(x;) has rank equal to

ei,trank(g), and Q(xi)I(Xi) has rank at most rank(&). Thus we get
rank(n(x))+G(x)/Gx) D) 2 (e ( — Drank(@),

so an inequality

rank(F(t) /ﬂt)l(t)) > rank(g)zi(ei,t - D.
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Suppose now we take for t a point s of SO. Then I(s) acts with drop <r, so we get an inequality
r 2 rank(F(s)/F(s)1(9)) 2 rank(@) Zi(e; - 1.

Therefore for each individual ej,s We have the inequality
rzejq- 1.

If k has finite characteristic p, but (r+1)! is invertible in k, then p > r+1. Since p > r+1, we
getp >ej . Therefore the extension in/Ks has degree < p, so is tame. Thus 7 is tame over each
point s in Sg,.

If (r+1)! is not invertible in k, then by hypothesis 5b), F is tame at each point in S), and
hence 7 is tame over each point of S,. It remains to see that 7 is tame over each point of S —
So- This results from the following lemma.

Lemma 1.6.4.3.1 The map r is finite etale over each point s in S at which the action of I(s) is
nontrivial and quadratic, with scale a character y of I(s) not of order two.

proof At such a point s, consider the decomposition
FOFNE) = &) 7660/ G(x) 7
Thus the action of I(s) on each summand ﬂ(xi)*g(xi)/g(xi)l(xi) is scalar, by the character y.

)SS

So the semisimplification (7(x;)xG(x;))>> of m(x;)xG(X;) is a sum of copies of y and of the

trivial character 1. But induction from a subgroup of finite index commutes with semisimplification,
so we have

1(x;)%(G(x;)%%) = a sum of copies of y and of I.
For any representation H(x;) of I(x;), H(x;) is a direct factor of ﬂ(xi)*ﬂ(xi)*(ﬂ(xi)). Apply
this to G(x;)55: we find that
G(x;)% = a sum of copies of ﬂ(Xi)*XS and of T.

If T is a summand of G(x;)53, then 7(x;)I (being a summand of 71(x;)«(G(x;)>%)) is a sum of copies
of x4 and of T, say

n(x))«1 = al + by.
Similarly, if ﬂ(Xi)*/\/S is a summand of G(x;)%5, then N(Xi)*ﬂ(xi)*/\/s = x®n(x;)«I is a sum of

copies of y and of I, and hence 71(x;)=I is a sum of copies of I and )(S_l, say

n(xp)«l = al + b)(s_l.

Suppose first y is nontrivial. Since y¢ does not have order 2, both y¢ and )(S_l take
values not in Z. But 7r(x;)«[ is a permutation representation, so its trace has values in Z. Therefore
b=0, and 7(x;)0 = all. But the I(s)—invariants in 71(x;)xI are the I(x;)—invariants in [, so are one—

dimensional, and hence a=1. Thus 7(x;) has degree one, as required.
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If x4 is trivial., then 71(x;)«I = (a+b)l, and we conclude as above that 71(x;) has degree one.

QED for Lemma 1.6.4.3.1
(1.6.4.4) Thus the connected covering Z/U is everywhere tame, and is finite etale of degree d

over Al — S(- Let us denote by M < m the number of points of Sy over which Z is ramified, and
by

Sl’ 52, ceey SM,
the points themselves. The monodromy group, say G, of n5Q ! is a transitive (because Z is

connected) subgroup of the symmetric group S . Because the covering is tame, its monodromy

group is generated by one element y for each of the points s in Al at which the covering is
ramified. The conjugacy class in Sj of the element y is simply described in terms of the
ramification indices €j,s OVers, as the product of disjoint cycles whose lengths are the € s
(1.6.4.5) Now think of G as sitting in S . How many of the symbols {1, 2,..., d} do we use
when we write out, as a product of disjoint cycles, one of its M generators y¢? Cycles of length
one aren't written, so we use precisely

2§ such that 622 Cis
symbols. We have the inequality

2 such that ejs 22 Cjs S 2 2(ej 5= D).
So each generator y( requires at most ZZi(ei’S — 1) of the symbols to write it.
(1.6.4.6) At each of the M < m points s in question, we return to the inequality

r 2 rank(F(s)/F(s)1 (%)) 2 rank(@) Ti(e; s - 1.
which we rewrite as

22i(ei,s — 1) £ 2r/rank(G).
Thus each yg requires at most 2r/rank(G) symbols to write it. Since there are M < m generators, at

most
2Mr/rank(G) < 2mr/rank(G)
symbols are used in writing all the generators. But the subgroup of S j these elements generate acts

transitively, so certainly all of the symbols must be used in writing the generators (any unused
symbol is fixed by every generator, hence by the entire group, contradicting transitivity). So we get
d < #(symbols used in writing generators) < 2mr/rank(G).

Crossmultiplying, we find

rank(¥) = dxrank(G) < 2mr,
and this contradicts the hypothesis that rank(%) > 2mr. This contradiction shows that ¥ is not
induced, and concludes the proof of Proposition 1.6.4. QED
(1.6.5) We next show that # is not a tensor product of type

(Lie—irreducible)®(finite monodromy and rank > 2).
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Here is the precise result.
Proposition 1.6.6 Notations as in Theorem 1.5.1 above, suppose that hypotheses 1) through 5)

hold, and that rank(%) > Max(2mr, 4r2).
1) If Fis a tensor product of type
(Lie—irreducible)®(finite monodromy and rank > 2),
then ¥ has finite monodromy which is irreducible and primitive.
2) If in addition hypothesis 6) holds, # does not have finite monodromy which is irreducible and
primitive. Hence, by 1), ¥ is not a tensor product of type
(Lie—irreducible)®(finite monodromy and rank > 2).

proof 1) If ¥ is a tensor product G&®H, then by Theorem 1.3.1 above the smaller dimensional
factor has dimension one. Since the finite monodromy factor has rank > 2, we have F = LOH,
with £ of rank one and H with finite monodromy. Denote by Ag; A 1> and Agythe

corresponding representations. We claim that L itself has finite monodromys, i.e, that the character
A p is of finite order. To see this, we argue as follows. Fix a point s in S = Al = U. For an element
v in I(s), we have
AFy) = A p()OAg(y).

The eigenvalues of Ag(y) are thus A L(y)x{the eigenvalues of Aq((y)}. Denote by D the order of
the finite image group Aq (71 (U)). Then every eigenvalue of Aq(y) is a D'th root of unity, and
hence every eigenvalue of A,}c(y) is of the form A L(y)x(a D'th root of unity). But Af(y) has drop
<r, so most of its eigenvalues are 1. Thus A ,(y) is a D'th root of unity. Therefore £8D islisse of
rank one on all of Al, and hence has finite p—power order. [To see this, recall that A £ takes values
in O/lx, for O the ring of integers in some finite extension E) of Q,. Because the subgroup of
finite index 1 + O, of O;LX is pro—/, A p(P(e)) is a finite p—group, say of order g. Then £2Dq s
lisse on Al and tame at oo, so trivial.] Thus £ is a character of finite order. Hence F itself has finite
monodromy. By the previous proposition 1.6.4, # is not induced. Therefore the image Ag(rr1(U))
is a finite irreducible primitive (not induced) subgroup of GL(V), and this finite group is equal to
Ggeom-

To prove 2), we argue by contradiction. Suppose then that G

primitive subgroup of GL(V), and that 6) holds.
If 6b) holds, then Ggeom is not finite, contradiction.

geom is a finite irreducible

If 6¢) holds, consider the action of I(t), which is quadratic with scale a character whose

order is not 2, 3, or 4. The scale character cannot be trivial, otherwise Ggeom contains a nontrivial

unipotent element, contradicting its finiteness. The scale character cannot have infinite order,

otherwise Ggeom contains an element
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Diag(a,..., a, 1,....,1)
with @ not a root of unity, again contradicting its finiteness. [We use here again the fact that the

scale character takes values in some O/\X, in which the group of roots of unity is finite. So if the

scale character is of infinite order, it takes a value of infinite order.]. Thus the scale character is

nontrivial and has finite order, which by assumption is =2 5. So Ggeom contains an element

Diag(¢...., £, 1,....,1) with { a primitive n'th root of unity for some n = 5, occurring with multiplicity
R <r. If n =5, then by a result of Zalesskii proven in the appendix to this chapter [AZ.1], we have

rank(¥) = 2R < 2r, which contradicts the hypothesis that rank(¥) > 4r2. So we must have n > 6,
By Blichfeldt's 60° theorem [Blich—FCG, paragraph 70, Theorem 8, page 961, no finite irreducible

primitive subgroup of GL(V) contains such an element. [Blichfeldt's 60° theorem is that in a finite
irreducible primitive subgroup G of GL(N, C), if an element g in G has an eigenvalue « such that

every other eigenvalue of y is within 60° of @ (on either side, including the endpoints), then g is a
scalar.]

If 6a) holds, there exists a point t in SUee where the action of I(t) is nontrivial and quadratic
of drop R < 2, with scale character not of order two. Just as above, the finiteness of Ggeom

min =
forces the scale character to be nontrivial and of finite order. Because R,i, <2, Ggeom contains
either an element Diag(¢, 1.....,1) or an element Diag((, ¢, 1,....,1) with { a primitive n'th root of
unity for some n > 3. The first case, Diag({, 1,....,1), is impossible as soon as rank(¥) >4, by
Mitchell's theorem [Mit], according to which a finite irreducible primitive subgroup of GL(N, C)

containing a pseudoreflection of order n > 2 exists only if N < 4. The second case, Diag({, £,

1,....,1), is impossible for n > 6 by Blichfeldt's 60° theorem cited above. It is impossible for n=5 as
soon as rank(¥) > 4, by the result of Zalesskii [AZ.11 cited above, cf. also [Huf—~Wa, Theorem 11.
It is impossible for n=4 as soon as rank(¥) > 4, and it is impossible for n = 3 as soon as rank(F) >
8, according to Huffman and Wales [Huf—-Wa, Theorems 2 and 3 respectively . This concludes the
proof of Proposition 1.6.6, and, with it, the proof of Theorem 1.5.1. QED

1.7 A sharpening of Theorem 1.5.1 when R,;, = 1 or when some local monodromy is a reflection

Theorem 1.7.1 Notations as in Theorem 1.5.1, suppose either that
a)R 1,

or

min —

b) at some point. t in SU{eo}, some element of I(t) acts on ¥ as a reflection.
Suppose that hypotheses 1) through 6) hold. Suppose further that

rank(¥) > Max(2mr, 4r2).

In case a), either G contains SL(V), or dim(V) is even and Gy, 18 Sp(V). In case b), either

geom

Ggeom contains SL(V), or Ggeom

I(t) acts as a pseudoreflection which is not unipotent, then G

geo
is O(V). Moreover, if at any point t in P! - U, an element of

geom contains SL(V).
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proof Exactly as in the proof of Theorem 1.5.1, we use 1.6.4 and 1.6.6 to show that 7 is Lie
irreducible. Then we apply Theorem 1.4.3, part 5) to cover case a), and Theorem 1.4.3, part 6) to
cover case b). QED
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The main results of this appendix are Propositions AZ.1, AZ.2 and AZ.4, all due to
Zalesskii [Zal, 11.21.
Proposition AZ.1 Over C, suppose G is a finite irreducible primitive subgroup of GL(V) which
contains a quadratic element
v :=Diag((, ¢,..., {1, 1, ..., 1)
of dropr, 1 <r <dim(V). Suppose that { is a primitive fifth root of unity. Then dim(V) = 2r.
proof Enlarge the group by adding to it the finite group 1% of scalars, i.e, replace G by u 5G. This
larger finite group contains G, so it acts irreducibly and primitely on V, and it contains the element
Py =Diag@ ... 3.2, 2. .
So our result follows from
Proposition AZ.2 Over C, suppose G is a finite irreducible primitive subgroup of GL(V) which
contains an element

A :=Diag(a, a,..., @B, B, ....., B)
with exactly two distinct eigenvalues, @ and 3, which are inverse primitive fifth roots of unity.
Denote by n(@) and n(5) the multiplicities of @ and (3 as eigenvalues of A. Then @ and 8 occur with
equal multiplicity: n(a) = n(B).
proof Let G be the normal subgroup of G generated by all the G—conjugates of A. Then V as a
representation of G must be isotypical, because V is an irreducible and non—induced
representation of G. So VIGj is the direct sum of k| > 1 copies of an irreducible representation V
of G1. Looking at the actions of A on V and on V, we see that the original multiplicities n(«) and
n(p) are both divisible by the integer k, and that A acting on V has the same two eigenvalues «
and B, but with multiplicities nj (@) = n(@)/k and ny(8) = n(B)/k;. That V is not induced, i.e., that
G is a primitive irreducible subgroup of GL(V ), results from the following elementary lemma,

applied to Gy and V.

Lemma AZ.3 Over C, suppose given a finite—dimensional vector space V. Suppose G is an
irreducible subgroup of GL(V) which is generated by finitely many elements y;, each of which has

the following property (***):
(***)given any eigenvalue @ of y;, and given any integer k 2 2, there exists a k'th root of unity
such that a{ is not an eigenvalue of ;.

Then G is a primitive irreducible subgroup of GL(V), i.e., the representation is not induced.
proof For an irreducible representation V of any group G, being induced is the same as having a
direct sum decomposition ("system of imprimitivity") of V as @;V; into two or more non—zero

subspaces such that for any g in G and any index i, there exists an index j such that g maps V; to

Vj. Expressed this wayi, it is clear that if we view G as a quotient of some other group I', and view

V as a representation of I', then V is induced as a G—representation if and only if it induced as a
['-representation.
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Denote by n the number of generators y;, pick n distinct points t; in AI(C), and view G as a

quotient of 7] (AL(©) = {t}, ..., t,}), with

a small loop around t; — ;.
View the representation V of G as a rank N := dim(V) C-local system F on U := Al(C) - {tg s
t, )}, whose local monodromy around t; is Y5 If V is induced as a G—representation, then ¥ is

J
induced from a connected finite etale covering 7: Z — U of degree d = 2. Thus ¥ is 7+G for a local

system G on Z. As AI(C) is simply connected, the covering Z/U must be ramified above at least
one of the points t;, say over t{. Denote by X1, ..., X, the points of Z lying over t{, and by e; the
ramification index of x; over ty. At least one of them is > 2, say €. Then a small disc centered at
X1 is mapped by 7 to a small disc centered at t; in suitable local coordinates by the e;'th power
mapping le;]. Then #(t;) contains e ]«G(x) as a direct summand. In terms of the eigenvalues p;
of local monodromy group of G(x1), those of [e|1+G(x;) are all the e'th roots of the p;. In
particular, among the eigenvalues of y{, which is local monodromy of #(t{), are all the e{'th roots
of the nonzero complex number p{. As all of the e{'th roots of p; occur, any of them violates the
property (***) that yy was supposed to satisfy. This contradiction shows that # is not induced, or,

equivalently, that the representation V of G is not induced. QED

We now return to proving Proposition AZ.2. Passing from (G, V) to (G, V) simply

divides the multiplicities by the same factor k, and keeps the primitivity.
We continue this process. Denote by G the subgroup of G| generated by all the G-

conjugates of A. Since G, is normal in G, and V7 is not induced, the restriction to G, of the
representation V is isotypical, say V1G5 is the direct sum of ky > 1 copies of an irreducible
representation V5 of G5. Looking at the action of A in both V| and V5, we see that it has the same
two eigenvalues @ and 3, and that their multiplicities ny(@) and ny(8) in V are k5 times their
multiplicities ny(@) and ny(B) in V5. The lemma AZ.3 above shows that V5 is not induced. So we
may continue in this fashion. Define G;_ | to be the the subgroup of G; generated by all the G;—
conjugates of A. Since G, 1 is normal in G;, and V; is not induced, the restriction to G;, 1 of the
representation V; is isotypical, say V;lG;, 1 is the direct sum of k;, 1 = 1 copies of an irreducible
representation V;, 1 of G;, 1. Looking at the action of A in both V; and V;, 1, we see that it has the
same two eigenvalues a and f3, and that their multiplicities n;(@) and n;(8) in V are k;, | times
their multiplicities n;, (@) and n; 1(8) in V;, 1 Since G is finite, this descending chain of
subgroups must stabilize: at some point we will have G; = G 1. At this point, G; is generated by

all the G; conjugates of A. So we are reduced to proving the following Proposition.
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Proposition AZ.4 Over C, suppose « and § are inverse primitive fifth roots of unity, and n(@) and
n(p) are strictly positive integers. Suppose G is a finite irreducible primitive subgroup of GL(V)
which is generated by all the G—conjugates of a single element A in G, which in GL(V) is GL(V)-
conjugate to the element

Diag(a, a,..., a8, B, ..., B),
in which « (resp. ) occurs with multiplicity n(@) (resp. n(B)).

Then n(a@) = n(pB).

proof We can find a G—conjugate of A, say B, which does not commute with A. For if not, A lies
in the center of G, and both of its eigenspaces are G—stable, contradicting irreducibility. Now
denote by H c G the subgroup generated by A and B, and decompose V as a representation of H.
By Blichfeldt's "two eigenvalue argument" [Blich—FCG, paragraph 1031, any irreducible H—
submodule of V has dimension < 2, cf. [Zal, 11.11. [Blichfeldt's two eigenvalue result is that, over
C, if H is a finite subgroup of GL(V) generated by two elements, each of which at most two
distinct eigenvalues, then any irreducible H-submodule of V has dimension at most two.l So we
have

VIH = ((‘Bi Wi) @ (@J )(j),
where the W; are two—dimensional irreducible H-modules, and the Xj are one—dimensional H—
modules. Notice for later use that each y j has order 1 or 5, since H is generated by elements of
order 5. There are some W; in the decomposition of VIH, because V is a faithful representation of

H, and H is not abelian.
Acting on any W, both A and B are conjugate in GL(W;) to Diag(a, 8), but do not

commute in GL(W;). For if either A or B were scalar, or if A and B commuted in GL(W;), W;

would not be irreducible.
So in order to show that n(@) = n(B), it suffices to show that there are no Xj in VIH. For

then VIH = ®; W;, and A has eigenvalues {«, 8} in each W;. We now give Zalesskii's argument
for the absence of any )(j's.

By Lemma AZ.3 above, W; is not induced as a representation of H. Let us denote by H(i)
the image of H in GL(W;). In fact, H(i) lies in SL(W;), since each of A and B is conjugate in
GL(W;) to Diag(a, ). Thus H(i) is a finite irreducible primitive subgroup of SL(W;) generated by

two elements of order 5, each with the same eigenvalues a and 8. Consider the image H(i) in
PSL(Wj). It is not dihedral, as W is not induced. The other possibilities are Ay, Sy, and A, and

of these only A has elements of order 5. Thus H(@) is As, and H(i) is its double cover in SL(W;).
So H(i) is abstractly the group SL(2, [F5), equipped with two non—commuting elements of order 5,
A(i) and B(i). H(i) is then viewed as a subgroup of SL(W;) by a faithful irreducible two—
dimensional representation of SL(2, F5) which gives both A(i) and B(i) eigenvalues {a@. B}.
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The group SL(2, [F 5) has two inequivalent irreducible two—dimensional representations,
say M; and M, which are Gal(Q/Q)—conjugate. Both are faithful. In the group SL(2, Fs), the 24
elements of order five fall into two conjugacy classes, C| and C,. Concretely C is the conjugacy
class of the upper unipotent matrix with 1 (or any nonzero square) in the upper corner, and C» is

the conjugacy class of the upper unipotent matrix with 2 (or any nonzero non—square) in the upper
corner. The classes C; and C, are interchanged by conjugation by any element in GL(2, F5) with

non-square determinant. Of the two representations M;, one, say M1, gives elements of C;

eigenvalues {a, 8} and elements of C, eigenvalues {afz, [32}. The other, My, reverses this
assignment. Since A and B both get eigenvalues {a, 8} in each W;, we may describe W; as
follows. We first take a surjective homomorphism
n(i): H— SL(2, F5)

which maps A and B to noncommuting elements A(i) and B(i) in the conjugacy class C, and then
we embed SL(2, [F5) in SL(2) by M. We may further normalize this description of W; as follows.

We may move A(i) by SL(2, [F 5)—conjugacy to Unip, (1), the upper unipotent with upper
corner 1. Having fixed A(i) as Unip, (1), we may conjugate B(i) by the centralizer of Unip_ (1),
which is £1Unip_, and get B(i) to be one of the lower unipotents Unip_(1) or Unip_(-1) [Of the
12 elements in Cq, exactly two, Unip, (1) and Unip_ (-1), commute with Unip_(1). The remaining
10 fall into two orbits under conjugation by +1Unip_, one of which contains Unip_(1) and the
other Unip_(-1).]

With this normalization, the homomorphism

n(i) : H— SL(2, F5)

is one of two possible maps, call them 7(+) and 71(—). The map n(+), if it exists, maps A to
Unip, (1) and B to Unip_(1). The map 7(-), if it exists, maps A to Unip_ (1) and B to Unip_(-1).

Depending on the relations satisfied by A and B in H, one of these maps might not exist as a
homomorphism from H to SL(2, F5).

If among the 7(i) only one of 7(+) or 71(—) occurs, then every W; is Mon(1). Pick an
element D in SL(2, [F 5) of order 6 (i.e., of trace 1). Pick an element E in H with 7(1)(E) = D.

k
Replacing E by E25 for large enough k, we may assume further that E has order prime to 5. Look

at the action of E on

VIH=(®; W;) ® ((—Bj )(j).
Since the X have order dividing 5, each )(j(E) = 1. In each W;, E acts as M(D). As M is faithful,
M(D) has order 6, so its eigenvalues are the the two primitive sixth roots of unity ¢ and its

inverse. Thus E acts on V as

Diag({g repeated k times, {6_1 repeated k times) @ (axa identity),
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where k is the number of W; and a is the number of Xj occuring in VIH. But we must have a=0,

otherwise this element E, viewed in G, violates Blichfeldt's 60° theorem, since it would have all its

eigenvalues within 60° of one of its eigenvalues, namely 1.
In this case, we can continue the analysis. Since VIH is k copies of Momr(1) and is a faithful
representation, we conclude that 77(1) is an isomorphism H = SL(2, F5).

If among the 7(i) both 7(+) and 7(-) occur, then every W; is Mon(+) or Mon(-), and both
occur, say k, and k_ times respectively. Then
VIH = (k. copies of Mon(+)) ® (k_ copies of Morr(-)) @j Xj:
We claim that the the map
a(+)xn(-) : H— SL(2, F5)XSL(2, F5)
is surjective. It suffices to show it induces a surjection
a(+)xn(-) : H — PSL(2, F5)xPSL(2, F5),
simply because no proper subgroup of SL(2, [F5)XSL(2, [F5) maps onto PSL(2, [F5)XPSL(2, [F 5).
By Goursat's lemma [Lang, Algebra, ex. 5 on page 751, any subgroup of a product of two simple
groups which maps onto each factor is either the whole product or the graph of an isomorphism.
We can rule out having the graph of an isomorphism, because by direct calculation 7(+)(AB) has
order 5, while m(—)(AB) has order 3.
Pick an element D in SL(2, [F 5) of order 6, and then pick an element E in H which, under

n(+)xm(-), maps to (D, D). As above, we may choose E to have order prime to 5. Exactly as
above, E acts on every W; as M(D), and each )(j(E) =1.Thus E actson V as
Diag({q repeated k times, {6_1 repeated k times) @ (axa identity),
and, exactly as above, we infer that a=0 by Blichfeldt's 60° theorem.
In this case too, we can continue the analysis. Since VIH is k  copies of Mon(+) and k_

copies of Mormr(+), and is a faithful representation, we conclude that 77(+)xm(—) is an isomorphism
H = SL(2, F5)XSL(2, [F5), under which A is the element (Unip_ (1), Unip_ (1)) and under which B

is the element (Unip_(1), Unip_(-1)).
So in either case, VIH is ®; W;. As A acts on each W; with eigenvalues {a, 8}, we get n(@)

= n(p), as required. [In fact, as David Wales pointed out to me, this second case, when 71(+)x7(—)
is an isomorphism H = SL(2, F 5)XSL(2, F 5), does not occur. For if we take D in SL(2, F 5) an

element of order 6, then the element (D, id) in H = SL(2, F5)XSL(2, [F5) would act on some of the
W; as (g, ¢ 6_1), and on others as the identity, contradicting Blichfeldt's 60° theorem.]QED

Remark AZ.5 In his survey paper [Zal, 11.2 and its proof], Zalesskii asserts that under the
hypotheses of Proposition AZ.4, G = H and G/Z(G) = PSL(2, F5). We do not undertand this part



Appendix: a result of Zalesskii—49

of his argument.
AZ.6 Some Conjectures
(AZ.6.1) We end this appendix with several versions of a conjecture about what happens
with quadratic elements of order 3 or 4.
Most optimistic conjecture AZ.6.2 Over C, suppose G is a finite irreducible primitive subgroup of
GL(V) which contains a quadratic element

v :=Diag((, ¢,...., 1, 1, .., 1)
of dropr, 1 <r < dim(V). Suppose that {'is a primitive n'th root of unity, with n = 3. Then dim(V)
<4r.

(AZ.6.2.1) By Blichfeldt's 60° theorem [Blich—FCG, pararpaph 70, Theorem 8, page 961, this
situation cannot arise with n > 6, and Zalesskii's result AZ.1 takes care of the case n=5. For n =3 or
n=4, only the cases of low r seem to be in the literature. For r=1, the case of pseudoreflections, we
have Mitchell's theorem [Mitl: dim(V) < 2 if n=4, and dim(V) < 4 if n=3. For r=2, we have the
Huffman and Wales results [Huf-Wal: dim(V) < 4 if n=4, and dim(V) < 8 if n=3. So one could
even speculate, on the basis of this fairly limited range of numerical data, that for n = 4, we have
dim(V) < 2r.

Optimistic conjecture AZ.6.3 There exists an integer A >4 with the following property. Over C,

suppose G is a finite irreducible primitive subgroup of GL(V) which contains a quadratic element
v :=Diag((, ¢,.... {1, 1, ..., 1)

of drop r, I <r < dim(V). Suppose that £ is a primitive n'th root of unity, with n = 3. Then dim(V)

< Ar.

(AZ.6.3.1)  Exactly as in the proof of Zalesskii's result AZ.1, to prove either of these first two
versions of the conjecture, it suffices to treat the case where in addition the group G is generated by
all the G—conjugates of vy.

Less optimistic conjecture AZ.6.4 There exists a polynomial P(x) in Z[x1 with the following
property. Over C, suppose G is a finite irreducible primitive subgroup of GL(V) which contains a
quadratic element

v :=Diag((, ¢...., {1, 1, ..., 1)
of dropr, 1 <r < dim(V). Suppose that {'is a primitive n'th root of unity, with n = 3. Then dim(V)
< P(r).

Least optimistic conjecture AZ.6.5 There exists a sequence {a(r)}> of integers with the following

property. Over C, suppose G is a finite irreducible primitive subgroup of GL(V) which contains a
quadratic element

v :=Diag((, ¢...., 1, 1, ..., 1)
of dropr, I <r < dim(V). Suppose that {'is a primitive n'th root of unity, with n = 3. Then dim(V)
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<a(r).
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2.0 Review of Lefschetz pencils [SGA 7, XVII]

(2.0.1) We work over an algebraically closed field k. Let X/k be a proper smooth connected k—
scheme of dimension n 2 1, and £ on X a very ample invertible Ox—module. We embed X in
[P(HO(X, L)), the projective space of hyperplanes in HO(X, L), in the usual way: x in X(k) is

mapped to the hyperplane in HO(X, L) consisting of those global sections of £ which vanish at x.
Equivalently, we give ourselves X as a closed subscheme of a projective space P in such a way that
both the following conditions are satisfied:

(2.0.1.1) L is Ox(1) := the pullback to X of Op(1),

(2.0.1.2) the restriction map induces an isomorphism

HOP, 0p(1)) = HO(X, Ox(1)) := HO(X, £)
(2.0.2) A nonzero global section H of HO([P, Op(1)) defines a hyperplane H=0, or simply H if no
ambiguity is likely, in [P. The closed subcheme of X defined as XMH is called the corresponding
hyperplane section of X: in terms of the same global section H viewed as a global section Hy of

HO(X, L), the hyperplace section XMH is just the locus of vanishing of Hy as section of .L.

(2.0.3) Attached to this data, we have the dual variety XV in the dual projective space PV: it is the
subset of PV consisting of those hyperplanes H=0 in P such that XNH fails to be smooth. It is
known (SGA 7, Expose XVII, 3.1.4) that XV is closed and irreducible, of codimension at least
one in PV. [One sees XV as the image by the second projection of the closed subscheme Z of
XXPPV consisting of those pairs (x, H) such that H is tangent to X at x. The key point is that Z

viewed over X is the total space of a P™! bundle over X, its projective normal bundle P(Nx p), r

the codimension of X in [P. Thus Z is proper and smooth over k, and dim(Z) = dim(PV). We

endow XV with the induced reduced structure.
(2.0.4) Recall that a k—point of a k—scheme Y of dimension n—1 is called an ordinary double point
if the complete local ring of Y at y is isomorphic to kllxy, ..., x,1/Q(x), where Q(x) is given by

if n=2k is even, Q(x) = X;_; ., k XiXit+k

if n=2k+1 is 0dd, Q(X) = oyt D% + Tict ok XiXink-
(2.0.5) We denote by Good(XY) < XV those hyperplanes H such that the singular locus
Sing(XMH) of XMH is a single point, say x(), and such that XNH has an ordinary double point at
X(- One knows [SGA 7, XVII, 3.2] that Good(X") is open in X. We denote by Bad(X") c XV

the closed complement of Good(X").
(2.0.6) Since XV is closed and irreducible in PV of codimension at least one, we have:
Lemma 2.0.7 Given X in P as in 2.0.1, if Good(X") is nonempty, or if X" has codimension > 2 in

PV, then Bad(X") has codimension =2 in PV.
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Lemma 2.0.8 Given X in P as in 2.0.1, if Good(X") is nonempty, then XV is a hypersurface in
PV.

proof Denote by U  P(Nx jp) the inverse image of Good(XY) in the projective normal bundle.
Then U is a nonempty and hence dense open set in P(Nx p), so dim(U) = dim(P") 1. The map U

— Good(XV) is bijective on k—valued points, hence dim(U) = dim(Good(X")). As Good(XV) is a
nonempty and hence dense open set of XV, we have dim(X") = dim(U) = dim(P") —1. QED

(2.0.9) Recall that a Lefschetz pencil of hyperplane sections of X is a line L in PV, say (A, u) —>
AF=uG, such that the following two conditions hold.

(2.0.9.1) The "axis of the pencil", namely the codimension two linear subspace Aof [P which
is the common intersection of any two distinct members of the pencil (so here A is FNG) is
transverse to X, i.e., XNA is smooth of codimension two in X. [The axis A determines the pencil,
as consisting of all the hyperplanes containing A. |

(2.0.9.2) There is a dense open set U in P! such that for (A, w) in U, XN(AF=uG) is smooth,
and for (A, i) not in U, XN(AF=uG) is smooth outside a single point, where it has an ordinary
double point.

(2.0.10) Equivalently, the lines L in PV which are Lefschetz pencils of hyperplane sections
of X are precisely those lines which satisfy the following three conditions.
(2.0.10.a) The axis A of L is transverse to X.

(2.0.10.2) L is not entirely contained in the dual variety XV.
(2.0.10.3) LNBad(XV) is empty.

Proposition 2.0.11 Given X in P as in 2.0.1 above, suppose Bad(X") has codimension >2 in PV,
Then we have:

1) The lines L in PV which are Lefschetz pencils of hyperplane sections of X form a nonvoid (and
hence dense) open set in the Grassmannian Gr(1, PY) of all lines in PV.

2) Let H be hyperplane such that XMH is smooth. In the Grassmannian Gr(1, [PV)H of all lines in

PV which pass through H, the Lefschetz pencils of hyperplane sections of X form a nonvoid (and

hence dense) open set in Gr(1, [PV)H
3) Let H be hyperplane such that XMH has isolated singularities. In the Grassmannian Gr(1, [PV)H

of all lines in PV which pass through H, there is a dense open set U such that any L in U has the
following three properties:
3a) the axis A of L is transverse to X,

3b) L is not entirely contained in the dual variety XV,
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3c) LNBad(XY) is either empty, if H lies in Good(X"Y), or LNBad(X") consists of H

alone, if H lies in Bad(XV).
proof For 1), note that each of the conditions 2.0.10.1-3 separately defines a nonvoid (and hence
dense) open set in the Grassmannian, cf. [SGA 7, XVII, proof of 3.2.11. For 2), it suffices to

show that the dense open sets of Gr(1, PV) defined by the conditions 2.0.10.1-3 separately each
have nonvoid intersection with Gr(1, [PV)H. For 2.0.10.1, there exist hyperplanes G transverse to
XMH, and for any such G the pencil AG = pH satisfies 1a). Condition 2.0.10.2 holds on all of
Gr(1, [PV)H, since H does not lie in XV. The lines through H which violate 2.0.10.3 are the image

Z of the proper scheme Bad(X") under the map F s the line joining F to H. Thus Z is closed, and
it has dimension dim(Z) < dim(Bad(X")) < dim(PV) — 2, while Gr(1, P¥)y has dimension
dim(PY) - 1.

For 3), we argue as follows. Conditions 3a) and 3b) each define open sets in Gr(1, [PV)H.

To obtain an L in Gr(1, [PV)H for which 3a) holds, it suffices find a hyperplane G such that

XNHNG is smooth (then take for L the line joining H to G). Such a G exists because XMNH has
only isolated singularities: take a G which passes through none of the singular points of XMH, and

which does not lie in the closure in PV of the dual variety of (XNH)SMOOth, Tq exhibit a line L
through H which does not lie entirely in XV, take a hyperplane F not in XV, and take for L the line
joining H to F.

We now turn to condition 3c). Suppose first that H lies in Good(X"). Then 3c¢) also defines

a dense open set in Gr(1, [PV)H, which one sees exactly as one saw in proving 2) above.

It remains to consider condition 3c) in the case in which H lies in Bad(X"). In this case, we
claim that the set, call it S, of lines L in Gr(1, P")gy for which LNBad(X") consists of H alone,

contains a dense open set. The excluded lines through H are the image in Gr(1, [PV)H of the

scheme Bad(X") — {H} under the map F > the line joining F to H. This image need not be closed,
but its closure Z has dimension < dim(Bad(X")) < dim(PV) — 2, while dim(Gr(1, PV)) =
dim(PV) — 1. Thus S contains the dense open set Gr(1, PY)y - Z. QED

Remark 2.0.12 It is the case 2) which is most commonly given, cf. [SGA 7, XVII, 3.2.81.
However, for our applications, 3) will be equally useful.

Definition 2.0.13 Let H be hyperplane such that XMH has at worst isolated singularities. By a
pencil through H which is Letschetz outside of H we mean a line L through H which satisfies 3a),
3b), and 3c) of 2.0.11.
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(2.0.14) In general, if we are given a pencil (A, i) — AF=uG of hyperplanes in [P whose axis
is transverse to X, we form the incidence variety X := the closed subscheme of Xxpl consisting of

pairs (X, (A,u)) such that AF(x)=uG(x), and map it to P! by the second projection. Because A is
transverse to X, X is smooth, being the blowup of X along the smooth subvariety XNFNG.

Theorem 2.0.15 Suppose that Bad(X") has codimension > 2 in [PV, and suppose that for every k—
valued point x in X, we have XV# Hyp,, the hyperplane in PV consisting of all hyperplanes

through x. Suppose we are given a hyperplane H such that XMH has at worst isolated singularities.
Suppose further that we are given a finite set S of k—valued points of X, none of which lies in

XNH. Then in the Grassmannian Gr(1, [PV)H of all lines through H, there is a dense open set U

such that every line L in U satisfies the following conditions:
1) the pencil defined by L is Lefschetz outside of H,

2) Consider the map f: X — P! defined by the pencil. View S as lying in X, by viewing X — XMNH
as lying in X. Then the points s in S lie in distinct fibres of the map f: X — [Pl, and each of these
fibres £~1(f(s)) is smooth.

proof Intrinsically, we may view the map f: X — P! as having target the line L: for a point x in X

— XNA, f(x) € L is the unique point of intersection of L with the hyperplane Hyp, in PV of all
hyperplanes throught x. We already know that there is a dense open set Uy in Gr(l, [PV)H such

that every line in Uy satisfies 1). We will show that there exists a dense open set U, in Gr(l, [PV)H
such that every line in U satisfies 2). Then the required U will be U{NU,.

For each point s in S, we have X # Hyp, hence X NHyp, has codimension at least two
in PY. The hyperplanes {Hypg}g in s In PV are all distinct, simply because s —> Hypy is the the
canonical bijection {points in P} = {hyperplanes in P"). So for each pair s;, S of distinct points of

S, the intersection HypsiﬂHypSj has codimension two in PY. The desired dense open set Uj in

Gr(1, [PV)H consists of those lines L through H which do not intersect the closed set
z:=U, s (XYNHypg U, HypgNHyps

inPY. The key point is that Z is a closed set of codimension at least two in [PV, and Z does not
contain H (since H contains none of the points s in S). The set U, is open by [EGA 1V, Part 3,

13.1.51. It is nonempty because if not, every line through H meets Z, and hence the map

Z — Gr(1, PV)g, z > the line joining H to z

is surjective, which is impossible since dim(Z) < dim(Gr(1, [PV)H). QED
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2.1 The dual variety in the favorable case

(2.1.1) We have the following basic result:

Proposition 2.1.2 [SGA 7, XVII, 3.3, 3.5] Given X in [P as above, suppose that either dim(X) is
even, or that char(k) # 2. Suppose further that there exists a k—valued point x of X, and a
hyperplane H such that XNH contains x, and such that XNH has an ordinary double point at x.

Then XV is an irreducible hypersurface in PV, and Good(X") is its smooth locus (X)smooth,

Corollary 2.1.3 Hypotheses as in Proposition 2.1.2, Bad(X") is the singular locus Sing(X"), and

hence Bad(X") has codimension =2 in PV.

Lemma 2.1.4 (compare [Ka—Spacefill, Lemma 121) Hypotheses as in Proposition 2.1.2 above,
given a k—valued point x of X, there exists a hyperplane H which contains x and for which XMH
is smooth.

proof Given x, denote by Hyp, c P the hyperplane consisting of all hyperplanes H in [P which
contain x. Those H in Hypy for which XMH is smooth form an open set U in Hypy. We must

show that U is nonempty. If not, then we have an inclusion Hyp, < XV. Since X" is an
irreducible hypersurface in PV, we must have Hyp, = XV. Then X" is smooth, and hence, by

[SGA 7, XVII, 3.3, 3.5], the map from the projective normal bundle P(Nx/p) to XV is an

isomorphism. Thus Hyp, = XV~ P(Nx p) is a projective bundle over X, with fibre pr-1

, T being
the codimension of X in [P. [The careful reader at this point will ask what happens if r=0, i.e., if X
is [P itself. But this case is ruled out by the hypothesis of the Proposition that X has a hyperplane
section which has an ordinary double point somewhere: if X were [P, every hyperplane section

would be smooth. |

If r =1, then XV = X, and so X is isomorphic to a hyperplane. But X, being smooth of
codimension one in [P, is a smooth hypersurface in [P, say of degree d. The degree d cannot be one,

because we have assumed that X is embedded in [P(HO(X, L)), which for X a hyperplane would
require taking the ambient space to be X itself, i.e., we would in fact have r = 0. If d > 3, or if d=2
and dim(X) is even, then X is not isomorphic to a hyperplane, because its middle Betti number (say
with Q ¢ coefficients, £ any prime invertible in k) exceeds that of a hyperplane. If dim(X) = 3 and d
=72, again X is not isomorphic to a hyperplane, because,as Ofer Gabber explained to me, its degree

d is an intrinsic invariant. Namely, for X a smooth hypersurface in [P of dimension n > 3, Pic(X) is
Z, with a unique generator L which is ample, namely the restriction to X of Op(1). The dim(X)—

fold self-intersection L™ of the unique ample generator is d, the degree of X in [P.
For r=1, this leaves only the case when d=2 and dim(X)=1, a case in which X is
isomorphic to a hyperplane. The characteristic is not 2 and the field k is algebraically closed, so our

smooth quadric X is given, in suitable projective coordinates in the ambient P = [Pz, by the equation
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%i=0 10 2 Xp? = 0.
We will see directly from the equation that we do not have XV < Hypy for any point x in X,

indeed we do not have XV < Hyp, for any point x in P2. At the point (1, i, 0) of X, the tangent
hyperplane to X has equation

XO + in =0.
At the point (1, —i, 0), the tangent hyperplane has equation
Xp - Xy =0.

So any point on both these tangent hyperplanes has Xy = X = 0. Repeating this argument with the
points (1, 0, £i), we see that any point on all tangent hyperplanes has X = X; = X5 =0, but there

is no such point in [P. This concludes the proof in the r=1 case.
So suppose now that r = 2, pick a prime number ¢ invertible in k, and consider the Leray
spectral sequence for the projective bundle 7

Hyp, = XY =P(Nxp) — X.

1

We first remark that X must be simply connected. Indeed, P™" is simply connected, so the

projection m, being a Zariski—locally trivial pr-1 bundle, induces an isomorphism on fundamental
groups: as the total space Hyp, is itself simply connected, we infer that X is simply connected.
Therefore the lisse sheaves Riﬂ*Q ¢ on X are all constant, with value

Riz:Q, = HIP™1, Q)  =0ifioddori>2r-2

= Qp(-i/2) if i even in [0, 2r-21.

Therefore the Leray spectral sequence has E, terms given by

E,P:d = HP(X, R9r:Qp) = HP(X, Q)eHI(P™ 1, Q)
and it abuts to Hp+q(Hpr, Q). Now because 7 is projective and smooth, the pullback map i
HP(X, Q) — HP(Hyp,, Q) is injective. Therefore HP(X, Q) vanishes unless p is even. From

the formula for E5, we see in turn that E5P-4 vanishes unless both p and q are even. As the
differential d,. has bidegree (r, 1-1), it follows that the spectral sequence must degenerate at E.
[Alternatively, we could appeal to the general result that Leray degenerates at E, for any proper
smooth map with a proper smooth base, by a reduction to the case when k is the algebraic closure
of a finite field. One then uses the fact that, by Deligne's Weil 11, Ezp’q is pure of weight p+q, and
d,, being Galois—equivariant, respects weight, so being of bidegree (r, 1-r) must vanish. ]

From the degeneration, applied with p+q=2, we get
1 = b2(Hyp,) = dimE»2:0 + dimE50-2 = b2(X) + b2(P™1) = b2(X) + 1,
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and thus b2(X) = 0. This is impossible for a projective smooth connected X/k of dimensionn > 1,

since the class of a hyperplane is a nonzero element of H2(X, Q/(1)). QED

Remark 2.1.5 If dim(X) = n is odd > 3, a much shorter proof of Lemma 2.1.4 is to observe that the
degree of the dual variety XV is even (and hence XV is not isomorphic to a hyperplane). Indeed, by
[SGA7, XVIII, 3.2], the degree of the dual variety XV is equal to

=D (X) + y(XNA) = 2y(XN(general hyperplane H)).
If X is odd—dimensional, so is XMA, and hence both y(X) and y(XNA) are even. We do not know

an analogous shorter argument for X of even dimension.
(2.1.6) We should also point out that in characteristic two, there are smooth X's of every odd

dimension whose dual variety is a hyperplane. Namely, in [Pzn, the variety X of equation
2 _
X0)” = Zic 100 XiXn+i

has dual variety XV the hyperplane in the dual projective space consisting of all linear forms 2 06

»ndiXj With ag=0.So in this example, XV is Hyp, for the pointz = (1, 0, 0, 0....0) in [P, but the
point z does not lie in X.
(2.1.7) Here is one criterion which insures that X" is not contained in Hyp, for any k—valued

point x in X. It will be used in the later discussion of Lefschetz pencils on curves, see 2.3.4.
Lemma 2.1.8 Given X in P as in 2.0.1, suppose that for any k—valued point x of X, there exists a
k—valued point y of X, and a hyperplane H in [P, such that XMH is singular at y, and such that
XNH does not contain x. Then XV is not contained in Hypy for any k—valued point x in X.

proof This is a tautology. QED

(2.1.9) In the rest of this chapter, we will study the case when X is a curve, and AF = uG is a
pencil on X whose axis A is transverse to X. In this case, XNA will be empty, X will be X, and the
mapping of X = X to P! defined by the pencil is x — (G(x), F(x)), or more simply the rational
function G/F.

2.2 Lefschetz pencils on curves in characteristic not 2

(2.2.1) In this section, we work over an algebraically closed field k in which 2 is invertible, and we
take C/k a proper, smooth, connected curve, whose genus we denote g. Any effective divisor D on
C of degree = 2g+1 is very ample, i.e., the invertible sheaf £(D) := the inverse ideal sheaf I(D)_1
is very ample, cf. [Hart, IV, 3.2 (b)1.

Lemma 2.2.2 Fix an effective divisor D on C with deg(D) >2g+2, and use it to embed C in [P. For
every k—valued point P on C, there exists a hyperplane H in [P such that CNH has an ordinary
double point at P.

proof In the embedding by L(D) := HO(C, L(D)), a hyperplane section CNH of C is the zero set of
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a nonzero element of L(D) (zero set as section of £(D)). A hyperplane H such that CNH has an
ordinary double point at P is precisely the zero—locus on C of a nonzero element f of L(D) :=

HO(C, L(D)) which, as section of £(D), has a double zero at P. To see that such f exist, notice that
the elements of L(D) with at least a double zero at P form the subspace L(D — 2P) of L(D), while
those with at least a triple zero at P form the subspace L(D — 3P). Because deg(D) = 2g+2, both
D-2P and D-3P have degree = 2g—1, so by Riemann Roch we have

{(D-2P) = deg(D-2P) + 1 — g =deg(D) -1 —g,

{(D-3P) = deg(D-3P) + 1 — g =deg(D) -2 —-g.
Therefore L(D — 3P) is a hyperplane in L(D — 2P), and any element of L(D — 2P) — L(D - 3P) is
an f with a double zero (as section of £(D)) at P. QED

(2.2.3) For degree 2g+1, we have:
Lemma 2.2.4 Suppose that C has genus g > 1. Fix an effective divisor D on C with deg(D) =
2g+1, and use it to embed C in [P. For all but at most finitely many k—valued point P on C, there
exists a hyperplane H in [P such that CNH has an ordinary double point at P.
proof Exactly as above, what we must prove is that for most points P in C(k), we have /(D-2P) >
{(D-3P). Since deg(D-2P) = 2g—1 > 2g-2, we have

{(D-2P) = deg(D-2P) + 1 — g =deg(D) -1 —g.
But D-3P has degree 2g-2, so

{(D-3P) = deg(D-3P) + 1 — g + /(K —(D-3P))

=deg(D) -2 —g + /(K + 3P -D).
We must show that /(K + 3P —D) = 0 for most P. Since K + 3P —D has degree zero, /(K + 3P —
D) >0 if and only if K + 3P —D is a principal divisor. Consider the map C — J aCO(C) defined by
P — the class of K + 3P -D.

We claim this map has finite fibres (in which case only the finitely many P which map to the origin
have /(K + 3P —D) > 0, and we are done). If not, then some fibre is infinite, and hence is all of C,
i.e., the map is constant, which means in turn that for any two points P and Q in C(k), we have
3(P-Q) =0 in JacO(C). Fix Q. The map

P— P-Q
isamap fromC—J acO(C) which lands in the finite set of points of order 3, hence is constant,
hence (evaluate at P) has value 0, i.e., we find that the divisor P—Q is principal, say P—Q = div(f),

in which case f is an isomorphism from C to [Pl, which is impossible since g = 1. QED

(2.2.5) In view of these lemmas 2.2.2 and 2.2.3, all the hypotheses of Proposition 2.1.2 of the
previous section are satisfied, if deg(D) = Max(2g+1, 2). Hence Theorem 2.0.15 of the last section
holds. We apply it in the following way. We begin with our effective divisor D of degree >
Max(2g+1, 2). We take for H the hyperplane defined by the vanishing of the section 1 of I_l(D),
so CNH is just D itself. To specify a pencil which passes through H and whose axis is transverse
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to C (i.e., whose axis is empty) is to give a second function f in L(D) := HO(C, I_I(D)) whose
divisor of poles is precisely D (i.e., whose zeroes, as section of I_l(D), are disjoint from D). The

resulting map of C to Plis given by the ratio f/1 of these sections, i.e., it is given by f viewed as a
rational function on C.

Theorem 2.2.6 Let k be an algebraically closed field in which 2 is invertible, and let C/k be a
projective, smooth connected curve, of genus denoted g. Fix an effective divisor D on C of degree
d = 2g+1. Fix a finite subset S of C — D. Then in L(D) viewed as the k—points of an affine space
of dimension d+1-g, there is a dense open set U such that any f in U has the following properties:
1) the divisor of poles of fis D, and f is Lefschetz on C-D, i.e., if we view f as a finite flat map of
degree d from C — D to Al, then the differential df on C—D has only simple zeroes, and f separates
the zeroes of df (i.e., if @ and 8 in C — D are zeroes of df, f(a) = f(8) if and only if @ = . Put
another way, all but finitely many of the fibres of f over A consist of d distinct points, and the
remaining fibres consist of d—1 distinct points, d—2 of which occur with multiplicity 1, and one
which occurs with multiplicity 2.

2) f separates the points of S, i.e., f(s1) = f(sp) if and only if s; = sy, and f is finite etale in a

neighborhood of each fibre 1f(s)). Put another way, there are #S fibres over Al which each have
d points and which each contain a single point of S.
proof If deg(D) > Max(2g+1, 2), this is Theorem 2.0.15, specialized to curves. If g=0 and deg(D)

=1, then D is a single point, say o, C-D is Al,: Spec(klx]), L(D) is {1, x}, and the open set U
consists of all functions ax+b with a, b in k and a#0. QED

Remark 2.2.7 It is surely possible to prove this result entirely in the world of curves, but we
believe that seeing it in the general context of Lefschetz pencils clarifies and simplifies what is
going on. Caveat emptor.

Lemma 2.2.8 Hypotheses and notations as in Theorem 2.2.6 above, suppose the effective divisor

D, which is the fibre of f over « in [Pl, is Y, a;P; with each a; invertible in k. For f in the dense

open set U, f viewed as map of C — D to Al has 2g-2 + 2. (1 + a;) singular fibres over Al, or
equivalently, df has 2g—2 + X (1 + a;) zeroes.

proof Because each a; is prime to p, df has a pole of order 1+ a; at P;. Since the canonical bundle
has degree 2g—2, the total number of zeroes of df, or what is the same, the number of singular
fibres over Al is 2g-2 + 2(1 + 2;).QED

2.3 The situation for curves in arbitrary characteristic

(2.3.1) Let C/k be a proper smooth connected curve over an algebraically closed field k. Fix an
effective divisor D of degree d = 2g+3, and use £(D) to embed C in P.
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Lemma 2.3.2 Let C/k be as in 2.3.1 above. Suppose d > 2g+3. For every k—valued point P on C,
there exists a hyperplane H in [P such that CNH has an ordinary double point at P and such that
CNH is lisse outside of P. Moreover, the set of such H is an open dense set in the space of all
hyperplanes tangent to C at P.

proof The hyperplanes H tangent to C at P are the points of the projective space P(L(D-2P)V) of
lines in L(D-2P). In P(L(D-2P)"Y), those for which CNH does not have an ordinary double point
at P are the points of the codimension one (by Riemann—Roch) subspace P(L(D-3P)V). In
P(L(D-2P)V), the hyperplanes H for which CNH has a singularity at a point Q # P are the points
of the codimension two (by Riemann—Roch) subspace P(L(D-2P — 2Q)V).

We claim that In P(L(D-2P)"), the union ‘W over all Q (including Q=P) of the subspaces

P(L(D-2P - 2Q)V) is closed of codimension at least one. To see this, notice that there is a vector
bundle Bitanp on C whose fibre over Q is L(D-2P-2Q). [Start with the line bundle .£L(D-2P) on

C, and on CxC form the line bundle

Lo =(pr| " LD-2P)®(A)*2,
which on CxQ is £(D-2P-2Q), a line bundle of degree d—4 > 2g—2. Then Rlprz*LO =0, and
proxLy is the desired vector bundle Bitanp on C, whose formation commutes with arbitrary
change of base on C.] The total space of the associated projective bundle [P(BitanPV) is the closed
subscheme W of CxPPV consisting of all pairs (Q, H) with H in P(L(D-2P - 2Q)V), and ‘W is the
image of W under the second projection. Since W is proper and smooth over k of dimension =

dimP(L(D-2P)V) — 1, ‘W is closed of codimension at least one in P(L(D-2P)V).
Thus the set of hyperplanes H in P such that CNH has an ordinary double point at P and

such that CNH is lisse outside of P are precisely the points of P(L(D-2P)V) which do not lie in in
the proper closed subset WUP(L(D-3P)V). QED

Corollary 2.3.3 Suppose d > 2g+3. The dual variety CV has codimension one in PV. In CV, the set

Good(CV) consisting of those hyperplanes H such that CNH has just one singular point, and that
one singular point is an ordinary double point, is a dense open set.

proof The dual variety CV has codimension at least one in PV. If the dual variety had codimension
two or more in PV, we could find a Lefschetz pencil on C with no singular fibres (i.e., we could
find a line L in PV which did not meet CV). The associated map to P! would make C a finite etale

connected covering of P! of degree d = 2g+3 > 1, contradicting the fact that Pl is simply
connected.

Once we know the dual variety is a hypersurface, it suffices to show that the hyperplanes H
such that CNH has either two or more singularities, or has a singularity worse than an ordinary

double point, form a closed set of codimension at least 2 in IPV. Those with at least two singular
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points, or with one singularity which is a contact of order 4 or more, are the union X of the
P(L(D-2P-2Q)") over all points (P, Q) in CxC. Those with a singularity worse than on ordinary

double point are the union Y of the P(L(D-3P)V) over all points P in C.
We first deal with X. On CxC, there is a vector bundle Bitan whose fibre at (P, Q) is L(D-
2P-2Q). [Start with the line bundle £(D) on C, and on CxCxC form the line bundle

Lo =(pr " LD)SIA| )*?®I(A1 3)°2,
where A 5 and A| 3 are the indicated partial diagonals. On CxPxQ, this line bundle is is £(D—
2P-2Q), a line bundle of degree d—4 > 2g—2. Then R! prp 3 Ly =0, and prp 3 +L( 1s the desired
vector bundle Bitan on CxC, whose formation commutes with arbitrary change of base on CxC.]
The total space of the associated projective bundle P(Bitan") is the closed subscheme X of
CXCXPV consisting of all triples (P, Q, H) with H in P(L(D-2P — 2Q)V), and X is the image of X
under the third projection. Since X is proper and smooth over k of dimension dimPY — 2, X is

closed of codimension at least two in PY.
We deal similarly with Y. On C there is a vector bundle Triple whose fibre at P is L(D—

3P). The total space of the associated projective bundle P(Triple") is the closed subscheme Y of
CXPY consisting of all pairs (P, H) with H in P(L(D-3P)V), and Y is the image of Y under the
second projection. Since Y is proper and smooth over k of dimension dimPY — 2, Y is closed of

codimension at least two in PY. QED

Lemma 2.3.4 Suppose d = 2g+3. For every k—valued point P on C, and for every k—valued point
Q= P on C, there exists a hyperplane H in [P such that CNH is singular at Q, and such that CNH
does not contain P.

proof The hyperplanes H tangent to C at Q are the points of P(L(D-2Q)V), a projective space of
dimension d —2— g = g + 1. Among all such H, those passing through P are in the subspace

P(L(D-2Q - P)V). As d > 2g+2, this is a subspace of codimension one. QED

Lemma 2.3.5 Suppose d > 2g+3. For every k—valued point P on C, there exists a hyperplane H
through P such that CNH is smooth.

proof Given P, denote by Hypp PV the hyperplane consisting of all hyperplanes H in P which
contain P. If no H in Hypp had CMH smooth, we would have Hypp c CV. As CV is irreducible
of codimension at most 1, this would force Hypp = CV, and this in turn would force C¥ < Hypp.

But by the previous lemma, there are H in CY which do not contain P. QED

2.4 Lefschetz pencils on curves in characteristic 2
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(2.4.1) We begin with the characteristic two version of Theorem 2.0.15.

Theorem 2.4.2 Let k be an algebraically closed field of characteristic 2, and let C/k be a projective,
smooth connected curve, of genus denoted g. Fix an effective divisor D on C of degree d > 2g+3.
Suppose that D = 3. a;P;. Fix a finite subset S of C — D. Then in L(D) viewed as the k—points of

an affine space of dimension d+1-g, there is a dense open set U such that any f in U has the
following properties:
1) the divisor of poles of fis D, and f is Lefschetz on C-D, i.e., if we view f as a finite flat map of

degree d from C — D to Al, then all but finitely many of the fibres of f over Al consist of d
distinct points, and the remaining fibres consist of d—1 distinct points, d—2 of which occur with
multiplicity 1, and one which occurs with multiplicity 2.

2) f separates the points of S, i.e., f(s1) = f(sp) if and only if s| = s, and f is finite etale in a

neighborhood of each fibre f~ 1f(s)). Put another way, there are #S fibres over Al which each have
d points and which each contain a single point of S.

proof By Corollary 2.3.3 to Lemma 2.3.2 above, we know that CV is a hypersurface and that
Good(CY) is nonempty, and hence (by Lemma 2.0.7) that Bad(C") has codimension at least two in

PV. By Lemma 2.3.4 (and the tautologous Lemma 2.1.8), we know that CV is not contained in
Hypp for any k—valued point P in C. Then by Theorem 2.0.15, we get a dense open set Uy in

L(D) such that every f in U satisfies 1) and 2). QED

(2.4.3) The problem with this result is that it tells us nothing about the zeroes of the differential df
of a function f in the open set U. This deficiency is remedied by the following theorem, which is
the main result of this section.

Theorem 2.4.4 Let k be an algebraically closed field of characteristic 2, and let C/k be a projective,
smooth connected curve, of genus denoted g. Fix an effective divisor D on C of degree d = 6g+3.
Suppose that D = 3. a;P; with each a; odd. Fix a finite subset S of C — D. Then in L(D) viewed as

the k—points of an affine space of dimension d+1-g, there is a dense open set U such that any f in
U has the following properties:
la) the divisor of poles of fis D, and f is Lefschetz on C-D, i.e., if we view f as a finite flat map of

degree d from C — D to Al, then all but finitely many of the fibres of f over Al consist of d
distinct points, and the remaining fibres consist of d—1 distinct points, d—2 of which occur with
multiplicity 1, and one which occurs with multiplicity 2.

1b) The differential df has g—1 + %; ((1+a;)/2) distinct zeroes in C—D, and each zero is a double
Zero.

2) f separates the points of S, i.e., f(s1) = f(sp) if and only if s; = sy, and f is finite etale in a

neighborhood of each fibre f— 1f(s)). Put another way, there are #S fibres over Al which each have
d points and which each contain a single point of S.
2.5 Comments on Theorem 2.4.4
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(2.5.1) Before giving the proof of the theorem, let us explain what problems we are fighting
against in characteristic 2. In any other characteristic, once 1a) and 2) hold, then (as noted in
Lemma 2.2.8 above) df has

2g—2 + Zi (1+ai)
distinct zeroes, each of which is simple.
(2.5.2) The first problem is that in characteristic 2, for any function f on C, either df = 0, or df has
all its zeroes and poles of even order. To see this, pick any k—valued point P on C, and any local
parameter t at P, and expand f as a Laurent series in t, say

f=Ybm)t" = Yb(2n)t2" + Yb(2n+1)t20+1,

Because we are in characteristic 2, we get

df = Sb(2n+1)t20dt.
(2.5.3) So we might hope that, if 1a) and 2) hold, then in characteristic two 1b) holds as well. But
1b) can fail spectactularly, even when 1a) and 2) hold.
(2.5.4) To illustrate most simply, consider the case when C is [Pl, and D is the divisor (2k+1)ee,

2 4 xZk+1 pag divisor of poles D, and as a map of

for some integer k > 2. The function f(x) := x

c-D=Alto Al, fis Lefschetz. Indeed, there is only point x(y at which df (= szdx) vanishes,

namely xj =0, and the fibre of f over the corresponding critical value f(x() = 0 is the zero set of
<2 ¢ x2k+1 _ X2(X2k—1 -1,

which consists of 2k distinct points. But df has a single zero of order 2k, whereas 1b) calls for df
to have g—1 + (1+2k+1)/2 = k distinct zeroes, each of multiplicity 2.

2.6 Proof of Theorem 2.4.4
(2.6.1) By Theorem 2.4.2 above, we get a dense open set U in L(D) such that every f in Uy

satisfies 1a) and 2).
(2.6.2) To complete the proof, it suffices to show that there is a dense open set U, in L(D) such

that for f in Uy, f has polar divisor D and df has g—1 + Zi ((1+a;)/2) distinct zeroes in C-D, each a
double zero. For then any f in the dense open set U := U MU, will satisfy all of 1a), 1b), and 2).

Proposition 2.6.3 Let k be an algebraically closed field of characteristic 2, and let C/k be a
projective, smooth connected curve, of genus denoted g. Fix an effective divisor D = 3. a;P; on C

of degree d > 6g+3. Suppose that each a; is odd. Then in L(D) viewed as the k—points of an affine
space of dimension d+1-g, there is a dense open set U, such that for f in Uy, f has polar divisor D

and its differential df has g—1 + Zi ((1+a;)/2) distinct zeroes in C-D, each a double zero.

proof The proof is based upon the fact that in characteristic two, the canonical bundle Qlc /K ona
curve has a canonical square root, an observation that goes back to Mumford [IMum-TCACI.
Indeed, on an affine open piece Spec(A) of C which it etale over A lk := Spec(klx]) by a local

coordinate X, the derivation d/dx on A has square zero, and both its kernel and its image consist
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precisely of the squares in A. In particular, for any f in A, df/dx is a square in A. So if we cover C
by affine opens U; := Spec(A;), each etale over A lk := Spec(klx;]) by a local coordinate x;, then

QIC /k 18 locally free with basis dx; on Spec(A;). The transition functions fi,j defining Qlc /k With

respect to this covering are the ratios dxi/dxj on (Lliﬂ(Llj. The key point is that these transition

functions are squares, being of the form df/dx, and hence have unique square roots on U;U;, say

fi,j = (gi,j)z' The uniqueness guaranteess that the &i,j form a 1—cocycle, and the line bundle £ they

define is the desired square root of the canonical bundle.
To put this into useful perspective, let us consider the more general situation of a smooth
scheme X over a perfect field k of characteristic p > 0. We introduce the absolute Frobenius

endomorphism F : X — X, which on affine opens Spec(A) is f > fP on A. Then finding a p'th

root of any line bundle on C amounts to descending it through F, i.e., writing it as F*(L) (= L°P)
for some line bundle £ on C. Now there is a general result of Cartier, that to descend a
quasicoherent sheaf M on X/k through the absolute Frobenius F is to give on M an integrable
connection

of p—curvature zero, cf. [Ka—NCMT, 5.11.
Any connection is linear over the subsheaf of Ox consisting of p'th powers. Equivalently,

if we take direct image by F, the connection map
C : FxM = FeM®0Q 5 )

is Ox—linear. Its kernel N := FaxMC is thus a quasicoherent sheaf on X. Using the integrability

and the fact that the p—curvature is zero, one shows that the canonical map F “N = Mis an
isomorphism.
Let us return to our C/k of characteristic 2, and to the canonical square root L of the

canonical bundle. The integrable connection of 2—curvature zero on QIC /k Whose horizontal
sections (F*.Qlc /k)C are L is precisely the integrable connection

C:aloy - alep@nloy
given locally on Spec(A;), A etale over klx; ], by defining C to be the map fdx; > df®dx;. This
local description makes global sense precisely because the transition functions dx;/dx; are squares.

J
The local horizontal sections are precisely (squares)dx;, and these are in turn precisely the exact

forms [simply because f2dx = d(fzx)]. More intrinsically, the local expression of the connection C
is
C(fdg) := df®dg.

Because the local horizontal sections of F*Qlc /k are the image of the exterior differentiation map
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d: F+O¢ — Fxl o,
we have a short exact sequence of locally free Oc—modules
(2.6.3.1) 0—>0c—>F«Oc— L—-0,
where the map F«Oc — L is ' Sqrt(df).
Now take any divisor E on C, and tensor this short exact sequence with I_l(E). Since
F (1~1(E)) = 171(2E), the middle term will be I~ }(E)®F+O = FxF (I"1(E)) = F+(1~1(2E)), and

we get

(2.6.3.2) 0 - I 1(E) - F«(~12E)) » £&1"(E) - 0.
Here £®I_1(E) is the canonical descent of 1_1(2E)®Q1C /k» and the map F*(I_1(2E)) — LRI~
L(E) is f — Sqrt(df).

We now specialize this discussion to our effective divisor D = >.a;P; of degree d > 6g+3,
all of whose coefficients a; are odd. Since the a; are all odd, exterior differentiation defines a map
Fil~1(ZajP; ) — F«(71(2 (3 + DPP@QL ).
because the a; are odd, each a; + 1 is even, and exterior differentiation induces a map
F«(I7L(Z (a; + DP) = B~ L (a; + HPP@QL ).
This last map has precisely the same image as the one above, since we have only enlarged the

source by allowing certain squares.
We have have a short exact sequence

0-I-1Y ((a; + D/2)P)) — F(I71(2 (a;+ DP) —
- T (2 + D2)PP®L — 0.
which is just the exact sequence 2.6.3.2 above, with E taken to be the divisor
E =2 ((aj + D/2)P;.
In view of the coincidence of images above, we also have a short exact sequence
017l ((a; = D2)P)) — F*I_l(ZaiPi) -
- T (a; + D2)PY®L — 0.
The map
F«I~1(ZaP) — 171 (3 + D2)P)SL
is f — Sqrt(df). Its kernel consists of the squares in F*(I_l(ZaiPi), and these are precisely
(remember each a; is odd) the squares of local sections of -l ((a; = D/2)P)).
In this context, we can now come to grips with showing that there is a dense open set Uy
of global sections of F*I_l(ZaiPi) for which df has precisely g—1 +2((a; + 1)/2) zeroes, each of

which is a double zero. It is equivalent to show that there is a dense open set U, of global sections
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of F*I_l(ZaiPi) for which Sqrt(df) as global section of I_l(z ((a; + 1)/2)P)®L has all its zeroes

simple (the number of zeros will then be g—1 +2((ai + 1)/2), which is the degree of I_l(z ((a; +
1)/2)PH®L.

As f runs over the global sections of I_I(ZaiPi), the differentials df as global sections of
I_I(Z (a; + I)Pi)®Qlc /k have no common zeroes. Indeed, by Theorem 2.4.2, part 1), a general

global section f{ of I_l(ZaiPi) has exact divisor of poles X.a;P;, and hence df as section of I_l(z

(a; + l)Pi)®Qlc /k is invertible near each P;. But given any finite subset S of C — D, there is a
dense open set of f's such that df is invertible near each s in S. Take S to be the zeroes of some dff,
and f5 to have df; invertible both at the P; and at the s in S. Then df} and dfy have no common
Zeroes.

Therefore as f runs over the global sections of F*I_I(ZaiPi), the global sections Sqrt(df) of

I_l(Z ((a; + 1)/2)P;))®.L have no common zeroes. From the long exact cohomology sequence
attached to the short exact sequence
0 =171 ((a; - 1)2)P) — FuI"L(ZaPp) —
ST LS (3 + D2)PY®L - 0,
we get a four term short exact sequence
0 = HY(C, 171 ((a; - 1)2)Py) = HO(C, Ful~ 1 (Za;Py)—
— HOC, "I ((a; + D2)PP®L) — HL(C, 17T ((3; - 112)P)) — 0.
The next term is
H(C, FI~1(Zapy) = HI(C, 17 1(Za;P)) = 0,
the vanishing because 2.a;P; has degree > 6g+3 > 2g—2. In our four—term exact sequence, we
rewrite the second nonzero term:
HO(C, Bl 1(Za;Py) = HO(C, -1 (ZaiPy)).
The first nonzero map
HOC, 712 ((3; - 1/2)Py) — HO(C, 171 (Za;Py)
is simply the squaring map, f+— f2. The second nonzero map is f+— Sqrt(df). The last term is
Hl(C, 1_1(2 ((a; — 1)/2)P;)), dual to a subspace of the holomorphic 1-forms, and so of dimension

< g. [For example, if all a; = 1, the last term will be H!(C, 0).1.
Thus our situation is the following. We have a line bundle
L =TI ((a; + D2)PY® L,
whose degree is > 4g+1 (because > (d+1)/2 + (g—1) = (6g+4)/2 + (g—1)). Inside HO(C, L) we

have a linear subspace V, of codimension at most g, whose elements have no common zeroes
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(namely, the image of HO(C, I_I(ZaiPi)) under the map '+ Sqrt(df)). We wish to show that for v

in a dense open set V of V, v as section of £ has all simple zeroes. (We then take U, to be the

inverse image of V in HO(C, I_I(ZaiPi)).) This results from the following elementary lemma.
Lemma 2.6.4 Let k be an algebraically closed field, C/k a proper smooth connected curve of genus

g, L aline bundle of degree d > 4g+1,and V HO(C, L) a linear subspace of codimension < g.
Suppose that the elements of V have no common zeroes. Then the set V — V consisting of those v
in V such that v as section of £ has all simple zeroes is a dense open set of V.

proof First, let us remark that inside [P(HO(C, L)V), the non—zero sections with all zeroes simple
form a dense open set, say U. [Its complement is the image of the total space of the projective

bundle over C with fibre [P(HO(C, L®I(2P))V) over the point P.] We must show that V := VAU
is nonempty.
Pick two nonzero elements v(y and v in V which have no common zero. Denote by D the

divisor of zeroes of v(). Then the map f > fv( is an isomorphism from I_I(D) to L, which carries
the global section 1 of I_I(D) to the global section v(y of £, and which carries some function f7 in
HO(C, I_I(D)) to the global section v;. Because v(y and v have no common zeroes as sections of

L, the functions 1 and 1 have no common zeroes as sections of HO(C, I_I(D)). More concretely,

f has its divisor of poles precisely equal to D.

Thus we are reduced to the case when L is I_l(D), with D an effective divisor of degree d
> 4g+1, and when the linear subspace V of HO(C, I_I(D)) contains the function 1. Because d >

2g, the functions f in HO(C, I_l(D)) with exact divisor of poles D form a dense open set, say U.
[The complement of U is the union, over the finitely many points P which occur in D, of the

subspaces HO(C, I_l(D—P)), each of which has codimension 1 because deg(D) > 2g.1
The open set VU of V is nonempty (it contains f}), and hence is a dense open set of V.

If the ground field k has characteristic zero, pick any f in VNU. Then df is nonzero
(because f is non—constant), and hence has finitely many zeroes in C—D. Then for any A in k which
is not one of the finitely many critical values of f on C—D, the function f — A lies in V and has all its
zeroes simple. Thus f — A lies in V.

If the ground field k has characteristic p > 0, then we can repeat the same argument unless
the f we choose in VNU is a p'th power. Since f has divisor of poles D, f is a p'th power only if D

= pE for some (uniquely determined) effective divisor E, and f is gP for some g in HO(C, I_I(E)).
If every fin VNU is a p'th power, then
VNU c p'th powers of elements of HO(C, I-1(E)).
This leads to a contradiction, as follows. Comparing dimensions, we find

dim(V) < dimHO(C, 171 (E)).
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A nonzero global section of I_I(E) has deg(E) zeroes, so we have the trivial inequality
dimHO(C, I_I(E)) <1+degE)=1+d/p.

On the other hand, V has codimension at most g in HO(C, I_l(D)), SO
dim(V)2d+1-g—-g=d+1-2g.

Thus we get the inequality
d+1-2g<1+d/p,

or
d(p—-1)/p < 2g,

i.e.,
d <2gp/(p-1) < 4g,

contradiction. QED

2.7 Application to Swan conductors in characteristic 2

Theorem 2.7.1 Let k be an algebraically closed field of characteristic 2, and let C/k be a projective,
smooth connected curve, of genus denoted g. Fix an effective divisor D on C of degree d = 6g+3.
Suppose that D = %, a;P; with each a; odd. Fix a finite subset S of C — D. Let f be any function in
the open set U of Theorem 2.4.4. View f as a finite flat map of C-D to Al and form the sheaf &
= f5xQ ¢ on Al Then Fis tame at oo. At each critical value @ of fin A 1, consider the I(a)—
representation (). Then I(@) acts on F(«@) by a reflection of Swan conductor 1, i.e.,

T(a)/?’:(a)l(“) is 1-dimensional, and I(@) acts on ﬂa)/ﬁa)l(a) by a character of order 2 having
Swan conductor 1.

proof That 7 is tame at oo is immediate from the fact that f has a pole of order prime to the
characteristic at each point of D. Because f is Lefschetz on C-D, for each critical value @ of ¥ in

Al, I(@) acts on F(«) by a reflection. The only question is to compute its Swan conductor. We
have

Swan (F(a)) = Swan ,(F(a)/F(a) (@),
so what we must show is that each Swan,(#(a)) = 1. Since the character ?'(a)/?—'(a)l(a) has order
2 and we are in characteristic 2, we have an a priori inequality

Swan,(F(@)) 2 1.

Because df has g—1 +Z(1+ai)/2 zeroes, and f is Lefschetz, there are this many critical values. Thus
it suffices to show that

Zaoin CritVal(f) (1 + Swan,,(F(@)) = 2g-2+2(1+a;).
To show this, view C =D - U~ 1(a/) as a degree d finite etale covering of Al - CritVal(f). Each
fibre over a critical point @ has d—1 instead of d points, so the Euler characteristic upstairs is given
by
X(C-D-U,f~ l(a), Q p=2-2g- #(Dred) — (d-D)#CritVal(f).



Chapter 2: Lefschetz pencils, especially on curves—69

Computing downstairs, using the Euler—Poincare formula and remembering that ¥ is tame at oo, we
get

X(C =D - U,f (@), Q) = xy(Al - Critvai(t), 7)

=d(1 — #CritVal(f)) — za, in CritVal(f) Swana(ﬂa)).
Equating these two expressions for y(C - D — U~ 1(cv), Q 7)» we get

2-2g- #(Dred) — (d=-D#CritVal(f)=
=d(1 — #CritVal(f)) — za in CritVal(f) Swana(ﬂa)).
Cancelling the like term —d#CritVal(f), we get
2-2g- #(Dred) +#CritVal(f)=d - X, i, CritVal(f) Swan (F(@)),
or, what is the same,
Y in Critval(f) (1 + Swang(F(@)) = 2g-2 + #D') + d,
which is precisely the desired equality
2ain CritVal(f) (1 + Swan(F(@)) = 2g-2+2(1+a;). QED
Remark 2.7.2 Suppose we take an f which satisfies conditions 1a) and 2) of Theorem 2.4.4, but not
necessarily 1b). The above argument gives the equality
za, in CritVal(f) (1+ Swana(?'(a)) = 2g—2+2(1+ai).
Therefore Swan ,(F(a) =1 for every critical point « if and only if f satisfies condition 1b) as well.
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3.0 The two sorts of induction

(3.0.1) Let G be a group, H G a subgroup, R a commutative ring, and V a left RIHl-module.
There are two standard notions of the induction of V from H to G. The first, which we call
"standard" induction, is

(3.0.1.1) IndO(V) := RIGI®R 1]V
with its structure of left RIGImodule through the first factor.
The second, which we call Mackey induction, is
(3.012)  MalndyC(V) := Hompegy RIH l-modRIGL V)
= Homyeft Hgets(G, V),

which becomes a left RIGl-module by defining

(Lgp)(x) = ¢(xg).
(3.0.2) For standard induction, we get, for any left RIGl-module W, one version of Frobenius
reciprocity:
(3.0.2.1) Homye gt R1H1=mod(V> WIH)

= Homef; R[G l-mod(ndpo(V), W),

the isomorphism being ¢ — (the map gov — g/(v)). Taking for W the trivial RIG] module R with
trivial G—action, we get an isomorphism of coinvariants

(3.0.2.2) Vi = (ndg (V)6
(3.0.3) For Mackey induction, we get the other version of Frobenius reciprocity:
(3.0.3.1) Homyett RIH1=mod(WHH, V)

= Homjeft RIG -mod(W> MalndygO(V)),

the isomorphism being ¢ — (the map w +— (g +— ¥(gw))). Taking for W the trivial RIG] module R
with trivial G—action, we get an isomorphism of invariants

(3.0.3.2) VH = MalndyG(v))G.

(3.0.4) When H has finite index in G, these two constructions are isomorphic, as follows. Define
an R-linear map
(3.04.1) T : Homjeft H—gets(G, V) — R[G]®R[H]V

as follows. Pick any set of right coset representatives g; for HyG, i.e. G is the disjoint union of the
right cosets Hg;. Given an element ¢ in Homa g H—gets(G, V), define T(¢) to be the element
(3.0.4.2) T(p) := (g~ ®(gy)

in RIGI®R i7]V. This map T is visibly an isomorphism of the underlying R—modules, each of

which is #(G/H) copies of V.
(3.0.5) To see that T is well-defined independent of the choice of right coset representatives g;,

notice that any other right coset representatives are of the form h;g; for some h; in H. Then compute

T(hig)~1®p(higy) = (g~ Ly~ I®hie(g) = (g~ 1@p(g)).
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To see that T is a homomorphism of left RIG]-modules, fix a in G, ¢ in Homje i H—sets(G> V).
Then

T(L, (@) = X(g)~ 1 ®L0)(gp) = (g~ | ®@p(g;a)
= a(Ta~L(g)~1®p(gia) = a(X(g)~ 1 ®p(gia)) =a(T(p)),

where we compute T(p) using the right coset representatives g;a.

(3.0.6) If H is not assumed of finite index in G, then the above construction T establishes an

isomorphism from the submodule of Homjef; g_gets(G> V) consisting of elements whose support

set
is a finite union of right cosets of H in G, with RIGI®g [;17V.

(3.0.6) When H is of finite index in G, we write IndHG(V) for "the" induction, and we have two

Frobenius reciprocity isomorphisms:
(3.0.6.1) Homjeft R[H1-mod(V> WIH)

= Homjefy RIG l-modImdgC(V), W),
and
(3062) Homleft R[H]—mod(WIH’ V)

= Homjeft RIG k-mod(W> Indg (V).
3.1 Induction and duality
(3.1.1) Let H be a group, R a commutative ring, and V a left RIHl-module whose underlying R—

module is free of finite rank. Denote by VV the dual ("contragredient") representation. Its
underlying R—module is

VY :=Homg_,04(V, R,
and the left H-action on VV is defined as follows: given an R-linear map ¢ : V — R, we define
hg to be the R-linear map v — go(h_lv). Thus the canonical pairing

<,>:VxVY SR

<V, > 1= @(V),
has the equivariance property that forallhin H, vin V, ¢ in VV,

<hv, hp> = <v, ¢>.
(3.1.2) Equivalently, suppose we are given two left RIH]-modules V and W, both of whose
underlying R—modules are free of finite rank, and an R—bilinear pairing

<,>:VXW-—->R
which is H-equivariant:

<hv, hw> = <v, w>.
If this pairing makes V and W R—duals of each other, then V and W are the contradgredients of
each other.
Lemma 3.1.3 Given V and W as in 3.1.2 above which are contragredients of each other, with
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pairing <, >p, suppose that H is a subgroup of finite index in G. Then IndHG(V) and IndHG(W)
are contragredients of each other:
IndggG(V) = Indg S (VY.
proof The simplest way to see this is think of induction as Mackey induction, and to write down <
, >@ a priori. To do this, pick a set of coset representatives g; for for HyG. Given maps of left H-
sets
f;:G—>Vandfy:G— W, we define

<, >g : IndgO(V) x Ind;S(W) — R
by

<f1, f2>G = 2 <f1 (gl), f2(g1)>H
This pairing visibly makes the underlying R—-modules R—duals of each other.

This pairing is independent of the choice of coset representatives g;. Indeed, any other

choice is h;g; for some elements h; in H, and for this new choice the individual summands remain
unchanged:
<fy(hjgy), fo(hg)>y = <hf;(gp), hfr(g)>y = <f1(gp- f2(g)>y-
The pairing thus defined is G—equivariant. For a in G,
<L,f1, Lafr>G = X <L, f(gp), L) (g)>H
=2 <fi(g;a), fH(ga)>y.
This last sum is simply the expression of <f}, fy>c using the right coset representatives gi;a. QED
Corollary 3.1.4 Hypotheses and notations as in 3.1.3, If V is orthogonally (respectively
symplectically) self dual, then IndHG(V) is orthogonally (respectively symplectically) self dual.
proof If the form <, >y on VXV is symmetric (respectively strongly alternating, i.e. if <v,v> =0
for all v in V) then the bilinear form <f}, f;> is symmetric (respectively strongly alternating).
QED
3.2 Induction as direct image
(3.2.1) Suppose X and Y are connected schemes, and f: X — Y is a finite etale map. Then H :=
71(X, any base point x) is an open subgroup of finite index in G := (Y, the base point f(x)). If R
is a topological ring, for instance [, or [F( or Z,or Qg or Q ¢» We may view a continuous
representation V of H on, say, a free R—-module of finite rank, as (the stalk at x of) a lisse sheaf ¥
of R—modules on X. The direct image f«F is the lisse sheaf of R—modules on Y corresponding to

the induction of V from H to G. For G a lisse sheaf of R—-modules on Y, corresponding to a

continuous representation W of G, WIH corresponds to the lisse sheaf f*g on X. So viewed, the
second (and less standard) form of Frobenius reciprocity becomes the standard adjunction
isomorphism

(3.2.1.1) Homx(f*G, F) = Homvy/(G, f+F),
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while the first (and more standard) form of Frobenius reciprocity becomes the exotic adjunction
isomorphism

(3.2.1.2) Homyx(G, f'F) = Homy (f,G, F),
cf. [SGA4, XVIIL, 3,1,4,31.

3.3 A criterion for the irreducibility of a direct image
Proposition 3.3.1 (Irreducible Induction Criterion) Let k be an algebraically closed field, C/k and

Cy/k two smooth connected curves, and f: C; — C, a finite flat map of degree d > 1 which is

generically etale. Let £ be a prime number invertible in k, and let # be an irreducible middle
extension Q (—sheaf on Cy, i.e., ¥ is the extension by direct image of a lisse irreducible Q ¢—sheaf

on a dense open set of Cy. Suppose that Sing(F), the set of points at which ¥ is not lisse, is
nonempty. Suppose further that for some s in Sing(¥), the fibre f— 1(f(s)) consists of d distinct
points, only one of which lies in Sing(¥). Then f+# on C, is an irreducible middle extension.

proof We first recall why fx¥ is a middle extension. Let Uy in C5 be a dense open set over which f

is finite etale, and such that f~ 1(U2) does not meet Sing(F) (i.e., such that F is lisse on f~ 1(U2)).
Then we have a commutative diagram
i
=, -
il L f
Uy > Cy
Jo-
Here ¥ is jl*jl*ﬁ’:, so fxFis f*jl*j1*7:= jz*f*jl*ﬁ’:. The sheaf f*jl*ﬁ’:on U, is lisse (¥ is lisse on
- 1(Uz), and T is finite etale), and it is equal to jz*f*?"(commutation of fx with localization on the
base). Thus f«F is jz*jz*f*f, as required.
It remains to prove that fx¥ is irreducible on U,. By assumption, FIf™ 1(U2) isa

continuous irreducible Q ¢—representation of 71 (f~ 1(U2)), an open subgroup of finite index d in
71(Uy). The lisse sheaf (f+¥)IU, is the induced representation of 71(U,), and is therefore
completely reducible (because we have coefficients Q ¢ of characteristic zero: this complete
reducibility can fail for [I?f coefficients, just think of taking [/1+[F, for the /~th power map of G, to
itself).

So f«# on Uy is irreducible if and only if Homyy 2(f>x<7:, f+%) is one—dimensional, or
equivalently, has dimension < 2. By adjunction, we have

k
HomUz(f*f fxF) =H0mf—l(U2)(f fxF, 7).
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Once again, e Fis completely reducible on {— 1(U2), and the dimension of Homf-l(U 2)(f*f>z<5’,

F) is the multiplicity of Fin f f+7-
So what we must show is that @ is not a direct summand of f*f*?‘. To see this, we will show
that already as representations of the inertia group I(s), F@% is not a direct summand of f 1o F

Recall that f is etale at every point of the fibre f— 1(f(s)), and that ¥ is lisse at every point of this
fibre except for the point s itself. Therefore as a representation of I(s), f*f+F is the direct sum of

F(s) and of d—1 trivial rank(¥)—dimensional representations of I(s). Because #(s) is a nontrivial
representation of I(s), we claim that F(s)@%(s) is not a direct summand of F(s)@(trivial). Indeed, if
it were, then by Jordan Holder the semisimplification of #(s) would be trivial, i.e., #(s) would be a
unipotent representation of I(s), i.e., a homomorphism from I(s).to the group of upper unipotent
matrices. If F(s) is nontrivial, then some element y of 1(s) has a nontrivial Jordan normal form.
From the theory of Jordan normal form we see that even after restriction to the cyclic subgroup
<y>, F(s)®F(s) is not a direct summand of F(s)D(trivial). QED

Remark 3.3.2 If Sing(F)f;pjte is empty, f+F need not be irreducible (e.g., for # the constant sheaf
Q. Q, is always a direct factor of f+Q,).

3.4 Autoduality and induction
Proposition 3.4.1 Hypotheses and notations as in the Irreducible Induction Criterion 3.3.1 above, ¥
on Cy is self—dual if and only if £+ on C, is self—dual. If both are self—dual, either they are both

orthogonally self—dual, or they are both symplectically self—dual.
proof The implication = is Corollary 3.1.4 above. For the converse, suppose that f«% is self—dual,

but that ¥ is not self dual. We arrive at a contradiction as follows. We know that £« is irreducible,
and hence that ¥ occurs in f*f*?‘ as a direct summand. Because f« is self dual, we have f+F =~
(fxF)Y = f+(FV). Therefore ¥ occurs in £+ as a direct summand. If Fis not isomorphic to
FV, then FOFY is a direct summand of f*f*?'. Looking at stalks at s, we get that F(s)®F(s)" is a

direct summand of F(s)@(trivial), which leads to a contradiction exactly as in the proof of 3.3.1
above.
Suppose now that F and f«F are both self—dual. Since they are both irreducible, each

admits a unique (up to a Q (X—factor) autoduality, and that autoduality is either symplectic or

orthogonal. By Corollary 3.1.4 above, once ¥ is self—dual, either orthogonally or symplectically,
f+F is autodual of the same sort. QED

3.5 A criterion for being induced
(3.5.0) We work over an algebraically closed field K of characteristic zero. We are given a group G
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and a subgroup H < G of finite index. Given a K—representation A: H — GL(W) of H, denote by
chpy :H—->K
its character
ch  (h) :=Trace(A(h)).
Extend the function ch o by zero to all of G, i.e., consider the function
chjp :G—->K
defined by
chyA(g) = chp(g), if g lies in H,
chyA(g) =0 if g does not lie in H.

Denote by IndHG(A), or simply Ind(A), the G—representation IndHG(W). One sees easily from
the definitions that the character of Ind(A) is the function on G defined by

= -1
Chlnd(A)(g) = zy rep's of G/H chyA(Yhy ™).

Thus the character of Ind(H) is supported in U ¢inG gHg_l.

(3.5.1) Suppose now in addition that H is a normal subgroup of G. Then the character of Ind(A)
vanishes outside of H. To what extent is it true that an irreducible representation p of G whose
character is supported in a normal subgroup H c G of finite index is induced from H? Here is a
very partial answer.

Theorem 3.5.2 Suppose H G is a normal subgroup of finite index, and that the quotient group
G/H has squarefree order N = 2. Suppose given p : G — GL(V) an irreducible, finite—

dimensional representation of G, whose character chp is supported in H. Then there exists an

irreducible representation A of H such that p = IndHG(A). If in addition dim(p) = #(G/H), then A
is a (linear) character of H, i.e.,. dim(A) =1
proof Because p is irreducible, it is completely reducible. Because H is normal in G (or because H
is of finite index in G and char(K) = 0), plH is completely reducible, say

plH = Zi niAi'

Because H is normal in G, and p is irreducible on G, the various A; are all G—conjugate, and all the

=ltor

n; have a common value n:
pH = Zi=1 tor nAi'

Recall that for any completely reducible finite—dimensional K—representation A of H,
Ind(A) is complete reducible on G. (Since K is of characteristic zero, it suffices to check complete
reducibility of the restriction of Ind(A) to any normal subroup I in G of finite index; if we take I'
to be H itself, we are looking at Ind(W)IH, which is the direct sum @7 rep's of G/H AD) of
conjugates of A.)

For any two completely reducible finite dimensional K— representations p and o of G, we
denote as usual
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<, 0>@G = dimKHomK[G]_mod(ﬂ, o),

and similarly for H. Frobenius reciprocity now takes the following numerical form: for 7
(respectively 7) a completely reducible finite dimensional K- representation of G (respectively of
H), we have

<7, nlH>y = <Ind(7), ™>G
We now apply this to our situation. Recall that

le = Zi=1 tor nAi'
Thus

<plH, plH>p := <X 2

nAi’ 2 nAi>H = 2i=1 tor Il2 = rxn~.

On the other hand, Frobenius reciprocity gives

i=ltor i=ltor

<plH, plH>py = <IndC(pH), p>(.
On the other hand, by the "projection formula", we have
IndO(pH) = p®g IndgrS ().
Now IndHG(HH) is the regular representation of G/H, viewed as a representation of G. So its

character vanishes outside of H, and is equal to #(G/H) at every h in H. Since the character of p is
itself supported in H, we have

chind(piH) = #(G/H)Xch), = chyG/H) copies of p-
Because completely reducible representations over an algebraically closed field of characteristic
zero are determined up to isomorphism by their characters, we find

Indyy O (plH) = #(G/H) copies of p.
Returning to the inner products above, we get
<pH, plH>p = <IndHG(pIH), p>g = <#(G/H) copies of p, p>g.= #(G/H).
Comparing the two evaluations of <plH, plH>py, we find
rxn? = #(G/H).
But #(G/H) is squarefree, so we infer that n=1, r = #(G/H). Thus plH is the direct sum of #(G/H)
distinct irreducibles A; of H, which are transitively permuted by G—conjugation. This means

precisely that H is the stabilizer of the isomorphism class of any single A;, and that for each i we
have
p = IndgS(A)).
Once we know this, taking dimensions we get
dim(p) = #(G/H)dim(A),
which makes obvious the final assertion of the theorem. QED

Remark 3.5.3 Suppose that the group G in Theorem 3.5.2 above is a topological group, H is an
open and closed normal subgroup of finite index, K is a topogical field, and the representation p is
continuous in the sense that, in some (or equivalently, in every) K—basis of the representation
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space, say V, of p, each matrix coefficient of p is a continuous K—valued function on G. Then each
representation A; of H is continuous. Indeed, in a suitable basis of V, plH is block diagonal, with

blocks the Aj. So in this basis each matrix coefficient of each Ay is the restriction to H of a matrix

coefficient of p, hence is continuous.
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4.0 Review of middle additive convolution: the class Poonv

(4.0.1) We fix a prime number f. We work on Al over an algebraically closed field k in which ¢ is

invertible. We wish to define a certain class £ of irreducible middle extension Q ¢—sheaves ¥

conv
on Al. Given an irreducible middle extension Q ¢—sheaf ¥ on Al (or equivalently a non—punctual
irreducible perverse sheaf K = #111on AL, denote by

(4.0.1.1) S :=Sing(Ffinite

the finite set of points in Al at which Fis not lisse.

(4.0.2) We say that ¥ lies in P if

(4.0.2.1) rank(F) + #S + 2, . SU{eo} Swany(¥) = 3.

(4.0.3) If k has characteristic zero, then among all irreducible middle extensions ¥, only the

constant sheaf Q ¢ and the Kummer sheaves £X(X—04)’ (v a nontrivial character of ﬂltame(G

in AL(K)) fail to lie in P -
cony if and only if #S > 2.

(4.0.4) If k has characteristic p >0, then among all irreducible middle extensions ¥, only the
constant sheaf Qp, the Kummer sheaves £X(X—0/) as above, and the Artin—Schreier sheaves
pa@in AL(Kk)) fail to lie in P
(4.0.5) In [Ka—RLS, 3.3.3 and 4.3.10, where the objects in
shown that the class $

m)> @
Equivalently, in characteristic zero, an irreducible middle extension F

lies in P

Llﬁ(ax) (¥ a nontrivial additive character of F conv:

Pcony are called "of type 2d)"], it is
conv 1S stable by middle additive convolution with Kummer sheaves
j#Ly(x) on A 1 v any nontrivial character of 71%@ME(G ), and j the inclusion of Gy, into A I Let

us recall the basic setup. Given ¥ in

cony- and a Kummer sheaf LX(X) as above, form the

perverse sheaves K := Fll1]land L := j*LX(X)[I] on Al. On A2 with its two projections to Al,
form the external tensor product KQL := (pry >l<K)®(pr2>kL). By the sum map

(4.0.5.1) sum: AZ — Al
form the two flavors of total direct image, Rsum((KQL) and Rsumx(KQL). Because # is in
P both Rsum(KQL) and Rsumx(KQL) are perverse. The middle additive convolution

K* id+L 1s defined to be the image, in the category of perverse sheaves, of the canonical "forget

conv?

supports" map:
(4.0.5.2) K* hid+l = Image(Rsum (KQL) — Rsum«(KQL)).

One knows that K* | .4, L is of the form Gl11 for an irreducible middle extension G in P, We
write

(4.0.5.3) G= T*mid+'£)('

4.1 Effect on local monodromy

(4.1.1) We now recall the relations between the local monodromies of # and G. For any point t in
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[Pl, we denote by 7(t) and G(t) the representations of the inertia group I(t) attached to ¥ and G
respectively. Given any Q ¢—representation M(t) of I(t), we have its direct sum break ("upper

numbering") decomposition [Ka—GKM, 1.1]into I(t)—stable pieces

4.1.1.1) MO =@, i, 0 M(t)(break=q).
If we collect the terms according as to whether =0 or @ >0, we get the coarser decomposition
(4.1.1.2) M(t) = M(t)!2me @ M(pWild,

(4.1.2) Denote by Rep(I(t), Q p) the category of finite—dimensional continuous Q ¢-Tepresentations
of I(t). For any subset 8 of Qx(), denote by Rep(I(t), Q p)(breaks in B) the full subcategory of

objects all of whose breaks lie in 8. When k has characteristic p >0, Laumon [Lau—-TFC, 2.41 has
defined local Fourier transform functors

(4.1.2.1) FTloc(t, =) : Rep(I(t), Qp) — Rep(I(=), Q)

with the following properties.

(4.1.3) Fortin A 1, FTloc(t, «) is an equivalence

(4.1.3.1) FTloc(t, =) : Rep(I(t), Qp) = Rep(I(e), Q )(breaks < 1),

which interchanges objects of dimension b having all breaks a/b with objects of dimension a+b
having all breaks a/(a+b).

(4.1.4) For t= oo, FTloc(oo, o) kills Rep(I(), Q p)(breaks < 1), and induces an autoequivalence of

Rep(I(), Q p)(breaks > 1), which interchanges objects of dimension a having all breaks (a+b)/a

wth objects of dimension b having all breaks (a+b)/b.
(4.1.5) In terms of these local Fourier Transform functors, we can define, in characteristic p >0,
local convolution functors as follows.

(4.1.6) For tin Al, we define

(4.1.6.1) MCXIOC(t) : Rep(I(t), Q 7) — Rep(I(1), @f)

to be the autoequivalence

(4.1.6.2) FTloc(t, oo)_lo(M —> M®L)?(X))0FTloc(t, o0),

where y denotes the inverse character. The local convolution functor MC)?loc(t) is a quasi—inverse
to MCXloc(t).

(4.1.7) For t=cc, we define

(4.1.7.1)

MC, loc(e) : Rep(I(=2), Qp)(breaks > 1) — Rep(I(e2), Qp)(breaks > 1)

to be the autoequivalence

(4.1.7.2) FTloc(ee, 22)"1o(M > M® Liy(x))oF Tloc(ee, ).
Its quasi—inverse is MC)?loc(oo).

(4.1.8) These functors preserve both dimensions and breaks. On tame objects M in Rep(I(t), Q Pt

in Al, MCXIOC(t) is just the functor
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M~ M®£X(x—t)’
cf. [Ka—RLS, proof of 3..361 On objects which are not tame, MCXloc(t) is not given by this rule in
general, cf. [Ka—RLS, 3.4] for a discussion of this point.
(4.1.9) In characteristic zero, we define, for t in Al, MCXloc(t) to be the functor on Rep(I(t), Q P
given by

M— M®£){(X—t)’

Using the relation of middle additive convolution to Fourier transform, Laumon's results on

the local structure of Fourier transform, and, if the characteristic is zero, a "reduction to

characteristic p" argument, we find
Theorem 4.1.10 [Ka—-RLS, 3.3.5-6 and 4.3,11]1 Given ¥ in

Ly(x) PUtG = T mjd+Ly-in Peony-

conv and a nontrivial Kummer sheaf

1) For t in Al, the I(t)-representations 7(t) and G(t) are related as follows:
GOIGMOIO = MC, locO)(FD/FDIV),

1a) We have an isomorphism of tame I(t)—representations

GRG0 = (FRMeFOI OB Ly ()
1b) We have an equality of dimensions

dimg(®WVd = dimgyWild,
Ic) We have an equality of dimensions

dim /GO = dim Fo/FHIO
2) The I(eo)-representations F(eo) and G(eo) are related as follows.
2a) There exists a tame I(eo)—representation M such that

ﬂoo)tame — M/MI(OO),

G(e)AME = (M® Ly () (M® L ().
2b) We have an isomorphism of I(eo)—representations

G(=)(0 < break < 1) = F(e0)(0 < break < 1).
2¢) We have an isomorphism of I(eo)—representations

dim G(eo)(breaks > 1) = MCXloc(oo)(T(oo)(breaks > 1))
2d) We have an equality of dimensions

dim g(oo)wﬂd =dim 7:(00)Wﬂd
proof If k has characteristic zero, then F and G are necessarily tame, and this is [Ka—RLS, 4.3.111,
proven by reducing to the characteristic p > 0 case. If k has characteristic p > 0, this is just a
spelling out of [Ka—RLS, 3.3.51, using the discussion in the proof of [Ka—RLS, 3.3.6] to identify
more precisely what happens on the tame parts. QED

Corollary 4.1.11 Hypotheses and notations as in 4.1.10, the action of I(ec) on G(e0) is not
semisimple, and hence does not factor through a finite quotient of I(@), if any of the following
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conditions is satisfied.

1) Foo)l(2) 20, i.e., F(o0)AME hag o unipotent Jordan block of dimension > 1.

2) ﬂoo)tame®£p—(x) has a unipotent Jordan block of dimension > 2, for some p # y, p nontrivial.
3) ﬂoo)tame&ﬁ)((x) has a unipotent Jordan block of dimension > 3.

4) Foo)Wild jg not I(c0)—semisimple.

proof If 1) holds, then from the isomorphism F(eo)taMe = M/MI(*) we see that M has a direct

summand which is a unipotent Jordan block U of dimension > 2. Then U®£X(X) is a direct

summand of M®£){(x)' But (U®£X(X))I(°°) =0, so U®£X(X) is a direct summand of

I(e0) o
(M® Ly, ()/M® Ly, () 1) = of G(eo).
If 2) holds, then M has a direct summand U®Lp(x) with U a unipotent Jordan block of
dimension > 2, and hence G(e~) has a direct summand U®£p(x)®£)((x)'
If 3) holds, then M has a direct summand U®£)?(x) with U a unipotent Jordan block of

dimension d > 3. Hence M®£X(X) has a direct summand U, and hence G(c)t¥M€ hag a direct

summand U/UI(°°), which is a unipotent Jordan block of dimension d—1 = 2.

Suppose 4) holds. If F(e)(0 < slopes < 1) is not I(ec)—semisimple, neither is the
isomorphic representation G(e=)(0 < slopes < 1). Suppose F(eo)(slopes > 1) is not I(e0)—
semisimple. As MCXloc(oo) is an autoequivalence, it preserves non—semisimplicity, so

G(o)(slopes > 1) is not I(ee)—semisimple. QED

4.2 Calculation of Mcxloc(a) on certain wild characters

Proposition 4.2.1 Let k be an algebraically closed field of characteristic p >0, @ in Alk), ra
prime # p. Let y and p be (Q f)x—valued characters of I(@). Suppose that y is nontrivial of order

prime to p, and suppose that p is nontrivial of p—power order. Put n := Swan(p). Then for some
nontrivial character p of I(a) of p—power order and the same Swan conductor n, we have

MC, loc(a)(p) = s,
proof By additive translation, we first reduce to the case @ = 0. We then use a global argument.
Any character p of p—power order of I(0) has a canonical extension to a character of p—power

order of 7r1([P1 —(0), cf [Ka=LG, 1.4.2]. View this canonical extension as a lisse rank one Q —

sheaf on P! — {0}, restrict it to G, and denote by ¥ in P, its middle extension to Al. Denote

conv
by Hin P, the middle additive convolution

Directly from the definitions, one sees that # is lisse on Gy, of rank n+1.

Now apply the results on local monodromy of middle additive convolutions recalled in
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Theorem 4.1.10 above. We have an isomorphism of I(0)—representations
H(©0)/H(0)O) = MC, loc(0)(p).
Because MCXIOC(O) preserves both dimensions and breaks, we see that 7{(0)/7{(0)1 is a (one—

dimensional) character of I1(0), whose Swan conductor is n.
The local monodromy of H at oo is
H (o) = LX®(unipotent pseudoreflection of size n+1).

Now consider the lisse rank one Q ¢—sheaf det(H) on G,,. As I(0)-representation, it is
MC, loc(0)(p) = H(0)/H(0)1O) [simply because H(0)1(0) has codimension 1 in H(0)1. As I(co)—
representation, it is LXn+1. Hence LX—n—1®det(7—() is lisse of rank one on P! — (0), so must have

p—power order (because Pl - (0) is tamely simply connected). Its restriction to I(0) is the required
character p. QED

Corollary 4.2.2 Let k be an algebraically closed field of characteristic 2, @ in Al(k). Let y and p be
@Q ()x—valued characters of I(@). Suppose that y is nontrivial of odd order, and suppose that p has

order 2 and Swan(p) = 1.Then for some nontrivial character p of I(«) of order 2 and Swan
conductor 1, we have

MC, loc(a)(p) = ¥2p.
Thus MCXIOC(CL’)(,D) is a character of order 2x(order of y) = 6.

proof The only point to remark is that, in any finite characteristic p, non—trivial characters of I(@) of
p—power order having Swan conductor < p are all of order p, as one sees from [Ka—GKM,

8.5.7.11and an obvious induction. Therefore p has order 2. Since y has odd order, )(2 has the same
odd order, whence the asserted order of MCXIOC(a)(p). QED
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5.0 Families of twists: basic definitions and constructions

(5.0.1) In this section, we make explicit the "families of twists" we will be concerned with. We fix
a an algebraically closed field k, a proper smooth connected curve C/k whose genus is denoted g,
and a prime number ¢ invertible in k. We also fix an integer r > 1, and an irreducible middle
extension Q ¢—sheaf ¥ on C of generic rank r. This means that for some dense open set U in C,

with j : U — C the inclusion, #IU is a lisse sheaf of rank r on U which is irreducible in the sense
that the corresponding r—dimensional Q ¢—representation of 7r1(U) is irreducible, and F on C is

obtained from the lisse irreducible sheaf #1U on U by direct image: ¥ = j«(F1U) := j« j*f

(5.0.2) We say that ¥ is self—dual if for every dense open set U on which it is lisse, 71U is self-
dual as lisse sheaf, i.e., isomorphic to its contragredient. It is equivalent to say that the perverse
sheaf F111on C is self—dual, but we will not need this more sophisticated point of view.

(5.0.3) The finite set of points of C at which ¥ fails to be lisse, i.e., the set of points x for which
the inertia group I(x) acts nontrvially on ¥, will be denoted Sing(¥), the set of "singularities" of F.
Thus ¥ is lisse on C — Sing(¥), and Sing(¥) is minimal with this property.

(5.0.4) We fix an effective divisor D = X.a;P; on C, whose degree d := Xa; satisfies d > 2g+1.

Some or all or none of the points P; may lie in Sing(#). We denote by L(D) the Riemann Roch
space HO(C, I_I(D)), and we view L(D) as a space of functions (maps to Al) on the open curve C
-D.

(5.0.5) Corresponding to the choice of D as the "points at " of C, we break up the set Sing(F) as
the disjoint union

(5.0.5.1) Sing(¥) := Sing(Fipite U SINg(Foo
where

(5.05.2) Sing(Ffipite = Sing(FHN(C-D),
(5.0.5.3) Sing(F), := Sing(F)ND.

Lemma 5.0.6 Given a finite subset S of C-D, denote by
Fct(C, d, D, S) c L(D)
the set of nonzero functions f in L(D) with the following property:

the divisor of zeroes of f, {~ 1(0), consists of d = degree(D) distinct points, none of which
lies in SUD.
Then Fct(C, d, D, S) is (the set of k—points of) a dense open set in L(D) (viewed as the set of k—

points of an affine space A4t1=8 over k).

proof The projective space P(L(D)V) of lines in L(D) is the space of effective divisors of degree d
which are linearly equivalent to D. In the space Symd(C) of all effective divisors of degree D,
those consisting of d distinct points, none of which lies in SUD, form an open set, say U1. When
we map Symd(C) toJ acd(C), the fibre over the class of D is P(L(D)V). The intersection of this
fibre with Uy is an open set Uy in P(L(D)V). The inverse image Us of this set in (D) — {0} is the
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set Fct(C, d, D, S) in L(D), which is thus open.
To see that U5 is nonempty, we argue as follows. Suppose there exists a function f in L(D)

whose divisor of poles is D and whose differential df is nonzero. Then for any t in k which is not a
value taken by f on either S or on the set of zeroes in C-D of df, the function f—t lies in Uz (it is

nonzero on S, and it has simple zeroes because it has no zeroes in common with df).
Why does such an f exist? By Riemann—Roch, for each point P; in D, L(D - P;) is a

hyperplane in L(D): as k is infinite, L(D) is not the union of finitely many hyperplanes. So we can
find a function f in L(D) whose divisor of poles is D. If any of the coefficients a; in D = Ya;P; is

invertible in k, then df is non—zero, because at P; it has a pole of order 1+a;. If all a; vanish in k,

then k has charactertistic p, all the a; are divisible by p, say a; = pb;, and D = pDyy, for D) the

divisor Dy := ¥; b;P;. If df vanishes, then f=gP for some g in L(D()). In this case, pick a function g
in L(D — Py) whose divisor of poles is D—P; (still possible by Riemann—Roch). Then dg is
nonzero (it has a pole of order a; at Pq). For all but finite many values of t in k, f — tg still has

divisor of poles D. For any such t, f — tg is the desired function. QED

Remark 5.0.7 Perhaps the simplest example to keep in mind is this. Take C to be P!, and take D to

be doo. So here C—Dis Al = Speclk[X1), and Fct(C, d, D, S) is all the polynomials of degree d in
one variable X with d distinct zeroes, none of which lies in S.

(5.0.8) We now turn to our final piece of data, a nontrivial Q {;X—Valued character y of finite order n

2 2 of the tame fundamental group of G,/k, corresponding to a lisse rank one Q ¢—sheaf ‘EX on

Gy, The order n of y is necessarily invertible in k, indeed 7 "8™M&(G,, /k) is the inverse limit of the

groups un(k) over those N invertible in k, corresponding to the various Kummer coverings x —
xM of G, by itself.
(5.0.9) When k has positive characteristic, the LX‘S having given order n are obtained concretely as

follows. Take any finite subfield [F; of k which contains the n'th roots of unity (i.e., g=1 mod n),

q

and take a character y : ([Fq)>< —Q* of order n. View G ,/F, as an ([Fq)x—torsor over itself by the

q
map ("Lang isogeny")

(5.0.9.1) I - Froby : x = x174,

and push out this torsor by the character y : ([Fq)>< -Q (x to obtain a lisse rank one LX on (Dm/[Fq,
Its pullback to G /K is an LX of the same order n on G,/k, and every LX of order n on G/k is
obtained this way.

(5.0.10) Given f in Fct(C, d, D, Sing(¥)fipjte)» We may view f as mapping the open curve C
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-D- 1“1(0) to G, and we form the lisse rank one @(—sheaf LX(f) = f*LX onC-D - I“I(O).

When no ambiguity is likely, we will also denote by LX(ﬂ the extension by direct imgage of this

sheaf to all of C. We then "twist" ¥ by £X(f)' This means that we pass to the open set
j:C=D-f1(0) - SingPipite = C,

on which both F and LX(f) are lisse, on that open set we form T@LX(Q, and then we take the

direct image j*(T®LX(D) to C. Notice that this twisted sheaf j*(7’®£X(D) on C is itself an

irreducible middle extension.

(5.0.11) Since at each point of {~ 1(O) and at each point of Sing(F)f;pite one of the factors

or LX(f) is lisse, the sheaf j*(T®£X(f)) | C-D is the literal tensor product T@Lx(f) | C-D. Thus

if we denote by j..: C — D — C the inclusion, j*(f®£x(ﬂ) as defined above is obtained from the

literal tensor product T@LX(ﬂ | C—D by taking direct image across pred. j>k(7‘-®£x(f)) =
jm*(T®£X(f)). This alternate interpretation will be used later, in 5.2.4 and 5.2.5.

(5.0.11) We then form the cohomology groups Hi(C, j>x<(7:®£)((f))) with coefficients in the
twist j*(7‘-®£){(f)). Our eventual goal is to study the variation of these cohomology groups as f

varies. But first we must establish some basic properties of these groups for a fixed f.

5.1 Basic facts about the groups Hi(C, j*(T&CX(f)))
Lemma 5.1.1 Hypotheses and notations as in 5.0.1, 5.0.4, 5.0.8, and 5.0.10 above, the cohomology
groups H(C, j«(F®.L, (f))) vanish for i=1.

proof The H! vanish for cohomological dimension reasons for i not in [0, 21. For i=0, we have
HO(C, j«(F®L(g)) := HI(C - D - £71(0) - Sing(Pfinite: FOLy(p)-
This group vanishes because ?@Lx(f) is lisse on the open curve, it is irreducible (¥ is irreducible,

and L)((f) has rank one) and nontrivial (because T@LX(D is nontrivially ramified at each of the d
points of f~ 1 (0)). So the HO is the invariants in a nontrivial irreducible representation, so vanishes.
Similarly, the birational invariance of H2C gives

H2(C, j«(F® L)) := H2(C = D - £71(0) - Sing(Pinite- FOLy (1)

which is the Tate—twisted coinvariants in the same representation, so also vanishes. QED

(5.1.2) We next compute the dimension of HI(C, j*(?@lﬁx(ﬂ)), for f in Fct(C, d, D,
Sing(Ffipite)- Given a point x in C(k), and a lisse sheaf 7 on some dense open set of C, we
denote by H(x) the representation of I(x) given by H (strictly speaking, given by the pullback of
H to the spectrum of the x—adic completion of the function field of C), and by W(X)I(X), or simply
I the invariants in this representation. We will write HIFHIX for Hx)H)IX). We will
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write
(5.1.2.1)  dropy(H) := dropy (H(x)) := dim(H/HIX)),
For any of the P; occurring in D = X.a;P;, and any f with divisor of poles D, the I(P;)—
representation (LX(ﬂ)(Pi) depends only on x?i, as follows. Choose a uniformizing parameter at P;,
and use it to identify the complete local ring of C at P; with the complete local ring kl[1/X]1] (sic) of
Pl at oo, and to identify the inertia group I(P;) with I(eo). Consider the lisse sheaf L)(ai = L)(ai(X)
on G,. Then (LX(f))(Pi) as I(P;)—representation is just (LXai)(oo) as I(eo)-representation. When
we want to indicate unambiguously that we are thinking of (LXai)(oo) as an I(P;)-representation by
some choice of uniformizer as above, we will denote it (LXai)(oo, P;).
Lemma 5.1.3 Hypotheses and notations as in 5.1.1 above, for any f in Fct(C, d, D, Sing(Ffinite)
we have the dimension formula
(5.1.3.1) nl(c, #TF®L 1))

= (2g-2 + deg(D))rank (%)

+ ZPi - pred SwanPi(T) +2 Siﬂg(?‘)ﬁniteswans(ﬂ'

* Lo Sing(Fipite dropg (%)
+ Zpi in pred dropp. (F(P)e(L, aj)(e, Pp),
and the inequality
(5.1.3.2)
hl(C, j*(7:®£)((f))) > (2g-2 + deg(D))rank(F) + #Sing(Ffipite-

proof The inequality 5.1.3.2 is an immediate consequence of the asserted dimension formula
5.1.3.1 and the observation that dropo(#) 2 1 at each point in Sing(F)fipite- By Lemma 5.1.1, we

have
hl(C, j+(F®L ) = = X(C, j«(FRL ().
At each of the deg(D) distinct zeroes of f, ¥ is lisse and LX(f) is ramified, so —y(C, j>k(77®£)((f)))
is equal to
= — xo(C = 71(0) - D - Sing(Pgipite- FOLy(r)
: I(s
_zs in Sing(Fipite dim(#(s) ( ))
= p. i pred dim((FPP(Lyap)(eo, P)PD).
Now use the Euler—Poincare formula to write this as
= (2g-2 + deg(D) + #D'4 1 #Sing(F)g; i rank(F)

+ Zpi i pred SwanPi(T) +2 Sing(ﬂﬁniteSwanS(T}.
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“Lsin Sing(Pipite dim(7()!()

— ZPi in Dred dlm((?'(Pl)®(£Xal)(oo, Pl))I(Pl))
= (2g-2 + deg(D))rank(¥)

+ Zpi . pred SwanPi(T) + 20 Sing(7_~)ﬁniteSwanS(ﬂ.

+ Zs in Sing(?)ﬁnite dl‘OpS(ﬂ
+ Zpi . pred dropPi(ﬂPi)@@(L/\/ai)(oo, P). QED

5.2 Putting together the groups H1(C, HFBL )
Construction—Proposition 5.2.1 (compare [Ka—RLS, 2.7.21) Hypotheses and notations as in 5.0.1,
5.0.4,5.0.8 and 5.0.10 above, There is a natural lisse Q (—sheaf G on the space

Fct(C, d, D, Sing(ﬂﬁnite)
whose stalk at f is the cohomology group HI(C, j*(T®£X(D)). More precisely, over the parameter
space

X :=Fct(C, d, D, Sing(ﬂﬁnite)’
consider the proper smooth curve C := CxX, and in it the relative divisor O defined at "time " by
pred 4 Sing(F)finite + 1(0). Then D is finite etale over the base of constant degree

#HD'e) + #(Sing(Pfinite) + d.
On C - D, we have the lisse sheaf 7:®£)((f)' Denote the projection

n:C—-9D — Fet(C, d, D, Sing(Ffinite)-
We have the following results.
1) The sheaves Riﬂ!(?@LX(f)) on Fct(C, d, D, Sing(Ffipite) vanish for i#1, and Rlﬂ!(77®LX(f))
is lisse.
2) The sheaves Riﬂ*(?@LX(f)) on Fet(C, d, D, Sing(Ffipite) vanish for i1, and

Rlz, (T@LX(f)) is lisse, and of formation compatible with arbitrary change of base.
3) The image G of the natural "forget supports" map
1 1

R ﬂ!(¢®£X(ﬂ) —R ﬂ*(?@.ﬁ){(f))
is lisse, of formation compatible with arbitrary change of base. The stalk of G at the k—valued point
"f" of Fct(C, d, D, Sing(Ffipite) is the cohomology group HI(C, j*(T®£X(ﬂ)).
4) If the irreducible middle extension ¥ on C is orthogonally (respectively symplectically) self—
dual, and y has order two, then the lisse sheaf G on X is symplectically (respectively orthogonally)

self—dual.
5) The rank of G is equal to
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rank(G)= (2g-2 + deg(D))rank(%)

+ Zpi o pred SwanPi(T) +2 Sing(ﬂﬁniteSwanS(T}.

+ 2 in SingPgi e dropg(¥F)
+ Zpi in pred dropp. (F(P)=(L, aj)(e=, Pp)),
6) We have the inequality
rank(G) 2 (2g-2 + deg(D))rank(¥) + #Sing(Ffipite-

proof 1) By proper base change and the previous lemma, we have the vanishing of the
Riﬂ!(7’-®.£/\/(f)) for i#1. To show that Rlﬂ!(?"@l:/\/(f)) is lisse, we apply Deligne's semicontinuity

theorem [Lau—SC, 2.1.21, according to which it suffices show the Z—valued function which
attaches to each k—valued point "f" of the base the sum of the Swan conductors of T@LX(f) at all

the points at infinity,
f— ZPi in pred SwanPi(T®£X(f))

+2 Sing(ﬂﬁniteswanS(T®£X(f))
Y il (O)SwanX(T®£X(f)),

is constant. As LX(ﬂ is rank one and everywhere tame, and ¥ is lisse at every point of f~ 1(0), the

terms at points of {— 1(0) all vanish, and those at other points don't see the LX(f)' Thus the function
is equal to the constant

ZPi . pred SwanPi(T) + 20 Sing(7_~)ﬁniteSwans(ﬁf).

Assertion 2) results by Poincare duality from 1) for the dual sheaf ¥V ®£)?(f). Once we have 1)

and 2), G 1s lisse and of formation compatible with arbitrary change of base, being the image of a
map of such sheaves on a smooth base X. That G has the asserted stalk at "f" amounts, by base

change, to the fact that HI(C, ] *(7:®£X(f))) is the image of the "forget supports" map
H1(C - D - 710) - Sing(Pinite: FOLy (1)
— H!(C - D - 710) - Sing(Pfinite, FOLy(p)-
Assertion 4) results from 1), 2) and 3), by Poincare duality and standard properties of cup

product. Because G is lisse, assertions 5) and 6) result from Lemma 5.1.3, applied to any single f in
the parameter space Fct(C, d, D, Sing(Ffjpite)- QED

Notation 5.2.2 When we want to keep in mind the twist genesis of the lisse sheaf G on Fct(C, d, D,
Sing(Ffinite) constructed in 5.2.1 above, we will denote it TWiSt)(,C,D(T):

(5.2.2.1) G = TwistX’C’D(T).
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Remark 5.2.3 It will also be convenient to have the following variant on the above description of
the sheaf G := TwistX c.p(F) on the space

X :=Fct(C, d, D, Sing(Ffipite)-
Start as before with the lisse irreducible sheaf T@LX(f) on C — D. The base X is itself lisse, of
dimensiond + 1 — g, so T@LX(f) [d+2-g] is perverse irreducible on C—D. Denote by j: C — D —
C the inclusion, and form the middle extension j !*(T®Lx(f)[d+2—g]). Then according to [Ka—
RLS, 2.7.21, if we denote by 7 : C — X the projection, we have
Gld+1-gl = Rmyj !*(77®£X(f)[d+2—g])
= image(Rﬂ!(?'@LX(f) [d+2-g]) — Rm(?’@LX(D [d+2-g])),

where the image is taken in the category of perverse sheaves on X.
Lemma 5.2.4 With the notations of 5.2.1, denote by

j1:C =D —C-D"dxX = (C - D)xX

the inclusion. Then the middle extension of T@LX(ﬂ[d+2—g] by jj is the [shifted] literal tensor
product

g 1)!*(7"®£X(f)[d+2—g]) = T@LX(ﬂ[d+2—g]
on (C-D)xX. Its formation commutes with arbitrary change of base on X.
proof We are forming the middle extension across two disjoint smooth divisors in (C — D)xX,
namely f=0 and Sing(F)fjpiteXX. Consider the inclusions

jp : C =D — C - DX — Sing(FginitexX

j3 1 C = D'xX — Sing(FlfipirexX — C — DredxX.
Under j,, we are extending across the divisor f=0. The sheaf ¥ is lisse on the target C - predyx —
Sing(FfipiteXX, s0 we have

02)!*(7®£X(ﬂ [d+2-g]) = ¢®02)!*(£X(f) [d+2-g]).
To see that 02)!*(£X(f)[d+2—g]) = (jz!LX(D)[d+2—g] amounts to showing that jz*LX(f) vanishes
on f=0 (for then j2*£)((f) is lisse on =0, and hence (jz)!*(LX(ﬂ [d+2—¢g]) = (jz*LX(f))[d+2—g],
but this latter is (jzgﬁ)((ﬂ)[d+2—g]). But near any point of f=0, f is part of a system of coordinates
(f, coordinates for X), so by the Kunneth formula we are reduced to the fact that for j : G, — Al
the inclusion, we have j !LX = j*LX.

When we extend by j3, across Sing(F)finiteXX, LX(f) is lisse in a neighborhood of this

divisor, we we may pull it out, and then we are reduced, by Kunneth, to the fact that on ¥ on C-D
is its own middle extension across Sing(F)fjpite- QED

Variant Construction of G := TwistX,C,D(f) 5.2.5 (compare [Ka—RLS, 2.7.2]) Notations as in

5.2.1 above, over the parameter space
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X :=Fct(C, d, D, Sing(Ffipite)
consider the proper smooth curve C := CxX over X and in it the product divisor DredxX. On the
open curve C — D'€4xX = (C — D)xX, form the literal tensor product sheaf F®L,f)- Denote by
Joo - (C=D)xX — CxX
the inclusion.
Denote by
pry : (C-D)XX — X =Fct(C, d, D, Sing(Ffinite)
and
m:CxX - X
the projections. Then
1) The sheaves Riprz!(?@l:)((f)) on Fct(C, d, D, Sing(Ffjpite) vanish for i#l, and

Rlpr2!(77®.£X(f)? is lisse.
2) The sheaves Rlprz*(?”@LX(ﬂ) on Fct(C, d, D, Sing(Ffipite) vanish for i#1, and

Rlprz*(?@l:)((f)) is lisse, and of formation compatible with arbitrary change of base.
3) The perverse object Gld+1—gl on X is given by

Gld+1-gl= Rﬂ*joo!*(T®LX(f)[d+2—g])

= image(Rpr2!(7"®£X(f))[d+2—g] - Rprz*(7®£X(ﬂ)[d+2—g]).
proof For 1), we see the vanishing fibre by fibre. The lisseness results from part 1) of the 5.2.1 via
the long cohomology sequence for Rpry attached to the short exact sequence of sheaves
0111 (F®L ) = F®Lypy

- T@LX(f) | (Sing(FfipitexX — 0.

For 2), denote by ¥V the middle extension sheaf dual to F. By Lemma 5.2.4 above, applied to ¥
and y, F¥ ®L)?(f) [d+2—g] is its own middle extension from C-D, so it is the Verdier dual of

T@LX(D [d+2-gl. So 2) for T@LX(D) results from 1) for Tv®£/\7(f) by Poincare duality. For 3),
we already know (5.2.3) that
Gld+1-gl= R7?*j!>z<(7:®£X(f)[d+2—g])

for j the inclusion of C — D into C. So by the transitity of middle extension (jy#= joo1%°j11%) and
Lemma 5.2.4, we get

Gld+1-gl= Rf*joo!*(f®£x(f)[d+2—g]).
That Rﬂ*jm!*(T®£X(f)[d+2—g]) is the image of the canonical map

Rprz!((?‘@.ﬂ/\/(f))[d+2—g]) - Rprz*((T®£X(ﬂ)[d+2—g])
is [Ka—RLS, 2.7.21. QED
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5.3 First properties of twist families: relation to middle additive convolution on Al
(5.3.1) We begin with a direct image formula, which, although elementary, is a fundamental
reduction tool in what is to follow.

(5.3.2) Fix fin Fet(C, d, D, Sing(F)fipite)- Thus f is a finite flat map from C-D to Al =

Spec(k[X]) of degree d, whose fibre over O consists of d distinct points, none of which lies in
Sing(Ffjpite- Denote by CritPt(f) = C-D the finite set of points in C-D at which df vanishes.

Define
(5.3.2.1) CritVal(f, F) = f(CritPt(f)) U f(Sing(Finite)s

a finite subset of AL. Then for tin Al - CritVal(f, 7), the function t—f lies in Fct(C, d, D,
Sing(Ffinite)> and so we have a morphism

(5.3.2.2) Al - CritVal(f, ¥) — Fct(C, d, D, Sing(Ffipite)

given by t — t—f.

(5.3.3) What is the relation to convolution? We first explain the idea. For a good value t; of t, the
stalk of G at t—f is the cohomology group

Hl(C. jm*(f®£x(to _ f))) = image of the "forget supports" map
| L=
H.(C-D, 7:®L/\/(t0 _ f)) — H'(C-D, T@LX(»[O _ f))
Compute these cohomology groups on C-D by first mapping C-D to Al by f. Since £X(t() —f) is
£ £X (tg=X)" the projection formula gives
1 —1 Ial
HH(C-D. F®Ly (¢, - 1) = H (AL (PO Ly _x):
Lic— —uleal
H'(C-D, T@LX(tO _f) =HY(A", (f*T)®£X(tO _X))-
So we get
Hl(C. joo*(?®£)((t0 _ f)) = image of the "forget supports" map
Ieal Ieal
H (A7, (f*?)@ﬁ)((to —X)) — H'(A", (f*?)@f)((to —X))'
If we denote by j.. : Al — P! the inclusion, this image is just H!(P1, Joor (BTIBLy (1) —x))-
According to [Ka—RLS, 2.8.5], there is an open dense set in Al such that for to in this dense open
set, Hl([Pl, joo*((f*?)(@ﬁ)((to —X))) is the stalk at t of the [shifted] middle additive convolution

of fxF with LX'

(5.3.4) Here is the precise result.
Proposition 5.3.5 Hypotheses and notations as in 5.2.1, fix f in Fct(C, d, D, Sing(F)fjpite)> viewed

as a map from C-D to A 1. Form the direct image sheaf fx(#1C-D) on A I The object fix(FIC—
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D)l1]on Alis perverse. For j : G, — Al the inclusion, form the sheaf j*LX =j !LX on Al, and

the perverse object j*LX[I] on Al. Consider the middle additive convolution [Ka—RLS, 2.9]
fx(FIC-D)I1 ]*mid-l-j*‘gx[l]
onAl.onAl - CritVal(f, ) we have a canonical isomorphism
* .
t>t-fI'glll= (f*(?lC—D)[l])*mid+J*LX[1].

proof The sheaf ¥ on C—D is a middle extension, so F111on C-D is perverse. Since f is a finite
map, fx(preverse) is perverse.

We use the description of Gld+1-gl as

image(Rprzl((?@LX(f))[dH—g]) - Rprz*((T®£X(D)[d+l—g]))
on Fet(C, d, D, Sing(Ffjpite)- This description commutes with arbitrary change of base, so (It—t
—f1"G)[11is

image(Rprz!((?@LX(t_f)) (1) » Rprz*((77®£)((t_f))[1 1),
pry the projection of (C—D)><(A1 — CritVal(f, F)) to Al - CritVal(f, ). Now factor this
projection the composition of

fxid: (C-D)x(AL - CritVal(f, F)) — Alx(Al = Critval(f, 7))
with the projection

prp p ¢ AlX(AL - Critval(f, 7)— (Al - Critval(f, 7).
Since f is finite, we have f) = fx = Rfx. The key point is that
Ly—ty= 60" Ly(1x)
and hence by the projection formula we find
Rprp(FOL (t—f)) = Rpr2!(7®(fxid)*£X(t_X))
= Rpry p ((fid) (FR(fxid)” Ly (1_x))
=Rprp A1 (FIOL, (X))
=Rprp p !((f*?_)@.ﬁ)((t_x)).
Similarly we find
Rpr2>x<((7:®.£)((t_f)) = Rprz’ A*((f*ﬂ@)'LX(t—X))'
Thus we get that ([t - t — f]*g)[ll is
image(Rprz!((?@LX(t_f))[l - Rprz*((77®£X(t_f))[1 1)
= image(Rprp p !((f*T'_)®LX(t_X))[1] — Rpry, A*((f*?_)(@.ﬁ)((t_x))[l D).
This last image is the restriction to Al - CritVal(f, ) of the middle additive convolution of fxF
and 'EX’ thanks to [Ka—RLS, 2.7.2 and 2.8.41. QED

Proposition 5.3.6 Hypotheses and notations as in 5.2.1, suppose we are in one of the following
situations:
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la) Sing(F)fipite 18 nonempty, deg(D) = 2g+1, and char(k) # 2.

1b) Sing(Ffinite 1S nonempty, deg(D) = 2¢g+3, and char(k) = 2.

2a) deg(D) = 4g+2, and char(k) # 2.

2b) deg(D) = 4g+6, and char(k) = 2.

Then the lisse Qp—sheaf G on Fct(C, d, D, Sing(Ffipite) 18 irreducible (or zero).

proof Suppose first that Sing(F)fjpite is nonempty. If char(k) # 2 [resp. if char(k) = 2] pick a
function f in Fet(C, d, D, Sing(F)fipite) Which also lies in the dense open set U of Theorem 2.2.6
[resp. Theorem 2.4.2], applied with S taken to be Sing(F)fjpite- Thus f as map from C-D to Alis

of Lefschetz type, and for each s in Sing(F)fjpite, the fibre £~ 1(s) consists of d distinct points, only
one of which lies in Sing(F)fjpite- BY the Irreducible Induction Criterion 3.3.1, fx(#IC-D) is an

irreducible middle extension on Al By [Ka-RLS, 2.9.71, the middle additive convolution

(E(FIC-D)[1D*1iq _l_j*LX[I] on Alis perverse irreducible. Hence its restriction to any dense

open set of Alis perverse irreducible (or zero).
We now turn to the case in which either char(k) # 2 and deg(D) > 4g+2, or char(k) = 2 and
deg(D) 2 4g+6. Write D as the sum of two effective divisors D = Dy + D5, with both D; having

degree = 2g+1 (resp. = 2g+3 if char(k) = 2).
Since deg(D) = 2g+1 (resp. = 2g+3 if char(k) = 2), we may choose a function f{ in Fct(C,

deg(Dy), Dy, Sing(?‘)UDred). Thus f} lies in L(Dy), its divisor of poles is Dy, and it has deg(D1)
distinct zeroes, none of which lies in either Sing(¥) or in D. Fix one such f;.

As deg(Dj) > 2g+1 if char(k) # 2 [resp. > 2g+3 if char(k) = 21, we may pick a function f,
in Fet(C, deg(Dy), Dy, Sing(FUD™AUF; ~1(0)) which lies in the open set U of Theorem 2.2.6 if
char(k) # 2 [resp. in the open set U of Theorem 2.4.2 if char(k) = 2] with respect to S the set f{ ™
I(O)U(Dred -D 2red)_

Thus f5 has divisor of poles Dy, it has deg(D,) distinct zeroes, none of which lies in
Sing(?—")UDrede 1_1(0), and for each zero « of f, the f>—fibre containing it, fz_l(fz(a)),
consists of deg(D,) distinct points, of which only « is a zero of f{, and none of which lies in D.
For any such f,, the product f;f; lies in the space Fct(C, d, D, Sing(?’)ﬁmte). Moreover, for most
scalars t, the product f(t — f) lies in the space Fct(C, d, D, Sing(¥)fipjte)- Thus for fixed f| and
f>, we have a map

Al - CritVal(fy, F®Ly¢,)) = Fet(C. . D, Sing(Pinite):
t— f1(t-15).

Proposition 5.3.7 Given an effective D of degree d > 4g+2 (resp. d = 4g+6 if char(k) = 2), write it
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as D1+D5 with both D; effective of deg(D;) = 2g+1 (resp. = 2g+3 if char(k) = 2). Fix

f| in Fct(C, deg(Dy), Dy, Sing(F/)UDred).
Fix a function f5 in Fet(C, deg(D5), D, Sing(FH)UDAUF; ~1(0)) which also lies in the open set
U of Theorem 2.2.6 if char(k) # 2 [resp. in the open set U of Theorem 2.4.2 if char(k) = 21 with
respect to the set S :=f 1_1(O)U(Sing(f)ﬂ(C—D2)). View f5 as a finite flat map from C — D, to

AL For i=1,2, denote by
jj:C-D—>C-D;
the inclusion. Start with the sheaf T@LX(f D on C- D, form its direct image j2*(7c®£)((f 1)) on

C-D,, and take its direct image f2*j2*j(7:®£)((f ] ) on AL The object fz*jz*(ﬁ’:@l:)((f 1))[1] on

Alis perverse. For j : G, — A! the inclusion, form the sheaf j*LX = j!LX on Al, and the

perverse object j*LX[ll on Al. Consider the middle additive convolution [Ka—RLS, 2.91
f2*j2*(7:®£)((f1))[1 ]*mid_l_j*LX[l]

on Al onAl - CritVal(f,, T@LX(f ) )), we have a canonical isomorphism

(It £t = )T QU = (it (F®Ly (g YD gLy 1]

proof of 5.3.7 We work over the space
T:= Al - Critval(f, FOLy(f,)-
For i=1, 2, denote by ji,oo the inclusion
Jioo: C=D;j = C.
We know that ([t f(t - fz)]*g)[l] on T is given by in terms of the projections
Pryp: (C-D)xT—>T
and
prp :CXT > T
as
image(Rpry p ((7:®£X(f1 (t_fz)))[Z]) - RPrZ,D*((?@L)((fl (t_fz)))[Z]))

= Rprp#((oXid) +(FO Ly (£ (1£,))[2))

= Rprz*((jz’mxid)!*(jind)!*(T®LX(f1 (t_fz))[Q])).
Now (jzxid)!*(T(@LX(f | (t_fZ))[l l) means extending across points which are in D but not in D5,
and LX(t—fz) is lisse near such points. So

(jzxid)!*(7‘—®£X(f1 (t_fZ))[l = jZ*(T@)‘EX(fl))[I]®‘£)((t—f2)'
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Thus (It f1(t - f)1"G)[11on T is
= Rprz*(jz’cx,xid) ' *(62*(7:@‘5)((’[“1))[1 ]®'£X(t_f2)[1 D).
Denote f_2 :=fy viewed as a map of C to Pl Compute Rpryx by factoring pry as
frxid: CxT —PIxT
followed by
prp p: PIxT —>T.
Thus
= Rprz*(jz’ooxid) ' *02*(7:@‘5)(6]))[1 ]®£X(t_f2) [1]).
= Rpry pu(fpXid)«(jp ooxid)ys(j 2*(7:®£X(f 1))[1 ]®£X(t_f 2)[1 )]
In terms of the inclusion
in:alspl
and
fy:C-Dy — Al
we have a cartesian diagram
12 00
C-Dy—>C
f I f
Al - pl
in

in which the horizontal maps are affine open immersions, and the vertical maps are finite. So we
have

(f_zxid)*(jz’ooxid)!* = (axid)yx(foxid) .
So we get
= Rprz,ﬂ)*(f_zxid)*(jz’ooxid) ! *02*(7:®‘£X(f1))[1 ]®£X(t_f2)[l )]

= Rprz’[P*(jAXid)!*(fzxid)*ﬁz*(T®LX(f1))[l ]®'£X(t_f2)[1 D).

Now LX(t_f ) is fZ*L)((t—X)’ so by the projection formula we may rewrite this last expression as
= Rprz’[p*(jAXid) ! *(‘E/\/(t—X)[l ]®(f2*j2*(?~®.£)((f1))[1 D).

By [Ka—-RLS, 2.9.21, this is (restriction to T of) the asserted middle convolution. QED for 5.3.7

Once we have Proposition 5.3.7, then to prove the irreduciblity of G it suffices to show that

frxjox jl*(?@ﬁX(f 1)) is an irreducible middle extension. This is immediate from the Irreducible
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Induction Criterion 3.3.1, since the singularities of jz*jl*(77®£x(f 1)) on C — D include the
deg(Dy) distinct zeroes of f}, and the fy—fibre containing each of these zeroes consists of deg(D,)
distinct points, precisely one of which, namely that zero, is a singularity of jyxjj *(7"®£X(f 1)).
QED

5.4 Theorems of big monodromy in characteristic not 2

Theorem 5.4.1 Let k be an algebraically closed field of characteristic not 2, C/k a proper, smooth
connected curve of genus g. Suppose that D = >a;P; is an effective divisor of degree d > 2g+1,

with all a; invertible in k. Let ¥ be an irreducible middle extension sheaf on C with Sing(Fgipite =

Sing(7)N(C-D) nonempty. Suppose that either ¥ is everywhere tame, or that  is tame at all
points of D and that the characteristic p is either zero or a prime p = rank(¥) + 2. Suppose that the
following inequalities hold:

if rank(¥) =1, 2g-2+d 2 Max(2#Sing(Ffipites 4rank(F)).
if rank(F) > 2, 2g-2+d =2 Max(2#Sing(Ffipite» 72rank(F)).

Fix a nontrivial character y whose finite order n = 2 is invertible in k. Form the lisse sheaf
G = TWiSt)(,C,D(T)
on the space Fct(C, d, D, Sing(Ffipite)-
If n is 4 or 6, suppose in addition that either rank(¥) < 2, or that there is a point P; in D at

which we have T(Pi)I(Pi) # 0, or that there is a finite singularity 8 in Sing(F)fipite at Which

T(ﬁ)/?’(ﬂ)l(ﬁ) as I(B)-representation does not have finite monodromy. Pick a function f in Fct(C,
d, D, Sing(F)fjpite) Which also lies in the dense open set U of Theorem 2.2.6 applied with S taken

to be Sing(Ffipite- Thus f as map from C-D to Alis of Lefschetz type, and for each s in
Sing(Ffipite> the fibre £~ 1(s) consists of d distinct points, only one of which lies in Sing(F)fipite-
Consider the lisse Q ¢—sheaf HH on Al - CritVal(f, ) given by

H = [t — tf1°G,
ie., by

1 .

t— H'(C, J*(¢®£X(t—ﬂ)'
Its geometric monodromy group Ggeom is either Sp or SO or O, or Ggeom contains SL. If Fis
orthogonally (respectively symplectically) self—dual, and y has order 2, then Ggeom is Sp
(respectively SO or O). If y has order = 3, then G contains SL.

geom
proof Let us put r:= rank(¥), m := # Sing(Ff;pjte- We have seen (5.3.5) that H is the restriction to
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Al - CritVal(f, F) of the middle additive convolution of f+% and LX.
Let us put
F1 =1F.
We have seen above (in the proof of 5.3.6) that 7 is an irreducible middle extension on Al

Notice that 7 lies in the class P, cf. 4.0.2, because its rank is > 3. [Indeed, its rank is

conv’
dxrank(¥) = d. If g > 0, then the hypothesis that d > 2g+1 gives d > 3. If g = 0, the hypothesis
2g-2+d 2 Max(2#Sing(Ffipites 4rank(F)).

gives d > 6.1

The sheaf #7 is tame at oo, because ¥ is tame at all the poles of f, and the poles of f all have
order prime to p. Moreover, the I(eo)—invariants are given by
Tl(“’)l(m) = Opoints P.inD 7'-(Pi)I(Pi)-

Over each critical value « of f, ¥ is lisse, and f—a has one and only one double zero, so the
local monodromy of ¥ at « is quadratic of drop r, with scale the unique character of order 2:

Fl(@)/Fq @)@ ~ copies ofLX 5(x—a)

Over the m images 6 = f(8) of points 8 in Sing(F)fjpite- f 1 finite etale, and B is the unique
point of Sing(F)fjpite in the fibre, so the local monodromy of ¥ at 6 has drop < r. More precisely,
we have

F16)/F (YO = FByFB)P),
where we use f to identify 1(6) with 1(5).

At all other points of Al ,1.e.,on Al - CritVal(f, ), # is lisse. Moreover, if Fis
everywhere tame on C, then ¥ is everywhere tame. Now form #, the middle additive convolution
of 1 with LX’ Thus H is tame at o (by 4.1.10, part 2d)), and it is everywhere tame if F is
everywhere tame (by 4.1.10, parts 1b) and 2d)). By 5.2.1, part 6), we have the inequality

rank(H) > (2g-2 + d)r + #Singg;ite(F) > (2g-2 + d)r.

The local monodromy of # at the m images 6 = f(f) of points 8 in Sing(F)¢;pjte has drop <

r, by 4.1.10, part 1c), and is given by
H(G)HEG)O) = MCXloc((S)(T(ﬁ)/T(ﬁ)I(ﬂ) as I(6)-rep'n).

The local monodromy of H at each critical value @ of f is quadratic of drop r, with scale the
character yx»:

H(a)H(a)(@) ~ L)((x—a)®(r copies of L)(z(x—oz))

= r copies of LX)Q(X—CY)'

The key observation here is that yy, is not of order two, and that f has critical points (because their

number, the number of zeroes of df, is
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2g-2+ Zi(l+ai) > 2g-2+d > 2#Sing(Ffipite > 2 > 0).
Suppose first that y has order n > 2, but not 4 or 6. Then yx» does not have order 2, 3, or

4. Then the conclusion follows from Theorem 1.5.1 with hypothesis 6c), applied to (r, m, H).
Suppose next that rank(#) < 2. Then the conclusion follows from Theorem 1.5.1 with
hypothesis 6a), applied to (r, m, H).
Suppose next that at some point P; in D, ﬂPi)I(Pi) #0. Then ¥ (oo)I(°°) # 0. Then by

Corollary 4.1.11, the action of I(e0) on H is not semisimple, hence does not factor through a finite
quotient. Then the conclusion follows from Theorem 1.5.1 with hypothesis 6b) at t=eo, applied to
(r, m, H).

Suppose finally that there is a finite singularity 8 in Sing(F)fipijte at Which T(B)/T(,B)I(ﬂ) as

I(B)—-representation does not have finite monodromy. Then at the point 6=f(5), 7—((6)/7—((6)1(5) and
hence H itself does not have finite monodromy (because 7‘(((5)/7‘[(6)1(6) = £X(X—

5)®(T(ﬁ)/7"(,8)1(ﬁ)), and y has finite order). So again the conclusion follows fromTheorem 1.5.1

with hypothesis 6b) at t=6 (and Theorem 1.7.1, if r=1), applied to (r, m, H). QED
Proposition 5.4.2 Hypotheses and notations as in Theorem 5.4.1 above, suppose that y has order

2, but Fis not self dual. Then Ggeom contains SL.

proof If not, then by the paucity of choice, G is contained in either Sp or O, and hence H is

geom
self—dual. But H is the middle convolution of f«# and LX' As y has order 2, we recover fxF as

the middle convolution of H and LX. As y has order 2, LX is self—dual. As both H and LX are
self—dual, so is their middle convolution, f«%. By Proposition 3.4.1, the autoduality of f«# implies

that of 7, contradiction. QED
Proposition 5.4.3 Hypotheses and notations as in Theorem 5.4.1 above, suppose that y has order
2, and that ¥ is symplectically self dual.
1) Suppose there exists a finite singularity 5 of ¥, i.e., a point 8 in Sing(#)N(C-D), such that the
following two conditions hold.

la) Fis tame at 3.

1b) 7—‘(5)/7—‘(5)1(,3) has odd dimension.

Then the group Ggeom for the sheaf H is the full orthogonal group O.

2) Suppose that ¥ is everywhere tame. Then G for H is the special orthogonal group SO if

geom
and only if T(ﬁ)/?’:(ﬁ)l(ﬁ) has even dimension for every finite singularity 8 of 7.
proof In terms of ] :=f+#, H on Al - CritVal(f, F) is (the restriction from Al of) the middle

convolution ¥ 1 *LX. We already know that G for H is either SO or O, so we have only to

geom
see whether det(H) is trivial or not. Since det(#) is either trivial or of order 2, it is tame on Al -
CritVal(f, F). Hence det(H) is trivial if and only if it is trivial on every finite inertia group I(y), y in
CritVal(f, 7).
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Aty which is a critical value @ of f, we have seen that the local monodromy of ¥7 at a is
quadratic of drop r := rank(¥), with scale the unique character of order 2:

F1(@)/7 (@YD = r copies OfL)(z(x—oz)-

The local monodromy of H = 7 *L)(at @ is given by
H@H@'D = (F) @/ F @ DB L, ()
=~ r copies of 1,
this last equality because y is the quadratic character y,. From this we calculate
det(H(a)) = det(H(a)/H(a) (@) =1.
Thus the local monodromy of det(7) is trivial at all the critical values of f.
Aty which is the image 6 = f(B) of a point 8 in Sing(F)fjpite. W€ have seen that
710/ F1 (OO = F By 7B B)
where we use f to identify 1(9) with I(8). Using this identification, the local monodromy of H =
1 *LXat dis
HENH(6)!©O) = MC, loc(S)FBIFBIP) as 1(6)-rep').
If ¥ is tame at 3, we have
HEHOO) = (FBFBIPNSL (g)
We then readily compute
det(HH(6)) = det(H(5)/H(5)1(0)
= det((FRIFBPHR L, (x—s)

= det(FRIF BB &( Ly 6))dim(¢(ﬁ)/ﬂ5)l(ﬁ))_
But we have

det(FBIFBIP) = deuFB) =1,
this last equality because ¥ is symplectic, and Sp < SL. Thus we find det(H(0)) =

i 1(8)
Thus det(?H) is nontrivial at the image ¢ = f(f) of a point 8 in Sing(F)fipite at which Fis

tame, if and only if T(ﬂ)/?(ﬁ)l(ﬁ) has odd dimension. This proves 1).
Suppose now that 7 is everywhere tame. We already know that det(7H) is trivial at all the
critical values of f, so det(?H) is trivial if and only if it is trivial at every ¢ = f(8), 8 in Sing(F) fipite-

For ¥ everywhere tame, this triviality at every ¢ = f(8) means precisely that T(ﬂ)/?(ﬂ)l(ﬁ) has even
dimension for all finite singularities  of . QED
Remark 5.4.4 Here is an example to show that part 2) of the above proposition can fail if we drop

the hypothesis that 7 be everywhere tame. We fix an even integer 2n > 2, and work over [Fp for a
any prime p > 2n+2. Fix a nontrivial Q ¢—Vvalued additive character  of [Fp Denote by Kl,,, the
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standard Kloosterman sheaf in 2n variables: thus K12n is the lisse sheaf of rank 2n on ([]m/[Fp

whose trace function at a point @ in E%, E a finite extension E of F
Trace(Froba,E ! K12n) = _lexz...x2n=a inE w(le)
One knows that K1y, is symplectically self—dual.

p’ 1S

Take F the middle extension of the lisse sheaf [x — 1/X]*K12n on (Dm. One knows that

Kly () is a totally wild irreducible representation of I(e), all of whoses slopes are 1/2n. Thus ¥

is totally wild at zero, and hence ﬂO)/ﬂO)I(O) has even dimension 2n.
We take C to be Pl/Fp, D to be dee for a sufficiently large integer d prime to p, y to be the
quadratic character 5, and ¥ as above. Then Sing(f)ﬁnite is {0}, and, as noted above,

T(O)/T(O)I(O) has even dimension 2n. None the less, we will see that Ggeom for H is the full

orthogonal group O. More precisely, with ¢ := f(0), we will show that det(7) is nontrivial at 6. To
simplify the notations, let us replace f by f — ¢, so that f(0) = 0. Then we have

H(0)/H(©0)(O) ~ MCXIOC(O)(T—”(O)/T(O)I(O)).
We will show that det((0)) is LX' We have
det(H(0)) = det(H(0)/H(0)(O)y = det(MCXIOC(O)(7—"(O)/7:(0)I(0))).
We will calculate MCXloc(O)(?'(O)/T(O)I(O)) by a global argument. The sheaf Fon Al lies
of 4.0.2. We define
G:= ?*midﬁ/\/'in Pconv:
Then by Theorem 4.1.10, part 1) we have
60yG0)® = MC, loc)(FO)/FO)!D).

inPeony

Thus
det(H(0)) = det(MCXloc(0)(?’"(0)/7-‘(0)1(0)))

= det(G(0)/G(0)1(0))

= det(G(0)).
Hence we are reduced to showing that det(G(0)) is ‘E)('

Applying Fourier transform FT (:= FTw) to the defining equation
G =T mid+Ly
we obtain
FT(G) = j>x<(FT(7")®£X 1 G,p-
The key observation is that, because ¥ is [x — 1/x]*K12n, we have
FT(F) = Kly4 1>

a remark due to Deligne [De—AFT, 7.1.41 and developed in [Ka—ESDE, 8.1.12 and 8.4.31. Thus
we find
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FT(G) :j*(FT(T)®LX 1 Gpy) = 1Kl 10 X5 oo X

We can calculate FT(j Kl , 1(x, X, ..., X)) as a hypergeometric sheaf of type (1, 2n+1), cf. [Ka—
ESDE, 9.3.2 with d=1]. The result is

FT( 1Kl 106 X5 - X)) = jsHyp(T; x, o)),
Since FT is involutive, we find a geometric isomorphism

[x —> —x1"G = JxHyp(T; x5 .. X)-
So to show that det(G(0)) is L, , it is equivalent to show that det(Hyp(T; y, ...,x))(0) is L Y

The sheaf Hyp(l; y, ...,x) is lisse on G, Its local monodromy at oo is £X®Unip(2n+1),

whose determinant is LX (remember y is x»). Its local monodromy at 0 is I®W, where W has rank

2n and all slopes 1/2n. Since all slopes at 0 are < 1, det(Hyp(T; y, ...,x)) is tame at 0. Thus
det(Hyp(T; x, ...,x)) is lisse on Gy, tame at both 0 and oo, and agrees with LX at oo, Therefore we

have a global isomorphism
det(Hyp(T; x, ....x)) = LX on Gm/[Fp.
In particular, det(Hyp(I; x, ....x))(0) is LX'

Here is a further elaboration on this sort of counterexample. With 2n, p and d fixed as
above, choose further an odd integer k > 1 which is prime to p. Now define ¥ to be the middle

extension of the lisse sheaf [x — 1/Xk]*K12n on G,,. Then Sing(Ffipite is {0}, F is totally wild

at 0, and 7(0)/7(0)1(0) has even dimension 2n. Using [Ka—ESDE, 9.3.2 with d=k], a similar

argument now shows that H has G the full orthogonal group, and that det(7{) is nontrivial at

0.

geom

(5.4.5) We will now give another one—parameter family of twists with big monodromy Before
stating the result, we need an elementary lemma.

Lemma 5.4.6 Let k be an algebraically closed field of any characteristic, C/k a proper, smooth
connected curve of genus g. Suppose that D = Xa;P; is an effective divisor of degree d. Suppose
d; and d are positive integers with d + dy = d. If k has characteristic p >0, suppose further that
dy/d < (p—1)/p. Then we can write D as a sum of effective divisors D + Dy with D, of degree
either dy or dy +1, such that Dy = ZciPi, has all its nonzero c; invertible in k.
proof If k has characteristic zero, any writing of D as a sum of effective divisors D| + D5 with Dy
of degree dy does the job.

If k has characteristic p >0, put A := dy/d. For real x >0, we denote its "floor" and
"ceiling"

[x]g := the greatest integer <X,

[x]e := the least integer > x.

C
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Since A <1, we have, for each i,
ay > [Aai]ce > Aai > [Aai]ﬂ.

We define effective divisors D and D, by

Dﬂ = 21 [Aal]ﬂPP Dce = 21 [A'al]CePl

Thus D 2 D, = Dy, and deg(D.o) = dy > deg(Dy)). For each i, the coefficients [Aa;] o

are either equal or differ by 1. So we can choose, for each i, either [Aa; ]ce and [Aajlgy, call it by, so

and [Aal ]ﬂ

that the "intermediate" divisor Dj := X,;b;P; has degree d,. Clearly

DCC > Dint > Dﬂ.

If Dj¢ has all its nonzero b; invertible in k, we take D5 to be Dj,¢. Then D, will have

Int
degree d».

If some of the nonzero b; are divisible by p, we modify D;,, as follows. First of all, if p
divides a nonzero b;, then b; > p, so b; — 1 is positive and prime to p. What about b; + 1? It is
prime to p, but is b; + 1 < a;? In other words, is b; < a;? The answer is yes, because if not, then b;
= a;. But a; > [Aa;], > b;, so we would have a; = [Aa;] ..
1 > a;(1-4). But p divides b;, so a; 2 p, and so 1 > p(1-A), which contradicts the hypothesis A <

(p=1)/p.
So each nonzero b; that is divisible by p can be either increased by 1 or decresased by 1 and

This means in turn that Aa; >a; — 1, i.e.,

continue to lie in the range [0, a;1. If there are evenly many indices i whose b; is divisible by p,
increase half of them by 1 and decrease the other half by 1, to get the desired D5 it has degree d5.
If there are oddly many b; divisible by p, group all but one in pairs, and in each pair increase one
member by 1 and decrease the other by 1. Increase the leftover by 1. This gives a D of degree
1+dy. QED

Remark 5.4.7 The example of a divisor D of the form %; pP;, which has all its a; = p, shows that
the hypothesis dy/d < (p—1)/p cannot be relaxed. The example of a divisor D of the form dP, and
the choice dy = p, shows that we cannot insist that D, have degree d,.

Corollary 5.4.8 Let k be an algebraically closed field, C/k a proper, smooth connected curve of
genus g.
1) Suppose that D = Xa;P; is an effective divisor of degree d > 4g+5. Then we can write D as a

sum of effective divisors D + Dy with degrees d| > 2g+2 and dy > 2g+2, such that Dy = >c;P;
has all its nonzero c; invertible in k.

2) Suppose that D = X.a;P; is an effective divisor of degree d > 4g+4. Then we can write D as a
sum of effective divisors D + D, with degrees d; > 2g+2 and dy > 2g+1, such that D = 3.c;P;
has all its nonzero c; invertible in k.

3) Fix an integer A > 0. Suppose that D = >.a;P; is an effective divisor of degree d > Max(6g+9,



Chapter 5: Twist sheaves and their monodromy—103

6A + 11), and that the characteristic is not two. Then we can write D as a sum of effective divisors
Dy + D, both of whose degrees d| and d, are at least 2g+2, such that Dy = Xc;P; has all its

nonzero ¢; invertible in k, and such that 2g — 2 + d > 2(A+d ).
proof Assertion 1) is immediate from the lemma, with initial choice dy = 2g+2.

For 2), write D as the sum of effective divisors E + F with E of degree e = 4g+2, and F of
degree f > 2. Apply the lemma to E and the initial choice d, := [e/2]. Then we end up with E5 of

degree either [e/2] or [e/2}+1 (both of which are > [e/2]1 = 2g+1), and E| of degree either e — [e/2]
or e —1 — [e/2] (both of which are > [e/2] - 1 = 2g). Then D :=E| + F, D := E», is the desired

decomposition.
For 3), we apply the lemma with the initial choice d, := [2d/3], allowed because the

characteristic is not two. We end up with D, of degree d either [2d/3] or [2d/3]+1, both of which
are > (2d-2)/3 and both of which are < (2d+3)/3. Then Dy has degree d; either d — [2d/3]or d -
1-[2d/31, both of which are > (d-3)/3, and both of which are < (d+2)/3. So both D ; and D, have
degree at least (d-3)/3 = 2g+2. We also have
26 -2+d-2(A+dy)=2g-2+dy +dy - 2(A+dy)

=dy-d;+2g-2-2A

2dy—dy -2A -2

> (2d-2)/3 = (d+2)/3 -2A -2

=(d-4)/3-2A -2

> (6A +7)/3-2A-2>0,
as required. QED

Theorem 5.4.9 Let k be an algebraically closed field of characteristic not 2, C/k a proper, smooth
connected curve of genus g. Suppose that D = >.a;P; is an effective divisor of degree d > 4g+4.

Write D as a sum of effective divisors Dy + D5 of degrees d = 2g+2 and dy > 2g+1, such that
Dy = ZciPi has all its nonzero ¢ invertible in k.

Let ¥ be an irreducible middle extension sheaf on C. Suppose that either ¥ is everywhere
tame, or that ¥ is tame at all points of D and that the characteristic p is either zero or a prime p >
rank(¥) + 2. Suppose that the following inequalities hold:

if rank(F) = 1, 2g — 2 + d > Max( 2#(Sing(#)N(C-D5)), 4rank(¥F)),
if rank(F) 2 2, 2g — 2 + d > Max( 2#(Sing(#)N(C-D»)), 72rank(¥)).

Fix a nontrivial character y of finite order n = 2. If n is 3, 4 or 8 and the curve C has genus
£=0, suppose in addition that D; and D, are chosen so that dy > 2. (Such a choice is always

possible if g=0 by Corollary 5.8.4, part 1), because d-2 = 2g—2+d > 72rank(¥) = 72, hence d = 75
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> 4g+5). If n is 6, suppose in addition that rank(¥) < 2. If n is 4, suppose in addition that rank(¥)
<2 and that
2g — 2 +d > 2(#(Sing(F)N(C-D»)) + dy).
Fix a function
f] in Fet(C, deg(D1), Dy, Sing(F)UDred),
Fix a function f5 in Fct(C, deg(D»), D», Sing(T)UDrede 1_1(0)) which also lies in the open set
U of Theorem 2.2.6 with respect to the set S :=f I_I(O)U(Sing(ﬂﬂ(C—Dz)). Consider the lisse

Q-sheaf H on Al - CritVal(fy, F®L ¢ ) given by [t f1(t=f)1"G, i.e., by

t— HI(C, j>x<(7‘—®.EX(f1 (t_f2))).

Its geometric monodromy group Gy, is €ither Sp or SO or O or a group between SL and GL. If

geo

¥ is orthogonally (respectively symplectically) self—dual, and y has order 2, then Ggeom s Sp

(respectively SO or O). If y has order = 3, then Ggeom contains SL.

proof Suppose first n # 4. Put r:= rank(F), m := #(Sing(¥)N(C-D,)). We have seen in
Proposition 5.3.7 that H is the restriction to Al - CritVal(f5, 7:®‘£X(f 1)) of the middle additive
convolution of fz*((7®£x(f 1)) and LX.

Let us put
1= fz*((T@LX(fl)).

As already noted at the end of the proof of 5.3.6, the Irreducible Induction Criterion 3.3.1 shows

that 7:1 is an irreducible middle extension sheaf. The sheaf F 1 lies in the class P because it

conv’
has at least d; > 2g+2 > 2 finite singularities, namely the d; distinct images by f; of the d; distinct
zeroes of f]. It is tame at oo, because ¥ is tame at all the poles of f5, and the poles of f5 all have
order prime to p.

Over each critical value @ of f5, 7:®‘£X(f D is lisse, and fy—a has one and only one double
zero, so the local monodromy of #7 at @ is quadratic of drop r, with scale the unique character of
order 2:

F1(a)/F (Q)I(OJ) =~ r copies ofLX H(x—a)

[The number of critical points of f5 is 2g-2 + %.; (1+c;). This number is strictly positive unless
g=0 and dy = 1. This exceptional case (g=0, dy=1) is not allowed if nis 3 or 8.1

Over the m images ¢ = f5(8) of points B in Sing(¥)(C-D5), f5 is finite etale, and 3 is the
unique point of Sing(#)(C-D,) in the fibre, so the local monodromy of ¥ at 6 has drop <r.

More precisely, we have
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FLOVF1 OO = FB)FBIP),
where we use fj to identify I(6) with I(3).
Over each of the d images y = f5({) of the zeroes of f{, f, is finite etale, { is the only zero

of f] in its fy—fibre, and ¥ is lisse. Thus T@LX(f D is lisse at all but the point { in the fibre f5™

1(7). At £ the local monodomy of T®£X(f D is quadratic of drop r, with scale the character

LX(uniformizer at 0) of I({). Thus the local monodromy of #7 at y is quadratic of drop r, with
scale the character £X(X—7’) of I(y).

At all other points of Al, i.e., on Al - CritVal(f5, T@Lx(f 1)), %7 is lisse. Moreover, if ¥

is everywhere tame on C, then #7 is everywhere tame. Now form H, the middle additive
convolution of 7 with LX:

H:=F *mid+£)('
Thus (by 4.1.10, 2d) and 1b)) H is tame at oo, and it is everywhere tame if 7 is everywhere tame.
Its rank is given by (5.2.1, part 5))
rank(H)= (2g-2 + d)r

+ Zpi . pred SwanPi(T) + 20 Sing(7_~)ﬁniteSwanS(ﬂ.

+ Zs in Sing(?)ﬁnite dl‘OpS(ﬂ
where we have written Sing(F)fjpite for Sing(F)N(C-D).

In particular, we have the inequality (5.2.1, part 6))
rank(H) = (2g-2 + d)r.
The local monodromy of 4 at the m images 6 = f5(5) of points 8 in Sing(F)N(C-D5) has

drop <r, by (4.1.10, part 1c, applied to 7).
The local monodromy of H at each critical value a of f5 is quadratic of drop r, with scale

the character yy»:
H(a) H(a)l(@) = L (x—)®(r copies of LXZ(X_Q))

=~ r copies of LXXz(X—CY)'

Over each of the dj images y = f5(¢) of the zeroes of fy, the local monodromy of H at y is
quadratic of drop r, with scale the character LXz(X—V) of I(y).

With the exception of at most m points of Al, namely the images by f5 of points in
Sing(#)N(C-D»), the local monodromy of 9H is quadratic of drop r, with scale a character not of

order 2. Indeed, at the critical values of {5, xx» is not of order 2 (y being nontrivial), and at the d

2

images of the zeroes of f}, y“ is not of order 2 (because the order n of y is assumed to be not 4).
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If nis 3 or 8, then f has critical points, and at those critical points the local monodromy is
quadratic of drop r, with scale a character of order 6 or 8 respectively.

Ifn>2isnot 3, 4, 6, or 8, then )(2 is either trivial or has order at least five. So at each of
the dq images of the zeroes of f{, the local monodromy is quadratic of drop r, with scale a character

not of order 2, 3, or 4.
If n is 6, we have assumed r < 2. So at each of the d images of the zeroes of f{, local

monodromy is quadratic of drop r < 2 with scale a character of order 3.
The conclusion now follows from Theorem 1.5.1 (and Theorem 1.7.1, if r=1), applied to
the data (r, m, H).

Suppose now that n is 4. Our 7 is still perverse irreducible, and in the class The

conv
difficulty with the case n=4 is this: at the d| images y = f5() of the zeroes of f{, the local
monodromy of H at y is quadratic of drop r, with scale the character £ XZ(X—Y) of I(y). But for y

2

of order 4, y“ is the quadratic character, and so these d; points will be part of the excluded "at all

but at most m points" in hypothesis 4) of Theorem 1.5.1. To overcome this difficulty, we assume
both that rank(¥) < 2,and that
2g — 2 +d >2(#(Sing(FH)N(C-Dy)) + dy).
We put r:= rank(F), m := #(Sing(¥)N(C-D5)) + d|. We have noted above that rank(#) > (2g-2 +
d)r, so we have
rank(H) > Max(2mr, 72r2).
With the exception of at most m points of Al, namely the images by f5 of points in
Sing(F)N(C-D,) and the d images by f5 of the zeroes of f{, the local monodromy of H is

quadratic of drop r, with scale a character not of order 2 (in fact, of order 4). Indeed, the remaining
finite singularities of 9 are at the critical values of f,, where the local monodromy is quadratic of

drop r, with scale x>, which has order 4. [The number of critical values is 2g-2 + Zi (1+¢;). This
number is strictly positive unless g=0 and d, = 1. This exceptional case (g=0, d»=1) is not allowed

ifnis 4.1

Because we have assumed r < 2 in this n=4 case, the result now follows from Theorem
1.5.1 (and Theorem 1.7.1, if r=1), applied to the data (r, m, H). QED

Exactly as in Proposition 5.4.2 above, we have
Proposition 5.4.10 Hypotheses and notations as in Theorem 5.4.9 above, suppose that y has order

2, but ¥ is not self dual. Then Ggeom contains SL.

proof If not, then exactly as in the proof of Proposition 5.4.2, we infer that f2*((f®~£)((f ! )) is self—
dual, and then that T@LX(f D and hence 7, are self—dual. QED

Proposition 5.4.11 Hypotheses and notations as in Theorem 5.4.9 above, suppose that y has order
2, and that ¥ is symplectically self dual.
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1) Suppose there exists a D—finite singularity 8 of ¥, i.e., a point 3 in Sing(#)(C-D»), such that
the following two conditions hold.
la) ¥ is tame at 3.

1b) FB)/F(B)B) has odd dimension.

Then the group Ggeom for the sheaf H is the full orthogonal group O.

2) Suppose that F is everywhere tame. Then G for H is the special orthogonal group SO if

geom
and only if T(B)/T(ﬂ)l(ﬂ) has even dimension for every Dy—finite singularity 8 of 7.
proof This is proven by essentially recopying the proof of 5.4.3, applied to the sheaf T@LX(f D

and the function f, (remember that f} is chosen to be invertible at 3, so ‘EX(f D is lisse at 8). QED

5.5 Theorems of big monodromy for G := TwistX’C’D(T) on Fct(C, d, D, Sing(Fgipite) in

characteristic not 2

Theorem 5.5.1 Let k be an algebraically closed field in which 2 is invertible. Fix a prime number ¢
which is invertible in k. Fix a character y of finite order n = 2 of the tame fundamental group of
G, /k. Let C/k be a proper smooth connected curve of genus g. Fix an irreducible middle extension

Q ¢—sheaf 7 on C. If nis 4 or 6, suppose rank(¥) < 2. Let D = Xa;P; be an effective divisor of
degree d on C. Suppose that either

la) d 2 2g+1, all a; are invertible in k, Sing(#)N(C-D) is nonempty, and the following inequalities
hold:

if rank(F) = 1, 2g — 2 + d > Max(2#(Sing(¥)N(C-D)), 4rank(¥)),
if rank(¥) = 2, 2g — 2 + d = Max(2#(Sing(7)N(C-D)), 72rank(¥)),

or
1b) d > 4g+4, the following inequalities hold:

if rank(F) =1, 2g — 2 + d > Max(2#Sing(¥), 4rank(¥)),
if rank(F) > 2, 2g — 2 + d > Max(2#Sing(¥F), 72rank(¥)),
and, if n=4,

d > Max(6g+9, 6#Sing(¥) + 11).

Suppose further that
2) either ¥ is everywhere tame, or ¥ is tame at all points of D and the characteristic p is either zero
or p = rank(¥) + 2.
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Then the lisse sheaf G on Fet(C, d, D, Sing(F)gipite) given by
t— HU(C, j«(FRL, ),

has Ggeom given as follows:

a) If 7 is orthogonally self—dual, and y has order 2, then Ggeom is Sp.

b) If Fis symplectically self—dual, and y has order 2, then Gy, is €ither SO or O.

g
c) If either #is not self-dual or if y has order > 2, then G4, contains SL.

geo
proof If y has order two and ¥ is orthogonally (respectively symplectically) self—dual, then G is
symplectically (resp. orthogonally) self dual, and we have priori inclusions

Ggeom c Sp (resp. G c 0).

In general, we have an a priori inclusion

Ggeom c GL.

Given a smooth connected curve U/k and a map
7 : U — Fet(C, d, D, Sing(Ffinite)-
we have an a priori inclusion

Ggeom(ﬂ*g on U) c Ggeom(g on Fct(C, d, D, Sing(Ffipite))-

So it suffices to produce a 7 such that Ggeom(ﬂ*g on U) contains, in the three cases, the groups

geom

Sp, SO, and SL respectively. This is precisely what we have done in Theorem 5.4.1 (under
hypotheses 1a) and 2)) and in Theorem 5.4.9 (under hypotheses 1b) and 2)). QED

Proposition 5.5.2 Hypotheses and notations as in Theorem 5.5.1 above, suppose that y has order
2, and that ¥ is symplectically self dual.
1) Suppose that there exists a finite singularity 8 of 7, i.e., a point § in Sing(#)N(C-D), such that
the following two conditions hold.

la) ¥ is tame at .

1b) 7:(,3)/7:([3)1('8) has odd dimension.

Then the group Ggeom for the sheaf G is the full orthogonal group O.

2) Suppose we are in case 1b) of Theorem 5.5.1, and that there exists a singularity 8 of ¥ (but here
we do not assume that S lies in C—D) such that the following two conditions hold.
2a) Fis tame at .

2b) 7—‘(3)/7—‘(3)1(,3) has odd dimension.

Suppose further that we can write D as the sum of two effective divisors D + Dy of degrees d =
2g+2 and dy > 2g+1, such that Dy = ¥c;P; has all its nonzero c; invertible in k and such that 5 € C
— Dy. Then the group G for the sheaf G is the full orthogonal group O.

for the sheaf G is the full

geom

3) Suppose that the sheaf G has odd rank. Then the group Ggeorn

orthogonal group O.
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proof If we are in case 1a) of Theorem 5.5.1, then Assertion 1) results from Propostion 5.4.3. If
we are in case 1b) of Theorem 5.5.1, then Assertion 1) is a special case of Assertion 2), thanks to
Corollary 5.4.8, part 2). Assertion 2) results from Proposition 5.4.11. For assertion 3), we argue as

follows. We know that Ggeom for G contains SO and is contained in O. To show that G

0O, it suffices to find a one—parameter family
T Gm — Fct(C, d, D, Sing(ﬂfinite)

geom 8

such that det(ﬂ*g) is nontrivial on G,
Fix any fin Fct(C, d, D, Sing(F)fjpjte)> and consider the map
n: Gy, — Fet(C, d, D, Sing(Ffipite)
defined by
t— tf.

Thus n*g is the lisse sheaf on G, given by
1o _ 1 ;
t— H'(C, J*(T@LX(tf)) = .EX(»[)®H (C, J*(T@LX(f)).
If G has odd rank, then n*g is the direct sum of an odd number of copies of LX(t)’ and hence, y
being x», det(ﬂ*g) = LX(t)' QED

Question 5.5.3 Outside the cases covered by Proposition 5.5.2, we do not know a general, a priori
way to distinguish the SO and O cases. The sheaf det(G) on Fct(C, d, D, Sing(¥)fipite) 1S @

character of order dividing 2 of 71 (Fct(C, d, D, Sing(?’—")ﬁnite)), or, if we like, an element in

HI(Fet(C, d, D, Sing(Pinite)s Ho)-
What is it?

5.6 Theorems of big monodromy in characteristic 2

Theorem 5.6.1 Let k be an algebraically closed field of characteristic 2, C/k a proper, smooth
connected curve of genus g. Suppose that D = Xa;P; is an effective divisor of degree d > 6g+3,

with all a; odd. Let ¥ be an irreducible middle extension sheaf on C with Sing(F)fipite =

Sing(#)N(C-D) nonempty. Suppose that F is everywhere tame. Suppose that the degree d is so
large that the following inequalities hold:

if rank(¥) = 1, 2g — 2 + d = Max(2#(Sing(#)(C-D)), 4rank(¥)),
if rank(F) = 2, 2g — 2 + d = Max(2#(Sing(¥)N(C-D)), 72rank(¥)),

Fix a nontrivial character y of odd finite order n > 3. Pick a function f in Fct(C, d, D,
Sing(Ffinite) Which also lies in the dense open set U of Theorem 2.4.4 applied with S taken to be

Sing(Ffipite- Thus f as map from C-D to Alis of Lefschetz type, each finite monodromy of fxQ V.



Chapter 5: Twist sheaves and their monodromy—110

is a reflection of Swan conductor 1 (by 2.7.1), and for each s in Sing(F)fjpite» the fibre f~ 1(s)

consists of d distinct points, only one of which lies in Sing(¥);pite- Consider the lisse Q ¢—sheaf

Hon Al - CritVal(f, ) given by

H =t tf1"G,
1.e., by
1 .
t—> HY(C, j«(FOLy (t_f))-
Its geometric monodromy group G contains SL.

geom
proof The argument is quite similar to the one given for Theorem 5.4.1.

Thus r:= rank(¥), m := # Sing(Ffipite. 71 = +F, and H is the restriction to Al —
CritVal(f, ) of the middle additive convolution of 7 and LX. We know that the function f has
g=1+X(1+a)/2 2 (d+1)/2 - 1 = (6g+4)/2 -1 =1

critical points, and as many critical values. Over each critical value « of f, ¥ is lisse, so the local
monodromy of ¥7 at @ is quadratic of drop r, with scale a character p,, of I(@) of order 2 and Swan

conductor 1:
F1(@)/F] (@)@ x r copies of Py
Over the m images 6 = f(8) of points 8 in Sing(F)fjpite- f 18 finite etale, and B is the unique
point of Sing(F)fjpite in the fibre, so the local monodromy of #7 at 6 has drop < r. More precisely,
we have
F16)/F1 (YO = F By FB)IP),
where we use f to identify 1(6) with 1(B).
At all other points of Al, 1.e., on Al - CritVal(f, ), Fq is lisse. As ¥ is everywhere tame
on C, 7 is tame except at the critical values of F. Now form H, the middle additive convolution of
¥1 with LX' Thus (by 4.1.10, 2d), 1b) and 1¢) H is tame at oo, it is tame outside the critical values

of f, and it is lisse outside oo, the critical values of f, and the m images ¢ = f() of points £ in
Sing(Ffipite- Its rank is given by (5.2.1 part 5))

rank(H)= (2g-2 + d)r

+ ZPi - pred SwanPi(T) +2 Siﬂg(?‘)ﬁniteswans(ﬂ'

* Lo Sing(Fipite dropg (%)
+ ZPi . pred dropPi(?(Pi)éb(LXai)(oo, P)).
In particular, we have the inequality (5.2.1, part 6))
rank(H) 2 (2g-2 + d)r + #Singf;pite(F) > (2g-2 + d)r.
The local monodromy of # at the m images 6 = () of points 8 in Sing(F)fjpite is tame
and has drop <r, by (4.1.10, part 1c). It is given by
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HS)H GO = MCXIOC(é)(T(ﬁ)/T(ﬂ)I(IB) as 1(8)—rep'n).
The local monodromy of H at each critical value « of f is quadratic of drop r, with scale a

character MCXloc(oz)(pa) whose order, twice the order of y by 4.2.2, is 2 6. Thus

7—((&)/7—((&)1(“) =~ r copies of a character of order > 6.
The conclusion follows from Theorem 1.5.1 with hypothesis 6¢) (and Theorem 1.7.1 if r=1),
applied to (r, m, H), with S — S, the critical values of f, and S the m images ¢ = () of points 3

in Sing(f)ﬁnite QED

Theorem 5.6.2 Let k be an algebraically closed field of characteristic 2, C/k a proper, smooth
connected curve of genus g. Suppose that D = X.a;P; is an effective divisor of degree d > 12g+7.

Write D as a sum of effective divisors D + D5 both of whose degrees d and d are at least 6g+3,
such that D, = ZCiPi has all its nonzero ¢; odd. Let # be an irreducible middle extension sheaf on

C. Suppose that ¥ is everywhere tame. Suppose that the following inequalities hold:

if rank(F) = 1, 2g — 2 + d = Max(2#(Sing(F)N(C-D»)), 4rank(¥F)),
if rank(F) 2 2, 2g — 2 + d > Max( 2#(Sing(#)N(C-D»)), 72rank(¥)).

Fix a nontrivial character y of odd finite order n > 3.
Fix a function

f] in Fet(C, deg(D1), Dy, Sing(F)UDred),
Fix a function f; in Fct(C, deg(D5), D5, Sing(?—‘)UDrede 1_1(0)) which also lies in the open set
U of Theorem 2.4.4 with respect to the set S :=f I_I(O)U(Sing(ﬂﬂ(C—Dz)). Consider the lisse
Q-sheaf H on Al - CritVal(fy, F®L, (¢ ) given by [t f1(t=f)1"G, i.e., by

t— Hl(C, Jx (7-®£X(f1 (t_fz))).

Its geometric monodromy group Ggeom contains SL.

proof The argument is quite similar to the one given for Theorem 5.4.9.We will indicate the
modifications which must be made.
Put r:= rank(¥), m := #(Sing(F)N(C-D»)), 7 := f2*(77®£)((f ) )). We have seen in

Proposition 5.3.7 that H is the restriction to Al CritVal(f,, T@Lx(f | )) of the middle additive

convolution of 7 and LX'

We have seen above (end of the proof of 5.3.6) that by the Irreducible Induction Criterion
3.3.1,F 1 18 an irreducible middle extension sheaf. It is tame at o, because ¥ is tame at all the poles

of f, and the poles of f all have odd order.
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We know that the function f; has
g=1+ X(14+¢))/2 2 (dp+1)/2 = 1 2 (6g+H/2 -1 2 1
critical points, and as many critical values. Over each critical value « of f5, #7 is lisse, so the local
monodromy of ¥ at @ is quadratic of drop r, with scale a character p, of I(@) of order 2 and Swan
conductor 1:
F1(@)/F] (@)@ x r copies of Py
Over the m images ¢ = f5(B) of points B in Sing(¥)N(C-D5), f5 is finite etale, and 3 is the
unique point of Sing(#)(C-D,) in the fibre, so the local monodromy of ¥ at 6 has drop <r.
More precisely, we have
F16)/F1(6)1O) = FBYFB)P),
where we use f5 to identify I(6) with I(3).
Over each of the dy images y = f5(¢) of the zeroes of f{, f5 is finite etale, {'is the only zero

of f] in its fy—fibre, and ¥ is lisse. Thus T@LX(f D is lisse at all but the point in the fibre fy™

1(7). At { the local monodomy of 7:®‘£X(f D 1s quadratic of drop r, with scale the character

i:)((uniformizer at 0) of I({). Thus the local monodromy of ¥ at y is quadratic of drop r, with
scale the character ‘EX(X—Y) of 1(y).

Atall other points of Al ie., on Al - CritVal(fy, F®L ¢ D) T is lisse. As Fis

everywhere tame on C, ¥ is tame outside the critical values of f5. Now form ¥, the middle
additive convolution of # with LX. Thus(by 4.1.10, 2d), 1b) and 1c)) H is tame at o, it is tame
outside the critical values of f5, and it is lisse on Al - CritVal(f5, T@LX(f 1)). Its rank is given by
(5.2.1, part 5))

rank(H)= (2g-2 + d)r

+ ZPi . pred SwanPi(T) +2 Sing(ﬂﬁniteswans(ﬂ'

+ Zs in Sing(Fipite dI‘Ops(T)
+ ZPi in Dred drOPPi(ﬂPi)®(£Xai)(°°, P)),
where we have written Sing(F)fjpite for Sing(F)N(C-D).

In particular, we have the inequality (5.2.1, part 6))
rank(H) > (2g-2 + d)r.
The local monodromy of # at the m images ¢ = f5(5) of points 8 in Sing(F)N(C-D») is
tame and has drop <r, by 4.1.10 parts 1b) and 1c).
The local monodromy of H at each critical value a of f5 is quadratic of drop r, with scale a

character MC Xloc(a)(pa) whose order, twice the order of y by 4.2.2, is 2 6. Thus
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7—((&)/7—((&)1(“) =~ r copies of a character of order > 6.
Over each of the dj images y = f5({) of the zeroes of fy, the local monodromy of H at 7 is

quadratic of drop r, with scale the character L)(z(X—Y) of I(y), whose order, that of y, is > 3.

With the exception of at most m points of Al namely the images by f5 of points in
Sing(F)N(C-D»), the local monodromy of H is quadratic of drop r, with scale a character not of

order 2. The conclusion follows from Theorem 1.5.1 with hypothesis 6¢) (and Theorem 1.7.1, if
r=1), applied to (r, m, H), with S — Sy the critical values of f together with the d; images y = f5({)

of the zeroes of f], and S(y the m images 6 = f(f) of points 8 in Sing(F)N(C-D,). QED

5.7 Theorems of big monodromy for G := Twistx,c,D(T) on Fet(C, d, D, Sing(F)gipite) in
characteristic 2

Theorem 5.7.1 Let k be an algebraically closed fieldof characteristic 2. Fix a prime number ¢ which
is invertible in k. Fix a nontrivial character y of finite odd order n > 3. Let C/k be a proper smooth
connected curve of genus g. Fix an irreducible middle extension Q ,—sheaf Fon C. Let D = Xa;P;

be an effective divisor of degree d on C. Suppose that either

la) d > 6g+3, all a; are odd, Sing(#)N(C-D) is nonempty, and the following inequalities hold:

if rank(¥) =1, 2g — 2 + d > Max(2#(Sing(F)N(C-D)), 4rank(¥)),
if rank(¥) 2 2, 2g — 2 + d = Max(2#(Sing(#)N(C-D)), 72rank(¥)),

or
1b) d = 12g+7, and the following inequalities hold:

if rank(F) =1, , 2g — 2 + d > Max(2#Sing(¥), 4rank(F)).
if rank(F) > 2, 2g — 2 + d > Max(2#Sing(¥), 72rank(¥)).

Suppose further that
2) ¥ is everywhere tame.

Then for the lisse sheaf G on Fet(C, d, D, Sing(F)fjpite) given by

t— HU(C, j«(F®Ly (),

Ggeom contains SL.

proof This follows from Theorems 5.6.1 and 5.6.2 above in exactly the same way that Theorem
5.5.1 followed from Theorems 5.4.1 and 5.4.9. QED
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6.0 A lemma on relative Cartier divisors
(6.0.1). The following lemma is standard. We include it for ease of reference.
Lemma 6.0.2 Let T be an arbitrary scheme, X/T a proper smooth T—scheme with geometrically

connected fibres everywhere of dimension N, £ an invertible OX—module, and L in HO(X, La
global section. Suppose L is nonzero on each geometric fibre of X/T, i.e., for every geometric point
tof T, the image L of L in HO(Xt, L) is nonzero. Then the locus "L = 0 as section of L", call it Z,

is a Cartier divisor in X, which is flat over T.
proof The question is Zariski local on T, which we may assume affine, say T = Spec(R). All the
data (X/R, Z/R, L) is of finite presentation over R, so we may reduce to the case where R is
noetherian, then to the case where R is noetherian local, then to the case where R is complete
noetherian local, and finally to the case where R is complete noetherian local with algebraically
closed residue field k.

It suffices to show that, over any such R, the sheaf map

XL

L_l — OX
is injective on X. Indeed, for any ideal I in R, R/I is again complete noetherian local with
algebraically closed residue field, so after the base change R — R/I we will again have the
injectivity of

xL

£l 5 oo

This means precisely that the short exact sequence
xL

0Ll sox—oxis1=0,-0

remains exact after any base change R — R/I. Because L land Ox are flat over R, the Tor
sequence gives a four term exact sequence

0 — Tor ROz, R — £711£71 - ooy — 0,10, — 0.
Therefore TorlR(OZ, R/M) =0 for any ideal [ in R, i.e., OZ is flat over R, as required.

To show that multiplication by L : i Oy is injective on X, we argue as follows. If
not, there is some closed point x in X over whose complete local ring OX,XA the map

L: L7l ®9, Ox x" = Ox x"

is not injective. If we pick a basis e of the source, which is a free, rank one Ox,x/\—module, then
Le is an element of Ox 4" which is nonzero in Oy "/ MROx 4. We must show that Le is not a

zero divisor in Ox «”. The closed point x in X lies over the closed point of Spec(R), so x has

residue field k. Because X/T is smooth of relative dimension N, there exists X in X(R) which lifts x
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in X(k), and we have an isomorphism of local rings
OX X/\ = R[[Xl’ ceey XN]]

Our element Le in R[[Xl, - XN]], say Le ~ ZW rWXW, reduces mod Mgy, to a nonzero element
of kl[X{, ..., Xny1l. We claim that any such element of RI[Xj, ..., X1l is not a zero divisor.

This is an elementary application of the Weierstrass preparation theorem. At least one of its
coefficients ry, is a unit in R. The minumum Iwl such that ry;, is a unit in R is the "Weierstrass

degree" of X, 1, XW, call it n. After a suitable linear change of variables, we may assume the

monomial (XN)n occurs with coefficient 1. Now view RIIX{, ..., X1l as Ry_ 1 X1, with
Rp_1 the power series ring RI[X{, ..., Xpn_11]. By the Weierstrass Preparation Theorem, the
element Le is the product of a unit with a Weierstrass polynomial in Xy of degree n,
XN+ 2 ¢y miXN)!

with all m; in the maximal ideal of Ryj_;. But no Weierstrass polynomial in X} is a zero divisor in
Ry_1[[XN]1. Indeed, suppose for some g in Ry_1[[Xyy1] we have

(X" + Z, m(Xn)hHeg =0,
then

X" = - &, mXnHe.
Suppose we have already established that g has all coefficients in the k'th power of the maximal
ideal of Ryj_;. Then the equation above shows that (XN)ng, and hence g itself, has all coefficients

in the k+1'st power. Proceeding in this way, we conclude that all coefficients of g lie in My
k = {0}. QED
(Mgy_ N =103.Q

6.1 The situation with curves
(6.1.1) We fix an arbitrary scheme T, which will play the role of a parameter space in what
follows. We fix an integer g = 0, and a relative curve C/T of genus g. More precisely, we fix
(6.1.1.1) 7:C—-T,
a proper smooth morphism whose fibres are geometrically connected curves of genus g. We
suppose given an integer d = 2g—1 and an effective Cartier divisor D in C which is finite and flat
over T of degree d.
Lemma 6.1.2 Let T be a scheme, g >0 an integer, and

n:C—>T,
a proper smooth morphism whose fibres are geometrically connected curves of genus g. Suppose
given an integer d = 1 and an effective Cartier divisor D in C which is finite and flat over T of

degree d. Suppose we are given a global section f of HO(C, I_I(D)) which is nonzero on each

geometric fibre of C/T. Then the locus "f=0 as section of I_I(D)", call it Z, is an effective Cartier
divisor in C, finite and flat over T of rank d.
proof We already know that Z/T is a relative Cartier divisor in C/T, flat over T. Because Z is closed
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in C, Z is proper over T. Then Z/T is finite, because it has finite fibres. Thus Z/T is finite and flat.
One sees that it is finite and flat of degree d by looking at fibres. QED

Lemma 6.1.3 Hypotheses as in Lemma 6.1.2, suppose in addition that d > 2g — 1. Consider the
functor on T—schemes Y/T given by

Y/T — the set of global sections of HO(CY, I_l(D)Y) which are nonzero on each
geometric fibre of Cy/Y.

This functor is represented by a T—scheme L(D),, o zero/ T» Namely the complement of the zero
section in the total space of the vector bundle on T of rank d+1-g given by ﬂ*(I_l(D)).

proof The only point is that because d > 2g-2, ﬂ*(I_I(D)) on T is a locally free O—module

whose formation commutes with arbitrary change of base on T.

Definition 6.1.4 Hypotheses as in Lemma 6.1.2 above, a global section f of HO(C, I_l(D)) is said
to have d distinct zeroes if it is nonzero on each geometric fibre of C/T and if Z, the locus "f=0 as

section of I_l(D)", is finite etale over Y.

Lemma 6.1.5 Hypotheses as in Lemma 6.1.2, suppose in addition that d > 2g — 1. Consider the
functor on T—schemes Y/T given by

Y/T — the set of global sections of HO(CY, I_l(D)Y) which have d distinct zeroes.
This functor is represented by a T—scheme L(D)g 4ist zeroes/I» Which is an open set in
LD)nonzero/T-
proof If make the base change from T to Y := L(D),onzero/T» We acquire the universal global
section f|;,;,, Which is nonzero on geometric fibres. Over this base space Y, we have the finite flat
scheme Z/Y. Its structure sheaf O is an Oy—algebra which is a locally free Oy—module of rank d.
Then L(D)g dist zeroes’ T 18 the open subscheme of Y over which Z/Y is finite etale. Locally on Y,
if we pick an O basis of OZ, say €1, ..., €4» LAD){ dist zeroes’ I 1S the open set where the
discriminant

detdxd(TraceOY(eiej))

is invertible. QED

Definition 6.1.7 Hypotheses as in Lemma 6.1.2 above, we say a global section f of HO(C, 1~ LDy
is invertible near D, or has exact divisor of poles D, if the following condition is satisfied.
Multiplication by f defines an O~linear map

xf
Oc/ID) - I"LDyoc.
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Taking rx, we get an Op—linear map "fID"

fD : 7(OC/N(D)) — w1~ LDYO)
between locally free Op—modules of the same rank d. We require that fID be an isomorphism. [If
locally on T we take Op—bases of source and target, we can calculate the determinant of fID.
Locally on T, this determinant is well-defined in O, up to multiplication by an invertible section

of Op.We require that this determinant be everywhere invertible on T.]

Lemma 6.1.7 Hypotheses as in Lemma 6.1.2, suppose in addition that d > 2g — 1. Consider the
functor on T—schemes Y/T given by

Y/T — the set of global sections of HO(CY, I_l(D)Y) which are invertible near Dy
This functor is represented by a T-scheme L(D);,y near p/T- Locally on T, L(D)jqy near D/T 18 @
principal open set in L(D);,qn7ero/T- Proof If make the base change from Tto Y :=
L(D)ponzero/T» We acquire the universal global section fy;,;,, which is nonzero on geometric
fibres. Over this base space Y, we have the map f;,,;,,/Dy

funivPy : 7 Y*(OCY/I(Dy)) > Y*(I_I(DY)/OCY)

of locally free Oy—modules of rank d. Our functor is represented by the open set of Y where the

"determinant" of f IDy is invertible. QED

univ

Definition 6.1.8 Hypotheses as in Lemma 6.1.2, suppose we are given in addition an integer s >0
and an effective Cartier divisor S in C/T, which is finite and flat over T of degree s (with the
convention that S is empty if s = 0), and which is scheme—theoretically disjoint from D. A global

section f of HO(C, I_l(D)) is said to be invertible near S if the following conditions hold. If s =0,
we require only that f be nonzero on each geometric fibre of C/T. If s = 1, multiplication by f
defines an O—linear endomorphism of Og := O/I(S). Taking 7x, we get an Op—linear

endomorphism "fIS"

fIS : (O /1(S)) — (O /I(S))
of of locally free Op—modules of the same rank s. We require that IS be an isomorphism. Here we
have a true endomorphism, so we can speak of det(fIS) as a global section of Op. We require that

this determinant be an invertible global section of O.

Lemma 6.1.9 Hypotheses as in Lemma 6.1.2, suppose we are given in addition an integer s = 0 and
an effective Cartier divisor S in C/T, which is finite and flat over T of degree s (with the convention
that S is empty if s = 0), and which is scheme—theoretically disjoint from D. Suppose that d = 2g —
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1. Consider the functor on T—schemes Y/T given by

Y/T +— the set of global sections of HO(CY, -1 (D)y) which are invertible near Dy and
invertible near Sv/.
This functor is represented by a T-scheme L(D);y near D and S/T> Which is a principal open set
in L(D)jy near D/T for s 2 1, and which is equal to L(D);,y pear p/T for s =0.
proof If s = 0, there is nothing to prove. If s > 1, make the base change from T to Y := L(D);,y,
which is invertible near D. Over this base
ISy) is invertible. QED

near D/T- We acquire the universal global section f .,

space Y, our functor is represented by the open set of Y where det(f} iy

Lemma 6.1.10 Hypotheses as in Lemma 6.1.2, suppose we are given in addition an integer s > 0
and an effective Cartier divisor S in C/T, which is finite and flat over T of degree s (with the
convention that S is empty if s = 0), and which is scheme—theoretically disjoint from D. Suppose
that d = 2g — 1. Consider the functor on T-schemes Y/T given by

Y/T — the set of global sections f of HO(CY, -1 (D)y) which are invertible near Dy and
invertible near Sy, and which have d distinct zeroes.
This functor is represented by a T—scheme
Fet(C,d, D, S)
which is open in both L(D)ijy near D and S @0d in (D) dist zeroes:
proof Indeed, the functor Fct(C/T, d, D, S) is represented by the fibre product over L(MD)nonzero
of the open subschemes
L(D)iny near D and S *L(D)yonzero L(D)q dist zeroes: QED
Remark 6.1.11 When T is the spec of an algebraically closed field, the set of k—valued points of the
k—scheme Fct(C, d, D, S) is precisely the space Fct(C, d, D, S). The possibility of taking T to be
the spec of a finite field k will be absolutely essential in the chapters which follow..

6.2 Construction of the twist sheaf G :=TwistX,C,D(7-') with parameters

(6.2.1) We fix a prime number ¢, and a normal and connected Z[1/¢]-scheme T. We assume
further that T is a "good scheme" in the sense of [Ka—RLS, 4.01, i.e., that T admits a map of finite
type to a scheme which is regular of dimension < 1. We fix an integer g = 0, and a curve C/T of
genus g, i.e., we fix

(6.2.1.1) n:C—>T,

a proper smooth morphism whose fibres are geometrically connected curves of genus g.

(6.2.2) We suppose given an integer dy > 1 and an effective Cartier divisor Dgy in C which is finite

etale over T of degree dy. We further suppose given an integer d > 2g+1 and an effective Cartier
divisor D in C which is finite and flat over T of degree d, such that
6.2.2.1) pred — (pyyred,
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[Thus etale locally on T, D is a disjoint union of sections, Dy = Hi P;, and the divisor D is ZaiPi

for some choice of strictly positive integers a; with X a; =d..]

(6.2.3) We also suppose given an integer s = 0 and an effective Cartier divisor S in C — D which is
finite etale over T of degree s, with the convention that if s = 0 then S is empty. We may also view
S as an effective Cartier divisor in C which is finite etale over T of degree s, and which is disjoint
from D). [Thus etale locally on T, S is a disjoint union of sections, S = Hj Qj, Dy is a disjoint

union of sections, Dy = Hi P;, the divisor D is ZaiPi, and for all i and j, P; and Qj are disjoint.]

(6.2.4) Our last data is an integer r > 1 and a lisse Q ¢—sheaf ¥ of rank r on C — D - S, about
which we make the following two hypotheses:

(6.2.4.1) For each geometric point t of T, the lisse Q ¢—sheaf F or rank r on C; — Dy — S; is
irreducible.

(6.2.4.2) For variable geometric points t of T, the compact Euler characteristic x (C; — Dy = S¢, %)
is a constant function of t.

(6.2.5) Notice that all of the conditions we have imposed are stable under arbitrary change of base
onT.

Remark 6.2.6 If, for each geometric point t in T, the lisse sheaf % on the open curve C; — D — S,

is everywhere tame, then condition 6.2.4.2 holds trivially, for then

Xco(Ci =Dy =S, F) =t (C = Dy = Sp) =1(2 - 2g —dgy — 9).
If the generic point of our normal connected scheme T is (the spectrum of) a field of characteristic
zero, this tameness is automatic, cf. [Ka—SE, 4.7.11].
Remark 6.2.7 To understand better condition 6.2.4.2 in a less trivial case, suppose in addition that
the divisors D(y and S are disjoint unions of sections of C/T, say Dy = LI; P; and S = L[j Qj, and

that the divisor D is Xa;P;. By the Euler—Poincare formula, we have

Xo(Cp =D =S, Fp)

=1y (Ci — Dy - St) - Zi Swanpi(t)(?'t) - 2_] Swaan(t)(Tt)

=r(2 - 2g - dO —-S)— Zi Swanpi(t)(?t) - ZJ Swaan(t)(Tt).
So condition 6.2.4.3 certainly holds if each of the Swan terms Swanpi(t)(i‘-‘t) and Swaan (t)(ft) is
a constant function of t. By Deligne's semicontinuity theorem [Lau—SC, 2.1.1], each of these Swan
terms separately is constructible and lower semicontinuous in t. Therefore 6.2.4.2 holds if and only

if each Swan term is itself a constant function of t.
(6.2.8) Now choose an integer n invertible on T, and suppose T is given a structure of Z[1/n, 1~

scheme. (Here we write Z[1/n, {,1for the ring Z[1/n, X1/(®,(X)), where ®,(X) denotes the n'th
cyclotomic polynomial. Given a character

(6.2.8.1) X pg(ZIn, €D — Q)

of order n, we get a lisse rank one Q/—sheaf on G,,/Z[1/n, £, 1 by pushing out by y the Kummer
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torsor

[-nl: G, = Gy,

X x
whose structural group is u,(Z[1/n, &,1). By pullback, we get LX on G,/T.
From the data (C/T, D, S) we construct the space

X = Fet(C, d, D, S)/T.
On Cy := CxX, we have the universal section f of I_I(DX), its zero locus Z/X, and the open
curve

Cx -Dx-Sx -7

If we think of f as a section of the structural sheaf of Cy — Dy, then we may view Cyx — Dy —
Sy —Z as being

(Cx = Dx = Sypl1/fl.

Then f is an invertible function on Cyx — Dy — Sy — Z, so we may form the lisse rank one Q ~

sheaf £ () =1 L,
(6.2.9) We denote by
pZCX—Dx—Sx—Z%X
the structural morphism, just as in 5.2.1 (but p was denoted 7 there).
Proposition 6.2.10 Given data (C/T, D, S, ¢, r, F, x) satisfying all the hypotheses made above in
6.2.1-4 and 6.2.8-9, we have the following results.

1) The sheaves Rip!(T@)LX(f)) on X vanish for i#1, and Rlp!(T®£X(f)) is lisse.
2) The sheaves Rip*(?@LX(f)) on X vanish for i#1, and Rlp*(77®£X(f)) is lisse, and of

formation compatible with arbitrary change of base.
3) The image G of the natural "forget supports" map

RIp|(F® L) = RIpu(FBL, (1)
is lisse, of formation compatible with arbitrary change of base on X. In particular, the formation of
G commutes with arbitrary base change on T. Thus when we base change to a geometric point of
T, i.e., to a point of T with values in the spec of an algebraically closed field k, we recover the
construction of 5.2.1.
4) If, for some integer w, the lisse sheaf ¥ on C — D — S carries an orthogonal (respectively
symplectic) autoduality toward Q (=W),

<. >IFXF o Qu(-w),

and y has order two, then the Poincare duality pairing on X,

RIp|(F®L (1) X RIp«(FOL, () —
- R2py(F®F) - R2py(@p(~w)) = Qy(-w-1),
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deduced from cup product and < . >, induces on G a symplectic (respectively orthogonal)
autoduality toward Q,(-w—1) on X,

<,>:GXG > Qu-w-1).

proof Simply repeat the proof of 5.2.1. QED
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7.0 The general set up over a finite field: relation of the sheaf G := TwistX’C’D(T') to L functions of

twists

(7.0.1) In this section, we work over a finite field k, of cardinality q and characteristic p. We fix a
proper, smooth, geometrically connected curve C/k of genus g, an effective divisor D on C of
degree d > 2g+1, a prime number ¢ invertible in k, an integer r > 1, and a geometrically irreducible
middle extension Q ¢—sheaf ¥ on C of generic rank r. We denote by Sing(#) < C the finite set of

closed points of C at which ¥ is not lisse, and by Sing(F)f;pjte the intersection Sing(F)N(C-D).
The space

(7.0.1.1) X :=Fct(C, d, D, Sing(Ffinite)

has a natural structure of scheme over k, cf. Proposition 6.1.10. For any extension field E/k, the E—

valued points X(E) consist of those functions f in HO(C®kE, I_l(D)) whose divisor of zeroes f—

1(O) is both disjoint from DUSing(F)gipite and finite etale of degree d over E.
(7.0.2) We also fix a nontrivial Q,~valued multiplicative character

(7.0.2.1) x: kK-> Q%

and denote by LX the corresponding Kummer sheaf on G, /k.

(7.0.3) The construction 5.2.1, carried out over the finite field k instead of over k, provides us with
a lisse Q —sheaf

G = TwistX,C,D(T)
on X :=Fct(C, d, D, Sing(ﬂﬁnite), cf.Proposition 6.2.10.

(7.0.4) The fundamental diophantine property of G is this. Given any finite extension field E/k
inside k, and any f in X(E), the stalk G¢of G at (the geometric point "f as k—valued point" lying

over) f is the cohomology group
—yl i
Gr=H!(Cok, j(FOLy (1)),
and the action of Frobg ¢ on Gy is the action of Frobg on this cohomology group. Thus we have
det(1 — TFrobg ¢ 1 G)

- 1 i

= det(1 — TFrobg | H*(Cek, J*(Z‘"®£X(f)))).
Remark 7.0.5 By Chebotarev, any lisse Q y~sheaf H on X is determined up to semisimplification
by all its local characteristic polynomials of Frobenius det(1 — TFrobg, ¢ 1 H). Applying this fact to

G, and remembering that G is irreducible, we see that G is in fact determined up to isomorphism by
its fundamental diophantine property.

(7.0.6) We can also think of G as the sheaf whose local characteristic polynomials at E—valued
points f in X(E),

(7.0.6.1) det(1 — TFrobg 1 G),

are the global L functions of Cey E with coefficients in j*(T®£X(f)). Indeed, the sheaf

j*(¢®£X(ﬂ) on CeE is a geometrically irreducible middle extension, which is not geometrically
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constant (because f has simple zeroes at points where 7 is lisse). Therefore we have
(7.0.6.2) HI(Coyk, j+(F®Ly(p)) = 0 fori # 1.
The L~function of C#} E with coefficients in j>g(7"®£)((f)) is, by the Lefschetz Trace Formula,
given by the alternating product
(7.0.6.3) L(CeE, j*(?@LX(f)))(T)
=1y ,det(1 — TFrobg | Hi(C®kl€, j>x<(7:®£X(f))))(_l) 1+1-

In view of the above vanishing (7.0.6.2) of Hi for i # 1, we have
(7.0.6.4) L(CeE, j*(77®£X(f)))(T)

= det(1 - TFrobg | H!(Cok, JHFOLy(£))
= det(l — TFrobg ¢ G)

(7.0.7) Put
(7.0.7.1) N :=rank(G).
(7.0.8) We fix an embedding t: Q ¢ — C. We further suppose that ¥ is (—pure, of integer weight

denoted w. This means that for every finite extension E of k, every E—valued point x of C at which
¥ is lisse, and every eigenvalue A of Frobg  on F, we have

(@A)l = HE)W/2,
Because ¥ is t—pure of weight w, G is t(—pure of weight w+1, thanks to Deligne [De—Well, 3.2.31.
(7.0.9) We also fix a choice @y of (#k)_l/ 2in Q ¢» Which may or may not map by ¢ to the positive
square root. This choice allows us to perform Tate twists by half—integers. In the notation of [Ka—
Sar, RMFEM, 9.0.111, #(n/2) is T@ﬁdeg, for B := (@ )". Thus F(w/2) and G((w+1)/2) are both
(—pure of weight zero.
7.1 Applications to equidistribution
(7.1.1) Suppose we are given data (C/k, D, 4, r, F, x, t, w) as in the previous section 7.0. We wish

to apply Deligne's general equidistribution theorem [De—Well, 3.5.3], cf. also [Ka—GKM, 3.6] and
[Ka—Sar, RMFEM, 9.2.61, to G. For this, we need to know the group Ggeom for G :=

Twist)( c.p). To this end, we suppose that after extension of scalars from k to k, our data (C/k,

D, ?, 1, F, y) satisfies all the hypotheses of Theorem 5.5.1, if char(k) is odd, or of Theorem 5.7.1,
if char(k) is two. Thus Ggeom for G is either Sp(N) or SO(N) or O(N) or a group containing
SL(N). We now discuss each of these cases separately, in order of increasing complexity.

7.2 The SL case

(7.2.1) Let us first examine in greater detail the case when Ggeom contains SL(N) (and the

hypotheses of section 7.0 are in force). Because G lives over a finite field k and is irreducible, we
know [De—Well, 1.3.9] that Ggeom

between SL(N) and GL(N) are the groups

is a semisimple group. But the only semisimple groups
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(7.2.1.2) GL,(N) := {A in GL(N) | det(A)” = 1}
for v 2 1 an integer. Therefore for some integer v = 1 we have
(7.2.1.3) Ggeom = GL,,(N).

(7.2.2) Suppose that the parameter space X admits a k—rational point f. Then if we twist G by an
N'th root 8 of 1/det(Froby ¢ | Gy), the resulting lisse sheaf g%’deg is t—pure of weight zero, and all

its Frobenii land in Ggeom' We should remark here that the quantity (7.2.2.1) (-

I)Ndet(Frobk f | Qf) = det(—FI'Obk f | Qf) =

= det(-Froby | HI(CoyK, j«(F® L))
is the constant in the functional equation for the L—function
(7.2.2.2) L(CeyE, j*(?'@LX(f)))(T).
As such, it is a product, over the closed points of C, of local constants, cf. [De—Constl and [Lau—
TFCI. At least in favorable cases, these local constants are eminently computable, cf. 7.9.5 and
8.9.2. In this sense, the recipe in 7.2.2 above for § is an "explicit" one.
(7.2.3) We take
(7.2.3.1) K :=U,(N) := {A in UN) | det(A)” = 1},

a maximal compact subgroup of Ggeom(C). For each finite extension E/k inside k, and each f in

X(E), we denote by O(E, f) the Frobenius conjugacy class in K attached to g%»deg at the E—valued
point f of X. Thus

(7.23.2) det(1 - TO(E, ) = (det(1 - TFrob ¢ G=p4°8))

= y(det(1 - TBICEEDFrobp ¢1 H(Copk, jr(FRL, (1)))-
(7.2.4) This equality 7.2.3.2 of characteristic polynomials determines 8(E, f) as a conjugacy class in
K. By Deligne's general equidistribution theorem [De—Well, 3.5.3], cf. also [Ka—GKM, 3.61 and
[Ka—Sar, RMFEM, 9.2.61, as #E — oo, the conjugacy classes

{0, D} in X(E)

become equidistributed for Haar measure in the space K# of conjugacy classes in K.
(7.2.5) What happens if we do not assume that the parameter space X admits a k—rational point?

We can still prove the existence of a 5 such that all Frobenii for g®ﬁdeg land in G Simply

geomr
replace Frobk’f by any element y of 71(X) which maps onto Froby in 71 (Spec(k)) = Gal(k/k), and

take for § an N'th root of 1/det(y | G). For any such g, g®ﬁdeg is t—pure of weight zero (because
for an (—pure lisse sheaf, its weight is equal to its determinental weight, cf. [De—Well, 1.3.51.
(7.2.6) Here is a more concrete version of the above recipe for a suitable 8. For each n > 1, denote
by k, c k the extension of k of degree n. For each n >>0, X has a kj,—valued point, say f,,. Take 8

an N'th root of
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(7.2.6.1) det(Frobkn’fn I g)/det(Frobkn | G).

7.3 The Sp case

(7.3.1) Let us next consider the case in which F(w/2) is orthogonally self dual on C/k, and y has
order 2 (and the hypotheses of section 7.0 are in force). Then, by Poincare duality, G((w+1)/2) is
symplectically self dual on X. The field k must have char(k) # 2, simply because y has order 2. By
hypothesis, Theorem 5.5.1 holds, so G has Ggeom = Sp(N). Thus the lisse sheaf G((w+1)/2) is t—

pure of weight zero, and all its Frobenii land in Ggeom' In this case we take
(7.3.1.1) K := USp(N),
a maximal compact subgroup of Ggeom(C)' For each finite extension E/k inside k, and each f in

X(E), we denote by 6(E, f) the Frobenius conjugacy class in K attached to G((w+1)/2) at the E—
valued point f of X. Thus
(7.3.1.2) det(1 = TO(E, 1)) := «(det(1 — TFrobg ¢l G(W+1)/2)))

= 1(det(1 - Takdeg(E/ k)(w+1 )FrobE,f | H! (Ceyk, j #«(FOLy(1)))-

+1’fn+1

(7.3.2) This equality 7.3.1.2 of characteristic polynomials determines 8(E, f) as a conjugacy class in
K. By Deligne's general equidistribution theorem [De—Well, 3.5.31, cf. also [Ka—GKM, 3.6] and
[Ka—Sar, RMFEM, 9.2.61, as #E — oo, the conjugacy classes

{0, D} in X(E)
become equidistributed for Haar measure in the space K* of conjugacy classes in K.
7.4 The O or SO case
(7.4.1) Let us finally consider the case in which #(w/2) is symplectically self dual on C/k, and y
has order 2 (and the hypotheses of section 7.0 are in force). Then, by Poincare duality, G((w+1)/2)

is orthogonally self dual as a lisse sheaf on X. The field k must have char(k) # 2, simply because y
has order 2. By hypothesis, Theorem 5.5.1 holds, so G has Ggeom either SO(N) or O(N).

(7.4.2) If Ggeom is O(N), then the lisse sheaf G((w+1)/2) is t—pure of weight zero, and all its
Frobenii land in Ggeom' See Proposition 5.5.2 for various conditions which insure that G
O(N) rather than SO(N). In particular, recall that G is O(N) if N is odd.

(7.4.3) If Ggeom is SO(N), we have

(7.4.3.1) SO(N) = Ggeom < Gypith © O(N),

where we write G, for the Zariski closure of the image of 771(X) under the (orthogonal)
representation corresponding to G((w+1)/2). Thus G, 18 SON) if and only if det(G((w+1)/2))

geom 18

geom

is arithmetically trivial. In any case, we know that det(G((w+1)/2)) is of order 1 or 2, and that it is
geom < SO(N)). Thus we have

(7.4.3.2) det(G((w+1)/2)) = gdeg,
for € = +1. [So for ky/k the quadratic extension of k inside k, the pullback of G to Xepky will

geometrically trivial (because G

always have G, = G = SO(N), independently of whether € is 1 or —1.1

geom
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(7.4.4) If Gge,,

a k—rational point f, then
(7.4.4.1) € = det(Froby ¢ 1 G((w+1)/2)).

If there is no k—rational point in X, there will be an E—rational point of X for any finite extension
E/k of high enough degree. If we take E of odd degree over k, and an f in X(E), then we still have

m 18 SO(N), we can compute € in principle as follows. If the parameter space X has

the recipe

(7.4.4.2) € = det(Frobg ¢ | G((W+1)/2)).

(7.4.5) If Ggeom is SO(N) and € = 1, then all Frobenii for G((w+1)/2) land in Ggeom = SO(N).
(7.4.6) It Ggeom is SO(N) and € is —1, then G, = O(N) contains Ggeom = SO(N) with index

two. The Frobenius conjugacy classes Frobg ¢land in O_(N) for E/k of odd degree, and they land
in SO(N) for E/k of even degree.

(7.4.7) Suppose we do not know whether Ggeom is SO or O. Here is a computional way to sort

out which of the three cases

(7.4.7.1) Ggeom = OMN) = Grith;
(7.4.7.2) Ggeom = SOMN) © Gyrigh = OMN),
(7.4.7.3) Ggeom = SOM) = Gyrith,

G((w+1)/2) is in. The question is whether the character of order dividing 2 of 71 (X) given by

det(G((w+1)/2)) is nontrivial or not, both arithmetically (i.e., on 71(X)) and geometrically (i.e., on
my geom(X))_

Computational algorithm 7.4.8 Pick a large finite extension E/k of odd degree. For each f in X(E),
compute det(Frobg ¢ G((w+1)/2)), which a priori is 1. If both 1 and —1 occur as f varies in

X(E), we are in the first case 7.4.7.1. If only —1 occurs, we are in the second case 7.4.7.2. If only
+1 occurs, we are in the third case 7.4.7.3. [The point is that in the second case we will get only —
1, and in third case we will get only +1, whatever the odd degree extension E/k with X(E)
nonempty. If E is large, then Chebotarev for det(G((w+1)/2)) on X guarantees that, if we are in the
first case, then both signs 1 and —1 occur as f varies over X(E)]

(7.4.9) Here is a minor variation on 7.4.8, when X(k) is non—empty.

Computational algorithm 7.4.10, when X(k) is non—empty Take a large finite extension E/k of even
degree. We are in the first case 7.4.7.1.if and only if both signs occur as f varies in X(E). If only

+1 occurs, then G is SO(N), In this case, we compute € as det(Froby ¢ | G((w+1)/2)) at any

geom
single k—rational point of X.

(7.4.11) Let us denote by K c K, i1, maximal compact subgroups of Ggeom(C) and of
G,rith(©). So we are in one of the three cases:

(7.4.11.1) K'=O0N,R) =Kyith
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(7.4.11.2) K = SO(N, R) € K¢, = ON, R),
(7.4.11.3) K = SO(N, R) = Ky

For each finite extension E/k inside k, and each f in X(E), we denote by 8(E, f) the Frobenius
conjugacy class in K, attached to G((w+1)/2) at the E-valued point f of X. Thus

(7.4.11.4) det(1 - TH(E, £)) := «(det(1 - TFrobg | G(w+1)/2)))
= (det(1 - Ty deEROWHDErobp, (1 H(Cok, j#(FRL, (1))

(7.4.12) If K rith 18 O(N, R), this equality 7.4.11.4 of characteristic polynomials determines

arith- I Karit
polynomials only determines A(E, f) in SO(N, R) up to conjugation by the ambient group O(N, R).
(7.4.13) If K =K, ith

cf. also [Ka—GKM, 3.61 and [Ka—Sar, RMFEM, 9.2.61, as #E — o, the conjugacy classes {6(E,

D}fin X(E) become equidistributed for Haar measure in the space K* of conjugacy classes in K.

O(E, f) as a conjugacy class in K h = SO(N, R), this equality of characteristic

then by Deligne's general equidistribution theorem [De—Well, 3.5.3],

(7.4.14) If K = SO(N, R) but K,ith, = O(N, R), the space O(N, [R)# of conjugacy classes
in O(N, R) is a disjoint union

O,(N, Ry 11 O_(N, R)#,
where we write Og(N, [R)# for the set of conjugacy classes of determinant €. In this case, Deligne's
general equidistribution theorem [De—Well, 3.5.3], cf. also [Ka—Sar, RMFEM, 9.7.101, tells us
that as #E — oo through fields E/k whose degree over k has fixed parity & = (=1)9€2(E/K) the
conjugacy classes {6(E, f)}f i, X(E) become equidistributed for Haar measure in the space Og(N,
R)*.
(7.4.15) If K = K, i¢h = O(N), the equidistribution as #E — oo of the conjugacy classes
LOE, D} in X(E) In

O(N, R)* = 0, (N, R)* 11 O_(N, R)¥

amounts to two finer statements of equidistribution. To state them, we take the Haar measure on
O(N, R) of total mass 2, restrict it to each of O(N, R), and take its direct image to O(N, [R)#.

We call this "Haar measure of total mass one" on O4(N, [R)#. For each finite extension E/k, and
each value of € = £1, denote by X(E) the subset of X(E) consisting of those points f in X(E) such
that

det(FrobE’f | G((w+1)/2)) =¢.
For each choice of € = £1, as #E — oo, we have

#X(E)#X(E) — 1/2,
(by Chebotarev applied to det(G((w+1)/2))). Therefore, for each choice of € = £1, as #E — oo the
conjugacy classes {0(E, f)}¢ i, X¢(E) become equidistributed for Haar measure of total mass one
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on the space Og(N, [R)#.
(7.4.16) When K =K, i, = O(N), there is another way to index the decomposition

(7.4.16.1) O(N, R = (N, R)¥ 11 O_(N, R)*.
Namely, we define
(7.4.16.2) Ogign ¢N) := {A in O(N) with det(-A) = €}.

Thus for even N there is nothing new, Osign ¢(N) = Og(N). But if N if odd, then Osign eMN) =

O_g(N). The reason to consider this Osign ¢(N) decomposition is that for an orthogonal F, it is

det(—F) rather than det(F) which is the sign in the functional equation.
(7.4.17) For the sake of completeness, we restate the equidistribution for this breakup (still
assuming K = K, i, = O(N)). For each finite extension E/k, and each value of € = +1, denote by
(E) the subset of X(E) consisting of those points f in X(E) such that
det(—FrobE’fI G(w+1)/2)) =¢.
For each choice of € = £1, as #E — oo,
#Xsign c(EBEYHX(E) — 1/2,

and the conjugacy classes {6(E, )} i,, Xsign <(E) become equidistributed for the Haar measure of

Xsign €

total mass one on the space O (N, [R)#.

sign
7.5 Interlude: a lemma on tameness and compatible systems

Lemma 7.5.1 Let k be a finite field of characteristic p, U/k a smooth, geometrically connected
curve, and w an integer. Suppose for each prime £#p we are given a lisse Qy—sheaf #, on U,

which is pure of weight w. Suppose the sheaves {F,} t#p form a Q—compatible system, in the

sense that for each finite extension E/k, and each point x in U(E), the characteristic polynomial
det(1 — TFrobE,X | F )

has coefficients in Q, independent of #p. Then we have the following results.

1) All the sheaves 7—} have the same rank, say r.

2) Denote by C the complete nonsingular model of U, j : U +— C the inclusion. If for a single /#p
the sheaf j«¥ is everywhere tame on C, then for every £#p the sheaf j«F, is everywhere tame on
C.

3) If p 2 r+2, all the sheaves {j=F,} fp ar€ everywhere tame on C.

proof For 1), we get r as the common degree of any single characteristic polynomial of Frobenius.
For 2), we use a fundamental result of Deligne [De—Const, 9.81, which tells us for each "point at
infinity" y in (C=U)(k), and each element v in the inertia group I(y), the trace of the action of y on
¥y lies in Z, independent of /#p. But ¥, is tame at y if and only if the trace of the action of every y

in P(y) on ¥ is r. For 3), we use 2) to reduce to finding a single ¢#p for which j«%, is everywhere
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tame. Since ¥, as Q p—representation of the compact group 71 (U) admits a Z —form, it suffices to
pick an ¢ such that the pro—finite group GL(r, Z,) is prime to p, or equivalently, such that the finite
group GL(r, [Fp) is prime to p. The order of GL(r, [F) is

Hv=0 to r-1 ([1’ - (V) = (r(r—l)/zxnizl tor (/1 -1).

Take a prime ¢ whose reduction mod p is a generator of the cyclic group [F,%. Since p—1 >r, each

p
factor /1 — 1 is prime to p. QED

7.6 Applications to L—functions of quadratic twists of elliptic curves and of their symmetric
powers over function fields

(7.6.1) We continue to work over a finite field k, of cardinality q and odd characteristic p. We fix a
proper, smooth, geometrically connected curve C/k of genus g, and a prime number ¢ invertible in
k. Over the function field k(C), we are given an elliptic curve E/k(C) with nonconstant j invariant.
We denote by

(7.6.1.1) j:UcC

the inclusion of any dense open set of C over which E/k(C) extends to an elliptic curve m: & — U.

(7.6.2) The sheaf Rlﬂ*Q ¢ on U is lisse of rank 2, pure of weight one, and part of a Q—compatible
system, hence everywhere tame if p > 5. If p=3, we assume that Rlﬂ*@ ¢ is everywhere tame. The

sheaf Rlyr*Q ¢(1/2) on U is lisse of rank 2, pure of weight zero, and symplectically self—dual. We
define
(7.6.2.1) F = s RImQp(1/2)
on C. By the Neron—Ogg—Shafarevic criterion of good reduction [S-T, GR1, the open set on
which Fis lisse is the largest open set over which E/k(C) has good reduction:

Sing(F) = Sing(E/k(C)).
(7.6.3) For every integer n = 0, the lisse sheaf Symmn(Rlyr*([_g ¢(1/2)) on U is lisse of rank n+1,

pure of weight zero, and everywhere tame. It is symplectically self—dual if n is odd, and it is
orthogonally self—dual if n is even. Because E/k(C) has nonconstant j invariant, the sheaf

Rlyr*@ £(1/2) has Ggeom = SL(2), cf. [De—=Well, 3.5.51. This has the consequence that for every

integer n =0, Symmn(Rlﬂ*Q ((1/2)) is geometrically irreducible (because the symmetric powers of
the standard two—dimensional representation of SL(2) are irreducible). For odd (respectively even)

n, Symmn(Rlyr*Q ((1/2)) is symplectically (respectively orthogonally) self dual.

(7.6.4) For every integer n 2 0, we define a geometrically irreducible middle extension sheaf #,, on
C by

(7.6.4.1) Fp = jxSymm™(R 1 74Q(1/2)).
Thus ¥7 is the ¥ defined above. For every n 2 0, we have
(7.6.4.2) Sing(¥,) < Sing(¥) = Sing(E/k(C)).

(7.6.5) Suppose that at some point x in C(k), the action of the local monodromy group I(x) on F is



Chapter 7: Diophantine applications over a finite field—130

unipotent and nontrivial, or equivalently [S—T, GR1 that E has multiplicative reduction at x. At such
a point, the action of I(x) is automatically tame (because by unipotence its image is pro—f). If we
pick a topological generator of the tame quotient Itame(x) of I(x), then y acts on 7(x) by a single
unipotent Jordan block of size two, Unip(2).

(7.6.6) At any point x in C(k) where E has multiplicative reduction, a topological generator y of

1(x)1Me acts by Symm™(Unip(2)) = Unip(n+1), a single unipotent Jordan block of size n+1. Thus

we have

(7.6.6.1) F o ()/F ()X = Unip(n)

as representation of 1(x). In particular, we have the dimension formula
(7.6.6.2) dim(F,(x)/F (01 ®)) = n.

Theorem 7.6.7 Let k be a finite field of odd characteristic, C/k a proper, smooth, geometrically
connected curve of genus g, £ a prime number / invertible in k, ¢ an embedding of Q ¢ into C. Let
E/k(C) be an elliptic curve E/k(C) with nonconstant j invariant, such that that R17T>|<Q 718
everywhere tame. Let D,,, v 2 1, be a sequence of effective divisors in C, whose degrees d,, 2

2g+1 are strictly increasing.
Denote by
j:UcC

the inclusion of any dense open set of C over which E/k(C) extends to an elliptic curve m: & — U,
and put, for eachn =0,

Fpy = jSymmP (R 74Q,(1/2)).
For each pair of integers (v = 1, n = 0), denote

Xv,n :=Fct(C, d,, Dy, Sing(F)finite)-

Denote by gv,n = TwistX 2’C’Dv(?'n) the lisse sheaf on Xn,v constructed out of ¥, and the

quadratic character y, of k* by the recipe of 5.2.1, but carried out over k instead of k, cf. 6.2.10.
Denote by Ny n the rank of gv,n' Thus
Ny n2(2g-2+d)n+1).

Then we have the following results.
1) Fix an even integer n = 0. Take v sufficiently large that we have

d, >4g+4,
and

2g - 2 + d,, > Max(2#Sing(F7)(k), 72(n+1)).

The lisse sheaf G,, ,(1/2) on X, |, 18 t—pure of weight zero and symplectically self—dual, and

Ggeom = Sp(NV’n). Put K:= USp(NV’n), a maximal compact subgroup of Ggeom(C). For each
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finite extension E/k inside k, and each f in Xy, n(E), we denote by 6(E, f) the Frobenius conjugacy
class in USp(N,, ) attached to G,, ,,(1/2) at the E-valued point f of X,, ;. Thus
det(1 — TO(E, 1)) := «(det(1 — TFrobg ¢1 G,, ,(1/2))).

As #E — oo, the conjugacy classes {6(E, f)}¢ i, X, o(B) become equidistributed for Haar measure

in the space USp(N,, n)# of conjugacy classes in USp(N,, ;).
2) Fix an odd integer n > 0. Suppose that for every v, there is a k—valued point in C — D,, at which

E has multiplicative reduction. Take v sufficiently large that we have
d, >4g+4,

and
2g — 2 + d,, > Max(2#Sing(¥7)(k), 72(n+1)).

The lisse sheaf G,, ,(1/2) on X, ,, is t-—pure of weight zero and orthogonally self—dual, and G

m(O). For each finite

eom
= O(Nv,n)- Put K:= O(Nv,n’ R), a maximal compact subgroup of Ggeo :
extension E/k inside k, and each f in Xv,n(E)’ we denote by 6(E, f) the Frobenius conjugacy class
in O(N,, .., R) attached to gv’n(1/2) at the E—valued point f of Xv,n- Thus

det(1 — TO(E, 1)) := «(det(1 — TFrobE’fI Gy n(1/2))).

As #E — o, the conjugacy classes {6(E, f)}¢ i, X, o(B) become equidistributed for Haar measure

v,

in the space O(N [R)# of conjugacy classes in O(N

v, v, R)-
proof By assumption, 7 and hence all the sheaves ¥, are everywhere tame. Since y is not of
order 4 or 6, Theorem 5.5.1 will apply to gv,n provided only that d,, > 4g+4 and

2g - 2 +d,, > Max(2#Sing(F,))(k), 72rank(¥ ).
Now rank(¥,) = n+1, and Sing(#},) < Sing(#7), so this last inequality will hold if

2¢-2+d,> Max(Z#Sing(Tl)(E), 72(n+1)).
Assertion 1) is thus an instance of the Sp case 7.3 of the preceeding discussion. In assertion 2), the
hypothesis of multiplicative reduction at a point x of C — D, gives

dim(F, (x)/F,(01®)) = n,

As n is odd, Proposition 5.5.2, part 1) shows that Ggeom is O(Nv,n) rather than SO(NV’n). Once

we have this, assertion 2) becomes an instance of the G = O = Gyytpy case 7.4.15 of the

geom
preceeding discussion. QED

7.7 Applications to L-functions of Prym varieties

Theorem 7.7.1 Let k be a finite field of odd characteristic, C/k a proper, smooth, geometrically
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connected curve of genus g, £ a prime number ¢ invertible in k, ¢ an embedding of Q ¢ into C. Let D
be an effective divisor in C, whose degree d satisfies
d>4g+4
and
2¢ —-2+d>4.
Take F to be the constant sheaf Q ¢ on C. Thus ¥ is everywhere lisse of rank one, pure of weight

zero, and orthogonally self—dual.
Denote
X :=Fct(C, d, D, 9).
ty 2,C,D(© ¢) the lisse sheaf on X constructed out of ¥ := Q ¢ and the

quadratic character y, of kX by the recipe of 5.2.1, but carried out over k instead of k, cf. 6.2.10.
Concretely, for E/k a finite extension of k, and f in X(E), the stalk G¢ of G at f is Hl(C®kl€,

Denote by G := Twis

] *LXZ(f)), the H! of the Prym variety attached to the double cover C(f 1/ 2) of Ce E, or

equivalently the odd part of Hl (¢l 2)®EE’ Q 0
Denote by N the rank of G. Thus
N2>2g-2+d.
Then the lisse sheaf G(1/2) on X is t—pure of weight zero and symplectically self—dual, and G geom

= Sp(N). Put K:= USp(N), a maximal compact subgroup of G ). For each finite extension

geom(C
E/k inside k, and each f in X(E), denote by é(E, f) the Frobenius conjugacy class in USp(N)
attached to G(1/2) at the E—valued point f of X. Thus

det(1 — TO(E, 1)) := «(det(1 — TFrobE’fI G(1/2)))

_ 1 e
= u(det(1 — TFrobg | H* .(Ceyk, J*LXZ(D)(l/Z))).
As #E — oo, the conjugacy classes {0(E, 1)}, X(E) become equidistributed for Haar measure in

the space USp(N)# of conjugacy classes in USp(N).
proof This is a special case of the Sp discussion 7.3 above. QED

7.8 Families of hyperelliptic curves as a special case If the curve C is P!, then the Prym variety

attached to the double cover C(f 1/ 2) of CeE is simply the Jacobian of the hyperelliptic curve of

equation y2 = f(x). So the sheaf G in this case is just the ul along the fibres in the family of
hyperelliptic curves {y2 =f(X)}f i x over the space X :=Fct(ﬂ31, d, D, @). As P! has genus g=0,
we find that G has Ggeom

d > 7. If we successively take for D the divisor de, d =7, 8,9, ..., we recover [Ka—Sar, RMFEM,
10.1.18.3 and 10.1.18.5] in every genus g > 3.

the full symplectic group, provided only that the effective D has degree
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7.9 Application to L—functions of y—components of Jacobians of cyclic coverings of degree n = 3
in odd characteristic

Theorem 7.9.1 Let k be a finite field of odd characteristic p, C/k a proper, smooth, geometrically
connected curve of genus g, £ a prime number ¢ invertible in k, ¢ an embedding of Q ¢ into C. Let

X : kx —> @ {X
be a nontrivial character of kX, of order n > 3. Define
m := the order of yXy».

[Thus if n is odd, m = 2n, if n is 2d with d odd then m = d, and if n is divisble by 4 then m = n.]
Let D be an effective divisor in C, whose degree d satisfies

d >4g+4,
and
2¢ -2 +d>4.
Take F to be the constant sheaf Q ¢ on C. Thus Fis everywhere lisse of rank one, and pure

of weight zero.
Denote
X :=Fct(C, d, D, 9).
Denote by G := TWiSt)(,C,D(Q ¢) the lisse sheaf on X constructed out of ¥ := Q ¢ and the character

x of kX by the recipe of 5.2.1, but carried out over k instead of k, cf. 6.2.10. Concretely, for E/k a
finite extension of k, and f in X(E), the stalk G¢ of G at f is

_ 1l i
gf =H C(C®kk’ J*-EX(f)),
the y—component of ulctl/ n)®EE Q 0
Denote by N the rank of G. Thus

N2>2g-2+d.
Suppose further that one of the following three conditions is satisfied:
a)nis odd,
b) n = 0 mod 4,

¢) nis even, n/2 is odd, and over k, D = Zal-Pi with each a; odd.
Then the lisse sheaf G on X is (—pure of weight one, and G

GL,,(N) := {A in GL(N) | det(A)M =1}

geom is the group

proof Write D as the sum of effective divisors D| + D, with degrees dj > 2g+2 and dy > 2g+1,
such that D = X.c;P; has all its nonzero c; invertible in k. This is possible by Corollary 5.4.8, part
2). If g=0, do this so that dy > 2. (If g =0, then d > 6 > 4g+5, so we may apply Corollary 5.4.8,

part 1).)
Pick f] and f5 as in the statement of Theorem 5.4.9. Then the pullback # := [t — f/(t—
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f2)]* Gof G, to Al CritVal(f,, 7:®£X(f1)) has G containing SL(N). Moreover, f5 has at

geom
least one critical value, and the local monodromy of H at each critical value of frisa

pseudoreflection of determinant Xy, a character of order m. The local monodromy of 7 at the

2

image under f5 of each zero of f is a pseudoreflection of determinant y<, a character of order

dividing m. The sheaf /H has no other finite singularities, and is tame at oo. Therefore det(H) as a

character of 778¢0™

is generated by its local monodromies at finite distance, so has order m. Since
geom for His GL,(N).

Therefore Ggeom for G itself contains GL,(N). So it suffices to show that we have an a

n = 3, we have m = 3. By the paucity of choice, G

priori inclusion G < GL,(N), i.e., to prove the following lemma.

geom

Lemma 7.9.2 Hypotheses and notations as in Theorem 7.9.1 above, det(G)*™ is geometrically
trivial.
proof Suppose first that either a) or b) holds. Then m is the number of roots of unity in the field
Q(x), and the result follows from the fact that G is part of a Q(y)—compatible system of lisse
sheaves on X, cf. [Ka—ACT, the "trivial" part of the proof of 5.2 bisl.

Suppose now that ¢) holds. Then n = 2m with m odd. All the a; are nonzero mod n,

because they are all odd. The idea is to use the argument of [Ka—ACT, 5.2 bisl. The sheaf G was
constructed as the image of the natural "forget supports" map

G100 =Ry (L) > RIm( Ly ) 1= Gn).
Because all the a; are nonzero mod n, this map is an isomorphism, as one verifies by checking fibre
by fibre. In other words, we have
G100 =G().

So it suffices to show that det(G !()())®m is geometrically constant.

If we replace y by the quadratic character y, of k%, and form the analogous sheaves G \(x2)

and G(x»), we have
G1(x2) = G(x2),
because all the a; are odd. But G(x,) is symplectic, so det(G(y5)) and hence det(G(x 7)) are
geometrically trivial. So it suffices to show that we have a geometric isomorphism
det(G1(x)*™ = det(G)(x2)) ™.

This results from the "change of A, reduction mod A, change of y" argument of [Ka—ACT, 5.2 bisl,
which is valid independent of any hypotheses on the a;. QED

(7.9.3) What happens in Theorem?7.9.1 above if we allow y to have order n > 3 with n = 2m with
m odd, m 2 3, but do not make any hypothesis on D? The order of yXy is m, but Q(y) contains n

= 2m roots of unity. The compatible system argument of [Ka—ACT, the "trivial" part of the proof
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of 5.2 bis] shows that det(g)®2m is geometrically trivial. The argument in the proof of
Theorem?7.9.1 concerning H remains valid, and shows that det(#) has geometric order m. Thus

Ggeom for G is either GL,(N) or it is GL,,,(N). In fact, both cases arise. Here is the precise

result.

Theorem 7.9.4 Notations as in Theorem 7.9.1, suppose that y has order n =2 3 with n = 2m and m

odd, m > 3. If there exists an index i such that a; is even but not divisible by n, then Ggeom for
G = TwistX,C’D(Q[)

is GLy,(N). If there exists no such index i, i.e., if every a; is either odd or divisible by n, then

Ggeom for G is GL,(N).

proof Since y is of order n > 3, we know already that G for G is either GL,(N) or it is

geom
GLy,(N). We need only determine whether or not det(@)®™M is geometrically trivial.

Because we are trying to determine G we may extend scalars from k to any finite

geom
extension E/k (and simultaneously replace y by the character yoNormp). Thus it suffices to treat
universally the case in which D = Ya;P; with each P; a k—valued point of C. Moreover, we know
that det(G)“™ has, geometrically, order either one or two. We may and will further assume that k is
large enough that, in addition, both of the following conditions hold:

1) det(@)*™M is geometrically trivial if and only if det(G)®™ is constant on the set of k—valued
points f in X (k).
2) #X(k)/#L(D) > 1/2.

For a nontrivial character p of kX, of order denoted order(p), denote by Div(p) = D' the
set of those points P; whose coefficient a; is divisible by order(p).

Given f in X(k), we have the sheaf Lp(f) on (C-D)[1/f]. Denote by
j:(C-D)l1/fl > C
the inclusion We have a short exact sequence of sheaves on C,
0— j!.ﬂp(f) - j*.l:p(ﬂ - @Pi in Div(p) G*Lp(f))lPi — 0.
At each P; in Div(p), G*Lp(f))IPi is a skyscraper sheaf of rank one at P;, on which FrObk,Pi acts
as a scalar. This scalar is computed in terms of the auxiliary choice of a uniformizing parameter 7;

at P; as follows. In the local ring OC,Pi’ one forms the unit
fi = fX(ﬂ'i)ai.
Its value T;(P;) in the residue field k is nonzero (because f has a pole of order a; at P;) and it well—

defined in KX/(kX)0rder(0) independent of the auxiliary choice of m; (because a; = 0 mod
order(p)). Then we have
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FrObk,Pi I G*Lp(f))IP = p(%;(Py).
The long exact cohomology sequence gives a short exact sequence
O — .
0 — HY(C®yk, (-BPi in Div(p) (]*Lp(f))IPi) -
1 o 1 K
—H (C@kk,J!.Ep(f)) — HY(C®k, ]*.Ep(f)) — 0.
This in turn gives
det(Frobk’f 1G(p)) = det(Frobk’f I Q(p))(]_[Pi in Div(p) p(E;(Py))).
Now take p to be successively y and the quadratic character, y,. We obtain
det(Frobk’fI Gi) = det(Frobk’fI g()())(HPi in Div(y) x(&(Py))
and
det(FI‘Obk,f I Qy(Xz)) = det(Fl‘Obk,f I ng))(ﬂpl in Div(yy) Xz(fi(Pi))).
Raise each of these relations to the m'th power, and remember that y™ = (y)™ =y,. We get
det(Frobk f I Q!(Xz))m/det(Frobk f I g,(,y))m
= det(Frobk,f I g(/yz))m/det(Frobk,f | G(y))™M x
X(Hpi in Div(yy) — Div(y) X 2(fi(P)).
We have already remarked above that det(g!(,\(z))(am/det(gl()())@m is geometrically constant, so
the left hand side is a constant function of f in X(k). As G(x,) is symplectic, the factor

det(Frobk’f I Q(Xz))m
is a constant function of f in X(k). Thus

det(Froby ¢ 1 GO)N™/ (HPi in Div(yy) - Divip) X 2(Fi(P)

is a constant function of f in X(k). Therefore det(g(x))®m is geometrically constant if and only if
the expression

(HPi in Div(y,) - Diviy X2(Ti(PD))
=X Z(HPi in Div(xy) - Div(p) 1i(Fi)

is a constant function of f in X(k).
The set Div(y,) — Div(y) consists precisely of those P; in D such that a; is even but not

divisible by n. If this set is empty, then det(G(y))™ is geometrically constant, as required.
Suppose that

E := Div(y,) — Div(y)
is nonempty. We must show that as f varies in X(k), the expression

(p, i X2 (E(PD))

is not constant. Equivalently, we must show that as f varies in X(k), the product HP. o g 1i(Py) in
1

k* assumes both square and nonsquare values. If #E is odd, this is easy to see. Indeed, given f in
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X(k), consider also af, for f in kX which is a nonsquare. If #E is even, we must work a bit harder.
Here is an argument which works irrespective of the cardinality of E, but just requires E to be
nonempty.
Each P; in E has multiplicity a; in D which is even (and nonzero mod n). In particular, for
each P; in E, we have
a; —122a;/2.
Thus we have
deg(D — E) 2 deg(D)/2 =2 2g+2 > 2g-2.
Now consider the map
L(D) - HP g K
fin LD) —» HPi inE fi(Pi).
This is a linear map, whose kernel is L(D — E). So we have a left exact sequence

0—-L®D- E)—>L(D)—>l_[P gk

Since both D and D-E have degree > 2g—2, a dimension count shows that the last map is

surjective:

L(D)n HP' i E K
Let us denote by L(D)(X) the subset of L(D) which, under the above map, lands in HP i E KX,
Thus

L(D)(x) =LMD) - U, .  L(D - P),
LD)C) n I K*.
We next restrict this last map to X(k) c L(D)(X).

X(k) - l_[P in E

Suppose that for every f in X(k), [1p, ,, ¢ T;(P;) is a square [resp. a nonsquarel in k. Denote
1

by I' the subset of [, . & k* consisting of those tuples whose product is a square [resp. a
1

nonsquarel. For each y in T, denote by X(k)(y) its inverse image in X(k). Then X(k)(y) lies in
L(D)(y), the inverse image of y in L(D). Now L(D)(y) is an additive torsor under L(D-E), so it
has cardinality that of L(D-E). So we have a trivial inequality

#X(k)(y) < #L(D)(y) = #L(D-E).

_ 1)#E

Summing over I', which has cardinality (1/2)(q , we find

#X(K) = X, #X()(y) < #L(D-EWT

< #L(D)xq "Ex(1/2)(q - D'E

< (12)#L(D)((q-1)/q)*E < (1/2)#L(D).
This inequality contradicts the assumption that k was large enough that #X(k)/#L(D) > 1/2.
Therefore the expression
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(HPi in Div(y,) - Diviy X2(Ti(P))

assumes both values 1 as f varies over X(k). This in turn shows that det(g(/y))®m is not
geometrically constant. QED

(7.9.4) We now wish to give explicit equidistribution results for sheaves
G\y) = TWiStX,C,D(@/)

on X constructed above, y of order n = 3. We have determined that Ggeom for G(x) is of the form

GL,,(N), with v usually equal to m := the order of yxy,, but sometimes v can be n. We know that

v = m except in the case that n = 2m with m odd, m = 3, and, over k, D is ZaiPi with each a; either

odd or divisible by n, in which case v = n.
Arithmetic Determinant Formula 7.9.5 Let k be a finite field of odd characteristic p, C/k a proper,
smooth, geometrically connected curve of genus g, £ a prime number ¢ invertible in k, ¢ an
embedding of Q, into C. Let
x kK> QF
be a nontrivial character of kX, of order n.
Let D be an effective divisor in C, whose degree d satisfies

d=>4g+4,
and
2g-2+d>4.
Suppose that, over k, D is 2a;P;. Consider the following product of Gauss sums:

Const(v, D) = £(x, D)q&~ (=G, x)I(T; (-G, x~2))).
Here ¢ is any nontrivial Q ¢—Vvalued additive character of k, and we define, for any Q ¢—Vvalued

character p of kX, possibly trivial,
G, p) =X, ;i x Y(OPX).
[Thus G(, T) = —1.1 The quantity &(x,, D) is defined to be

€(x2, D) :)(2(—1)5, for
S := (1/2)(Zi with a; even ;) +(1/2)(Zi with a; odd (1 + ay)).
Equivalently, €(y», D) is that choice of £1 such that
Const(xy, D) = an integer power of q.

The quantity Const(y, D) lies in Q(y), and does not depend on the auxiliary choice of ¢ used to
define it (because d = X, a;).

Take ¥ to be the constant sheaf Q ¢ on C. Thus Fis everywhere lisse of rank one, and pure

of weight zero.
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Denote
X :=Fct(C, d, D, 9).
Denote by
Gy) = Twist, c p(@Qp)
the lisse sheaf on X constructed out of ¥ := Q/ and the character y of kX by the recipe of 5.2.1, but
carried out over k instead of k, cf. 6.2.10. Concretely, for E/k a finite extension of k, and f in X(E),
the stalk Ggof G at f is HI(C®kl€, j*Ly(f)) the y—component of Hlcel Mepk, Q).
Denote by

v := the geometric order of det(G(y)).
Then we have the following arithmetic determinant formula.

det(G(x))®” = B4€E for B = Const(y, D)".
proof If y is y», then G(x7)(1/2) is symplectic, and pure of weight zero, so v = 1, the rank of
G(x») is even, and det(G(x»)) is given by B4eg for g = qrank(G(x2))/2_ 3o the assertion is correct

in this case.
If y has order n = 3, then what we are asserting is that for every finite extension E/k, and
every f in X(E), the ratio
det(Frobg | Hl(C®kE j*LX(ﬂ))/Const(X, D)deg(E/ k)
is a root of unity of order dividing v.
Let us first treat the easy case, in which v is the number of roots of unity in the field Q(y).

Since both numerator and denominator lie in Q(y), we need only show that the ratio is a root of
unity. So we may replace the numerator by

1 — .
det(-Frobg | H* (Ceyk, J*LX(f)))’
which is the reciprocal of the constant in the functional equation for the L—function of Ce} E with
coefficients in j*LX(f). This is an abelian L—function, with everywhere tame character, and its

constant is a product of usual gauss sums, as explained in Tate's thesis, cf. [De—Const, 5.9 and
5.101. By using the Hasse—Davenport theorem to control the behavior of —G(, p) under field
extension, it is an elementary exercise,to check that, up to roots of unity, the reciprocal of our

Const(y, D)3€8E/K) gorees with the global constant for the L~function of Ce E with coefficients
The harder case is that in which n =2m with m odd, and every a; either odd or divisible by
n. Here we must show that for every finite extension E/k, and every f in X(E), the ratio
det(Frobg | Hl(C®kE, j *LX(ﬂ))m/Constgy, D)mdeg(E/ k),
a priori £1 by the above argument, is in fact 1 rather than —1. Let us denote by D44 the set of P;
in D whose a; is odd. Then the points in D but not in D44 all have their a; divisible by n. Let us

denote
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U :=(C - Dyqq)®kE — (zeroes of f).
So for p any character of kX of the form
XoX(a character of order dividing m),

j*Lp(ﬂ is a lisse rank one sheaf on U, extended by zero to all of Ce E. For any finite extension
E(/E, and and E|—valued point P in pred _ Dgg4g- 1-€-» a point of Ce E{ at which f has a pole of
order divisible by n, pick a uniformizing parameter r at P, and define f(P) in Elx to be the

reduction mod 7 of the 7—adic unit f/7°T4P(®). Then f(P) is well-defined in (EI)X/ (n'th powers)

independent of the auxiliary choice of uniformizing parameter 7, and Frobg P I j*Lp(ﬂ is the

scalar
FrObEl,P | ]*Lp(f) = p(NormEl/k(f(P))).
Thus, for any such p we have
* — * — .
H' (Ceik, J*.Ep(f)) =H (Uegk, J*Lp(f)),
and these groups vanish for i # 1.
The idea is to show that for all such p, the ratio

Ratio(p) := det(Frobp | H1 (UK, j+L,y))™/Const(p, D)mdegE/k),

a priori 1, is in fact 1. We proceed by induction on the number of distinct odd primes dividing the
order of y. If there are none, then y is y, and we are done. In carrying out the induction, we have
X = pxA, with A a character of some odd /—power order, and p of order prime to £. We then pick a
finite place Al of Q(y). As Zlyl-valued functions on k¥, p = pxA mod A. In Ratio(p) and in
Ratio(pxA), both numerator and denominator are A—adic units, and we have congruences

det(Frobp | HI ((UsgK, j«L,5))

= det(Frob | H! ((USEK, j«L5xp)(p)) mod A,
and
Const(p, D) = Constr(pxA, D) mod A.
So we find a congruence
Ratio(p) = Ratio(pxA) mod A.
Since both ratios are +1, we infer that we have an equality
Ratio(p) = Ratio(pxA).
Proceeding in this way, we eventually get Ratio(y) = Ratio(y,). QED
Explicit Equidistribution Corollary 7.9.6 Hypotheses and notations as in 7.9.5 above, suppose y
has order n = 3. Denote by N the rank of G(y), and by v the geometric order of det(G(y)). Put K :=

U,(N) :={Ain UN) | det(A)Y = 1}, a maximal compact subgroup of Ggeom(C)' Denote by «
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any N'th root of 1/Const(y, D). Then Q®(a)deg is pure of weight zero, and has G, = Ggeom'
For each finite extension E/k inside k, and each f in X(E), we denote by 8(E, f) the Frobenius
conjugacy class in U,(N) attached to Q®(0/)deg at the E—valued point f of X,,. Thus

det(1 — TO(E, f)) := «(det(1 — TFrobg | Ge(a)deg )
- deg(E/k 1 K
= (det(1 - ()48 EMTFrobg | H! (oK, j Ly (5))).
As #E — o, the conjugacy classes {0(E, 1)} i, X(E) become equidistributed for Haar measure in

the space UV(N)# of conjugacy classes in U,(N).

7.10 Application to L—functions of y—components of Jacobians of cyclic coverings of odd degree
n 2 3 in characteristic 2
(7.10.1) The results in this case are very similar to those we found above in odd
characteristic.
Theorem 7.10.2 Let k be a finite field of characteristic 2, C/k a proper, smooth, geometrically
connected curve of genus g, £ a prime number / invertible in k, ¢ an embedding of Q ¢ into C. Let
X k> QX
be a nontrivial character of kX, of (necessarily odd) order n > 3.
Let D be an effective divisor in C, whose degree d satisfies
d>12g+7
(and hence 2g — 2 + d > 4 automatically). Over k, write D as 2 aiP;.
Take F to be the constant sheaf Q ¢ on C. Thus Fis everywhere lisse of rank one, and pure

of weight zero.
Denote
X :=Fct(C, d, D, 9).
Denote by
G .- TwistX’C’D(Qf)
the lisse sheaf on X constructed out of ¥ := @f and the character y of kX by the recipe of 5.2.1, but
carried out over k instead of k, cf. 6.2.10. Concretely, for E/k a finite extension of k, and f in
X(E), the stalk Grof G at f is ch(C®k1Z, j*LX(f)),the X—component of Hl(C(f1 / n)®EE Q 0
Denote by N the rank of G. Thus
N>2g-2+d.
Then the lisse sheaf G on X is (—pure of weight one, and Ggeom is the group
GL,,(N) := {A in GL(N) | det(A)2" = 1}.
Define
Const(y, D) := q€~ (=G, x)ITT; (-G, x4).
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Denote by @ any N'th root of 1/Const(y, D). Then g®(a)deg is pure of weight zero, and has G,

= Ggeom' For each finite extension E/k inside k, and each f in X(E), we denote by 8(E, f) the

Frobenius conjugacy class in Uy (N) attached to g®(a)deg at the E—valued point f of X,,. Thus
det(1 — TO(E, 1)) := «(det(1 — TFrob ¢ | Q®(a)deg )

= u(det(1 — ()48 EK)TRroby | HI (Cok, L))
As #E — oo, the conjugacy classes {0(E, 1)}, X(E) become equidistributed for Haar measure in

the space U2n(N)# of conjugacy classes in Uy, (N).

proof That G for G contains SL(N) is a special case of Theorem 5.7.1. Because G is part of a

geom

—compatible system, and 2n is the number of roots of unity in det 82n is
Q) p ystem, y in Q(x), det(G)

geometrically trivial, and hence G lies in GLy,(N). To show that G contains GL,,(N),

geom geom

we argue as follows. Exactly as in the proof of Theorem 5.6.2, a pullback H of G to Al -
CritVal(f,, T@LX(f 1)) has local monodromy at each critical value of f5 a pseudoreflection whose

for H contains SL(N). Therefore G for H contains

determinant has order 2n, and Ggeom geom

GL,,(N), and hence Ggeom for G contains GL,,(N).

Exactly as in the proof of 7.9.5, Tate's theory of local constants for abelian L—functions
shows that we have an isomorphism det(g)®2n =~ (Const(y, D)2n)deg_ Therefore if we take a to
be any N'th root of 1/Const(y, D), then g®(a)deg is pure of weight zero, and has G, = G
Then apply Deligne's equidistribution theorem, cf. [Ka—Sar, RMFEM, 9.2.61. QED

geomr
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8.0 The basic setting
(8.0.1) In this section, we work over a finite field k of odd characteristic. We give ourselves data
(C/Kk,D, 4,1, F, x, 1, w) as in 7.0. We suppose that after extension of scalars from k to k, our data
(C/k, D, 1, 1, F, x) satisfies all the hypotheses of Theorem 5.5.1.
(8.0.2) We further suppose that ¥(w/2) is symplectically self dual on C/k, and that y has order 2.
Then, by Poincare duality, G((w+1)/2) is orthogonally self dual as a lisse sheaf on

X :=Fct(C, d, D, Sing(Ffipite)-
By Theorem 5.5.1, G has Ggeom either SO(N) or O(N).
8.1 Definitions of three sorts of analytic rank
(8.1.1) Given a finite extension E/k, and f in X(E), we define the analytic rank of G at (E, f),
denoted rank, (G, E, f), to be the order of vanishing of

det(1 - TFrobE’f | G((W+1)/2))
atT=1,1e., rankan(g, E, f) is the multiplicity of 1 as generalized eigenvalue of FrobE’f |

G((w+1)/2):

an(

rank, (G, E, f) := ordp_det(l - TFrobE’f | G((W+1)/2)).
(8.1.2) For each n 2 1, denote by E_/E the extension of E of degree n.
(8.1.3) We define the quadratic analytic rank of G at (E, ), denoted rank

sum of the orders of vanishing of
det(1 — TFrobg ¢ 1 G((W+1)/2))
atT=1andatT=-1, 1e., rankquad’ an(G, E, 1) is the sum of the multiplicities of 1 and of —1 as

quad, an(@> E, f) to be the

generalized eigenvalues of Frobg ¢| G((w+1)/2). More simply,

rankquad, an(@, E, ) :=rank, (G, E,, ).

(8.1.4) We define the geometric analytic rank of G at (E, f), denoted rank

geom, an(G, E, ), to be

the sum of the orders of vanishing of
det(1 — TFrobg ¢l G((W+1)/2))
at all roots of unity., i.e., rankgeom, an(@, 1) is the sum of the multiplicities of all roots of unity as
generalized eigenvalues of Frobg ¢| G((w+1)/2).More simply,
rankgeom, an(G, E, ) :=lim,, _, rank, (G, E, D).
8.2 Relation to Mordell-Weil rank

(8.2.1) The terminology "analytic rank" is motivated by the Birch and Swinnerton Dyer
conjectures for the ranks of abelian varieties over function fields with finite constant fields.

Suppose the sheaf ¥ arises as the middle extension of the H! along the fibres of (the spreading out
to some dense open set in C of) an abelian variety A/K, K the function field k(C). For each finite
extension E/k and each f in X(E), we form the quadratic twist of A by f, getting an abelian variety
A®y,(f)/EK. The Birch and Swinnerton Dyer conjecture for A®y,(f)/EK asserts that its

Mordell-Weil rank is given by
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ranky rw(A®y(f)/EK) = rank, (G, E, 1).

This same BSD conjecture, applied now to the same twist but viewed over E5K, says

rankp pw(A®x o (f)/EoK) = rankquad, an(G, E, ).
Because we assume that A/K has a geometrically irreducible F, A/K has no fixed part, even over
EK, and neither does any quadratic twist of it. Therefore (A®)(2(f))(EK) is a finitely generated
group. So writing EK as the increasing union of finite constant field extensions E,1K of EK, the

BSD conjecure applied to all of these predicts that
ranky py (A®y»(f)/EK) = rankgeom, an(G- E. D).
(8.2.2) In the function field over a finite field case, we have a priori inequalities
0 < rankpw(A®x,(f)/EK) < rank, (G, E, 1),

0 < ranky W (A®x > (H)/EoK) < rankquad, an(G, E, D),
0 < ranky ;W (A®yH(f)/EK) < rankgeom, an(G, E, D).

8.3 Theorems on average analytic ranks, and on average Mordell-Weil rank
(8.3.1) Under the hypotheses introduced in 8.0 above, we know that G((w+1)/2) is orthogonally

self dual, and that Ggeom is either SO or O. Thus we have

SO c Ggeom C Gyyith € O.
See Proposition 5.5.2 for various conditions which insure that Ggeom is O(N) rather than SO(N).
In particular, recall that Ggeom is O(N) if N is odd.

(8.3.2) We will consider successively the three possibilities:

Ggeom = Garith= O,
Ggeom = Garith= SO-
Ggeom =80, Gyyjth= O.

Theorem 8.3.3 Hypotheses as in 8.0 above, suppose G is the full orthogonal group O. If we

geom
take the limit over finite extensions E/k large enough that X(E) is nonempty, we get the following
tables of limit formulas. In these tables, the number in the third column is the limit, as #E — oo, of
the average value of the quantity in the second column over all f's in the set named in the first
column.

X(E) rank, (G, E, ) 172,
X(E) rankquad’ an(g , E, f) L,
X(E) rankgeom, an(G, E, D) 1.

More precisely, for each finite extension E/k, and each value of € = +1, denote by Xsign ¢(E) the
subset of X(E) consisting of those points f in X(E) such that
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det(—FrobE,fI G((w+1)/2)) =¢.

Then we have the following table of limit formulas:

If N is even:

XSign —(E) rankan(@» E’ f) 1,
XSigl’l +(E) rankan(g’ E, f) 0,
Xsign —(B) rankquad, an(gs E, ) 2,
XSigl’l +(E) rankquad, an(gs E, f) O,
Xsign —(E) rankgeom, an(g9 E, f) 2,
Xsign +(E) rankgeom’ an(ga E, f)

If N is odd:

Xsign —(E) rank, (G, E, f) 1,
Xsign +(E) rank, (G, E, ) 0,
Xsign _(B) rankquad’ an(G. E. D 1,
XSigl’l +(E) I“r‘mk(_lu_ac]’, an(ga E, f) 1,
Xsign —(E) rankgeom, an(g’ E, ) L,
XSigl’l +(E) rankgeom, an(g’ E, f) 1.

proof Denote by N the rank of G. The sheaf G((w+1)/2) is given to us as a lisse Q ¢—sheaf. Any
such sheaf is obtained by extension of scalars from a lisse F) —sheaf, for F) some finite extension
of Qp [Ka—Sar, RMFEM, 9.071. So each characteristic polynomial

det(1 — TFrobg, ¢ | G((w+1)/2))
is a degree N polynomial over F). But F) has only finitely many extensions inside 15/\ of degree <
N, so all the reciprocal roots of all these characteristic polynomials all lie in a finite extension
L)/F). But L, contains only finitely many roots of unity, say M = #u_,(L)).

Via the given embedding ¢ : Q , — C, the polynomial
tdet(1 — TFrobE’f | G((w+1)/2))

is the characteristic polynomial of a unique conjugacy class 6(E, f) in O(N, R).
Our first task is to define the reduced characteristic polynomial
Rdet(1 — Ty)
for an element y in O(N, R), cf. [deJ-Ka, 6.71.



Chapter 8: Average order of zero in twist families—146

If N is even, then every element y in 051gn _(N, R) has both £1 as eigenvalues, and we
define

Rdet(1 — Ty) := det(1 — Ty)/(1 = T?), y in Og;
sign +(N,R), we define

Rdet(1 — Ty) :=det(1 — Ty), y in Osign +(N,R), N even.
If N is odd, then every element vy in Osign ¢(N, R) has —¢ as an eigenvalue and we define

Rdet(1 — Ty) :=det(1 — Ty)/(1 + €T), y in Osign ¢(N,R), N odd.

The function v +— Rdet(1 — Tvy) is a continuous central function on O(N, R) with values in
the space of R—polynomials of degree < N.

We denote by Z the closed set of O(N, R) defined by the vanishing of the function

Y Hg in f1(©) Rdet(1 — y&).

The set Z is visibly invariant by O(N, R)—conjugation, and has measure zero for Haar measure, cf.

[deJ-Ka, 6.91.
For each y in O(N, R), and each integer n = 1, we define

sign — _(N,R), N even.

If N is even and v lies in O;

mult,(y) := the sum of the multiplicities of all n'th roots of unity as eigenvalues of
.
The functions mult;, mult, and multy are each bounded central Z-valued functions on

O(N, R), which are continuous outside of Z. Outside of Z, they agree with the following locally
constant functions on O(N, [R)'

Ogign -(N. R) Ogign +(N. R) Ogign -(N. R) Ogign +(N. R)
N even N even N odd N odd
multl 1 0 1 0
mult2 2 0 1
multM 2 0 1 1

The key point about these multiplicity functions is this. For any finite extension E/k and any
point f in X(E), we have

rank,,(G, E, f) = mult; (6(E, 1)),
rankquad, an(G> E. f) = multy (A(E, 1)),
rankgeom an(G, E, ) = multy((6(E, 1)).

For each finite extension E/k, and each value of € = +1, denote by X, ¢(E) the subset of

sign
X(E) consisting of those points f in X(E) such that

det(—=Frobg ¢ 1 G((w+1)/2)) = €.
For each choice of € = %1, as #E — oo,

#Xign e EYHFX(E) = 172,
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and the conjugacy classes {6(E, )}f i, x ) become equidistributed for the Haar measure of

sign e(E
total mass one on the space Osign e(N, [R)#. There is a standard extension of this result, to more

general functions, cf. [Ka—Sar, RMFEM, ADI11.41, which will be useful for us below. Let Z be
any closed subset of O(N)R of Haar measure zero which is stable by O(N)g—conjugation, and let

g be a bounded, C—valued central function on O(N)Rg whose restriction to O(N)R — Z is
continuous. For such a function g we still have the integral formula
JomN. Ry &AMA =1im 45 _, oo (IHXE)Z;, x) SOE. D).

If we apply this to gx(char function of Osign ¢(N, R)), we get the integral formula

A)dA
IOsign e, R) &)
=lim yg 5 oo (1/#Xign eE) i, Xsign e(B) g(O(E, 1),
in which the dA on Osign ¢(N, R) is the restriction of Haar measure, but now normalized to give
Osign ¢(N, R) mass one.
We need only take for g successively the functions multy, mult,, and multy. Their

averages over Frobenii 6(E, f) are precisely the average analytic ranks in question. Their integrals
are easy to compute, since these functions agree, outside a set of measure zero, with the locally
constant functions multy, multy and multy in the table above. QED

Corollary 8.3.4 Hypotheses as in Theorem 8.3.3 above, suppose in addition that the sheaf F arises

as the middle extension of the H! along the fibres of (the spreading out to some dense open set in
C of) an abelian variety A/K, K the function field k(C). Then we have the following tables of
limsup results for the average Mordell Weil ranks of quadratic twists. In these tables, the number in
the third column is an upper bound for the limsup, as #E — oo, of the average value of the quantity
in the second column over all f's in the set named in the first column. In those cases where the
limsup is 0, the limit exists and is zero, and in those cases we have written "= 0" in the third

column.

X(E)) ranky 1w (A®y o (f)/EK) <172,

X(E) rankyrw(A®yo(f)/E;K) <1,

X(E) ranky w(A®y(f)/EK) <1

More precisely, for each finite extension E/k, and each value of € = =1, denote by Xsign e(E) the

subset of X(E) consisting of those points f in X(E) such that
det(—=Frobg ¢ 1 G((w+1)/2)) = €.
Then as #E — oo, #Xsign ¢(E)Y#X(E) — 1/2, and we have the following tables:
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If N is even:

Xsign —(E) ranky pyw(A®y,(f)/EK) <1,
Xsign +(E) ranky pw(A®y(f)/EK) -0,
Xsign —(B) ranky pyw(A®y,(f)/E-K) <2,
Xsign +(E) I‘anka(A®)(2(f)/E2K) =0,
Xsign —(B) rankppw(A®y(f)/EK) <2,
Xsign +(B) ranky 1y (A®y(H)/EK) =0.
If N is odd:

Xsign —(E) rankp py (A®yx(f)/EK) <1,
Xsign +E) ranky pw(A®yH(f)/EK) -0,
Xsign ~(E) ranky 1y (A®x o (H)/EoK) <1,
Xsign +(B) ranky ryw (A®y o (£)/E7K) <1,
Xsign —(E) rankp py (A®yx(f)/EK) <1,
Xsign +(B) ranky ryw (A®x (£)/EK) <1

proof Immediate from Theorem 8.3.3 and the a priori inequalities 8.2.2 bounding Mordell Weil
rank by analytic rank. QED

Example 8.3.4.1 Suppose in 8.3.4 we take for A/K an elliptic curve E/K which has multiplicative
reduction at some k—valued point 8 of C-D. Then ¥ has unipotent nontrival monodromy at 5. By

Proposition 5.5.2, part 1), G has Ggeom the full orthogonal group O(N).

(8.3.5) We now turn to the two cases where G is SO rather than O. Recall from Proposition

geom

5.5.2 that if Ggeom is SO, then the rank N of of G is even.

Theorem 8.3.6 Hypotheses as in 8.0 above, suppose G
extension E/k, X

geom = Carith = SO For every finite

sign _(E) is empty, and we get the following we get the following table of limit
formulas. In the table, the number in the third column is the limit, as #E — oo, of the average value
of the quantity in the second column over all f's in the set named in the first column.
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Xsign +(E) rank, (G, E, ) 0,
Xsign +(E) rankquad’ an(g’ E, f) 0,
Xsign +(E) rankgeom’ an(g’ E, 1) 0.
proof As N is even and G, is SO(N) = Osign +(N,R), all 6(E, f) lie in and are equidistributed

in Osign +(N, R), where all three mult functions (introduced in the proof of Theorem 8.3.3) vanish

outside Z. QED

Corollary 8.3.7 Hypotheses as in Theorem 8.3.6 above, suppose in addition that the sheaf 7 arises
as the middle extension of the H! along the fibres of (the spreading out to some dense open set in
C of) an abelian variety A/K, K the function field k(C). Then we have the following the following
table of limit formulas (same format as in 8.3.6 above) for the average Mordell Weil ranks of
quadratic twists.

Xsign +(B) ranky pyw(A®y(f)/EK) 0,
Xgign +(B) ranky pyw(A®y(f)/E,K) 0,
Xsign +(B) ranky pyw(A®y(f)/EK) 0.

proof Immediate from Theorem 8.3.6 and the a priori inequalities 8.2.2 bounding Mordell Weil
rank by analytic rank. QED

Theorem 8.3.8 Hypotheses as in 8.0 above, suppose G = S0 and G, = O. For finite

geom

extensions E/k of even degree, Xsign _(E) is empty, and we get the following following table of
limit formulas over E/k of even degree. In the table, the number in the third column is the limit, as
#E — oo over extensions E/k of even degree, of the average value of the quantity in the second

column over all f's in the set named in the first column.

Xsign +(B) rank, (G, E, ) 0,
Xsign +(E) rankgyad, an(@- E. ) 0,
Xsign +(E) rankeeom, an(G> Es f) 0.

For finite extensions E/k of odd degree, Xsign 4(E) is empty, and we get the following table of

limit formulas over E/k of odd degree. In the table, the number in the third column is the limit, as
#E — oo over extensions E/k of odd degree, of the average value of the quantity in the second
column over all f's in the set named in the first column.
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Xsign (E) rank,, (G, E. f) 1,
Xsign —(B) rankgyad, an(G> B ) 2,
XSigl’l —(E) rankgeom, an(g’ E, f) 2.

proof For E/k of even degree, the A(E, f) land in and are equidistributed in Osign +(N, R) where all
three mult functions vanish outside Z. For E/k of odd degree, the A(E, f) land in and are
equidistributed in O
2 outside Z. QED
Corollary 8.3.9 Hypotheses as in Theorem 8.3.8 above, suppose in addition that the sheaf ¥ arises

sign _(N, R) where the three mult functions are respectively the constants 1, 2,

as the middle extension of the H! along the fibres of (the spreading out to some dense open set in
C of) an abelian variety A/K, K the function field k(C). Then we have the following results for the
Mordell Weil ranks of quadratic twists.

For finite extensions E/k of even degree, Xsign _(E) is empty, and we get the following table of
limit formulas over E/k of even degree. In the table, the number in the third column is the limit, as

#E — oo over extensions E/k of even degree, of the average value of the quantity in the second
column over all f's in the set named in the first column.

Xsign +E) rankppw(A®yx(H)/EK) 0,
Xsign +(B) rankp W (A®x» ()/E-K) 0,
Xsign +(B) ranky 1y (A®y, (f)/EK) 0.

For finite extensions E/k of odd degree, Xsign +(E) is empty, and we get the following table of

upper bounds for limsups over E/k of odd degree.In the table, the number in the third column is an
upper bound for the limsup, as #E — o over extensions E/k of odd degree, of the average value of
the quantity in the second column over all f's in the set named in the first column.

Xsign —(E) rankp rw (A®y - (f)/EK) <1,
Xsign —(E) rankppw(A®yx(H)/E,K) <2,
ijgn _(E) ranka(A®)(2(f)/n><EK) <2.

8.4 Examples of input #'s with small Ggeom
(8.4.1) We wish to give examples of abelian schemes p : A — U, U a dense open set in C, such

that the middle extension ¥ of Rlp*(lj ¢ 18 geometrically irreducible. The simplest way to do this is
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to exhibit families of curves 7 : Y — U whose RIH*Q ¢ is not only geometrically irreducible, but

has Ggeom the full symplectic group Sp(2d). One then takes for p : A — U the family of

Jacobians. In this case R 4@ /= Rlp:Q ¢ We refer to [Ka—Sar, RMFEM, Chapter 101 for a
plethora of examples of such families of curves. [In those examples, the base is an open set V in

Pl. After any nonconstant map f: C — [Pl, the pullback family over f~ 1(V) still has Ggeom =
Sp(2d), simply because Sp(2d) is connected. ] In fact, in most "natural" examples where we know

that # is geometrically irreducible, we know it because we can show Ggeom is Sp(2d).

(8.4.2) However, there is a general procedure to construct, for every integer d > 2, examples of d—

dimensional abelian varieties A/K for whose ¥ the group G is a quite small irreducible

geom
subgroup of Sp(2d). Begin with a dense open set U in C, and an elliptic curve &U whose j—
invariant is non—constant. Given an integer d = 2, pick a finite subgroup I'" of the orthogonal group

O(d, Z) such that I acts irreducibly on 4. [For instance, we might take I to be the symmetric
group S 4, 1 in its augmentation representation. ] Pick an integer N such that the maximal prime—

to—p quotient of I is generated by N elements. Shrink U if necessary, so that (C—U)(k) consists of
at least N+1 points. Suppose there exists a finite etale I'—torsor
V->U

such that V/k is geometrically connected. Then we take the abelian scheme Sd/U, think of &4 as
8®ZZd, and twist it by the covering V/U, having I" act on 8®ZZd as (idg)®(given rep. of I' on
Zd). This twisted abelian scheme is a d—dimensional A/U. Its F(A/U) is canonically a tensor
product

FAU) = FEU)(Q ()d as ['—representation).

In terms of this decomposition, G is the irreducible subgroup SL(2)®I" of Sp(2d). This

geom
follows from a form of Goursat's Lemma, cf. 9.7.3, and the fact that 7(&/U) has Ggeom the
connected group SL(2).

(8.4.3) Can we construct a finite etale I'—torsor

V->U
such that V/k is geometrically connected? The answer if yes, if we allow ourselves a finite
extension of the constant field. By the positive solution to the Abhyankar Conjecture [Harb—AC],
we know that I" is a quotient of 7r1(U®kE), i.e., there exists a connected finite etale galois ['-torsor

V — Uspk.
Since k is the union of finite extensions of k, for some finite extension kl of k, this diagram
descends to a connected I'—torsor

Vi — Uspk;.
Thus we get a d—dimensional A/Ueik; whose ¥ 1Uek; has G
SL(2)®(T acting on (Q ()d) of Sp(2d).

geom the irreducible subgroup
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(8.4.4) We do not know if we can avoid the necessity of making a finite constant field extension
k1/k in general. But there are some elementary cases where no constant field extension is

necessary. Here is one such example.
(8.4.5) Suppose that the characteristic p does not divide d(d+1). Then the finite flat map

f:Al 5 Al

f:X = (/XS - (d+1)X)
is weakly supermorse, cf. [Ka—ACT, 5.5.21. [This means that the d+1 = deg(f) is prime to p, that
the differential df has d distinct zeroes, and that f separates these zeroes. Here the zeroes of df are

the d'th roots of unity, and f(¢) = & for & any d'th root of unity.] The polynomial f makes Al -
1(,ud) a finite etale covering of Al - uq of degree d+1. The lisse sheaf ¥ on the base Al - Hq

defined as
¥ .= Kernel of Trace : f*@( - Qf

is then an irreducible tame reflection sheaf, whose Ggeom is the full symmetric group Sq, 1, cf
[Ka—ACT, 5.5.3.61 and [Ka—ESDE, proof of 7.10.2.31. [In more down to earth terms, over [Fp(T),
the equation

-1/t - @+DX) =T
has galois group S, 1, and keeps this same galois group over [Fp(T).]
Thus we get an S 4, |—torsor

VoAl -y
with V/[Fp geometrically connected.
(8.4.6) Now pick a prime number /1 > Max(2g, d+1). At the expense of shrinking U, we may
assume that C-U contains a closed point  of degree /1. Take a nonconstant function g in L(#)
(possible by Riemann—Roch). Then g has a simple pole at # and no other poles. So it defines a
finite flat generically etale map of C to [Pl®[Fpk of degree £. At the expense of further shrinking U,

we may assume that g maps U to (Al - ,ud)®[|:pk. Since ¢ is prime to (d+1)!, a linear disjointness
argument shows that the pullback by

g:U— Al - Hq
of the Sy, 1—torsor

Ver k — (Al - pper k

[Fp d [Fp

isan Sq,—torsor

g*V - U
whose total space remains geometrically connected.
(8.4.7) There is another way to to construct abelian schemes
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p:A—->U
of any dimension d = 2 over open sets U of P! such that the middle extension F of Rlp*@ 718

geometrically irreducible, but whose G is a quite small irreducible subgroup of Sp(2d)

geom

(though not as small as in the previous construction). We start with a dense open set V in [P 1 and
an elliptic curve 7 : & — V whose j invariant is nonconstant. We form the (geometrically

irreducible, because j is nonconstant) middle extension ¥ of RIF*Q ¢- Again because &/V has

nonconstant j invariant, &V has bad reduction at some point of Pl -v. By the Neron-Ogg—
Shafarevich criterion of good reduction, the middle extension #7 is not everywhere lisse on [Pl,

i.e., Sing(#7) is nonempty. At the expense of extending the ground field k, we may assume that
Sing(#7) contains a k-rational point, and that pl - Sing(7) contains at least d—1 k-rational
points. Pick one point Py in Sing(#7)(k), and pick d—1 distinct k-rational points Py, ..., P4 in Pl -

Sing(#7). Pick a coordinate x for the source P! such that none of the P; is . Then consider the
function

f(x) := VTT;(x = x(Py).
This function is a finite flat map of degree d from P! to itself, which is finite etale over oo in the
target (and hence finite etale over some dense open set of the target). In the fibre {~ 1(c><>), there is
precisely one point, namely Py, in Sing(#7). So by the Irreducible Induction Criterion 3.3.1, the
direct image f+#7 on the target Plisa geometrically irreducible middle extension, of generic rank
2d. This sheaf £+ is precisely the middle extension sheaf # attached to a the spreading out of a
certain d—dimensional abelian variety A over the function field k(t) of the target pl. Namely,

denote by E/k(x) the generic fibre of the elliptic curve &V we started with. Then the A in question
1s the Weil restriction of scalars, from k(x) to k(t), t := f(x), of E.

A =Rk () (B)-
Over the galois closure k(x)gal/k(t) of the separable extension k(x)/k(t), A becomes the product of
the d conjugates of E/k(x) by the d embeddings of k(x) into k(x)€ which are the identity on k(t).
This means that for (the spreading out of) our A/k(t), the connected component (Ggeom)o lies in

the d—fold product of SL(2) with itself.

8.5 Ceriteria for when Ggeom is SO rather than O

(8.5.1) This section is a complement to Proposition 5.5.2 and to the discussion in section 7.4. We
continue to work over a finite field k of odd characteristic. We fix data

(CKk,D, t, 1, F, x, L, W)
as in 8.0.1-2. We also fix a choice aj of Sqrt(q) in Q ¢» and agree to use powers of this @} in

forming Tate twists by half—integers. Thus r is even, and F(w/2) is symplectically self dual and -
pure of weight zero.
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(8.5.2) We now make two further assumptions.
(8.5.2.1) Fis everywhere tamely ramified.
(8.5.2.2) The degree d of the divisor D satisfies
d > 4g+4, and
2g — 2 + d > Max(2#Sing(¥), 72r).
The first assumption, that ¥ is everywhere tame, is essential. The second assures us that Theorem
5.5.1 applies, whatever the effective divisor D.
(8.5.3) We form the sheaf

G = Twisth,C’D(T).
We know that G((w+1)/2) is orthogonally self dual as a lisse sheaf on
X :=Fct(C, d, D, Sing(Ffipite)-
(8.5.4) By Theorem 5.5.1, G has Ggeom either SO(N) or O(N), N being rank(G). We wish to give

some more criteria to decide which of these two cases we are in. The idea is very simple. As
explained in section 7.4, we can numerically decide this question by computing the determinants of
Frobenii acting on various stalks G((w+1)/2) of G((w+1)/2) over various extension fields, and

seeing how their signs vary. For any finite extension E/k, and any f in X(E), the stalk G{(w+1)/2)
is the cohomology group
—yl o
G((w+1)/2) :== H' (Ceyk, J*(S'-‘®£X2(f)))((w+1)/2),
and the action of Frobg ¢ on Gy is the action of Frobg on this cohomology group. As explained in

7.0.6.4, this leads to
L(CeE, j*(?@LX 2(f))((w+1)/2))(T)

= det(1 ~ TFrobg | H!(Copk. j(F® Ly, (1)) (w+1)12)

=det(1 — TFrobE’f | Ge((w+1)/2))
Thus det(—FrobE’f | Ge((Ww+1)/2)) is the sign in the functional equation of the L—function L(C®\E,
j*(7:®.£X2(f))((w+ 1)/2))(T). Equivalently, the constant

(8.5.4.1)
(E, FOL, 1) = 1/det(~ Frobg | HI(CoR, j#(F®L, (1))

is equal to the product of the sign in the functional equation times an integral power of af : =
o kdeg(E/k).

(8.5.5) In principle, we can use the theory of local constants ([De—Constl, [Lau—TFC]I) to compute
this sign, or more precisely to see whether or not it varies with f in a fixed X(E). In practice, this is
not so easy to carry out, and that is why in Theorem 8.5.7 below the hypotheses are somewhat
restrictive.

(8.5.6) Recall from 7.4 that we have G = O(N) if and only if the sign varies as f runs over

geom
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X(E) for any (or for every) sufficiently large finite extension E/k. We have Ggeom = SO = Gyth
(for G((w+1)/2)) if and only if the constant is always +1 for every f over every finite extension.
And we have Ggeom = SO but Gy = O if and only if the constant is equal to (—1)deg(B/K) for
every f in every X(E).

Theorem 8.5.7 Hypotheses as in 8.5.1 and 8.5.2 above, suppose in addition that each point of

Sing(%) occurs in D with even (possibly zero) multiplicity. Then we have the following results.
1) If at every geometric point S of Sing(¥), dim(WTI(B)) is even, then G((w+1)/2)) has Ggeom =
SO. Moreover, G, is SO if €(k, F) = an integral power of @y, and G4, is O if €(k, F) is (=

1)X(an integral power of ).

2) If there exists a geometric point 5 of Sing(¥) for which dim(WTI(ﬁ)) is odd, then G((w+1)/2))
has Ggeom = O = Gyith-
proof The key point is this. For f in any X(E), LXz(D and ¥ have disjoint ramification on Ce} E.

This disjointness allows us to apply Deligne's formula [De—Const, 9.51 (valid without assuming
part of a compatible system, thanks to Laumon [Lau—-TFC, 3.2.1.11]) to compute the ratio of signs
e(E, T@LXz(f)((wH)/Z))/S(E, F((w+1)/2)).

To carry this out, extend scalars from k to E, and work over E. Denote by EK the function
field of Cey E. At each closed point x of CeE, we denote by #(x) and LX ) E(D(X) the

representations of the decomposition group D(x) given by ¥ and by L)( »(P) respectively. We also

pick a uniformizing parameter r, at x. We use local class field theory to view continuous (Q {;)X—

valued characters of Dy as characters of EKXX, where EK denotes the x—adic completion of EK.
Because ¥ is everywhere tame, its artin conductor a,(¥) at x is just its drop as a

representation of the inertia group I(x):
a, (F) = dim(Fx)/Fx)1X)).

Because LX »() is everywhere tame, and Y- is the quadratic character, we have
aX(.EX 2(f)) =0 if ord, (f) is even,
aX(£X2(f)) = 1 if ord(f) is odd.

Deligne's formula [De—Const, 9.51is
e(E, T@LXZG))/S(E, F)

= [e(E, Ly, (1)/e(E, QI x T, i, sing(r) LXz(f)(x)((nX)ax(ﬂ)]
X [l_[X in Sing(£,_(p) (detﬂx))((ﬂx)aX(LXZ(f)))]'
2

Let us make several observations. The first is that since we are trying to track the variation
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of the sign, and no power of af is a nontrivial root of unity, we may work in the quotient group of

@Q [)X by the multiplicative subgroup generated by ap. We will write a ~ b if a/b is an integral
power of ap. We have

e(E, T@L)Q(ﬂ) ~ €(E, T®£X2(f)((w+l)/2)),

eE, ) ~ e(E, F((w+1)/2)).
The second is that since F(w/2) is symplectically self dual, det(#(w/2)) is trivial, or
equivalently, det(¥) = Q ((=wr/2). So for every closed point X, every value of detf(x) as character

of KX>< is an integer power of (#k(x))wr/ 2, and hence an integer power of ag. So we can throw

away the last product if we work modulo powers of ap, and we find

e(E, 7:®'£X2(f))/8(E’ )
~ [e(B, Ly, ()/eE. QI X ML, iy sing07) Ly (@1 x T

Next we observe that because LX ) E(ﬂ(x) is a character of order two, the terms indexed by

a point x in Sing(¥) with a, () even are all identically 1, and the terms with a, (¥) odd don't
change if in each we replace a, (%) by 1. Finally, we observe that both the sheaves Q ¢ and LX H(f)

or more precisely their middle extensions from dense opens where they are lisse, are orthogonally
self dual on CeyE. So by Poincare duality, both of the cohomology groups

Hl(Csk, j+Lyy(p)(1/2) and Hl(Ceyk, Qp)(1/2)
are symplectically self dual. Therefore we have
e(E, j*L)(z(D(l/z)) =¢&(E, Qp(1/2)) = 1.
Therefore we have
e(E, j*lZXz(f)) ~ ¢(E, j*£X2(f)(1/2)) =1,
e(E, Qp) ~ e(E, Qp(1/2)) = 1.

So we find the following ~ formula for our ratio of constants.

e(E, 7:®.£X2(f))/8(E, F)
sz in Sing(#) with a,(¥) odd -EXZ(f)(X)((ﬂX)aX(?))_

~I, 4 Sing(F) with a, (F) odd L)(z(f)(x)(” x)-

With this formula in hand, we can proceed in a straightforward way. Suppose first there are
no points where the drop a, (%) is odd. Then the formula gives

e(E, T@LXZ(f)) ~ e(E, F),

or equivalently, an equality of signs
e(E, T@LXz(f)((w+1)/2)) = &(E, F(w+1)/2)).
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So for each given finite extension E/k, the sign does not vary as f varies in X(E). This lack of

variation implies that G((w+1)/2) has its G equal to SO. To determine whether its G4, 18 O

geom
or SO, we must see if the common sign for all f in X(E) depends on the degree of E/k, or not. To
do this, we may replace k by any extension of itself of odd degree, and this allows us to assume
that X(k) is nonempty. So we pick an f in X(k). We already know (5.5.2) that if G is SO,

then G has even rank. So we have
e(E, F((w+1)/2))
=¢(E, T@LXz(f)((wH)/Z))

geom

= det(—Frobg | H!(Ce\k, FO Ly (1)((W+1)/2)))

= det(Frobg | H (Csyk, FOLy()(W+1)/2)))

= det((Froby)4e8(E/K) | gl (s &, FOLy () (W +1)/2))
= det(Froby | H!(Ce\k, ?’@L)(z(ﬂ((w+1)/2)))deg(E/k)
= det(~Froby | H(Coyk, 7@ L, 2(f)((w+1)/2)))deg(E/k)
=g(k, T@LXZ(D((W1)/2))deg(E/k)

= e(k, F(w+1)/2))degEK),
Since e(k, F((w+1)/2)) is =1, and is = €(k, F), we see that the sign varies as (_l)deg(E/ K) if and
only if e(k, F) ~ 1. This completes the proof of 1).
In order to prove 2), it suffices to find a single finite extension E/k such that as f varies over
X(E), the sign changes. So we may extend scalars and reduce to the case where all the points in
Sing(¥) are k—rational. At each of them, we pick a uniformizing parameter 7. Our starting point is

the basic formula derived above: for E/k a finite extension, and f in X(E), we have

e(E, T@LXz(f))/E(E, F)

~Ily i, Sing(F) with a, (F) odd L)(z(f)(x)(” x)-
But now we are assuming that there are points x in Sing(#) with a,(¥) odd. At each point x in
Sing(¥), the ratio f/ (ﬂx)ordx(ﬂ is a unit in EKy which mod squares of units is independent of the
auxiliary choice of uniformizing parameter. [This holds because ord,(f) is even at each point x in
Sing(¥). Indeed, if x lies in D, then f has an even order pole at x, and if x is in Sing(¥)N(C-D),

)0rdx (), we have the tautological but key identity

then f is a unit at x.1In terms of this unit f/(rr,
_ . d

Ly ()X)(y) = x >Normgy (the value in EX of f/()°"Ix(D at ).

To achieve some economy of notation, for x in Sing(¥) and any f in L(D)#\ E, we define

f(x) := the value in E of f/ (ﬂX)Ordx(f) at x.
Thus for f in X(E) we have
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e(E, T®£X2(f))/ eE, H) ~ 11, Sing(F) with ay(F) odd X’ 2, EEx)).
For fixed x in Sing(¥), the map
Liny: L(D) — k,
f— 1(x),
is a linear form on the k—vector space L(D), and its formation commutes with extension of ground

field k. Now X as variety over k is a dense open set in L(D), the affine variety over k whose E—
valued points are L(D)®E for every E/k. Each of the linear forms Lin, is an invertible function on

the open set X, as is their product
IT:=11;, Sing(#) with a (¥) odd Liny.

So we may form the lisse, rank one Kummer sheaf LX Z(H) on X. In terms of this Kummer sheaf,

we have, for every finite extension E/k and every f in X(E),

e(E, ¢®LX2(f))/8(E’ F) ~ FrObE’f| 'EXZ(H)'
So the sign varies as f varies over X(E) for large E if and only if LX > is not geometrically
constant on X. Now LX D) is geometrically constant on X if and only if on x®k1€, the function

[1 is the square of another function. The function [[ is the restriction to X of the function [] on
L(D). Since X®k is open dense in the normal connected k—scheme L(D)sk, if [1= F2 for some
function F on X®k1€, or even for some F in the function field of X®k1?, that function F must lie in
the coordinate ring of L(D)eyk.

To see this, we argue as follows. The coordinate ring of L(D)#y k. is a polynomial ring R in

several variables over k, and [] is the product of several nonzero linear forms in R. Now R is a
U.F.D., and each nonzero linear form is an irreducible element of R.To show that their product is
not a square, it suffices to show that the linear forms Lin, for two different points x are not RX =
k*~multiples of each other. Then our [T is a product of distinct mod R irreducibles, and so by
unique factorization it is not a square in R.

But D has large degree, so is very ample. Concretely, it embeds C(k) into the set of
hyperplanes in L(D)eyk, by the map

x in C(k) — the hyperplane in HO(C®kk_, O(-D)) consisting of the

sections which vanish at x.
And for x in Sing(¥), its hyperplane is precisely the kernel of the linear form Lin,. Therefore the
various linear forms Liny for x in Sing(¥) are all distinct mod RX irreducibles. Therefore no

nonempty partial product of them is a square. This shows that L)( 2(H).is not geometrically

constant on X®kE’ and completes the proof. QED
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8.6 An interesting example
(8.6.0) Let k be a finite field of odd characteristic, £ a prime number invertible in k. Over the
rational function field K = k(A), we begin with the Legendre curve

y2 = X(x—1)(x=A).
(8.6.1) Then we form its quadratic twist by A(A—1). This is the curve

y2 = AA=-Dx(x-1)(x-),
which we will name E/K in the following discussion. This curve has good reduction outside of {0,
1, o}, We denote by

1:&—=Pl-{0,1,0}

the resulting elliptic curve over pl_ {0,1,00}.
(8.6.2) Recall that, denoting by

j:Pl-10,1,00} > P!
the inclusion, we formed Rlﬂ*@ ¢ on pl_ {0,1,00}, and defined
F = jxR1m:Q,.
The local monodromy of F | pl - {0,1,00} is LX 2®Unip(2) at each of 0, 1, . However, it will be
convenient in what follows to pay closer attention to questions of /—adic rationality. With this in
mind, we define
Fr = j*Rlﬂ'*Q(.
Thus ¥ is the natural Q ,~form of the Q —sheaf ¥ we have been dealing with throughout.
(8.6.3) For each even integer d > 144, we define a divisor D in p! by Dq:= deo, and form the
sheaf
Gq = TwistX 2,[Pl,D d(?‘)
on the space
X4 := FetPl, D, d, {0,1})

of degree d polynomials in A with invertible discriminant and which are invertible at both 0 and 1.
The Tate—twisted sheaf G 4(1) is orthogonally self—dual. According to Theorem 8.5.7, part 1), the

geom for G4(1) is SO(2d). Moreover, the group G, i, for G4(1) is SO(2d) if the sign in

the functional equation for the L—function of E/K is +1, and it is O(2d) if this sign is —1.
(8.6.4) So for each odd prime p, it is natural to ask: what is the sign € in the functional equation of
the L—function of E/[Fp()t), for E the curve

y2 = AA=Dx(x=1)(x=1)?
In terms of the sheaf T( on [Pl/ﬂfp,
det(—Frobp

group G

this sign is

| Hl(u>1®Fp, F)(1))
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= det(~Froby, | Hl([Pl@[Fp, F))/prank(F),
Theorem 8.6.5 The sign £(p) := det(—Froby, | Hl(P1®[Fp, F,)(1)) is given by
e(p)=1ifp=1mod4,
e(p) =-1if p =3 mod 4.
(8.6.6) Before giving the proof, in 8.7 below, we give the main application.

Corollary 8.6.7 In the situation of 8.6.3, fix an odd prime p, and consider for each even integer d >
144 the divisor D := deo, and the sheaf

Qd = TWiSth’[Pl,Dd(T)
on the space
X4 := FetPl, D, d, {0,1)/F .

The Tate—twisted sheaf G4(1) is orthogonally self—dual, with group G = SO(2d). The group

geom
G gy for G4(1) is SO(2d) if p = 1 mod 4, and it is O(2d) if if p = 3 mod 4.

8.7 Proof of Theorem 8.6.5
(8.7.0) The sheaf ¥, is everywhere tame on Pl.onP! - {0,1,00} it is lisse of rank 2, and its stalk
vanishes at each of 0,1,0. So the Euler Poincare formula gives

XL, F) = Y(P! - {0,1,00})eF )xrank(F) = -2.
Because ¥ is an irreducible middle extension of generic rank > 1, the groups HO([P1®FP, ¥¢) and
H2(P e, 7) vanish, so we find that

dim H!(P1eF ), 7) = 2.
(8.7.1) Applying the Lefshetz trace formula to %, on [Pl, we have, for any finite extension E/IF
~Trace(Froby | HI(P1elF,, 7)) = 3, ;, pi g, Trace(Frobp ) | 77 o)-

p’

The stalk 7—‘/’0[ vanishes at 0, 1, co. At any other & in [Pl(E), &, 1s an elliptic curve over E, and
Trace(FrobE’ A FY) is
Trace(FrobE, AV F) =#E + 1 - #8E(E)
= #E — #{(x.y) in EZ with y2 = a(a=1)x(x=1)(x—a)}
==X, in g X2 El@(@-Dx(x-1D)(x-a)),
where we have written X2.E for the quadratic character of EX.
Thus we find
Trace(Frobg | Hl([P1®[FP, F)) == 201 inE
=2y 401 inE 2xin g X2 E(@(a=Dx(x=D)(x-a)).
(8.7.2) But with the usual convention that XZ,E(O) =0, we can rewrite this as

Trace(Frobg ,, | 4 )
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Trace(Frobg | H! (P 1<, 7))

=2, x in X2, E(@(@=Dx(x-1)(x-a)).
(8.7.3) In order to see more clearly what is going on here, we will give the more neutral name "y"
to the variable "a". Thus we have

Trace(Frobyg | HI(P1®[FP, )
=2y in X2 EXE=Dy(y=D(x-y)).
(8.7.4) Now consider the affine surface S in A3 over Z with coordinates X, Y, Z
S : 22 = x(x=Dy(y=D)(x-y).
In order to highlight its symmetry, let us denote by P(t) in ZI[t] the one—variable polynomial
P(t) :=t(t-1).
In terms of P, the equation of S is

S : 22 = P(OP(y)(x-y).
For any finite field E of any odd characteristic p, we have the usual character sum calculation
#S(E) = Zx,y in g #{square roots in E of P(x)P(y)(x—y)}

=2 yine (I +x2 EPCOP(Y)(x-y)))
= (#B)? + 2,y in X2 EPEOP(Y)(x=y))
= (#E)? + Trace(Frobg | Hl([P1®Fp, F)).
(8.7.5) Now the sheaf F, on P! makes uniform sense over Z[1/2¢1: it is lisse on P! — {0, 1, oo},

(necessarily) tame along 0, 1, and e, and extended by zero to all of PL. Therefore (cf. [Ka-SE,
4.7.11), the cohomology groups Hl([P1®[FP, ¥ ) for variable p # 2 or £ are the stalks at the

(geometric points over the) closed points of a lisse sheaf H, on Z[1/2¢1, whose geometric generic

fibre is HI(P1eQ, %) Or in more down to earth language, HlPleqQ, Fy) is a two—dimensional
Q/—representation Pgal of Gal(Q/Q) which is unramified outside of 2¢, and in which the

Frobenius conjugacy classes Frob, at primes not 2 or £ have characteristic polynomials given by

P
det(1 — TFrobp | Hy) = det(1 - Tpgal, ((Frobp))
_ 1pleE
= det(1 — TFrobg | H* (P ®[Fp, F0))-

Moreover, Hl([P1®(I§, Fp)(1) is orthogonally self dual, and pure of weight zero.

(8.7.6) The trace formula above thus says

Trace(pga) ((Frobp)) = X, oy g X2 EPCOP(Y)(x-y)).
The right hand side is visibly an integer, independent of /. So the representations Pgal ¢ form a
compatible system of two—dimensional /—adic representations.
(8.7.7) Let us next observe that if p = 3 mod 4, or more generally if we work over a finite field E
in which -1 is not a square, then
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2y inEX2, EPEPY)(x-y)) = 0.
Indeed, interchanging x and y does not change the sum, but changes the sign of P(x)P(y)(x—y). As
—1 is a nonsquare in E, this interchange also changes the sign of each term y» p(P(X)P(y)(x-y)).

Thus the sum is an integer which equal to minus itself.
(8.7.8) So we have

Trace(pgal,{(Frobp)) =0ifp=3 mod4, p£2or.
(8.7.9) Let us view Pgal,r s a two—dimensional Q—representation of ﬂl(Spec(Z[l/Zf 1)) on
Hl([Pl®Q F¢)- By Chebotarev, the vanishing of Trace(pgal, /(Frobp)
vanishing outside the entire "Gaussian" subgroup 71 (Spec(Zli,1/2¢1)) of index two. [Indeed, the

) for p = 3 mod 4 implies its

function y — f(y) on {(Spec(Z11/2¢1)) which is defined as
f(y) == Trace(pgal’f(y)), if y is in 71| (Spec(ZIi,1/2¢1)),
f(y) :=0, if y is not in 7| (Spec(ZIi,1/2¢1)),
is a continuous central function, which agrees with the continuous central function y —
Trace(pgal’ ¢(y)) on all Frobenii, so these two functions must coincide.]
The Tate—twisted 7-{((1), i.e., the representation pgal,{(l) on Hl([P1®(lj, F)(1), is pure of

weight zero, and orthogonally self—dual.
Lemma 8.7.10 The representation Pgal (1) is irreducible.

proof We first show that Pgal (1) is completely reducible. Indeed, consider the Zariski closure G
in the orthogonal group O(2) of the image of 7r{(Spec(Z[1/2¢1)) under Pgal, /(1). The only Zariski

closed subgroups of O(2) are O(2), SO(2), and finite groups, all of which are reductive, so the
group G is reductive, and hence Pgal (1) is completely reducible.

Thus if Pgal, /(1) is reducible, it is (after extension of scalars from Q, to Q p) the direct sum

of two characters, say o @ 7. For every p = 3 mod 4, p # /, we saw in 8.7.8 that
Trace(pgal’(( 1)(Frobp)) =0.
Thus for every p = 3 mod 4, p #/, we have
O'(Frobp) =- T(Frobp).
Let us denote by y, the £1-valued character of 7{(Spec(Z[1/21)) defined by the quadratic
extension Q(i)/Q: concretely, for odd primes p we have
)(4(Frobp) =1ifp=1mod4,
=—1if p =3 mod 4.

We observe that 7/0- = x4 on ﬂl(Spec(Z[l/Z])). Indeed, Ty4/0 is trivial outside the Gaussian
subgroup 71 (Spec(ZIi,1/2¢1)) of index two. Therefore Ty 4/ is trivial on all of 71 (Spec(Z[1/2¢1])).

[If H c G is any proper subgroup of any group, every element h of H is of the form A~ 1B for two
elements A and B in G but not in H: pick any single g not in H, and write h = g_l(gh). Soifa
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linear character of G is trivial outside of H, it is trivial.]
Thus if Pgal, (1) is reducible, it is of the form o @ oy 4. Because Pgal, (1) is orthogonal,

2)(4 has order dividing two, hence o2 has order

its determinant has order dividing two. So o
dividing two, hence o~ and oy each take values which are fourth roots of unity. Therefore, every
value of Trace(pgal’ /(D) lies in Z[il, and in particular is an algebraic integer. But this is not the
case. If £ # 5, we readily calculate
Trace(pgal,((l)(Frobs))

=(5)Z; 401 in Fs Xin Fs X2, E(@@-Dx(x=D(x-a))

=-6/5.
If =5, we compute

Trace(pgal,((l)(FrobB))
= (V13)%y 20,1 inF 3 Zxin F i3 X2, B(@(@=DX(x=D)(x-a))

=10/13.
Therefore Pgal (1) is irreducible. QED for 8.7.10
(8.7.11) So Pgal (1) is an irreducible orthogonal representation of ﬂl(Spec(Z[l/Zf D)) of

dimension two, whose trace function vanishes outside on the Gaussian subgroup
71(Spec(Z [i,1/2¢1)). By Theorem 3.5.2, there exists a Q ¢—valued character o~ of the Gaussian

subgroup 71 (Spec(Z [i,1/2¢1)) such that (after extension of scalars from Q e Q 0 Pgal /(D)=
Ind(0). The character o is pure of weight zero. We claim that Pgal /(D) Iﬂl(Spec(Z[i,l/ZF ))isoc®

o, for o the inverse character to o. [The notation ¢ is slightly abusive: it is only on Frobenii that o
and o need take complex conjugate values after any embedding of @f into C.1 To see this, recall
from the proof of 3.5.2 that

pgal,f(l) I (Spec(Zli,1/2(]) = o + 7,
for two distinct characters o and 7 of ﬂl(Spec(Z[i,l/% 1)). We know that o + 7 = 0 + 7 (because
Trace(pgal (1)) takes rational values on Frobenii). So either 7 = o as asserted, or both o and 7
have order dividing two. In this latter case, Trace(pgal’ (1) I (Spec(Zli,1/2¢1)) would take only
the values 0 and +2. But we have seen above that the traces of Frobp for p=5 and p=13 both fail to
be algebraic integers. Therefore Pgal, /(1) Im(Spec(ZIi,1/2¢1)) is o @ o.
(8.7.12) In particular, det(pgal (1)) is trivial on the Gaussian subgroup 7 (Spec(Z [i,1/2¢1)).
On the other hand, det(pgal, (1)) is nontrivial: otherwise Pgal, (1) would have image in the abelian

group SO(2), and so would be reducible.
(8.7.13) Therefore det (1)) is the unique nontrivial character of
gal,f q

m1(Spec(ZI1/2¢1))/m(Spec(Z1i,1/2¢1)) = Gal(Q(i)/Q), i.e., it is the quadratic character of Gal(Q/Q)
cut out by Q(i). Explicitly, for odd primes p # ¢, we have
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det(pgal’((l)(Frobp)) =1if p=1mod4,
=—1if p=3 mod 4. QED
8.8 Explicit determination of the representation Pgal ¢

(8.8.0) We now explain the numerical coincidence we found in 8.7.4, that for S the affine surface
over Z with equation

S : 22 = x(x-Dy(y-D(x-y),
we had, for every finite field E of odd characteristic, and every prime number ¢ invertible in E, the
identity of traces

Trace(Frobg | HL(P1E, 7)) = #S(E) — (#E)2.
It has a simple cohomological explanation: it is just the Lefschetz Trace Formula for the surface S.
Lemma 8.8.1 Let k be a field in which 2 is invertible, k an algebraic closure of k, £ a prime

invertible in k. The compact cohomology groups Hci(S®E, Q) as Gal(k/k)-modules are given by

HH(Sek, Q) = Qu(-2),
H.2(Sek, Q) = HI(Plek, 7)),
H_(Sek, Q) = 0 for all other i.
proof To clarify what is going on, in the equation for S, rename the variables X, y, zas A, X, y, so S
is now the affine surface
y2 = AA=D)x(x=1)(x=A).
View S as sitting over the affine A line, say
f: S > Al
A, X, y)— A
Consider the Leray spectral sequence

E,P = H (A lek, RPf,Q)) = H 2P(Sek, Q).
Over the open set Al [1/A(A-1)] of the base, the induced map
f:SI1/AQ-1)]1— All1AQ-1)1

is & - {0} - | All1/AQA-1)], for 7 : & = ALLI/A(A=1)] the twisted Legendre family. Since
removing a single point from a projective smooth geometrically connected curve does not change

its HC1 or its HC2, we have
RIfQ, 1 AlIA@A-DI =Rz Q1 AllIAGQ-1)]
=RlmQ, 1 AllIAQ-1)1= 7y 1 AllIAGQ-1)],
and
R2f,Q, | AlTIAQA-1)1 = Qu(-1).

0

Since an affine smooth curve has vanishing H.", proper base change gives us

ROfQ, I AllIAQ-1)1=0
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Over the points A=0 and A=1, the fibre of { is the (non-reduced) affine curve in x,y space with
equation y2 = 0. But etale cohomology does not see nilpotents, so these special fibres might as well
be Al's, whose HCO and HC1 both vanish, and ch is Qp(-1).
Denote by j : Al [1/A(A-1)] —A! the inclusion. Proper base change gives
Rf,Q,=0on AL,
RIIQ =i R1Q =iy 77
The sheaf 7—} also vanishes over A=0 and A=1, so we have
RIfQ, =7, 1AL
As the sheaf ¥, also vanishes over the point A=co in [Pl, we have
HlPlsk, 7,) = H (A lsk, 7,1 AL).
Thus we have
Hl(Plek, 7,) = H ! (Alek, R11,Q)).
All the geometric fibres of f, when reduced, are irreducible curves, so we have

R2f1Q, = Q(-1).
With this data in hand, we easily compute the E5 terms in the spectral sequence. All the

sheaves Rif 1Q on Al are middle extensions on an affine smooth curve, so we have
E,0-P = 0 for all b.
Among all the sheaves Rif 1Qg, only Rlf 1Qp (= Fp | Al) is not geometrically constant. As
HCI(A1®E, Q) vanishes, we have
E, b =0 for b1,
B, 1.1 =Hlplek, 7).
The sheaf R1f\Q, (= 7, | Al) is an irreducible middle extension of rank 2, so its H,Z vanishes,

and so we find
E»2:b = 0 for b2,
Ey22 = H2(Alek, Qu-1)) = Qu(-2).
With such a paucity of nonzero E, terms, the spectral sequence degenerates at E5, and

gives the asserted values for the compact cohomology groups of S. QED

(8.8.2) When we view HI(P1ek, F) as HC2(S®1€ Q). the cup—product pairing
HlPlsk, 77) x HIPlek, ) — Q,(-2)

becomes the cup—product pairing
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HC2(S®1€, Qp) x HC2(S®1€ Qp) — HA(Sek, Q) = Q/(-2).
Since the pairing on HI(P1®E F¢) is nondegenerate, we find that the cup—product pairing on

HCZ(S®1<_, Q) is non—degenerate. Since S is an affine and singular surface, this non—degeneracy

seems highly non—obvious.
(8.8.3) As we saw in the proof of 8.8.1, S[1/A(A-1)]is & — {0} for

7:&— Allin@a-n1
the twisted Legendre family, whose affine equation is
y2 = A = Dx(x = D(x = A).
(8.8.4) There is a canonical way to complete 7 : & — Al [1/A(A-1)]to an elliptic surface
7 E Pl
(i.e., [E is a projective smooth geometrically connected surface, and 7 coincides with 7 over Pl -
{0, 1, eo}) in such a way that the fibres over the three points 0, 1, o are the Kodaira—Neron special

fibres of the elliptic curve y2 = A(A — I)x(x — 1)(x — A) considered successively over the complete
fields k((4)), k((1-2)) and k((1/Q)).

(8.8.5) Over each of these fields, this curve is of type 1*2. [Over k((1)) we rewrite the equation as
Ay)? = A=DA)Ax = H(Ax - A2),
so in new variables X = —Ax and Y = Ay/Sqrt(1-A) we have
Y2 = X(X + )(X +42).
Over k((t)) with t either 1-A or 1/A, similar changes of variable bring our curve to the form
Y2 = X(X - )(X - t2).]
The Tate algorithm [Sil-ATEC, page 3661 shows that over each of 0, 1, o, the special fibre

consists of seven P's over k, of which four are reduced and three have multiplicty two, with a total
of six crossing points, arranged as

* *

st s sk sk sk stk st sk sk s sk sk skosteoke sk sk sk skoskokoskokok kol skosk
* *

skoskoskoskoskokok sk skoskosk skskoskoskoskoskoskok sk skoskosk
* *

sk sk sk sk ok skosk sk sk skosk sk sk sk sk sk sk skeske sk sk skosk
* *

(8.8.6) Suppose we start over [, for an odd prime p, and pick a prime ¢ # p. Then over any finite

field k of characteristic p, we ha\rz)e
(8.8.6.1) HE(K) = #(m 140, 1, =))(K)) + #r~ LA LT1/AQ-1)1)(K))
= 3(7(#K) + 1) + #E(K)
=3(7¢#K) + 1) + #AI/AQ=DIK)) + #E - {0})(K)
=3(7(#K) + 1) + #AL/AQ=DIK)) + #ST/AQA-1)1(K))
= 3(7(#K) + 1) + (#k — 2) + #S(k) — 2(#K)
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=20#k + 1 + #S(k)
=20#k + 1 + (#k)2 + Trace(Froby | H! (P 1ok, 7).

(8.8.7) Using the Weil Conjectures, we infer that the Betti numbers of [E are 1, 0, 22,0, 1.
(8.8.8) On the other hand, the minimal projective nonsingular model of the affine surface S is a K3
surface. Indeed, it is the K3 surface "X,", which is the (minimal resolution of the) double covering

of P2 branched along XYZ(X-Y)(X-Z)(Y-Z), cf. [Beu—St, page 283, case Al Being a K3
surface, X4 is an absolutely minimal model of its function field. What is the relation between [E and
X4? Since [E is also a projective nonsingular model of S, the tautological birational map from [E to
X 4 is, by the absolute minimality of X, a morphism. Any birational morphism between projective
smooth surfaces is a successions of blowings up of points. But [E has middle Betti number 22, the
same as the K3 surface X4, so there can be no blowings up. Thus [E = Xy4.
(8.8.9) According Beukers and Stienstra [Beu—St, page 2921, elaborating a theorem of Shioda and
Inose [Shio—In, Thm. 61, for any odd prime p the zeta function of X4/[Fp is equal to
(1 = TP,(T)(1 = pT)2(1-pT)

for Pp(T) the quadratic polynomial given by

1 - 2(a2 = b2)T + p2T2, if p= 1 mod 4, p = a2 + b2, a odd,

1- p2T2, if p =3 mod 4.
In particular, #X4([Fp) is given by:

1 +20p+p2+2(a2—b2),ifps 1 mod4,p:a2+b2,aodd,

1 +20p + p2, if p = 3 mod 4.
Comparing with our formulas for #[E([Fp) in 8.8.6.1, we find
(8.8.9.1) Trace(Froby | HI(P1ek, 7)) = 2(a% - b2), if p = a% + b2, with a odd,

Trace(Froby | HI(Plek, 7)) = 0, if p = 3 mod 4.

(8.8.10) These explicit formulas have a simple meaning in terms of the representation Pgal-
Denote by py the grossencharacter of Q(i) of conductor 2+2i attached to the elliptic curve y2 =x3
— X, given explicitly on ideals of Zl[i]l which are prime to 2 by the formula y4(I) = & where « is the

unique generator of the ideal I which satisfies @ = 1 mod 2+2i. Fix a prime ¢ and an embedding of
Q@) into Q ¢- Then py gives rise to a Q ¢—valued character py p of m(Spec(Zli, 1/2¢1) with the

following property. For each gaussian prime 7 not dividing 2/, with 7 = 1 mod 2+2i, we have
P4, ¢(Frob,) = 7.

Proposition 8.8.11 The two—dimensional representation Pgal,f of 71 (Spec(Z11/2¢1)) afforded by

HlPleQ, 7). is Ind((py, ), the induction of (04, )2 from 7 (Spec(Zli, 1/21)) to

m1(Spec(Z11/2¢1)).
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proof We have shown in 8.7.10 above that Pgal .t is irreducible. Hence Pgal is semisimple. The

induction of a linear character (or of any semisimple Q ¢—representation) from a subgroup of finite
index is semisimple. So Ind((p4, [)2) is a semisimple representation. The two representations Pgal,f

and Ind((p4 /)2) of 1(Spec(ZL[1/2¢1]) have the same trace function on all Frobenius elements, by

8.8.9.1. By Chebotarev, their trace functions are equal. Hence these two representations have
isomorphic semisimplifications. As both representations are semisimple, they are isomorphic. QED

8.9 A family of interesting examples
(8.9.0) Let us return to the situation of 8.6. Thus k is a finite field of odd characteristic, ¢ is a prime

number invertible in k, and over pl_ {0, 1, oo} with parameter A we consider the twisted Legendre
family of elliptic curves

m:&-PL-{0, 1, },

given by the affine equation
y2 = A = Dx(x = D(x = A).

We denote by j : pl_ {0, 1, o} — P! the inclusion. For each odd integer n > 1, we consider the
lisse sheaf

1= Rlx «Q /
onPl - {0, 1, =}. Then ¥7 is lisse of rank 2, pure of weight one, and symplectically self—dual
toward Q ¢(=1). Along the sections 0, 1 and o of C/T, the local monodromy of ¥ is

(the quadratic character)®(unipotent nontrivial).

For each odd integer m > 1, take F;, := Sym™(#7). Thus ¥, is lisse of even rank m+1, pure of
weight m, and orthogonally selfdual toward Q /(—m). Because #7 has Ggeom =SL(2), Fy, is

geometrically irreducible. Its local monodromy along the sections O, 1, oo is
(the quadratic character)®(a single unipotent Jordan block).

Thus ¥, is everywhere tame, and at each of its singularities, the dimension of 7,/ (9""m)I is the
even integer m+1.
(8.9.1) For each even integer d 2 144, we define a divisor D in P! by Dg:= de, and form the
lisse sheaf

Gdm = TwistX > P Ip d(j +Fry)
on the space

X4 := FetPl, D, d, {0,1})
of degree d polynomials in A with invertible discriminant and which are invertible at both O and 1.
The Tate—twisted sheaf gd,m((m+1)/2) is orthogonally self—dual, of rank (m+1)(d+1) . According

geom for gd’m((m+1)/2) 1s SO((m+1)(d+1)).
Moreover, for any such d, the group G, for G4 ,((m+1)/2) is SO((m+1)(d+1)) if and only if

to Theorem 8.5.7, part 1), for d >> 0, the group G
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the sign in the functional equation for the L—function of j«%,,((m+1)/2) on Plek is +1.In 8.6.5 we

determined this sign for the case m=1 by a global number field argument. Here we give a different
proof, based on the theory of local constants, which works for all m.

Theorem 8.9.2 Hypotheses and notations as above, for any finite field k of odd characteristic, any
prime number ¢ invertible in k, and any odd integer m = 1, the sign in the functional equation for

the L—function of j+F,,((m+1)/2) on P1ek is given by
det(~Froby | HL(P1ek, jsF,,(m+1)/2))) = yo(-1)(M+D/2
[Recall that y5(-1) is equal to

+1,if #k = 1 mod 4,
—1,if #k = 3 mod 4.1
proof Since we are trying to determine a sign, and no power of #k is a root of unity, we may work

in the multiplicative group (Q f)x/ (#k)z. We write a ~ b if a/b is an integer power of #k. By [De—
Const, 7.9], valid here because ¥, is part of a compatible system, the constant in the functional

equation is given by

1/det(=Froby | HI(P1ek, j+F, (m+1)/2)))
=11, ;, p! e(Vm v ¥y» Hy),

the product over the closed points v of Plek. Here Vm,v denotes the restriction of F,((m+1)/2) to
the decomposition group Dy, at v, and ¥, and y,, are the local components of a nontrivial additive
character ¢ of, and of Haar measure u of total mass one on, the quotient additive group Ag/K of
the adeles A of K :=k(Q) by the discrete subgroup K. We can make these choices so that y,
gives the integer ring O, total mass one for all but finitely many v, and gives it mass an integer
power of #k for every v. We get an explicit choice of i as follows. Pick a nonzero meromorphic
one—form w on P lek, and a nontrivial additive character Y of k. Then we get a global ¢ by
defining ¥y (f) := lﬁO(Tracek(V) /k(Resy (fw))). We will choose w so that it has simple poles at each

of 0, 1, oo, with residue +1 at each.
With these choices, we first claim that for each v other than O, 1, e, we have

&V v Yy Hy) ~ 1.
Atsuch v, V| is unramified of even rank m+1, and symplectically self—dual toward Q /(1). So
det(Vm’V) = Q /((m+1)/2). By the transformation formulas [De—Const, 5.3 and 5.41, E(Vm,v’ Uy
MUy) is, up to ~ equivalence, independent of the choice of measure u,, giving Oy, mass an integer
power of #k, and independent of the choice of local character i,,. Choose w to have neither zero

nor pole at v, and choose y,, to give Oy, mass one. Then £(V y) = 1. This follows from

m,v gy
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[De—Const, 5.5.31, applied with its W taken to be V,, , and its V taken to be 1, and [De-Const,

5.91, applied with its y taken to be I.
At v any of the three points 0, 1, e, V, |, has even rank m+1, and is symplectically self—

dual toward Q((l). So det(Vy, ) = @(((m+1)/2). By [De—Const,5.3 and 5.41, e(V, y» Yy iy) 1S,
up to ~ equivalence, independent of the choice uy, giving Oy, measure an integer power of #k, and
independent of the choice of local character y,.
For odd m > 1, we have
Viy = Symm(VI’V)((l—m)/2).
So we have
E(Vm’v9 lvl’v, :uv) ~ E(Symm(vl’v)’ lr//V’ /JV)
Now Vq (=1) is just the H! of the twisted Legendre curve
y2 = A4 - Dx(x = D(x - ),
viewed as a representation of the decomposition group Dy,. Over k((1)), 1-A is a square, and the
twisted Legendre curve is isomorphic to
y2 = ()x(x = D(x = A).
Over k((1-1)), A =1 — (1-A) is a square, and the twisted Legendre curve is isomorphic to
y2 = A=Dx(x = D(x = A).
Over k((1/1)), A(A-1) is a square, and the twisted Legendre curve is isomorphic to
y2 = x(x = D(x = A).
Now consider the Legendre curve itself,
¥ = x(x = D(x =),
over k(A). One sees from the Tate algorithm [Sil-ATEC, page 3661 that it has split multiplicative

reduction of type I at A=1, so its H! has unipotent local monodromy at A=1, and as a
representation of Dy it has (Hl)I ~Q /> and Hl/(Hl)I =Q ¢(=1). Now V; {(-1) as representation
of Dy is LX 2@_1)®(this Hl), SO Vl,l(‘l) as Dy—representation is an extension of the two
characters

Lxoa-1y Lrpa-nED:

At 2=0, one sees from the Tate algorithm [Sil-ATEC, page 3661 that the Legendre curve has

multiplicative reduction of type I, and this reduction is split if and only if —1 is a square in k. So
its H! has unipotent local monodromy at A=0, and as a representation of Dyy it has (Hl)I = LX »(-
1 and HYHD = £, 1y(=1). Now Vy o(=1) as representation of D is £y, _yy®(this HY),

so V1 o(=1) as Dy-representation is an extension of the two characters
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L)(Z(A)’ LXZOL)(_I)'
At A=co, take t := 1/A as uniformizing parameter. In the new x, y variables tx and t2y, the Legendre
curve becomes
y2 = tx(x = D(x = t).
Thus the Legendre curve over k((1/1)) is the —t = —1/A twist of a curve with split multiplicative
reduction of type I at A=co. As already noted, our twisted curve is isomorphic to the Legendre

curve over k((1/4)). So V| (1) as D,—representation is an extension of the two characters

Lyo =11y Lyy=10)D-

So for each odd m 2 1, V,;, y, is a successive extension of various Tate twists of the single
b
character

LXZ(A)’ at v=0,
.EXZ(/\_I), at v=1,
LXZ(_I/A), at v=oo,

The key point is that each of these characters is ramified. So at v any of 0, 1, e, our local €
constants are equal to the local € constants. Local € constants (but not in general the local €

constants) are multiplicative in short exact sequences, cf. [Lau—TFC, 3.1.5.71. So in the notations
of [De—Const, 8.12] or [Lau—TFC, 3.1.5.6-71, we have

8(Vm,v’ Yy py) = SO(VIII,V’ Yy phy)

~ m+1 _ m+1 —

I~ SO(LXz(A)v l/’va ,uv) ~ 8(£X2(A’)’ wv, ’uV) at V—O.
Similarly, we have

eVim e Yy 1) = €Ly -y Yy i)™

,at v=1,

)m+1

S(Vm,V’ '7[/\]9 ,UV) ~ E(LXZ(_I/A)’ lﬂV, Hy , at v=oo,

Denote by G(x», ¥y) the quadratic Gauss sum for k:
G(x9, ¥) = 2x in KX X2 (X).

For yr, given by an w with a simple pole at v with residue 1, and u,, giving O,, mass #k, we have
[De—Const, 5.10.1-2]

S(LXQ(—?Q’ Yys ty) = =Gy, ¥) at v=0,

8(13)(2(1_)(), Yy, ty) == G(xp, Yg) at v=1,

&Ly (1/0) Yv: Hy) = = Glxo, ) at v=ce.
Thus we find

1/det(~Froby | Hiplek, JxF ((m+1)/2)))
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~ (= Glrg. gy (M.

— (G(Xz’ ¢0)2)3(m+1)/2
= (rp(=D(k)dm+1)/2

~ X2(‘1)3(m+1)/2
zXZ(_l)(m+l)/2. QED
8.10 Another family of examples
(8.10.1) In this section, we work over a finite field k in which 6 is invertible. Fix ¢ in k%,

and denote by M i the affine curve over k in (g5, g3)—space defined by the equation
Ms : (2% - 27(g3)? =56
Over M i, we have the family of elliptic curves
n:65— M(g Kk
with & — {0} given by the affine equation
y2 =4x3 - X — g3.
The pair (&, w := dx/2y) over M i is the universal elliptic curve with differential (E, w) over a k—

scheme with A(E, w) = 6, cf. [Ka—Maz, 10.13.31.
(8.10.2) The moduli space Mg i is itself the complement of the origin in an elliptic curve

Eé,k We denote by
j . M5,k = E&,k - {0} —> Eé,k
the inclusion. In the following discussion, we will often refer to the origin of Eg j as the point at oo
of M(S,k'
(8.10.3) Fix a prime number / invertible in k, and form the lisse rank two Q ¢—sheaf Rlyr*(lj V.

on M i This sheaf has its G the group SL(2), because the curve & M i has nonconstant

geom

J—invariant (namely j = 1728(g2)3/6) which has a pole of order six at o. The reduction type at o is
easily checked to be 1*6' After we quadratically twist this curve by —g5/2g3, it is of type I¢, with
split multiplicative reduction at eo. So R 17‘(*@ ¢ as representation of the inertia group I(eo) at oo

(remember, oo is the origin on E ) is

£X2(_g2/2g3)®Unip(2).

As a representation of the decomposition group D(e) at oo, Rlﬂ*@ ¢ 18 an extension of the two
characters

L)(z(—gz/2g3)’ LXz(—gz/ 2g3)(_1)'
(8.10.4) For any odd integer m > 1, the sheaf Symm(Rlﬂ*@() on M(S,k is lisse of rank

m+1, pure of weight m, geometrically irreducible, and symplectically self—dual toward Q((—m). As
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representation of I(eo), it is
LXZ(_g2/2g3)®Unlp(m+l).
As a representation of the decomposition group D(e<) at o, it is an extension of the m+1 characters
Lxa(-221283) Lxo(-gn/223) D Ly (/20 -

Theorem 8.10.5 Hypotheses and notations as above, for any finite field k of odd characteristic, any
prime number ¢ invertible in k, and any odd integer m = 1, the sign in the functional equation of the

L—function of j*Symm(Rlﬂ*@ p)((m+1)/2) on E(S,k is given by
det(-Froby | HI (Mg 2k, j«SymMR I 7:Q)(m+1)/2))
= (= DM+1)/2,
=+1, if #k = 1 mod 4,
= (=1)(m+1)/2, if #k = 3 mod 4.
proof The proof is entirely similar to the proof of Theorem 8.9.2. QED

Corollary 8.10.6 Fix a strictly increasing sequence of postive even integers 0 <dj <d .... For
each v, denote by D,, the divisor d, e on E(S,k (remember, oo is the origin on Eé,k)' Fix an odd
integer m = 1. Form the twist sheaf
Gy,m i=Twisty Eg Dv(j*Symm(Rlﬂ*@f)((m+1)/2))

on the space X, := Fct(E(g’k, D,, @). This sheaf is lisse of rank (m+1)(d,, + 1), pure of weight
zero, and othogonally self-dual. For each d,, 2 72(m+1), Ggeom for gv,m is SO((m+1)(d,, + 1)),
and G, for gv,m 18

SO((m+1)(d,, + 1)), if =1 is a square in k,

O((m+1)(d,, + 1)), if —1 is not a square in k.
proof For each odd m, j*Symm(Rlﬂ*@ p((m+1)/2) is lisse of even rank m+1 outside of the point
oo, where it is tame, and its inertial invariants vanish. The assertion then follows from Theorem
8.5.7, part 1), applied to j*Symm(Rlﬂ*Q p)((m+1)/2), and the preceding theorem, which gives the

sign in its functional equation. QED
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9.0 Construction of some Sd torsors

(9.0.1) In this section, we work over an arbitrary scheme T, which will play the role of a parameter

scheme in what follows. We fix a proper, smooth, geometrically connected curve C/T of genus g,

d

and an integer d = 2g+1. We denote by J acd(C/T), or simply Jac®, the open and closed subscheme

of Pic formed by divisor classes of degree d. We denote by Din(CfT ) the space of effective

divisors in C of degree d. Thus for any T—scheme Y, a Y—valued point of Divd(C/T) is a closed
subscheme of Cx1Y which is finite and locally free over Y of rank d. The scheme Divd(C/T) is
naturally isomorphic to the scheme Symd(C/T), the quotient of Cd, the d—fold fibre product of C
with itself over T, by the symmetric group S 4, cf. [SGA 4, XVII, 6.3.91. We have natural
morphisms

cd - pivd(c/T) — Jacd(CrT)

of smooth T—schemes. The first map is finite and flat of rank d!, and the second map is a pd-g
bundle.
(9.0.2) We denote by

EtaleDivd(C/T) < Divd(C/T)
the open subscheme of Divd(C/T) whose Y-valued points are the closed subschemes of CxTY
which finite etale over Y of rank d. [More concretely, if T is the spec of an algebraically closed

field k, the k—valued points of EtaleDin(C/T) are the effective divisors of degree d which consist
of d distinct points. ]
(9.0.3) We denote by

(©Da gise = €D
the open subscheme of c4 whose Y-valued points are those d—tuples of points Q; in C(Y) which
are pairwise disjoint, i.e., for each 1 <1 < j < d, the scheme—theoretic intersection QiﬂQj in Cx1Y

is empty. Thus we have a cartesian diagram

(CDart dist cd
! !

EtaleDivd(C/T)  Divd(C/T).
The first vertical map above,

(€%),11 gist = EtaleDivd(C/T)
is a finite etale S y—torsor.
(9.0.4) Now suppose we are given an effective relative Cartier divisor Z in C. We denote by

EtaleDivd(C/T, Z) c EtaleDivd(C/T)

the open subscheme of EtaleDin(C/T) whose Y—valued points are the closed subschemes of
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CxTY which are finite etale over T of rank d and disjoint from ZxY. [More concretely, the
geometric points of EtaleDin(C/k) are the effective divisors of degree d which consist of d distinct
points, all of which lie in C — Z.1
(9.0.5) Inside (Cd)all dist We have the open subscheme
d d
(€ =2)Dan dist = (CDan dist
whose Y—valued points consist of d—tuples of pairwise disjoint sections Q; in C(Y), all of which

are disjoint from Zx1Y. We have a cartesian diagram of finite etale S j—torsors

©.0.5.1) (€= dist S gy dist
! !
EtaleDivd(C/k, Z) c EtaleDivd(C/k).

(9.0.6) Fix an effective relative Cartier divisor D of degree d in C, and an effective relative Cartier
divisor S of C — D of degree s = 0. We will take the effective relative Cartier divisor Z above to be
D +S:
Z:=D+S.
(9.0.7) We have the morphisms
9071  (C-2% 4o
\:
EtaleDivd(C/T, 7)
\:
Jacd(C/T).
The divisor class of D is a T—valued point of J acd(C/T), and we view this point as a morphism
(9.0.7.2) T— Jacd(C/T).

By means of this morphism, we pull back the diagram 9.0.7.1, and obtain a Cartesian diagram
(9.0.7.3)

(C - Z)d)au dist, xD & (C- Z)d)au dist
¢ ¢

Div(C, d, D, S) c  EtaleDivd(C/T, Z)
! !
T -  Jacdcm

which defines the closed T—subschemes

(c-2%,, dis, xD & (€= D i
and

Div(C, d, D, S) c  EtaleDivd(C/T, 2)
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(9.0.8) Thus Div(C, d, D, S) is the T-scheme whose Y—valued points are the effective relative
Cartier divisors of degree d in C which are linearly equivalent to D and which, fppf locally on the
base, consist of d distinct points, each of which lies in C — Z.

The top left vertical map in the Cartesian diagram 9.0.7.3 above,

(C -2 i < p = DIV(C, d, D, S),
is a finite etale Sy—torsor. The target Div(C, d, D, S) as T-scheme is a fibre—by—fibre open dense
set in the projective bundle over T of relative dimension d—g which is the fibre over the class of D
in the projective bundle cd g acd(C/T). Thus Div(C, d, D, S) is smooth over T of relative

dimension d—g, with geometrically connected fibres. Consequently, ((C — Z)d)all dist. ~ D isa
smooth T—scheme, all of whose fibres are smooth and equidimensional of dimension d — g.
(9.0.8) We have already constructed, in 6.1.10, the T—scheme

Fct(C,d, D, S)
of functions in L(D) which have d distinct zeroes, all disjoint from Z := D+S. Thus there is a
natural map

Fct(C, d, D, S) — Div(C, d, D, S)

f — the divisor of zeroes of f,

which makes Fct(C, d, D, S) a Zariski-locally trivial G,,—bundle over Div(C, d, D, S).

(9.0.9) We now return to the finite etale galois S 4—torsor

(€ = 2% st~ 1
!
Div(C, d, D, S).
We pull back this covering by the natural map
Fct(C, d, D, S) — Div(C, d, D, S)
f — the divisor of zeroes of f,
to get a finite etale galois Sy—torsor

Split(C, d, D, S) == Fet(C, d. D, $) Xpi . p. ) (C = 2D dise. < b

I v,

Fct(C, d, D, S).
Thus Split(C, d, D, S) is a smooth T—scheme, all of whose fibres are smooth and equidimensional
of dimensiond + 1 — g.
(9.0.10) The notation Split(C, d, D, S) is inspired by the case when T is the spec of a field k,

CisP! and D is deo. Then a k—valued point f of Fct(C, d, D, S) is a polynomial over K of degree
d in over variable, say T, with d distinct roots, none of which lies in S. A k—valued point of
Split(C, d, D, S) lying over f is an ordered list of d distinct numbers a1, ..., @4 in k which form a

complete factorization, or "splitting" of f, in the sense that
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f(T) = (elt. of K*)XIT;(T — ay).
Still with T the spec of a field k, in the case of a more general situation (C, D), a k—valued point of
Split(C, d, D, S) lying over a k—valued point f of Fct(C, d, D, S) is an ordered list of d distinct
points Qq, ..., Qq in (C — D — S)(k) which form a "splitting" of the divisor of zeroes of f in the
sense that
div,(H =3 Q;

(or equivalently that div(f) = Zi Q; — D, but we prefer to focus on the divisor of zeroes of f).
9.1 Theorems of geometric connectedness
Theorem 9.1.1 Hypotheses and notations as in the previous section 9.0, the smooth T—schemes

(c- Z)d)all dist, ~ p and Split(C, d, D, S),
which are everywhere of relative dimensions d—g and d+1-g respectively, have geometrically
connected (and hence irreducible, because smooth) fibres.

proof Since Split(C, d, D, S) is a Zariski—locally trivial Gy, T-bundle over ((C - Z)d) all dist, ~ D’ it

suffices to show that ((C — Z)d)all dist, ~ D 35 T—scheme has geometrically connected fibres. By a
standard argument based on the fact that all our data is of finite presentation over T, we reduce to
the case when T is affine and of finite type over Spec(Z). Covering Spec(Z) by Spec(Z[1/2]) and
Spec(Z[1/6911), we may assume further that some prime number ¢ is invertible on T. Denote by

7 ((C - 2)9) —

all dist, ~

the structural morphism, and form the sheaf Rz(d_g)n@ ¢onT. At any geometric point t of T, the

dimension of the stalk at t of this sheaf is the number of irreducible components in the fibre ﬂ_l(t).
Thus the set of points of T whose geometric fibre is irreducible is the set of points of T where the
stalk of this sheaf is one—dimensional. By the constructibility of R2(d—g)ﬂ! Q ¢» it suffices to show
that this sheaf has a one—dimensional stalk at every (geometric point over every) closed point. Thus
it suffices to treat the case when T is the spec of a finite field k. Since the question is geometric, we
may replace k by a finite extension, and suppose further that C(k) is nonempty.

Define

h = dim H,2(=2)(((C - D-$)%) e~ p)o1Ks Qp)-
Thus h is also the number of connected components of

(€ = D=5 i, = )

All of these connected components are defined over some finite extension L of k. Over L, each is

smooth and geometrically connected, of dimension d—g. So by Lang—Weil, for each finite
extension E/L, we have the estimate

H#(((C = D-8)D) iy,  D)(E) — h(#E)IE 1= O((#E)I—2 ~ 12),

Thus to prove the geometric connectedness, we need only prove that for every finite extension E/k,
we have an inequality
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#(((C = D=9, gt~ D)(EB) < #E)I-E + O(EYI-2 ~ 112),
To prove this inequality, we consider the morphism of k—schemes
cd  Jacd(CKk), (Qy, ..., Qq) > class of T; Q;,
and denote by
cd_,ccd
the fibre over the k—valued point class(D) in J acd(C/k). Thus we have an open immersion
(€~ D_S)d)au dist, ~ D & (Cd)zD'
In particular, we have, for every finite extension E/k, an inclusion
(€ = D=9)Y) gigt. ~ D)EB) € (Ch_p)(E).
So it suffices to prove that, for every finite extension E/k, and every E—rational divisor class D of
degree d, we have

#(C)_p)(E) = #E)I-8 + O((#E)d-8 ~ 1/2),
This results from the following theorem, applied to Ce) E/E.
Theorem 9.1.2 Given integers g >0 and d > 2g+1, there exists an explicit constant
Const(g, d) := 2d for =0,
= 2g-2)4 + 29+28)Max(2g, 4), if g > 1,
such that given a finite field k with #k = 16g2, a proper, smooth, geometrically connected curve
C/k of genus g with C(k) nonempty, and a divisor D of degree d on C, we have
#((CY)_p)(k) — (#K)d=8l < Const(g,d)(#k)d—g = 1/2,
proof Fix a k—rational point P on C. Using P, we get a morphism
7 : Cd = JacO(C/x),
n(Qy, ..., Qq) :=class of X; (Q; — P).
We also get an isomorphism

Jacd(C/k) — JacO(Crx),
D~ D - dP.

So ((Cd)zD)(k) is the set of k—rational points of the fibre of  over the k—rational point D — dP of
J aCO(C/k). So we may restate the theorem as
Theorem 9.1.2 bis Given integers g >0 and d > 2g+1, there exists an explicit constant
Const(g, d) = 2d for g=0,
= 2g-2)d + 228 Max(2g, 4), if g > 1,

2

with the following property. Given a finite field k with #k = 16g~, a proper, smooth, geometrically

connected curve C/k of genus g, and a point P in C(k), form the map
2 Cd — JacO(Crx),
7(Qq, ..., Qg) :=class of 2; (Q; — P).
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For any divisor class D of degree zero on C, viewed as a k—point of J ac0(C/k), we have

W (r~L(D))(k) — (#K)9-8I < Const(g,d)(#k)d—g = 1/2,
proof If g =0, then C is [Pl, J acO(C/k) is a single point, #(ﬂ_l(D))(k) is (#k + 1)d points, and we
may take Const(g,d) to be 2d,

Suppose now that g > 1. Let us denote by J/k the Jacobian J ac0(C/k), and by F the
Frobenius Froby. The key idea is to use the Lang torsor

1-F:J—>],
which makes J a finite etale geometrically connected galois covering of itself, with galois group the
group J(k) of rational points. Fix a prime ¢ invertible in k. For each Qfx—valued character p of the
abelian group J(k), denote by L 0 the lisse, rank one, pure of weight zero, Q ¢—sheaf on J obtained
from the Lang torsor by extension of the structural group by p. At any k—valued point D in J(k),
we have
Trace(Frobk’D I Lp) =p(D).
Moreover, ‘Ep is geometrically nontrivial if and only if p is nontrivial.
By orthogonality of characters of finite abelian groups, the characteristic function I of an
element D in J(k) is given by the sum
Ip = (1K) X, p(D)p.
Therefore we have
#a= D)) = AMIENE, DI g . 0 in b PEi (Q = P).
We move the term corresponding to the trivial character to the other side of this equality to obtain
#(~ (D)(k) - HCR)IHIK)
=(1/#] (k))zp nontriv P2 g 1+ = Qg in €k P (Q; - P)).
At this point we need the following fundamental estimate:
Proposition 9.1.3 Notations as in 9.1.2, if p is a nontrivial character of J(k) we have the estimate

0y in g P Q) ~ P < g2 d/2.
proof The sum in question is the d'th power of the sum for d=1:
— d
2(Q], a Qg in €k P (Q = P) = g in ¢y PQ = P
So what we must prove is the estimate

120 i cgo PQ = Pl < 2e-2)(#k) /2.
Let us denote by ¢ : C — J the embedding ¢(Q) := class of Q — P. Then ¢ induces an
isomorphism of abelianized geometric fundamental groups

(QO*)ab . 7T1(C®kl€)ab = 7T1(J®k1€)ab = 7T1(J®k]€)‘

“eey

Therefore cp*Lp is geometrically nontrivial on C. As go*Lp is lisse of rank one on C, we have
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x(Ceyk, go*Lp) = x(Ceyk, Q) = 2-2¢. Because go*Lp is geometrically nontrivial on C
and lisse of rank one, we have
— =k — =k
HOCopk 97 L) =0 = HA(Coyk ¢ L),
Thus hl(C®kE, tp*Lp) =2g-2, and, by Deligne, Hl(C®kl€, (,o*l:p) is pure of weight one.
The Lefschetz Trace Formula gives
ZQ in c(o P(Q — P) = —Trace(Froby | Hl(C®kE, QD*LP)),
so we get the required estimate
X0 incao PQ-PI < (2g-2)#) 172, QED

We now conclude the proof of Theorem 9.1.2bis. Using this estimate for each of the (#J(k)
— 1) nontrivial characters p, we get

9.1.3.1) LD k) - #FCK))#IK) < (2g-2)d@#K)d2.
By Weil, we have
(1 -2g@#x)~12)d < gremmnd < (1 + 2g@k)=1/2)d,
and
(1 + (#)~1/2)28 < 13k)/#0)8 < (1 — (#k)~1/2)28,
Thus
#FCK)V#IK) > #)=8(1 — 20#0)~V2)d/(1 + #1722,
> (#09-8(1 - 2g(#0) 12y d(1 - (o)~ 172)28
(using the inequality 1/(1+x) > 1 — x for real x in [0, 11)
and
#C)I#IK) < #)I8(1 + 2g#)~ V2 d/(1 - k)~ 1/2)28
< #0981 + 20~ V2)d(1 + ar)~1/2)28,
(using the inequality 1/(1-x) < 1+4x for real x in [0, 1/Sqrt(2)]).
These inequalities in turn imply
#CKR)IHIK) = (#K)98(1 - 2g(k)~1/2)d+2¢,
and
#FCK)Y#I(K) < #)9~8(1 + Max(2g,4)#k)~1/2yd+2g
For real x in [0, 1], and any integer n > 1, we have the inequality
1-x)">1-22-1x>1-2%.
Since #k 2 16g2, we may apply this with x = 2g(#k)_1/ 2, and we find
#CK))IHI(K) = (#0)=8(1 - 2g(#k)~1/2)d+2g
> (#)4-8(1 — 24+28)20#k)~1/2),
For real x in [0, 1], and any integer n > 1, we have the inequality

Q+x)M<1+QM-Dx <1 +2%%.
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Since #k > 16¢2 and g > 1, we may apply this with x = Max(2g,4)(#k)~ /2, and we find
#C ) #I(k) < (#0981 + Max(2g.4)(#k)~1/2yd+2¢g,
< #0981 + 29+28)Max(2g.4)#k)~1/2).
Thus we have
l#CK)I#IK) - ()98l < 29+28)Max (2g.4)(#k)d—2—1/2,
Combining this with the previous estimate (9.1.3.1),
= LD (k) — HCk)IHI®)! < 2g-2)d(#0)V2,
we get
= LD))(K) - (#k)d-¢l
< (2g-2)9#) 92 + (24+22)Max(2¢,4)(#k)d—e=1/2,
Butd >2g+1,s0d/2<d-g— 1/2, so we have
(= L(D)) (k) — (#k)9-8l < Const(g, d)(#k)d—8-1/2,
with
Const(g, d) := (2g-2)3 + (24+2€)Max(2g,4). QED for 9.1.2bis

Corollary 9.1.4 Let k be a finite field, C/k a proper, smooth, geometrically connected curve of
genus g. For any integer d = 2g+1, the natural map
cd - Jacd(crv)
has geometrically irreducible fibres.
proof The morphism 7 : cd>g acd(C/k) is flat, being the composition of the finite flat map cd -

Symd(C/k) with the projective bundle Symd(C/k) —1J acd(C/k). Both source and target of i are
smooth and equidimensional, of dimensions d and g respectively. So every fibre of 7 is a local
complete intersection, equidimensional of dimension d—g. Therefore our diophantine estimate
9.1.2, together with Lang—Weil, shows that 7 has geometrically irreducible fibres. QED

9.2 Interpretation in terms of geometric monodromy groups
Theorem 9.2.1 Hypotheses and notations as in 9.0, suppose further that T is connected. Consider
the finite etale S —torsor

Split(C, d, D, S)

\J

Fct(C, d, D, S).
1) For any geometric point t of T, and any geometric point &; of Fct(C, d, D, S)t = Fct(Cy, d, Dy,

Sy), the classifying map
pSpht,t . ﬂl(FCt(C, d, D, S)t’ é:t) —> Sd
for the pulback S 4 torsor
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Split(Cy, d, Dy, Sp)

\J
Fet(Cy, d, Dy, Sp)
is surjective.
2) For any geometric point ¢ of Fct(C, d, D, S), the corresponding group homomorphism
Psplit * m1(Fet(C, d, D, S), &) — Sy
which "classifies" this finite etale Sy—torsor is surjective.
proof 1) The surjectivity is equivalent to the connectedness of the totat space Split(Cy, d, Dy, Sy).

This connectedness is proven in Theorem9.1.1 above. Assertion 2) is a formal consequence of 1).
Indeed, the question is independent of the choice of the base point &, which we will now choose
conveniently. Pick a geometric point t of T, and a geometric point g—"t of Fet(C, d, D, S)t = Fet(C,, d,

Dy, Sp). Then Psplit,t is the composite group homomorphism

inclusions Psplit
m1(Fet(C,d, D, S), &) —  m(Fet(C,d, D, S), &) — Sy
As the composite Psplit,t 1s surjective by part 1), Psplit itself must be surjective. QED

(9.2.2) We now wish to translate the above result into one about geometric monodromy groups of
lisse sheaves. To do this in as straightforward a way as possible, for each integer d > 1, denote by
74 the d—dimensional representation of S on linear forms in d variables,

nq:Sq— 0(d, Z) c GL(d, Z).
We can push out the S j—torsor
Split(C, d, D, S)

\J

Fct(C, d, D, S).
by 74, and we obtain on the space Fct(C, d, D, S) a sheaf Sd of free Z—modules of rank d which
is literally locally constant in the etale topology. For any prime number ¢, we can form
Sq,0 = S¢®7zQp.
which is now a lisse Q ¢—sheaf on Fct(C, d, D, S) which is literally locally constant in the etale

topology on Fct(C, d, D, S). It is t—pure of weight zero for every ¢, since every eigenvalue of every
Frobenius is a root of unity of order dividing d!.

Corollary 9.2.3 Hypotheses as in Theorem 9.2.1, suppose in addition that T is a normal connected
scheme which is of finite type over Z[1/¢1 for some prime ¢. Denote by X the space
X :=Fct(C,d, D, S).
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Thus X/T is smooth of relative dimension d+1-g, with geometrically connected fibres. Consider
the lisse, rank d Q—sheaf

S = Sd /!
on X. Denote by 1 the generic point of T, by 17 a geometric generic point of T, and by & a geometric
point of Xﬁ- Denote by

ps: m(X, &) > Sq < GL(. Q)
the representation of 771 (X, &) which S "is". For every finite field k, and every k—valued point t of
geom for S; := the restriction of S to X(/k is (conjugate in GL(d, Q p) 10) Sy.

proof This is the special case of Theorem 9.2.1 in which T is the spec of a finite field. QED

T, the group G

9.3 Relation to "splitting of primes"
(9.3.1) Let k be a finite field, and t a k—valued point of T. Given a finite extension E/k, and an E—
valued point of X¢

fin X((E) := Fct(C, d, Dy, SH(E),
its Frobenius conjugacy class

Psplit(Frob: p) in (S
has a straightforward description in terms of how the divisor of zeroes of f, div((f), "factors" over
E. We are given that, over E, div(y(f) consists of d distinct points in C(E). Break the set of these
points into orbits under Gal(E/E), i.e., write div((E) as a sum of distinct closed points of C;®} E,
say

divy(f) = 2 P;-
The degrees n; of the closed points #; are the cardinalities of the orbits of Gal(E/E) acting on
diVO(D(E). These degrees n; form an unordered partition of d. The Frobenius conjugacy class

Psplit(Frobg ) in (Sg)”
is the conjugacy class named by this partition of d, namely the conjugacy class of a product of
disjoint cycles of lengths the n;.

(9.3.2) We say that f is a prime in X(E) if its Frobenius conjugacy class is a d—cycle, or

equivalently if its divisor of zeroes is a single closed point in C®E (necessarily of degree d). [For

example, in the case when C; is Pl and D s deo, a prime f in X((E) is precisely an irreducible
polynomial of degree d in E[T1which is invertible on S.1 We denote by
X¢,prime®) < X{(E)
the set of primes in X((E).
(9.3.3) More generally, for any conjugacy class (:= partition of d) o~ in Sy, we say that f in X((E) is

of splitting type o if its Frobenius conjugacy class psplit(FmbE f) in (Sd)# is in the class 0. We
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denote by
Xt,or—split(E) = X{(E)
the set of elements of X((E) of splitting type o
(9.3.4) So in this somewhat cumbersome terminology, a prime in X((E) is an element of splitting

type o for o the class of a d—cycle (the partition d=d of d). At the other extreme, if we take for o
the conjugacy class {e}, corresponding to the partition d = 3. 1, we get the notion of a totally split f
in X((E), a function whose zeroes are d distinct E-rational points.

9.4 Distribution of primes in the spaces X;:=Fct(Cy, d, Dy, S¢)
(9.4.1) Before stating the main result 9.4.4 of this section, we must recall two definitions [Ka—Sar,
RMFEM, 9.2.6 5) and 4)1. We fix a prime number ¢. Given an algebraically closed field k in which
{ is invertible, and X/k a smooth connected k—scheme of dimension d, we define the non—negative
integer A(X) by

AX) =X 4 h (X, Q).
Given a lisse Q ¢—sheaf ¥ on X, we define the non—negative integer C(X, ¥) as follows. There
exists a finite extension E of Q, with integer ring O, and residue field [, a lisse torsion—free

O, —form 7:0/\ of , and a finite etale 7 : Y — X, Y not necessarily connected, such that
?0/1®O/1[F)L becomes trivial after pullback to Y. For each choice (Ex TO}L’ Y) of such data, we

define
CX. T Ex. T, V) =% h l(Y, Fy).
We define C(X, ¥) to be the minimum value of C(X, ¥, E,, TO}L’ Y) over all choices of (E), TO}L’
Y).
(9.4.2) Both of these quantities remain bounded when the data moves in a family.

Uniformity Lemma 9.4.3 Let T be a normal connected Z[1/¢1-scheme of finite type, X/T a smooth
T-scheme with geometrically connected fibres of dimension d, F a lisse Q ¢—sheaf on X. There

exist non—negative integers A(X/T) and C(X/T, ¥) such that for every geometric point t of T, we
have
AXp < AX/T),

C(X, FIXy) < CXIT, ).
proof See [Ka—Sar, RMFEM, 9.3.3 and 9.3.4]. QED

Theorem 9.4.4 Hypotheses and notations as in Corollary 9.2.3, we have the following results. For
any finite field k with Card(k) > 4A(X/T)2, any conjugacy class o~ in S, any k—valued point t of

T, and any finite extension E/k, we have
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X r—split EVHX(E) — #07/d!l < 2C(XIT, S)d/#E)2.
In particular, taking o to be the class of a d—cycle, we have
WXt primeE#X (E) — 1/dI < 2C(X/T, S)d! JE)12.

proof Apply Deligne's equidistribution theorem [Ka—Sar, RMFEM, 9.7.13], with the data
(f9 X/S$ Ts L, Ga Garlth)

of [Ka—Sar, RMFEM, 9.7.10] taken to be
(, XIT, S, any ¢, G = G, = Sq inside GL(d)).
In the notations of [Ka—Sar, RMFEM, 9.7.13]. K = Korith = Sg» 7 1s the unique element of the.

group I' = {e}, and we take for W the conjugacy class 0. We have already observed that S is (—
pure of weight zero. That the other hypotheses [Ka—Sar, RMFEM, 9.7.2.1-31 hold is precisely the
content of Corollary 9.2.3 above. QED

9.5 Equidistribution theorems for twists by primes: the basic setup over a finite field
(9.5.1) In order to clarify the simple underlying structure, we will first consider a slightly
simplified abstract situation.We give ourselves a finite field k, a smooth, geometrically connected
k—scheme X/k, a geometric point & of X, a prime number ¢ invertible in k, a field embedding ¢ : Q !
— C, and a lisse Q ¢—sheaf F on X of rank r, which is t(—pure of weight zero. We denote by

@7__: X, & — GL(TSc) = GL(r, Q)

the homomorphism corresponding to the lisse sheaf #. We denote by G ¢ the Zariski closure

geom
in GL(F; ¢) of the image of 1 88OM(X, &) := 1 (X=yk, £) under O We denote by G, the the
Zariski closure in GL(?’:&) of the image of nlarith(X, & =m (X, €) under Oz Thus Ggeom,?—'is a
closed normal subgroup of Gy, #
(9.5.2) We make the hypothesis that Ggeom,TiS of finite index in Garith,?’:’ and we denote by S
the finite quotient group:

S:= Garith.ﬁGgeom,?
The group S is a finite cyclic group, because it is a finite quotient of the pro—cyclic group
ﬂlarith(X, EIm 8COM(X, &) = Gal(k/k). Thus S has a canonical generator, the image of the
geometric Frobenius Froby in Gal(k/k). Thus S = Z/(#S)Z. We will speak of elements of S as

"degrees mod #S".
(9.5.3) We pick maximal compact subgroups K of Ggeomf(c) and K, i, of Garith,T(C) with K

< Kypith- Then K 1t1/K = S. We denote by dk the Haar measure on K, i, Which gives K total
mass one (and so gives K, total mass #S). For each s in S, we denote by K ith s © Kyrith the

coset sK. The surjective homomorphism
Karith = S
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induces a map of spaces of conjugacy classes
(Karith)# —st=s.
For each s in S, we denote by (K, ith S)# [ (Karith)# the inverse image of s by this map.
(9.5.4) Fix one element s in S. For E/i( any finite extension whose degree is congruent to s mod
#S, and any x in X(E), the element ¢(® ?(FrobE,X))SS in Gyrith o(C) is conjugate in Gy, HC) to

an element 6(E, X) of K and this element 6(E, x) is itself well defined up to K, i~

arith,s>
conjugacy. By Deligne's equistribution theorem [Ka—Sar, RMFEM, 9.7.101, we know that for any

continuous C—valued central function f on K, 1,» we have the limit formula
(9.5.4.1) '[Karith,s f(k)dk = lim,,; _, o, deg(B/K) = s mod #S (#XE)NZ, i, X(E) f(0(E, x)),

the limit taken over finite extensions E/k of degree = s mod #S and large enough that X(E) is

nonempty. More precisely, for A any finite—dimensional representation of K and any finite

arith>
extension E/k of degree = s mod #S with Card(E) > 4A(X®k1€)2, we have the estimate

(9.54.2)

Ui Trace(ACO)dK — (X (E)E Trace(AG(E. X))l

x in X(E)
< 2C(XeRk, F)dim(A)/Card(E) /2.

(9.5.5) We also give ourselves a finite group I', and a homomorphism

p:mX, 6 —>T.
We suppose that

P EOM(X, ) =T
We choose a faithful Q ¢ representation of the finite group I', and view it as a lisse Q ¢—sheaf St on
X which becomes trivial on a finite etale covering (the one determined by Ker(p)).
(9.5.6) For each conjugacy class y in I', and each finite extension E/k, we denote by

Xy(E) c X(E)
the set of points x in X(E) such that the Frobenius conjugacy class p(FrobE’X) lies in the class 7.
(9.5.7) Applying [Ka—Sar, RMFEM, 9.7.2.13], we find that for any finite extension E/k with
Card(E) = 4A(X®kl€)2, and any conjugacy class y in I', we have
(9.57.1)) WX (BY#X(E) — #yl#TI <2C(Xeik, SpHT/HE) 2.
Lemma 9.5.8 For Card(E) > Max(4A(Xey k)2, 4C(Xeyk, Sp)2#I)), both X(E) and X,(E) are
nonempty.
proof We recall that for Card(E) > 4A(Xeyk)2, we have Card(X(E)) > (1/2)Card(E)m(X), 5o
certainly X(E) is nonempty. Thus we will have Xy(E) nonempty provided 2C(X®kl€,

SP#TI#E)/2 < 14T, or, what is same, provided that
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Card(E) > 4C(Xek, Sp)2@#D). QED

(9.5.9) Now let us return our attention to Deligne's equidistribution theorem for #:
'[Karith,s f(k)dk = hm#E — oo, deg(E/k) = s mod #S (1/#X(E))2x in X(E) f(Q(E’ X))’

the limit taken over finite extensions E/k of degree = s mod #S and large enough that X(E) is
nonempty. Fix a conjugacy class y in I'. We are interested in the extent this formula remains true if
we replace, in its right hand side, the average over X(E) by the average over X),(E). In other

words, when is it true that
'I.K fk)dk = lirn#E — oo, deg(E/k) = s mod #S (1/#X’)/(E))2x in Xy(E) f(6(E, x)),

the limit now taken over finite extensions E/k of degree = s mod #S large enough that X?’(E) 18

arith,s

nonempty.
(9.5.10) To answer this question, we must consider the homomorphism
®7:><p mX, 8 - Ggeom,T(Qf) xT.
Denote by Ggeom,TxF the Zariski closure of (Bgx p)(7E°°™M(X, £)) in Ggeom,fx I'. Denote

by Grith g the Zariski closure of (@gx p)(r;2N(X, £)) in Gy, Fx T
Theorem 9.5.11 Suppose the group Ggeom,?'xf is equal to the product Ggeom,?'x . Then
Garith . 18 equal to the product Gy > I'. For every s in S, every conjugacy class y in I',

and every continuous C—valued central function f on K, ,, we have the limit formula

JK fk)dk = lirn#E — oo, deg(E/k) = s mod #S (1/#X’)/(E))2x in Xy(E) f(6(E, x)),
the limit taken over finite extensions E/k of degree = s mod #S large enough that Xy(E) 1s

arith,s

nonempty, e.g, Card(E) > Max(4A(Xe k)2, 4C(Xek, Sp)2(#1)%).
proof The group G, for FXI" lies in the product Gy, #X I and projects onto each factor. It
contains as a subgroup the group Ggeom for #XI', which by hypothesis is the product Ggeom,T

X I'. Thus Gypith g 18 @ group between G F> I'and Gy > I’ which maps onto

geom
Garith, g so must be the product Gpj¢p, X< T.

Pick any faithful linear Q p~representation A of I, say of dimension n, and denote by St

the lisse Q ¢—sheaf on X of rank n attached to the composite homomorphism
Aop : 11(X) = T — GL(n, Qp).

We now apply Deligne's equidistribution theorem as recalled above to the direct sum sheaf
FOSr. The group Ggeom,?‘(—B Sr is, by hypothesis, the product group Ggeomj—‘x I'.As we have
just seen above, Garith,T@ Sr is the product group Garith,?—'x I'. A maximal compact subgroup of
Ggeom,TX I' is KXTI', and a maximal compact subgroup of Garith,?-'@ Sr is Ky iy XT-

Fix a conjugacy class y in I', and denote by
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I),:F—>C

the indicator function of the conjugacy class y. Denote by dg the total mass one Haar measure on

I'. Given a continuous C—valued central function f on K the product function fXIy on

arith
K, rithXT is a continuous C—valued central function. For each s in S, Deligne's equidistribution

theorem [Ka-Sar, RMFEM, 9.7.101 for F®ST- gives
I et T ()l

arit

=limye deg(E/K) = s mollH#X(ENZ iy X(E) f(O(E, X))Iy(P(FTObE,x))’

the limit taken over finite extensions E/k of degree =s mod #S large enough that X(E) is nonempty.
More explicitly, this limit formula says

(#y/#F)IKarith,s F(k)dk = limyg . om0 = s mod #s (VAXENE, 4, X @ f(A(E, x)),

the limit taken over finite extensions E/k of degree =s mod #S large enough that X(E) is nonempty.
We also know from 9.5.7.1 that
(#THy) = limyp _ o (#X(E)/#Xy(E)),

the limit taken over finite extensions E/k large enough that Xy(E) is nonempty. In particular,we

have
#U #y) = lim#E oo (#X(E)/#Xy(E)),

the limit taken over finite extensions E/k of degree =s mod #S large enough that X(E) is nonempty.
Multiplying together these two limit formulas, we get the assertion. QED

9.6 Equidistribution theorems for twists by primes: uniformities with respect to parameters in the
basic setup above

(9.6.1) In this section, we consider the following situation. We are given a prime number ¢, a field
embedding ¢ : Q, — C, a connected normal Z[1/f1-scheme T of finite type, a smooth T—scheme

X/T with geometrically connected fibres of dimension d, a lisse Q f—sheaf FonXofrankr>1,a
finite group I', and a finite etale galois I'—torsor Y/X on X. We choose a faithful Q ¢~ linear
representation of I', and push out Y/X by this representation to obtain a lisse Q ¢—sheaf Spon X
which becomes trivial on Y. We fix two (not necessarily connected) semisimple Q ¢—algebraic
subgroups G < G, of GL(r). We suppose that G is a normal subgroup of G, of finite index,
and that the quotient group G,t/G is a finite cyclic group S. We fix maximal compact subgroups
K in G(C) and K, i1, in G4y (0), with K < K¢y, We make the following hypothesis:

(9.6.2) For every finite field k, and every k—valued point t of T, there exists a constant ¢ ¢ in
(Qp)* such that
Dythe lisse sheaf on X/k given by F®(a t)deg is t(—pure of weight zero,
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2) the group Ggeom for 7 ®(ay t)deg is (conjugate in GL(r) to) G,

3) under the representation p; of 71(X) corresponding to F®(a} t)deg’ the entire group 71 (Xy)

lands in G i.e., we have pi(m1(Xp) € Gypith-

arith

4) The group G for the direct sum F®(ay t)deg ® St ¢ on X is the product group (G

geom
for ﬂ@(ak,t)deg)xf.
5) There exists a surjective homomorphism

a:m(T)—>S
with the following property. For each finite field k, each k—valued point t in T(k), and each k—
valued point x in X{(k), the image in S of pt(Frobk,X) is A(Frobk,t).

geom

Theorem 9.6.3 Notations and hypotheses as in 9.6.1-2 above, fix an element s in S, and a
conjugacy class y in I'. For each finite field k and each k—valued point t of T such that A(Froby ()

= s, and each k—valued point x of X with Frobenius conjugacy class y in T, denote by 6(k, t, @y .

x) the Frobenius conjugacy class in K attached to the point x and the lisse sheaf

arith,s
F®(ar t)deg on X;. Fix a continuous C—valued central function f on K, ;1,- Fix any sequence of
data (k;, t; in T(k;)) in which the k; are finite fields with

Card(k;) > Max(4A(X/T)2, 4C(X/T, Sp)2(#T)%)

whose cardinalities form a strictly increasing sequence, and in which, for each i, A(Froby. {.) =s.
°1

We have the limit formula

Ik i fOOdk = Tim; _, (1/#Xti’7,(ki))zx in X, (k) 60k 4, ., 1. X))

proof For each (k, t in T(k)), denote by S(k,t) — S the subgroup of S generated by the image of
p(m1(Xp)- Equivalently, S(kt) is the subgroup of S generated by the element A(Froby (). Denote

a;

by GS(k ) the algebraic group
G < Gg(k,t) < Garith
which is the inverse image of S(k,t) in G}, under the projection
Garith = Garith/G =S5
Denote by KS(k ) the compact group
K cKg(k,t) < Karith

which is the inverse image of S(k,t) under the projection
Karith = Karith/K = S

Thus KS(k £) is a maximal compact subgroup of GS(k t): In terms of the cosets K, 4, ¢» We have

KS(k,t) =g, S(k,t) Karith,S'
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On X, we have the lisse sheaf ﬁ@(ak,t)deg, whose Ggeom
Gg (tk) We also have the finite etale I'-torsor Y /X, and its pushout sheaf S~ on X. By

is G and whose Garith I

assumption 4), 711(X)8°°™ maps onto I'. We have already seen (9.5.7.1) that on each fibre X;, we
have
X ()X (k) — HyI#TI < 2C(Xt®k1€,_81~’t)#l“/(#k) 172
By the Uniformity Lemma 9.4.3, the constants C(Xt®kk, St ¢) are all bounded by some C(X/T,
St), so we get the uniform estimate
WX ()X (k) — #y/#TI < 2C(XIT, SpH#T/(#k)1/2.
In particular, we have the limit formula
#Ty = limy _y o #Xti(ki)/#Xti,y(ki)'
It remains only to show that for any continuous central function F(k, y) on K, X', we

have the limit formula
JK F(k, g)dkdg = limi N (1/#Xti(ki))2X . Xt.(ki) F(O(k;, t;, aki’ti’ X), v(k,x)).
1

For then we take F(k, g) := f(g)Iy(g), where |

arith,s<T’
y is the characteristic function of the conjugacy class
I'. The above limit formula specializes to

(#y/#r)JKamh’s f()dk = lim; _, oo (I#X¢ (ki)Z

x in X
ti,

(k) f(ok;, t, et X)).
Y
One then multiplies this limit formula with the limit formula
#T My =limy _ #Xti(ki)/#xti,y(ki)‘

above.
How do we show that

Ji i o Fis )dkdg = limy _, oo (VX ()T, X &0 ROk, t, ay, ¢, %), (kX))
for any continuous central function F(k, g) on K, ;i ¥I'? It suffices to treat the case when F is the
trace of a finite—dimensional representation A of K, XT".

For each (k, t in T(k)) with A(Frobk’t) = s, we apply Deligne's equidistribution theorem
[Ka—Sar, RMFEM, 9.7.10] to the sheaf ﬁ@(ak,t)deg @ SF,t on X;. Its Ggeom is GxTI” and its
Garith 1s Gg (k,t)XF, with compact forms KXI' © Kg (k’t)xl". We restrict the representation A to
KS(k,t)xr' For Card(k) > 4A(X/T)2, and t in T(k) with A(Frobk,t) = s, we have the estimate
T Trace(A(k,g))dkdg

- (I#X(K))Z, i X () F(O(k, t, ay ¢ x), y(kx))l

I Karith,

<20(X ek, F®(ay 98 @ St pdim(A)/Card(k) /2.

The trivial but key observation here is that on Xt®kE’ the sheaf F®(a t)deg is isomorphic to ¥
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(because (ay t)deg is geometrically constant). So by the Uniformity Lemma 9.4.3, we have the

uniform estimate
IJ‘Karith’sxF Trace(A(k’g))dkdg - (1/#Xt(k))zx in Xt(k) F(Q(ka ta ak’t’ X), y(k,X))I

<20(X ek, F@SE pdim(A)/Card(k) 2.

< 2C(X/T, FASp)dim(A)/Card(k) /2. QED

(9.6.4) Also quite useful is the following special case I' = {e} of the above result, which is a slight
variant of [Ka—Sar, RMFEM, 9.7.101.
Theorem 9.6.5 Suppose given a prime ¢, a field embedding ¢ : Q ¢ — C, a connected normal

ZI[1/f1-scheme T of finite type, a smooth T—scheme X/T with geometrically connected fibres of
dimension d, and a lisse Q ¢—sheaf ¥ on X of rank r 2 1 We fix two (not necessarily connected)

semisimple Q ¢—algebraic subgroups G c G4, of GL(r). We suppose that G is a normal
subgroup of G, of finite index, and that the quotient group G,.4,/G is a finite cyclic group S.
We fix maximal compact subgroups K in G(C) and K1, in G4pi¢4(0), with K < K¢, We
make the following hypothesis:

For every finite field k, and every k—valued point t of T, there exists a constant ay ¢ in
(Qp) such that
Dthe lisse sheaf on X/k given by 7 ®(a) t)deg is t—pure of weight zero,
2) the group Ggeom for F®(ay t)deg is (conjugate in GL(r) to) G,
3) under the representation p, of 71(X}) corresponding to ¥ ®(aj t)deg’ the entire group 7 (Xy)
lands in G,p» 1-€., We have p(11(Xp) € Gyrith-
4) There exists a surjective homomorphism

a:m(T)—>S

with the following property. For each finite field k, each k—valued point t in T(k), and each k—
valued point x in X(k), the image in S of p((Froby ) is A(Froby ¢).

With these hypotheses, fix an element s in S. For each finite field k, each k—valued point t of T
with A(Froby () =, and each k—valued point x of X, denote by 6(k, t, @y ¢, X) the Frobenius

conjugacy class in K attached to the point x and the lisse sheaf 7 ®(a) t)deg on X;. Fix a

arith,s
continuous C—valued central function f on K, ;- Fix any sequence of data (k;, t; in T(k;)) in

which the ki are finite fields with
Card(k;) > 4A(X/T)2
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whose cardinalities form a strictly increasing sequence, and in which, for each i, A(Froby. {.) =s.
ikl

We have the limit formula

k

More precisely, for A any finite—dimensional representation of K, any finite field k with

arith,s

fodk = lim; _, oo (14X (K)Z, 5, X, (k) fOk; 8, . ., X)-

Card(k) > 4A(X®kk_)2, and any t in T(k) with A(Froby ) = s, we have the estimate
Ui s Trace(AGO)dk = LAXKDZ, i x, 10 Trace(AB(k, t g ¢ X))

< 2C(Xeyk, F)dim(A)/Card(k)1/2.
proof Take I' to be the trivial group in Theorem9.6.3. QED

9.7 Applications of Goursat's Lemma
(9.7.1) We now explore some conditions which guarantee that the group Ggeom T 1s equal to

the product G X T. The key point is that G I 18 a Zariski—closed subgroup of

geom

Ggeom > I" which maps onto both factors.

geom,FX

Lemma 9.7.2 (Goursat) Let G/C be an algebraic group of finite type over an algebraically closed
field of characteristic zero. Let I be a finite group (viewed as algebraic group over C by means of
some faithful linear representation). Let H be a Zariski closed subgroup of GXI" which maps onto

each factor. Then there exists a closed normal subgroup G of G with GO G1, and a normal
subgroup I'y c I', such that H is the inverse image in GXI" of the graph of an isomorphism
between G/G and I'/T"y.

proof Since H maps onto G, dim(H) = dim(G). But H ¢ GXI" with T finite, so dim(H) <
dim(GXxI") = dim(G). Therefore dim(H) = dim(GXxI"). As H is a closed subgroup of GXT', the

identity component HO of H must be the identity component (G><I“)0 = Gox{e} of GXI'. Therefore
H contains Gox{e}. So H is the inverse image in GXI of some subgroup H of the finite group

(G/GO)XF which maps onto both factors of (G/GO)XF. This reduces us to treating universally the
case when the group G is finite, in which case this is the classical Goursat Lemma, cf. [Lang,
Algebra, ex. 5 on page 751 QED

Corollary 9.7.3 Hypotheses as in 9.7.2, if G is connected, then H is GXT".

Corollary 9.7.4 Hypotheses as in 9.7.2, suppose I is the symmetric group Sy with d > 5. If G/GY

has no quotient group of order two, then H is GXI'.
proof Either H is GXI” or it is the inverse image of the graph of an isomorphism between a
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nontrivial quotient of G/GO and a nontrivial quotient of S. The only nontrivial quotients of S 4 are

Sqitself and S 3/A4 = {£1}, both of which admit quotients of order 2. Since G/GO admits no such
quotient, we must have H = GXI” by the paucity of choice. QED

9.8 Interlude: detailed discussion of the O(N)xS 4 case
(9.8.1) This last corollary, 9.7.4, is of no use if G is the orthogonal group O(N), and I is Sy with

d=5.
Theorem 9.8.2 Let k be a field, X/k a smooth, geometrically connected k—scheme, & a geometric
point of X, ¢ a prime invertible in k, and ¥ a lisse, orthogonally self—dual Q ¢—sheaf on X of some

rank N, corresponding to a representation
Of: m1(X, &) = ON),

whose Ggeom is the full orthogonal group O(N). Let
p:m8OM(X, & n Sy

be a surjective homomorphism onto the symmetric group S 4 for some d > 5. Let us denote by
sgn(p) : m18%OM(X, &) n Sy/A4 = {£1}

the {+1}-valued character of 7{8°°M(X, &) obtained by composing p with the sign character of

S 4, and by

Lsgn(p)
the corresponding lisse rank one Q ¢—sheaf on X®k1€ Then we have the following possibilities for
Ggeom,?‘xp'

1) Suppose that the lisse rank one Q ¢—sheaves Lsgn(p) and det(¥) are isomorphic on X®klz, ie.,

suppose that the two {*1}~valued characters of 7{E°°™(X, £) given by sgn(p) and by det(@) are

equal. Then is the subgroup of O(N)xS of all elements (A,0) with det(A) = sgn(o).

geom,FXp
2) Suppose that £sgn(p) and det(¥) are not geometrically isomorphic, i.e. suppose that sgn(p) #

det(®@¢) as characters of 718°°M(X, &). Then g is the the entire product O(N)xSy4

geom,Fxp
proof Since the only nontrivial quotient of O(N)/O(N)O ={x1} is {£1}, and S has unique

quotient {1} by the sign character, either Ggeo is the the entire product O(N)xS 4, or it is

m,FXxp
the subgroup of O(N)XS 4 consisting of all elements (A, o) with det(A) = sgn(o).

In the latter case, the characters (A, o) — det(A) and (A, o) — sgn(o) coincide on

Ggeom, Fxp In particular these characters coincide on elements (©#(y), p(y)) with y in

m18OM(X, £). This means exactly that det(@g) = sgn(p) on 78°M(X, £).

In the former case, the two characters det(®) and sgn(p) on 7 8°°M(X, &) must be
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distinct, otherwise by the Zariski density of (®7ﬁ<p)(7rlgeom(X, £)) the two characters (A, 0) —

det(A) and (A, o) — sgn(o’) would coincide on ¢ = O(N)XS4, which they do not.

QED

9.9 Application to twist sheaves

Theorem 9.9.1 Let k be an algebraically closed field in which 2 is invertible. Fix a prime number ¢
which is invertible in k. Denote by x» the unique character of order 2 of the tame fundamental

geom,FXp

group of G,/k. Let C/k be a proper smooth connected curve of genus g. Fix an irreducible middle
extension Q ¢—sheaf 7 on C, which is symplectically self-dual. Let D = Xa;P; be an effective
divisor of degree d on C. Suppose that

1) d>4g+4,
and
2g — 2 + d > Max(2#Sing(¥), 72rank(F)).

2) Either 7 is everywhere tame, or ¥ is tame at all points of D and the characteristic p is either zero
or p = rank(¥) + 2.
3) There exists a finite singularity 8 of 7, i.e., a point 8 in Sing(¥)N(C-D), such that the following
two conditions hold.

3a) ¥ is tame at 5.

3b) 7—‘(,8)/7-‘(,8)1(,3) has odd dimension.

Consider the lisse sheaf G on Fet(C, d, D, Sing(F)fipite) given by

t— HU(C, j«(FRLy, ),
whose Ggeom is, by Theorem 5.5.1, the full orthogonal group O. The lisse rank one sheaf det(G)
on Fet(C, d, D, Sing(Ffipite) 18 not the restriction to Fet(C, d, D, Sing(Fyjpite) Of @ lisse sheaf on
the larger space Fct(C, d, D, 9).
proof Pick f| and f5 as in the proof of 5.4.9. Consider the pullback
H =t 1t -fI'G

to Al - CritVal(f,, ?@Lx(f 1)). At the point t = f5(8), det(7H) has nontrivial local monodromy (the
character of order two), cf 5.4.11.

On the other hand, the function f{(fy(8) — f5) on C has d distinct zeroes, all disjoint from

D, i.e., the function f{(f>(8) — fy) lies in Fct(C, d, D, ). To see this, recall that f 1 Was chosen to
lie in Fet(C, deg(Dq), Dy, Sing(?_)UDred), so f1 has d; distinct zeroes, all disjoint from D. Then
f5 was required to lie in Fct(C, deg(D5), D5, Sing(”f)UDmde 1_1(0)) and to lie in the open set U
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of Theorem 2.2.6 with respect to the set
s := ;=1 (0)U(Sing(FHN(C-D,)).
The point 3 lies in S, so fy — f5(B) has d, distinct zeroes, all disjoint from D. Also, f5 is injective

on the set fl_l(O)U(Sing(T)ﬂ(C—Dz)), so it is injective on the subset f l_l(O)U{ﬁ}. Therefore
f(B) — f5 is nonzero at every zero of f. Thus, f1(f(8) — f5) has d distinct zeroes, all disjoint from
D. In other words, f1(f5(8) — f5) lies in Fct(C, d, D, ).

Now suppose there exists a lisse sheaf £ on Fct(C, d, D, @) whose restriction to Fct(C, d,
D, Sing(Ffipite) is det(G). Then the pullback [t +— fy(t - fz)]*L is lisse at t=f(83), precisely
because the function f1(f(8) — f») lies in Fct(C, d, D, @). But this same pullback is det(#), which
is not lisse at f5(8), contradiction. QED

Corollary 9.9.2 Notations and hypotheses as in Theorem 9.9.1 above, denote by
psplit : 7T1(FC'[(C, d, D, Sing(”f)ﬁnite), &) — Sd
the homomorphism attached to the finite etale Sy—torsor

Split(C, d, D, Sing(Psipite) — Fet(C, d, D, Sing(Ffipite)-

Then G is the product group OXS 4.

geom,QXpSplit

proof In view of Theorem 9.8.2, we need only show that det(&) is not isomorphic to LSgn(pspli t)

as lisse sheaf on the space
Fct(C, d, D, Sing(?)ﬁnite).
But LSgn(psplit) is the restriction to Fct(C, d, D, Sing(”f)ﬁnite) of a lisse sheaf on Fct(C, d, D, @),

since the finite etale Sd—torsor

Split(C, d, D, Sing(ﬂﬁnite) — Fct(C, d, D, Sing(?)ﬁnite)
is the restriction to Fct(C, d, D, Sing(F)fjpite) of the finite etale Sy—torsor

Split(C, d, D, @) — Fct(C, d, D, @).
In view of the above theorem, det(G) is not such a restriction, hence cannot be isomorphic to
Lsgn(psplit) as lisse sheaf on Fct(C, d, D, Sing(Ffjpite)- QED

9.10 Equidistribution theorems for twists by primes, over finite fields

(9.10.1) In this section, we put ourselves in the situation of 7.0, and give ourselves data
(C/k,D, ¢, 1, F, x, t, w). We suppose that that after extension of scalars from k to k, our data (C/k,
D, ?, 1, F, x) satisfies all the hypotheses of Theorem 5.5.1 or Theorem 5.6.1 are satisfied.

Theorem 9.10.2 Hypotheses as in 9.10.1 above, suppose that G for G is the group SL,(N)

geom

for some odd integer v. Choose 3 such that g®ﬁdeg is t—pure of weight zero, and all its Frobenii

land in Ggeom'
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1) Fix a conjugacy class o in the symmetric group S 4. As E runs over finite extensions of k with

#E — oo, the conjugacy classes {0(E, f)}¢ i, x ) become equidistributed for Haar measure

0'—sp1it(E
in the space U, (N )# of conjugacy classes in U, (N).

2) As E runs over finite extensions of k with #E — oo, the conjugacy classes {0(E, )} i,

Xprirne(E) become equidistributed for Haar measure in the space UV(N)# of conjugacy classes in

U,(N).
proof Assertion 1) results from 9.7.4 and 9.5.11. Assertion 2) is the special case of 1) in which we
take for o the class of a d—cycle. QED

Theorem 9.10.3 Hypotheses as in 9.10.1 above, suppose that G((w+1)/2) is symplectically self

dual on X, and suppose that Ggeom for G is the group Sp(N).

1) Fix a conjugacy class o~ in the symmetric group S4. As E runs over finite extensions of k with

#E — oo, the conjugacy classes {0(E, 1)} ¢ i, X, ) become equidistributed for Haar measure

—split(E
in the space USp(N)# of conjugacy classes in USp(N).
2) As E runs over finite extensions of k with #E — oo, the conjugacy classes {0(E, 1)} i,

Xprime(E) become equidistributed for Haar measure in the space USp(N)# of conjugacy classes in
USp(N).

proof Assertion 1) results from 9.7.3 and 9.5.11. Assertion 2) is the special case of 1) in which we
take for o the class of a d—cycle. QED

Theorem 9.10.4 Hypotheses as in 9.10.1 above , suppose that G((w+1)/2) is orthogonally self dual
on X. Suppose that Ggeom = Gyrith = SO(N) for G((W+1)/2).

1) Fix a conjugacy class o in the symmetric group S 4. As E runs over finite extensions of k with

#E — oo, the conjugacy classes {6(E, 1)} i, x (E) become equidistributed for Haar measure

o—spli
in the space SO(N)# of conjugacy classes in SO(N).
2) As E runs over finite extensions of k with #E — oo, the conjugacy classes {6(E, 1)} i,

Xprime(E) become equidistributed for Haar measure in the space SON)* of conjugacy classes in
SO(N).
proof Assertion 1) results from 9.7.3 and 9.5.11. Assertion 2) is the special case of 1) in which we

take for o the class of a d—cycle. QED

Theorem 9.10.5 Hypotheses as in 9.10.1 above, suppose that G((w+1)/2) is orthogonally self dual

on X, and suppose that Ggeom for G is the group O(N). Suppose further that det(G) on X®kEis
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not the restriction to X®kEof a lisse sheaf on Fct(C, d, D, ®)®kk_, cf. 9.9.1 for examples.
1) Fix a conjugacy class o in the symmetric group S 4. As E runs over finite extensions of k with

#E — oo, the conjugacy classes {6(E, )} ¢ i, X, split(E) become equidistributed for Haar measure

in the space O(N)# of conjugacy classes in O(N).
2) As E runs over finite extensions of k with #E — oo, the conjugacy classes {0(E, )} ;,,

Xprime(E) become equidistributed for Haar measure in the space O(N)# of conjugacy classes in
O(N).

proof Assertion 1) results from 9.8.2,9.9.2, and 9.5.11. Assertion 2) is the special case of 1) in
which we take for o the class of a d—cycle. QED

(9.10.6) Let us spell this out in terms of the decomposition
O(N, RY¥ = Ogjgp (N, RY¥ 11 Ogjyy _(N, R)*.
Corollary 9.10.7 Hypotheses as in 9.10.5, we have:
1) Fix a conjugacy class o in S, and a sign € = +1. For each finite extension E/k, denote by Xsign
¢(E) the subset of X(E) consisting of those points f in X(E) such that
det(-Frobg ¢ G((W+1)/2)) = ¢.
Denote by Xsign e, a—split(E) the subset of X(E) given by

sign

Xsign e, o—splitE) = Xsign e(B) N Xg—gplit(E).
As #E — oo,
#Xsign e EVHFX(E) — (112)x(#o/dY),

and the conjugacy classes {0(E, )} i, x (E) become equidistributed for Haar

sign €, o—spli

measure of total mass one on the space Osign (N, [R)#.

2) Fix a sign € = £1. As #E — oo, the conjugacy classes {6(E, )}, Xsign . prime(E) become

equidistributed for Haar measure of total mass one on the space Osign (N, [R)#.

proof Assertion 1) is obtained by applying the equidistribution statement 1) of Theorem 9.10.5 to

the integration of continuous central functions on O(N, R) which are supported in Osign ¢(N, R).

Assertion 2) is the special case of 1) where we take for o the class of a d—cycle. QED
Theorem 9.10.8 Hypotheses as in 9.10.1, suppose that G((w+1)/2) is orthogonally self dual on X.
Suppose that G((w+1)/2) has G = SO(N) and G,y = O(N). Then we have:

1) The rank N of G is even.
2) Fix a conjugacy class o in the symmetric group Sy, and a sign € = +1. As E runs over finite

geom

extensions of k with (_l)deg(E/ k) = € and #E — oo, the conjugacy classes {6(E, D}f in XO'

split(E) become equidistributed for Haar measure in the space OSlgn ¢(N, R)™.
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3) Fix a sign € = 1. As E runs over finite extensions of k with #E — oo and (_Ddeg(E/ k) = €, the

conjugacy classes {0(E, )}, x ) become equidistributed for Haar measure in the space

prime(E
#

Osign ¢, R)™.

proof Assertion 1) results from 5.5.2, part 3). Assertion 2) results from 9.7.3 and 9.5.11.

Assertion 3) is the special case of 2) where we take for o the class of a d—dycle. QED

9.11 Average analytic ranks of twists by primes over finite fields

9.11.1) We first give the result in the case when G geom is the full orthogonal group.

Theorem 9.11.2 Hypotheses and notations as in Theorem 9.10.5 and Corollary 9.10.7 above, fix a
conjugacy class o~ in the symmetric group S 4. If we take the limit over finite extensions E/k large
enough that the sets Xa—split(E) and Xsign e 0'—split(E) are all nonempty, we get the following

tables of limit formulas. In these tables, the number in the third column is the limit, as #E — oo, of
the average value of the quantity in the second column over all f's in the set named in the first

column.

Xor—split(E) rank, (G, E, f) 12
Xo—split(E) rankquad’ an(G, E, D) 1

X o—split(E) rankgeom, an(G, E, ) 1.

More precisely, when we break up Xa—split(E) according to the sign € in the functional

equation, we have the following tables of limit values (same format as above).

if N is even

Xsign -, O'—Split(E) rank,, (G, E, f) I,
Xsign +, o—split(E) rank, (G, E, 1) 0,
Xsign —,o—split(E) rankgyad, an(G> E. ) 2,
Xsign +,0'—split(E) rankquad’ an(@, E, D) 0,
Xsign —,O'—Split(E) rankgeom, an(@- E. ) 2,

Xsign +,0'—split(E) r"“nkgeom, an(@- E. )
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if N is odd

XSign -, O'—Spht(E) rankan(g7 E, f) 1,
Xsign +, o-—spljt(E) rank, (G, E, ) 0,
Xsign —,O'—Split(E) rankquad’ an(G, E, D) 1,
Xsign +,0'—split(E) rankquad’ an(G, E, D) 1,
Xsign —,O'—Split(E) rankgeom’ an(G, E, ) 1,
Xsign +,0'—split(E) r‘E‘I"kgeorn, an(G- E. ©) L.

If we take o~ to be the conjugacy class of a d cycle in S 4, then the set XO'—split(E) becomes

Xprime(B) and Xion ¢, o—split(E) becomes Xgion ¢ prime(E)-
proof Combine the equidistribution statements of Theorem 9.10.5 and Corollary 9.10.7 with the
proof of Theorem 8.3.3. QED

(9.11.3) We now give the analogous result in the remaining cases.
Theorem 9.11.4 Hypotheses and notations as in Theorem 9.10.4, fix a conjugacy class o in the

symmetric group S. For every finite extension E/k, X _(B) is empty. If we take the limit over

sign
a'—split(E) = Xsign +,0—split
following tables of limit formulas. In these tables, the number in the third column is the limit, as #E

finite extensions E/k large enough that X (E) is nonempty, we get the

— oo, of the average value of the quantity in the second column over all f's in the set named in the
first column.

X —split(E) rank, (G, E, ) 0
XO'—Spllt(E) rankquad, an(ga E, f) 0
XO' —Spllt(E) rankgeom, an(g P Ea f) 0.

proof Combine the equidistribution statement of Theorem 9.10.4 with the proof of 8.3.6 QED

Theorem 9.11.5 Hypotheses and notations as in Theorem 9.10.8, fix a conjugacy class o in the

symmetric group S 4, and a sign € = +1. For every finite extension E/k with (_l)deg(E/ k)=

have Xsign ¢(E) =X(E), and X

€, we
sign _¢(E) is empty. If we take the limit all finite extensions E/k
with (-1)3€g(E/K) — ¢ and large enough that the sets XO‘—Split(E) = Xsien E,O'—Split(E) are all
nonempty, we get the following tables of limit formulas. In these tables, the number in the third
column is the limit, as #E — oo over fields E/k with

(_l)deg(E/k) = g, of the average value of the quantity in the second column over all f's in the set
named in the first column.
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e=-1

Xsign - O'—Split(E) rank, (G, E, f) I,
Xsign —,o—split(E) rankgyad, an(G> E- f) 2,
Xsign —,o—split(E) rankeeom, an(Gs E. ) 2,
e=+1

XSign +, O'—Split(E) rank, (G, E, ) 0,
Xsign +,0—split(E) rankgyad, an(G> E- f) 0,
Xsign +,0'—sp1it(E) rankgeom, an(@- E, )

proof Combine the equidistribution statement of Theorem 9.10.8 with the proof of 8.3.8 QED
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10.0 The basic horizontal setup
(10.0.1) We fix a prime number ¢, an integer n = 2, and a character
X 1 up(Z[itn, D) = (Qp*
of order n. We fix a nonempty connected normal Z[1/¢n, {;,}-scheme T of finite type. We fix a

proper, smooth, geometrically connected curve C/T of genus g. We suppose given an effective
Cartier divisor S in C which is finite etale over T of degree s = 0 (with the convention that S is
empty if e = 0). We suppose given a lisse Q{;—Sheaf FonC—-Sofrankr=1.Ifnis4or6, we

suppose that r <2. We suppose given an integer w, and a field embedding ¢ : Q ¢ — C, such that
is t-—pure of weight w. We suppose that for each geometric point t in T, the following three
conditions are satisfied.
1) the sheaf F := FI(C-S), on (C-S); is geometrically irreducible,
2) Denoting by j; : (C=S); — C; the inclusion, the irreducible middle extension (j;)«%; on C; is not
lisse at any point of Singy, i.e.,
S¢ = Sing((p)+Fp)-
3) either F is tame at each point of S, or (r+1)! is invertible in the residue field «(t) at t.
(10.0.2) We further suppose that for variable geometric points t in T, the Euler characteristic
X((C=S), )
is a constant function of t. Recall [Ka—SE, 4.7.11 that if the generic point ot T has characteristic
zero, then each 7 is automatically everywhere tame, and the Euler characteristic x .((C=S), ) is

constant, given by
X((C=S), F) = (2 = 2g - s)r.

(10.0.3) Given an effective Cartier divisor D in C, finite and flat over T of degree d, we say
that D is adapted to the data (C/T, S, ¥) if, etale locally on T, we have the following situation.
1) There are pairwise disjoint sections P; of C/T such that D is X.a;P; for some strictly positive

integers a; with Xa; =d.

2) There are pairwise disjoint sections Qj of C/T such that S is ZQJ-, and, for each pair (i, j), either
P, = Qj or P; is disjoint from Qj.

3) ¥ is tamely ramified along each section P; which lies in S. [Notice that 7 is lisse near any P;

which does not lie in S.]
(10.0.4) If all these conditions are satisfied, then for variable geometric points t in T, the
Euler characteristic

Xc((C=S = D), )
is a constant function of t. If in addition d = 2g+1, then Proposition 6.2.10 applies to the data (C/T,
D,S-SND, ?, r, F1 (C — D - S), x), and so we may form the lisse sheaf G on the smooth T—
scheme
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X = Fc(C,d, D, S — SND)/T.
We denote this sheaf
G = TWiStX,C/T’D(T).
Because ¥ is t—pure of weight w, G is t—pure of weight w+1.
(10.0.5) We suppose given a sequence of effective Cartier divisors D,, in C, D,, finite and

flat over T of degree d,, 2 1, with the degrees d,, strictly increasing
d; <dp<dy..<d,<d, <.
such that each D,, is adapted to the the data (C/T, S, ¥). Suppose that each d,, is large enough that
the following inequalities hold:
d,>12g +7,
d,, =2 Max(6g+9, 6s + 11),
2g -2 +d,, > Max(2s, 72r).
(10.0.6) For each v, Proposition 6.2.10 applies, and we form the lisse sheaf
G, = Twist ,C/T,DV(?)
of rank
N, 2r2g-2+d,)
on the smooth T—scheme
X, :=Fct(C, d, D,, S - SND,)/T.
The sheaf G, is (—pure of weight w+1.
(10.0.7) For each geometric point t of T of residue characteristic not 2 [resp. 21, and each v,

the data (Cy, Dt’ ¢, 1, (jp=Fy. x) satisfies all the hypotheses of Theorem 5.5.1 [resp. Theorem

5.6.11. So for the sheaf gv’t on Xv,t :=Fct(Cy, d, Dv,t’ S - StmDv,t)’ its group Ggeom either
contains SL(N,), or is equal to one of SO(N,,) or O(N,)) or, if N,, is even, Sp(N,).

Autoduality Lemma 10.0.8 Given data (C/T, S, ¥) as in 10.0.1 above, suppose in addition that for
all geometric points t of T, ¢ is everywhere tame (a condition which holds automatically if the
generic point of T has characteristic zero). Then the following conditions are equivalent.

1) For every geometric point t of T, the irreducible lisse sheaf F; on C; — S, is self-dual [resp.
orthogonally self dual, resp. symplectically self—dual .

2) There exists a geometric point t of T such that the irreducible lisse sheaf F on C; — S is self-

dual [resp. orthogonally self dual, resp. symplectically self—dual l.
proof We first prove the equivalence of 1) and 2) for self—duality alone. Fix a geometric point t in
T. Since #; is irreducible on C; — S, it is self dual if and only if there exists a non—zero sheaf map

from ¥ to its dual (7—7[)\/ (for by the irreducibility, any such nonzero map must be an

isomorphism), or equivalently, if and only if there exists a non—zero sheaf map from (7 t)v to F+.
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Thus ¥ is self—dual if and only if the cohomology group HO(Ct - St (ﬁ@?’t)v) is nonzero, or

equivalently (Poincare duality), if and only if the compactly supported cohomology group ch(Ct
= S, F1®%,) is nonzero.

Denote by 7 : C —S — T the structural morphism. By proper base change, ch(Ct - St

F®F) is the stalk at t of the sheaf R27T!(7'-®7:). By Deligne's semicontinuity theorem [Lau—SC],
the tameness of each ¥, and hence of each F®F;, on C; — S, guarentees that all the higher direct

images Riﬂ!(?@ﬂ are lisse sheaves on T. As T is connected, the lisse sheaf R27T!(7:®7:) onT
vanishes if and only its stalk at a single point vanishes.

Suppose now that ¥ is self—dual. It is orthogonally self—dual if and only if HC2(Ct - St
Sym2(F) is nonzero, and it is symplectically self-dual if and only if H.2(C, — Sy, A2(F) is
nonzero. Once again, both Symz(Tt) and A2(7-‘t) are tame, so both Rzﬂ!(Symz(?')) and
Rzﬂ!(Az(S’:)) are lisse on T, and we conclude as above. QED

Theorem 10.0.9 Hypotheses and notations as in 10.0.1-5, pick a finite extension E) of Q, which
contains the n'th roots of unity (n := the order of y), and large enough that ¥ has an E) —form.
[Thus each G, has an E)—form.] Denote by u(E, ) the number of roots of unity in E). Then we

have the following results.
1) (the SL case) Suppose that either n 2 3, or that for every geometric point t of T, F is not self—

dual. Then for each v, and for each geometric point t in T, there exists a divisor m,, ; of u(E;) such

that the group G for gv,t is GLmV t(NV). Moreover, for each v there exists a dense open set

geom
U,, of T on which the function t — m,y, ¢ is constant, say with value m,,. Every m,, ¢ divides the
generic value m,,.
2) (the Sp case) Suppose that y has order 2, and that for every geometric point t of T, % is
orthogonally self-dual. Then for each v, N,, is even, and for each geometric point t in T, the group
Ggeom for gv,t is Sp(N,), and the group Ggeom for gv,t @ (psplit) is the product group
Sp(N,)xS d,;

3) (the O case) Suppose that y has order 2, and that for every geometric point t of T, F is
symplectically self—dual. Suppose also that for each v and each geometric point t in T, there is a
point B, in S; — StﬂDv,t at which ¥ is tame, and for which

Tt(,Bt)/T(,Bt)I('Bt) has odd dimension.

Then for each v, and for each geometric point t in T, the group G for G, ( is O(N,)), and the

geom
group Ggeom for gv,t S (psplit) is the product group O(NV)XSdV.
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4) (the strongly SO case) Suppose that y has order 2, that the weight w is odd, that ¥ is
symplectically self—dual toward Q ¢(=w), and that F is everywhere tame. Suppose also that for

each v and each geometric point t in T, each point of S; occurs in D, ¢ with even (possibly zero)
multiplicity. Suppose further that for each point §; in S,

Tt(ﬁt)/?'(ﬁt)l(ﬁt) has even dimension.
Suppose further that for each finite field k, and each k—valued point t of T, we have

det(~Froby ¢ 1 HI(Cy K. jy T (W+1)/2) = 1.
Then for each v, G, O((w+1)/2)) has Ggeom = Garith = SO(N,), and Qv,to((w+1)/2)) ® (pplit)

has G

geom — Garith = SO(NV)XSdV'

5) (the SO/O case) Suppose that y has order 2, that the weight w is odd, that F is symplectically
self—dual toward Q /(-w), and that  is everywhere tame. Suppose also that for each v and each
geometric point t in T, each point of S; occurs in D, ¢ with even (possibly zero) multiplicity.
Suppose further that for each point B in S,

Tt(ﬁt)/?'(ﬁt)l(ﬁt) has even dimension.
Denote by A the group homomorphism

A m(T) — {£1}
given by det(Rlﬂ*(j xF(W+1)/2))), m : C — T the structural morphism: concretely, for each finite
field k, and each k—valued point t of T, we have

det(—Frobk’t 0 BiL (G 0®E Jt O*Tto((w+ 1)/2))) = A(FrObk,tO)'

Suppose that the homomorphism A is nontrivial. [The case of trivial A is precisely the strongly SO
case above.]
Then for each v, gv,to((w+l)/2)) has Ggeom =SO(N,), and gv,to((w+l)/2)) @ (psplit) has

Ggeom = SON,)XSq, .

Moreover, G, for Qv’to((w+1)/2)) @® (psplit) is equal to
SO(Ny)dev, if A(Frobk’t O) =+1,
O(Nv)dev, if A(Frobk,t 0) =-1.

proof Statements 2), 3), 4) and 5) are fibrewise assertions, which have been proven in 5.5.1, 5.5.2,
9.5.11, 9.7.3, and 9.8.2. Statement 1) is a bit more delicate. Let us fix v. In 5.5.1 and 5.7.1, we
have proven that for each geometric point t in T, the group Ggeom for Gyt contains SL(N,). So

either Ggeom is the full group GL(N,)), or it is GLmV t(NV) for some integer my, ¢ 2 1. By Pink's

semicontinuity theorem [Ka—ESDE, 8.18.21 applied to det(G,), there is a dense open set U, in T
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over which all the det(G,, ;) have the same G and forevery tin T, G forG, ¢isa

geom’ geom

subgroup of the generic G Given this semicontinuity, it suffices to show that for every finite

geomr
field k, every k—valued point t( of T, det(G,, ¢) has finite order dividing u(E, ). The point is that XtO

is a smooth, geometrically connected k—scheme, and det(gv,to) is an (E)L)X—Valued valued

character of its entire fundamental group. But one knows [De—Well, 1.3.41 that the restriction of
any such character to the geometric fundamental group is of finite order. Since this character has
values in E,, its finite order must be a divisor of u(E;). QED

10.1 Definition of some measures
(10.1.1) We denote by U,(N), USp(N) (if N is even) and O(N, R) the standard compact
forms of the complex groups GL (N, €), Sp(N, C), and O(N, C) respectively, and by Um(N)#,

USp(ZN)# and O(N, [R)# their spaces of conjugacy classes. An agreeable feature of the Q V=
algebraic groups GL,(N), Sp(N), and O(N) is that for G any of these, the normalizer of G in the
ambient GL(N) is G,,G. An agreeable feature shared by the compact groups U,(N), USp(N) and
O(N, R) is that in each, two elements are conjugate if and only if they have the same (reversed)
characteristic polynomial det(1 — TA) in the given N—dimensional representation.

(10.1.2) Now let us put ourselves under the hypotheses and notations of Theorem 10.0.9
above.

(10.1.3) The SL case Fix v. For each finite field k, and each k—valued point t of T, pick @y g in

(Q/) such that gv’t®(av,k,t)deg on on X,, /k is t—pure of weight zero, and all its Frobenii land in

Ggeom = GLmv t(Nv). Then for each k—valued point x in X,

det(1 — Tav,k tFrObk,t,x 1G,)
is the (reversed) characteristic polynomial of a unique conjugacy class
(k. t.x, g 0 in Upy t(Ny)#,

called its Frobenius conjugacy class. We define a Borel probability measure
l-l(k’ t7 alv’k’t)

on Umv t(NV)# to be the average, over X,, (k), of the delta measures attached to each of these

Frobenius conjugacy classes:
pk, tay o) = (1/#Xv,t(k))zx inX, t(k).cS(é?(k, t X, @y )

(10.1.4) The Sp and O cases Fix v. For each finite field k, and each k—valued point t of T, pick
@, k¢ in (Qp)* such that G, ®(a, | t)deg on X,, /k is t-—pure of weight zero, and all its Frobenii

land in G = Sp(N,)) (resp. in G

geom = O(N,)). Then for each k—valued point x in X,

geom
det(1 — T“v,k,tFmbk,t,X 1G,)
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is the (reversed) characteristic polynomial of a unique conjugacy class
Ok, t. X, @y g ) in USp(N, ) (resp. in O(N,, R)¥),
called its Frobenius conjugacy class. We define the Borel probability measure
u(k, t, ay,k,t)
on Sp(Nv)# (resp. on O(N,, [R)#) to be the average, over Xv,t(k)’ of the delta measures attached to
each of these Frobenius conjugacy classes:

plk, t @y g o) = (VX (k)X X,, o000, & X, @y ).

Now fix in addition a conjugacy class o, in the symmetric group de. The space XV,t,O'V—Split(k)
is nonempty for #k sufficiently large, by 9.4.4. Whenever X, O'V—split(k) is nonempty, we define

a Borel probability measure
uk, t, @y, k t» 0,,~split)

on Sp(NV)# (resp. on O(N,,, [R)#) to be the average, now over X V—split(k)’ of the delta

v,to
measures attached to each of these Frobenius conjugacy classes:
uk, t, Xy K o O'V—split)
= (1/#Xv,t(k))zx i XV’MV_Spht(k).cS(H(k, t, X, “v,k,t))'
If we are in the O case, we can further split things up according to the sign in the functional
equation. Thus for each choice of sign €, we can form the measures
uk, t, @y k.t sign €) on Osign e(N,, [R)#
and
ulk, t, @y § 1, o=split, sign &) on Ogjgn ¢(N,, R)

respectively, as soon as X, sign ¢(k) and X, ¢ o, ~split,sign ¢(k) are nonempty respectively.

(10.1.5) The strongly SO case
Fix v. For each finite field k, and each k—valued point t of T, pick a,, i ¢ in (@] f)x either

choice of i(#ki)(_w_l)/ 2 allowing us to define G,, ti((w+1)/2)’ on X, t Then G,, (®(,, | t)deg

on X,, ¢/k is t—pure of weight zero, and all its Frobenii land in G = SO(N,)). For each k-

geom
valued point x in X, we denote by

0k, t, X, @y i o) in SO(N,,, R)*
its Frobenius conjugacy class. [In this SO case, we still have the identity
det(1 - TO(k, t, x, a’v,k,t)) =det(1 — Ta/v,k,tFrObk,t,x 1G,),
but this identity only defines 6(k, t, x, a’v,k,t) as an element of SO taken up to O—conjugation, i.e.,
it only defines 6(k, t, x, av,k,t) as an element of SO(N,,, R)NO(N,,, [R)#.] We define the Borel

probability measure
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plk, t @y i o)
on SO(NV)# to be the average, over Xy’t(k), of the delta measures attached to each of these
Frobenius conjugacy classes:
pk, toay o) = (1/#Xv,t(k))zx i Xv,t(k)'(s(e(k’ t, X, @y x p))-
Now fix in addition a conjugacy class o7, in the symmetric group de. The space Xv,t,av—split(k)

is nonempty for #k sufficiently large by 9.4.4. Whenever X, O'V—Split(k) is nonempty, we define

a Borel probability measure
ulk, t, @y, ¢ O'V—split)

on SO(NV)#to be the average, now over X V—split(k)’ of the delta measures attached to each of

VAN
these Frobenius conjugacy classes:
u(k, t, @y, x » 0,,—split)
= (1/#Xv,t(k))2 o(0(k, t, x, @y, i 1)

(10.1.6) The SO/O case
Fix v. Fix a sign € = £1. For each finite field k, and each k—valued point t of T with

A(Froby t) =g, pick @, ¢ In @Q f)x either choice of i(#ki)(_w_l)/ 2 allowing us to define

X in Xv,t,av—split(k) '

Gy ti((w+1)/2), on X, t Then G, (®(@,, | t)deg on X,, ¢/k is t-—pure of weight zero and

orthogonally self—dual of even rank N,,, with Ggeom = SO(N,)). For each k—valued point x in
X

vyt We denote by

0k, t, X, @y k ) in Ogjgn g(Ny, R)
its Frobenius conjugacy class. We define the Borel probability measure
#(ka t, av’k’t)

on Ogion ¢

Frobenius conjugacy classes:
pk, toay o) = (1/#X1,,t(l())2X inX, t(k).(S(H(k, t, X, @y p)-

Now fix in addition a conjugacy class o7, in the symmetric group de. The space Xv,t,av—split(k)

(N, [R)# to be the average, over X, ((k), of the delta measures attached to each of these

is nonempty for #k sufficiently large by 9.4.4. Whenever X (k) is nonempty, we define
pty y large by pty

v,t,O'v—split
a Borel probability measure
ulk, t, @y, ¢ O'V—split)

on O;

sign Ny, [R)# to be the average, now over X

Vi O'V—Split(k)’ of the delta measures attached

to each of these Frobenius conjugacy classes:
u(k, t, @y, x » 0,,—split)
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= (X, (), 10 x OOk, t, X, @y i ).

V,t,O'V—Split(k)

Theorem 10.1.7 Hypotheses and notations as Theorem 10.0.9, we have the following results.
1) Suppose we are in the SL case. Fix v. Suppose in addition that for every geometric point tin T,

the lisse sheaf G,, ; on X; has G = GLmV(NV).Take any sequence of data

geom
k:, t:
( 1 V’ki’ti)
with
k; a finite field of cardinality > 4A(XV/T)2,
t; a k;—valued point T,
in (Q)* such that all Frobenii of G,® deg jand in GL, (N
aV,ki,ti in (Q/)” such that all Frobenii of G,, (aki’ti»v) and in mv( )

in which i+ #k; is strictly increasing. Then the sequence of measures u(k;, ti, ay’ki’ti) on

UmV(NV)# tends weak * to (the direct image from Umv(Nv) of) normalized Haar measure. In
other words, For any continuous C—valued central function f(g) on UmV(NV), we have the
integration formula

IUmV(NV) f(g)dg = lim;_,, IUmV(NV) f@)du(ki, ti. y . 1)
=lim;_,, (1/#Xv,ti(ki))zx . X, ) f(0(k;, t, x, av’ki’ti))'

2) Suppose we are in the Sp or O case. Fix v, and fix a conjugacy class in the symmetric group
de. Take any sequence of data

(kjp G, @y e, )

with

k; a finite field, #k; > Max(4A(X,/T)2, 4C(X,/T, Sp)2(#T)%)

t; a k;—valued point T,

¥y kit in (Q,) such that all Frobenii of gv®(aki,ti,v)deg land in Sp(N,,) (resp. in
O(N,))
in which i #k; is strictly increasing. Then the two sequences of measures u(k;, ti, av’ki’ti) and
u(k;, ti, av’ki’ti’ o,,~split) on USp(Nv)# (resp. on O(N,,, [R)#) each tend weak * to (the direct
image from USp(N,) (resp. from O(N,,, R)) of) normalized Haar measure. In the O case, the
sequences of measures

plk, t, @y § ¢, sign €) on Ogjon ¢(N,, RY
and
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ulk, t, @y ¢ o,~split, sign €) on Osign S(Nv’ [R)#

each tend weak * to Haar measure on Osign (N, [R)# normalized now to give Osign Ny, [R)#

total mass one.
3) Suppose we are in the strongly SO case. Fix v, and fix a conjugacy class in the symmetric group
de. Take any sequence of data

k:, t:
( o V’ki’ti)
with
k; a finite field, #k; > Max(4A(X,/T)2, 4C(X,/T, Sp)2(#T)%)
t; a k;—valued point T,
@y k. t; in (Q/)* either choice of i(#ki)(_w_l)/ 2,
in which i — #k; is strictly increasing. Then the two sequences of measures u(k;, ti, @, ki ti) and

u(k;, ti, aV’ki’ti’ o,—split) on SO(NV)# each tend weak * to (the direct image from SO(N,)) of)

normalized Haar measure.
4) Suppose we are in the SO/O case. Fix v, fix a sign € = £1, and fix a conjugacy class in the
symmetric group de. Take any sequence of data

ki, t;
( I V,ki,ti)
with
k; a finite field, #k; > Max(4A(X,/T)2, 4C(X,/T, Sp)2#T)%)

t; a k;—valued point T such that A(Fmbki,ti) =g,

av’ki’ti in (Q f)x either choice of i(#ki)(_w_l)/ 2,
in which i — #k; is strictly increasing. Then the two sequences of measures u(k;, ti, @, ki ti) and
udk;, ti, a,, kit o,~split) on Osign S(NV)# each tend weak * to Haar measure on Osign e(Ny,

[R)# normalized to give Osign (N, [R)# total mass one.

proof Assertion 1) is a restatement of 9.5.11, with I there taken to be the trivial group {e}.
Assertion 2) is a restatement of Theorems 9.10.3 and Corollary 9.10.7. Assertions 3) and 4) are
restatements of Theorems 9.10.4 and 9.10.8 respectively. . QED

10.2 Some basic examples of data (C/T, S, ¥, D,'s) where all the hypotheses above are satisfied

10.2.1 SL examples
(10.2.1.1) This first example is the "universal" form of the situation considered in Theorem

7.9.1. Fix an integer n > 3, a prime ¢, a (Q f)x—valued character y of order n of the group
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Up(ZI1/n, £, 1), and an integer g > 2. Denote by Mg 3k the moduli space of genus g curves with a
level 3K structure, cf. [Ka—Sa, RMFEM, 10.6], and denote by Cuniv/Mg,3K the universal genus

g curve with level 3K structure. For each integer m > 1, denote by Mg 3K .m = (CuniV/Mg 3)™
the m—fold fibre product of C,;,;, With itself over Mg,3K- This space Mg,3K,m is the moduli
space of genus g curves with both a level 3K structure and with an ordered list of m points Py, ...,
P, not necessarily distinct. Denote by Mg,BK,m dist the open set in Mg,SK,m where, for all i,
P, and Pj are disjoint. Thus Mg,3K,m dist 18 the moduli spaces of curves of genus g with both a
3K structure and with an ordered list of m distinct points Py, ..., Pj,,. Denote by
Cuniv,m/Mg,3K,m dist the universal curve. We take

T := Mg,3K,m diStXZZ[l/[n’ {n],
and we take C/T to be universal curve Cuniv,meZ[l/fn, £, We take S to be empty, and ¥ to be
the constant sheaf Q,. We take D,, to be any divisor of the form X._, _ a; ,P; where the P; are the

tautological points, and where the a; ,, are non—negative integers with >.a; ,, > 4g+4 and increasing
with v. If n is 2x(odd), require further that each a; ,, is either odd or divisible by n. In this case, the

common value of Ggeom for TwistX’C /T,DV(Q ) on all geometric fibres of X,,,/T is GLﬂ(NV),

where y is the order of the character yXx5. [So u is 2n if n is odd, p is n/2 if n is 2x(odd), and y is
nifn=0mod4).]

(10.2.2) Sp and O examples In all these examples, we take n=2. We begin with three elliptic curve
examples.

(10.2.2.1) Take n=2, T = Spec(Z[1/2¢]), C/T = [PI/T, S is {0,1,e0}. The open curve C — S is
thus Spec(Z1[1/2¢, A, 1/A(A-1)]. Take ¥ to be Rln!@ ¢ for 7 the structural morphism of the
Legendre family Leg/(C-S) of elliptic curves

y2 = x(x=1)(x=A).
Then #7 is lisse of rank 2 on C-S, pure of weight one, and symplectically self—dual toward Q /(-

1). Along the sections 0 and 1 of C/T, # has unipotent nontrivial local monodromy.Along the
section oo, its monodromy is (the quadratic character)®(unipotent nontrivial). For each intger n > 1,

take F,, := Sym(F; 1)- Thus ¥, is lisse of rank n+1, pure of weight n, and autodual toward Q (=

n), by an autoduality which is symplectic for odd n, and orthogonal for even n. The local
monodromy along the sections 0 and 1 is a single unipotent Jordan block. The local monodromy
along < 1s a single unipotent Jordan block for n even, and (the quadratic character)®(a single
unipotent Jordan block) for n odd. We take for D,, the divisor d,,eo. So here we are performing

quadratic twists of the #,,'s by polynomials in A of degree d,, which have d,, distinct zeroes, none

of which is O or 1. For n odd (resp. for n even), the sheaves TwistX ».C /T,Dv(g_—n) have Ggeom the
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full orthogonal group (resp. the full symplectic group) on each geometric fibre of X,/T.

(10.2.2.2) In a similar vein, we might take some level m > 3, and then take T = Spec(Z[1/m/,
{m D). C/T the compactified moduli space /_\/(m[l/mf I of elliptic curves with level m structure of

determinant £, over Z[1/m¢, (m]—schemes, S the cusps. We take
n:& — M [1/mf1=C-S

univ,m
the universal curve, and 7 := Rlﬂ'!Q ¢- Once again ¥7 is lisse of rank 2 on C-S, pure of weight

one, and symplectically self—dual toward Q ¢(=1). Its local monodromy along each cusp is

unipotent nontrivial. For each intger n > 1, take ¥, := Sym™(#7). Thus ¥, is lisse of rank n+1,
pure of weight n, and autodual toward Q ¢(—n), by an autoduality which is symplectic for odd n,

and orthogonal for even n. The local monodromy along each cusp is a single unipotent Jordan
block. Take the D, s' to be divisors concentrated at the cusps. When n is odd, #, is symplectic. In

this case, we must require that each divisor D,, omits at least one cusp (so that there is a finite

singularity where the drop is of odd dimension, which in turn will insure that for each t,

TwistX ».C /T,DV(Tn) has Ggeom the full orthogonal group. When n is even, ¥, is orthogonal, and

for each tin T the sheaf TwistX ».C /T,DV(Tn) has Ggeom the full symplectic group.

(10.2.2.3) Take K to be an absolutely finitely generated subfield of C, Ci/K a proper smooth

geometrically connected curve over K, with function field L/K, and E/L an elliptic curve over L.
We make one hypothesis on E/L, namely that at K—valued point Pg of C, i.e. at some discrete
valuation of L/K with residue field K, E/L has multiplicative reduction. We can find a dense open
set Uk in Cg and an elliptic curve Ex /Uy whose generic fibre is E/L. [Concretely, take the Neron
model Eg/Cyk of E/L and take Uk to be the open set of Ci over which the Neron model is an
elliptic curve.] Fix a prime number ¢. We can then find

a) a subring R of K in which 2/ in invertible, which is finitely generated as a Z[1/2¢]-algebra
and which is smooth over Z,

b) a proper smooth curve C/R with geometrically connected fibres, and an R—valued point P
in C(R) which extends Pk,
C) an effective divisor S in C which is finite etale over R, contains P, and whose open

complement U := C — S has generic fibre Ug/K,
d) and an elliptic curve 7 : E — U which extends Ex/Uyg.

We take T := Spec(R), C/T and S/T as above, and for lisse sheaf ¥ on U we take Rlﬂ*@ ¢ We

take for the D,, effective divisors whose supports (DV)red lie in S—P (this insures that on each

geometric fibre of (C — D,)/T, there is a point (namely P) at which ¥ has nontrivial unipotent

monodromy. We take ,, := Sym™(#7), and proceed as in examples 1) and 2) above.
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(10.2.2.4) We now give two examples involving hyperelliptic curves.
(10.2.2.5) Fix an integer m = 2, and take T to be the open set in Amem/Z[l/M 1, with coordinates

ag, a1, ..., ay, over which the degree m polynomial in one variable
f(x) :== 2 aixi

has invertible discriminant A (i.e., has d distinct roots). Take C/T to be [Pl/T, S to be
{zeroes of f}, if m is even
{eo} U {zeroes of f}, if m is odd.

Take F(y on P! -Stobe ‘EX (X)) which is orthogonally self dual, and pure of weight zero. Take
D,, to be the divisor d,eo. Then for each tin T, Twist)( »,C /T,DV(TO) has Ggeom the full
symplectic group. Concretely, for fixed t in T, corresponding to a numerical choice of polynomial f,
Xv,t is the space of polynomials p(x) of degree d,, with all distinct roots and with g.c.d.(p(x), f(x))
= 1. Over this space we are looking at the family of hyperelliptic curves

y2 = f(0p(x),
parameterized by the polynomial p(x), and our TwistX 2C /T,DV(TO) is the H! along the fibres in

this family.
(10.2.2.6) Notations as in 10.2.2.5 above, take 7() 1 to be the extension by zero to Al of (the

restriction to Al — AINS of) #(. Define #7 on Al — AINS to be the lisse sheaf which is the
restriction from Al of the middle convolution of 7—‘0 ! with LX ) on Al. The rank of F- 1 ismifmis

even, m—1 if mis odd. For each t ¥ ( has G the full symplectic group Sp(m) if m is even,

geom
Sp(m~—1) is m is odd. Local moonodromy of ¥ along each of the m zeroes of f is a unipotent

pseudoreflection (transvection). Local monodromy along oo is
(the quadratic character)®(a unipotent pseudoreflection)
if m is even. If m is odd, local monodromy along <o is scalar, the quadratic character. Take D,, to be

the divisor d,,~0. Then foreachtin T, TwistX

Here is a more geometric description of the sheaf 7. Over T as in 4) above, consider (Al
- AlﬂS)/T with parameter A, i.e., consider A 1 [1/f(A)V/T. Over this A 1 [1/f(A)V/T, we have the
complete nonsingular model 7: C — Al [1/f(A) VT of the hyperelliptic curve with equation
y2 = f(x)(A - x).
Then 77 is the sheaf Rlﬂ'*@ ¢ OnA 1 [1/f(A)VT. The interpretation of the twist sheaf
TwistX »C /T,Dv(?—' 1) is this. For fixed t in T, corresponding to a numerical choice of polynomial f,

2,C/T,DV(?1) has Ggeom the full orthogonal group.

Xv,t is the space of polynomials p(d) of degree d,, with all distinct roots and with g.c.d.(p(d), (1))
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= 1. The twist sheaf TwistX 2,C/T,DV(7:1) on X, ¢ gives the L—functions of the quadratic twists, by

polynomials of degree d,, in A with all distinct roots and with g.c.d.(p(A), f(1)) = 1, of the Jacobian

of the hyperelliptic curve.y2 = f(x)(A — x), viewed as curve over the A-line.

(10.2.3) Strongly SO examples
(10.2.3.1) Take n=2, T = Spec(Zli, 1/2¢1), C/T = PU/T, S = {0,1,50}. The open curve C — S is
thus Spec(Z[1/2¢, A, 1/A(A-1)]). Take 77 to be Rlﬂ!@ ¢ for 7 the structural morphism of the
twisted Legendre family of elliptic curves

y2 = AA=D)x(x=1)(x=A).
Then 7 is lisse of rank 2 on C=S, pure of weight one, and symplectically self-dual toward Q (-

1). Along the sections 0, 1 and o of C/T, the local monodromy of ¥ is
(the quadratic character)®(unipotent nontrivial).

For each odd integer m > 1, take F;, := Sym™(#7). Thus ¥, is lisse of even rank m+1, pure of
weight m, and orthogonally selfdual toward Q (—m). Its local monodromy along the sections 0, 1,
oo i

(the quadratic character)®(a single unipotent Jordan block).
Suppose each d,, is even, and take for D,, the divisor d,,ec. So here we are performing quadratic
twists of the #,'s by polynomials in A of even degree d,, which have d,, distinct zeroes, none of

which 1s O or 1. For each odd m, TwistX )

>>0, Ggeom for TwistX ».C /T,DV(Tn) is the group SO((m+1)(d,, + 1)) on each geometric fibre of

C/T.D,(Fm) has rank (m+1)(dy, + 1). By 8.5.7, for v

X,/T. By 8.9.2, for each finite field k and each k—valued point of T, the sheaf

Twisty, ¢/T,D,(Fim) 0 Xyork has Gyrigy = SO(m+1)(d,, + 1). Indeed, if T = Spec(ZIi, 1/2¢)

admits a k—valued point, then k has odd characteristic not #, and k contains a primitive fourth root
of unity. Thus #k = 1 mod 4, and we apply 8.9.2.

(10.2.3.2) Take n=2, T = Spec(Z[1/2¢1), C/T = PlT,S = {0,1,00}. For each positive integer
m = 3 mod 4, take F, from the example 10.2.3.1 above, and take the D,, as in that example. By

8.5.7 and 8.9.2, for each finite field k of odd characteristic not ¢, the sheaf Twisth,C /T,DV(Tm)

on X, @k has Ggeom = Gyyrith = the group SO((m+1)(d,, + 1)).
(10.2.3.3) Take n=2, T = Spec(Zli, 1/6¢, A, 1/A]), C/T = EA/T the elliptic curve whose affine
equation in (g9, g3)—space is
(22)% - 27(g3)2 = A,
S = {0}, the origin on E5. On C - S, take 7 to be Rlﬂ'!Q ! for r the structural morphism of the

univeral family of elliptic curves with differential (E, w) with discriminant A
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y2 =4x3 - g2oX — g3.
Then #7 is lisse of rank 2 on C=S, pure of weight one, and symplectically self—dual toward Q /(=

1). Along the identity section oo of C/T, the local monodromy of ¥ is
(the quadratic character)®(unipotent nontrivial).

For each odd integer m > 1, take #;, := Sym™(#7). Thus ¥, is lisse of even rank m+1, pure of
weight m, and orthogonally selfdual toward Q (—=m). Its local monodromy along the identity
section oo is

(the quadratic character)®(a single unipotent Jordan block).

Suppose each d,, is even, and take for D,, the divisor d, . So here we are performing quadratic
twists of the ¥ ,,'s by polynomials in x and y which have a pole at « of even degree d,, and which
have d,, distinct zeroes. For each odd m, TwistX »C /T,Dv(fm) has rank (m+1)(d,, + 1). By 8.5.7,

for v >>0, Ggeom for TwistX »C /T,DV(Tn) is the group SO((m+1)(d,, + 1)) on each geometric

fibre of X,/T. By 8.10.6, for each finite field k and each k—valued point of T, the sheaf
TwistX ».C /T,DV(Tm) on X, ek has G4, = SO((m+1)(d,, + 1)). Indeed, if T = Spec(Zli, 1/6¢1])
admits a k—valued point, then k has characteristic prime to 6/, and k contains a primitive fourth root

of unity. Thus #k = 1 mod 4, and we apply 8.10.6.
(10.2.3.4) Take n=2, T =T = Spec(ZI1/6¢, A, 1/Al), C/T = EA/T, S = {0}, the origin on E4.

For each positive integer m = 3 mod 4, take ¥, from the example 10.2.3.3 above, and take the D,,

as in that example. By 8.5.7 and 8.10.6, for each finite field k of characteristic prime to 6/, the
sheaf TwistX ».C /T,DV(Tm) on X, @k has Ggeom = Gyyith = the group SO((m+1)(d,, + 1)).

(10.2.4) SO/O examples

(10.2.4.1) Take n=2, T = Spec(Z[1/2¢1), C/T = PYT,S= {0,1,e0}. For each positive integer
m = 1 mod 4, take ¥, from the example 10.2.3.1 above, and take the D,, as in that example. By

8.5.7 and 8.9.2, for each finite field k of odd characteristic not ¢, the sheaf TWistX 2C /T,DV(Tm)

on X,# -k has Ggeom = SO((m+1)(d,, + 1)). If #k = 1 mod 4, then G, =G
SO((m+1)(d,, + 1))., but if #k = 3 mod 4, then G4, is O((m+1)(d,, + 1)).

(10.2.4.2) Take n=2, T =T = Spec(Z[1/6¢, A, 1/Al), C/T = EA/T, S = {0}, the origin on E4.
For each positive integer m = 1 mod 4, take ¥, from the example 10.2.3.3 above, and take the D

geom =

14
as in that example. By 8.5.7 and 8.10.6, for each finite field k of characteristic prime to 6/, the
sheaf TwistX 2,C/T,DV(7_~m) on X, ® k has Ggeom =SO((m+1)(d,, + 1)). If #k = 1 mod 4, then
Garith = Ggeom — SO((m+1)(d,, + 1))., but if #k = 3 mod 4, then G4}, is O((m+1)(d,, + 1)).

(10.2.5) More SL examples
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(10.2.5.1) We take n >3 odd, x : uy(Zl1/t, {1) — (Q()X a character of order n. Pick an

integer m > 2. Take T to be the open set in Amem/Z[1/2nf, {n], with coordinates ag), ay, ..., ay,
over which the degree m polynomial in one variable

f(x) = %; aixi
has invertible discriminant A (i.e., has d distinct roots). Take C/T to be [Pl/T, S to be

{zeroes of f}, if mis = 0 mod n,
{eo} U {zeroes of f} if m is nonzero mod n.

Take 7y on P — S to be £, (1)) Take D, to be the divisor d,ce.

Concretely, for fixed t in T, corresponding to a numerical choice of polynomial f, X, { is
the space of polynomials p(x) of degree d,, with all distinct roots and with g.c.d.(p(x), f(x)) = 1.
Over this space we are looking at the family of curves

y" = fOp(x),
parameterized by the polynomial p(x). The group p, acts (by moving y) on this family, and our

TwistX 2C /T,DV(7:O) is the y—component of the gl along the fibres in this family.

We claim that for each tin T, TwistX,C /T,DV(TO) has Ggeom the group GL,,(N,). By

Pink's semicontinuity result [Ka—ESDE, 8.18.2], it suffices to check at t (lying over) a finite field
valued point of T. So we may assume that T is Spec(k) with k a finite field. We must show that
det(G,) is geometrically of order 2n. Because we took n to be odd, 2n is the number of roots of

unity in the field Q(y). We use the "compatible system over Q(y)" argument of [Ka—ACT, the
"trivial" part of the proof of 5.2 bis], already used in 7.9.2, 7.9.3 and 7.10.2, to see that det(gv)®2n
is trivial. We use a one parameter family of twists of the form t — (t — p1(x))pp(X) to get a curve in
X,, along which G,, has some local monodromies which are pseudoreflections of determinant
XXx9, cf. 5.4.9. So already det(G,,) has geometric order at least 2n along this curve, and hence

det(G,) is geometrically of order 2n on X,,, as required.
(10.2.5.2) Notations as in 10.2.5.1 above, take F() y to be the extension by zero to Al of (the
restriction to Al = AINS of) #(. Define #7 on Al - ALNS to be the lisse sheaf which is the

restriction from Al of the middle convolution of TO ! with LX on AL, The rank of %1 is m unless

m = -1 mod n, in which case the rank is m—1. Local moonodromy of #7 along each of the m

zeroes of f is a pseudoreflection of determinant )(2. Local monodromy along oo is

x®(a pseudoreflection of determinant y™)
unless m = —1 mod n. If m = —1 mod n, local monodromy along oo is scalar, the character y. For
each t 7 ¢ has Ggeom

GL,(m—1). To see this, use the fact that G

the group GL,(m) unless m = —1 mod n, and in that case G 18

geom

geom contains SL, and then use the local monodromy
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information to compute the tame sheaf det(#7 o).

Take D,, to be the divisor d ). Foreach tin T, G,, := TwistX,C /T,DV(?' 1) has Ggeom the

group GL5,(N,). One sees this by using the fact that G contains SL, and then computing the

geom
geometric order of det(G,, ;) at finite field valued points t of T by the argument used in the previous

t)®2n is geometrically trivial.

example. The compatible system argument again shows that det(G,,
The same sort of one parameter family of twists as used above again produces a curve in X, ¢
along which G,,  has some local monodromies which are pseudoreflections of determinant yxy»,

and one concludes exactly as above.

10.3 Applications to average rank

Theorem 10.3.1 Suppose we have ¥ on (C—S)/T satistying all the hypotheses of Theorem 10.0.9,
part 3). Fix v, and fix a conjugacy class o7, in the symmetric group de. Take any sequence of data

k" t., . .
ki, 4 av,kl,tl)
with
k; a finite field, #k; > Max(4A(X,/T)2, 4C(X,/T, Sg dv)2(dvz)4)

t; a k;—valued point T,

Xy kit in (Q ()X such that all Frobenii of gv®(aki,ti,v)deg land in O(N,)), i.e., Oyt is

any choice of a square root of (#ki)_w_l, allowing us to define G,, ti((w+1)/2)’ on X,, t

in which i #k; is strictly increasing. Then we have the following table of limit formulas. In these

tables, the number in the third column is the limit, as 1 — oo, of the average value of the quantity in
the second column over all f's in the set named in the first column.

Xv,ti,ay—split(ki) rank, (G vt ki, f) 172,

XV,ti,O'V—Split(ki) rankquad, an(G Vit ki, f) 1,

rank

XV,ti,O'V—Split(ki) geom, anl@ vt ki, )

More precisely, for each finite extension E/k, and each value of € = 1, denote by X, t,,07,~split

) the subset of X ) consisting of those points f in Xv,ti,a'v—split(ki) such

sign e(kj v,ti,O'V—split(ki
that

det(_av,ki,tiFrObki,fl g, =¢.



Chapter 10: Horizontal results—217

Then we have the following table of limit formulas. In these tables, the number in the third column
is the limit, as 1 — oo, of the average value of the quantity in the second column over all f's in the
set named in the first column.

If Nv is even:

Xv,ti,O'V—split, sign _(kp) rank, (G vt ki, ) 1,
Xv,ti,O'V—split, sign +(kp) rank, (G vt ki, ) 0,
Xv,ti,ay—split, sign —(kp) rankquad, an(@ vt k;, ) 2,
Xv,ti,av—split, sign +(Kp) rankquad, an(G vty kj, 1) 0,
Xv,ti,O'V—split, sign _(kj) rankgeom, an(@ vt ki, f) 2,
Xv,ti,O'V—split, sign +(kj) rankgeom, an(@ A ki, f) 0.
If N, is odd:
Xv,ti,O'V—split, sign —(kp) rank, (G vt k;, ) 1,
Xv,ti,O'V—split, sign +(Kp) rank, (G vt ki, ) 0,
Xv,ti,O'V—split, sign _(ky) rankquad, an(@ vt ki, ) 1,
Xv,ti,av—split, sign +(Kp) rankquad, an(G vty kj, ) 1,
Xv,ti,O'V—split, sign —(Kj)  rankeeqm 4n(G vt ki, ) I,
rank 1.

Xv,ti,O'V—split, sign +(k)

geom, an(@ vty ki, )

proof Immediate from Theorem 10.1.7, part 2), and the proof of 8.3.3. QED
Remark 10.3.2 Notice that rank, (G, t k;, f) is defined as the order of vanishing at T=1 of det(1 —

TF | gv’tii{(w+1)/2)), and that Qv’ti((w+1)/2) was defined to be gv,ti®(a/v,ki,ti)deg- In other

words, the analytic rank in question is the order of vanishing of
det(1 =T Flrobki £lG,)

at the point T = a, . t So this notion depends on which choice of square root of (#ki)_W_1 we
b 1’
take for «,, kit The quadratic and geometric analytic ranks do not depend on this choice. The

reader may at first be disturbed that our results on average analytic rank apply equally to order of
vanishing at the two different points, but there is no contradiction. On the compact group O(N,,,
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R), A — —A is a (measure—preserving) involution which interchanges the functions
A — order of vanishing of det(1-TA) at T=1

and
A — order of vanishing of det(1-TA) at T=-1.

In the case when F arises as the H1 along the fibres of a family of abelian varieties, its weight w is
1, and it is the choice (#ki)_l of square root of (#ki)_2 which must be taken in defining G, (1) in

the Birch and Swinnerton—Dyer conjecture. This problem did not arise in our earlier discussion
8.1.1 of average rank over a fixed finite field k, because earlier (7.0.9) we chose a square root @

of #k, and agreed to use powers of @) whenever we needed square roots of integer powers of #k.

Theorem 10.3.3 Suppose we have ¥ on (C—S)/T satisfying all the hypotheses of Theorem 10.0.9,
part 4). Then G,, is orthogonally self dual toward Q ¢(=w=1). Fix v, and fix a conjugacy class o,

in the symmetric group de. Take any sequence of data
k‘ b t. b . .
ki» 4 av,kl,tl)
with
k; a finite field, #k; > Max(4A(X,/T)2, 4C(X,/T, Sg dv)2(dvz)4)

t; a k;—valued point T,
@y k. t; in (Q/)* is either choice of i(#ki)(_w_l)/ 2

in which i #k; is strictly increasing. Each set X is empty. We have the following table

V,t;,sign —
of limit formulas. In these tables, the number in the third column is the limit, as 1 — oo, of the
average value of the quantity in the second column over all f's in the set named in the first column.

XV,ti,O'V—Split(ki) rank,, (G vt ki, ) 0,

Xv,ti,av—split(ki) r ankquad, an(G vt kj, 1) 0,

rank 0.

XV,ti,O'V—Split(ki) geom, an(@ V.t ki, f)

proof Immediate from Theorem 10.1.7, part 3), and the proof of 8.3.6. QED

Theorem 10.3.4 Suppose we have ¥ on (C-S)/T satisfying all the hypotheses of Theorem 10.0.9,
part 5). Then G, is orthogonally self dual toward Q ¢(=w=1). Fix v, fix a sign € = 1, and fix a

conjugacy class o7, in the symmetric group de. Take any sequence of data
ks, t:, . t.
(kj. 4 av,kl,tl)

with
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k; a finite field, #k; > Max(4A(X,/T)2, 4C(X,/T, Sg ; )2(d, )%
v

t; a kj—valued point T, with A(Fmbki,ti) =€,

¥y kit in (Q f)x is either choice of i(#ki)(_w_l)/ 2

in which i #k; is strictly increasing. We have the following table of limit formulas. In these

tables, the number in the third column is the limit, as 1 — oo, of the average value of the quantity in
the second column over all f's in the set named in the first column.

e=+1

XV,ti,O'V—Split(ki) rank,, (G vt ki, ) 0,
XV,ti,O'V—Split(ki) rankquad, anl@ vt ki, f) 0,
XV,ti,O'V—Split(ki) rankgeom, an(@ A ki, f) 0.
g=-1

XV,ti,O'V—Split(ki) rank,, (G vt ki, f) 1,
Xv,ti,o'v—split(ki) rankquad, an(@ vt ki, ) 1,

XV,ti,O'V—Split(ki) rankgeom, an(G vt ki, f) 2.

proof Immediate from Theorem 10.1.7, part 4), and the proof of 8.3.8. QED

10.4 Interlude: Review of GUE and eigenvalue location measures
(10.4.1) Fix an integer r > 1 and an offset vector ¢ = (¢(1), ..., c(r)) in Z*:
0<c(l)<c?)<...<c(r).
Define ¢(0) := 0. Given an integer N > c(r), a closed subgroup K of U(N), and an element A in K,
write the eigenvalues of A as el¢() with angles ¢(j), j = 1 to N lying in [0, 27):
0<e(l)<pR)<...<p(N) < 2m.
Then extend the definition of ¢(j) to all integers j by requiring
¢(j+N)=¢() + 27
From the angles ¢(j), we next define spacing vectors in RY. For k = 1 to N, the k'th spacing vector
with offsets ¢ attached to A, denoted sy (offsets ¢), is the vector in RT whose i'th component is
(N27m)(p(k + c(i)) — ok + c(i-1))).
The Borel probability measure on RY
u(A, K, offsets c)
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is defined to be
(1/N)2k - 1 1o N (delta measure at sy (offsets ¢)),

cf. [Ka—Sa, RMFEM, 1.01.
(10.4.2) For any nonvoid open set K(y of K, One can make sense of the expected value

u(Ko, offsets ¢) of these measures u(A, K, offsets ¢) as A varies over K. Formally,
u(Ky, offsets ¢) := '[KO U(A, K, offsets c)dA,
where dA denotes the Haar measure on K, normalized to give Ky measure one, cf. [Ka—-Sa,

RMFEM, 1.11. This expected value measure is a Borel probability measure on R,

(10.4.3) The GUE measure u(univ, offsets ¢) is the Borel probability measure on RT which
is the large N limit of the measures u(U(N), offsets c), cf. [Ka—Sa, RMFEM, 1.2.11 for the precise
statement. The universality of u(univ, offsets c) is this. For each large N separately take H(N)
U(N) to be any of

1) any closed subgroup with SU(N) c H(N) < U(N),

2) any closed subgroup with SO(N) < H(N) < U(1)-O(N),

3) O_(N),

4) any closed subgroup with USp(N) < H(N) < U(1)-USp(N).
Then u(U(N), offsets ¢) is the large N limit of the measures u(H(N), offsets ¢), cf. [Ka—Sa,
RMFEM, 1.2.3 and 1.2.6] for a precise statement.

(10.4.4) The definition of the eigenvalue location measures v(c), v(—, ¢) and v(+, ¢) on R
attached to the offset vector ¢ is more involved, and requires a case by case discussion.
(10.4.5) To define v(c), we begin with U(N) for large N. Given A in U(N), again write its
eigenvalues as el?() with angles ¢(j) = ¢(j)(A), j =1 to N lying in [0, 27):
0<e(l)<p2)<...<p(N) < 2nm.
Define the normalized angles 6(j)(A) of A to be the real numbers in [0, N) defined by
03G)(A) := (N/2m)¢(j)(A), for j=1 to N.
Define a map
F.:UN) - R”
by
Fo(A) := (B(c(D))(A), 8(c(2))(A),..., Oc(1)(A)).
Then we define the Borel probability measure v(U(N), ¢) on R to be the direct image by F,, of the

total mass one Haar measure on U(N):
V(U(N), ¢) := F_x(total mass one Haar mesure on U(N)).

(10.4.6) Similarly, for any of the closed subgroups U, (N) between SU(N) and U(N), we

define
V(Up(N), ©) := F_«(total mass one Haar mesure on U, (N)).

If we pick, separarately for each large N, H(N) to be either U(N) or some U,(N), then the large N



Chapter 10: Horizontal results—221

limit of the measures v(H(N), ¢) exists as a Borel probability measure on RT, cf [Ka—Sa, RMFEM,
AD 4.3 and AD 10.21.

(10.4.7) To define v(, ¢) we need to distinguish yet more cases. Suppose first we look at
G(2N) which is either USp(2N) or SO(2N). For both these groups, the eigenvalues of any element

A occur in N inverse pairs 1190 with angles
0<p()<p2)<...<p(N) <.
We define the normalized angles
0G)(A) := (N/m)¢(j)(A), for j=1to N.
For N > ¢(r), we again define
F.:G(2N) — RT
by
E (A) = (0(c(1))(A), 8(c(2))(A)...., B(c(r))(A)).
Then we define the Borel probability measure v(G(2N), ¢) on R as the direct image by F. of the
total mass one Haar measure on G(2N):
V(G(2N), ¢) := F_x(total mass one Haar mesure on G(2N)).
(10.4.8) For O_(2N), every element has both +1 as eigenvalues. The other 2N-2

eigenvalues occur in N—1 inverse pairs et190) with angles
0<p(1)<pR)<...<p(N-1) <.
We define the normalized angles
0G)(A) := (N/m)¢(j)(A), for j=1to N-1.
For N—1 > c(r), we define
F.:O_(2N) — RT
by
E (A) = (0(c(1))(A), 8(c(2))(A)...., B(c(r))(A)).
Then we define the Borel probability measure v(O_(2N), c) on RT as v(O_(2N), ¢) :=
Fx(total mass one Haar mesure on O_(2N)).

(10.4.9) For O4(2N+1), every element A admits the indicated choice of 1 as an eigenvalue,

and the other 2N eigenvalues occur in N inverse pairs inverse pairs et190) with angles
0<p()<pR)<...<p(N) <.
We define the normalized angles
0G)(A) := (N + 1/2)/m)¢(G)(A), for j=1 to N.
For N > c¢(r), we define
F.:O41(2N+1) - RT
by
Fo(A) := (B(c(D))(A), 8(c(2))(A),..., O(c(1)(A)).
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Then we define the Borel probability measure v(O4(2N+1), ¢) on RT as
V(O4(2N+1), ¢) := F_«(total mass one Haar mesure on O4(2N+1)).

(10.4.10) Having made the relevant definitions, we can now state the large N limit theorems
for these measures. The measures

v(USp(2N), ¢)
on R! have a large N limit, denoted v(—, ¢). To state the result for orthononal groups, we pass to
the O ¢ notation. For each choice of € =+ 1, we put

Ogign eN) := {A in O(N) with det(-A) = ¢}.

sign

The measures
V(Ogjgn —(N), ©)

have the same large N limit v(—, c) as the measures v(USp(2N), ¢). The measures
V(Osign +(N), ¢)

have a large N limit, denoted v(+, ), on R, All three measures
v(c), v(—, ¢), V(+, ¢)

are Borel probability measures on RT which are absolutely continuous with respect to Lebesgue
measure, cf [Ka—Sa, RMFEM, AD 4.3, AD 4.4.1, and AD 10.21.

10.5 Applications to GUE discrepancy

Theorem 10.5.1 Fix an integer r > 1 and an offset vector ¢ = (c(1), ..., ¢(r)) in Z". Fix an integer 1
<k <r, and a surjective linear map
m: R — RX,
Denote
= p(univ, offsets c).
Suppose we are in one of the first three cases (SL, Sp, O, or strongly SO) of Theorem 10.1.7. In

the SL case, assume further that for each v, the group Ggeom for G,, ; on X is constant in t.
Denote by N,, the rank of G,,., and denote by K(N,,) the closed subgroup of U(N,,) which is the

chosen compact form of the common value of G for all the G, ¢'s.

geom
Pick any sequence (k;, t;) of of pairs
(a finite field k;, a kj—valued point t; of T)
in which i — #Kk; is a strictly increasing sequence. For each v, the sets Xti(ki) are nonempty for
large enough i. For each such i we pick an «,, ki t; 25 in (the corresponding case of) 10.1.7 and

form the measure
plkis G, @y g )

on K(N,)*.
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For each v large enough that N, > ¢(r), form, for each element A in K(N,)), the spacing

measure on RT
Hy(A) = u(A, K(N,), offsets c).
Then take its direct image
Tesdy (A)
to RX. Form the discrepancy [Ka—Sa, RMFEM, 1.0.10]
discrep(mspt, mspty (A))
between this measure on RX and the direct image 7+u of the GUE measure, and view its formation

as a continuous R—valued central function
A — Discrep(A) := discrep(msp, sty (A))
on K(N,,). Consider the integral
IK(NV) Discrep(A)du(kj, tj, @y k. 1. )(A)
= (1/#Xv,ti(ki))2x 0 X, (k) Discrep(6(k;, t;, X, a’v,ki,ti))'
Then the double limit
lim, , lim, JK(NV) Discrep(A)du(k;, tj, a. 1. ,)(A)
vanishes. More precisely, given € > 0, there exists an explicit constant N(g, r, ¢ ) such that if N, >
N(e, r, ¢ ), we have
lim; IK(NV) Discrep(A)du(k;, t;, aki,ti,v)(A)
< (Nv)g - (1/2r+4)).
If we are in the Sp case or the O case, we can in addition pick a conjugacy class o7, in de
for each v. Then we can consider the sequences of measures
uck;, t, aki’ti’v’ o,,~split) on K(Ny)#.
The above results are also valid for this sequence of measures.

In the O case, we can also make a single choice of sign €, and so we can consider the two
sequences of measures

uck;, t, aki’ti"” sign €) on Osign e(N,, [R)#
uck;, t;, aki’ti’y’ O'V—split, sign €) on Osign Ny, [R)#'

The above results are also valid for these sequences of measures.
proof This is immediate from Theorem 10.1.7, thanks to [Ka—Sa, RMFEM, 12.1.31. QED

Theorem 10.5.2 Fix an integer r > 1 and an offset vector ¢ = (¢(1), ..., ¢(r)) in Z'. Fix an integer 1
<k <r, and a surjective linear map

m: RT - RX,
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Denote
= p(univ, offsets c).
Suppose we are in the SO/O case of Theorem 10.1.7. Pick a sign € = +1. Denote by N,, the rank of

Gy
Pick any sequence (k;, t;) of of pairs
(a finite field k;, a kj—valued point t; of T)

in which i+ #k; is a strictly increasing sequence and in which A(Frobki ti) = ¢ for every i. For
each v, the sets Xti(ki) are nonempty for large enough i. For each such i we pick an O‘v,ki,ti as in

the SO/O case of 10.1.7, and form the measure
ukj, G, @y k. 1)
on Ogign g(N,, R)”.
For each v large enough that N, > ¢(r), form, for each element A in Osign ¢(N,, R), the
spacing measure on RY
My (A) = u(A, Osign ¢(Ny,, R), offsets ¢).
Then take its direct image
Top, (A)
to RX. Form the discrepancy [Ka—Sa, RMFEM, 1.0.10]
discrep(7spt, mp, (A))
between this measure on RX and the direct image 7xu of the GUE measure, and view its formation
as a continuous R—valued central (i.e., invariant by O(N,,, R) conjugation) function
A — Discrep(A) := discrep(msp, sty (A))
on Osign ¢(N,,, R). Consider the integral
Josign N R Discrep(A)du(k;, tj, ay k. 1., )(A)
= (1/#Xv,ti(ki))2x 0 X, (k) Discrep(6(k;, t;, X, a’v,ki,ti))'

Then the double limit
lim,_,_lim, Josign (N R Discrep(A)du(k;, t, ay. ¢ )(A)
vanishes. More precisely, given € > 0, there exists an explicit constant N(g, r, ¢ ) such that if N, >
N(e, r, ¢ ), we have
lim; _ '[Osign (N, R) Discrep(A)du(k;, t;, aki,ti,v)(A)
< (Nv)g - (1/(2r+4)).

Pick a conjugacy class o), in Sy for each v, and consider the sequences of measures
14
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p(kj, e @ g 0y=SPII0 0n Ogion (N, R)Y.
Then the above results are also valid for this sequence of measures.
proof This is immediate from Theorem 10.1.7, thanks to [Ka—Sa, RMFEM, 12.1.31. QED

10.6 Application to eigenvalue location measures

Theorem 10.6.1 Fix an integer r > 1 and an offset vector ¢ = (c(1), ..., ¢(r)) in Z*. Suppose we are
in one of the cases of Theorem 10.1.7. In the SL case, assume further that for each v, the group

Ggeom for gv,t on X is constant in t. In the SO/O case, pick a sign € = £1.

Pick any sequence (k;, t;) of of pairs
(a finite field k;, a kj—valued point t; of T)
in which i — #k; is a strictly increasing sequence. If we are in the SO/O case, assume in addition

that
A(Frobki ti) = ¢, for every i.

For each v, the sets Xti(ki) are nonempty for large enough i, and for each such i we pick an aV,ki,ti
as in (the corresponding case of) 10.1.7, and form the measure
pkj, G, @y k. 1)
on
Umv(NV)#, in the SL case,
USp(NV)#, in the Sp case,
O(N,, [R)#, in the O case,
SO(NV, [R)#, in the strongly SO case,
Osign (N, IR)#, in the SO/O case,
If we are in the Sp case, we can in addition pick a conjugacy class o, in de for each v.
Then we can consider the sequences of measures
(ks e @ g - 07=Split) on USp(N,)#.
In the O case, we can pick a conjugacy class o, in de for each v, and we can also make a single
choice of sign €. So we can consider the two sequences of measures
u(k;, t, aki’ti"” sign €) on Osign (N, [R)#
(ki G, @ g 0y =SPIIE, sign €) on Ogjn ¢ (N, R)*
Then we have the following integration formulas. Fix a continuous function h of compact support
on RL.

1) If we are in the SL case, we can compute I[Rr hdv(c) as the double limit
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lim,,_, ., lim; —>°°JUmV<NV> h(F(ANdp(ki, b, @y k. (A,

2) If we are in the Sp case, we can compute _[[Rr hdv(-,c) as the double limit
limy, oo 1im;_ycoluspo ) BOFC(ADduCK;, t, @y ke 1 )(A),
or as the double limit

lim,,_, ., lim; —>°°JUSp(NV) h(F (A))du(k;, t;, av’ki’ti’ o, ~split)(A).

3) If we are in the O case, then for either choice of sign €, we can compute f[Rr hdv(e,c) as the
double limit

lim,,_, ., lim; _>°°'[Osign () h(F (A))du(k;, t;, a/v’ki’ti,sign €)(A),

or as the double limit

lim,,_y . lim;_y

Jo

4) If we are in the SO/O case, and have chosen the sign €, we can compute f[Rr hdv(e,c) as the

sign e, h(F.(A)duk;, t;, ¥y kit o, ~split,sign €)(A).

double limit

lim,,_, lim; _>°°'[Osign () hE(A)duky, t, ey k. (A,

or as the double limit

lim,,_, lim; _)oofosign ) hHECA) K, 4 @y k. 1 0 ~SPLO(A).

proof This is immediate from Theorem 10.1.7, thanks to [Ka—Sa, RMFEM, AD 4.3, AD 10.2 and
AD 11.4]. QED
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