[was@descent kani]$ [was@descent kani]$ Magma V2.7-1 Fri Jun 9 2000 19:33:35 on descent [Seed = 58424496] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R factor modcharpoly CS MS Tn factormod padiccharpoly DC ND Z fcp qexp ES NS charpoly fn x F Q ellap idxG0 > quit; Total time: 1.349 seconds [was@descent kani]$ exit exit Process magma<1> finished [was@descent kani]$ [was@descent kani]$ Magma V2.7-1 Fri Jun 9 2000 19:51:05 on descent [Seed = 1963788000] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R factor modcharpoly CS MS Tn factormod padiccharpoly DC ND Z fcp qexp ES NS charpoly fn x F Q ellap idxG0 > > > quit; Total time: 1.339 seconds [was@descent kani]$ exit exit Process magma<1> finished [was@descent kani]$ [was@descent kani]$ Magma V2.7-1 Fri Jun 9 2000 19:51:24 on descent [Seed = 1830100717] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R factor modcharpoly CS MS Tn factormod padiccharpoly DC ND Z fcp qexp ES NS charpoly fn x F Q ellap idxG0 > Attach("kani.m"); In file "/home/was/people/kani/kani.m", line 4, column 9: >> declare attribute ModTupFld: ^ User error: bad declaration Magma: Internal error Please mail this entire run [**WITH THE FOLLOWING LINES**] to magma-bugs@maths.usyd.edu.au Version date: Fri May 26 08:13:10 EST 2000 Initial seed: 1830100717 Time to this point: 1.39 Segmentation fault Magma: Fatal Error: Package Compiler: illegal jmp value 4 [was@descent kani]$ rm *.dat *.sig rm: cannot remove `*.dat': No such file or directory [was@descent kani]$ ls kani.m kani.m~ log-jun09 log-jun09~ [was@descent kani]$ /bin/ls kani.m kani.m~ log-jun09 log-jun09~ [was@descent kani]$ exit exit Process magma finished [was@descent kani]$ [was@descent kani]$ Magma V2.7-1 Fri Jun 9 2000 19:52:16 on descent [Seed = 1612190636] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R factor modcharpoly CS MS Tn factormod padiccharpoly DC ND Z fcp qexp ES NS charpoly fn x F Q ellap idxG0 > Attach("kani.m"); In file "/home/was/people/kani/kani.m", line 4, column 9: >> declare attribute ModTupFld: ^ User error: bad declaration Magma: Internal error Please mail this entire run [**WITH THE FOLLOWING LINES**] to magma-bugs@maths.usyd.edu.au Version date: Fri May 26 08:13:10 EST 2000 Initial seed: 1612190636 Time to this point: 1.37 Segmentation fault Magma: Fatal Error: Package Compiler: illegal jmp value 4 [was@descent kani]$ ; bash: syntax error near unexpected token `;' [was@descent kani]$ magma Magma V2.7-1 Fri Jun 9 2000 19:52:55 on descent [Seed = 1629033290] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R factor modcharpoly CS MS Tn factormod padiccharpoly DC ND Z fcp qexp ES NS charpoly fn x F Q ellap idxG0 > Attach("kani.m"); In file "/home/was/people/kani/kani.m", line 4, column 9: >> declare attribute ModTupFld : ^ User error: bad declaration Magma: Internal error Please mail this entire run [**WITH THE FOLLOWING LINES**] to magma-bugs@maths.usyd.edu.au Version date: Fri May 26 08:13:10 EST 2000 Initial seed: 1629033290 Time to this point: 1.38 Segmentation fault Magma: Fatal Error: Package Compiler: illegal jmp value 4 [was@descent kani]$ magma Magma V2.7-1 Fri Jun 9 2000 19:53:13 on descent [Seed = 1645875316] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R factor modcharpoly CS MS Tn factormod padiccharpoly DC ND Z fcp qexp ES NS charpoly fn x F Q ellap idxG0 > Attach("kani.m"); > G:=SkGamma(2,17,20); > ; > G:=SkGamma(2,17,20); > Print(G); S_2(Gamma(17)), prec=20. > G_Oldforms(G); G_Oldforms( G: Group of Dirichlet characters of modulus 17 over Cyclotomic ... ) In file "/home/was/people/kani/kani.m", line 69, column 8: >> G`g_oldforms := [* Q_p, eps_p *]; ^ Runtime error in :=: Invalid attribute 'g_oldforms' for this structure > G; Full Vector space of degree 1 over Rational Field > G`p; 17 > G`g_oldforms; >> G`g_oldforms; ^ Runtime error in `: Attribute 'g_oldforms' for this structure is valid but not assigned > ; > G:=SkGamma(2,17,20); > G_Oldforms(G); [* [* q + (-zeta_16^6 + zeta_16^4 - 1)*q^2 + (zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^3 + (2*zeta_16^6 - zeta_16^4 + 2*zeta_16^2)*q^4 + (-zeta_16^6 - zeta_16^4)*q^5 + (-zeta_16^6 + zeta_16^4 - zeta_16^2 + 1)*q^6 + (-zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^7 + (zeta_16^4 - 3*zeta_16^2 + 1)*q^8 + (2*zeta_16^4 + zeta_16^2 + 2)*q^9 + (zeta_16^6 + 1)*q^10 + (zeta_16^6 - zeta_16^4 + zeta_16^2 - 1)*q^11 + (-3*zeta_16^6 - 3*zeta_16^4 + zeta_16^2 - 1)*q^12 + (-zeta_16^6 - zeta_16^2)*q^13 + (3*zeta_16^6 - 3*zeta_16^4 + zeta_16^2 + 1)*q^14 + (2*zeta_16^6 + 2*zeta_16^4 - 2)*q^15 - 3*q^16 + (2*zeta_16^6 + 3*zeta_16^4 - 2*zeta_16^2)*q^17 + (-zeta_16^6 + zeta_16^2 - 3)*q^18 + (-2*zeta_16^6 - 2*zeta_16^4 + 2)*q^19 + O(q^20), q + (-zeta_16^4 - zeta_16^2 - 1)*q^2 + (-zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^3 + (2*zeta_16^6 + zeta_16^4 + 2*zeta_16^2)*q^4 + (zeta_16^4 - zeta_16^2)*q^5 + (-zeta_16^6 - zeta_16^4 - zeta_16^2 + 1)*q^6 + (zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^7 + (-3*zeta_16^6 - zeta_16^4 + 1)*q^8 + (zeta_16^6 - 2*zeta_16^4 + 2)*q^9 + (zeta_16^2 + 1)*q^10 + (zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^11 + (zeta_16^6 + 3*zeta_16^4 - 3*zeta_16^2 - 1)*q^12 + (-zeta_16^6 - zeta_16^2)*q^13 + (zeta_16^6 + 3*zeta_16^4 + 3*zeta_16^2 + 1)*q^14 + (-2*zeta_16^4 + 2*zeta_16^2 - 2)*q^15 - 3*q^16 + (-2*zeta_16^6 - 3*zeta_16^4 + 2*zeta_16^2)*q^17 + (zeta_16^6 - zeta_16^2 - 3)*q^18 + (2*zeta_16^4 - 2*zeta_16^2 + 2)*q^19 + O(q^20), q + (zeta_16^6 + zeta_16^4 - 1)*q^2 + (-zeta_16^6 - zeta_16^4 + zeta_16^2 - 1)*q^3 + (-2*zeta_16^6 - zeta_16^4 - 2*zeta_16^2)*q^4 + (zeta_16^6 - zeta_16^4)*q^5 + (zeta_16^6 + zeta_16^4 + zeta_16^2 + 1)*q^6 + (zeta_16^6 + zeta_16^4 - zeta_16^2 - 1)*q^7 + (zeta_16^4 + 3*zeta_16^2 + 1)*q^8 + (2*zeta_16^4 - zeta_16^2 + 2)*q^9 + (-zeta_16^6 + 1)*q^10 + (-zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^11 + (3*zeta_16^6 - 3*zeta_16^4 - zeta_16^2 - 1)*q^12 + (zeta_16^6 + zeta_16^2)*q^13 + (-3*zeta_16^6 - 3*zeta_16^4 - zeta_16^2 + 1)*q^14 + (-2*zeta_16^6 + 2*zeta_16^4 - 2)*q^15 - 3*q^16 + (-2*zeta_16^6 + 3*zeta_16^4 + 2*zeta_16^2)*q^17 + (zeta_16^6 - zeta_16^2 - 3)*q^18 + (2*zeta_16^6 - 2*zeta_16^4 + 2)*q^19 + O(q^20), q + (-zeta_16^4 + zeta_16^2 - 1)*q^2 + (zeta_16^6 + zeta_16^4 - zeta_16^2 - 1)*q^3 + (-2*zeta_16^6 + zeta_16^4 - 2*zeta_16^2)*q^4 + (zeta_16^4 + zeta_16^2)*q^5 + (zeta_16^6 - zeta_16^4 + zeta_16^2 + 1)*q^6 + (-zeta_16^6 - zeta_16^4 + zeta_16^2 - 1)*q^7 + (3*zeta_16^6 - zeta_16^4 + 1)*q^8 + (-zeta_16^6 - 2*zeta_16^4 + 2)*q^9 + (-zeta_16^2 + 1)*q^10 + (-zeta_16^6 + zeta_16^4 - zeta_16^2 - 1)*q^11 + (-zeta_16^6 + 3*zeta_16^4 + 3*zeta_16^2 - 1)*q^12 + (zeta_16^6 + zeta_16^2)*q^13 + (-zeta_16^6 + 3*zeta_16^4 - 3*zeta_16^2 + 1)*q^14 + (-2*zeta_16^4 - 2*zeta_16^2 - 2)*q^15 - 3*q^16 + (2*zeta_16^6 - 3*zeta_16^4 - 2*zeta_16^2)*q^17 + (-zeta_16^6 + zeta_16^2 - 3)*q^18 + (2*zeta_16^4 + 2*zeta_16^2 + 2)*q^19 + O(q^20), q - q^2 - q^4 - 2*q^5 + 4*q^7 + 3*q^8 - 3*q^9 + 2*q^10 - 2*q^13 - 4*q^14 - q^16 + q^17 + 3*q^18 - 4*q^19 + O(q^20) *], [* eps^2, eps^6, eps^10, eps^14, 1 *] *] > FundamentalNewforms(G); [* q - q^2 - q^4 + 2*q^5 - 4*q^7 + 3*q^8 - 3*q^9 - 2*q^10 - 2*q^13 + 4*q^14 - q^16 + 3*q^18 - 4*q^19 + O(q^20), q + (-1/4*a^3 - 1/4*a^2 + 27/4*a + 3/4)*q^2 + (-1/8*a^3 - 1/8*a^2 + 23/8*a + 3/8)*q^3 + (-1/2*a^3 - 1/2*a^2 + 27/2*a + 1/2)*q^4 + (-1/4*a^3 - 1/8*a^2 + 13/2*a - 19/8)*q^5 + (3/8*a^3 + 1/8*a^2 - 81/8*a + 41/8)*q^6 + (-3/8*a^3 - 1/8*a^2 + 81/8*a - 41/8)*q^7 + (-1/4*a^3 - 1/4*a^2 + 27/4*a + 11/4)*q^8 + (1/2*a^3 + 1/2*a^2 - 27/2*a + 3/2)*q^9 + (-1/8*a^3 + 29/8*a - 11/4)*q^10 + (3/8*a^3 + 1/8*a^2 - 81/8*a + 41/8)*q^11 + (7/8*a^3 + 3/8*a^2 - 185/8*a + 79/8)*q^12 + (-1/4*a^3 - 1/4*a^2 + 27/4*a - 1/4)*q^13 + (-5/8*a^3 - 1/8*a^2 + 139/8*a - 85/8)*q^14 + (1/2*a^3 + 1/2*a^2 - 27/2*a + 5/2)*q^15 + 3*q^16 + (1/4*a^3 + 1/4*a^2 - 27/4*a - 11/4)*q^18 + (1/2*a^3 + 1/2*a^2 - 27/2*a + 5/2)*q^19 + O(q^20), q + a*q^2 + (a + 1)*q^3 + (-a + 1)*q^4 - a*q^5 + 3*q^6 + (a + 2)*q^7 - 3*q^8 + (a + 1)*q^9 + (a - 3)*q^10 + 3*q^11 + (a - 2)*q^12 + (a - 1)*q^13 + (a + 3)*q^14 - 3*q^15 + (-a - 2)*q^16 + 3*q^18 + (-3*a - 1)*q^19 + O(q^20), q + a*q^2 + (-a - 1)*q^3 + (-a + 1)*q^4 + a*q^5 - 3*q^6 + (-a - 2)*q^7 - 3*q^8 + (a + 1)*q^9 + (-a + 3)*q^10 - 3*q^11 + (-a + 2)*q^12 + (a - 1)*q^13 + (-a - 3)*q^14 - 3*q^15 + (-a - 2)*q^16 + 3*q^18 + (-3*a - 1)*q^19 + O(q^20), q + a*q^2 + (a^2 - 1)*q^3 + (a^2 - 2)*q^4 + (a + 2)*q^5 + (2*a - 1)*q^6 + (-a^2 + 2)*q^7 + (-a - 1)*q^8 + (a^2 - a - 2)*q^9 + (a^2 + 2*a)*q^10 + (-2*a^2 - 2*a + 6)*q^11 + (-a + 2)*q^12 + (-2*a^2 - 3*a + 6)*q^13 + (-a + 1)*q^14 + (2*a^2 + 2*a - 3)*q^15 + (-3*a^2 - a + 4)*q^16 + (-a^2 + a - 1)*q^18 + a*q^19 + O(q^20), q + a*q^2 + (-a^2 + 1)*q^3 + (a^2 - 2)*q^4 + (-a - 2)*q^5 + (-2*a + 1)*q^6 + (a^2 - 2)*q^7 + (-a - 1)*q^8 + (a^2 - a - 2)*q^9 + (-a^2 - 2*a)*q^10 + (2*a^2 + 2*a - 6)*q^11 + (a - 2)*q^12 + (-2*a^2 - 3*a + 6)*q^13 + (a - 1)*q^14 + (2*a^2 + 2*a - 3)*q^15 + (-3*a^2 - a + 4)*q^16 + (-a^2 + a - 1)*q^18 + a*q^19 + O(q^20) *] > ; > ; > S:=SkGamma(11,4,8); >> S:=SkGamma(11,4,8); ^ Runtime error in 'SkGamma': Argument 2 (4) should be >= 7 > S:=SkGamma(11,4,8);~ > Print(S); S_4(Gamma(11)), prec=8. > G_Oldforms(S); [* [* q + (-zeta_16^6 + zeta_16^4 - 1)*q^2 + (zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^3 + (2*zeta_16^6 - zeta_16^4 + 2*zeta_16^2)*q^4 + (-zeta_16^6 - zeta_16^4)*q^5 + (-zeta_16^6 + zeta_16^4 - zeta_16^2 + 1)*q^6 + (-zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^7 + (zeta_16^4 - 3*zeta_16^2 + 1)*q^8 + (2*zeta_16^4 + zeta_16^2 + 2)*q^9 + (zeta_16^6 + 1)*q^10 + (zeta_16^6 - zeta_16^4 + zeta_16^2 - 1)*q^11 + (-3*zeta_16^6 - 3*zeta_16^4 + zeta_16^2 - 1)*q^12 + (-zeta_16^6 - zeta_16^2)*q^13 + (3*zeta_16^6 - 3*zeta_16^4 + zeta_16^2 + 1)*q^14 + (2*zeta_16^6 + 2*zeta_16^4 - 2)*q^15 - 3*q^16 + (2*zeta_16^6 + 3*zeta_16^4 - 2*zeta_16^2)*q^17 + (-zeta_16^6 + zeta_16^2 - 3)*q^18 + (-2*zeta_16^6 - 2*zeta_16^4 + 2)*q^19 + O(q^20), q + (-zeta_16^4 - zeta_16^2 - 1)*q^2 + (-zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^3 + (2*zeta_16^6 + zeta_16^4 + 2*zeta_16^2)*q^4 + (zeta_16^4 - zeta_16^2)*q^5 + (-zeta_16^6 - zeta_16^4 - zeta_16^2 + 1)*q^6 + (zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^7 + (-3*zeta_16^6 - zeta_16^4 + 1)*q^8 + (zeta_16^6 - 2*zeta_16^4 + 2)*q^9 + (zeta_16^2 + 1)*q^10 + (zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^11 + (zeta_16^6 + 3*zeta_16^4 - 3*zeta_16^2 - 1)*q^12 + (-zeta_16^6 - zeta_16^2)*q^13 + (zeta_16^6 + 3*zeta_16^4 + 3*zeta_16^2 + 1)*q^14 + (-2*zeta_16^4 + 2*zeta_16^2 - 2)*q^15 - 3*q^16 + (-2*zeta_16^6 - 3*zeta_16^4 + 2*zeta_16^2)*q^17 + (zeta_16^6 - zeta_16^2 - 3)*q^18 + (2*zeta_16^4 - 2*zeta_16^2 + 2)*q^19 + O(q^20), q + (zeta_16^6 + zeta_16^4 - 1)*q^2 + (-zeta_16^6 - zeta_16^4 + zeta_16^2 - 1)*q^3 + (-2*zeta_16^6 - zeta_16^4 - 2*zeta_16^2)*q^4 + (zeta_16^6 - zeta_16^4)*q^5 + (zeta_16^6 + zeta_16^4 + zeta_16^2 + 1)*q^6 + (zeta_16^6 + zeta_16^4 - zeta_16^2 - 1)*q^7 + (zeta_16^4 + 3*zeta_16^2 + 1)*q^8 + (2*zeta_16^4 - zeta_16^2 + 2)*q^9 + (-zeta_16^6 + 1)*q^10 + (-zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^11 + (3*zeta_16^6 - 3*zeta_16^4 - zeta_16^2 - 1)*q^12 + (zeta_16^6 + zeta_16^2)*q^13 + (-3*zeta_16^6 - 3*zeta_16^4 - zeta_16^2 + 1)*q^14 + (-2*zeta_16^6 + 2*zeta_16^4 - 2)*q^15 - 3*q^16 + (-2*zeta_16^6 + 3*zeta_16^4 + 2*zeta_16^2)*q^17 + (zeta_16^6 - zeta_16^2 - 3)*q^18 + (2*zeta_16^6 - 2*zeta_16^4 + 2)*q^19 + O(q^20), q + (-zeta_16^4 + zeta_16^2 - 1)*q^2 + (zeta_16^6 + zeta_16^4 - zeta_16^2 - 1)*q^3 + (-2*zeta_16^6 + zeta_16^4 - 2*zeta_16^2)*q^4 + (zeta_16^4 + zeta_16^2)*q^5 + (zeta_16^6 - zeta_16^4 + zeta_16^2 + 1)*q^6 + (-zeta_16^6 - zeta_16^4 + zeta_16^2 - 1)*q^7 + (3*zeta_16^6 - zeta_16^4 + 1)*q^8 + (-zeta_16^6 - 2*zeta_16^4 + 2)*q^9 + (-zeta_16^2 + 1)*q^10 + (-zeta_16^6 + zeta_16^4 - zeta_16^2 - 1)*q^11 + (-zeta_16^6 + 3*zeta_16^4 + 3*zeta_16^2 - 1)*q^12 + (zeta_16^6 + zeta_16^2)*q^13 + (-zeta_16^6 + 3*zeta_16^4 - 3*zeta_16^2 + 1)*q^14 + (-2*zeta_16^4 - 2*zeta_16^2 - 2)*q^15 - 3*q^16 + (2*zeta_16^6 - 3*zeta_16^4 - 2*zeta_16^2)*q^17 + (-zeta_16^6 + zeta_16^2 - 3)*q^18 + (2*zeta_16^4 + 2*zeta_16^2 + 2)*q^19 + O(q^20), q - q^2 - q^4 - 2*q^5 + 4*q^7 + 3*q^8 - 3*q^9 + 2*q^10 - 2*q^13 - 4*q^14 - q^16 + q^17 + 3*q^18 - 4*q^19 + O(q^20) *], [* eps^2, eps^6, eps^10, eps^14, 1 *] *] > FundamentalNewforms(S); [* q - q^2 - q^4 + 2*q^5 - 4*q^7 + 3*q^8 - 3*q^9 - 2*q^10 - 2*q^13 + 4*q^14 - q^16 + 3*q^18 - 4*q^19 + O(q^20), q + (-1/4*a^3 - 1/4*a^2 + 27/4*a + 3/4)*q^2 + (-1/8*a^3 - 1/8*a^2 + 23/8*a + 3/8)*q^3 + (-1/2*a^3 - 1/2*a^2 + 27/2*a + 1/2)*q^4 + (-1/4*a^3 - 1/8*a^2 + 13/2*a - 19/8)*q^5 + (3/8*a^3 + 1/8*a^2 - 81/8*a + 41/8)*q^6 + (-3/8*a^3 - 1/8*a^2 + 81/8*a - 41/8)*q^7 + (-1/4*a^3 - 1/4*a^2 + 27/4*a + 11/4)*q^8 + (1/2*a^3 + 1/2*a^2 - 27/2*a + 3/2)*q^9 + (-1/8*a^3 + 29/8*a - 11/4)*q^10 + (3/8*a^3 + 1/8*a^2 - 81/8*a + 41/8)*q^11 + (7/8*a^3 + 3/8*a^2 - 185/8*a + 79/8)*q^12 + (-1/4*a^3 - 1/4*a^2 + 27/4*a - 1/4)*q^13 + (-5/8*a^3 - 1/8*a^2 + 139/8*a - 85/8)*q^14 + (1/2*a^3 + 1/2*a^2 - 27/2*a + 5/2)*q^15 + 3*q^16 + (1/4*a^3 + 1/4*a^2 - 27/4*a - 11/4)*q^18 + (1/2*a^3 + 1/2*a^2 - 27/2*a + 5/2)*q^19 + O(q^20), q + a*q^2 + (a + 1)*q^3 + (-a + 1)*q^4 - a*q^5 + 3*q^6 + (a + 2)*q^7 - 3*q^8 + (a + 1)*q^9 + (a - 3)*q^10 + 3*q^11 + (a - 2)*q^12 + (a - 1)*q^13 + (a + 3)*q^14 - 3*q^15 + (-a - 2)*q^16 + 3*q^18 + (-3*a - 1)*q^19 + O(q^20), q + a*q^2 + (-a - 1)*q^3 + (-a + 1)*q^4 + a*q^5 - 3*q^6 + (-a - 2)*q^7 - 3*q^8 + (a + 1)*q^9 + (-a + 3)*q^10 - 3*q^11 + (-a + 2)*q^12 + (a - 1)*q^13 + (-a - 3)*q^14 - 3*q^15 + (-a - 2)*q^16 + 3*q^18 + (-3*a - 1)*q^19 + O(q^20), q + a*q^2 + (a^2 - 1)*q^3 + (a^2 - 2)*q^4 + (a + 2)*q^5 + (2*a - 1)*q^6 + (-a^2 + 2)*q^7 + (-a - 1)*q^8 + (a^2 - a - 2)*q^9 + (a^2 + 2*a)*q^10 + (-2*a^2 - 2*a + 6)*q^11 + (-a + 2)*q^12 + (-2*a^2 - 3*a + 6)*q^13 + (-a + 1)*q^14 + (2*a^2 + 2*a - 3)*q^15 + (-3*a^2 - a + 4)*q^16 + (-a^2 + a - 1)*q^18 + a*q^19 + O(q^20), q + a*q^2 + (-a^2 + 1)*q^3 + (a^2 - 2)*q^4 + (-a - 2)*q^5 + (-2*a + 1)*q^6 + (a^2 - 2)*q^7 + (-a - 1)*q^8 + (a^2 - a - 2)*q^9 + (-a^2 - 2*a)*q^10 + (2*a^2 + 2*a - 6)*q^11 + (a - 2)*q^12 + (-2*a^2 - 3*a + 6)*q^13 + (a - 1)*q^14 + (2*a^2 + 2*a - 3)*q^15 + (-3*a^2 - a + 4)*q^16 + (-a^2 + a - 1)*q^18 + a*q^19 + O(q^20) *] > Dimension(S); In file "/home/was/people/kani/kani.m", line 107, column 1: >> end intrinsic; ^ User error: bad syntax 1 > Dimension(S); In file "/home/was/people/kani/kani.m", line 112, column 19: >> if not assigne S`dim then ^ User error: bad syntax 1 > Dimension(S); 1 > S:=SkGamma(11,4,8); > S:=SkGamma(11,4,8); >> S:=SkGamma(11,4,8); ^ > S:=SkGamma(11,2,8); > Print(S); S_4(Gamma(11)), prec=8. > Dim(S); 1 > Dim(S); Ernst doesn't have the formula on him, so it's not implemented. > S:=SkGamma(11,2,8); > Dim(S); 26 > S:=SkGamma(97,2,8); > Dim(S); 26 > Dim(S); 26 > S:=SkGamma(97,2,8); > Dim(S); 26 > Print(S); S_2(Gamma(97)), prec=8. > S`dim; 26 > S:=SkGamma(97,2,8); > S`dim; 26 > S:=SkGamma(97,2,8); SkGamma( p: 97, k: 2, prec: 8 ) In file "/home/was/people/kani/kani.m", line 29, column 29: >> S := VectorSpaceWithBasis(Rationals(),1)![1]; ^ Runtime error in 'VectorSpaceWithBasis': Bad argument types Argument types given: FldRat, RngIntElt > ; > S:=SkGamma(97,2,8); > S`dim; >> S`dim; ^ Runtime error in `: Attribute 'dim' for this structure is valid but not assigned > S:=SkGamma(97,2,8); > > S:=SkGamma(13,2,8);Dim(S); 50 > > T:=SkGamma(97,2,8);Dim(T); 35673 > T:=SkGamma(97,2,8);Dim(T); 35673 > S:=SkGamma(13,2,8);Dim(S); 50 > Print(S); S_2(Gamma(13)), prec=8. > Print(T); S_2(Gamma(97)), prec=8. > T:=SkGamma(47,2,8);Dim(T); 3773 > T:=SkGamma(43,2,8);Dim(T); 2850 > ; > T:=SkGamma(7,2,8);Dim(T); 3 > CM_Newforms(T); CM_Newforms( S: Full Vector space of degree 1 over Rational Field ) In file "/home/was/people/kani/kani.m", line 115, column 27: >> if Coefficient(f,ell) ne Evaluate(eps,ell)*Coefficient(f,ell) t ^ Runtime error in 'Coefficient': Coefficient 8 is not known (beyond precision 8/1) > CM_Newforms(T); In file "/home/was/people/kani/kani.m", line 114, column 50: >> for ell in [l : l in [2..Precision(S)-1 | IsPrime(ell)] | l ne Lev ^ User error: bad syntax >> CM_Newforms(T); ^ User error: Identifier 'CM_Newforms' has not been declared or assigned > CM_Newforms(T); CM_Newforms( S: Full Vector space of degree 1 over Rational Field ) In file "/home/was/people/kani/kani.m", line 126, column 58: >> return S`cm_forms, [FN[i] : i in [1..#FN] | S`cm_forms[i]]; ^ Runtime error in '[]': Sequence element 1 not defined > S:=SkGamma(13,2,8);Dim(S); 50 > CM_Newforms(S); [ false, false, false ] [] > S:=SkGamma(7,2,8);Dim(S);CM_Newforms(S); 3 [ true ] [ q + q^2 - q^4 + O(q^8) ] > S:=SkGamma(11,2,8);Dim(S);CM_Newforms(S); 26 [ false, false, true, false ] [ q - q^3 - 2*q^4 - 3*q^5 + O(q^8) ] > S:=SkGamma(19,2,8);Dim(S);CM_Newforms(S); 196 [ false, true, false, false, false, false, false, false, false ] [ q - 2*q^4 - q^5 + 3*q^7 + O(q^8) ] > S:=SkGamma(23,2,8);Dim(S);CM_Newforms(S); 375 [ false, false, false, false, false, false, false, true, false, false ] [ q + a*q^2 + (-a^2 + a + 4)*q^3 + (a^2 - 2)*q^4 + (a^2 - 2*a - 3)*q^6 + O(q^8) ] > [* q - q^2 + (2/5*a^3 - 1/5*a^2 - 22/5*a - 18/5)*q^3 - q^4 + (-2/5*a^3 + 1/5*a^2 + 17/5*a + 13/5)*q^5 + (-2/5*a^3 + 1/5*a^2 + 22/5*a + 18/5)*q^6 + (a^3 - a^2 - 8*a - 4)*q^7 + O(q^8), q + a*q^2 + (a - 1)*q^3 + (2*a - 1)*q^4 + (-2*a + 3)*q^5 + (a + 1)*q^6 + (a + 1)*q^7 + O(q^8), q + a*q^2 + (a - 1)*q^3 + (2*a - 1)*q^4 + (2*a - 3)*q^5 + (a + 1)*q^6 + (-a - 1)*q^7 + O(q^8), q + a*q^2 + (a + 1)*q^3 + q^4 - a*q^5 + (a + 3)*q^6 + (-a + 3)*q^7 + O(q^8), q + a*q^2 + (a + 1)*q^3 + q^4 + a*q^5 + (a + 3)*q^6 + (a - 3)*q^7 + O(q^8), q + (-2/85*a^3 - 9/85*a^2 + 186/85*a + 547/85)*q^2 - q^3 + (2/85*a^3 + 9/85*a^2 - 186/85*a - 462/85)*q^4 + (2/255*a^3 + 3/85*a^2 - 101/255*a - 239/85)*q^5 + (2/85*a^3 + 9/85*a^2 - 186/85*a - 547/85)*q^6 + (11/765*a^3 + 7/765*a^2 - 1193/765*a - 76/765)*q^7 + O(q^8), q + a*q^2 + (-2*a - 1)*q^3 + (-a - 1)*q^4 - 2*a*q^5 + (a - 2)*q^6 + (-2*a - 2)*q^7 + O(q^8), q + a*q^2 + (-a^2 + a + 4)*q^3 + (a^2 - 2)*q^4 + (a^2 - 2*a - 3)*q^6 + O(q^8), q + a*q^2 + (a^4 - 2*a^3 - 6*a^2 + 12*a - 2)*q^3 + (a^2 - 2)*q^4 + (2*a^4 - 4*a^3 - 11*a^2 + 26*a - 7)*q^5 + (-a^3 - a^2 + 5*a - 1)*q^6 + (a^4 - a^3 - 6*a^2 + 8*a + 1)*q^7 + O(q^8), q + a*q^2 + (a^4 - 2*a^3 - 6*a^2 + 12*a - 2)*q^3 + (a^2 - 2)*q^4 + (-2*a^4 + 4*a^3 + 11*a^2 - 26*a + 7)*q^5 + (-a^3 - a^2 + 5*a - 1)*q^6 + (-a^4 + a^3 + 6*a^2 - 8*a - 1)*q^7 + O(q^8) *] > Type($1[1]); User error: syntax error at end of input RngSerPowElt > Type($1[1]); >> Type($1[1]); ^ Runtime error in '[]': Bad argument types > Type(FundamentalNewforms(S)[1]); >> Type(FundamentalNewforms(S)[1]); ^ User error: Identifier 'FundamentalNewforms' has not been declared or assigned > ; > Type(FundamentalNewforms(S)[1]); >> Type(FundamentalNewforms(S)[1]); ^ User error: Identifier 'FundamentalNewforms' has not been declared or assigned > ; In file "/home/was/people/kani/kani.m", line 162, column 53: >> intrinsic Twist(f::RngPowSerElt, eps:GrpDrchElt) -> RngPowSerElt ^ User error: Unknown type 'RngPowSerElt' > Type(PowerSeriesRing(Rationals())!0);Type(PowerSeriesRing(Rationals())!0); RngSerPowElt > ; > S:=SkGamma(7,2,8);Dim(S);CM_Newforms(S); In file "/home/was/people/kani/kani.m", line 166, column 15: >> end intrinsic; ^ User error: Unterminated string >> S:=SkGamma(7,2,8);Dim(S);CM_Newforms(S); ^ User error: Identifier 'SkGamma' has not been declared or assigned >> S:=SkGamma(7,2,8);Dim(S);CM_Newforms(S); ^ User error: Identifier 'Dim' has not been declared or assigned >> S:=SkGamma(7,2,8);Dim(S);CM_Newforms(S); ^ User error: Identifier 'CM_Newforms' has not been declared or assigned > ; > ; > > Dim(S);CM_Newforms(S); 3 [ true ] [ q + q^2 - q^4 + O(q^8) ] > f:=CM_Newforms(S)[1]; > f; true > S:=SkGamma(7,2,20);f:=FundamentalNewforms(S)[1]; > f; q + q^2 - q^4 + O(q^8) > Twist(f,DirichletGroup(7,Rationals()).1); q + q^2 - q^4 > Twist(f,DirichletGroup(7,Rationals()).1); q + q^2 - q^4 + O(q^8) > S:=SkGamma(7,2,20);f:=FundamentalNewforms(S)[1]; > f; q + q^2 - q^4 - 3*q^8 - 3*q^9 + 4*q^11 - q^16 - 3*q^18 + O(q^20) > Twist(f,DirichletGroup(7,Rationals()).1); q + q^2 - q^4 - 3*q^8 - 3*q^9 + 4*q^11 - q^16 - 3*q^18 + O(q^20) > > Order(eps); 2 > q + q^2 - q^4 - 3*q^8 - 3*q^9 + 4*q^11 - q^16 - 3*q^18 + O(q^20) > Evaluate(eps,2); 1 > Evaluate(eps,3); -1 > S:=SkGamma(11,2,20);f:=FundamentalNewforms(S)[1]; > CM_Newforms(S); > CM_Newforms(S); [ false, false, true, false ] [ q - q^3 - 2*q^4 - 3*q^5 - 2*q^9 + 2*q^12 + 3*q^15 + 4*q^16 + O(q^20) ] > f; q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 + 2*q^7 - 2*q^9 + 2*q^10 - 2*q^12 - 4*q^13 + 4*q^14 - q^15 - 4*q^16 + 2*q^17 - 4*q^18 + O(q^20) > eps:=DirichletGroup(11,Rationals()).1; > eps:=DirichletGroup(11,Rationals()).1; > Twist(f,eps); q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 - 2*q^10 - 2*q^12 + 4*q^13 + 4*q^14 - q^15 - 4*q^16 - 2*q^17 + 4*q^18 + O(q^20) > Evaluate(eps,2); -1 > Evaluate(eps,3); 1 > S:=SkGamma(13,2,8); > S; Full Vector space of degree 1 over Rational Field User basis: (1) > FundamentalNewforms(S); [* q + a*q^2 + 2*q^3 + q^4 - a*q^5 + 2*a*q^6 + O(q^8), q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + O(q^8), q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + O(q^8) *] > f:=$1[2]; > f; q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + O(q^8) > G:=DirichletGroup(13,CyclotomicField(12)); > Evaluate(eps,2)*Coefficient(f,2); >> Evaluate(eps,2)*Coefficient(f,2); ^ Runtime error in '*': Bad argument types Argument types given: FldCycElt, RngUPolResElt > S:=SkGamma(13,2,8); > FundamentalNewforms(S); [* q + (zeta_12^3 - 2*zeta_12)*q^2 + 2*q^3 + q^4 + (-zeta_12^3 + 2*zeta_12)*q^5 + (2*zeta_12^3 - 4*zeta_12)*q^6 + O(q^8), q + (-zeta_12^3 + 2*zeta_12)*q^2 + 2*q^3 + q^4 + (zeta_12^3 - 2*zeta_12)*q^5 + (-2*zeta_12^3 + 4*zeta_12)*q^6 + O(q^8), q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + O(q^8), q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + O(q^8) *] > f:=$1[2]; > G:=DirichletGroup(13,CyclotomicField(12)); > Evaluate(eps,2)*Coefficient(f,2); zeta_12^2 + 1 > Twist(f,eps); q + (zeta_12^2 + 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (2*zeta_12^2 - 1)*q^5 + (2*zeta_12^2 - 4)*q^6 + O(q^8) > ; In file "/home/was/people/kani/kani.m", line 249, column 33: >> and whose Gal(Qbar/Q(zeta_{p-1}))-conjugates generate the old subspace.} ^ User error: bad syntax > ; > Twist(f,eps); q + (zeta_12^2 + 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (2*zeta_12^2 - 1)*q^5 + (2*zeta_12^2 - 4)*q^6 + O(q^8) > ; > S:=SkGamma(13,2,8); > S; Full Vector space of degree 1 over Rational Field User basis: (1) > S:=SkGamma(11,2,8); > N_0(S); [* q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 + O(q^8) *] > qEigenform(MS("11A"),8); q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 + O(q^8) > N_1(S); [**] > N_2(S); [* q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 + 2*q^7 + O(q^8), q + q^2 + 2*q^3 - q^4 + q^5 + 2*q^6 - 2*q^7 + O(q^8), q - q^2 + 2*q^3 - q^4 + q^5 - 2*q^6 + 2*q^7 + O(q^8) *] > N_3(S); [ q - q^3 - 2*q^4 - 3*q^5 + O(q^8) ] > S:=SkGamma(13,2,8); > N_0(S); [**] > N_1(S); [* q + (-zeta_12^2 - 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 + 4)*q^6 + O(q^8), q + (zeta_12^2 - 2)*q^2 - 2*zeta_12^2*q^3 + (-zeta_12^2 + 1)*q^4 + (2*zeta_12^2 - 1)*q^5 + (2*zeta_12^2 + 2)*q^6 + O(q^8) *] > x:=N_2(S); [* q + (zeta_12^3 - 2*zeta_12)*q^2 + 2*q^3 + q^4 + (-zeta_12^3 + 2*zeta_12)*q^5 + (2*zeta_12^3 - 4*zeta_12)*q^6 + O(q^8), q + (-zeta_12^3 + 2*zeta_12)*q^2 + 2*q^3 + q^4 + (zeta_12^3 - 2*zeta_12)*q^5 + (-2*zeta_12^3 + 4*zeta_12)*q^6 + O(q^8), q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + O(q^8), q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + O(q^8) *] > N_3(S); [] > x:=N_2(S); >> x:=N_2(S); ^ User error: Identifier 'N_2' has not been declared or assigned > ; > x:=N_2bar(S); > x; [* q + (zeta_12^3 - 2*zeta_12)*q^2 + 2*q^3 + q^4 + (-zeta_12^3 + 2*zeta_12)*q^5 + (2*zeta_12^3 - 4*zeta_12)*q^6 + O(q^8), q + (-zeta_12^3 + 2*zeta_12)*q^2 + 2*q^3 + q^4 + (zeta_12^3 - 2*zeta_12)*q^5 + (-2*zeta_12^3 + 4*zeta_12)*q^6 + O(q^8), q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + O(q^8), q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + O(q^8) *] > Append(~x,5); > x; [* q + (zeta_12^3 - 2*zeta_12)*q^2 + 2*q^3 + q^4 + (-zeta_12^3 + 2*zeta_12)*q^5 + (2*zeta_12^3 - 4*zeta_12)*q^6 + O(q^8), q + (-zeta_12^3 + 2*zeta_12)*q^2 + 2*q^3 + q^4 + (zeta_12^3 - 2*zeta_12)*q^5 + (-2*zeta_12^3 + 4*zeta_12)*q^6 + O(q^8), q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + O(q^8), q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + O(q^8), 5 *] > Remove(~x,1); > x; [* q + (-zeta_12^3 + 2*zeta_12)*q^2 + 2*q^3 + q^4 + (zeta_12^3 - 2*zeta_12)*q^5 + (-2*zeta_12^3 + 4*zeta_12)*q^6 + O(q^8), q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + O(q^8), q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + O(q^8), 5 *] > ; In file "/home/was/people/kani/kani.m", line 218, column 27: >> if i ge #S`n2bar do ^ User error: bad syntax > ; > S:=SkGamma(13,2,8); > N_2bar(S); N_2bar( S: Full Vector space of degree 1 over Rational Field ) In file "/home/was/people/kani/kani.m", line 223, column 27: >> if S`n2bar[j] eq f then ^ Runtime error in 'eq': Arguments are not compatible Argument types given: RngSerPowElt, RngSerPowElt > N_2bar(S); [* q + (zeta_12^3 - 2*zeta_12)*q^2 + 2*q^3 + q^4 + (-zeta_12^3 + 2*zeta_12)*q^5 + (2*zeta_12^3 - 4*zeta_12)*q^6 + O(q^8), q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + O(q^8), q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + O(q^8) *] > f,g,h:=Explode($1); > g; q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + O(q^8) > h; q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + O(q^8) > Rg:=BaseRing(Parent(g)); > Rh:=BaseRing(Parent(h)); > Rg; Univariate Quotient Polynomial Algebra in a over Cyclotomic Field of order 12 and degree 4 with modulus a^3 - 2*a^2 - a + 1 > Rh; Univariate Quotient Polynomial Algebra in a over Cyclotomic Field of order 12 and degree 4 with modulus a^3 + 2*a^2 - a - 1 > mg:=Modulus(Rg); > mh:=Modulus(Rh); > mg; x^3 - 2*x^2 - x + 1 > mh; x^3 + 2*x^2 - x - 1 > hinRg:=Rg!(mh); > hinRg; 4*a^2 - 2 > T:=PolynomialRing(Rg); > X^3 + 2*X^2 - X - 1 > Factorization(T!mh); >> Factorization(T!mh); ^ Runtime error in 'Factorization': Algorithm is not available for this kind of coefficient ring > Twist(g,DirichletGroup(13,Rationals()).1); q - a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 - 2*a - 2)*q^5 + (a - 1)*q^6 + (a^2 - 3)*q^7 + O(q^8) > h; q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + O(q^8) > MinimalPolynomial(Coefficient(h,2)); x^3 + 2*x^2 - x - 1 > MinimalPolynomial(Coefficient(h,3)); x^3 + 2*x^2 - x - 1 > MinimalPolynomial(Coefficient(h,5)); x^3 + 4*x^2 + 3*x - 1 > gtwist:=Twist(g,DirichletGroup(13,Rationals()).1); > MinimalPolynomial(Coefficient(gtwist,5)); x^3 + 4*x^2 + 3*x - 1 > S:=SkGamma(13,2,10); > S; Full Vector space of degree 1 over Rational Field User basis: (1) > Print(S); S_2(Gamma(13)), prec=10. > N_1(S); >> N_1(S); ^ User error: Identifier 'N_1' has not been declared or assigned > N_0(S); [**] > N_1bar(S); [* q + (-zeta_12^2 - 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 + 4)*q^6 + (2*zeta_12^2 - 1)*q^8 - zeta_12^2*q^9 + O(q^10) *] > N_2bar(S); N_2bar( S: Full Vector space of degree 1 over Rational Field ) In file "/home/was/people/kani/kani.m", line 223, column 27: >> if S`n2bar[j] eq f then ^ Runtime error in 'eq': Arguments are not compatible Argument types given: RngSerPowElt, RngSerPowElt > N_3(S); [] > F:=FundamentalNewforms(S);G:=G_Oldforms(S); [* q + (zeta_12^3 - 2*zeta_12)*q^2 + 2*q^3 + q^4 + (-zeta_12^3 + 2*zeta_12)*q^5 + (2*zeta_12^3 - 4*zeta_12)*q^6 + (-zeta_12^3 + 2*zeta_12)*q^8 + q^9 + O(q^10), q + (-zeta_12^3 + 2*zeta_12)*q^2 + 2*q^3 + q^4 + (zeta_12^3 - 2*zeta_12)*q^5 + (-2*zeta_12^3 + 4*zeta_12)*q^6 + (zeta_12^3 - 2*zeta_12)*q^8 + q^9 + O(q^10), q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + (2*a^2 - 3*a - 1)*q^8 + (a^2 - 3*a - 1)*q^9 + O(q^10), q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + (-2*a^2 - 3*a + 1)*q^8 + (a^2 + 3*a - 1)*q^9 + O(q^10) *] > [* [* q + (-zeta_12^2 - 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 + 4)*q^6 + (2*zeta_12^2 - 1)*q^8 - zeta_12^2*q^9 + O(q^10) *], [* eps^2 *] *] > h; q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + O(q^8) > Trace(Coefficient(h,2)); -2 > Trace(Coefficient(h,3)); -2 > Trace(h); >> Trace(h); ^ Runtime error in 'Trace': Bad argument types Argument types given: RngSerPowElt > Trace(h); 3*q - 2*q^2 - 2*q^3 - 4*q^5 - q^6 - 3*q^7 + O(q^8) > G_Oldforms(S); [* [* q + (-zeta_12^2 - 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 + 4)*q^6 + (2*zeta_12^2 - 1)*q^8 - zeta_12^2*q^9 + O(q^10) *], [* eps^2 *] *] > F:=FundamentalNewforms(S);G:=G_Oldforms(S); > F; [* q + (zeta_12^3 - 2*zeta_12)*q^2 + 2*q^3 + q^4 + (-zeta_12^3 + 2*zeta_12)*q^5 + (2*zeta_12^3 - 4*zeta_12)*q^6 + (-zeta_12^3 + 2*zeta_12)*q^8 + q^9 + O(q^10), q + (-zeta_12^3 + 2*zeta_12)*q^2 + 2*q^3 + q^4 + (zeta_12^3 - 2*zeta_12)*q^5 + (-2*zeta_12^3 + 4*zeta_12)*q^6 + (zeta_12^3 - 2*zeta_12)*q^8 + q^9 + O(q^10), q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + (2*a^2 - 3*a - 1)*q^8 + (a^2 - 3*a - 1)*q^9 + O(q^10), q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + (-2*a^2 - 3*a + 1)*q^8 + (a^2 + 3*a - 1)*q^9 + O(q^10) *] > G; [* [* q + (-zeta_12^2 - 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 + 4)*q^6 + (2*zeta_12^2 - 1)*q^8 - zeta_12^2*q^9 + O(q^10) *], [* eps^2 *] *] > 4*q + 8*q^3 + 4*q^4 + 4*q^9 + O(q^10) > Trace(G[1][1]); 4*q - 6*q^2 - 4*q^3 + 2*q^4 + 12*q^6 - 2*q^9 + O(q^10) > Trace(Twist(G[1][1],eps)); 4*q - 4*q^3 - 2*q^4 - 2*q^9 + O(q^10) > Trace(F[2]); 4*q + 8*q^3 + 4*q^4 + 4*q^9 + O(q^10) > old:=G[1][1]; > old; q + (-zeta_12^2 - 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 + 4)*q^6 + (2*zeta_12^2 - 1)*q^8 - zeta_12^2*q^9 + O(q^10) > G:=DirichletGroup(13,CyclotomicField(12)); > Trace(Twist(G[1][1],eps^(-1))); >> ))); ^ User error: bad syntax > Trace(Twist(G[1][1],eps^(-1))); >> Trace(Twist(G[1][1],eps^(-1))); ^ Runtime error in '[]': Bad argument types > F:=FundamentalNewforms(S);G:=G_Oldforms(S); > Trace(Twist(G[1][1],eps^(-1))); 4*q + 8*q^3 + 4*q^4 + 4*q^9 + O(q^10) > Trace(F[1]); 4*q + 8*q^3 + 4*q^4 + 4*q^9 + O(q^10) > MinimalPolynomial(Coefficient(gtwist,5)); In file "/home/was/people/kani/kani.m", line 107, column 31: >> if not IsTrivial(ee) do ^ User error: bad syntax x^3 + 4*x^2 + 3*x - 1 > MinimalPolynomial(Coefficient(gtwist,5)); x^3 + 4*x^2 + 3*x - 1 > MinimalPolynomial(1); $.1 - 1 > MinimalPolynomial(Coefficient(gtwist,5)*0); x > MinimalPolynomial(Coefficient(gtwist,5)^0); x - 1 > ; In file "/home/was/people/kani/kani.m", line 107, column 31: >> if not IsTrivial(ee) do ^ User error: bad syntax > ; > MinimalPolynomial(Coefficient(gtwist,5)); x^3 + 4*x^2 + 3*x - 1 > tracemod(Coefficient(gtwist,5)); -4 > gtwist; q - a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 - 2*a - 2)*q^5 + (a - 1)*q^6 + (a^2 - 3)*q^7 + O(q^8) > F[1]; q + (zeta_12^3 - 2*zeta_12)*q^2 + 2*q^3 + q^4 + (-zeta_12^3 + 2*zeta_12)*q^5 + (2*zeta_12^3 - 4*zeta_12)*q^6 + (-zeta_12^3 + 2*zeta_12)*q^8 + q^9 + O(q^10) > tracemod(Coefficient(F[1],1)); >> tracemod(Coefficient(F[1],1)); ^ Runtime error in 'tracemod': Bad argument types Argument types given: FldCycElt > > tracemod(Coefficient(F[1],1)); 1 > tracemod(Coefficient(F[1],1)); 1 > tracemod(Coefficient(F[1],2)); zeta_12^3 - 2*zeta_12 > tracemod(Coefficient(F[1],3)); 2 > ; > S:=SkGamma(13,2,10); > Print(S); S_2(Gamma(13)), prec=10. > N_0(S); [**] > N_1bar(S); [* q + (-zeta_12^2 - 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 + 4)*q^6 + (2*zeta_12^2 - 1)*q^8 - zeta_12^2*q^9 + O(q^10) *] > N_2bar(S); > N_2bar(S); N_2bar( S: Full Vector space of degree 1 over Rational Field ) CM_Newforms( S: Full Vector space of degree 1 over Rational Field ) In file "/home/was/people/kani/kani.m", line 165, column 58: >> return S`cm_forms, [FN[i] : i in [1..#FN] | S`cm_forms[i]]; ^ Runtime error in '[]': Sequence element 1 not defined > FundamentalNewforms(S); [* q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + (2*a^2 - 3*a - 1)*q^8 + (a^2 - 3*a - 1)*q^9 + O(q^10), q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + (-2*a^2 - 3*a + 1)*q^8 + (a^2 + 3*a - 1)*q^9 + O(q^10) *] > CM_Newforms(S); CM_Newforms( S: Full Vector space of degree 1 over Rational Field ) In file "/home/was/people/kani/kani.m", line 165, column 58: >> return S`cm_forms, [FN[i] : i in [1..#FN] | S`cm_forms[i]]; ^ Runtime error in '[]': Sequence element 1 not defined > ; > S:=SkGamma(13,2,10); > CM_Newforms(S); [ false, false ] [] > FundamentalNewforms(S); [* q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + (2*a^2 - 3*a - 1)*q^8 + (a^2 - 3*a - 1)*q^9 + O(q^10), q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + (-2*a^2 - 3*a + 1)*q^8 + (a^2 + 3*a - 1)*q^9 + O(q^10) *] > N_0(S); [**] > N_1bar(S); [* q + (-zeta_12^2 - 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 + 4)*q^6 + (2*zeta_12^2 - 1)*q^8 - zeta_12^2*q^9 + O(q^10) *] > N_2bar(S); N_2bar( S: Full Vector space of degree 1 over Rational Field ) CM_Newforms( S: Full Vector space of degree 1 over Rational Field ) In file "/home/was/people/kani/kani.m", line 165, column 41: >> return S`cm_forms, [D[i] : i in [1..#D] | S`cm_forms[i]]; ^ Runtime error: Variable 'D' has not been initialized > N_2bar(S); N_2bar( S: Full Vector space of degree 1 over Rational Field ) In file "/home/was/people/kani/kani.m", line 269, column 27: >> if S`n2bar[j] eq f then ^ Runtime error in 'eq': Arguments are not compatible Argument types given: RngSerPowElt, RngSerPowElt > N_2bar(S); [* q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + (2*a^2 - 3*a - 1)*q^8 + (a^2 - 3*a - 1)*q^9 + O(q^10), q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + (-2*a^2 - 3*a + 1)*q^8 + (a^2 + 3*a - 1)*q^9 + O(q^10) *] > N_3(S); [] > S:=SkGamma(11,2,10); > N_0(S); N_1bar(S); N_2bar(S); N_3(S); >> N_0(S); N_1bar(S); N_2bar(S); N_3(S); ^ User error: bad syntax > N_0(S); N_1bar(S); N_2bar(S); N_3(S); [**] [**] [* q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 + 2*q^7 - 2*q^9 + O(q^10), q + q^2 + 2*q^3 - q^4 + q^5 + 2*q^6 - 2*q^7 - 3*q^8 + q^9 + O(q^10), q - q^2 + 2*q^3 - q^4 + q^5 - 2*q^6 + 2*q^7 + 3*q^8 + q^9 + O(q^10) *] [ q - q^3 - 2*q^4 - 3*q^5 - 2*q^9 + O(q^10) ] > G_Oldforms(S); [* [**], [**] *] > S:=SkGamma(11,2,10); > S:=SkGamma(11,2,10); > N_0(S); N_1bar(S); N_2bar(S); N_3(S); [* q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10) *] [**] [* q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 + 2*q^7 - 2*q^9 + O(q^10), q + q^2 + 2*q^3 - q^4 + q^5 + 2*q^6 - 2*q^7 - 3*q^8 + q^9 + O(q^10) *] [ q - q^3 - 2*q^4 - 3*q^5 - 2*q^9 + O(q^10) ] > > S:=SkGamma(11,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); [* q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10) *] [**] Didn't find one! There is a bug in FundamentalNewforms, or your precision is too low. Didn't find one! There is a bug in FundamentalNewforms, or your precision is too low. > S:=SkGamma(11,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); [* q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10) *] [**] [* q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 + 2*q^7 - 2*q^9 + O(q^10), q + q^2 + 2*q^3 - q^4 + q^5 + 2*q^6 - 2*q^7 - 3*q^8 + q^9 + O(q^10) *] [ q - q^3 - 2*q^4 - 3*q^5 - 2*q^9 + O(q^10) ] > S:=SkGamma(11,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); [* q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10) *] [**] [* q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 + 2*q^7 - 2*q^9 + O(q^10), q + q^2 + 2*q^3 - q^4 + q^5 + 2*q^6 - 2*q^7 - 3*q^8 + q^9 + O(q^10) *] [ q - q^3 - 2*q^4 - 3*q^5 - 2*q^9 + O(q^10) ] > S:=SkGamma(11,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); [* q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10) *] [**] comparing with: q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 + 2*q^7 - 2*q^9 + O(q^10) [* q + q^2 + 2*q^3 - q^4 + q^5 + 2*q^6 - 2*q^7 - 3*q^8 + q^9 + O(q^10) *] [ q - q^3 - 2*q^4 - 3*q^5 - 2*q^9 + O(q^10) ] > S:=SkGamma(11,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); [* q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10) *] [**] [* q + q^2 + 2*q^3 - q^4 + q^5 + 2*q^6 - 2*q^7 - 3*q^8 + q^9 + O(q^10) *] [ q - q^3 - 2*q^4 - 3*q^5 - 2*q^9 + O(q^10) ] > S:=SkGamma(13,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); [**] [* q + (-zeta_12^2 - 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 + 4)*q^6 + (2*zeta_12^2 - 1)*q^8 - zeta_12^2*q^9 + O(q^10) *] N_2bar( S: Full Vector space of degree 1 over Rational Field ) In file "/home/was/people/kani/kani.m", line 268, column 34: >> if Trace(S`n2bar[j]) eq Trace(f) then ^ Runtime error in 'eq': Arguments are not compatible Argument types given: RngSerPowElt, RngSerPowElt [] > > S:=SkGamma(13,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); [**] [* q + (-zeta_12^2 - 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 + 4)*q^6 + (2*zeta_12^2 - 1)*q^8 - zeta_12^2*q^9 + O(q^10) *] q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + (-2*a^2 - 3*a + 1)*q^8 + (a^2 + 3*a - 1)*q^9 + O(q^10) q - a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 - 2*a - 2)*q^5 + (a - 1)*q^6 + (a^2 - 3)*q^7 + (-2*a^2 + 3*a + 1)*q^8 + (a^2 - 3*a - 1)*q^9 + O(q^10) N_2bar( S: Full Vector space of degree 1 over Rational Field ) In file "/home/was/people/kani/kani.m", line 270, column 34: >> if Trace(S`n2bar[j]) eq Trace(f) then ^ Runtime error in 'eq': Arguments are not compatible Argument types given: RngSerPowElt, RngSerPowElt [] > S:=SkGamma(13,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); [**] [* q + (-zeta_12^2 - 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 + 4)*q^6 + (2*zeta_12^2 - 1)*q^8 - zeta_12^2*q^9 + O(q^10) *] q + a*q^2 + (-a^2 - 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 + 2*a - 2)*q^5 + (-a - 1)*q^6 + (a^2 - 3)*q^7 + (-2*a^2 - 3*a + 1)*q^8 + (a^2 + 3*a - 1)*q^9 + O(q^10) q - a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 - 2*a - 2)*q^5 + (a - 1)*q^6 + (a^2 - 3)*q^7 + (-2*a^2 + 3*a + 1)*q^8 + (a^2 - 3*a - 1)*q^9 + O(q^10) [* q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + (2*a^2 - 3*a - 1)*q^8 + (a^2 - 3*a - 1)*q^9 + O(q^10) *] [] > S:=SkGamma(13,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); [**] [* q + (-zeta_12^2 - 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 + 4)*q^6 + (2*zeta_12^2 - 1)*q^8 - zeta_12^2*q^9 + O(q^10) *] [* q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + (2*a^2 - 3*a - 1)*q^8 + (a^2 - 3*a - 1)*q^9 + O(q^10) *] [] > S:=SkGamma(17,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); [* q - q^2 - q^4 - 2*q^5 + 4*q^7 + 3*q^8 - 3*q^9 + O(q^10) *] [* q + (-zeta_16^6 + zeta_16^4 - 1)*q^2 + (zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^3 + (2*zeta_16^6 - zeta_16^4 + 2*zeta_16^2)*q^4 + (-zeta_16^6 - zeta_16^4)*q^5 + (-zeta_16^6 + zeta_16^4 - zeta_16^2 + 1)*q^6 + (-zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^7 + (zeta_16^4 - 3*zeta_16^2 + 1)*q^8 + (2*zeta_16^4 + zeta_16^2 + 2)*q^9 + O(q^10), q + (-zeta_16^4 - zeta_16^2 - 1)*q^2 + (-zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^3 + (2*zeta_16^6 + zeta_16^4 + 2*zeta_16^2)*q^4 + (zeta_16^4 - zeta_16^2)*q^5 + (-zeta_16^6 - zeta_16^4 - zeta_16^2 + 1)*q^6 + (zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^7 + (-3*zeta_16^6 - zeta_16^4 + 1)*q^8 + (zeta_16^6 - 2*zeta_16^4 + 2)*q^9 + O(q^10) *] [* q + a*q^2 + (a + 1)*q^3 + (-a + 1)*q^4 - a*q^5 + 3*q^6 + (a + 2)*q^7 - 3*q^8 + (a + 1)*q^9 + O(q^10), q + a*q^2 + (a^2 - 1)*q^3 + (a^2 - 2)*q^4 + (a + 2)*q^5 + (2*a - 1)*q^6 + (-a^2 + 2)*q^7 + (-a - 1)*q^8 + (a^2 - a - 2)*q^9 + O(q^10) *] [] > S:=SkGamma(19,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); [* q - 2*q^3 - 2*q^4 + 3*q^5 - q^7 + q^9 + O(q^10) *] [* q + (-zeta_18^2 + zeta_18 - 1)*q^2 + (-zeta_18^4 + zeta_18^3 + zeta_18^2 - 1)*q^3 + (zeta_18^4 - 2*zeta_18^3 + zeta_18^2 - 2*zeta_18 + 1)*q^4 + (zeta_18^5 + zeta_18^4 - zeta_18 - 1)*q^5 + (-2*zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18)*q^6 + (-zeta_18^5 - zeta_18^4 + zeta_18)*q^7 + (3*zeta_18^5 - 2*zeta_18^4 + 2*zeta_18^3 - 2*zeta_18^2 + 3*zeta_18)*q^8 + (zeta_18^4 - 3*zeta_18^3 + 2*zeta_18 + 2)*q^9 + O(q^10), q + (-zeta_18^4 - zeta_18^2 - 1)*q^2 + (-zeta_18^5 + zeta_18^4 - zeta_18^3 + zeta_18^2)*q^3 + (zeta_18^5 + zeta_18^4 + 2*zeta_18^3 + zeta_18^2 - 1)*q^4 + (zeta_18^5 + zeta_18 - 1)*q^5 + (zeta_18^5 - zeta_18^3 - 2*zeta_18 + 1)*q^6 + (-zeta_18^5 - zeta_18)*q^7 + (-2*zeta_18^5 - 2*zeta_18^4 - 2*zeta_18^3 - zeta_18^2 + 3*zeta_18 + 2)*q^8 + (zeta_18^5 + 3*zeta_18^3 - 3*zeta_18^2 - 1)*q^9 + O(q^10), q + (-zeta_18^5 - zeta_18^4 + zeta_18^2 - 1)*q^2 + (zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18^2 - zeta_18 - 1)*q^3 + (zeta_18^5 + zeta_18^4 - 2*zeta_18^3 - zeta_18^2 + zeta_18 + 1)*q^4 + (-zeta_18^2 + zeta_18 - 1)*q^5 + (zeta_18^3 + 2*zeta_18^2 + zeta_18)*q^6 + (zeta_18^2 - zeta_18)*q^7 + (-2*zeta_18^5 - zeta_18^4 + 2*zeta_18^3 - zeta_18^2 - 2*zeta_18)*q^8 + (-3*zeta_18^4 - 3*zeta_18^3 + zeta_18 + 2)*q^9 + O(q^10) *] [* q + a*q^2 + 2*q^3 + 3*q^4 + (-1/2*a + 1/2)*q^5 + 2*a*q^6 + (-a - 1)*q^7 + a*q^8 + q^9 + O(q^10), q + a*q^2 + (-a + 2)*q^3 + (a - 1)*q^4 + 2*a*q^5 + (a - 1)*q^6 + 3*q^7 + (-2*a + 1)*q^8 + (-3*a + 2)*q^9 + O(q^10), q + a*q^2 - a*q^3 + (a^2 - 2)*q^4 + (-2*a^2 + 4)*q^5 - a^2*q^6 + (2*a^2 - 7)*q^7 + (a^3 - 4*a)*q^8 + (a^2 - 3)*q^9 + O(q^10) *] [ q - 2*q^4 - q^5 + 3*q^7 - 3*q^9 + O(q^10) ] > R:=PolynomialRing(Rationals()); In file "/home/was/people/kani/kani.m", line 39, column 15: >> S`dirichlet := DirichletGroup(p,CyclotomicField(EulerPhi(p))); ^ User error: bad syntax > R:=PolynomialRing(Rationals()); > ; > R:=PolynomialRing(Rationals()); > A:=quo; > B:=quo; > A:=quo; > B:=quo; > A!b; >> A!b; ^ Runtime error in '!': Illegal coercion > A!(R!b); a > ; > ; > S:=SkGamma(19,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); In file "/home/was/people/kani/kani.m", line 396, column 98: >> : n in [0..AbsolutePrecision(f)-1]] + O(q^prec); ^ Runtime error: Undefined reference 'prec' in package "/home/was/people/kani/kani.m" In file "/home/was/people/kani/kani.m", line 396, column 98: >> : n in [0..AbsolutePrecision(f)-1]] + O(q^prec); ^ Runtime error: Undefined reference 'prec' in package "/home/was/people/kani/kani.m" In file "/home/was/people/kani/kani.m", line 396, column 98: >> : n in [0..AbsolutePrecision(f)-1]] + O(q^prec); ^ Runtime error: Undefined reference 'prec' in package "/home/was/people/kani/kani.m" In file "/home/was/people/kani/kani.m", line 396, column 98: >> : n in [0..AbsolutePrecision(f)-1]] + O(q^prec); ^ Runtime error: Undefined reference 'prec' in package "/home/was/people/kani/kani.m" In file "/home/was/people/kani/kani.m", line 396, column 98: >> : n in [0..AbsolutePrecision(f)-1]] + O(q^prec); ^ Runtime error: Undefined reference 'prec' in package "/home/was/people/kani/kani.m" > S:=SkGamma(19,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); [* q - 2*q^3 - 2*q^4 + 3*q^5 - q^7 + q^9 + O(q^10) *] [* q + (-zeta_18^2 + zeta_18 - 1)*q^2 + (-zeta_18^4 + zeta_18^3 + zeta_18^2 - 1)*q^3 + (zeta_18^4 - 2*zeta_18^3 + zeta_18^2 - 2*zeta_18 + 1)*q^4 + (zeta_18^5 + zeta_18^4 - zeta_18 - 1)*q^5 + (-2*zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18)*q^6 + (-zeta_18^5 - zeta_18^4 + zeta_18)*q^7 + (3*zeta_18^5 - 2*zeta_18^4 + 2*zeta_18^3 - 2*zeta_18^2 + 3*zeta_18)*q^8 + (zeta_18^4 - 3*zeta_18^3 + 2*zeta_18 + 2)*q^9 + O(q^10), q + (-zeta_18^4 - zeta_18^2 - 1)*q^2 + (-zeta_18^5 + zeta_18^4 - zeta_18^3 + zeta_18^2)*q^3 + (zeta_18^5 + zeta_18^4 + 2*zeta_18^3 + zeta_18^2 - 1)*q^4 + (zeta_18^5 + zeta_18 - 1)*q^5 + (zeta_18^5 - zeta_18^3 - 2*zeta_18 + 1)*q^6 + (-zeta_18^5 - zeta_18)*q^7 + (-2*zeta_18^5 - 2*zeta_18^4 - 2*zeta_18^3 - zeta_18^2 + 3*zeta_18 + 2)*q^8 + (zeta_18^5 + 3*zeta_18^3 - 3*zeta_18^2 - 1)*q^9 + O(q^10), q + (-zeta_18^5 - zeta_18^4 + zeta_18^2 - 1)*q^2 + (zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18^2 - zeta_18 - 1)*q^3 + (zeta_18^5 + zeta_18^4 - 2*zeta_18^3 - zeta_18^2 + zeta_18 + 1)*q^4 + (-zeta_18^2 + zeta_18 - 1)*q^5 + (zeta_18^3 + 2*zeta_18^2 + zeta_18)*q^6 + (zeta_18^2 - zeta_18)*q^7 + (-2*zeta_18^5 - zeta_18^4 + 2*zeta_18^3 - zeta_18^2 - 2*zeta_18)*q^8 + (-3*zeta_18^4 - 3*zeta_18^3 + zeta_18 + 2)*q^9 + O(q^10) *] [* q + a*q^2 + 2*q^3 + 3*q^4 + (-1/2*a + 1/2)*q^5 + 2*a*q^6 + (-a - 1)*q^7 + a*q^8 + q^9 + O(q^10), q + a*q^2 + (-a + 2)*q^3 + (a - 1)*q^4 + 2*a*q^5 + (a - 1)*q^6 + 3*q^7 + (-2*a + 1)*q^8 + (-3*a + 2)*q^9 + O(q^10), q + a*q^2 - a*q^3 + (a^2 - 2)*q^4 + (-2*a^2 + 4)*q^5 - a^2*q^6 + (2*a^2 - 7)*q^7 + (a^3 - 4*a)*q^8 + (a^2 - 3)*q^9 + O(q^10) *] [ q - 2*q^4 - q^5 + 3*q^7 - 3*q^9 + O(q^10) ] > N:=N_1bar(S); > N; [* q + (-zeta_18^2 + zeta_18 - 1)*q^2 + (-zeta_18^4 + zeta_18^3 + zeta_18^2 - 1)*q^3 + (zeta_18^4 - 2*zeta_18^3 + zeta_18^2 - 2*zeta_18 + 1)*q^4 + (zeta_18^5 + zeta_18^4 - zeta_18 - 1)*q^5 + (-2*zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18)*q^6 + (-zeta_18^5 - zeta_18^4 + zeta_18)*q^7 + (3*zeta_18^5 - 2*zeta_18^4 + 2*zeta_18^3 - 2*zeta_18^2 + 3*zeta_18)*q^8 + (zeta_18^4 - 3*zeta_18^3 + 2*zeta_18 + 2)*q^9 + O(q^10), q + (-zeta_18^4 - zeta_18^2 - 1)*q^2 + (-zeta_18^5 + zeta_18^4 - zeta_18^3 + zeta_18^2)*q^3 + (zeta_18^5 + zeta_18^4 + 2*zeta_18^3 + zeta_18^2 - 1)*q^4 + (zeta_18^5 + zeta_18 - 1)*q^5 + (zeta_18^5 - zeta_18^3 - 2*zeta_18 + 1)*q^6 + (-zeta_18^5 - zeta_18)*q^7 + (-2*zeta_18^5 - 2*zeta_18^4 - 2*zeta_18^3 - zeta_18^2 + 3*zeta_18 + 2)*q^8 + (zeta_18^5 + 3*zeta_18^3 - 3*zeta_18^2 - 1)*q^9 + O(q^10), q + (-zeta_18^5 - zeta_18^4 + zeta_18^2 - 1)*q^2 + (zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18^2 - zeta_18 - 1)*q^3 + (zeta_18^5 + zeta_18^4 - 2*zeta_18^3 - zeta_18^2 + zeta_18 + 1)*q^4 + (-zeta_18^2 + zeta_18 - 1)*q^5 + (zeta_18^3 + 2*zeta_18^2 + zeta_18)*q^6 + (zeta_18^2 - zeta_18)*q^7 + (-2*zeta_18^5 - zeta_18^4 + 2*zeta_18^3 - zeta_18^2 - 2*zeta_18)*q^8 + (-3*zeta_18^4 - 3*zeta_18^3 + zeta_18 + 2)*q^9 + O(q^10) *] > ComplexConjugate(N[1]); q + (-zeta_18^5 + zeta_18^4 + zeta_18^2 - zeta_18 - 1)*q^2 + (zeta_18^5 - zeta_18^4 - zeta_18^3 + zeta_18)*q^3 + (zeta_18^5 - zeta_18^4 + 2*zeta_18^3 - 2*zeta_18^2 + zeta_18 - 1)*q^4 + (-zeta_18^4 - zeta_18^2 - 1)*q^5 + (2*zeta_18^4 - zeta_18^3 - zeta_18^2 + 1)*q^6 + (zeta_18^4 + zeta_18^2)*q^7 + (-zeta_18^5 - zeta_18^4 - 2*zeta_18^3 + 3*zeta_18^2 - 2*zeta_18 + 2)*q^8 + (-3*zeta_18^5 + 3*zeta_18^3 + 2*zeta_18^2 - 1)*q^9 + O(q^10) > f:=N[1]; > a:=Coefficient(f,2); > a; -zeta_18^2 + zeta_18 - 1 > b:=ComplexConjugate(a); > b; -zeta_18^5 + zeta_18^4 + zeta_18^2 - zeta_18 - 1 > f; q + (-zeta_18^2 + zeta_18 - 1)*q^2 + (-zeta_18^4 + zeta_18^3 + zeta_18^2 - 1)*q^3 + (zeta_18^4 - 2*zeta_18^3 + zeta_18^2 - 2*zeta_18 + 1)*q^4 + (zeta_18^5 + zeta_18^4 - zeta_18 - 1)*q^5 + (-2*zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18)*q^6 + (-zeta_18^5 - zeta_18^4 + zeta_18)*q^7 + (3*zeta_18^5 - 2*zeta_18^4 + 2*zeta_18^3 - 2*zeta_18^2 + 3*zeta_18)*q^8 + (zeta_18^4 - 3*zeta_18^3 + 2*zeta_18 + 2)*q^9 + O(q^10) > R:=PowerSeriesRing(CyclotomicField(18)); > Evaluate(f,qq); qq + (-zeta_18^2 + zeta_18 - 1)*qq^2 + (-zeta_18^4 + zeta_18^3 + zeta_18^2 - 1)*qq^3 + (zeta_18^4 - 2*zeta_18^3 + zeta_18^2 - 2*zeta_18 + 1)*qq^4 + (zeta_18^5 + zeta_18^4 - zeta_18 - 1)*qq^5 + (-2*zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18)*qq^6 + (-zeta_18^5 - zeta_18^4 + zeta_18)*qq^7 + (3*zeta_18^5 - 2*zeta_18^4 + 2*zeta_18^3 - 2*zeta_18^2 + 3*zeta_18)*qq^8 + (zeta_18^4 - 3*zeta_18^3 + 2*zeta_18 + 2)*qq^9 > ; > S:=SkGamma(11,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); In file "/home/was/people/kani/kani.m", line 311, column 38: >> Append(~S`vg0,Evaluate(f,qp^p)); ^ Runtime error: Undefined reference 'p' in package "/home/was/people/kani/kani.m" In file "/home/was/people/kani/kani.m", line 311, column 38: >> Append(~S`vg0,Evaluate(f,qp^p)); ^ Runtime error: Undefined reference 'p' in package "/home/was/people/kani/kani.m" In file "/home/was/people/kani/kani.m", line 311, column 38: >> Append(~S`vg0,Evaluate(f,qp^p)); ^ Runtime error: Undefined reference 'p' in package "/home/was/people/kani/kani.m" In file "/home/was/people/kani/kani.m", line 311, column 38: >> Append(~S`vg0,Evaluate(f,qp^p)); ^ Runtime error: Undefined reference 'p' in package "/home/was/people/kani/kani.m" In file "/home/was/people/kani/kani.m", line 311, column 38: >> Append(~S`vg0,Evaluate(f,qp^p)); ^ Runtime error: Undefined reference 'p' in package "/home/was/people/kani/kani.m" > ; > S:=SkGamma(11,2,10);N_0(S); N_1bar(S); N_2bar(S); N_3(S); [* q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10) *] [**] [* q + q^2 + 2*q^3 - q^4 + q^5 + 2*q^6 - 2*q^7 - 3*q^8 + q^9 + O(q^10) *] [ q - q^3 - 2*q^4 - 3*q^5 - 2*q^9 + O(q^10) ] > S:=SkGamma(11,2,10);VG_0(S); VG_0( S: Full Vector space of degree 1 over Rational Field ) In file "/home/was/people/kani/kani.m", line 307, column 25: >> S`vg0 := AllTwists(qexp, S`dirichlet); ^ Runtime error: No return statement executed in user-defined function > VG_0(S); [* qp - 2*zeta_10*qp^2 + zeta_10^3*qp^3 + 2*zeta_10^2*qp^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*qp^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^6 + 2*zeta_10^2*qp^7 + 2*zeta_10*qp^9 + O(qp^10), qp + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^2 - zeta_10^2*qp^3 - 2*zeta_10^3*qp^4 - zeta_10*qp^5 - 2*zeta_10*qp^6 + 2*zeta_10^3*qp^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^9 + O(qp^10), qp + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^2 - zeta_10^2*qp^3 - 2*zeta_10^3*qp^4 - zeta_10*qp^5 + 2*zeta_10*qp^6 - 2*zeta_10^3*qp^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^9 + O(qp^10), qp + 2*zeta_10*qp^2 + zeta_10^3*qp^3 + 2*zeta_10^2*qp^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*qp^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^6 - 2*zeta_10^2*qp^7 + 2*zeta_10*qp^9 + O(qp^10), qp + 2*qp^2 - qp^3 + 2*qp^4 + qp^5 - 2*qp^6 + 2*qp^7 - 2*qp^9 + O(qp^10), qp - 2*qp^2 - qp^3 + 2*qp^4 + qp^5 + 2*qp^6 - 2*qp^7 - 2*qp^9 + O(qp^10), qp^11 - 2*qp^22 - qp^33 + 2*qp^44 + qp^55 + 2*qp^66 - 2*qp^77 - 2*qp^99 *] > VG_1(S); [**] > VG_2(S); [* q + zeta_10*q^2 - 2*zeta_10^3*q^3 - zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^6 + 2*zeta_10^2*q^7 - 3*zeta_10^3*q^8 - zeta_10*q^9 + O(q^10), q + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^2 + 2*zeta_10^2*q^3 + zeta_10^3*q^4 - zeta_10*q^5 - 2*zeta_10*q^6 + 2*zeta_10^3*q^7 - 3*zeta_10^2*q^8 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^9 + O(q^10), q + (-zeta_10^3 + zeta_10^2 - zeta_10 + 1)*q^2 + 2*zeta_10^2*q^3 + zeta_10^3*q^4 - zeta_10*q^5 + 2*zeta_10*q^6 - 2*zeta_10^3*q^7 + 3*zeta_10^2*q^8 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^9 + O(q^10), q - zeta_10*q^2 - 2*zeta_10^3*q^3 - zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^6 - 2*zeta_10^2*q^7 + 3*zeta_10^3*q^8 - zeta_10*q^9 + O(q^10), q - q^2 + 2*q^3 - q^4 + q^5 - 2*q^6 + 2*q^7 + 3*q^8 + q^9 + O(q^10), q + q^2 + 2*q^3 - q^4 + q^5 + 2*q^6 - 2*q^7 - 3*q^8 + q^9 + O(q^10) *] > VG_3(S); [* q + zeta_10^3*q^3 - 2*zeta_10^2*q^4 + (-3*zeta_10^3 + 3*zeta_10^2 - 3*zeta_10 + 3)*q^5 + 2*zeta_10*q^9 + O(q^10), q - zeta_10^2*q^3 + 2*zeta_10^3*q^4 + 3*zeta_10*q^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10), q - q^3 - 2*q^4 - 3*q^5 - 2*q^9 + O(q^10) *] > S:=SkGamma(11,2,10);VG_0(S); #G= 10 f= qn - 2*qn^2 - qn^3 + 2*qn^4 + qn^5 + 2*qn^6 - 2*qn^7 - 2*qn^9 + O(qn^10) ans= [* q - 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^6 + 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10), q + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 - 2*zeta_10*q^6 + 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10), q + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 + 2*zeta_10*q^6 - 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10), q + 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^6 - 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10), q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 + 2*q^7 - 2*q^9 + O(q^10), q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10) *] [* qp - 2*zeta_10*qp^2 + zeta_10^3*qp^3 + 2*zeta_10^2*qp^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*qp^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^6 + 2*zeta_10^2*qp^7 + 2*zeta_10*qp^9 + O(qp^10), qp + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^2 - zeta_10^2*qp^3 - 2*zeta_10^3*qp^4 - zeta_10*qp^5 - 2*zeta_10*qp^6 + 2*zeta_10^3*qp^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^9 + O(qp^10), qp + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^2 - zeta_10^2*qp^3 - 2*zeta_10^3*qp^4 - zeta_10*qp^5 + 2*zeta_10*qp^6 - 2*zeta_10^3*qp^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^9 + O(qp^10), qp + 2*zeta_10*qp^2 + zeta_10^3*qp^3 + 2*zeta_10^2*qp^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*qp^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^6 - 2*zeta_10^2*qp^7 + 2*zeta_10*qp^9 + O(qp^10), qp + 2*qp^2 - qp^3 + 2*qp^4 + qp^5 - 2*qp^6 + 2*qp^7 - 2*qp^9 + O(qp^10), qp - 2*qp^2 - qp^3 + 2*qp^4 + qp^5 + 2*qp^6 - 2*qp^7 - 2*qp^9 + O(qp^10), qp^11 - 2*qp^22 - qp^33 + 2*qp^44 + qp^55 + 2*qp^66 - 2*qp^77 - 2*qp^99 *] > S:=SkGamma(11,2,10);VG_0(S); In file "/home/was/people/kani/kani.m", line 316, column 63: >> Append(~S`vg0,Evaluate(f,qp^Level(S))+O(qp^(Level(S)*prec))); ^ Runtime error: Undefined reference 'prec' in package "/home/was/people/kani/kani.m" In file "/home/was/people/kani/kani.m", line 316, column 63: >> Append(~S`vg0,Evaluate(f,qp^Level(S))+O(qp^(Level(S)*prec))); ^ Runtime error: Undefined reference 'prec' in package "/home/was/people/kani/kani.m" > S:=SkGamma(11,2,10);VG_0(S); In file "/home/was/people/kani/kani.m", line 317, column 7: >> end for; ^ User error: bad syntax >> S:=SkGamma(11,2,10);VG_0(S); ^ User error: Identifier 'SkGamma' has not been declared or assigned >> S:=SkGamma(11,2,10);VG_0(S); ^ User error: Identifier 'VG_0' has not been declared or assigned > S:=SkGamma(11,2,10);VG_0(S); #G= 10 f= qn - 2*qn^2 - qn^3 + 2*qn^4 + qn^5 + 2*qn^6 - 2*qn^7 - 2*qn^9 + O(qn^10) ans= [* q - 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^6 + 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10), q + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 - 2*zeta_10*q^6 + 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10), q + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 + 2*zeta_10*q^6 - 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10), q + 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^6 - 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10), q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 + 2*q^7 - 2*q^9 + O(q^10), q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10) *] [* qp - 2*zeta_10*qp^2 + zeta_10^3*qp^3 + 2*zeta_10^2*qp^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*qp^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^6 + 2*zeta_10^2*qp^7 + 2*zeta_10*qp^9 + O(qp^10), qp + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^2 - zeta_10^2*qp^3 - 2*zeta_10^3*qp^4 - zeta_10*qp^5 - 2*zeta_10*qp^6 + 2*zeta_10^3*qp^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^9 + O(qp^10), qp + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^2 - zeta_10^2*qp^3 - 2*zeta_10^3*qp^4 - zeta_10*qp^5 + 2*zeta_10*qp^6 - 2*zeta_10^3*qp^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^9 + O(qp^10), qp + 2*zeta_10*qp^2 + zeta_10^3*qp^3 + 2*zeta_10^2*qp^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*qp^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^6 - 2*zeta_10^2*qp^7 + 2*zeta_10*qp^9 + O(qp^10), qp + 2*qp^2 - qp^3 + 2*qp^4 + qp^5 - 2*qp^6 + 2*qp^7 - 2*qp^9 + O(qp^10), qp - 2*qp^2 - qp^3 + 2*qp^4 + qp^5 + 2*qp^6 - 2*qp^7 - 2*qp^9 + O(qp^10), qp^11 - 2*qp^22 - qp^33 + 2*qp^44 + qp^55 + 2*qp^66 - 2*qp^77 - 2*qp^99 + O(qp^110) *] > S:=SkGamma(11,2,10);VG_0(S); #G= 10 f= qn - 2*qn^2 - qn^3 + 2*qn^4 + qn^5 + 2*qn^6 - 2*qn^7 - 2*qn^9 + O(qn^10) ans= [* q - 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^6 + 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10), q + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 - 2*zeta_10*q^6 + 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10), q + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 + 2*zeta_10*q^6 - 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10), q + 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^6 - 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10), q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 + 2*q^7 - 2*q^9 + O(q^10), q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10) *] [* qp - 2*zeta_10*qp^2 + zeta_10^3*qp^3 + 2*zeta_10^2*qp^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*qp^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^6 + 2*zeta_10^2*qp^7 + 2*zeta_10*qp^9 + O(qp^10), qp + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^2 - zeta_10^2*qp^3 - 2*zeta_10^3*qp^4 - zeta_10*qp^5 - 2*zeta_10*qp^6 + 2*zeta_10^3*qp^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^9 + O(qp^10), qp + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^2 - zeta_10^2*qp^3 - 2*zeta_10^3*qp^4 - zeta_10*qp^5 + 2*zeta_10*qp^6 - 2*zeta_10^3*qp^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^9 + O(qp^10), qp + 2*zeta_10*qp^2 + zeta_10^3*qp^3 + 2*zeta_10^2*qp^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*qp^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^6 - 2*zeta_10^2*qp^7 + 2*zeta_10*qp^9 + O(qp^10), qp + 2*qp^2 - qp^3 + 2*qp^4 + qp^5 - 2*qp^6 + 2*qp^7 - 2*qp^9 + O(qp^10), qp - 2*qp^2 - qp^3 + 2*qp^4 + qp^5 + 2*qp^6 - 2*qp^7 - 2*qp^9 + O(qp^10), O(qp^10) *] > S:=SkGamma(11,2,10);VG_0(S); #G= 10 f= qn - 2*qn^2 - qn^3 + 2*qn^4 + qn^5 + 2*qn^6 - 2*qn^7 - 2*qn^9 + O(qn^10) q - 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^6 + 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10) q + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 - 2*zeta_10*q^6 + 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10) q + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 + 2*zeta_10*q^6 - 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10) q + 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^6 - 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10) q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 + 2*q^7 - 2*q^9 + O(q^10) q + 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^6 - 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10) q + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 + 2*zeta_10*q^6 - 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10) q + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 - 2*zeta_10*q^6 + 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10) q - 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^6 + 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10) q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10) ans= [* q - 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^6 + 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10), q + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 - 2*zeta_10*q^6 + 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10), q + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 + 2*zeta_10*q^6 - 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10), q + 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^6 - 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10), q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 + 2*q^7 - 2*q^9 + O(q^10), q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10) *] [* qp - 2*zeta_10*qp^2 + zeta_10^3*qp^3 + 2*zeta_10^2*qp^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*qp^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^6 + 2*zeta_10^2*qp^7 + 2*zeta_10*qp^9 + O(qp^10), qp + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^2 - zeta_10^2*qp^3 - 2*zeta_10^3*qp^4 - zeta_10*qp^5 - 2*zeta_10*qp^6 + 2*zeta_10^3*qp^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^9 + O(qp^10), qp + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^2 - zeta_10^2*qp^3 - 2*zeta_10^3*qp^4 - zeta_10*qp^5 + 2*zeta_10*qp^6 - 2*zeta_10^3*qp^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^9 + O(qp^10), qp + 2*zeta_10*qp^2 + zeta_10^3*qp^3 + 2*zeta_10^2*qp^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*qp^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^6 - 2*zeta_10^2*qp^7 + 2*zeta_10*qp^9 + O(qp^10), qp + 2*qp^2 - qp^3 + 2*qp^4 + qp^5 - 2*qp^6 + 2*qp^7 - 2*qp^9 + O(qp^10), qp - 2*qp^2 - qp^3 + 2*qp^4 + qp^5 + 2*qp^6 - 2*qp^7 - 2*qp^9 + O(qp^10), O(qp^10) *] > S:=SkGamma(11,2,10);VG_0(S); #G= 10 10 f= qn - 2*qn^2 - qn^3 + 2*qn^4 + qn^5 + 2*qn^6 - 2*qn^7 - 2*qn^9 + O(qn^10) q - 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^6 + 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10) q - 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^6 + 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10) q + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 - 2*zeta_10*q^6 + 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10) q + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 + 2*zeta_10*q^6 - 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10) q + 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^6 - 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10) q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 + 2*q^7 - 2*q^9 + O(q^10) q + 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^6 - 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10) q + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 + 2*zeta_10*q^6 - 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10) q + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 - 2*zeta_10*q^6 + 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10) q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10) ans= [* q - 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^6 + 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10), q + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 - 2*zeta_10*q^6 + 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10), q + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^2 - zeta_10^2*q^3 - 2*zeta_10^3*q^4 - zeta_10*q^5 + 2*zeta_10*q^6 - 2*zeta_10^3*q^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10), q + 2*zeta_10*q^2 + zeta_10^3*q^3 + 2*zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^6 - 2*zeta_10^2*q^7 + 2*zeta_10*q^9 + O(q^10), q + 2*q^2 - q^3 + 2*q^4 + q^5 - 2*q^6 + 2*q^7 - 2*q^9 + O(q^10), q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10) *] [* qp - 2*zeta_10*qp^2 + zeta_10^3*qp^3 + 2*zeta_10^2*qp^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*qp^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^6 + 2*zeta_10^2*qp^7 + 2*zeta_10*qp^9 + O(qp^10), qp + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^2 - zeta_10^2*qp^3 - 2*zeta_10^3*qp^4 - zeta_10*qp^5 - 2*zeta_10*qp^6 + 2*zeta_10^3*qp^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^9 + O(qp^10), qp + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^2 - zeta_10^2*qp^3 - 2*zeta_10^3*qp^4 - zeta_10*qp^5 + 2*zeta_10*qp^6 - 2*zeta_10^3*qp^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^9 + O(qp^10), qp + 2*zeta_10*qp^2 + zeta_10^3*qp^3 + 2*zeta_10^2*qp^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*qp^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^6 - 2*zeta_10^2*qp^7 + 2*zeta_10*qp^9 + O(qp^10), qp + 2*qp^2 - qp^3 + 2*qp^4 + qp^5 - 2*qp^6 + 2*qp^7 - 2*qp^9 + O(qp^10), qp - 2*qp^2 - qp^3 + 2*qp^4 + qp^5 + 2*qp^6 - 2*qp^7 - 2*qp^9 + O(qp^10), O(qp^10) *] > S:=SkGamma(11,2,10);VG_0(S); [* qp - 2*zeta_10*qp^2 + zeta_10^3*qp^3 + 2*zeta_10^2*qp^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*qp^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^6 + 2*zeta_10^2*qp^7 + 2*zeta_10*qp^9 + O(qp^10), qp - 2*zeta_10^2*qp^2 + zeta_10*qp^3 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^4 - zeta_10^3*qp^5 - 2*zeta_10^3*qp^6 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^7 - 2*zeta_10^2*qp^9 + O(qp^10), qp - 2*zeta_10^3*qp^2 + (-zeta_10^3 + zeta_10^2 - zeta_10 + 1)*qp^3 - 2*zeta_10*qp^4 + zeta_10^2*qp^5 - 2*zeta_10^2*qp^6 - 2*zeta_10*qp^7 + 2*zeta_10^3*qp^9 + O(qp^10), qp + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^2 - zeta_10^2*qp^3 - 2*zeta_10^3*qp^4 - zeta_10*qp^5 - 2*zeta_10*qp^6 + 2*zeta_10^3*qp^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^9 + O(qp^10), qp + 2*qp^2 - qp^3 + 2*qp^4 + qp^5 - 2*qp^6 + 2*qp^7 - 2*qp^9 + O(qp^10), qp + 2*zeta_10*qp^2 + zeta_10^3*qp^3 + 2*zeta_10^2*qp^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*qp^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^6 - 2*zeta_10^2*qp^7 + 2*zeta_10*qp^9 + O(qp^10), qp + 2*zeta_10^2*qp^2 + zeta_10*qp^3 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^4 - zeta_10^3*qp^5 + 2*zeta_10^3*qp^6 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^7 - 2*zeta_10^2*qp^9 + O(qp^10), qp + 2*zeta_10^3*qp^2 + (-zeta_10^3 + zeta_10^2 - zeta_10 + 1)*qp^3 - 2*zeta_10*qp^4 + zeta_10^2*qp^5 + 2*zeta_10^2*qp^6 + 2*zeta_10*qp^7 + 2*zeta_10^3*qp^9 + O(qp^10), qp + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*qp^2 - zeta_10^2*qp^3 - 2*zeta_10^3*qp^4 - zeta_10*qp^5 + 2*zeta_10*qp^6 - 2*zeta_10^3*qp^7 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*qp^9 + O(qp^10), qp - 2*qp^2 - qp^3 + 2*qp^4 + qp^5 + 2*qp^6 - 2*qp^7 - 2*qp^9 + O(qp^10), O(qp^10) *] > VG_1(S); [**] > VG_2(S); [* q + zeta_10*q^2 - 2*zeta_10^3*q^3 - zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^6 + 2*zeta_10^2*q^7 - 3*zeta_10^3*q^8 - zeta_10*q^9 + O(q^10), q + zeta_10^2*q^2 - 2*zeta_10*q^3 + (-zeta_10^3 + zeta_10^2 - zeta_10 + 1)*q^4 - zeta_10^3*q^5 - 2*zeta_10^3*q^6 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^7 + 3*zeta_10*q^8 + zeta_10^2*q^9 + O(q^10), q + zeta_10^3*q^2 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^3 + zeta_10*q^4 + zeta_10^2*q^5 - 2*zeta_10^2*q^6 - 2*zeta_10*q^7 + (3*zeta_10^3 - 3*zeta_10^2 + 3*zeta_10 - 3)*q^8 - zeta_10^3*q^9 + O(q^10), q + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^2 + 2*zeta_10^2*q^3 + zeta_10^3*q^4 - zeta_10*q^5 - 2*zeta_10*q^6 + 2*zeta_10^3*q^7 - 3*zeta_10^2*q^8 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^9 + O(q^10), q - q^2 + 2*q^3 - q^4 + q^5 - 2*q^6 + 2*q^7 + 3*q^8 + q^9 + O(q^10), q - zeta_10*q^2 - 2*zeta_10^3*q^3 - zeta_10^2*q^4 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^5 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^6 - 2*zeta_10^2*q^7 + 3*zeta_10^3*q^8 - zeta_10*q^9 + O(q^10), q - zeta_10^2*q^2 - 2*zeta_10*q^3 + (-zeta_10^3 + zeta_10^2 - zeta_10 + 1)*q^4 - zeta_10^3*q^5 + 2*zeta_10^3*q^6 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^7 - 3*zeta_10*q^8 + zeta_10^2*q^9 + O(q^10), q - zeta_10^3*q^2 + (2*zeta_10^3 - 2*zeta_10^2 + 2*zeta_10 - 2)*q^3 + zeta_10*q^4 + zeta_10^2*q^5 + 2*zeta_10^2*q^6 + 2*zeta_10*q^7 + (-3*zeta_10^3 + 3*zeta_10^2 - 3*zeta_10 + 3)*q^8 - zeta_10^3*q^9 + O(q^10), q + (-zeta_10^3 + zeta_10^2 - zeta_10 + 1)*q^2 + 2*zeta_10^2*q^3 + zeta_10^3*q^4 - zeta_10*q^5 + 2*zeta_10*q^6 - 2*zeta_10^3*q^7 + 3*zeta_10^2*q^8 + (zeta_10^3 - zeta_10^2 + zeta_10 - 1)*q^9 + O(q^10), q + q^2 + 2*q^3 - q^4 + q^5 + 2*q^6 - 2*q^7 - 3*q^8 + q^9 + O(q^10) *] > VG_3(S); [* q + zeta_10^3*q^3 - 2*zeta_10^2*q^4 + (-3*zeta_10^3 + 3*zeta_10^2 - 3*zeta_10 + 3)*q^5 + 2*zeta_10*q^9 + O(q^10), q + zeta_10*q^3 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^4 + 3*zeta_10^3*q^5 - 2*zeta_10^2*q^9 + O(q^10), q + (-zeta_10^3 + zeta_10^2 - zeta_10 + 1)*q^3 + 2*zeta_10*q^4 - 3*zeta_10^2*q^5 + 2*zeta_10^3*q^9 + O(q^10), q - zeta_10^2*q^3 + 2*zeta_10^3*q^4 + 3*zeta_10*q^5 + (-2*zeta_10^3 + 2*zeta_10^2 - 2*zeta_10 + 2)*q^9 + O(q^10), q - q^3 - 2*q^4 - 3*q^5 - 2*q^9 + O(q^10) *] > S:=SkGamma(13,2,10); > VG_0(S); VG_0( S: Full Vector space of degree 1 over Rational Field ) In file "/home/was/people/kani/kani.m", line 310, column 28: >> R := Parent(S`vg0[1]); ^ Runtime error in '[]': Value for index (1) should be in the range [1..0] > S:=SkGamma(13,2,10); > VG_0(S); VG_0( S: Full Vector space of degree 1 over Rational Field ) In file "/home/was/people/kani/kani.m", line 319, column 12: >> return S`vg0; ^ Runtime error in `: Attribute 'vg0' for this structure is valid but not assigned > ; > S:=SkGamma(13,2,10); > VG_0(S); [**] > VG_1(S); VG_1( S: Full Vector space of degree 1 over Rational Field ) In file "/home/was/people/kani/kani.m", line 334, column 31: >> R := Parent(S`vg0[1]); ^ Runtime error in '[]': Value for index (1) should be in the range [1..0] > S:=SkGamma(13,2,10); > VG_0(S); [**] > VG_1(S); VG_1( S: Full Vector space of degree 1 over Rational Field ) ComplexConjugate( f: q^13 + (-zeta_12^2 - 1)*q^26 + (2*zeta_12^2 - 2)*q^39 + zeta... ) In file "/home/was/people/kani/kani.m", line 417, column 29: >> prec := AbsolutePrecision(f); ^ Runtime error in 'AbsolutePrecision': Element does not have finite precision > VG_1(S); In file "/home/was/people/kani/kani.m", line 336, column 41: >> fqp := Evaluate(f,qp^p) + O(q^S`prec); ^ Runtime error: Undefined reference 'q' in package "/home/was/people/kani/kani.m" > VG_0(S); [* q + (-zeta_12^3 - zeta_12)*q^2 - 2*zeta_12^2*q^3 + (zeta_12^2 - 1)*q^4 + (zeta_12^3 - 2*zeta_12)*q^5 + (4*zeta_12^3 - 2*zeta_12)*q^6 + (zeta_12^3 - 2*zeta_12)*q^8 + (zeta_12^2 - 1)*q^9 + O(q^10), q + (-2*zeta_12^2 + 1)*q^2 + 2*q^3 - q^4 + (2*zeta_12^2 - 1)*q^5 + (-4*zeta_12^2 + 2)*q^6 + (-2*zeta_12^2 + 1)*q^8 + q^9 + O(q^10), q + (-2*zeta_12^3 + zeta_12)*q^2 + (2*zeta_12^2 - 2)*q^3 - zeta_12^2*q^4 + (-zeta_12^3 + 2*zeta_12)*q^5 + (2*zeta_12^3 + 2*zeta_12)*q^6 + (-zeta_12^3 + 2*zeta_12)*q^8 - zeta_12^2*q^9 + O(q^10), q + (-zeta_12^2 + 2)*q^2 - 2*zeta_12^2*q^3 + (-zeta_12^2 + 1)*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 - 2)*q^6 + (2*zeta_12^2 - 1)*q^8 + (zeta_12^2 - 1)*q^9 + O(q^10), q + (-zeta_12^3 + 2*zeta_12)*q^2 + 2*q^3 + q^4 + (zeta_12^3 - 2*zeta_12)*q^5 + (-2*zeta_12^3 + 4*zeta_12)*q^6 + (zeta_12^3 - 2*zeta_12)*q^8 + q^9 + O(q^10), q + (zeta_12^2 + 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (2*zeta_12^2 - 1)*q^5 + (2*zeta_12^2 - 4)*q^6 + (-2*zeta_12^2 + 1)*q^8 - zeta_12^2*q^9 + O(q^10), q + (zeta_12^3 + zeta_12)*q^2 - 2*zeta_12^2*q^3 + (zeta_12^2 - 1)*q^4 + (-zeta_12^3 + 2*zeta_12)*q^5 + (-4*zeta_12^3 + 2*zeta_12)*q^6 + (-zeta_12^3 + 2*zeta_12)*q^8 + (zeta_12^2 - 1)*q^9 + O(q^10), q + (2*zeta_12^2 - 1)*q^2 + 2*q^3 - q^4 + (-2*zeta_12^2 + 1)*q^5 + (4*zeta_12^2 - 2)*q^6 + (2*zeta_12^2 - 1)*q^8 + q^9 + O(q^10), q + (2*zeta_12^3 - zeta_12)*q^2 + (2*zeta_12^2 - 2)*q^3 - zeta_12^2*q^4 + (zeta_12^3 - 2*zeta_12)*q^5 + (-2*zeta_12^3 - 2*zeta_12)*q^6 + (zeta_12^3 - 2*zeta_12)*q^8 - zeta_12^2*q^9 + O(q^10), q + (zeta_12^2 - 2)*q^2 - 2*zeta_12^2*q^3 + (-zeta_12^2 + 1)*q^4 + (2*zeta_12^2 - 1)*q^5 + (2*zeta_12^2 + 2)*q^6 + (-2*zeta_12^2 + 1)*q^8 + (zeta_12^2 - 1)*q^9 + O(q^10), q + (zeta_12^3 - 2*zeta_12)*q^2 + 2*q^3 + q^4 + (-zeta_12^3 + 2*zeta_12)*q^5 + (2*zeta_12^3 - 4*zeta_12)*q^6 + (-zeta_12^3 + 2*zeta_12)*q^8 + q^9 + O(q^10), q + (-zeta_12^2 - 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 + 4)*q^6 + (2*zeta_12^2 - 1)*q^8 - zeta_12^2*q^9 + O(q^10), q^13 + (-zeta_12^2 - 1)*q^26 + (2*zeta_12^2 - 2)*q^39 + zeta_12^2*q^52 + (-2*zeta_12^2 + 1)*q^65 + (-2*zeta_12^2 + 4)*q^78 + (2*zeta_12^2 - 1)*q^104 - zeta_12^2*q^117 *] > S:=SkGamma(13,2,10); > VG_0(S); [**] > VG_1(S); [* q + (-zeta_12^3 - zeta_12)*q^2 - 2*zeta_12^2*q^3 + (zeta_12^2 - 1)*q^4 + (zeta_12^3 - 2*zeta_12)*q^5 + (4*zeta_12^3 - 2*zeta_12)*q^6 + (zeta_12^3 - 2*zeta_12)*q^8 + (zeta_12^2 - 1)*q^9 + O(q^10), q + (-2*zeta_12^2 + 1)*q^2 + 2*q^3 - q^4 + (2*zeta_12^2 - 1)*q^5 + (-4*zeta_12^2 + 2)*q^6 + (-2*zeta_12^2 + 1)*q^8 + q^9 + O(q^10), q + (-2*zeta_12^3 + zeta_12)*q^2 + (2*zeta_12^2 - 2)*q^3 - zeta_12^2*q^4 + (-zeta_12^3 + 2*zeta_12)*q^5 + (2*zeta_12^3 + 2*zeta_12)*q^6 + (-zeta_12^3 + 2*zeta_12)*q^8 - zeta_12^2*q^9 + O(q^10), q + (-zeta_12^2 + 2)*q^2 - 2*zeta_12^2*q^3 + (-zeta_12^2 + 1)*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 - 2)*q^6 + (2*zeta_12^2 - 1)*q^8 + (zeta_12^2 - 1)*q^9 + O(q^10), q + (-zeta_12^3 + 2*zeta_12)*q^2 + 2*q^3 + q^4 + (zeta_12^3 - 2*zeta_12)*q^5 + (-2*zeta_12^3 + 4*zeta_12)*q^6 + (zeta_12^3 - 2*zeta_12)*q^8 + q^9 + O(q^10), q + (zeta_12^2 + 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (2*zeta_12^2 - 1)*q^5 + (2*zeta_12^2 - 4)*q^6 + (-2*zeta_12^2 + 1)*q^8 - zeta_12^2*q^9 + O(q^10), q + (zeta_12^3 + zeta_12)*q^2 - 2*zeta_12^2*q^3 + (zeta_12^2 - 1)*q^4 + (-zeta_12^3 + 2*zeta_12)*q^5 + (-4*zeta_12^3 + 2*zeta_12)*q^6 + (-zeta_12^3 + 2*zeta_12)*q^8 + (zeta_12^2 - 1)*q^9 + O(q^10), q + (2*zeta_12^2 - 1)*q^2 + 2*q^3 - q^4 + (-2*zeta_12^2 + 1)*q^5 + (4*zeta_12^2 - 2)*q^6 + (2*zeta_12^2 - 1)*q^8 + q^9 + O(q^10), q + (2*zeta_12^3 - zeta_12)*q^2 + (2*zeta_12^2 - 2)*q^3 - zeta_12^2*q^4 + (zeta_12^3 - 2*zeta_12)*q^5 + (-2*zeta_12^3 - 2*zeta_12)*q^6 + (zeta_12^3 - 2*zeta_12)*q^8 - zeta_12^2*q^9 + O(q^10), q + (zeta_12^2 - 2)*q^2 - 2*zeta_12^2*q^3 + (-zeta_12^2 + 1)*q^4 + (2*zeta_12^2 - 1)*q^5 + (2*zeta_12^2 + 2)*q^6 + (-2*zeta_12^2 + 1)*q^8 + (zeta_12^2 - 1)*q^9 + O(q^10), q + (zeta_12^3 - 2*zeta_12)*q^2 + 2*q^3 + q^4 + (-zeta_12^3 + 2*zeta_12)*q^5 + (2*zeta_12^3 - 4*zeta_12)*q^6 + (-zeta_12^3 + 2*zeta_12)*q^8 + q^9 + O(q^10), q + (-zeta_12^2 - 1)*q^2 + (2*zeta_12^2 - 2)*q^3 + zeta_12^2*q^4 + (-2*zeta_12^2 + 1)*q^5 + (-2*zeta_12^2 + 4)*q^6 + (2*zeta_12^2 - 1)*q^8 - zeta_12^2*q^9 + O(q^10), q^13 + (-zeta_12^2 - 1)*q^26 + (2*zeta_12^2 - 2)*q^39 + zeta_12^2*q^52 + (-2*zeta_12^2 + 1)*q^65 + (-2*zeta_12^2 + 4)*q^78 + (2*zeta_12^2 - 1)*q^104 - zeta_12^2*q^117, O(q^10) *] > VG_2(S); [* q + zeta_12*a*q^2 + ((-zeta_12^2 + 1)*a^2 + (2*zeta_12^2 - 2)*a)*q^3 + (zeta_12^2*a^2 - 2*zeta_12^2)*q^4 + (zeta_12^3*a^2 - 2*zeta_12^3*a - 2*zeta_12^3)*q^5 + ((-zeta_12^3 + zeta_12)*a + (zeta_12^3 - zeta_12))*q^6 + ((zeta_12^3 - zeta_12)*a^2 - 3*zeta_12^3 + 3*zeta_12)*q^7 + (2*zeta_12^3*a^2 - 3*zeta_12^3*a - zeta_12^3)*q^8 + (-zeta_12^2*a^2 + 3*zeta_12^2*a + zeta_12^2)*q^9 + O(q^10), q + zeta_12^2*a*q^2 + (zeta_12^2*a^2 - 2*zeta_12^2*a)*q^3 + ((zeta_12^2 - 1)*a^2 - 2*zeta_12^2 + 2)*q^4 + (a^2 - 2*a - 2)*q^5 + ((zeta_12^2 - 1)*a - zeta_12^2 + 1)*q^6 + ((zeta_12^2 - 1)*a^2 - 3*zeta_12^2 + 3)*q^7 + (-2*a^2 + 3*a + 1)*q^8 + ((zeta_12^2 - 1)*a^2 + (-3*zeta_12^2 + 3)*a - zeta_12^2 + 1)*q^9 + O(q^10), q + zeta_12^3*a*q^2 + (-a^2 + 2*a)*q^3 + (-a^2 + 2)*q^4 + (-zeta_12^3*a^2 + 2*zeta_12^3*a + 2*zeta_12^3)*q^5 + (-zeta_12^3*a + zeta_12^3)*q^6 + (zeta_12^3*a^2 - 3*zeta_12^3)*q^7 + (-2*zeta_12^3*a^2 + 3*zeta_12^3*a + zeta_12^3)*q^8 + (a^2 - 3*a - 1)*q^9 + O(q^10), q + (zeta_12^2 - 1)*a*q^2 + ((-zeta_12^2 + 1)*a^2 + (2*zeta_12^2 - 2)*a)*q^3 + (-zeta_12^2*a^2 + 2*zeta_12^2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (zeta_12^2*a - zeta_12^2)*q^6 + (zeta_12^2*a^2 - 3*zeta_12^2)*q^7 + (2*a^2 - 3*a - 1)*q^8 + (-zeta_12^2*a^2 + 3*zeta_12^2*a + zeta_12^2)*q^9 + O(q^10), q + (zeta_12^3 - zeta_12)*a*q^2 + (zeta_12^2*a^2 - 2*zeta_12^2*a)*q^3 + ((-zeta_12^2 + 1)*a^2 + (2*zeta_12^2 - 2))*q^4 + (zeta_12^3*a^2 - 2*zeta_12^3*a - 2*zeta_12^3)*q^5 + (-zeta_12*a + zeta_12)*q^6 + (zeta_12*a^2 - 3*zeta_12)*q^7 + (2*zeta_12^3*a^2 - 3*zeta_12^3*a - zeta_12^3)*q^8 + ((zeta_12^2 - 1)*a^2 + (-3*zeta_12^2 + 3)*a - zeta_12^2 + 1)*q^9 + O(q^10), q - a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (a^2 - 2*a - 2)*q^5 + (a - 1)*q^6 + (a^2 - 3)*q^7 + (-2*a^2 + 3*a + 1)*q^8 + (a^2 - 3*a - 1)*q^9 + O(q^10), q - zeta_12*a*q^2 + ((-zeta_12^2 + 1)*a^2 + (2*zeta_12^2 - 2)*a)*q^3 + (zeta_12^2*a^2 - 2*zeta_12^2)*q^4 + (-zeta_12^3*a^2 + 2*zeta_12^3*a + 2*zeta_12^3)*q^5 + ((zeta_12^3 - zeta_12)*a - zeta_12^3 + zeta_12)*q^6 + ((-zeta_12^3 + zeta_12)*a^2 + (3*zeta_12^3 - 3*zeta_12))*q^7 + (-2*zeta_12^3*a^2 + 3*zeta_12^3*a + zeta_12^3)*q^8 + (-zeta_12^2*a^2 + 3*zeta_12^2*a + zeta_12^2)*q^9 + O(q^10), q - zeta_12^2*a*q^2 + (zeta_12^2*a^2 - 2*zeta_12^2*a)*q^3 + ((zeta_12^2 - 1)*a^2 - 2*zeta_12^2 + 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + ((-zeta_12^2 + 1)*a + (zeta_12^2 - 1))*q^6 + ((-zeta_12^2 + 1)*a^2 + (3*zeta_12^2 - 3))*q^7 + (2*a^2 - 3*a - 1)*q^8 + ((zeta_12^2 - 1)*a^2 + (-3*zeta_12^2 + 3)*a - zeta_12^2 + 1)*q^9 + O(q^10), q - zeta_12^3*a*q^2 + (-a^2 + 2*a)*q^3 + (-a^2 + 2)*q^4 + (zeta_12^3*a^2 - 2*zeta_12^3*a - 2*zeta_12^3)*q^5 + (zeta_12^3*a - zeta_12^3)*q^6 + (-zeta_12^3*a^2 + 3*zeta_12^3)*q^7 + (2*zeta_12^3*a^2 - 3*zeta_12^3*a - zeta_12^3)*q^8 + (a^2 - 3*a - 1)*q^9 + O(q^10), q + (-zeta_12^2 + 1)*a*q^2 + ((-zeta_12^2 + 1)*a^2 + (2*zeta_12^2 - 2)*a)*q^3 + (-zeta_12^2*a^2 + 2*zeta_12^2)*q^4 + (a^2 - 2*a - 2)*q^5 + (-zeta_12^2*a + zeta_12^2)*q^6 + (-zeta_12^2*a^2 + 3*zeta_12^2)*q^7 + (-2*a^2 + 3*a + 1)*q^8 + (-zeta_12^2*a^2 + 3*zeta_12^2*a + zeta_12^2)*q^9 + O(q^10), q + (-zeta_12^3 + zeta_12)*a*q^2 + (zeta_12^2*a^2 - 2*zeta_12^2*a)*q^3 + ((-zeta_12^2 + 1)*a^2 + (2*zeta_12^2 - 2))*q^4 + (-zeta_12^3*a^2 + 2*zeta_12^3*a + 2*zeta_12^3)*q^5 + (zeta_12*a - zeta_12)*q^6 + (-zeta_12*a^2 + 3*zeta_12)*q^7 + (-2*zeta_12^3*a^2 + 3*zeta_12^3*a + zeta_12^3)*q^8 + ((zeta_12^2 - 1)*a^2 + (-3*zeta_12^2 + 3)*a - zeta_12^2 + 1)*q^9 + O(q^10), q + a*q^2 + (-a^2 + 2*a)*q^3 + (a^2 - 2)*q^4 + (-a^2 + 2*a + 2)*q^5 + (-a + 1)*q^6 + (-a^2 + 3)*q^7 + (2*a^2 - 3*a - 1)*q^8 + (a^2 - 3*a - 1)*q^9 + O(q^10) *] > #$1; 12 > VG_3(S); [**] > S:=SkGamma(17,2,10); > VG_0(S); [* qp + zeta_16^6*qp^2 + zeta_16^4*qp^4 - 2*zeta_16^5*qp^5 - 4*zeta_16^3*qp^7 - 3*zeta_16^2*qp^8 - 3*zeta_16^2*qp^9 + O(qp^10), qp + zeta_16^4*qp^2 + qp^4 + 2*zeta_16^2*qp^5 + 4*zeta_16^6*qp^7 + 3*zeta_16^4*qp^8 - 3*zeta_16^4*qp^9 + O(qp^10), qp + zeta_16^2*qp^2 - zeta_16^4*qp^4 + 2*zeta_16^7*qp^5 + 4*zeta_16*qp^7 - 3*zeta_16^6*qp^8 - 3*zeta_16^6*qp^9 + O(qp^10), qp + qp^2 - qp^4 - 2*zeta_16^4*qp^5 - 4*zeta_16^4*qp^7 - 3*qp^8 + 3*qp^9 + O(qp^10), qp - zeta_16^6*qp^2 + zeta_16^4*qp^4 + 2*zeta_16*qp^5 + 4*zeta_16^7*qp^7 + 3*zeta_16^2*qp^8 + 3*zeta_16^2*qp^9 + O(qp^10), qp - zeta_16^4*qp^2 + qp^4 + 2*zeta_16^6*qp^5 + 4*zeta_16^2*qp^7 - 3*zeta_16^4*qp^8 + 3*zeta_16^4*qp^9 + O(qp^10), qp - zeta_16^2*qp^2 - zeta_16^4*qp^4 - 2*zeta_16^3*qp^5 - 4*zeta_16^5*qp^7 + 3*zeta_16^6*qp^8 + 3*zeta_16^6*qp^9 + O(qp^10), qp - qp^2 - qp^4 + 2*qp^5 - 4*qp^7 + 3*qp^8 - 3*qp^9 + O(qp^10), qp + zeta_16^6*qp^2 + zeta_16^4*qp^4 + 2*zeta_16^5*qp^5 + 4*zeta_16^3*qp^7 - 3*zeta_16^2*qp^8 - 3*zeta_16^2*qp^9 + O(qp^10), qp + zeta_16^4*qp^2 + qp^4 - 2*zeta_16^2*qp^5 - 4*zeta_16^6*qp^7 + 3*zeta_16^4*qp^8 - 3*zeta_16^4*qp^9 + O(qp^10), qp + zeta_16^2*qp^2 - zeta_16^4*qp^4 - 2*zeta_16^7*qp^5 - 4*zeta_16*qp^7 - 3*zeta_16^6*qp^8 - 3*zeta_16^6*qp^9 + O(qp^10), qp + qp^2 - qp^4 + 2*zeta_16^4*qp^5 + 4*zeta_16^4*qp^7 - 3*qp^8 + 3*qp^9 + O(qp^10), qp - zeta_16^6*qp^2 + zeta_16^4*qp^4 - 2*zeta_16*qp^5 - 4*zeta_16^7*qp^7 + 3*zeta_16^2*qp^8 + 3*zeta_16^2*qp^9 + O(qp^10), qp - zeta_16^4*qp^2 + qp^4 - 2*zeta_16^6*qp^5 - 4*zeta_16^2*qp^7 - 3*zeta_16^4*qp^8 + 3*zeta_16^4*qp^9 + O(qp^10), qp - zeta_16^2*qp^2 - zeta_16^4*qp^4 + 2*zeta_16^3*qp^5 + 4*zeta_16^5*qp^7 + 3*zeta_16^6*qp^8 + 3*zeta_16^6*qp^9 + O(qp^10), qp - qp^2 - qp^4 - 2*qp^5 + 4*qp^7 + 3*qp^8 - 3*qp^9 + O(qp^10), O(qp^10) *] > #$1; 17 > VG_1(S); [* q + (zeta_16^6 - zeta_16^4 + zeta_16^2)*q^2 + (zeta_16^7 - zeta_16^5 - zeta_16^3 - zeta_16)*q^3 + (-2*zeta_16^6 + 2*zeta_16^2 - 1)*q^4 + (zeta_16^3 + zeta_16)*q^5 + (-zeta_16^7 - zeta_16^5 + zeta_16^3 - zeta_16)*q^6 + (-zeta_16^7 - zeta_16^5 + zeta_16^3 - zeta_16)*q^7 + (-zeta_16^6 + 3*zeta_16^4 - zeta_16^2)*q^8 + (2*zeta_16^6 + zeta_16^4 + 2*zeta_16^2)*q^9 + O(q^10), q + (zeta_16^4 - zeta_16^2 + 1)*q^2 + (-zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^3 + (-2*zeta_16^6 + zeta_16^4 - 2*zeta_16^2)*q^4 + (zeta_16^6 - 1)*q^5 + (-zeta_16^6 - zeta_16^4 + zeta_16^2 - 1)*q^6 + (-zeta_16^6 + zeta_16^4 - zeta_16^2 - 1)*q^7 + (-3*zeta_16^6 + zeta_16^4 - 1)*q^8 + (zeta_16^6 + 2*zeta_16^4 - 2)*q^9 + O(q^10), q + (-zeta_16^6 + zeta_16^2 - 1)*q^2 + (-zeta_16^7 - zeta_16^5 - zeta_16^3 - zeta_16)*q^3 + (2*zeta_16^6 - 2*zeta_16^2 + 1)*q^4 + (-zeta_16^5 - zeta_16^3)*q^5 + (zeta_16^7 - zeta_16^5 - zeta_16^3 + zeta_16)*q^6 + (-zeta_16^7 + zeta_16^5 + zeta_16^3 - zeta_16)*q^7 + (-zeta_16^6 + zeta_16^2 - 3)*q^8 + (2*zeta_16^6 - 2*zeta_16^2 - 1)*q^9 + O(q^10), q + (zeta_16^6 - zeta_16^4 + 1)*q^2 + (-zeta_16^6 - zeta_16^4 - zeta_16^2 + 1)*q^3 + (2*zeta_16^6 - zeta_16^4 + 2*zeta_16^2)*q^4 + (zeta_16^2 + 1)*q^5 + (zeta_16^6 - zeta_16^4 - zeta_16^2 + 1)*q^6 + (-zeta_16^6 + zeta_16^4 - zeta_16^2 + 1)*q^7 + (-zeta_16^4 + 3*zeta_16^2 - 1)*q^8 + (-2*zeta_16^4 - zeta_16^2 - 2)*q^9 + O(q^10), q + (-zeta_16^6 + zeta_16^4 - zeta_16^2)*q^2 + (-zeta_16^7 - zeta_16^5 - zeta_16^3 + zeta_16)*q^3 + (-2*zeta_16^6 + 2*zeta_16^2 - 1)*q^4 + (zeta_16^7 + zeta_16^5)*q^5 + (-zeta_16^7 + zeta_16^5 - zeta_16^3 - zeta_16)*q^6 + (-zeta_16^7 + zeta_16^5 - zeta_16^3 - zeta_16)*q^7 + (zeta_16^6 - 3*zeta_16^4 + zeta_16^2)*q^8 + (-2*zeta_16^6 - zeta_16^4 - 2*zeta_16^2)*q^9 + O(q^10), q + (-zeta_16^4 + zeta_16^2 - 1)*q^2 + (-zeta_16^6 - zeta_16^4 + zeta_16^2 + 1)*q^3 + (-2*zeta_16^6 + zeta_16^4 - 2*zeta_16^2)*q^4 + (-zeta_16^4 - zeta_16^2)*q^5 + (-zeta_16^6 + zeta_16^4 - zeta_16^2 - 1)*q^6 + (zeta_16^6 + zeta_16^4 - zeta_16^2 + 1)*q^7 + (3*zeta_16^6 - zeta_16^4 + 1)*q^8 + (-zeta_16^6 - 2*zeta_16^4 + 2)*q^9 + O(q^10), q + (zeta_16^6 - zeta_16^2 + 1)*q^2 + (-zeta_16^7 - zeta_16^5 + zeta_16^3 + zeta_16)*q^3 + (2*zeta_16^6 - 2*zeta_16^2 + 1)*q^4 + (-zeta_16^7 + zeta_16)*q^5 + (zeta_16^7 - zeta_16^5 + zeta_16^3 - zeta_16)*q^6 + (-zeta_16^7 + zeta_16^5 - zeta_16^3 + zeta_16)*q^7 + (zeta_16^6 - zeta_16^2 + 3)*q^8 + (-2*zeta_16^6 + 2*zeta_16^2 + 1)*q^9 + O(q^10), q + (-zeta_16^6 + zeta_16^4 - 1)*q^2 + (-zeta_16^6 + zeta_16^4 + zeta_16^2 + 1)*q^3 + (2*zeta_16^6 - zeta_16^4 + 2*zeta_16^2)*q^4 + (zeta_16^6 + zeta_16^4)*q^5 + (zeta_16^6 - zeta_16^4 + zeta_16^2 - 1)*q^6 + (zeta_16^6 - zeta_16^4 - zeta_16^2 + 1)*q^7 + (zeta_16^4 - 3*zeta_16^2 + 1)*q^8 + (2*zeta_16^4 + zeta_16^2 + 2)*q^9 + O(q^10), q + (zeta_16^6 - zeta_16^4 + zeta_16^2)*q^2 + (-zeta_16^7 + zeta_16^5 + zeta_16^3 + zeta_16)*q^3 + (-2*zeta_16^6 + 2*zeta_16^2 - 1)*q^4 + (-zeta_16^3 - zeta_16)*q^5 + (zeta_16^7 + zeta_16^5 - zeta_16^3 + zeta_16)*q^6 + (zeta_16^7 + zeta_16^5 - zeta_16^3 + zeta_16)*q^7 + (-zeta_16^6 + 3*zeta_16^4 - zeta_16^2)*q^8 + (2*zeta_16^6 + zeta_16^4 + 2*zeta_16^2)*q^9 + O(q^10), q + (zeta_16^4 - zeta_16^2 + 1)*q^2 + (zeta_16^6 + zeta_16^4 + zeta_16^2 + 1)*q^3 + (-2*zeta_16^6 + zeta_16^4 - 2*zeta_16^2)*q^4 + (-zeta_16^6 + 1)*q^5 + (zeta_16^6 + zeta_16^4 - zeta_16^2 + 1)*q^6 + (zeta_16^6 - zeta_16^4 + zeta_16^2 + 1)*q^7 + (-3*zeta_16^6 + zeta_16^4 - 1)*q^8 + (zeta_16^6 + 2*zeta_16^4 - 2)*q^9 + O(q^10), q + (-zeta_16^6 + zeta_16^2 - 1)*q^2 + (zeta_16^7 + zeta_16^5 + zeta_16^3 + zeta_16)*q^3 + (2*zeta_16^6 - 2*zeta_16^2 + 1)*q^4 + (zeta_16^5 + zeta_16^3)*q^5 + (-zeta_16^7 + zeta_16^5 + zeta_16^3 - zeta_16)*q^6 + (zeta_16^7 - zeta_16^5 - zeta_16^3 + zeta_16)*q^7 + (-zeta_16^6 + zeta_16^2 - 3)*q^8 + (2*zeta_16^6 - 2*zeta_16^2 - 1)*q^9 + O(q^10), q + (zeta_16^6 - zeta_16^4 + 1)*q^2 + (zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^3 + (2*zeta_16^6 - zeta_16^4 + 2*zeta_16^2)*q^4 + (-zeta_16^2 - 1)*q^5 + (-zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^6 + (zeta_16^6 - zeta_16^4 + zeta_16^2 - 1)*q^7 + (-zeta_16^4 + 3*zeta_16^2 - 1)*q^8 + (-2*zeta_16^4 - zeta_16^2 - 2)*q^9 + O(q^10), q + (-zeta_16^6 + zeta_16^4 - zeta_16^2)*q^2 + (zeta_16^7 + zeta_16^5 + zeta_16^3 - zeta_16)*q^3 + (-2*zeta_16^6 + 2*zeta_16^2 - 1)*q^4 + (-zeta_16^7 - zeta_16^5)*q^5 + (zeta_16^7 - zeta_16^5 + zeta_16^3 + zeta_16)*q^6 + (zeta_16^7 - zeta_16^5 + zeta_16^3 + zeta_16)*q^7 + (zeta_16^6 - 3*zeta_16^4 + zeta_16^2)*q^8 + (-2*zeta_16^6 - zeta_16^4 - 2*zeta_16^2)*q^9 + O(q^10), q + (-zeta_16^4 + zeta_16^2 - 1)*q^2 + (zeta_16^6 + zeta_16^4 - zeta_16^2 - 1)*q^3 + (-2*zeta_16^6 + zeta_16^4 - 2*zeta_16^2)*q^4 + (zeta_16^4 + zeta_16^2)*q^5 + (zeta_16^6 - zeta_16^4 + zeta_16^2 + 1)*q^6 + (-zeta_16^6 - zeta_16^4 + zeta_16^2 - 1)*q^7 + (3*zeta_16^6 - zeta_16^4 + 1)*q^8 + (-zeta_16^6 - 2*zeta_16^4 + 2)*q^9 + O(q^10), q + (zeta_16^6 - zeta_16^2 + 1)*q^2 + (zeta_16^7 + zeta_16^5 - zeta_16^3 - zeta_16)*q^3 + (2*zeta_16^6 - 2*zeta_16^2 + 1)*q^4 + (zeta_16^7 - zeta_16)*q^5 + (-zeta_16^7 + zeta_16^5 - zeta_16^3 + zeta_16)*q^6 + (zeta_16^7 - zeta_16^5 + zeta_16^3 - zeta_16)*q^7 + (zeta_16^6 - zeta_16^2 + 3)*q^8 + (-2*zeta_16^6 + 2*zeta_16^2 + 1)*q^9 + O(q^10), q + (-zeta_16^6 + zeta_16^4 - 1)*q^2 + (zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^3 + (2*zeta_16^6 - zeta_16^4 + 2*zeta_16^2)*q^4 + (-zeta_16^6 - zeta_16^4)*q^5 + (-zeta_16^6 + zeta_16^4 - zeta_16^2 + 1)*q^6 + (-zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^7 + (zeta_16^4 - 3*zeta_16^2 + 1)*q^8 + (2*zeta_16^4 + zeta_16^2 + 2)*q^9 + O(q^10), q + (zeta_16^6 - zeta_16^2 - 1)*q^2 + (-zeta_16^7 + zeta_16^5 + zeta_16^3 - zeta_16)*q^3 + (-2*zeta_16^6 + 2*zeta_16^2 + 1)*q^4 + (-zeta_16^7 - zeta_16)*q^5 + (-zeta_16^7 - zeta_16^5 - zeta_16^3 - zeta_16)*q^6 + (zeta_16^7 + zeta_16^5 + zeta_16^3 + zeta_16)*q^7 + (zeta_16^6 - zeta_16^2 - 3)*q^8 + (-2*zeta_16^6 + 2*zeta_16^2 - 1)*q^9 + O(q^10), q + (zeta_16^6 + zeta_16^4 - 1)*q^2 + (zeta_16^6 + zeta_16^4 - zeta_16^2 + 1)*q^3 + (-2*zeta_16^6 - zeta_16^4 - 2*zeta_16^2)*q^4 + (-zeta_16^6 + zeta_16^4)*q^5 + (-zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^6 + (-zeta_16^6 - zeta_16^4 + zeta_16^2 + 1)*q^7 + (zeta_16^4 + 3*zeta_16^2 + 1)*q^8 + (2*zeta_16^4 - zeta_16^2 + 2)*q^9 + O(q^10), q + (zeta_16^6 + zeta_16^4 + zeta_16^2)*q^2 + (zeta_16^7 + zeta_16^5 - zeta_16^3 + zeta_16)*q^3 + (2*zeta_16^6 - 2*zeta_16^2 - 1)*q^4 + (zeta_16^3 - zeta_16)*q^5 + (zeta_16^7 - zeta_16^5 - zeta_16^3 - zeta_16)*q^6 + (zeta_16^7 - zeta_16^5 - zeta_16^3 - zeta_16)*q^7 + (-zeta_16^6 - 3*zeta_16^4 - zeta_16^2)*q^8 + (2*zeta_16^6 - zeta_16^4 + 2*zeta_16^2)*q^9 + O(q^10), q + (zeta_16^4 + zeta_16^2 + 1)*q^2 + (zeta_16^6 - zeta_16^4 + zeta_16^2 - 1)*q^3 + (2*zeta_16^6 + zeta_16^4 + 2*zeta_16^2)*q^4 + (-zeta_16^6 - 1)*q^5 + (zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^6 + (zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^7 + (3*zeta_16^6 + zeta_16^4 - 1)*q^8 + (-zeta_16^6 + 2*zeta_16^4 - 2)*q^9 + O(q^10), q + (-zeta_16^6 + zeta_16^2 + 1)*q^2 + (zeta_16^7 - zeta_16^5 + zeta_16^3 - zeta_16)*q^3 + (-2*zeta_16^6 + 2*zeta_16^2 + 1)*q^4 + (-zeta_16^5 + zeta_16^3)*q^5 + (zeta_16^7 + zeta_16^5 - zeta_16^3 - zeta_16)*q^6 + (-zeta_16^7 - zeta_16^5 + zeta_16^3 + zeta_16)*q^7 + (-zeta_16^6 + zeta_16^2 + 3)*q^8 + (2*zeta_16^6 - 2*zeta_16^2 + 1)*q^9 + O(q^10), q + (-zeta_16^6 - zeta_16^4 + 1)*q^2 + (-zeta_16^6 + zeta_16^4 - zeta_16^2 - 1)*q^3 + (-2*zeta_16^6 - zeta_16^4 - 2*zeta_16^2)*q^4 + (zeta_16^2 - 1)*q^5 + (zeta_16^6 + zeta_16^4 - zeta_16^2 - 1)*q^6 + (-zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^7 + (-zeta_16^4 - 3*zeta_16^2 - 1)*q^8 + (-2*zeta_16^4 + zeta_16^2 - 2)*q^9 + O(q^10), q + (-zeta_16^6 - zeta_16^4 - zeta_16^2)*q^2 + (-zeta_16^7 + zeta_16^5 - zeta_16^3 - zeta_16)*q^3 + (2*zeta_16^6 - 2*zeta_16^2 - 1)*q^4 + (zeta_16^7 - zeta_16^5)*q^5 + (zeta_16^7 + zeta_16^5 + zeta_16^3 - zeta_16)*q^6 + (zeta_16^7 + zeta_16^5 + zeta_16^3 - zeta_16)*q^7 + (zeta_16^6 + 3*zeta_16^4 + zeta_16^2)*q^8 + (-2*zeta_16^6 + zeta_16^4 - 2*zeta_16^2)*q^9 + O(q^10), q + (-zeta_16^4 - zeta_16^2 - 1)*q^2 + (zeta_16^6 - zeta_16^4 - zeta_16^2 + 1)*q^3 + (2*zeta_16^6 + zeta_16^4 + 2*zeta_16^2)*q^4 + (-zeta_16^4 + zeta_16^2)*q^5 + (zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^6 + (-zeta_16^6 + zeta_16^4 + zeta_16^2 + 1)*q^7 + (-3*zeta_16^6 - zeta_16^4 + 1)*q^8 + (zeta_16^6 - 2*zeta_16^4 + 2)*q^9 + O(q^10), q + (zeta_16^6 - zeta_16^2 - 1)*q^2 + (zeta_16^7 - zeta_16^5 - zeta_16^3 + zeta_16)*q^3 + (-2*zeta_16^6 + 2*zeta_16^2 + 1)*q^4 + (zeta_16^7 + zeta_16)*q^5 + (zeta_16^7 + zeta_16^5 + zeta_16^3 + zeta_16)*q^6 + (-zeta_16^7 - zeta_16^5 - zeta_16^3 - zeta_16)*q^7 + (zeta_16^6 - zeta_16^2 - 3)*q^8 + (-2*zeta_16^6 + 2*zeta_16^2 - 1)*q^9 + O(q^10), q + (zeta_16^6 + zeta_16^4 - 1)*q^2 + (-zeta_16^6 - zeta_16^4 + zeta_16^2 - 1)*q^3 + (-2*zeta_16^6 - zeta_16^4 - 2*zeta_16^2)*q^4 + (zeta_16^6 - zeta_16^4)*q^5 + (zeta_16^6 + zeta_16^4 + zeta_16^2 + 1)*q^6 + (zeta_16^6 + zeta_16^4 - zeta_16^2 - 1)*q^7 + (zeta_16^4 + 3*zeta_16^2 + 1)*q^8 + (2*zeta_16^4 - zeta_16^2 + 2)*q^9 + O(q^10), q + (zeta_16^6 + zeta_16^4 + zeta_16^2)*q^2 + (-zeta_16^7 - zeta_16^5 + zeta_16^3 - zeta_16)*q^3 + (2*zeta_16^6 - 2*zeta_16^2 - 1)*q^4 + (-zeta_16^3 + zeta_16)*q^5 + (-zeta_16^7 + zeta_16^5 + zeta_16^3 + zeta_16)*q^6 + (-zeta_16^7 + zeta_16^5 + zeta_16^3 + zeta_16)*q^7 + (-zeta_16^6 - 3*zeta_16^4 - zeta_16^2)*q^8 + (2*zeta_16^6 - zeta_16^4 + 2*zeta_16^2)*q^9 + O(q^10), q + (zeta_16^4 + zeta_16^2 + 1)*q^2 + (-zeta_16^6 + zeta_16^4 - zeta_16^2 + 1)*q^3 + (2*zeta_16^6 + zeta_16^4 + 2*zeta_16^2)*q^4 + (zeta_16^6 + 1)*q^5 + (-zeta_16^6 + zeta_16^4 + zeta_16^2 + 1)*q^6 + (-zeta_16^6 - zeta_16^4 - zeta_16^2 + 1)*q^7 + (3*zeta_16^6 + zeta_16^4 - 1)*q^8 + (-zeta_16^6 + 2*zeta_16^4 - 2)*q^9 + O(q^10), q + (-zeta_16^6 + zeta_16^2 + 1)*q^2 + (-zeta_16^7 + zeta_16^5 - zeta_16^3 + zeta_16)*q^3 + (-2*zeta_16^6 + 2*zeta_16^2 + 1)*q^4 + (zeta_16^5 - zeta_16^3)*q^5 + (-zeta_16^7 - zeta_16^5 + zeta_16^3 + zeta_16)*q^6 + (zeta_16^7 + zeta_16^5 - zeta_16^3 - zeta_16)*q^7 + (-zeta_16^6 + zeta_16^2 + 3)*q^8 + (2*zeta_16^6 - 2*zeta_16^2 + 1)*q^9 + O(q^10), q + (-zeta_16^6 - zeta_16^4 + 1)*q^2 + (zeta_16^6 - zeta_16^4 + zeta_16^2 + 1)*q^3 + (-2*zeta_16^6 - zeta_16^4 - 2*zeta_16^2)*q^4 + (-zeta_16^2 + 1)*q^5 + (-zeta_16^6 - zeta_16^4 + zeta_16^2 + 1)*q^6 + (zeta_16^6 + zeta_16^4 + zeta_16^2 + 1)*q^7 + (-zeta_16^4 - 3*zeta_16^2 - 1)*q^8 + (-2*zeta_16^4 + zeta_16^2 - 2)*q^9 + O(q^10), q + (-zeta_16^6 - zeta_16^4 - zeta_16^2)*q^2 + (zeta_16^7 - zeta_16^5 + zeta_16^3 + zeta_16)*q^3 + (2*zeta_16^6 - 2*zeta_16^2 - 1)*q^4 + (-zeta_16^7 + zeta_16^5)*q^5 + (-zeta_16^7 - zeta_16^5 - zeta_16^3 + zeta_16)*q^6 + (-zeta_16^7 - zeta_16^5 - zeta_16^3 + zeta_16)*q^7 + (zeta_16^6 + 3*zeta_16^4 + zeta_16^2)*q^8 + (-2*zeta_16^6 + zeta_16^4 - 2*zeta_16^2)*q^9 + O(q^10), q + (-zeta_16^4 - zeta_16^2 - 1)*q^2 + (-zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^3 + (2*zeta_16^6 + zeta_16^4 + 2*zeta_16^2)*q^4 + (zeta_16^4 - zeta_16^2)*q^5 + (-zeta_16^6 - zeta_16^4 - zeta_16^2 + 1)*q^6 + (zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^7 + (-3*zeta_16^6 - zeta_16^4 + 1)*q^8 + (zeta_16^6 - 2*zeta_16^4 + 2)*q^9 + O(q^10), q^17 + (-zeta_16^6 + zeta_16^4 - 1)*q^34 + (zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^51 + (2*zeta_16^6 - zeta_16^4 + 2*zeta_16^2)*q^68 + (-zeta_16^6 - zeta_16^4)*q^85 + (-zeta_16^6 + zeta_16^4 - zeta_16^2 + 1)*q^102 + (-zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^119 + (zeta_16^4 - 3*zeta_16^2 + 1)*q^136 + (2*zeta_16^4 + zeta_16^2 + 2)*q^153, O(q^10), q^17 + (-zeta_16^4 - zeta_16^2 - 1)*q^34 + (-zeta_16^6 + zeta_16^4 + zeta_16^2 - 1)*q^51 + (2*zeta_16^6 + zeta_16^4 + 2*zeta_16^2)*q^68 + (zeta_16^4 - zeta_16^2)*q^85 + (-zeta_16^6 - zeta_16^4 - zeta_16^2 + 1)*q^102 + (zeta_16^6 - zeta_16^4 - zeta_16^2 - 1)*q^119 + (-3*zeta_16^6 - zeta_16^4 + 1)*q^136 + (zeta_16^6 - 2*zeta_16^4 + 2)*q^153, O(q^10) *] > #$1; 36 > VG_2(S); [* q - zeta_16^6*a*q^2 + (zeta_16*a + zeta_16)*q^3 + (zeta_16^4*a - zeta_16^4)*q^4 - zeta_16^5*a*q^5 - 3*zeta_16^7*q^6 + (-zeta_16^3*a - 2*zeta_16^3)*q^7 + 3*zeta_16^2*q^8 + (zeta_16^2*a + zeta_16^2)*q^9 + O(q^10), q - zeta_16^4*a*q^2 + (zeta_16^2*a + zeta_16^2)*q^3 + (a - 1)*q^4 + zeta_16^2*a*q^5 - 3*zeta_16^6*q^6 + (zeta_16^6*a + 2*zeta_16^6)*q^7 - 3*zeta_16^4*q^8 + (zeta_16^4*a + zeta_16^4)*q^9 + O(q^10), q - zeta_16^2*a*q^2 + (zeta_16^3*a + zeta_16^3)*q^3 + (-zeta_16^4*a + zeta_16^4)*q^4 + zeta_16^7*a*q^5 - 3*zeta_16^5*q^6 + (zeta_16*a + 2*zeta_16)*q^7 + 3*zeta_16^6*q^8 + (zeta_16^6*a + zeta_16^6)*q^9 + O(q^10), q - a*q^2 + (zeta_16^4*a + zeta_16^4)*q^3 + (-a + 1)*q^4 - zeta_16^4*a*q^5 - 3*zeta_16^4*q^6 + (-zeta_16^4*a - 2*zeta_16^4)*q^7 + 3*q^8 + (-a - 1)*q^9 + O(q^10), q + zeta_16^6*a*q^2 + (zeta_16^5*a + zeta_16^5)*q^3 + (zeta_16^4*a - zeta_16^4)*q^4 + zeta_16*a*q^5 - 3*zeta_16^3*q^6 + (zeta_16^7*a + 2*zeta_16^7)*q^7 - 3*zeta_16^2*q^8 + (-zeta_16^2*a - zeta_16^2)*q^9 + O(q^10), q + zeta_16^4*a*q^2 + (zeta_16^6*a + zeta_16^6)*q^3 + (a - 1)*q^4 + zeta_16^6*a*q^5 - 3*zeta_16^2*q^6 + (zeta_16^2*a + 2*zeta_16^2)*q^7 + 3*zeta_16^4*q^8 + (-zeta_16^4*a - zeta_16^4)*q^9 + O(q^10), q + zeta_16^2*a*q^2 + (zeta_16^7*a + zeta_16^7)*q^3 + (-zeta_16^4*a + zeta_16^4)*q^4 - zeta_16^3*a*q^5 - 3*zeta_16*q^6 + (-zeta_16^5*a - 2*zeta_16^5)*q^7 - 3*zeta_16^6*q^8 + (-zeta_16^6*a - zeta_16^6)*q^9 + O(q^10), q + a*q^2 + (-a - 1)*q^3 + (-a + 1)*q^4 + a*q^5 - 3*q^6 + (-a - 2)*q^7 - 3*q^8 + (a + 1)*q^9 + O(q^10), q - zeta_16^6*a*q^2 + (-zeta_16*a - zeta_16)*q^3 + (zeta_16^4*a - zeta_16^4)*q^4 + zeta_16^5*a*q^5 + 3*zeta_16^7*q^6 + (zeta_16^3*a + 2*zeta_16^3)*q^7 + 3*zeta_16^2*q^8 + (zeta_16^2*a + zeta_16^2)*q^9 + O(q^10), q - zeta_16^4*a*q^2 + (-zeta_16^2*a - zeta_16^2)*q^3 + (a - 1)*q^4 - zeta_16^2*a*q^5 + 3*zeta_16^6*q^6 + (-zeta_16^6*a - 2*zeta_16^6)*q^7 - 3*zeta_16^4*q^8 + (zeta_16^4*a + zeta_16^4)*q^9 + O(q^10), q - zeta_16^2*a*q^2 + (-zeta_16^3*a - zeta_16^3)*q^3 + (-zeta_16^4*a + zeta_16^4)*q^4 - zeta_16^7*a*q^5 + 3*zeta_16^5*q^6 + (-zeta_16*a - 2*zeta_16)*q^7 + 3*zeta_16^6*q^8 + (zeta_16^6*a + zeta_16^6)*q^9 + O(q^10), q - a*q^2 + (-zeta_16^4*a - zeta_16^4)*q^3 + (-a + 1)*q^4 + zeta_16^4*a*q^5 + 3*zeta_16^4*q^6 + (zeta_16^4*a + 2*zeta_16^4)*q^7 + 3*q^8 + (-a - 1)*q^9 + O(q^10), q + zeta_16^6*a*q^2 + (-zeta_16^5*a - zeta_16^5)*q^3 + (zeta_16^4*a - zeta_16^4)*q^4 - zeta_16*a*q^5 + 3*zeta_16^3*q^6 + (-zeta_16^7*a - 2*zeta_16^7)*q^7 - 3*zeta_16^2*q^8 + (-zeta_16^2*a - zeta_16^2)*q^9 + O(q^10), q + zeta_16^4*a*q^2 + (-zeta_16^6*a - zeta_16^6)*q^3 + (a - 1)*q^4 - zeta_16^6*a*q^5 + 3*zeta_16^2*q^6 + (-zeta_16^2*a - 2*zeta_16^2)*q^7 + 3*zeta_16^4*q^8 + (-zeta_16^4*a - zeta_16^4)*q^9 + O(q^10), q + zeta_16^2*a*q^2 + (-zeta_16^7*a - zeta_16^7)*q^3 + (-zeta_16^4*a + zeta_16^4)*q^4 + zeta_16^3*a*q^5 + 3*zeta_16*q^6 + (zeta_16^5*a + 2*zeta_16^5)*q^7 - 3*zeta_16^6*q^8 + (-zeta_16^6*a - zeta_16^6)*q^9 + O(q^10), q + a*q^2 + (a + 1)*q^3 + (-a + 1)*q^4 - a*q^5 + 3*q^6 + (a + 2)*q^7 - 3*q^8 + (a + 1)*q^9 + O(q^10), q - zeta_16^6*a*q^2 + (zeta_16*a^2 - zeta_16)*q^3 + (-zeta_16^4*a^2 + 2*zeta_16^4)*q^4 + (zeta_16^5*a + 2*zeta_16^5)*q^5 + (-2*zeta_16^7*a + zeta_16^7)*q^6 + (zeta_16^3*a^2 - 2*zeta_16^3)*q^7 + (zeta_16^2*a + zeta_16^2)*q^8 + (zeta_16^2*a^2 - zeta_16^2*a - 2*zeta_16^2)*q^9 + O(q^10), q - zeta_16^4*a*q^2 + (zeta_16^2*a^2 - zeta_16^2)*q^3 + (-a^2 + 2)*q^4 + (-zeta_16^2*a - 2*zeta_16^2)*q^5 + (-2*zeta_16^6*a + zeta_16^6)*q^6 + (-zeta_16^6*a^2 + 2*zeta_16^6)*q^7 + (-zeta_16^4*a - zeta_16^4)*q^8 + (zeta_16^4*a^2 - zeta_16^4*a - 2*zeta_16^4)*q^9 + O(q^10), q - zeta_16^2*a*q^2 + (zeta_16^3*a^2 - zeta_16^3)*q^3 + (zeta_16^4*a^2 - 2*zeta_16^4)*q^4 + (-zeta_16^7*a - 2*zeta_16^7)*q^5 + (-2*zeta_16^5*a + zeta_16^5)*q^6 + (-zeta_16*a^2 + 2*zeta_16)*q^7 + (zeta_16^6*a + zeta_16^6)*q^8 + (zeta_16^6*a^2 - zeta_16^6*a - 2*zeta_16^6)*q^9 + O(q^10), q - a*q^2 + (zeta_16^4*a^2 - zeta_16^4)*q^3 + (a^2 - 2)*q^4 + (zeta_16^4*a + 2*zeta_16^4)*q^5 + (-2*zeta_16^4*a + zeta_16^4)*q^6 + (zeta_16^4*a^2 - 2*zeta_16^4)*q^7 + (a + 1)*q^8 + (-a^2 + a + 2)*q^9 + O(q^10), q + zeta_16^6*a*q^2 + (zeta_16^5*a^2 - zeta_16^5)*q^3 + (-zeta_16^4*a^2 + 2*zeta_16^4)*q^4 + (-zeta_16*a - 2*zeta_16)*q^5 + (-2*zeta_16^3*a + zeta_16^3)*q^6 + (-zeta_16^7*a^2 + 2*zeta_16^7)*q^7 + (-zeta_16^2*a - zeta_16^2)*q^8 + (-zeta_16^2*a^2 + zeta_16^2*a + 2*zeta_16^2)*q^9 + O(q^10), q + zeta_16^4*a*q^2 + (zeta_16^6*a^2 - zeta_16^6)*q^3 + (-a^2 + 2)*q^4 + (-zeta_16^6*a - 2*zeta_16^6)*q^5 + (-2*zeta_16^2*a + zeta_16^2)*q^6 + (-zeta_16^2*a^2 + 2*zeta_16^2)*q^7 + (zeta_16^4*a + zeta_16^4)*q^8 + (-zeta_16^4*a^2 + zeta_16^4*a + 2*zeta_16^4)*q^9 + O(q^10), q + zeta_16^2*a*q^2 + (zeta_16^7*a^2 - zeta_16^7)*q^3 + (zeta_16^4*a^2 - 2*zeta_16^4)*q^4 + (zeta_16^3*a + 2*zeta_16^3)*q^5 + (-2*zeta_16*a + zeta_16)*q^6 + (zeta_16^5*a^2 - 2*zeta_16^5)*q^7 + (-zeta_16^6*a - zeta_16^6)*q^8 + (-zeta_16^6*a^2 + zeta_16^6*a + 2*zeta_16^6)*q^9 + O(q^10), q + a*q^2 + (-a^2 + 1)*q^3 + (a^2 - 2)*q^4 + (-a - 2)*q^5 + (-2*a + 1)*q^6 + (a^2 - 2)*q^7 + (-a - 1)*q^8 + (a^2 - a - 2)*q^9 + O(q^10), q - zeta_16^6*a*q^2 + (-zeta_16*a^2 + zeta_16)*q^3 + (-zeta_16^4*a^2 + 2*zeta_16^4)*q^4 + (-zeta_16^5*a - 2*zeta_16^5)*q^5 + (2*zeta_16^7*a - zeta_16^7)*q^6 + (-zeta_16^3*a^2 + 2*zeta_16^3)*q^7 + (zeta_16^2*a + zeta_16^2)*q^8 + (zeta_16^2*a^2 - zeta_16^2*a - 2*zeta_16^2)*q^9 + O(q^10), q - zeta_16^4*a*q^2 + (-zeta_16^2*a^2 + zeta_16^2)*q^3 + (-a^2 + 2)*q^4 + (zeta_16^2*a + 2*zeta_16^2)*q^5 + (2*zeta_16^6*a - zeta_16^6)*q^6 + (zeta_16^6*a^2 - 2*zeta_16^6)*q^7 + (-zeta_16^4*a - zeta_16^4)*q^8 + (zeta_16^4*a^2 - zeta_16^4*a - 2*zeta_16^4)*q^9 + O(q^10), q - zeta_16^2*a*q^2 + (-zeta_16^3*a^2 + zeta_16^3)*q^3 + (zeta_16^4*a^2 - 2*zeta_16^4)*q^4 + (zeta_16^7*a + 2*zeta_16^7)*q^5 + (2*zeta_16^5*a - zeta_16^5)*q^6 + (zeta_16*a^2 - 2*zeta_16)*q^7 + (zeta_16^6*a + zeta_16^6)*q^8 + (zeta_16^6*a^2 - zeta_16^6*a - 2*zeta_16^6)*q^9 + O(q^10), q - a*q^2 + (-zeta_16^4*a^2 + zeta_16^4)*q^3 + (a^2 - 2)*q^4 + (-zeta_16^4*a - 2*zeta_16^4)*q^5 + (2*zeta_16^4*a - zeta_16^4)*q^6 + (-zeta_16^4*a^2 + 2*zeta_16^4)*q^7 + (a + 1)*q^8 + (-a^2 + a + 2)*q^9 + O(q^10), q + zeta_16^6*a*q^2 + (-zeta_16^5*a^2 + zeta_16^5)*q^3 + (-zeta_16^4*a^2 + 2*zeta_16^4)*q^4 + (zeta_16*a + 2*zeta_16)*q^5 + (2*zeta_16^3*a - zeta_16^3)*q^6 + (zeta_16^7*a^2 - 2*zeta_16^7)*q^7 + (-zeta_16^2*a - zeta_16^2)*q^8 + (-zeta_16^2*a^2 + zeta_16^2*a + 2*zeta_16^2)*q^9 + O(q^10), q + zeta_16^4*a*q^2 + (-zeta_16^6*a^2 + zeta_16^6)*q^3 + (-a^2 + 2)*q^4 + (zeta_16^6*a + 2*zeta_16^6)*q^5 + (2*zeta_16^2*a - zeta_16^2)*q^6 + (zeta_16^2*a^2 - 2*zeta_16^2)*q^7 + (zeta_16^4*a + zeta_16^4)*q^8 + (-zeta_16^4*a^2 + zeta_16^4*a + 2*zeta_16^4)*q^9 + O(q^10), q + zeta_16^2*a*q^2 + (-zeta_16^7*a^2 + zeta_16^7)*q^3 + (zeta_16^4*a^2 - 2*zeta_16^4)*q^4 + (-zeta_16^3*a - 2*zeta_16^3)*q^5 + (2*zeta_16*a - zeta_16)*q^6 + (-zeta_16^5*a^2 + 2*zeta_16^5)*q^7 + (-zeta_16^6*a - zeta_16^6)*q^8 + (-zeta_16^6*a^2 + zeta_16^6*a + 2*zeta_16^6)*q^9 + O(q^10), q + a*q^2 + (a^2 - 1)*q^3 + (a^2 - 2)*q^4 + (a + 2)*q^5 + (2*a - 1)*q^6 + (-a^2 + 2)*q^7 + (-a - 1)*q^8 + (a^2 - a - 2)*q^9 + O(q^10) *] > #$1; 32 > VG_3(S); [**] > > VG_0(S); [* qp + 2*zeta_18^4*qp^3 - 2*zeta_18^2*qp^4 + (-3*zeta_18^4 + 3*zeta_18)*qp^5 + (-zeta_18^3 + 1)*qp^7 + (zeta_18^5 - zeta_18^2)*qp^9 + O(qp^10), qp + (-2*zeta_18^5 + 2*zeta_18^2)*qp^3 - 2*zeta_18^4*qp^4 - 3*zeta_18^5*qp^5 + zeta_18^3*qp^7 + (-zeta_18^4 + zeta_18)*qp^9 + O(qp^10), qp - 2*zeta_18^3*qp^3 + (-2*zeta_18^3 + 2)*qp^4 - 3*zeta_18^3*qp^5 - qp^7 + (zeta_18^3 - 1)*qp^9 + O(qp^10), qp + (2*zeta_18^4 - 2*zeta_18)*qp^3 + (-2*zeta_18^5 + 2*zeta_18^2)*qp^4 - 3*zeta_18*qp^5 + (-zeta_18^3 + 1)*qp^7 - zeta_18^5*qp^9 + O(qp^10), qp + 2*zeta_18^2*qp^3 + 2*zeta_18*qp^4 + (3*zeta_18^5 - 3*zeta_18^2)*qp^5 + zeta_18^3*qp^7 + zeta_18^4*qp^9 + O(qp^10), qp + (-2*zeta_18^3 + 2)*qp^3 + 2*zeta_18^3*qp^4 + (3*zeta_18^3 - 3)*qp^5 - qp^7 - zeta_18^3*qp^9 + O(qp^10), qp - 2*zeta_18*qp^3 + 2*zeta_18^5*qp^4 + 3*zeta_18^4*qp^5 + (-zeta_18^3 + 1)*qp^7 + zeta_18^2*qp^9 + O(qp^10), qp + 2*zeta_18^5*qp^3 + (2*zeta_18^4 - 2*zeta_18)*qp^4 + 3*zeta_18^2*qp^5 + zeta_18^3*qp^7 - zeta_18*qp^9 + O(qp^10), qp + 2*qp^3 - 2*qp^4 + 3*qp^5 - qp^7 + qp^9 + O(qp^10), qp - 2*zeta_18^4*qp^3 - 2*zeta_18^2*qp^4 + (-3*zeta_18^4 + 3*zeta_18)*qp^5 + (-zeta_18^3 + 1)*qp^7 + (zeta_18^5 - zeta_18^2)*qp^9 + O(qp^10), qp + (2*zeta_18^5 - 2*zeta_18^2)*qp^3 - 2*zeta_18^4*qp^4 - 3*zeta_18^5*qp^5 + zeta_18^3*qp^7 + (-zeta_18^4 + zeta_18)*qp^9 + O(qp^10), qp + 2*zeta_18^3*qp^3 + (-2*zeta_18^3 + 2)*qp^4 - 3*zeta_18^3*qp^5 - qp^7 + (zeta_18^3 - 1)*qp^9 + O(qp^10), qp + (-2*zeta_18^4 + 2*zeta_18)*qp^3 + (-2*zeta_18^5 + 2*zeta_18^2)*qp^4 - 3*zeta_18*qp^5 + (-zeta_18^3 + 1)*qp^7 - zeta_18^5*qp^9 + O(qp^10), qp - 2*zeta_18^2*qp^3 + 2*zeta_18*qp^4 + (3*zeta_18^5 - 3*zeta_18^2)*qp^5 + zeta_18^3*qp^7 + zeta_18^4*qp^9 + O(qp^10), qp + (2*zeta_18^3 - 2)*qp^3 + 2*zeta_18^3*qp^4 + (3*zeta_18^3 - 3)*qp^5 - qp^7 - zeta_18^3*qp^9 + O(qp^10), qp + 2*zeta_18*qp^3 + 2*zeta_18^5*qp^4 + 3*zeta_18^4*qp^5 + (-zeta_18^3 + 1)*qp^7 + zeta_18^2*qp^9 + O(qp^10), qp - 2*zeta_18^5*qp^3 + (2*zeta_18^4 - 2*zeta_18)*qp^4 + 3*zeta_18^2*qp^5 + zeta_18^3*qp^7 - zeta_18*qp^9 + O(qp^10), qp - 2*qp^3 - 2*qp^4 + 3*qp^5 - qp^7 + qp^9 + O(qp^10), O(qp^10) *] > VG_1(S); [* q + (-zeta_18^3 + zeta_18^2 - zeta_18)*q^2 + (zeta_18^5 - zeta_18^3 - zeta_18^2 + zeta_18 + 1)*q^3 + (-2*zeta_18^5 + zeta_18^4 - zeta_18^3 + zeta_18^2 - 1)*q^4 + (zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18)*q^5 + (-zeta_18^5 + zeta_18^3 + zeta_18^2 - 2*zeta_18)*q^6 + (zeta_18^4 + zeta_18^2)*q^7 + (zeta_18^5 + zeta_18^4 + 2*zeta_18^3 - 3*zeta_18^2 + 2*zeta_18 - 2)*q^8 + (2*zeta_18^5 - zeta_18^3 + zeta_18^2 - 2)*q^9 + O(q^10), q + (-zeta_18^4 + zeta_18^3 - zeta_18^2)*q^2 + (-zeta_18^5 + zeta_18^3 - zeta_18)*q^3 + (-zeta_18^5 - zeta_18^4 + zeta_18^3 - zeta_18^2 + 2*zeta_18 - 1)*q^4 + (zeta_18^5 + zeta_18^3 + zeta_18)*q^5 + (-zeta_18^5 - zeta_18^4 + 2*zeta_18^3 + zeta_18^2 - 2)*q^6 + (zeta_18^5 - zeta_18^2 - zeta_18)*q^7 + (-2*zeta_18^5 + 3*zeta_18^4 - zeta_18^2 - zeta_18 - 2)*q^8 + (-2*zeta_18^5 - 2*zeta_18^4 + 3*zeta_18^2 - zeta_18)*q^9 + O(q^10), q + (-zeta_18^5 + zeta_18^4 - zeta_18^3)*q^2 + (zeta_18^5 - zeta_18^4 + zeta_18 - 1)*q^3 + (zeta_18^5 - 2*zeta_18^4 + zeta_18^3 - zeta_18^2 + zeta_18 + 1)*q^4 + (-zeta_18^5 + zeta_18^3 + zeta_18^2 + zeta_18)*q^5 + (-zeta_18^4 + 2*zeta_18^2 - 1)*q^6 + (-zeta_18^5 - zeta_18^4 + zeta_18)*q^7 + (-3*zeta_18^5 + 2*zeta_18^4 - 2*zeta_18^3 + 2*zeta_18^2 - 3*zeta_18)*q^8 + (2*zeta_18^4 + 2*zeta_18^3 - 3*zeta_18 + 1)*q^9 + O(q^10), q + (zeta_18^5 - zeta_18^4 - zeta_18^3 + 1)*q^2 + (zeta_18^4 - zeta_18^2 + 1)*q^3 + (zeta_18^5 - zeta_18^3 + zeta_18^2 - zeta_18 + 2)*q^4 + (-zeta_18^5 - zeta_18^3 + zeta_18^2 + zeta_18 + 1)*q^5 + (zeta_18^5 - 2*zeta_18^4 + 2*zeta_18 - 1)*q^6 + (zeta_18^4 + zeta_18^2)*q^7 + (-zeta_18^5 - zeta_18^4 - 2*zeta_18^3 + 3*zeta_18^2 - 2*zeta_18 + 2)*q^8 + (zeta_18^5 - 2*zeta_18^3 - 3*zeta_18^2 + 3)*q^9 + O(q^10), q + (-zeta_18^5 - zeta_18^4 + zeta_18^3 + zeta_18 - 1)*q^2 + (-zeta_18^5 - zeta_18^4 + zeta_18^3 + zeta_18^2 - 1)*q^3 + (-zeta_18^5 + 2*zeta_18^4 - zeta_18^3 + 2*zeta_18^2 - zeta_18)*q^4 + (-zeta_18^5 - zeta_18^4 - zeta_18^3 + zeta_18^2 + 1)*q^5 + (zeta_18^5 - 2*zeta_18^3 + zeta_18)*q^6 + (zeta_18^5 - zeta_18^2 - zeta_18)*q^7 + (2*zeta_18^5 - 3*zeta_18^4 + zeta_18^2 + zeta_18 + 2)*q^8 + (3*zeta_18^5 - zeta_18^4 - zeta_18^2 + 3*zeta_18)*q^9 + O(q^10), q + (-zeta_18^5 + zeta_18^4 - zeta_18^3 + zeta_18^2 - zeta_18 + 1)*q^2 + (zeta_18^5 - zeta_18^3 - zeta_18^2 + zeta_18)*q^3 + (-zeta_18^5 + zeta_18^4 + zeta_18^3 + zeta_18 - 2)*q^4 + (-zeta_18^4 - zeta_18^3 - zeta_18^2 + 1)*q^5 + (2*zeta_18^5 - zeta_18^3 - 2*zeta_18^2 + zeta_18 + 1)*q^6 + (-zeta_18^5 - zeta_18^4 + zeta_18)*q^7 + (3*zeta_18^5 - 2*zeta_18^4 + 2*zeta_18^3 - 2*zeta_18^2 + 3*zeta_18)*q^8 + (-3*zeta_18^4 + zeta_18^3 + zeta_18 - 3)*q^9 + O(q^10), q + (zeta_18^5 - zeta_18^4 - zeta_18^2 + zeta_18 + 1)*q^2 + (-zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18)*q^3 + (zeta_18^5 - zeta_18^4 + 2*zeta_18^3 - 2*zeta_18^2 + zeta_18 - 1)*q^4 + (-zeta_18^4 - zeta_18^2 - 1)*q^5 + (2*zeta_18^4 - zeta_18^3 - zeta_18^2 + 1)*q^6 + (zeta_18^4 + zeta_18^2)*q^7 + (zeta_18^5 + zeta_18^4 + 2*zeta_18^3 - 3*zeta_18^2 + 2*zeta_18 - 2)*q^8 + (-3*zeta_18^5 + 3*zeta_18^3 + 2*zeta_18^2 - 1)*q^9 + O(q^10), q + (-zeta_18^5 + zeta_18^2 + zeta_18 - 1)*q^2 + (-zeta_18^4 + zeta_18^2 + zeta_18 - 1)*q^3 + (2*zeta_18^5 - zeta_18^4 - zeta_18^2 - zeta_18 + 1)*q^4 + (zeta_18^4 - zeta_18^2 - zeta_18 - 1)*q^5 + (zeta_18^4 - zeta_18^2 - zeta_18 + 2)*q^6 + (zeta_18^5 - zeta_18^2 - zeta_18)*q^7 + (-2*zeta_18^5 + 3*zeta_18^4 - zeta_18^2 - zeta_18 - 2)*q^8 + (-zeta_18^5 + 3*zeta_18^4 - 2*zeta_18^2 - 2*zeta_18)*q^9 + O(q^10), q + (zeta_18^2 - zeta_18 + 1)*q^2 + (zeta_18^4 - zeta_18^3 - zeta_18^2 + 1)*q^3 + (zeta_18^4 - 2*zeta_18^3 + zeta_18^2 - 2*zeta_18 + 1)*q^4 + (zeta_18^5 + zeta_18^4 - zeta_18 - 1)*q^5 + (-2*zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18)*q^6 + (-zeta_18^5 - zeta_18^4 + zeta_18)*q^7 + (-3*zeta_18^5 + 2*zeta_18^4 - 2*zeta_18^3 + 2*zeta_18^2 - 3*zeta_18)*q^8 + (zeta_18^4 - 3*zeta_18^3 + 2*zeta_18 + 2)*q^9 + O(q^10), q + (zeta_18^3 - zeta_18^2 + zeta_18)*q^2 + (-zeta_18^5 + zeta_18^3 + zeta_18^2 - zeta_18 - 1)*q^3 + (-2*zeta_18^5 + zeta_18^4 - zeta_18^3 + zeta_18^2 - 1)*q^4 + (zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18)*q^5 + (-zeta_18^5 + zeta_18^3 + zeta_18^2 - 2*zeta_18)*q^6 + (zeta_18^4 + zeta_18^2)*q^7 + (-zeta_18^5 - zeta_18^4 - 2*zeta_18^3 + 3*zeta_18^2 - 2*zeta_18 + 2)*q^8 + (2*zeta_18^5 - zeta_18^3 + zeta_18^2 - 2)*q^9 + O(q^10), q + (zeta_18^4 - zeta_18^3 + zeta_18^2)*q^2 + (zeta_18^5 - zeta_18^3 + zeta_18)*q^3 + (-zeta_18^5 - zeta_18^4 + zeta_18^3 - zeta_18^2 + 2*zeta_18 - 1)*q^4 + (zeta_18^5 + zeta_18^3 + zeta_18)*q^5 + (-zeta_18^5 - zeta_18^4 + 2*zeta_18^3 + zeta_18^2 - 2)*q^6 + (zeta_18^5 - zeta_18^2 - zeta_18)*q^7 + (2*zeta_18^5 - 3*zeta_18^4 + zeta_18^2 + zeta_18 + 2)*q^8 + (-2*zeta_18^5 - 2*zeta_18^4 + 3*zeta_18^2 - zeta_18)*q^9 + O(q^10), q + (zeta_18^5 - zeta_18^4 + zeta_18^3)*q^2 + (-zeta_18^5 + zeta_18^4 - zeta_18 + 1)*q^3 + (zeta_18^5 - 2*zeta_18^4 + zeta_18^3 - zeta_18^2 + zeta_18 + 1)*q^4 + (-zeta_18^5 + zeta_18^3 + zeta_18^2 + zeta_18)*q^5 + (-zeta_18^4 + 2*zeta_18^2 - 1)*q^6 + (-zeta_18^5 - zeta_18^4 + zeta_18)*q^7 + (3*zeta_18^5 - 2*zeta_18^4 + 2*zeta_18^3 - 2*zeta_18^2 + 3*zeta_18)*q^8 + (2*zeta_18^4 + 2*zeta_18^3 - 3*zeta_18 + 1)*q^9 + O(q^10), q + (-zeta_18^5 + zeta_18^4 + zeta_18^3 - 1)*q^2 + (-zeta_18^4 + zeta_18^2 - 1)*q^3 + (zeta_18^5 - zeta_18^3 + zeta_18^2 - zeta_18 + 2)*q^4 + (-zeta_18^5 - zeta_18^3 + zeta_18^2 + zeta_18 + 1)*q^5 + (zeta_18^5 - 2*zeta_18^4 + 2*zeta_18 - 1)*q^6 + (zeta_18^4 + zeta_18^2)*q^7 + (zeta_18^5 + zeta_18^4 + 2*zeta_18^3 - 3*zeta_18^2 + 2*zeta_18 - 2)*q^8 + (zeta_18^5 - 2*zeta_18^3 - 3*zeta_18^2 + 3)*q^9 + O(q^10), q + (zeta_18^5 + zeta_18^4 - zeta_18^3 - zeta_18 + 1)*q^2 + (zeta_18^5 + zeta_18^4 - zeta_18^3 - zeta_18^2 + 1)*q^3 + (-zeta_18^5 + 2*zeta_18^4 - zeta_18^3 + 2*zeta_18^2 - zeta_18)*q^4 + (-zeta_18^5 - zeta_18^4 - zeta_18^3 + zeta_18^2 + 1)*q^5 + (zeta_18^5 - 2*zeta_18^3 + zeta_18)*q^6 + (zeta_18^5 - zeta_18^2 - zeta_18)*q^7 + (-2*zeta_18^5 + 3*zeta_18^4 - zeta_18^2 - zeta_18 - 2)*q^8 + (3*zeta_18^5 - zeta_18^4 - zeta_18^2 + 3*zeta_18)*q^9 + O(q^10), q + (zeta_18^5 - zeta_18^4 + zeta_18^3 - zeta_18^2 + zeta_18 - 1)*q^2 + (-zeta_18^5 + zeta_18^3 + zeta_18^2 - zeta_18)*q^3 + (-zeta_18^5 + zeta_18^4 + zeta_18^3 + zeta_18 - 2)*q^4 + (-zeta_18^4 - zeta_18^3 - zeta_18^2 + 1)*q^5 + (2*zeta_18^5 - zeta_18^3 - 2*zeta_18^2 + zeta_18 + 1)*q^6 + (-zeta_18^5 - zeta_18^4 + zeta_18)*q^7 + (-3*zeta_18^5 + 2*zeta_18^4 - 2*zeta_18^3 + 2*zeta_18^2 - 3*zeta_18)*q^8 + (-3*zeta_18^4 + zeta_18^3 + zeta_18 - 3)*q^9 + O(q^10), q + (-zeta_18^5 + zeta_18^4 + zeta_18^2 - zeta_18 - 1)*q^2 + (zeta_18^5 - zeta_18^4 - zeta_18^3 + zeta_18)*q^3 + (zeta_18^5 - zeta_18^4 + 2*zeta_18^3 - 2*zeta_18^2 + zeta_18 - 1)*q^4 + (-zeta_18^4 - zeta_18^2 - 1)*q^5 + (2*zeta_18^4 - zeta_18^3 - zeta_18^2 + 1)*q^6 + (zeta_18^4 + zeta_18^2)*q^7 + (-zeta_18^5 - zeta_18^4 - 2*zeta_18^3 + 3*zeta_18^2 - 2*zeta_18 + 2)*q^8 + (-3*zeta_18^5 + 3*zeta_18^3 + 2*zeta_18^2 - 1)*q^9 + O(q^10), q + (zeta_18^5 - zeta_18^2 - zeta_18 + 1)*q^2 + (zeta_18^4 - zeta_18^2 - zeta_18 + 1)*q^3 + (2*zeta_18^5 - zeta_18^4 - zeta_18^2 - zeta_18 + 1)*q^4 + (zeta_18^4 - zeta_18^2 - zeta_18 - 1)*q^5 + (zeta_18^4 - zeta_18^2 - zeta_18 + 2)*q^6 + (zeta_18^5 - zeta_18^2 - zeta_18)*q^7 + (2*zeta_18^5 - 3*zeta_18^4 + zeta_18^2 + zeta_18 + 2)*q^8 + (-zeta_18^5 + 3*zeta_18^4 - 2*zeta_18^2 - 2*zeta_18)*q^9 + O(q^10), q + (-zeta_18^2 + zeta_18 - 1)*q^2 + (-zeta_18^4 + zeta_18^3 + zeta_18^2 - 1)*q^3 + (zeta_18^4 - 2*zeta_18^3 + zeta_18^2 - 2*zeta_18 + 1)*q^4 + (zeta_18^5 + zeta_18^4 - zeta_18 - 1)*q^5 + (-2*zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18)*q^6 + (-zeta_18^5 - zeta_18^4 + zeta_18)*q^7 + (3*zeta_18^5 - 2*zeta_18^4 + 2*zeta_18^3 - 2*zeta_18^2 + 3*zeta_18)*q^8 + (zeta_18^4 - 3*zeta_18^3 + 2*zeta_18 + 2)*q^9 + O(q^10), q + (-zeta_18^5 - zeta_18^3 - zeta_18)*q^2 + (-zeta_18^5 + zeta_18^4 - zeta_18^3 + zeta_18^2 - zeta_18)*q^3 + (2*zeta_18^5 + 2*zeta_18^4 + zeta_18^3 - zeta_18^2 - zeta_18 - 1)*q^4 + (-zeta_18^5 + zeta_18^4 + zeta_18^3 + zeta_18^2 - zeta_18)*q^5 + (2*zeta_18^3 - zeta_18^2 + zeta_18 - 2)*q^6 + (-zeta_18^4 + zeta_18^2 + zeta_18)*q^7 + (-3*zeta_18^5 + zeta_18^4 + 2*zeta_18^2 + 2*zeta_18 + 2)*q^8 + (-zeta_18^5 - zeta_18^4 - 2*zeta_18^2 + 3*zeta_18)*q^9 + O(q^10), q + (-zeta_18^4 - zeta_18^3 - zeta_18^2 + 1)*q^2 + (zeta_18^4 - zeta_18^3 + zeta_18^2 - zeta_18)*q^3 + (zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18^2 - 2*zeta_18 - 2)*q^4 + (zeta_18^5 - zeta_18^3 + zeta_18 + 1)*q^5 + (zeta_18^4 - zeta_18^3 + 2*zeta_18^2 - zeta_18 + 1)*q^6 + (zeta_18^5 + zeta_18^4 - zeta_18^2)*q^7 + (-zeta_18^5 + 3*zeta_18^4 + 2*zeta_18^3 + 3*zeta_18^2 - zeta_18)*q^8 + (zeta_18^4 + zeta_18^3 + 2*zeta_18 - 3)*q^9 + O(q^10), q + (-zeta_18^5 - zeta_18^4 - zeta_18^3 + zeta_18)*q^2 + (zeta_18^4 - zeta_18^3 + zeta_18^2 - zeta_18 + 1)*q^3 + (zeta_18^5 - zeta_18^3 - 2*zeta_18^2 - zeta_18 - 1)*q^4 + (-zeta_18^5 - zeta_18^4 + zeta_18^3 + zeta_18^2)*q^5 + (-2*zeta_18^4 + zeta_18^3 - zeta_18^2 + 2*zeta_18)*q^6 + (-zeta_18^5 - zeta_18)*q^7 + (2*zeta_18^5 + 2*zeta_18^4 + 2*zeta_18^3 + zeta_18^2 - 3*zeta_18 - 2)*q^8 + (-3*zeta_18^5 - zeta_18^3 + 2*zeta_18^2 - 2)*q^9 + O(q^10), q + (-zeta_18^5 - zeta_18^4 - zeta_18^3 + zeta_18^2 + 1)*q^2 + (-zeta_18^3 + zeta_18^2 - zeta_18 + 1)*q^3 + (-zeta_18^5 - zeta_18^4 - zeta_18^3 - zeta_18^2 - zeta_18)*q^4 + (-zeta_18^3 - zeta_18^2 + zeta_18 + 1)*q^5 + (-zeta_18^5 + zeta_18^4 - 2*zeta_18^3 + zeta_18^2 - zeta_18)*q^6 + (-zeta_18^4 + zeta_18^2 + zeta_18)*q^7 + (3*zeta_18^5 - zeta_18^4 - 2*zeta_18^2 - 2*zeta_18 - 2)*q^8 + (-2*zeta_18^5 + 3*zeta_18^4 + 3*zeta_18^2 - 2*zeta_18)*q^9 + O(q^10), q + (-zeta_18^5 - zeta_18^4 + zeta_18 + 1)*q^2 + (zeta_18^5 - zeta_18^3 - zeta_18 + 1)*q^3 + (-zeta_18^5 - 2*zeta_18^4 - 2*zeta_18^3 + zeta_18 + 1)*q^4 + (-zeta_18^5 - zeta_18^4 + zeta_18^2 - 1)*q^5 + (2*zeta_18^5 - zeta_18^4 + zeta_18^3 - 2*zeta_18^2)*q^6 + (zeta_18^5 + zeta_18^4 - zeta_18^2)*q^7 + (zeta_18^5 - 3*zeta_18^4 - 2*zeta_18^3 - 3*zeta_18^2 + zeta_18)*q^8 + (2*zeta_18^4 - 3*zeta_18^3 - 3*zeta_18 + 2)*q^9 + O(q^10), q + (-zeta_18^5 - zeta_18^3 + zeta_18^2 + zeta_18 + 1)*q^2 + (zeta_18^5 - zeta_18 + 1)*q^3 + (-2*zeta_18^5 - zeta_18^4 - zeta_18^3 + zeta_18^2 + zeta_18 + 2)*q^4 + (zeta_18^4 - zeta_18^3 - zeta_18^2 - zeta_18 + 1)*q^5 + (-zeta_18^5 + 2*zeta_18^4 + zeta_18^2 - 1)*q^6 + (-zeta_18^5 - zeta_18)*q^7 + (-2*zeta_18^5 - 2*zeta_18^4 - 2*zeta_18^3 - zeta_18^2 + 3*zeta_18 + 2)*q^8 + (2*zeta_18^5 - 2*zeta_18^3 + zeta_18^2 + 3)*q^9 + O(q^10), q + (-zeta_18^4 + zeta_18^2 + zeta_18 + 1)*q^2 + (zeta_18^5 - zeta_18^4 + 1)*q^3 + (-zeta_18^5 - zeta_18^4 + 2*zeta_18^2 + 2*zeta_18 + 1)*q^4 + (zeta_18^5 - zeta_18^4 - 1)*q^5 + (zeta_18^5 - zeta_18^4 + 2)*q^6 + (-zeta_18^4 + zeta_18^2 + zeta_18)*q^7 + (-3*zeta_18^5 + zeta_18^4 + 2*zeta_18^2 + 2*zeta_18 + 2)*q^8 + (3*zeta_18^5 - 2*zeta_18^4 - zeta_18^2 - zeta_18)*q^9 + O(q^10), q + (-zeta_18^5 + zeta_18^3 + zeta_18^2 + zeta_18)*q^2 + (zeta_18^5 - zeta_18^4 - zeta_18^2 + 1)*q^3 + (zeta_18^4 + zeta_18^3 + zeta_18^2 + zeta_18 + 1)*q^4 + (zeta_18^4 + zeta_18^3 - zeta_18^2 - zeta_18)*q^5 + (-2*zeta_18^5 + zeta_18 - 1)*q^6 + (zeta_18^5 + zeta_18^4 - zeta_18^2)*q^7 + (-zeta_18^5 + 3*zeta_18^4 + 2*zeta_18^3 + 3*zeta_18^2 - zeta_18)*q^8 + (-3*zeta_18^4 + 2*zeta_18^3 + zeta_18 + 1)*q^9 + O(q^10), q + (zeta_18^4 + zeta_18^2 + 1)*q^2 + (zeta_18^5 - zeta_18^4 + zeta_18^3 - zeta_18^2)*q^3 + (zeta_18^5 + zeta_18^4 + 2*zeta_18^3 + zeta_18^2 - 1)*q^4 + (zeta_18^5 + zeta_18 - 1)*q^5 + (zeta_18^5 - zeta_18^3 - 2*zeta_18 + 1)*q^6 + (-zeta_18^5 - zeta_18)*q^7 + (2*zeta_18^5 + 2*zeta_18^4 + 2*zeta_18^3 + zeta_18^2 - 3*zeta_18 - 2)*q^8 + (zeta_18^5 + 3*zeta_18^3 - 3*zeta_18^2 - 1)*q^9 + O(q^10), q + (zeta_18^5 + zeta_18^3 + zeta_18)*q^2 + (zeta_18^5 - zeta_18^4 + zeta_18^3 - zeta_18^2 + zeta_18)*q^3 + (2*zeta_18^5 + 2*zeta_18^4 + zeta_18^3 - zeta_18^2 - zeta_18 - 1)*q^4 + (-zeta_18^5 + zeta_18^4 + zeta_18^3 + zeta_18^2 - zeta_18)*q^5 + (2*zeta_18^3 - zeta_18^2 + zeta_18 - 2)*q^6 + (-zeta_18^4 + zeta_18^2 + zeta_18)*q^7 + (3*zeta_18^5 - zeta_18^4 - 2*zeta_18^2 - 2*zeta_18 - 2)*q^8 + (-zeta_18^5 - zeta_18^4 - 2*zeta_18^2 + 3*zeta_18)*q^9 + O(q^10), q + (zeta_18^4 + zeta_18^3 + zeta_18^2 - 1)*q^2 + (-zeta_18^4 + zeta_18^3 - zeta_18^2 + zeta_18)*q^3 + (zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18^2 - 2*zeta_18 - 2)*q^4 + (zeta_18^5 - zeta_18^3 + zeta_18 + 1)*q^5 + (zeta_18^4 - zeta_18^3 + 2*zeta_18^2 - zeta_18 + 1)*q^6 + (zeta_18^5 + zeta_18^4 - zeta_18^2)*q^7 + (zeta_18^5 - 3*zeta_18^4 - 2*zeta_18^3 - 3*zeta_18^2 + zeta_18)*q^8 + (zeta_18^4 + zeta_18^3 + 2*zeta_18 - 3)*q^9 + O(q^10), q + (zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18)*q^2 + (-zeta_18^4 + zeta_18^3 - zeta_18^2 + zeta_18 - 1)*q^3 + (zeta_18^5 - zeta_18^3 - 2*zeta_18^2 - zeta_18 - 1)*q^4 + (-zeta_18^5 - zeta_18^4 + zeta_18^3 + zeta_18^2)*q^5 + (-2*zeta_18^4 + zeta_18^3 - zeta_18^2 + 2*zeta_18)*q^6 + (-zeta_18^5 - zeta_18)*q^7 + (-2*zeta_18^5 - 2*zeta_18^4 - 2*zeta_18^3 - zeta_18^2 + 3*zeta_18 + 2)*q^8 + (-3*zeta_18^5 - zeta_18^3 + 2*zeta_18^2 - 2)*q^9 + O(q^10), q + (zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18^2 - 1)*q^2 + (zeta_18^3 - zeta_18^2 + zeta_18 - 1)*q^3 + (-zeta_18^5 - zeta_18^4 - zeta_18^3 - zeta_18^2 - zeta_18)*q^4 + (-zeta_18^3 - zeta_18^2 + zeta_18 + 1)*q^5 + (-zeta_18^5 + zeta_18^4 - 2*zeta_18^3 + zeta_18^2 - zeta_18)*q^6 + (-zeta_18^4 + zeta_18^2 + zeta_18)*q^7 + (-3*zeta_18^5 + zeta_18^4 + 2*zeta_18^2 + 2*zeta_18 + 2)*q^8 + (-2*zeta_18^5 + 3*zeta_18^4 + 3*zeta_18^2 - 2*zeta_18)*q^9 + O(q^10), q + (zeta_18^5 + zeta_18^4 - zeta_18 - 1)*q^2 + (-zeta_18^5 + zeta_18^3 + zeta_18 - 1)*q^3 + (-zeta_18^5 - 2*zeta_18^4 - 2*zeta_18^3 + zeta_18 + 1)*q^4 + (-zeta_18^5 - zeta_18^4 + zeta_18^2 - 1)*q^5 + (2*zeta_18^5 - zeta_18^4 + zeta_18^3 - 2*zeta_18^2)*q^6 + (zeta_18^5 + zeta_18^4 - zeta_18^2)*q^7 + (-zeta_18^5 + 3*zeta_18^4 + 2*zeta_18^3 + 3*zeta_18^2 - zeta_18)*q^8 + (2*zeta_18^4 - 3*zeta_18^3 - 3*zeta_18 + 2)*q^9 + O(q^10), q + (zeta_18^5 + zeta_18^3 - zeta_18^2 - zeta_18 - 1)*q^2 + (-zeta_18^5 + zeta_18 - 1)*q^3 + (-2*zeta_18^5 - zeta_18^4 - zeta_18^3 + zeta_18^2 + zeta_18 + 2)*q^4 + (zeta_18^4 - zeta_18^3 - zeta_18^2 - zeta_18 + 1)*q^5 + (-zeta_18^5 + 2*zeta_18^4 + zeta_18^2 - 1)*q^6 + (-zeta_18^5 - zeta_18)*q^7 + (2*zeta_18^5 + 2*zeta_18^4 + 2*zeta_18^3 + zeta_18^2 - 3*zeta_18 - 2)*q^8 + (2*zeta_18^5 - 2*zeta_18^3 + zeta_18^2 + 3)*q^9 + O(q^10), q + (zeta_18^4 - zeta_18^2 - zeta_18 - 1)*q^2 + (-zeta_18^5 + zeta_18^4 - 1)*q^3 + (-zeta_18^5 - zeta_18^4 + 2*zeta_18^2 + 2*zeta_18 + 1)*q^4 + (zeta_18^5 - zeta_18^4 - 1)*q^5 + (zeta_18^5 - zeta_18^4 + 2)*q^6 + (-zeta_18^4 + zeta_18^2 + zeta_18)*q^7 + (3*zeta_18^5 - zeta_18^4 - 2*zeta_18^2 - 2*zeta_18 - 2)*q^8 + (3*zeta_18^5 - 2*zeta_18^4 - zeta_18^2 - zeta_18)*q^9 + O(q^10), q + (zeta_18^5 - zeta_18^3 - zeta_18^2 - zeta_18)*q^2 + (-zeta_18^5 + zeta_18^4 + zeta_18^2 - 1)*q^3 + (zeta_18^4 + zeta_18^3 + zeta_18^2 + zeta_18 + 1)*q^4 + (zeta_18^4 + zeta_18^3 - zeta_18^2 - zeta_18)*q^5 + (-2*zeta_18^5 + zeta_18 - 1)*q^6 + (zeta_18^5 + zeta_18^4 - zeta_18^2)*q^7 + (zeta_18^5 - 3*zeta_18^4 - 2*zeta_18^3 - 3*zeta_18^2 + zeta_18)*q^8 + (-3*zeta_18^4 + 2*zeta_18^3 + zeta_18 + 1)*q^9 + O(q^10), q + (-zeta_18^4 - zeta_18^2 - 1)*q^2 + (-zeta_18^5 + zeta_18^4 - zeta_18^3 + zeta_18^2)*q^3 + (zeta_18^5 + zeta_18^4 + 2*zeta_18^3 + zeta_18^2 - 1)*q^4 + (zeta_18^5 + zeta_18 - 1)*q^5 + (zeta_18^5 - zeta_18^3 - 2*zeta_18 + 1)*q^6 + (-zeta_18^5 - zeta_18)*q^7 + (-2*zeta_18^5 - 2*zeta_18^4 - 2*zeta_18^3 - zeta_18^2 + 3*zeta_18 + 2)*q^8 + (zeta_18^5 + 3*zeta_18^3 - 3*zeta_18^2 - 1)*q^9 + O(q^10), q + (-zeta_18^5 - zeta_18 + 1)*q^2 + (zeta_18^3 + zeta_18^2 + zeta_18)*q^3 + (-2*zeta_18^5 + 2*zeta_18^3 + zeta_18^2 - zeta_18 - 1)*q^4 + (-zeta_18^5 + zeta_18^4 + zeta_18^2 - zeta_18 - 1)*q^5 + (-zeta_18^5 - 2*zeta_18^4 - zeta_18^3 + zeta_18^2 + 2*zeta_18 + 1)*q^6 + (zeta_18^5 - zeta_18^4 - zeta_18^2 + zeta_18)*q^7 + (-3*zeta_18^5 - 3*zeta_18^4 + 2*zeta_18^3 + 2*zeta_18^2 + zeta_18 - 2)*q^8 + (2*zeta_18^5 + 3*zeta_18^3 + zeta_18^2 - 1)*q^9 + O(q^10), q + (-zeta_18^3 - zeta_18^2 + zeta_18 + 1)*q^2 + (-zeta_18^5 - zeta_18^4 - zeta_18^3 + zeta_18 + 1)*q^3 + (2*zeta_18^5 - zeta_18^4 - zeta_18^3 - zeta_18^2 + 2*zeta_18)*q^4 + (zeta_18^5 + zeta_18^4 - zeta_18^3 - zeta_18 + 1)*q^5 + (-zeta_18^4 - 2*zeta_18^3 - zeta_18^2)*q^6 + (-zeta_18^5 + zeta_18^4)*q^7 + (-zeta_18^5 - 2*zeta_18^4 + 3*zeta_18^2 + 3*zeta_18 - 2)*q^8 + (-zeta_18^5 - 2*zeta_18^4 - 2*zeta_18^2 - zeta_18)*q^9 + O(q^10), q + (-zeta_18^4 - zeta_18^3 + zeta_18^2 + zeta_18)*q^2 + (-zeta_18^2 - zeta_18 - 1)*q^3 + (-zeta_18^5 + zeta_18^4 + zeta_18^3 - 2*zeta_18 + 1)*q^4 + (zeta_18^5 - zeta_18^4 + zeta_18^3)*q^5 + (2*zeta_18^5 + zeta_18^4 - 2*zeta_18^2 - zeta_18 - 1)*q^6 + (zeta_18^2 - zeta_18)*q^7 + (2*zeta_18^5 + zeta_18^4 - 2*zeta_18^3 + zeta_18^2 + 2*zeta_18)*q^8 + (zeta_18^4 + 2*zeta_18^3 + 2*zeta_18 + 1)*q^9 + O(q^10), q + (-zeta_18^5 - zeta_18^4 + zeta_18^3 + zeta_18^2)*q^2 + (zeta_18^5 + zeta_18^4 + zeta_18^3 - 1)*q^3 + (zeta_18^5 - zeta_18^4 - zeta_18^3 + zeta_18^2 + zeta_18 - 1)*q^4 + (zeta_18^3 - zeta_18^2 + zeta_18)*q^5 + (zeta_18^5 + 2*zeta_18^4 + zeta_18^3)*q^6 + (zeta_18^5 - zeta_18^4 - zeta_18^2 + zeta_18)*q^7 + (3*zeta_18^5 + 3*zeta_18^4 - 2*zeta_18^3 - 2*zeta_18^2 - zeta_18 + 2)*q^8 + (zeta_18^5 - zeta_18^3 - 3*zeta_18^2 - 2)*q^9 + O(q^10), q + (-zeta_18^5 + zeta_18^4 + 1)*q^2 + (-zeta_18^5 + zeta_18^2 + zeta_18 + 1)*q^3 + (-zeta_18^5 + 2*zeta_18^4 - zeta_18^2 - zeta_18 + 1)*q^4 + (-zeta_18^5 + zeta_18^2 + zeta_18 - 1)*q^5 + (-zeta_18^5 + zeta_18^2 + zeta_18 + 2)*q^6 + (-zeta_18^5 + zeta_18^4)*q^7 + (zeta_18^5 + 2*zeta_18^4 - 3*zeta_18^2 - 3*zeta_18 + 2)*q^8 + (-2*zeta_18^5 - zeta_18^4 + 3*zeta_18^2 + 3*zeta_18)*q^9 + O(q^10), q + (zeta_18^5 - zeta_18^3 + zeta_18 + 1)*q^2 + (-zeta_18^5 - zeta_18^4 - zeta_18^3)*q^3 + (-2*zeta_18^4 + zeta_18^3 + zeta_18^2 + zeta_18 - 2)*q^4 + (-zeta_18^5 + zeta_18^4 - zeta_18^3 + zeta_18^2 - zeta_18 + 1)*q^5 + (-2*zeta_18^5 - zeta_18^4 - zeta_18^3 + 1)*q^6 + (zeta_18^2 - zeta_18)*q^7 + (-2*zeta_18^5 - zeta_18^4 + 2*zeta_18^3 - zeta_18^2 - 2*zeta_18)*q^8 + (2*zeta_18^4 + zeta_18^3 - 3*zeta_18 - 3)*q^9 + O(q^10), q + (-zeta_18^4 + zeta_18^3 + zeta_18^2 + zeta_18 - 1)*q^2 + (zeta_18^5 + zeta_18^4 - zeta_18^2 - zeta_18 - 1)*q^3 + (zeta_18^5 + zeta_18^4 - zeta_18^3 - 2*zeta_18^2 + 2)*q^4 + (zeta_18^5 - zeta_18^4 - zeta_18^3 + 1)*q^5 + (-zeta_18^2 - 2*zeta_18 - 1)*q^6 + (zeta_18^5 - zeta_18^4 - zeta_18^2 + zeta_18)*q^7 + (-3*zeta_18^5 - 3*zeta_18^4 + 2*zeta_18^3 + 2*zeta_18^2 + zeta_18 - 2)*q^8 + (-3*zeta_18^5 - 2*zeta_18^3 + 2*zeta_18^2 + 3)*q^9 + O(q^10), q + (-zeta_18^5 + zeta_18^4 + zeta_18^3 + zeta_18^2 - zeta_18)*q^2 + (zeta_18^4 + zeta_18^3 + zeta_18^2)*q^3 + (-zeta_18^5 - zeta_18^4 + zeta_18^3 + 2*zeta_18^2 - zeta_18 - 1)*q^4 + (-zeta_18^4 + zeta_18^3 - zeta_18^2)*q^5 + (zeta_18^5 + zeta_18^4 + 2*zeta_18^3 - zeta_18 - 2)*q^6 + (-zeta_18^5 + zeta_18^4)*q^7 + (-zeta_18^5 - 2*zeta_18^4 + 3*zeta_18^2 + 3*zeta_18 - 2)*q^8 + (3*zeta_18^5 + 3*zeta_18^4 - zeta_18^2 - 2*zeta_18)*q^9 + O(q^10), q + (zeta_18^5 + zeta_18^4 - zeta_18^2 + 1)*q^2 + (-zeta_18^5 - zeta_18^4 - zeta_18^3 + zeta_18^2 + zeta_18 + 1)*q^3 + (zeta_18^5 + zeta_18^4 - 2*zeta_18^3 - zeta_18^2 + zeta_18 + 1)*q^4 + (-zeta_18^2 + zeta_18 - 1)*q^5 + (zeta_18^3 + 2*zeta_18^2 + zeta_18)*q^6 + (zeta_18^2 - zeta_18)*q^7 + (2*zeta_18^5 + zeta_18^4 - 2*zeta_18^3 + zeta_18^2 + 2*zeta_18)*q^8 + (-3*zeta_18^4 - 3*zeta_18^3 + zeta_18 + 2)*q^9 + O(q^10), q + (zeta_18^5 + zeta_18 - 1)*q^2 + (-zeta_18^3 - zeta_18^2 - zeta_18)*q^3 + (-2*zeta_18^5 + 2*zeta_18^3 + zeta_18^2 - zeta_18 - 1)*q^4 + (-zeta_18^5 + zeta_18^4 + zeta_18^2 - zeta_18 - 1)*q^5 + (-zeta_18^5 - 2*zeta_18^4 - zeta_18^3 + zeta_18^2 + 2*zeta_18 + 1)*q^6 + (zeta_18^5 - zeta_18^4 - zeta_18^2 + zeta_18)*q^7 + (3*zeta_18^5 + 3*zeta_18^4 - 2*zeta_18^3 - 2*zeta_18^2 - zeta_18 + 2)*q^8 + (2*zeta_18^5 + 3*zeta_18^3 + zeta_18^2 - 1)*q^9 + O(q^10), q + (zeta_18^3 + zeta_18^2 - zeta_18 - 1)*q^2 + (zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18 - 1)*q^3 + (2*zeta_18^5 - zeta_18^4 - zeta_18^3 - zeta_18^2 + 2*zeta_18)*q^4 + (zeta_18^5 + zeta_18^4 - zeta_18^3 - zeta_18 + 1)*q^5 + (-zeta_18^4 - 2*zeta_18^3 - zeta_18^2)*q^6 + (-zeta_18^5 + zeta_18^4)*q^7 + (zeta_18^5 + 2*zeta_18^4 - 3*zeta_18^2 - 3*zeta_18 + 2)*q^8 + (-zeta_18^5 - 2*zeta_18^4 - 2*zeta_18^2 - zeta_18)*q^9 + O(q^10), q + (zeta_18^4 + zeta_18^3 - zeta_18^2 - zeta_18)*q^2 + (zeta_18^2 + zeta_18 + 1)*q^3 + (-zeta_18^5 + zeta_18^4 + zeta_18^3 - 2*zeta_18 + 1)*q^4 + (zeta_18^5 - zeta_18^4 + zeta_18^3)*q^5 + (2*zeta_18^5 + zeta_18^4 - 2*zeta_18^2 - zeta_18 - 1)*q^6 + (zeta_18^2 - zeta_18)*q^7 + (-2*zeta_18^5 - zeta_18^4 + 2*zeta_18^3 - zeta_18^2 - 2*zeta_18)*q^8 + (zeta_18^4 + 2*zeta_18^3 + 2*zeta_18 + 1)*q^9 + O(q^10), q + (zeta_18^5 + zeta_18^4 - zeta_18^3 - zeta_18^2)*q^2 + (-zeta_18^5 - zeta_18^4 - zeta_18^3 + 1)*q^3 + (zeta_18^5 - zeta_18^4 - zeta_18^3 + zeta_18^2 + zeta_18 - 1)*q^4 + (zeta_18^3 - zeta_18^2 + zeta_18)*q^5 + (zeta_18^5 + 2*zeta_18^4 + zeta_18^3)*q^6 + (zeta_18^5 - zeta_18^4 - zeta_18^2 + zeta_18)*q^7 + (-3*zeta_18^5 - 3*zeta_18^4 + 2*zeta_18^3 + 2*zeta_18^2 + zeta_18 - 2)*q^8 + (zeta_18^5 - zeta_18^3 - 3*zeta_18^2 - 2)*q^9 + O(q^10), q + (zeta_18^5 - zeta_18^4 - 1)*q^2 + (zeta_18^5 - zeta_18^2 - zeta_18 - 1)*q^3 + (-zeta_18^5 + 2*zeta_18^4 - zeta_18^2 - zeta_18 + 1)*q^4 + (-zeta_18^5 + zeta_18^2 + zeta_18 - 1)*q^5 + (-zeta_18^5 + zeta_18^2 + zeta_18 + 2)*q^6 + (-zeta_18^5 + zeta_18^4)*q^7 + (-zeta_18^5 - 2*zeta_18^4 + 3*zeta_18^2 + 3*zeta_18 - 2)*q^8 + (-2*zeta_18^5 - zeta_18^4 + 3*zeta_18^2 + 3*zeta_18)*q^9 + O(q^10), q + (-zeta_18^5 + zeta_18^3 - zeta_18 - 1)*q^2 + (zeta_18^5 + zeta_18^4 + zeta_18^3)*q^3 + (-2*zeta_18^4 + zeta_18^3 + zeta_18^2 + zeta_18 - 2)*q^4 + (-zeta_18^5 + zeta_18^4 - zeta_18^3 + zeta_18^2 - zeta_18 + 1)*q^5 + (-2*zeta_18^5 - zeta_18^4 - zeta_18^3 + 1)*q^6 + (zeta_18^2 - zeta_18)*q^7 + (2*zeta_18^5 + zeta_18^4 - 2*zeta_18^3 + zeta_18^2 + 2*zeta_18)*q^8 + (2*zeta_18^4 + zeta_18^3 - 3*zeta_18 - 3)*q^9 + O(q^10), q + (zeta_18^4 - zeta_18^3 - zeta_18^2 - zeta_18 + 1)*q^2 + (-zeta_18^5 - zeta_18^4 + zeta_18^2 + zeta_18 + 1)*q^3 + (zeta_18^5 + zeta_18^4 - zeta_18^3 - 2*zeta_18^2 + 2)*q^4 + (zeta_18^5 - zeta_18^4 - zeta_18^3 + 1)*q^5 + (-zeta_18^2 - 2*zeta_18 - 1)*q^6 + (zeta_18^5 - zeta_18^4 - zeta_18^2 + zeta_18)*q^7 + (3*zeta_18^5 + 3*zeta_18^4 - 2*zeta_18^3 - 2*zeta_18^2 - zeta_18 + 2)*q^8 + (-3*zeta_18^5 - 2*zeta_18^3 + 2*zeta_18^2 + 3)*q^9 + O(q^10), q + (zeta_18^5 - zeta_18^4 - zeta_18^3 - zeta_18^2 + zeta_18)*q^2 + (-zeta_18^4 - zeta_18^3 - zeta_18^2)*q^3 + (-zeta_18^5 - zeta_18^4 + zeta_18^3 + 2*zeta_18^2 - zeta_18 - 1)*q^4 + (-zeta_18^4 + zeta_18^3 - zeta_18^2)*q^5 + (zeta_18^5 + zeta_18^4 + 2*zeta_18^3 - zeta_18 - 2)*q^6 + (-zeta_18^5 + zeta_18^4)*q^7 + (zeta_18^5 + 2*zeta_18^4 - 3*zeta_18^2 - 3*zeta_18 + 2)*q^8 + (3*zeta_18^5 + 3*zeta_18^4 - zeta_18^2 - 2*zeta_18)*q^9 + O(q^10), q + (-zeta_18^5 - zeta_18^4 + zeta_18^2 - 1)*q^2 + (zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18^2 - zeta_18 - 1)*q^3 + (zeta_18^5 + zeta_18^4 - 2*zeta_18^3 - zeta_18^2 + zeta_18 + 1)*q^4 + (-zeta_18^2 + zeta_18 - 1)*q^5 + (zeta_18^3 + 2*zeta_18^2 + zeta_18)*q^6 + (zeta_18^2 - zeta_18)*q^7 + (-2*zeta_18^5 - zeta_18^4 + 2*zeta_18^3 - zeta_18^2 - 2*zeta_18)*q^8 + (-3*zeta_18^4 - 3*zeta_18^3 + zeta_18 + 2)*q^9 + O(q^10), q^19 + (-zeta_18^2 + zeta_18 - 1)*q^38 + (-zeta_18^4 + zeta_18^3 + zeta_18^2 - 1)*q^57 + (zeta_18^4 - 2*zeta_18^3 + zeta_18^2 - 2*zeta_18 + 1)*q^76 + (zeta_18^5 + zeta_18^4 - zeta_18 - 1)*q^95 + (-2*zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18)*q^114 + (-zeta_18^5 - zeta_18^4 + zeta_18)*q^133 + (3*zeta_18^5 - 2*zeta_18^4 + 2*zeta_18^3 - 2*zeta_18^2 + 3*zeta_18)*q^152 + (zeta_18^4 - 3*zeta_18^3 + 2*zeta_18 + 2)*q^171, O(q^10), q^19 + (-zeta_18^4 - zeta_18^2 - 1)*q^38 + (-zeta_18^5 + zeta_18^4 - zeta_18^3 + zeta_18^2)*q^57 + (zeta_18^5 + zeta_18^4 + 2*zeta_18^3 + zeta_18^2 - 1)*q^76 + (zeta_18^5 + zeta_18 - 1)*q^95 + (zeta_18^5 - zeta_18^3 - 2*zeta_18 + 1)*q^114 + (-zeta_18^5 - zeta_18)*q^133 + (-2*zeta_18^5 - 2*zeta_18^4 - 2*zeta_18^3 - zeta_18^2 + 3*zeta_18 + 2)*q^152 + (zeta_18^5 + 3*zeta_18^3 - 3*zeta_18^2 - 1)*q^171, O(q^10), q^19 + (-zeta_18^5 - zeta_18^4 + zeta_18^2 - 1)*q^38 + (zeta_18^5 + zeta_18^4 + zeta_18^3 - zeta_18^2 - zeta_18 - 1)*q^57 + (zeta_18^5 + zeta_18^4 - 2*zeta_18^3 - zeta_18^2 + zeta_18 + 1)*q^76 + (-zeta_18^2 + zeta_18 - 1)*q^95 + (zeta_18^3 + 2*zeta_18^2 + zeta_18)*q^114 + (zeta_18^2 - zeta_18)*q^133 + (-2*zeta_18^5 - zeta_18^4 + 2*zeta_18^3 - zeta_18^2 - 2*zeta_18)*q^152 + (-3*zeta_18^4 - 3*zeta_18^3 + zeta_18 + 2)*q^171, O(q^10) *] > N_2bar(S); [* q + a*q^2 + 2*q^3 + 3*q^4 + (-1/2*a + 1/2)*q^5 + 2*a*q^6 + (-a - 1)*q^7 + a*q^8 + q^9 + O(q^10), q + a*q^2 + (-a + 2)*q^3 + (a - 1)*q^4 + 2*a*q^5 + (a - 1)*q^6 + 3*q^7 + (-2*a + 1)*q^8 + (-3*a + 2)*q^9 + O(q^10), q + a*q^2 - a*q^3 + (a^2 - 2)*q^4 + (-2*a^2 + 4)*q^5 - a^2*q^6 + (2*a^2 - 7)*q^7 + (a^3 - 4*a)*q^8 + (a^2 - 3)*q^9 + O(q^10) *] > VG_2(S); [* q + zeta_18*a*q^2 - 2*zeta_18^4*q^3 + 3*zeta_18^2*q^4 + ((1/2*zeta_18^4 - 1/2*zeta_18)*a - 1/2*zeta_18^4 + 1/2*zeta_18)*q^5 - 2*zeta_18^5*a*q^6 + ((-zeta_18^3 + 1)*a - zeta_18^3 + 1)*q^7 + zeta_18^3*a*q^8 + (zeta_18^5 - zeta_18^2)*q^9 + O(q^10), q + zeta_18^2*a*q^2 + (2*zeta_18^5 - 2*zeta_18^2)*q^3 + 3*zeta_18^4*q^4 + (1/2*zeta_18^5*a - 1/2*zeta_18^5)*q^5 - 2*zeta_18*a*q^6 + (zeta_18^3*a + zeta_18^3)*q^7 + (zeta_18^3 - 1)*a*q^8 + (-zeta_18^4 + zeta_18)*q^9 + O(q^10), q + zeta_18^3*a*q^2 + 2*zeta_18^3*q^3 + (3*zeta_18^3 - 3)*q^4 + (1/2*zeta_18^3*a - 1/2*zeta_18^3)*q^5 + (2*zeta_18^3 - 2)*a*q^6 + (-a - 1)*q^7 - a*q^8 + (zeta_18^3 - 1)*q^9 + O(q^10), q + zeta_18^4*a*q^2 + (-2*zeta_18^4 + 2*zeta_18)*q^3 + (3*zeta_18^5 - 3*zeta_18^2)*q^4 + (1/2*zeta_18*a - 1/2*zeta_18)*q^5 + 2*zeta_18^2*a*q^6 + ((-zeta_18^3 + 1)*a - zeta_18^3 + 1)*q^7 - zeta_18^3*a*q^8 - zeta_18^5*q^9 + O(q^10), q + zeta_18^5*a*q^2 - 2*zeta_18^2*q^3 - 3*zeta_18*q^4 + ((-1/2*zeta_18^5 + 1/2*zeta_18^2)*a + (1/2*zeta_18^5 - 1/2*zeta_18^2))*q^5 + (-2*zeta_18^4 + 2*zeta_18)*a*q^6 + (zeta_18^3*a + zeta_18^3)*q^7 + (-zeta_18^3 + 1)*a*q^8 + zeta_18^4*q^9 + O(q^10), q + (zeta_18^3 - 1)*a*q^2 + (2*zeta_18^3 - 2)*q^3 - 3*zeta_18^3*q^4 + ((-1/2*zeta_18^3 + 1/2)*a + (1/2*zeta_18^3 - 1/2))*q^5 - 2*zeta_18^3*a*q^6 + (-a - 1)*q^7 + a*q^8 - zeta_18^3*q^9 + O(q^10), q + (zeta_18^4 - zeta_18)*a*q^2 + 2*zeta_18*q^3 - 3*zeta_18^5*q^4 + (-1/2*zeta_18^4*a + 1/2*zeta_18^4)*q^5 + (2*zeta_18^5 - 2*zeta_18^2)*a*q^6 + ((-zeta_18^3 + 1)*a - zeta_18^3 + 1)*q^7 + zeta_18^3*a*q^8 + zeta_18^2*q^9 + O(q^10), q + (zeta_18^5 - zeta_18^2)*a*q^2 - 2*zeta_18^5*q^3 + (-3*zeta_18^4 + 3*zeta_18)*q^4 + (-1/2*zeta_18^2*a + 1/2*zeta_18^2)*q^5 + 2*zeta_18^4*a*q^6 + (zeta_18^3*a + zeta_18^3)*q^7 + (zeta_18^3 - 1)*a*q^8 - zeta_18*q^9 + O(q^10), q - a*q^2 - 2*q^3 + 3*q^4 + (-1/2*a + 1/2)*q^5 + 2*a*q^6 + (-a - 1)*q^7 - a*q^8 + q^9 + O(q^10), q - zeta_18*a*q^2 + 2*zeta_18^4*q^3 + 3*zeta_18^2*q^4 + ((1/2*zeta_18^4 - 1/2*zeta_18)*a - 1/2*zeta_18^4 + 1/2*zeta_18)*q^5 - 2*zeta_18^5*a*q^6 + ((-zeta_18^3 + 1)*a - zeta_18^3 + 1)*q^7 - zeta_18^3*a*q^8 + (zeta_18^5 - zeta_18^2)*q^9 + O(q^10), q - zeta_18^2*a*q^2 + (-2*zeta_18^5 + 2*zeta_18^2)*q^3 + 3*zeta_18^4*q^4 + (1/2*zeta_18^5*a - 1/2*zeta_18^5)*q^5 - 2*zeta_18*a*q^6 + (zeta_18^3*a + zeta_18^3)*q^7 + (-zeta_18^3 + 1)*a*q^8 + (-zeta_18^4 + zeta_18)*q^9 + O(q^10), q - zeta_18^3*a*q^2 - 2*zeta_18^3*q^3 + (3*zeta_18^3 - 3)*q^4 + (1/2*zeta_18^3*a - 1/2*zeta_18^3)*q^5 + (2*zeta_18^3 - 2)*a*q^6 + (-a - 1)*q^7 + a*q^8 + (zeta_18^3 - 1)*q^9 + O(q^10), q - zeta_18^4*a*q^2 + (2*zeta_18^4 - 2*zeta_18)*q^3 + (3*zeta_18^5 - 3*zeta_18^2)*q^4 + (1/2*zeta_18*a - 1/2*zeta_18)*q^5 + 2*zeta_18^2*a*q^6 + ((-zeta_18^3 + 1)*a - zeta_18^3 + 1)*q^7 + zeta_18^3*a*q^8 - zeta_18^5*q^9 + O(q^10), q - zeta_18^5*a*q^2 + 2*zeta_18^2*q^3 - 3*zeta_18*q^4 + ((-1/2*zeta_18^5 + 1/2*zeta_18^2)*a + (1/2*zeta_18^5 - 1/2*zeta_18^2))*q^5 + (-2*zeta_18^4 + 2*zeta_18)*a*q^6 + (zeta_18^3*a + zeta_18^3)*q^7 + (zeta_18^3 - 1)*a*q^8 + zeta_18^4*q^9 + O(q^10), q + (-zeta_18^3 + 1)*a*q^2 + (-2*zeta_18^3 + 2)*q^3 - 3*zeta_18^3*q^4 + ((-1/2*zeta_18^3 + 1/2)*a + (1/2*zeta_18^3 - 1/2))*q^5 - 2*zeta_18^3*a*q^6 + (-a - 1)*q^7 - a*q^8 - zeta_18^3*q^9 + O(q^10), q + (-zeta_18^4 + zeta_18)*a*q^2 - 2*zeta_18*q^3 - 3*zeta_18^5*q^4 + (-1/2*zeta_18^4*a + 1/2*zeta_18^4)*q^5 + (2*zeta_18^5 - 2*zeta_18^2)*a*q^6 + ((-zeta_18^3 + 1)*a - zeta_18^3 + 1)*q^7 - zeta_18^3*a*q^8 + zeta_18^2*q^9 + O(q^10), q + (-zeta_18^5 + zeta_18^2)*a*q^2 + 2*zeta_18^5*q^3 + (-3*zeta_18^4 + 3*zeta_18)*q^4 + (-1/2*zeta_18^2*a + 1/2*zeta_18^2)*q^5 + 2*zeta_18^4*a*q^6 + (zeta_18^3*a + zeta_18^3)*q^7 + (-zeta_18^3 + 1)*a*q^8 - zeta_18*q^9 + O(q^10), q + a*q^2 + 2*q^3 + 3*q^4 + (-1/2*a + 1/2)*q^5 + 2*a*q^6 + (-a - 1)*q^7 + a*q^8 + q^9 + O(q^10), q + zeta_18*a*q^2 + (zeta_18^4*a - 2*zeta_18^4)*q^3 + (zeta_18^2*a - zeta_18^2)*q^4 + (-2*zeta_18^4 + 2*zeta_18)*a*q^5 + (-zeta_18^5*a + zeta_18^5)*q^6 + (3*zeta_18^3 - 3)*q^7 + (-2*zeta_18^3*a + zeta_18^3)*q^8 + ((-3*zeta_18^5 + 3*zeta_18^2)*a + (2*zeta_18^5 - 2*zeta_18^2))*q^9 + O(q^10), q + zeta_18^2*a*q^2 + ((-zeta_18^5 + zeta_18^2)*a + (2*zeta_18^5 - 2*zeta_18^2))*q^3 + (zeta_18^4*a - zeta_18^4)*q^4 - 2*zeta_18^5*a*q^5 + (-zeta_18*a + zeta_18)*q^6 - 3*zeta_18^3*q^7 + ((-2*zeta_18^3 + 2)*a + (zeta_18^3 - 1))*q^8 + ((3*zeta_18^4 - 3*zeta_18)*a - 2*zeta_18^4 + 2*zeta_18)*q^9 + O(q^10), q + zeta_18^3*a*q^2 + (-zeta_18^3*a + 2*zeta_18^3)*q^3 + ((zeta_18^3 - 1)*a - zeta_18^3 + 1)*q^4 - 2*zeta_18^3*a*q^5 + ((zeta_18^3 - 1)*a - zeta_18^3 + 1)*q^6 + 3*q^7 + (2*a - 1)*q^8 + ((-3*zeta_18^3 + 3)*a + (2*zeta_18^3 - 2))*q^9 + O(q^10), q + zeta_18^4*a*q^2 + ((zeta_18^4 - zeta_18)*a - 2*zeta_18^4 + 2*zeta_18)*q^3 + ((zeta_18^5 - zeta_18^2)*a - zeta_18^5 + zeta_18^2)*q^4 - 2*zeta_18*a*q^5 + (zeta_18^2*a - zeta_18^2)*q^6 + (3*zeta_18^3 - 3)*q^7 + (2*zeta_18^3*a - zeta_18^3)*q^8 + (3*zeta_18^5*a - 2*zeta_18^5)*q^9 + O(q^10), q + zeta_18^5*a*q^2 + (zeta_18^2*a - 2*zeta_18^2)*q^3 + (-zeta_18*a + zeta_18)*q^4 + (2*zeta_18^5 - 2*zeta_18^2)*a*q^5 + ((-zeta_18^4 + zeta_18)*a + (zeta_18^4 - zeta_18))*q^6 - 3*zeta_18^3*q^7 + ((2*zeta_18^3 - 2)*a - zeta_18^3 + 1)*q^8 + (-3*zeta_18^4*a + 2*zeta_18^4)*q^9 + O(q^10), q + (zeta_18^3 - 1)*a*q^2 + ((-zeta_18^3 + 1)*a + (2*zeta_18^3 - 2))*q^3 + (-zeta_18^3*a + zeta_18^3)*q^4 + (2*zeta_18^3 - 2)*a*q^5 + (-zeta_18^3*a + zeta_18^3)*q^6 + 3*q^7 + (-2*a + 1)*q^8 + (3*zeta_18^3*a - 2*zeta_18^3)*q^9 + O(q^10), q + (zeta_18^4 - zeta_18)*a*q^2 + (-zeta_18*a + 2*zeta_18)*q^3 + (-zeta_18^5*a + zeta_18^5)*q^4 + 2*zeta_18^4*a*q^5 + ((zeta_18^5 - zeta_18^2)*a - zeta_18^5 + zeta_18^2)*q^6 + (3*zeta_18^3 - 3)*q^7 + (-2*zeta_18^3*a + zeta_18^3)*q^8 + (-3*zeta_18^2*a + 2*zeta_18^2)*q^9 + O(q^10), q + (zeta_18^5 - zeta_18^2)*a*q^2 + (zeta_18^5*a - 2*zeta_18^5)*q^3 + ((-zeta_18^4 + zeta_18)*a + (zeta_18^4 - zeta_18))*q^4 + 2*zeta_18^2*a*q^5 + (zeta_18^4*a - zeta_18^4)*q^6 - 3*zeta_18^3*q^7 + ((-2*zeta_18^3 + 2)*a + (zeta_18^3 - 1))*q^8 + (3*zeta_18*a - 2*zeta_18)*q^9 + O(q^10), q - a*q^2 + (a - 2)*q^3 + (a - 1)*q^4 + 2*a*q^5 + (a - 1)*q^6 + 3*q^7 + (2*a - 1)*q^8 + (-3*a + 2)*q^9 + O(q^10), q - zeta_18*a*q^2 + (-zeta_18^4*a + 2*zeta_18^4)*q^3 + (zeta_18^2*a - zeta_18^2)*q^4 + (-2*zeta_18^4 + 2*zeta_18)*a*q^5 + (-zeta_18^5*a + zeta_18^5)*q^6 + (3*zeta_18^3 - 3)*q^7 + (2*zeta_18^3*a - zeta_18^3)*q^8 + ((-3*zeta_18^5 + 3*zeta_18^2)*a + (2*zeta_18^5 - 2*zeta_18^2))*q^9 + O(q^10), q - zeta_18^2*a*q^2 + ((zeta_18^5 - zeta_18^2)*a - 2*zeta_18^5 + 2*zeta_18^2)*q^3 + (zeta_18^4*a - zeta_18^4)*q^4 - 2*zeta_18^5*a*q^5 + (-zeta_18*a + zeta_18)*q^6 - 3*zeta_18^3*q^7 + ((2*zeta_18^3 - 2)*a - zeta_18^3 + 1)*q^8 + ((3*zeta_18^4 - 3*zeta_18)*a - 2*zeta_18^4 + 2*zeta_18)*q^9 + O(q^10), q - zeta_18^3*a*q^2 + (zeta_18^3*a - 2*zeta_18^3)*q^3 + ((zeta_18^3 - 1)*a - zeta_18^3 + 1)*q^4 - 2*zeta_18^3*a*q^5 + ((zeta_18^3 - 1)*a - zeta_18^3 + 1)*q^6 + 3*q^7 + (-2*a + 1)*q^8 + ((-3*zeta_18^3 + 3)*a + (2*zeta_18^3 - 2))*q^9 + O(q^10), q - zeta_18^4*a*q^2 + ((-zeta_18^4 + zeta_18)*a + (2*zeta_18^4 - 2*zeta_18))*q^3 + ((zeta_18^5 - zeta_18^2)*a - zeta_18^5 + zeta_18^2)*q^4 - 2*zeta_18*a*q^5 + (zeta_18^2*a - zeta_18^2)*q^6 + (3*zeta_18^3 - 3)*q^7 + (-2*zeta_18^3*a + zeta_18^3)*q^8 + (3*zeta_18^5*a - 2*zeta_18^5)*q^9 + O(q^10), q - zeta_18^5*a*q^2 + (-zeta_18^2*a + 2*zeta_18^2)*q^3 + (-zeta_18*a + zeta_18)*q^4 + (2*zeta_18^5 - 2*zeta_18^2)*a*q^5 + ((-zeta_18^4 + zeta_18)*a + (zeta_18^4 - zeta_18))*q^6 - 3*zeta_18^3*q^7 + ((-2*zeta_18^3 + 2)*a + (zeta_18^3 - 1))*q^8 + (-3*zeta_18^4*a + 2*zeta_18^4)*q^9 + O(q^10), q + (-zeta_18^3 + 1)*a*q^2 + ((zeta_18^3 - 1)*a - 2*zeta_18^3 + 2)*q^3 + (-zeta_18^3*a + zeta_18^3)*q^4 + (2*zeta_18^3 - 2)*a*q^5 + (-zeta_18^3*a + zeta_18^3)*q^6 + 3*q^7 + (2*a - 1)*q^8 + (3*zeta_18^3*a - 2*zeta_18^3)*q^9 + O(q^10), q + (-zeta_18^4 + zeta_18)*a*q^2 + (zeta_18*a - 2*zeta_18)*q^3 + (-zeta_18^5*a + zeta_18^5)*q^4 + 2*zeta_18^4*a*q^5 + ((zeta_18^5 - zeta_18^2)*a - zeta_18^5 + zeta_18^2)*q^6 + (3*zeta_18^3 - 3)*q^7 + (2*zeta_18^3*a - zeta_18^3)*q^8 + (-3*zeta_18^2*a + 2*zeta_18^2)*q^9 + O(q^10), q + (-zeta_18^5 + zeta_18^2)*a*q^2 + (-zeta_18^5*a + 2*zeta_18^5)*q^3 + ((-zeta_18^4 + zeta_18)*a + (zeta_18^4 - zeta_18))*q^4 + 2*zeta_18^2*a*q^5 + (zeta_18^4*a - zeta_18^4)*q^6 - 3*zeta_18^3*q^7 + ((2*zeta_18^3 - 2)*a - zeta_18^3 + 1)*q^8 + (3*zeta_18*a - 2*zeta_18)*q^9 + O(q^10), q + a*q^2 + (-a + 2)*q^3 + (a - 1)*q^4 + 2*a*q^5 + (a - 1)*q^6 + 3*q^7 + (-2*a + 1)*q^8 + (-3*a + 2)*q^9 + O(q^10), q + zeta_18*a*q^2 + zeta_18^4*a*q^3 + (zeta_18^2*a^2 - 2*zeta_18^2)*q^4 + ((2*zeta_18^4 - 2*zeta_18)*a^2 - 4*zeta_18^4 + 4*zeta_18)*q^5 + zeta_18^5*a^2*q^6 + ((2*zeta_18^3 - 2)*a^2 - 7*zeta_18^3 + 7)*q^7 + (zeta_18^3*a^3 - 4*zeta_18^3*a)*q^8 + ((zeta_18^5 - zeta_18^2)*a^2 - 3*zeta_18^5 + 3*zeta_18^2)*q^9 + O(q^10), q + zeta_18^2*a*q^2 + (-zeta_18^5 + zeta_18^2)*a*q^3 + (zeta_18^4*a^2 - 2*zeta_18^4)*q^4 + (2*zeta_18^5*a^2 - 4*zeta_18^5)*q^5 + zeta_18*a^2*q^6 + (-2*zeta_18^3*a^2 + 7*zeta_18^3)*q^7 + ((zeta_18^3 - 1)*a^3 + (-4*zeta_18^3 + 4)*a)*q^8 + ((-zeta_18^4 + zeta_18)*a^2 + (3*zeta_18^4 - 3*zeta_18))*q^9 + O(q^10), q + zeta_18^3*a*q^2 - zeta_18^3*a*q^3 + ((zeta_18^3 - 1)*a^2 - 2*zeta_18^3 + 2)*q^4 + (2*zeta_18^3*a^2 - 4*zeta_18^3)*q^5 + (-zeta_18^3 + 1)*a^2*q^6 + (2*a^2 - 7)*q^7 + (-a^3 + 4*a)*q^8 + ((zeta_18^3 - 1)*a^2 - 3*zeta_18^3 + 3)*q^9 + O(q^10), q + zeta_18^4*a*q^2 + (zeta_18^4 - zeta_18)*a*q^3 + ((zeta_18^5 - zeta_18^2)*a^2 - 2*zeta_18^5 + 2*zeta_18^2)*q^4 + (2*zeta_18*a^2 - 4*zeta_18)*q^5 - zeta_18^2*a^2*q^6 + ((2*zeta_18^3 - 2)*a^2 - 7*zeta_18^3 + 7)*q^7 + (-zeta_18^3*a^3 + 4*zeta_18^3*a)*q^8 + (-zeta_18^5*a^2 + 3*zeta_18^5)*q^9 + O(q^10), q + zeta_18^5*a*q^2 + zeta_18^2*a*q^3 + (-zeta_18*a^2 + 2*zeta_18)*q^4 + ((-2*zeta_18^5 + 2*zeta_18^2)*a^2 + (4*zeta_18^5 - 4*zeta_18^2))*q^5 + (zeta_18^4 - zeta_18)*a^2*q^6 + (-2*zeta_18^3*a^2 + 7*zeta_18^3)*q^7 + ((-zeta_18^3 + 1)*a^3 + (4*zeta_18^3 - 4)*a)*q^8 + (zeta_18^4*a^2 - 3*zeta_18^4)*q^9 + O(q^10), q + (zeta_18^3 - 1)*a*q^2 + (-zeta_18^3 + 1)*a*q^3 + (-zeta_18^3*a^2 + 2*zeta_18^3)*q^4 + ((-2*zeta_18^3 + 2)*a^2 + (4*zeta_18^3 - 4))*q^5 + zeta_18^3*a^2*q^6 + (2*a^2 - 7)*q^7 + (a^3 - 4*a)*q^8 + (-zeta_18^3*a^2 + 3*zeta_18^3)*q^9 + O(q^10), q + (zeta_18^4 - zeta_18)*a*q^2 - zeta_18*a*q^3 + (-zeta_18^5*a^2 + 2*zeta_18^5)*q^4 + (-2*zeta_18^4*a^2 + 4*zeta_18^4)*q^5 + (-zeta_18^5 + zeta_18^2)*a^2*q^6 + ((2*zeta_18^3 - 2)*a^2 - 7*zeta_18^3 + 7)*q^7 + (zeta_18^3*a^3 - 4*zeta_18^3*a)*q^8 + (zeta_18^2*a^2 - 3*zeta_18^2)*q^9 + O(q^10), q + (zeta_18^5 - zeta_18^2)*a*q^2 + zeta_18^5*a*q^3 + ((-zeta_18^4 + zeta_18)*a^2 + (2*zeta_18^4 - 2*zeta_18))*q^4 + (-2*zeta_18^2*a^2 + 4*zeta_18^2)*q^5 - zeta_18^4*a^2*q^6 + (-2*zeta_18^3*a^2 + 7*zeta_18^3)*q^7 + ((zeta_18^3 - 1)*a^3 + (-4*zeta_18^3 + 4)*a)*q^8 + (-zeta_18*a^2 + 3*zeta_18)*q^9 + O(q^10), q - a*q^2 + a*q^3 + (a^2 - 2)*q^4 + (-2*a^2 + 4)*q^5 - a^2*q^6 + (2*a^2 - 7)*q^7 + (-a^3 + 4*a)*q^8 + (a^2 - 3)*q^9 + O(q^10) *] > #$1; 45 > VG_3(S); [* q - 2*zeta_18^2*q^4 + (zeta_18^4 - zeta_18)*q^5 + (3*zeta_18^3 - 3)*q^7 + (-3*zeta_18^5 + 3*zeta_18^2)*q^9 + O(q^10), q - 2*zeta_18^4*q^4 + zeta_18^5*q^5 - 3*zeta_18^3*q^7 + (3*zeta_18^4 - 3*zeta_18)*q^9 + O(q^10), q + (-2*zeta_18^3 + 2)*q^4 + zeta_18^3*q^5 + 3*q^7 + (-3*zeta_18^3 + 3)*q^9 + O(q^10), q + (-2*zeta_18^5 + 2*zeta_18^2)*q^4 + zeta_18*q^5 + (3*zeta_18^3 - 3)*q^7 + 3*zeta_18^5*q^9 + O(q^10), q + 2*zeta_18*q^4 + (-zeta_18^5 + zeta_18^2)*q^5 - 3*zeta_18^3*q^7 - 3*zeta_18^4*q^9 + O(q^10), q + 2*zeta_18^3*q^4 + (-zeta_18^3 + 1)*q^5 + 3*q^7 + 3*zeta_18^3*q^9 + O(q^10), q + 2*zeta_18^5*q^4 - zeta_18^4*q^5 + (3*zeta_18^3 - 3)*q^7 - 3*zeta_18^2*q^9 + O(q^10), q + (2*zeta_18^4 - 2*zeta_18)*q^4 - zeta_18^2*q^5 - 3*zeta_18^3*q^7 + 3*zeta_18*q^9 + O(q^10), q - 2*q^4 - q^5 + 3*q^7 - 3*q^9 + O(q^10) *] > Names; Intrinsic 'Names' Signatures: ( r) -> SeqEnum A sequence containing the string names of the fields in record r ( f) -> SeqEnum A sequence containing the string names of the fields in record format f > S:=SkGamma(23,2,10); > S:=SkGamma(23,2,10); > VG_0(S); [* qp + zeta_22^2*a*qp^2 + (2*zeta_22^5*a + zeta_22^5)*qp^3 + (-zeta_22^4*a - zeta_22^4)*qp^4 + 2*zeta_22*a*qp^5 + (-zeta_22^7*a + 2*zeta_22^7)*qp^6 + (-2*zeta_22^8*a - 2*zeta_22^8)*qp^7 + (-2*zeta_22^6*a - zeta_22^6)*qp^8 + (2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*qp^9 + O(qp^10), qp + zeta_22^4*a*qp^2 + ((-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*a - zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*qp^3 + (-zeta_22^8*a - zeta_22^8)*qp^4 + 2*zeta_22^2*a*qp^5 + (-zeta_22^3*a + 2*zeta_22^3)*qp^6 + (-2*zeta_22^5*a - 2*zeta_22^5)*qp^7 + (2*zeta_22*a + zeta_22)*qp^8 - 2*zeta_22^9*qp^9 + O(qp^10), qp + zeta_22^6*a*qp^2 + (-2*zeta_22^4*a - zeta_22^4)*qp^3 + (zeta_22*a + zeta_22)*qp^4 + 2*zeta_22^3*a*qp^5 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a - 2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*qp^6 + (-2*zeta_22^2*a - 2*zeta_22^2)*qp^7 + (2*zeta_22^7*a + zeta_22^7)*qp^8 + 2*zeta_22^8*qp^9 + O(qp^10), qp + zeta_22^8*a*qp^2 + (2*zeta_22^9*a + zeta_22^9)*qp^3 + (zeta_22^5*a + zeta_22^5)*qp^4 + 2*zeta_22^4*a*qp^5 + (zeta_22^6*a - 2*zeta_22^6)*qp^6 + ((2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*a + (2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2))*qp^7 + (-2*zeta_22^2*a - zeta_22^2)*qp^8 - 2*zeta_22^7*qp^9 + O(qp^10), qp + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a*qp^2 + (2*zeta_22^3*a + zeta_22^3)*qp^3 + (zeta_22^9*a + zeta_22^9)*qp^4 + 2*zeta_22^5*a*qp^5 + (zeta_22^2*a - 2*zeta_22^2)*qp^6 + (2*zeta_22^7*a + 2*zeta_22^7)*qp^7 + (-2*zeta_22^8*a - zeta_22^8)*qp^8 + 2*zeta_22^6*qp^9 + O(qp^10), qp - zeta_22*a*qp^2 + (-2*zeta_22^8*a - zeta_22^8)*qp^3 + (-zeta_22^2*a - zeta_22^2)*qp^4 + 2*zeta_22^6*a*qp^5 + (-zeta_22^9*a + 2*zeta_22^9)*qp^6 + (2*zeta_22^4*a + 2*zeta_22^4)*qp^7 + (2*zeta_22^3*a + zeta_22^3)*qp^8 - 2*zeta_22^5*qp^9 + O(qp^10), qp - zeta_22^3*a*qp^2 + (-2*zeta_22^2*a - zeta_22^2)*qp^3 + (-zeta_22^6*a - zeta_22^6)*qp^4 + 2*zeta_22^7*a*qp^5 + (-zeta_22^5*a + 2*zeta_22^5)*qp^6 + (2*zeta_22*a + 2*zeta_22)*qp^7 + (2*zeta_22^9*a + zeta_22^9)*qp^8 + 2*zeta_22^4*qp^9 + O(qp^10), qp - zeta_22^5*a*qp^2 + (2*zeta_22^7*a + zeta_22^7)*qp^3 + ((-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*a - zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*qp^4 + 2*zeta_22^8*a*qp^5 + (-zeta_22*a + 2*zeta_22)*qp^6 + (-2*zeta_22^9*a - 2*zeta_22^9)*qp^7 + (-2*zeta_22^4*a - zeta_22^4)*qp^8 - 2*zeta_22^3*qp^9 + O(qp^10), qp - zeta_22^7*a*qp^2 + (2*zeta_22*a + zeta_22)*qp^3 + (zeta_22^3*a + zeta_22^3)*qp^4 + 2*zeta_22^9*a*qp^5 + (zeta_22^8*a - 2*zeta_22^8)*qp^6 + (-2*zeta_22^6*a - 2*zeta_22^6)*qp^7 + ((-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*a - zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*qp^8 + 2*zeta_22^2*qp^9 + O(qp^10), qp - zeta_22^9*a*qp^2 + (-2*zeta_22^6*a - zeta_22^6)*qp^3 + (zeta_22^7*a + zeta_22^7)*qp^4 + (2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*a*qp^5 + (zeta_22^4*a - 2*zeta_22^4)*qp^6 + (-2*zeta_22^3*a - 2*zeta_22^3)*qp^7 + (2*zeta_22^5*a + zeta_22^5)*qp^8 - 2*zeta_22*qp^9 + O(qp^10), qp + a*qp^2 + (-2*a - 1)*qp^3 + (-a - 1)*qp^4 - 2*a*qp^5 + (a - 2)*qp^6 + (-2*a - 2)*qp^7 + (-2*a - 1)*qp^8 + 2*qp^9 + O(qp^10), qp + zeta_22^2*a*qp^2 + (2*zeta_22^5*a + zeta_22^5)*qp^3 + (-zeta_22^4*a - zeta_22^4)*qp^4 - 2*zeta_22*a*qp^5 + (-zeta_22^7*a + 2*zeta_22^7)*qp^6 + (2*zeta_22^8*a + 2*zeta_22^8)*qp^7 + (-2*zeta_22^6*a - zeta_22^6)*qp^8 + (2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*qp^9 + O(qp^10), qp + zeta_22^4*a*qp^2 + ((-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*a - zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*qp^3 + (-zeta_22^8*a - zeta_22^8)*qp^4 - 2*zeta_22^2*a*qp^5 + (-zeta_22^3*a + 2*zeta_22^3)*qp^6 + (2*zeta_22^5*a + 2*zeta_22^5)*qp^7 + (2*zeta_22*a + zeta_22)*qp^8 - 2*zeta_22^9*qp^9 + O(qp^10), qp + zeta_22^6*a*qp^2 + (-2*zeta_22^4*a - zeta_22^4)*qp^3 + (zeta_22*a + zeta_22)*qp^4 - 2*zeta_22^3*a*qp^5 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a - 2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*qp^6 + (2*zeta_22^2*a + 2*zeta_22^2)*qp^7 + (2*zeta_22^7*a + zeta_22^7)*qp^8 + 2*zeta_22^8*qp^9 + O(qp^10), qp + zeta_22^8*a*qp^2 + (2*zeta_22^9*a + zeta_22^9)*qp^3 + (zeta_22^5*a + zeta_22^5)*qp^4 - 2*zeta_22^4*a*qp^5 + (zeta_22^6*a - 2*zeta_22^6)*qp^6 + ((-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*a - 2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*qp^7 + (-2*zeta_22^2*a - zeta_22^2)*qp^8 - 2*zeta_22^7*qp^9 + O(qp^10), qp + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a*qp^2 + (2*zeta_22^3*a + zeta_22^3)*qp^3 + (zeta_22^9*a + zeta_22^9)*qp^4 - 2*zeta_22^5*a*qp^5 + (zeta_22^2*a - 2*zeta_22^2)*qp^6 + (-2*zeta_22^7*a - 2*zeta_22^7)*qp^7 + (-2*zeta_22^8*a - zeta_22^8)*qp^8 + 2*zeta_22^6*qp^9 + O(qp^10), qp - zeta_22*a*qp^2 + (-2*zeta_22^8*a - zeta_22^8)*qp^3 + (-zeta_22^2*a - zeta_22^2)*qp^4 - 2*zeta_22^6*a*qp^5 + (-zeta_22^9*a + 2*zeta_22^9)*qp^6 + (-2*zeta_22^4*a - 2*zeta_22^4)*qp^7 + (2*zeta_22^3*a + zeta_22^3)*qp^8 - 2*zeta_22^5*qp^9 + O(qp^10), qp - zeta_22^3*a*qp^2 + (-2*zeta_22^2*a - zeta_22^2)*qp^3 + (-zeta_22^6*a - zeta_22^6)*qp^4 - 2*zeta_22^7*a*qp^5 + (-zeta_22^5*a + 2*zeta_22^5)*qp^6 + (-2*zeta_22*a - 2*zeta_22)*qp^7 + (2*zeta_22^9*a + zeta_22^9)*qp^8 + 2*zeta_22^4*qp^9 + O(qp^10), qp - zeta_22^5*a*qp^2 + (2*zeta_22^7*a + zeta_22^7)*qp^3 + ((-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*a - zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*qp^4 - 2*zeta_22^8*a*qp^5 + (-zeta_22*a + 2*zeta_22)*qp^6 + (2*zeta_22^9*a + 2*zeta_22^9)*qp^7 + (-2*zeta_22^4*a - zeta_22^4)*qp^8 - 2*zeta_22^3*qp^9 + O(qp^10), qp - zeta_22^7*a*qp^2 + (2*zeta_22*a + zeta_22)*qp^3 + (zeta_22^3*a + zeta_22^3)*qp^4 - 2*zeta_22^9*a*qp^5 + (zeta_22^8*a - 2*zeta_22^8)*qp^6 + (2*zeta_22^6*a + 2*zeta_22^6)*qp^7 + ((-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*a - zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*qp^8 + 2*zeta_22^2*qp^9 + O(qp^10), qp - zeta_22^9*a*qp^2 + (-2*zeta_22^6*a - zeta_22^6)*qp^3 + (zeta_22^7*a + zeta_22^7)*qp^4 + (-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*a*qp^5 + (zeta_22^4*a - 2*zeta_22^4)*qp^6 + (2*zeta_22^3*a + 2*zeta_22^3)*qp^7 + (2*zeta_22^5*a + zeta_22^5)*qp^8 - 2*zeta_22*qp^9 + O(qp^10), qp + a*qp^2 + (-2*a - 1)*qp^3 + (-a - 1)*qp^4 + 2*a*qp^5 + (a - 2)*qp^6 + (2*a + 2)*qp^7 + (-2*a - 1)*qp^8 + 2*qp^9 + O(qp^10), O(qp^10) *] > VG_1(S); [* q + (-zeta_22^8 - zeta_22^6 - zeta_22^2 - 1)*q^2 + (zeta_22^7 + zeta_22^5 - zeta_22^4 - zeta_22^2)*q^3 + (2*zeta_22^9 + 2*zeta_22^7 + zeta_22^5 - zeta_22^4 + zeta_22 - 1)*q^4 + (zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - zeta_22 + 1)*q^5 + (zeta_22^9 - zeta_22^8 - zeta_22^6 + zeta_22^5 + zeta_22^4 + 2*zeta_22^3 + zeta_22^2 + zeta_22 - 1)*q^6 + (zeta_22^8 + zeta_22^6 - 2*zeta_22^5 + zeta_22^4 + zeta_22^2)*q^7 + (-2*zeta_22^9 - zeta_22^7 + zeta_22^6 + 2*zeta_22^4 + zeta_22^2 + zeta_22 + 1)*q^8 + (-zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^2 - zeta_22 + 1)*q^9 + O(q^10), q + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^3 - zeta_22 + 1)*q^2 + (zeta_22^8 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^3 + (zeta_22^9 - zeta_22^8 + zeta_22^5 - zeta_22^4 - 2*zeta_22^2 - 2)*q^4 + (zeta_22^9 - zeta_22^8 + zeta_22^5 - zeta_22^4 + 2*zeta_22^3 - zeta_22^2 + zeta_22)*q^5 + (-3*zeta_22^9 + zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - zeta_22^5 + zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - zeta_22 + 3)*q^6 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^4 - zeta_22^2 + 1)*q^7 + (2*zeta_22^9 - zeta_22^8 + 3*zeta_22^7 - zeta_22^6 + 2*zeta_22^5 + 2*zeta_22^3 - zeta_22^2 + zeta_22 - 2)*q^8 + (zeta_22^9 - zeta_22^8 + zeta_22^7 - 2*zeta_22^4 + zeta_22^3 - zeta_22^2 + 2*zeta_22)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22^2 + 1)*q^2 + (-zeta_22^6 - zeta_22^4 + zeta_22^3 + zeta_22)*q^3 + (zeta_22^9 - zeta_22^8 - 2*zeta_22^6 - 2*zeta_22^4 - zeta_22^2 + zeta_22)*q^4 + (-zeta_22^8 + zeta_22^7 + zeta_22^4 + zeta_22 - 1)*q^5 + (zeta_22^9 - zeta_22^8 - zeta_22^7 - 2*zeta_22^6 - zeta_22^5 - zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^6 + (zeta_22^9 - 2*zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - zeta_22^2 + 2*zeta_22 - 1)*q^7 + (2*zeta_22^9 - zeta_22^8 + zeta_22^7 - 2*zeta_22^6 - 2*zeta_22^4 + zeta_22^3 - 3*zeta_22^2 + zeta_22 - 2)*q^8 + (-zeta_22^8 + zeta_22^7 - zeta_22^6 + 2*zeta_22^3 - zeta_22^2 + zeta_22 - 2)*q^9 + O(q^10), q + (-zeta_22^8 - zeta_22^6 + zeta_22^3 + zeta_22)*q^2 + (zeta_22^9 - zeta_22^8 - zeta_22^6 - 1)*q^3 + (-2*zeta_22^9 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - zeta_22 + 2)*q^4 + (-zeta_22^9 + zeta_22^8 + zeta_22^5 + zeta_22^2 - zeta_22)*q^5 + (-zeta_22^9 + zeta_22^6 - 2*zeta_22^3 - zeta_22^2 - 2*zeta_22)*q^6 + (-zeta_22^9 + zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^7 + (-zeta_22^9 - zeta_22^8 - zeta_22^7 - 2*zeta_22^5 - zeta_22^3 + zeta_22^2 + 2)*q^8 + (-2*zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 - zeta_22 + 1)*q^9 + O(q^10), q + (-zeta_22^9 - zeta_22^7 + zeta_22^6 + zeta_22^4 + zeta_22^2 - zeta_22 + 1)*q^2 + (zeta_22^5 + zeta_22^3 - zeta_22^2 - 1)*q^3 + (zeta_22^8 - zeta_22^7 + zeta_22^4 + zeta_22^3 + zeta_22^2 + zeta_22 + 1)*q^4 + (zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22 + 1)*q^5 + (3*zeta_22^9 + 2*zeta_22^7 - 2*zeta_22^6 + zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - zeta_22^2 + 2*zeta_22 - 2)*q^6 + (-zeta_22^7 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 - zeta_22)*q^7 + (-zeta_22^9 + zeta_22^8 + 2*zeta_22^6 + zeta_22^4 + zeta_22^3 + zeta_22^2 + 2)*q^8 + (zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^3 + zeta_22^2 + zeta_22)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 + zeta_22^6 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^2 + (-zeta_22^9 + zeta_22^6 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^3 + (zeta_22^8 + zeta_22^7 + zeta_22^6 + zeta_22^5 + zeta_22^4 - zeta_22 + 1)*q^4 + (zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^2 + zeta_22)*q^5 + (-zeta_22^9 + 2*zeta_22^6 + zeta_22^5 + 2*zeta_22^4 - zeta_22)*q^6 + (zeta_22^9 - zeta_22^4 - zeta_22^2 + 2*zeta_22 - 1)*q^7 + (2*zeta_22^9 + zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^2 - zeta_22 - 1)*q^8 + (-zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^2 - zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^9 + zeta_22^7 + zeta_22^3 + zeta_22)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^3 + 1)*q^3 + (2*zeta_22^9 + zeta_22^7 - zeta_22^6 + zeta_22^3 - zeta_22^2 - 2)*q^4 + (zeta_22^8 + zeta_22^5 - zeta_22^4 + zeta_22 - 1)*q^5 + (zeta_22^8 - zeta_22^5 + 2*zeta_22^2 + zeta_22 + 2)*q^6 + (-zeta_22^9 + zeta_22^7 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 - 1)*q^7 + (-zeta_22^8 - zeta_22^7 - zeta_22^6 - 2*zeta_22^4 - zeta_22^2 - zeta_22 - 1)*q^8 + (-zeta_22^9 + zeta_22^8 + 2*zeta_22^6 - 2*zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 2)*q^9 + O(q^10), q + (zeta_22^9 + zeta_22^5 + zeta_22^3 - 1)*q^2 + (zeta_22^9 + zeta_22^7 - zeta_22^6 - zeta_22^4)*q^3 + (-zeta_22^9 + zeta_22^8 - zeta_22^5 - zeta_22^4 - zeta_22^3 - zeta_22^2 - zeta_22)*q^4 + (zeta_22^9 + zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22)*q^5 + (-2*zeta_22^9 - zeta_22^8 - 2*zeta_22^7 + zeta_22^4 - zeta_22)*q^6 + (zeta_22^9 + zeta_22^7 - 2*zeta_22^6 + zeta_22^5 + zeta_22^3)*q^7 + (-2*zeta_22^9 + zeta_22^8 - 3*zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + 3*zeta_22^2 - zeta_22 + 2)*q^8 + (2*zeta_22^9 - zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + zeta_22^3 - zeta_22^2 + zeta_22)*q^9 + O(q^10), q + (zeta_22^7 + zeta_22^5 - zeta_22^2 - 1)*q^2 + (zeta_22^9 + zeta_22^3 + zeta_22 - 1)*q^3 + (-zeta_22^9 - zeta_22^8 - zeta_22^7 - zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22)*q^4 + (zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + zeta_22^5 - zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + zeta_22 - 1)*q^5 + (zeta_22^8 - 2*zeta_22^5 - zeta_22^4 - 2*zeta_22^3 + 1)*q^6 + (zeta_22^6 + zeta_22^4 - 2*zeta_22^3 + zeta_22^2 + 1)*q^7 + (zeta_22^9 + zeta_22^8 + zeta_22^7 + 2*zeta_22^5 + zeta_22^3 + zeta_22^2 + zeta_22)*q^8 + (-2*zeta_22^8 + zeta_22^7 - zeta_22^6 + 2*zeta_22^5 - zeta_22^2 + zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^9 + zeta_22^7 - zeta_22^4 - zeta_22^2)*q^2 + (-zeta_22^8 - zeta_22^6 + zeta_22^5 + zeta_22^3)*q^3 + (-2*zeta_22^9 + zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 + 2)*q^4 + (zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22^3 - 1)*q^5 + (2*zeta_22^9 - 2*zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 - 3)*q^6 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 + zeta_22^2 - 1)*q^7 + (zeta_22^9 + zeta_22^8 + zeta_22^7 - zeta_22^4 - zeta_22^3 - zeta_22^2 - 2)*q^8 + (-zeta_22^9 + zeta_22^8 + zeta_22^7 - zeta_22^4 - zeta_22^3 + zeta_22^2)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^6 - zeta_22^4 - 1)*q^2 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 - zeta_22)*q^3 + (-zeta_22^8 + zeta_22^7 + 2*zeta_22^5 + 2*zeta_22^3 + zeta_22 - 1)*q^4 + (zeta_22^9 - zeta_22^8 + zeta_22^5 - zeta_22^4 - zeta_22)*q^5 + (2*zeta_22^8 + zeta_22^7 + 2*zeta_22^6 - zeta_22^3 + 1)*q^6 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 - zeta_22^5 + 1)*q^7 + (-2*zeta_22^9 - zeta_22^7 - zeta_22^6 - zeta_22^5 - 2*zeta_22^3 - zeta_22 + 1)*q^8 + (zeta_22^8 - zeta_22^7 - zeta_22^6 + zeta_22^3 + zeta_22^2 - zeta_22)*q^9 + O(q^10), q + (-zeta_22^8 - zeta_22^6 - zeta_22^2 - 1)*q^2 + (zeta_22^7 + zeta_22^5 - zeta_22^4 - zeta_22^2)*q^3 + (2*zeta_22^9 + 2*zeta_22^7 + zeta_22^5 - zeta_22^4 + zeta_22 - 1)*q^4 + (-zeta_22^8 + zeta_22^7 - zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + zeta_22 - 1)*q^5 + (zeta_22^9 - zeta_22^8 - zeta_22^6 + zeta_22^5 + zeta_22^4 + 2*zeta_22^3 + zeta_22^2 + zeta_22 - 1)*q^6 + (-zeta_22^8 - zeta_22^6 + 2*zeta_22^5 - zeta_22^4 - zeta_22^2)*q^7 + (-2*zeta_22^9 - zeta_22^7 + zeta_22^6 + 2*zeta_22^4 + zeta_22^2 + zeta_22 + 1)*q^8 + (-zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^2 - zeta_22 + 1)*q^9 + O(q^10), q + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^3 - zeta_22 + 1)*q^2 + (zeta_22^8 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^3 + (zeta_22^9 - zeta_22^8 + zeta_22^5 - zeta_22^4 - 2*zeta_22^2 - 2)*q^4 + (-zeta_22^9 + zeta_22^8 - zeta_22^5 + zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - zeta_22)*q^5 + (-3*zeta_22^9 + zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - zeta_22^5 + zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - zeta_22 + 3)*q^6 + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 - zeta_22^4 + zeta_22^2 - 1)*q^7 + (2*zeta_22^9 - zeta_22^8 + 3*zeta_22^7 - zeta_22^6 + 2*zeta_22^5 + 2*zeta_22^3 - zeta_22^2 + zeta_22 - 2)*q^8 + (zeta_22^9 - zeta_22^8 + zeta_22^7 - 2*zeta_22^4 + zeta_22^3 - zeta_22^2 + 2*zeta_22)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22^2 + 1)*q^2 + (-zeta_22^6 - zeta_22^4 + zeta_22^3 + zeta_22)*q^3 + (zeta_22^9 - zeta_22^8 - 2*zeta_22^6 - 2*zeta_22^4 - zeta_22^2 + zeta_22)*q^4 + (zeta_22^8 - zeta_22^7 - zeta_22^4 - zeta_22 + 1)*q^5 + (zeta_22^9 - zeta_22^8 - zeta_22^7 - 2*zeta_22^6 - zeta_22^5 - zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^6 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^7 + (2*zeta_22^9 - zeta_22^8 + zeta_22^7 - 2*zeta_22^6 - 2*zeta_22^4 + zeta_22^3 - 3*zeta_22^2 + zeta_22 - 2)*q^8 + (-zeta_22^8 + zeta_22^7 - zeta_22^6 + 2*zeta_22^3 - zeta_22^2 + zeta_22 - 2)*q^9 + O(q^10), q + (-zeta_22^8 - zeta_22^6 + zeta_22^3 + zeta_22)*q^2 + (zeta_22^9 - zeta_22^8 - zeta_22^6 - 1)*q^3 + (-2*zeta_22^9 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - zeta_22 + 2)*q^4 + (zeta_22^9 - zeta_22^8 - zeta_22^5 - zeta_22^2 + zeta_22)*q^5 + (-zeta_22^9 + zeta_22^6 - 2*zeta_22^3 - zeta_22^2 - 2*zeta_22)*q^6 + (zeta_22^9 - zeta_22^7 + zeta_22^5 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*q^7 + (-zeta_22^9 - zeta_22^8 - zeta_22^7 - 2*zeta_22^5 - zeta_22^3 + zeta_22^2 + 2)*q^8 + (-2*zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 - zeta_22 + 1)*q^9 + O(q^10), q + (-zeta_22^9 - zeta_22^7 + zeta_22^6 + zeta_22^4 + zeta_22^2 - zeta_22 + 1)*q^2 + (zeta_22^5 + zeta_22^3 - zeta_22^2 - 1)*q^3 + (zeta_22^8 - zeta_22^7 + zeta_22^4 + zeta_22^3 + zeta_22^2 + zeta_22 + 1)*q^4 + (-zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22 - 1)*q^5 + (3*zeta_22^9 + 2*zeta_22^7 - 2*zeta_22^6 + zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - zeta_22^2 + 2*zeta_22 - 2)*q^6 + (zeta_22^7 + zeta_22^5 - 2*zeta_22^4 + zeta_22^3 + zeta_22)*q^7 + (-zeta_22^9 + zeta_22^8 + 2*zeta_22^6 + zeta_22^4 + zeta_22^3 + zeta_22^2 + 2)*q^8 + (zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^3 + zeta_22^2 + zeta_22)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 + zeta_22^6 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^2 + (-zeta_22^9 + zeta_22^6 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^3 + (zeta_22^8 + zeta_22^7 + zeta_22^6 + zeta_22^5 + zeta_22^4 - zeta_22 + 1)*q^4 + (-zeta_22^9 + zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22)*q^5 + (-zeta_22^9 + 2*zeta_22^6 + zeta_22^5 + 2*zeta_22^4 - zeta_22)*q^6 + (-zeta_22^9 + zeta_22^4 + zeta_22^2 - 2*zeta_22 + 1)*q^7 + (2*zeta_22^9 + zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^2 - zeta_22 - 1)*q^8 + (-zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^2 - zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^9 + zeta_22^7 + zeta_22^3 + zeta_22)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^3 + 1)*q^3 + (2*zeta_22^9 + zeta_22^7 - zeta_22^6 + zeta_22^3 - zeta_22^2 - 2)*q^4 + (-zeta_22^8 - zeta_22^5 + zeta_22^4 - zeta_22 + 1)*q^5 + (zeta_22^8 - zeta_22^5 + 2*zeta_22^2 + zeta_22 + 2)*q^6 + (zeta_22^9 - zeta_22^7 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^7 + (-zeta_22^8 - zeta_22^7 - zeta_22^6 - 2*zeta_22^4 - zeta_22^2 - zeta_22 - 1)*q^8 + (-zeta_22^9 + zeta_22^8 + 2*zeta_22^6 - 2*zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 2)*q^9 + O(q^10), q + (zeta_22^9 + zeta_22^5 + zeta_22^3 - 1)*q^2 + (zeta_22^9 + zeta_22^7 - zeta_22^6 - zeta_22^4)*q^3 + (-zeta_22^9 + zeta_22^8 - zeta_22^5 - zeta_22^4 - zeta_22^3 - zeta_22^2 - zeta_22)*q^4 + (-zeta_22^9 - zeta_22^6 + zeta_22^5 - zeta_22^2 + zeta_22)*q^5 + (-2*zeta_22^9 - zeta_22^8 - 2*zeta_22^7 + zeta_22^4 - zeta_22)*q^6 + (-zeta_22^9 - zeta_22^7 + 2*zeta_22^6 - zeta_22^5 - zeta_22^3)*q^7 + (-2*zeta_22^9 + zeta_22^8 - 3*zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + 3*zeta_22^2 - zeta_22 + 2)*q^8 + (2*zeta_22^9 - zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + zeta_22^3 - zeta_22^2 + zeta_22)*q^9 + O(q^10), q + (zeta_22^7 + zeta_22^5 - zeta_22^2 - 1)*q^2 + (zeta_22^9 + zeta_22^3 + zeta_22 - 1)*q^3 + (-zeta_22^9 - zeta_22^8 - zeta_22^7 - zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22)*q^4 + (-zeta_22^9 + zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - zeta_22^5 + zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - zeta_22 + 1)*q^5 + (zeta_22^8 - 2*zeta_22^5 - zeta_22^4 - 2*zeta_22^3 + 1)*q^6 + (-zeta_22^6 - zeta_22^4 + 2*zeta_22^3 - zeta_22^2 - 1)*q^7 + (zeta_22^9 + zeta_22^8 + zeta_22^7 + 2*zeta_22^5 + zeta_22^3 + zeta_22^2 + zeta_22)*q^8 + (-2*zeta_22^8 + zeta_22^7 - zeta_22^6 + 2*zeta_22^5 - zeta_22^2 + zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^9 + zeta_22^7 - zeta_22^4 - zeta_22^2)*q^2 + (-zeta_22^8 - zeta_22^6 + zeta_22^5 + zeta_22^3)*q^3 + (-2*zeta_22^9 + zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 + 2)*q^4 + (-zeta_22^8 + zeta_22^7 - zeta_22^4 + zeta_22^3 + 1)*q^5 + (2*zeta_22^9 - 2*zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 - 3)*q^6 + (zeta_22^9 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 - zeta_22^2 + 1)*q^7 + (zeta_22^9 + zeta_22^8 + zeta_22^7 - zeta_22^4 - zeta_22^3 - zeta_22^2 - 2)*q^8 + (-zeta_22^9 + zeta_22^8 + zeta_22^7 - zeta_22^4 - zeta_22^3 + zeta_22^2)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^6 - zeta_22^4 - 1)*q^2 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 - zeta_22)*q^3 + (-zeta_22^8 + zeta_22^7 + 2*zeta_22^5 + 2*zeta_22^3 + zeta_22 - 1)*q^4 + (-zeta_22^9 + zeta_22^8 - zeta_22^5 + zeta_22^4 + zeta_22)*q^5 + (2*zeta_22^8 + zeta_22^7 + 2*zeta_22^6 - zeta_22^3 + 1)*q^6 + (zeta_22^9 - 2*zeta_22^8 + zeta_22^7 + zeta_22^5 - 1)*q^7 + (-2*zeta_22^9 - zeta_22^7 - zeta_22^6 - zeta_22^5 - 2*zeta_22^3 - zeta_22 + 1)*q^8 + (zeta_22^8 - zeta_22^7 - zeta_22^6 + zeta_22^3 + zeta_22^2 - zeta_22)*q^9 + O(q^10), q + (zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22 + 1)*q^2 + (zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^4 + zeta_22^2 - zeta_22 + 1)*q^3 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + zeta_22^4 + 2*zeta_22^2 - 2*zeta_22 + 2)*q^4 + (zeta_22^9 - zeta_22^8 - zeta_22^6 - zeta_22^3 - 1)*q^5 + (-zeta_22^9 + 3*zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - 3*zeta_22 + 1)*q^6 + (zeta_22^8 - zeta_22^7 + zeta_22^4 + 2*zeta_22^2 + 1)*q^7 + (-zeta_22^9 + zeta_22^8 + zeta_22^7 + zeta_22^6 - zeta_22^5 + 2*zeta_22^2 - 2*zeta_22)*q^8 + (zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^5 - zeta_22^4 + zeta_22 - 1)*q^2 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22 + 1)*q^3 + (-zeta_22^9 + zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 + zeta_22^3 - zeta_22)*q^4 + (-zeta_22^8 - zeta_22^6 + zeta_22^5 - 2*zeta_22^4 + zeta_22^3 - zeta_22^2 - 1)*q^5 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^6 + 2*zeta_22^4 - zeta_22^3)*q^6 + (-2*zeta_22^9 + zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - zeta_22^5 + zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - zeta_22 + 2)*q^7 + (2*zeta_22^8 - 2*zeta_22^7 + zeta_22^4 - zeta_22^3 - zeta_22^2 - zeta_22 + 1)*q^8 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*q^9 + O(q^10), q + (zeta_22^7 - zeta_22^6 + zeta_22^3 - zeta_22^2)*q^2 + (zeta_22^9 - zeta_22^8 - zeta_22^4 - zeta_22^2)*q^3 + (2*zeta_22^7 - zeta_22^6 - zeta_22^4 + zeta_22^3 + zeta_22 - 2)*q^4 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + zeta_22^4 - zeta_22^3 - zeta_22)*q^5 + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + zeta_22 + 1)*q^6 + (-zeta_22^9 - 2*zeta_22^7 - zeta_22^5 + zeta_22^2 - zeta_22)*q^7 + (-2*zeta_22^8 + zeta_22^5 - zeta_22^4 - zeta_22^3 + zeta_22^2 + zeta_22 - 1)*q^8 + (2*zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + 2*zeta_22^3)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 + zeta_22^5 - zeta_22^4)*q^2 + (zeta_22^9 + zeta_22^7 + zeta_22^3 - zeta_22^2)*q^3 + (-zeta_22^9 + zeta_22^6 - zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 - 1)*q^4 + (-zeta_22^9 - zeta_22^6 - zeta_22^3 - zeta_22 + 1)*q^5 + (zeta_22^9 - 2*zeta_22^7 + zeta_22^6 - zeta_22 + 2)*q^6 + (zeta_22^8 - zeta_22^7 - zeta_22^5 - zeta_22^4 - zeta_22^3 - zeta_22 + 1)*q^7 + (-2*zeta_22^9 + 2*zeta_22^8 - zeta_22^5 + zeta_22^4 + zeta_22^3 + zeta_22^2 - zeta_22)*q^8 + (-2*zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - 2*zeta_22^2)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22)*q^2 + (-zeta_22^8 + zeta_22^7 + zeta_22^3 + zeta_22)*q^3 + (zeta_22^9 - 2*zeta_22^8 - 2*zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^4 + (-zeta_22^9 + zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^3 + 1)*q^5 + (zeta_22^8 - 2*zeta_22^7 + zeta_22^5 - 2*zeta_22^3 + zeta_22^2)*q^6 + (zeta_22^9 - zeta_22^8 + zeta_22^5 - zeta_22^4 - zeta_22^2 - zeta_22 - 1)*q^7 + (2*zeta_22^9 - zeta_22^6 + zeta_22^5 + zeta_22^4 - zeta_22^3 - zeta_22^2 + zeta_22)*q^8 + (2*zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + 2*zeta_22)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 - zeta_22^2 + zeta_22)*q^2 + (-zeta_22^8 - zeta_22^6 - zeta_22^2 + zeta_22)*q^3 + (-2*zeta_22^8 + zeta_22^7 + zeta_22^5 - zeta_22^4 - zeta_22^2 + 2*zeta_22)*q^4 + (-zeta_22^8 - zeta_22^5 - zeta_22^3 + zeta_22^2 + 1)*q^5 + (zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - zeta_22^4 - 2*zeta_22^2 + 3*zeta_22 - 2)*q^6 + (2*zeta_22^9 + zeta_22^7 - zeta_22^4 + zeta_22^3 - 1)*q^7 + (-2*zeta_22^8 + 2*zeta_22^7 - zeta_22^6 + zeta_22^5 - 3*zeta_22^4 + zeta_22^3 - zeta_22^2 + 2*zeta_22 - 2)*q^8 + (-2*zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 2)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22)*q^2 + (zeta_22^7 - zeta_22^6 - zeta_22^2 - 1)*q^3 + (zeta_22^9 - zeta_22^8 - zeta_22^6 + 2*zeta_22^5 + 2*zeta_22 - 1)*q^4 + (-zeta_22^9 - zeta_22^6 - zeta_22^4 + zeta_22^3 + zeta_22)*q^5 + (2*zeta_22^9 - 3*zeta_22^8 + 2*zeta_22^7 + zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 1)*q^6 + (zeta_22^8 + 2*zeta_22^6 + zeta_22^4 - zeta_22 + 1)*q^7 + (-2*zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + zeta_22^6 - 3*zeta_22^5 + 3*zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 2)*q^8 + (-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^9 + O(q^10), q + (-zeta_22^6 + zeta_22^5 - zeta_22^2 + zeta_22)*q^2 + (zeta_22^7 + zeta_22^5 + zeta_22 - 1)*q^3 + (zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^3 + 1)*q^4 + (-zeta_22^9 + zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - zeta_22 + 1)*q^5 + (-zeta_22^7 + 2*zeta_22^6 - zeta_22^4 + 2*zeta_22^2 - zeta_22)*q^6 + (zeta_22^9 - zeta_22^8 + zeta_22^5 + 2*zeta_22^3 + zeta_22)*q^7 + (2*zeta_22^9 - 2*zeta_22^8 + zeta_22^7 - zeta_22^6 + 3*zeta_22^5 - zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + 2*zeta_22)*q^8 + (zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^4)*q^9 + O(q^10), q + (-zeta_22^8 + zeta_22^7 - zeta_22^4 + zeta_22^3)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^3 + (2*zeta_22^9 - zeta_22^8 - zeta_22^6 + zeta_22^5 + zeta_22^3 - 2*zeta_22^2)*q^4 + (-zeta_22^8 - zeta_22^6 + zeta_22^5 + zeta_22^3 + 1)*q^5 + (-2*zeta_22^9 + zeta_22^8 - zeta_22^3 + 2*zeta_22^2 - 1)*q^6 + (-zeta_22^9 + zeta_22^6 - zeta_22^5 + zeta_22^2 + 2)*q^7 + (-zeta_22^8 + zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^4 + zeta_22^3 - 2)*q^8 + (-zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 + zeta_22^3)*q^9 + O(q^10), q + (zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22^2 - zeta_22)*q^3 + (zeta_22^8 - zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 - zeta_22^2 + 1)*q^4 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 + zeta_22^4 + zeta_22)*q^5 + (-zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - zeta_22^6 - zeta_22^5 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*q^6 + (-zeta_22^9 - zeta_22^8 - zeta_22^7 - zeta_22^5 + zeta_22^4 - zeta_22 + 1)*q^7 + (zeta_22^8 - zeta_22^7 - zeta_22^6 - zeta_22^5 + zeta_22^4 - 2*zeta_22 + 2)*q^8 + (zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 - zeta_22^2)*q^9 + O(q^10), q + (-zeta_22^8 + zeta_22^7 + zeta_22 - 1)*q^2 + (zeta_22^9 + zeta_22^5 - zeta_22^4 - 1)*q^3 + (-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^4 + (-zeta_22^9 + zeta_22^6 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - zeta_22 + 1)*q^5 + (zeta_22^6 - 2*zeta_22^5 + zeta_22^3 - 2*zeta_22 + 1)*q^6 + (zeta_22^9 - zeta_22^8 - zeta_22^6 - zeta_22^5 - zeta_22^4 - zeta_22^2 + zeta_22)*q^7 + (zeta_22^9 - zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^4 + 2*zeta_22)*q^8 + (-zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 + zeta_22)*q^9 + O(q^10), q + (zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22 + 1)*q^2 + (zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^4 + zeta_22^2 - zeta_22 + 1)*q^3 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + zeta_22^4 + 2*zeta_22^2 - 2*zeta_22 + 2)*q^4 + (-zeta_22^9 + zeta_22^8 + zeta_22^6 + zeta_22^3 + 1)*q^5 + (-zeta_22^9 + 3*zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - 3*zeta_22 + 1)*q^6 + (-zeta_22^8 + zeta_22^7 - zeta_22^4 - 2*zeta_22^2 - 1)*q^7 + (-zeta_22^9 + zeta_22^8 + zeta_22^7 + zeta_22^6 - zeta_22^5 + 2*zeta_22^2 - 2*zeta_22)*q^8 + (zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^5 - zeta_22^4 + zeta_22 - 1)*q^2 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22 + 1)*q^3 + (-zeta_22^9 + zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 + zeta_22^3 - zeta_22)*q^4 + (zeta_22^8 + zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^5 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^6 + 2*zeta_22^4 - zeta_22^3)*q^6 + (2*zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + zeta_22^5 - zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + zeta_22 - 2)*q^7 + (2*zeta_22^8 - 2*zeta_22^7 + zeta_22^4 - zeta_22^3 - zeta_22^2 - zeta_22 + 1)*q^8 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*q^9 + O(q^10), q + (zeta_22^7 - zeta_22^6 + zeta_22^3 - zeta_22^2)*q^2 + (zeta_22^9 - zeta_22^8 - zeta_22^4 - zeta_22^2)*q^3 + (2*zeta_22^7 - zeta_22^6 - zeta_22^4 + zeta_22^3 + zeta_22 - 2)*q^4 + (zeta_22^9 + zeta_22^7 - zeta_22^6 + 2*zeta_22^5 - zeta_22^4 + zeta_22^3 + zeta_22)*q^5 + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + zeta_22 + 1)*q^6 + (zeta_22^9 + 2*zeta_22^7 + zeta_22^5 - zeta_22^2 + zeta_22)*q^7 + (-2*zeta_22^8 + zeta_22^5 - zeta_22^4 - zeta_22^3 + zeta_22^2 + zeta_22 - 1)*q^8 + (2*zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + 2*zeta_22^3)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 + zeta_22^5 - zeta_22^4)*q^2 + (zeta_22^9 + zeta_22^7 + zeta_22^3 - zeta_22^2)*q^3 + (-zeta_22^9 + zeta_22^6 - zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 - 1)*q^4 + (zeta_22^9 + zeta_22^6 + zeta_22^3 + zeta_22 - 1)*q^5 + (zeta_22^9 - 2*zeta_22^7 + zeta_22^6 - zeta_22 + 2)*q^6 + (-zeta_22^8 + zeta_22^7 + zeta_22^5 + zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^7 + (-2*zeta_22^9 + 2*zeta_22^8 - zeta_22^5 + zeta_22^4 + zeta_22^3 + zeta_22^2 - zeta_22)*q^8 + (-2*zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - 2*zeta_22^2)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22)*q^2 + (-zeta_22^8 + zeta_22^7 + zeta_22^3 + zeta_22)*q^3 + (zeta_22^9 - 2*zeta_22^8 - 2*zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^4 + (zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - zeta_22^6 + zeta_22^5 + zeta_22^3 - 1)*q^5 + (zeta_22^8 - 2*zeta_22^7 + zeta_22^5 - 2*zeta_22^3 + zeta_22^2)*q^6 + (-zeta_22^9 + zeta_22^8 - zeta_22^5 + zeta_22^4 + zeta_22^2 + zeta_22 + 1)*q^7 + (2*zeta_22^9 - zeta_22^6 + zeta_22^5 + zeta_22^4 - zeta_22^3 - zeta_22^2 + zeta_22)*q^8 + (2*zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + 2*zeta_22)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 - zeta_22^2 + zeta_22)*q^2 + (-zeta_22^8 - zeta_22^6 - zeta_22^2 + zeta_22)*q^3 + (-2*zeta_22^8 + zeta_22^7 + zeta_22^5 - zeta_22^4 - zeta_22^2 + 2*zeta_22)*q^4 + (zeta_22^8 + zeta_22^5 + zeta_22^3 - zeta_22^2 - 1)*q^5 + (zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - zeta_22^4 - 2*zeta_22^2 + 3*zeta_22 - 2)*q^6 + (-2*zeta_22^9 - zeta_22^7 + zeta_22^4 - zeta_22^3 + 1)*q^7 + (-2*zeta_22^8 + 2*zeta_22^7 - zeta_22^6 + zeta_22^5 - 3*zeta_22^4 + zeta_22^3 - zeta_22^2 + 2*zeta_22 - 2)*q^8 + (-2*zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 2)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22)*q^2 + (zeta_22^7 - zeta_22^6 - zeta_22^2 - 1)*q^3 + (zeta_22^9 - zeta_22^8 - zeta_22^6 + 2*zeta_22^5 + 2*zeta_22 - 1)*q^4 + (zeta_22^9 + zeta_22^6 + zeta_22^4 - zeta_22^3 - zeta_22)*q^5 + (2*zeta_22^9 - 3*zeta_22^8 + 2*zeta_22^7 + zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 1)*q^6 + (-zeta_22^8 - 2*zeta_22^6 - zeta_22^4 + zeta_22 - 1)*q^7 + (-2*zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + zeta_22^6 - 3*zeta_22^5 + 3*zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 2)*q^8 + (-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^9 + O(q^10), q + (-zeta_22^6 + zeta_22^5 - zeta_22^2 + zeta_22)*q^2 + (zeta_22^7 + zeta_22^5 + zeta_22 - 1)*q^3 + (zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^3 + 1)*q^4 + (zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + zeta_22 - 1)*q^5 + (-zeta_22^7 + 2*zeta_22^6 - zeta_22^4 + 2*zeta_22^2 - zeta_22)*q^6 + (-zeta_22^9 + zeta_22^8 - zeta_22^5 - 2*zeta_22^3 - zeta_22)*q^7 + (2*zeta_22^9 - 2*zeta_22^8 + zeta_22^7 - zeta_22^6 + 3*zeta_22^5 - zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + 2*zeta_22)*q^8 + (zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^4)*q^9 + O(q^10), q + (-zeta_22^8 + zeta_22^7 - zeta_22^4 + zeta_22^3)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^3 + (2*zeta_22^9 - zeta_22^8 - zeta_22^6 + zeta_22^5 + zeta_22^3 - 2*zeta_22^2)*q^4 + (zeta_22^8 + zeta_22^6 - zeta_22^5 - zeta_22^3 - 1)*q^5 + (-2*zeta_22^9 + zeta_22^8 - zeta_22^3 + 2*zeta_22^2 - 1)*q^6 + (zeta_22^9 - zeta_22^6 + zeta_22^5 - zeta_22^2 - 2)*q^7 + (-zeta_22^8 + zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^4 + zeta_22^3 - 2)*q^8 + (-zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 + zeta_22^3)*q^9 + O(q^10), q + (zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22^2 - zeta_22)*q^3 + (zeta_22^8 - zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 - zeta_22^2 + 1)*q^4 + (zeta_22^9 + zeta_22^7 - zeta_22^6 - zeta_22^4 - zeta_22)*q^5 + (-zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - zeta_22^6 - zeta_22^5 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*q^6 + (zeta_22^9 + zeta_22^8 + zeta_22^7 + zeta_22^5 - zeta_22^4 + zeta_22 - 1)*q^7 + (zeta_22^8 - zeta_22^7 - zeta_22^6 - zeta_22^5 + zeta_22^4 - 2*zeta_22 + 2)*q^8 + (zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 - zeta_22^2)*q^9 + O(q^10), q + (-zeta_22^8 + zeta_22^7 + zeta_22 - 1)*q^2 + (zeta_22^9 + zeta_22^5 - zeta_22^4 - 1)*q^3 + (-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^4 + (zeta_22^9 - zeta_22^6 - zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + zeta_22 - 1)*q^5 + (zeta_22^6 - 2*zeta_22^5 + zeta_22^3 - 2*zeta_22 + 1)*q^6 + (-zeta_22^9 + zeta_22^8 + zeta_22^6 + zeta_22^5 + zeta_22^4 + zeta_22^2 - zeta_22)*q^7 + (zeta_22^9 - zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^4 + 2*zeta_22)*q^8 + (-zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 + zeta_22)*q^9 + O(q^10), q + (zeta_22^9 + zeta_22^7 + zeta_22^3 - zeta_22^2)*q^2 + (zeta_22^7 + zeta_22^5 - zeta_22^2 - 1)*q^3 + (-2*zeta_22^8 + zeta_22^7 - zeta_22^6 - zeta_22^4 + zeta_22^3 - 2*zeta_22^2)*q^4 + (-zeta_22^6 + zeta_22^5 + zeta_22^4 + zeta_22^3 - zeta_22^2)*q^5 + (-2*zeta_22^9 - zeta_22^7 - zeta_22^6 - zeta_22^5 - 2*zeta_22^3)*q^6 + (2*zeta_22^9 - zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - zeta_22^2 + zeta_22 - 2)*q^7 + (-zeta_22^8 + zeta_22^7 + zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + zeta_22 + 1)*q^8 + (-zeta_22^9 - zeta_22^8 - zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22)*q^9 + O(q^10), q + (zeta_22^9 + zeta_22^5 - zeta_22^4 - 1)*q^2 + (-zeta_22^9 + zeta_22^8 + zeta_22^6 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^3 + (-zeta_22^9 - zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 + zeta_22)*q^4 + (-zeta_22^7 + zeta_22^6 + zeta_22^5 + zeta_22^4 - zeta_22^3)*q^5 + (2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 - 2*zeta_22^4 + zeta_22^3 - 3*zeta_22^2 + zeta_22 - 2)*q^6 + (zeta_22^8 + zeta_22^7 + zeta_22^6 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^7 + (2*zeta_22^9 - 3*zeta_22^8 + 2*zeta_22^7 + zeta_22^5 - zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + zeta_22 - 1)*q^8 + (zeta_22^8 + zeta_22^7 + zeta_22^5 + zeta_22^4 - zeta_22 + 1)*q^9 + O(q^10), q + (zeta_22^7 - zeta_22^6 - zeta_22^2 - 1)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22^2 + 1)*q^3 + (-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - zeta_22 + 1)*q^4 + (-zeta_22^8 + zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^4)*q^5 + (2*zeta_22^9 + zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 - zeta_22 - 1)*q^6 + (-zeta_22^7 + zeta_22^6 + 2*zeta_22^4 + zeta_22^2 - zeta_22)*q^7 + (zeta_22^9 - zeta_22^8 - zeta_22^5 - zeta_22^4 + 2*zeta_22^3 - zeta_22^2 - zeta_22)*q^8 + (zeta_22^9 - zeta_22^8 - 2*zeta_22^6 + zeta_22^5 - 2*zeta_22^4 - zeta_22^2 + zeta_22)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 - zeta_22^4 - zeta_22^2)*q^2 + (zeta_22^9 - zeta_22^6 - zeta_22^4 - 1)*q^3 + (2*zeta_22^9 - zeta_22^8 + zeta_22^7 + zeta_22^5 - zeta_22^4 + 2*zeta_22^3)*q^4 + (-zeta_22^9 + zeta_22^8 + zeta_22^7 + zeta_22^6 - zeta_22^5)*q^5 + (2*zeta_22^8 + zeta_22^6 + zeta_22^5 + zeta_22^4 + 2*zeta_22^2)*q^6 + (zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^2 + zeta_22 + 1)*q^7 + (zeta_22^9 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22 + 2)*q^8 + (-zeta_22^8 + zeta_22^7 + 2*zeta_22^5 - zeta_22^4 + 2*zeta_22^3 + zeta_22 - 1)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22^2 - zeta_22)*q^2 + (zeta_22^9 + zeta_22^5 + zeta_22^3 - 1)*q^3 + (zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^2 + zeta_22 - 1)*q^4 + (2*zeta_22^8 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^5 + (-2*zeta_22^9 + 2*zeta_22^4 + zeta_22^2 + zeta_22 + 1)*q^6 + (-2*zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22 + 1)*q^7 + (zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - zeta_22^4 + 2*zeta_22^2 - zeta_22 + 1)*q^8 + (-zeta_22^9 + zeta_22^8 - zeta_22^5 - zeta_22^4 - zeta_22^2 - zeta_22)*q^9 + O(q^10), q + (-zeta_22^8 - zeta_22^6 - zeta_22^2 + zeta_22)*q^2 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 + zeta_22^4 + zeta_22^2 - zeta_22 + 1)*q^3 + (-2*zeta_22^6 + zeta_22^5 - zeta_22^4 - zeta_22^2 + zeta_22 - 2)*q^4 + (2*zeta_22^9 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22)*q^5 + (-zeta_22^9 - zeta_22^8 - zeta_22^7 - 2*zeta_22^5 + 2)*q^6 + (zeta_22^9 - zeta_22^8 - 2*zeta_22^6 - zeta_22^4 + zeta_22^3)*q^7 + (-zeta_22^9 + 3*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - zeta_22^5 + zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 3*zeta_22 + 1)*q^8 + (zeta_22^8 - zeta_22^7 + zeta_22^4 + zeta_22^3 + zeta_22 + 1)*q^9 + O(q^10), q + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22 + 1)*q^2 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^3 - zeta_22 + 1)*q^3 + (-zeta_22^9 + zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*q^4 + (2*zeta_22^9 - 2*zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + 2*zeta_22 - 2)*q^5 + (-2*zeta_22^7 - zeta_22^5 - zeta_22^4 - zeta_22^3 - 2*zeta_22)*q^6 + (zeta_22^6 - zeta_22^5 - 2*zeta_22^3 - zeta_22 + 1)*q^7 + (-zeta_22^9 + zeta_22^8 - 2*zeta_22^7 + zeta_22^5 - 2*zeta_22^3 + zeta_22^2 - zeta_22)*q^8 + (zeta_22^9 - zeta_22^8 + zeta_22^5 - zeta_22^4 - 2*zeta_22^2 + zeta_22 - 2)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^2 + (zeta_22^9 + zeta_22^7 - zeta_22^4 - zeta_22^2)*q^3 + (-zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 + zeta_22^3 + 1)*q^4 + (-zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - 2)*q^5 + (zeta_22^9 + zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 - zeta_22^3 - zeta_22^2 - 2)*q^6 + (zeta_22^9 - zeta_22^8 + zeta_22^3 - zeta_22^2 - 2)*q^7 + (-2*zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - 1)*q^8 + (-2*zeta_22^9 + zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 + 1)*q^9 + O(q^10), q + (-zeta_22^8 + zeta_22^7 + zeta_22^3 + zeta_22)*q^2 + (zeta_22^9 + zeta_22^7 + zeta_22^3 + zeta_22)*q^3 + (2*zeta_22^7 - zeta_22^6 + zeta_22^5 + zeta_22^3 - zeta_22^2 + 2*zeta_22)*q^4 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - 2*zeta_22)*q^5 + (2*zeta_22^9 - zeta_22^8 + 3*zeta_22^7 - zeta_22^6 + 2*zeta_22^5 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*q^6 + (zeta_22^9 + zeta_22^8 + zeta_22^7 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22)*q^7 + (zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + zeta_22^5 + zeta_22^4 + zeta_22 - 1)*q^8 + (zeta_22^9 + zeta_22^8 - zeta_22^5 + zeta_22^4 - zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^4 + zeta_22^2 - zeta_22 + 1)*q^2 + (-zeta_22^8 - zeta_22^6 + zeta_22^3 + zeta_22)*q^3 + (zeta_22^8 + zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 - 1)*q^4 + (zeta_22^4 - zeta_22^3 - zeta_22^2 - zeta_22 + 1)*q^5 + (2*zeta_22^6 + zeta_22^4 + zeta_22^3 + zeta_22^2 + 2)*q^6 + (-zeta_22^8 + zeta_22^7 + 2*zeta_22^5 + zeta_22^3 - zeta_22^2)*q^7 + (zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + zeta_22^5 - zeta_22^4 - 2*zeta_22^2 + 3*zeta_22 - 2)*q^8 + (-zeta_22^9 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - zeta_22 + 2)*q^9 + O(q^10), q + (zeta_22^7 + zeta_22^5 + zeta_22 - 1)*q^2 + (-zeta_22^8 - zeta_22^6 - zeta_22^2 - 1)*q^3 + (zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^4 - zeta_22)*q^4 + (zeta_22^5 - zeta_22^4 - zeta_22^3 - zeta_22^2 + zeta_22)*q^5 + (-2*zeta_22^9 + zeta_22^8 - 3*zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + 3*zeta_22^2 - zeta_22 + 2)*q^6 + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^3 + zeta_22^2 + zeta_22)*q^7 + (-zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - zeta_22^6 - zeta_22^5 - zeta_22^2 + zeta_22)*q^8 + (2*zeta_22^9 - zeta_22^8 + 2*zeta_22^7 + zeta_22^5 - zeta_22^4 + zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^9 + zeta_22^7 + zeta_22^3 - zeta_22^2)*q^2 + (zeta_22^7 + zeta_22^5 - zeta_22^2 - 1)*q^3 + (-2*zeta_22^8 + zeta_22^7 - zeta_22^6 - zeta_22^4 + zeta_22^3 - 2*zeta_22^2)*q^4 + (zeta_22^6 - zeta_22^5 - zeta_22^4 - zeta_22^3 + zeta_22^2)*q^5 + (-2*zeta_22^9 - zeta_22^7 - zeta_22^6 - zeta_22^5 - 2*zeta_22^3)*q^6 + (-2*zeta_22^9 + zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - zeta_22 + 2)*q^7 + (-zeta_22^8 + zeta_22^7 + zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + zeta_22 + 1)*q^8 + (-zeta_22^9 - zeta_22^8 - zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22)*q^9 + O(q^10), q + (zeta_22^9 + zeta_22^5 - zeta_22^4 - 1)*q^2 + (-zeta_22^9 + zeta_22^8 + zeta_22^6 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^3 + (-zeta_22^9 - zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 + zeta_22)*q^4 + (zeta_22^7 - zeta_22^6 - zeta_22^5 - zeta_22^4 + zeta_22^3)*q^5 + (2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 - 2*zeta_22^4 + zeta_22^3 - 3*zeta_22^2 + zeta_22 - 2)*q^6 + (-zeta_22^8 - zeta_22^7 - zeta_22^6 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*q^7 + (2*zeta_22^9 - 3*zeta_22^8 + 2*zeta_22^7 + zeta_22^5 - zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + zeta_22 - 1)*q^8 + (zeta_22^8 + zeta_22^7 + zeta_22^5 + zeta_22^4 - zeta_22 + 1)*q^9 + O(q^10), q + (zeta_22^7 - zeta_22^6 - zeta_22^2 - 1)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22^2 + 1)*q^3 + (-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - zeta_22 + 1)*q^4 + (zeta_22^8 - zeta_22^7 - zeta_22^6 - zeta_22^5 + zeta_22^4)*q^5 + (2*zeta_22^9 + zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 - zeta_22 - 1)*q^6 + (zeta_22^7 - zeta_22^6 - 2*zeta_22^4 - zeta_22^2 + zeta_22)*q^7 + (zeta_22^9 - zeta_22^8 - zeta_22^5 - zeta_22^4 + 2*zeta_22^3 - zeta_22^2 - zeta_22)*q^8 + (zeta_22^9 - zeta_22^8 - 2*zeta_22^6 + zeta_22^5 - 2*zeta_22^4 - zeta_22^2 + zeta_22)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 - zeta_22^4 - zeta_22^2)*q^2 + (zeta_22^9 - zeta_22^6 - zeta_22^4 - 1)*q^3 + (2*zeta_22^9 - zeta_22^8 + zeta_22^7 + zeta_22^5 - zeta_22^4 + 2*zeta_22^3)*q^4 + (zeta_22^9 - zeta_22^8 - zeta_22^7 - zeta_22^6 + zeta_22^5)*q^5 + (2*zeta_22^8 + zeta_22^6 + zeta_22^5 + zeta_22^4 + 2*zeta_22^2)*q^6 + (-zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^2 - zeta_22 - 1)*q^7 + (zeta_22^9 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22 + 2)*q^8 + (-zeta_22^8 + zeta_22^7 + 2*zeta_22^5 - zeta_22^4 + 2*zeta_22^3 + zeta_22 - 1)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22^2 - zeta_22)*q^2 + (zeta_22^9 + zeta_22^5 + zeta_22^3 - 1)*q^3 + (zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^2 + zeta_22 - 1)*q^4 + (-2*zeta_22^8 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*q^5 + (-2*zeta_22^9 + 2*zeta_22^4 + zeta_22^2 + zeta_22 + 1)*q^6 + (2*zeta_22^9 + zeta_22^7 - zeta_22^6 + zeta_22 - 1)*q^7 + (zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - zeta_22^4 + 2*zeta_22^2 - zeta_22 + 1)*q^8 + (-zeta_22^9 + zeta_22^8 - zeta_22^5 - zeta_22^4 - zeta_22^2 - zeta_22)*q^9 + O(q^10), q + (-zeta_22^8 - zeta_22^6 - zeta_22^2 + zeta_22)*q^2 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 + zeta_22^4 + zeta_22^2 - zeta_22 + 1)*q^3 + (-2*zeta_22^6 + zeta_22^5 - zeta_22^4 - zeta_22^2 + zeta_22 - 2)*q^4 + (-2*zeta_22^9 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22)*q^5 + (-zeta_22^9 - zeta_22^8 - zeta_22^7 - 2*zeta_22^5 + 2)*q^6 + (-zeta_22^9 + zeta_22^8 + 2*zeta_22^6 + zeta_22^4 - zeta_22^3)*q^7 + (-zeta_22^9 + 3*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - zeta_22^5 + zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 3*zeta_22 + 1)*q^8 + (zeta_22^8 - zeta_22^7 + zeta_22^4 + zeta_22^3 + zeta_22 + 1)*q^9 + O(q^10), q + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22 + 1)*q^2 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^3 - zeta_22 + 1)*q^3 + (-zeta_22^9 + zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*q^4 + (-2*zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 2)*q^5 + (-2*zeta_22^7 - zeta_22^5 - zeta_22^4 - zeta_22^3 - 2*zeta_22)*q^6 + (-zeta_22^6 + zeta_22^5 + 2*zeta_22^3 + zeta_22 - 1)*q^7 + (-zeta_22^9 + zeta_22^8 - 2*zeta_22^7 + zeta_22^5 - 2*zeta_22^3 + zeta_22^2 - zeta_22)*q^8 + (zeta_22^9 - zeta_22^8 + zeta_22^5 - zeta_22^4 - 2*zeta_22^2 + zeta_22 - 2)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^2 + (zeta_22^9 + zeta_22^7 - zeta_22^4 - zeta_22^2)*q^3 + (-zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 + zeta_22^3 + 1)*q^4 + (zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + 2)*q^5 + (zeta_22^9 + zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 - zeta_22^3 - zeta_22^2 - 2)*q^6 + (-zeta_22^9 + zeta_22^8 - zeta_22^3 + zeta_22^2 + 2)*q^7 + (-2*zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - 1)*q^8 + (-2*zeta_22^9 + zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 + 1)*q^9 + O(q^10), q + (-zeta_22^8 + zeta_22^7 + zeta_22^3 + zeta_22)*q^2 + (zeta_22^9 + zeta_22^7 + zeta_22^3 + zeta_22)*q^3 + (2*zeta_22^7 - zeta_22^6 + zeta_22^5 + zeta_22^3 - zeta_22^2 + 2*zeta_22)*q^4 + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + 2*zeta_22)*q^5 + (2*zeta_22^9 - zeta_22^8 + 3*zeta_22^7 - zeta_22^6 + 2*zeta_22^5 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*q^6 + (-zeta_22^9 - zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22)*q^7 + (zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + zeta_22^5 + zeta_22^4 + zeta_22 - 1)*q^8 + (zeta_22^9 + zeta_22^8 - zeta_22^5 + zeta_22^4 - zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^4 + zeta_22^2 - zeta_22 + 1)*q^2 + (-zeta_22^8 - zeta_22^6 + zeta_22^3 + zeta_22)*q^3 + (zeta_22^8 + zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 - 1)*q^4 + (-zeta_22^4 + zeta_22^3 + zeta_22^2 + zeta_22 - 1)*q^5 + (2*zeta_22^6 + zeta_22^4 + zeta_22^3 + zeta_22^2 + 2)*q^6 + (zeta_22^8 - zeta_22^7 - 2*zeta_22^5 - zeta_22^3 + zeta_22^2)*q^7 + (zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + zeta_22^5 - zeta_22^4 - 2*zeta_22^2 + 3*zeta_22 - 2)*q^8 + (-zeta_22^9 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - zeta_22 + 2)*q^9 + O(q^10), q + (zeta_22^7 + zeta_22^5 + zeta_22 - 1)*q^2 + (-zeta_22^8 - zeta_22^6 - zeta_22^2 - 1)*q^3 + (zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^4 - zeta_22)*q^4 + (-zeta_22^5 + zeta_22^4 + zeta_22^3 + zeta_22^2 - zeta_22)*q^5 + (-2*zeta_22^9 + zeta_22^8 - 3*zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + 3*zeta_22^2 - zeta_22 + 2)*q^6 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^3 - zeta_22^2 - zeta_22)*q^7 + (-zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - zeta_22^6 - zeta_22^5 - zeta_22^2 + zeta_22)*q^8 + (2*zeta_22^9 - zeta_22^8 + 2*zeta_22^7 + zeta_22^5 - zeta_22^4 + zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^7 + zeta_22^5 - zeta_22^4 - zeta_22^2)*q^2 + (zeta_22^5 - zeta_22^4 - zeta_22^2 + zeta_22)*q^3 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^2 - zeta_22 + 1)*q^4 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 - 2*zeta_22^5 - zeta_22^3 + zeta_22^2 - zeta_22)*q^5 + (-2*zeta_22^9 + zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - zeta_22^2)*q^6 + (zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - zeta_22^3 + 1)*q^7 + (-zeta_22^9 - 2*zeta_22^8 - zeta_22^7 + zeta_22^5 + zeta_22^3 - zeta_22^2 - 1)*q^8 + (-zeta_22^9 - zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^9 + zeta_22^7 - zeta_22^6 - zeta_22^4)*q^2 + (zeta_22^8 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^3 + (2*zeta_22^9 - zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + zeta_22^3 + zeta_22)*q^4 + (-zeta_22^7 - zeta_22^6 - zeta_22^5 - zeta_22 + 1)*q^5 + (zeta_22^9 - 2*zeta_22^5 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2)*q^6 + (-zeta_22^8 + zeta_22^5 - 2*zeta_22^4 + zeta_22^3 - 1)*q^7 + (zeta_22^9 - zeta_22^8 - zeta_22^6 + zeta_22^4 + 2*zeta_22^3 + zeta_22^2 - 1)*q^8 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - zeta_22)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 - zeta_22^6 - 1)*q^2 + (-zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^3 + (-2*zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 - zeta_22 + 1)*q^4 + (-zeta_22^8 - zeta_22^7 - zeta_22^6 - zeta_22^2 + zeta_22)*q^5 + (-zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + 2*zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 - zeta_22)*q^6 + (zeta_22^8 - zeta_22^5 + zeta_22^2 - 2*zeta_22 + 1)*q^7 + (3*zeta_22^9 + zeta_22^7 - 2*zeta_22^6 + zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - zeta_22^2 + 2*zeta_22 - 1)*q^8 + (zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^9 + O(q^10), q + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 - zeta_22)*q^2 + (zeta_22^9 - zeta_22^8 - zeta_22^6 + zeta_22^5)*q^3 + (zeta_22^9 - 2*zeta_22^6 + zeta_22^5 - zeta_22^4 + 2*zeta_22^3 - 1)*q^4 + (-zeta_22^9 - zeta_22^8 - zeta_22^7 - zeta_22^3 + zeta_22^2)*q^5 + (2*zeta_22^8 - zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + zeta_22)*q^6 + (zeta_22^9 - zeta_22^7 + zeta_22^6 + zeta_22^4 - zeta_22^3 - zeta_22 + 1)*q^7 + (zeta_22^8 + zeta_22^6 - 2*zeta_22^5 - zeta_22^4 - 2*zeta_22^3 + zeta_22^2 + 1)*q^8 + (zeta_22^9 - zeta_22^8 + zeta_22^6 + zeta_22^4 + zeta_22^2 + 1)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^3 + 1)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22)*q^3 + (-zeta_22^9 + zeta_22^8 + 2*zeta_22^6 - 2*zeta_22^5 + zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - 2*zeta_22 + 2)*q^4 + (-2*zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22 + 1)*q^5 + (-zeta_22^8 + 2*zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22)*q^6 + (zeta_22^9 - zeta_22^8 + zeta_22^6 - zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^7 + (-3*zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - zeta_22^5 + zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - 2*zeta_22 + 3)*q^8 + (zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - zeta_22^6 - zeta_22^4 - zeta_22^2 - 1)*q^9 + O(q^10), q + (-zeta_22^6 - zeta_22^4 + zeta_22^3 + zeta_22)*q^2 + (-zeta_22^8 + zeta_22^7 + zeta_22^5 - zeta_22^4)*q^3 + (-zeta_22^8 - zeta_22^6 + 2*zeta_22^3 - zeta_22^2 + zeta_22 - 2)*q^4 + (-2*zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 2)*q^5 + (zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - 2*zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 + 1)*q^6 + (-zeta_22^9 + zeta_22^8 + zeta_22^6 - zeta_22^5 + zeta_22^3 - zeta_22 + 1)*q^7 + (-zeta_22^9 - zeta_22^7 + 2*zeta_22^6 + zeta_22^5 + 2*zeta_22^4 - zeta_22^3 - zeta_22)*q^8 + (-zeta_22^9 + zeta_22^7 - zeta_22^6 + zeta_22^4 + zeta_22^2 + 1)*q^9 + O(q^10), q + (-zeta_22^8 - zeta_22^6 + zeta_22^5 + zeta_22^3)*q^2 + (zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + 1)*q^3 + (-zeta_22^9 + zeta_22^8 + zeta_22^7 - zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^4 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 2)*q^5 + (-2*zeta_22^7 + zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - 1)*q^6 + (zeta_22^9 - zeta_22^8 - zeta_22^6 + zeta_22^5 + zeta_22^3 - zeta_22^2 + 1)*q^7 + (zeta_22^9 - 2*zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - zeta_22^4 + 2*zeta_22^3 - zeta_22^2 - 3)*q^8 + (zeta_22^9 + zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - zeta_22^4 - zeta_22^2 - 1)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^6 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^2 + (zeta_22^7 - zeta_22^6 - zeta_22^4 + zeta_22^3)*q^3 + (-zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^4 + zeta_22^2 - zeta_22 - 1)*q^4 + (-zeta_22^7 + zeta_22^6 + zeta_22^2 + zeta_22 + 1)*q^5 + (zeta_22^7 - 2*zeta_22^3 + zeta_22^2 - zeta_22 + 2)*q^6 + (zeta_22^9 - 2*zeta_22^8 + zeta_22^7 - zeta_22^4 + zeta_22)*q^7 + (zeta_22^9 - zeta_22^7 - 2*zeta_22^6 - zeta_22^5 + zeta_22^3 + zeta_22 - 1)*q^8 + (-zeta_22^9 - zeta_22^7 + zeta_22^5 - zeta_22^4 + zeta_22^2 + 1)*q^9 + O(q^10), q + (zeta_22^8 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^2 + (zeta_22^9 - zeta_22^8 + zeta_22 - 1)*q^3 + (zeta_22^9 + zeta_22^7 - 2*zeta_22^4 + zeta_22^3 - zeta_22^2 + 2*zeta_22)*q^4 + (-zeta_22^8 + zeta_22^7 + zeta_22^3 + zeta_22^2 + zeta_22)*q^5 + (zeta_22^9 - zeta_22^8 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 3*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*q^6 + (-zeta_22^9 + zeta_22^6 - 2*zeta_22^5 + zeta_22^4 - zeta_22)*q^7 + (zeta_22^9 + zeta_22^7 - zeta_22^6 - zeta_22^4 + zeta_22^2 + 2*zeta_22 + 1)*q^8 + (zeta_22^9 + zeta_22^7 + zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - zeta_22^2 - 1)*q^9 + O(q^10), q + (zeta_22^9 + zeta_22^3 + zeta_22 - 1)*q^2 + (-zeta_22^6 + zeta_22^5 + zeta_22^3 - zeta_22^2)*q^3 + (-2*zeta_22^8 + zeta_22^7 - zeta_22^6 + 2*zeta_22^5 - zeta_22^2 - 1)*q^4 + (-zeta_22^9 + zeta_22^8 + zeta_22^4 + zeta_22^3 + zeta_22^2)*q^5 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + 3*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 3*zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^6 + (zeta_22^9 - zeta_22^6 + zeta_22^3 - 2*zeta_22^2 + zeta_22)*q^7 + (-zeta_22^9 + 2*zeta_22^8 + zeta_22^7 + 2*zeta_22^6 - zeta_22^5 - zeta_22^3 + 1)*q^8 + (-zeta_22^9 - zeta_22^7 - zeta_22^5 + zeta_22^3 - zeta_22^2 + 1)*q^9 + O(q^10), q + (zeta_22^5 + zeta_22^3 - zeta_22^2 - 1)*q^2 + (-zeta_22^9 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22)*q^3 + (zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22^2 + zeta_22)*q^4 + (zeta_22^8 - zeta_22^7 + zeta_22^6 + 2*zeta_22^4 + zeta_22^2 - zeta_22 + 1)*q^5 + (2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 3*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 + zeta_22 - 1)*q^6 + (zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 1)*q^7 + (-zeta_22^9 + zeta_22^6 + zeta_22^4 - 2*zeta_22^3 - zeta_22^2 - 2*zeta_22 + 1)*q^8 + (zeta_22^9 + zeta_22^7 + zeta_22^5 + zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^7 + zeta_22^5 - zeta_22^4 - zeta_22^2)*q^2 + (zeta_22^5 - zeta_22^4 - zeta_22^2 + zeta_22)*q^3 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^2 - zeta_22 + 1)*q^4 + (zeta_22^9 - zeta_22^8 + zeta_22^7 + 2*zeta_22^5 + zeta_22^3 - zeta_22^2 + zeta_22)*q^5 + (-2*zeta_22^9 + zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - zeta_22^2)*q^6 + (-zeta_22^8 + 2*zeta_22^7 - zeta_22^6 + zeta_22^3 - 1)*q^7 + (-zeta_22^9 - 2*zeta_22^8 - zeta_22^7 + zeta_22^5 + zeta_22^3 - zeta_22^2 - 1)*q^8 + (-zeta_22^9 - zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^9 + zeta_22^7 - zeta_22^6 - zeta_22^4)*q^2 + (zeta_22^8 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^3 + (2*zeta_22^9 - zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + zeta_22^3 + zeta_22)*q^4 + (zeta_22^7 + zeta_22^6 + zeta_22^5 + zeta_22 - 1)*q^5 + (zeta_22^9 - 2*zeta_22^5 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2)*q^6 + (zeta_22^8 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + 1)*q^7 + (zeta_22^9 - zeta_22^8 - zeta_22^6 + zeta_22^4 + 2*zeta_22^3 + zeta_22^2 - 1)*q^8 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - zeta_22)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 - zeta_22^6 - 1)*q^2 + (-zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^3 + (-2*zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 - zeta_22 + 1)*q^4 + (zeta_22^8 + zeta_22^7 + zeta_22^6 + zeta_22^2 - zeta_22)*q^5 + (-zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + 2*zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 - zeta_22)*q^6 + (-zeta_22^8 + zeta_22^5 - zeta_22^2 + 2*zeta_22 - 1)*q^7 + (3*zeta_22^9 + zeta_22^7 - 2*zeta_22^6 + zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - zeta_22^2 + 2*zeta_22 - 1)*q^8 + (zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^9 + O(q^10), q + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 - zeta_22)*q^2 + (zeta_22^9 - zeta_22^8 - zeta_22^6 + zeta_22^5)*q^3 + (zeta_22^9 - 2*zeta_22^6 + zeta_22^5 - zeta_22^4 + 2*zeta_22^3 - 1)*q^4 + (zeta_22^9 + zeta_22^8 + zeta_22^7 + zeta_22^3 - zeta_22^2)*q^5 + (2*zeta_22^8 - zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + zeta_22)*q^6 + (-zeta_22^9 + zeta_22^7 - zeta_22^6 - zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^7 + (zeta_22^8 + zeta_22^6 - 2*zeta_22^5 - zeta_22^4 - 2*zeta_22^3 + zeta_22^2 + 1)*q^8 + (zeta_22^9 - zeta_22^8 + zeta_22^6 + zeta_22^4 + zeta_22^2 + 1)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^3 + 1)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22)*q^3 + (-zeta_22^9 + zeta_22^8 + 2*zeta_22^6 - 2*zeta_22^5 + zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - 2*zeta_22 + 2)*q^4 + (2*zeta_22^9 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^2 + zeta_22 - 1)*q^5 + (-zeta_22^8 + 2*zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22)*q^6 + (-zeta_22^9 + zeta_22^8 - zeta_22^6 + zeta_22^4 - zeta_22^3 - zeta_22 + 1)*q^7 + (-3*zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - zeta_22^5 + zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - 2*zeta_22 + 3)*q^8 + (zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - zeta_22^6 - zeta_22^4 - zeta_22^2 - 1)*q^9 + O(q^10), q + (-zeta_22^6 - zeta_22^4 + zeta_22^3 + zeta_22)*q^2 + (-zeta_22^8 + zeta_22^7 + zeta_22^5 - zeta_22^4)*q^3 + (-zeta_22^8 - zeta_22^6 + 2*zeta_22^3 - zeta_22^2 + zeta_22 - 2)*q^4 + (2*zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 2)*q^5 + (zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - 2*zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 + 1)*q^6 + (zeta_22^9 - zeta_22^8 - zeta_22^6 + zeta_22^5 - zeta_22^3 + zeta_22 - 1)*q^7 + (-zeta_22^9 - zeta_22^7 + 2*zeta_22^6 + zeta_22^5 + 2*zeta_22^4 - zeta_22^3 - zeta_22)*q^8 + (-zeta_22^9 + zeta_22^7 - zeta_22^6 + zeta_22^4 + zeta_22^2 + 1)*q^9 + O(q^10), q + (-zeta_22^8 - zeta_22^6 + zeta_22^5 + zeta_22^3)*q^2 + (zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + 1)*q^3 + (-zeta_22^9 + zeta_22^8 + zeta_22^7 - zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^4 + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^4 + zeta_22^3 - zeta_22^2 - 2)*q^5 + (-2*zeta_22^7 + zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - 1)*q^6 + (-zeta_22^9 + zeta_22^8 + zeta_22^6 - zeta_22^5 - zeta_22^3 + zeta_22^2 - 1)*q^7 + (zeta_22^9 - 2*zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - zeta_22^4 + 2*zeta_22^3 - zeta_22^2 - 3)*q^8 + (zeta_22^9 + zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - zeta_22^4 - zeta_22^2 - 1)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^6 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^2 + (zeta_22^7 - zeta_22^6 - zeta_22^4 + zeta_22^3)*q^3 + (-zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^4 + zeta_22^2 - zeta_22 - 1)*q^4 + (zeta_22^7 - zeta_22^6 - zeta_22^2 - zeta_22 - 1)*q^5 + (zeta_22^7 - 2*zeta_22^3 + zeta_22^2 - zeta_22 + 2)*q^6 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22)*q^7 + (zeta_22^9 - zeta_22^7 - 2*zeta_22^6 - zeta_22^5 + zeta_22^3 + zeta_22 - 1)*q^8 + (-zeta_22^9 - zeta_22^7 + zeta_22^5 - zeta_22^4 + zeta_22^2 + 1)*q^9 + O(q^10), q + (zeta_22^8 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^2 + (zeta_22^9 - zeta_22^8 + zeta_22 - 1)*q^3 + (zeta_22^9 + zeta_22^7 - 2*zeta_22^4 + zeta_22^3 - zeta_22^2 + 2*zeta_22)*q^4 + (zeta_22^8 - zeta_22^7 - zeta_22^3 - zeta_22^2 - zeta_22)*q^5 + (zeta_22^9 - zeta_22^8 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 3*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*q^6 + (zeta_22^9 - zeta_22^6 + 2*zeta_22^5 - zeta_22^4 + zeta_22)*q^7 + (zeta_22^9 + zeta_22^7 - zeta_22^6 - zeta_22^4 + zeta_22^2 + 2*zeta_22 + 1)*q^8 + (zeta_22^9 + zeta_22^7 + zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - zeta_22^2 - 1)*q^9 + O(q^10), q + (zeta_22^9 + zeta_22^3 + zeta_22 - 1)*q^2 + (-zeta_22^6 + zeta_22^5 + zeta_22^3 - zeta_22^2)*q^3 + (-2*zeta_22^8 + zeta_22^7 - zeta_22^6 + 2*zeta_22^5 - zeta_22^2 - 1)*q^4 + (zeta_22^9 - zeta_22^8 - zeta_22^4 - zeta_22^3 - zeta_22^2)*q^5 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + 3*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 3*zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^6 + (-zeta_22^9 + zeta_22^6 - zeta_22^3 + 2*zeta_22^2 - zeta_22)*q^7 + (-zeta_22^9 + 2*zeta_22^8 + zeta_22^7 + 2*zeta_22^6 - zeta_22^5 - zeta_22^3 + 1)*q^8 + (-zeta_22^9 - zeta_22^7 - zeta_22^5 + zeta_22^3 - zeta_22^2 + 1)*q^9 + O(q^10), q + (zeta_22^5 + zeta_22^3 - zeta_22^2 - 1)*q^2 + (-zeta_22^9 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22)*q^3 + (zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22^2 + zeta_22)*q^4 + (-zeta_22^8 + zeta_22^7 - zeta_22^6 - 2*zeta_22^4 - zeta_22^2 + zeta_22 - 1)*q^5 + (2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 3*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 + zeta_22 - 1)*q^6 + (-zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 1)*q^7 + (-zeta_22^9 + zeta_22^6 + zeta_22^4 - 2*zeta_22^3 - zeta_22^2 - 2*zeta_22 + 1)*q^8 + (zeta_22^9 + zeta_22^7 + zeta_22^5 + zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 1)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22)*q^2 + (zeta_22^5 - zeta_22^4 + zeta_22 - 1)*q^3 + (zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - zeta_22^6 - zeta_22^4 - 1)*q^4 + (-zeta_22^9 - zeta_22^7 + 2*zeta_22^6 - zeta_22^5 - zeta_22^3 - zeta_22 + 1)*q^5 + (zeta_22^9 - zeta_22^7 + 2*zeta_22^4 - 2*zeta_22^3 + 1)*q^6 + (zeta_22^7 - zeta_22^6 + zeta_22^5 + zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22)*q^7 + (zeta_22^9 - zeta_22^8 - zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 3*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 1)*q^8 + (-zeta_22^9 + zeta_22^7 + zeta_22^6 + zeta_22^4 + zeta_22^3 - zeta_22)*q^9 + O(q^10), q + (zeta_22^5 - zeta_22^4 - zeta_22^2 + zeta_22)*q^2 + (zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^3 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^3 + zeta_22 - 1)*q^4 + (-zeta_22^9 + zeta_22^7 - zeta_22^5 - zeta_22^3 + 1)*q^5 + (2*zeta_22^9 - 2*zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + 3*zeta_22^5 - 2*zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + 2*zeta_22)*q^6 + (-zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 + 2*zeta_22)*q^7 + (zeta_22^9 + zeta_22^6 - 2*zeta_22^5 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - zeta_22)*q^8 + (zeta_22^8 - zeta_22^6 - zeta_22^5 - zeta_22^3 - zeta_22^2 + 1)*q^9 + O(q^10), q + (zeta_22^7 - zeta_22^6 - zeta_22^4 + zeta_22^3)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22)*q^3 + (-zeta_22^8 - zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + zeta_22^3 + zeta_22)*q^4 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22^2 + 1)*q^5 + (zeta_22^9 - zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^4 - zeta_22^2 + 2*zeta_22 - 1)*q^6 + (-2*zeta_22^9 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2)*q^7 + (zeta_22^8 - zeta_22^6 + zeta_22^5 - 2*zeta_22^4 + zeta_22^3 - zeta_22^2 + 1)*q^8 + (zeta_22^9 - zeta_22^8 - zeta_22^6 + 2*zeta_22^5 + zeta_22^3 + 2*zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 - zeta_22^6 + zeta_22^5)*q^2 + (zeta_22^9 - zeta_22^8 + zeta_22^5 - zeta_22^4)*q^3 + (zeta_22^9 - zeta_22^8 + zeta_22^6 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^4 + (zeta_22^9 - zeta_22^7 - zeta_22^5 + zeta_22^2 + 1)*q^5 + (zeta_22^9 - 2*zeta_22^8 + zeta_22^7 + zeta_22^5 - zeta_22^4 - zeta_22^3 + zeta_22^2 + zeta_22 - 1)*q^6 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3)*q^7 + (-zeta_22^9 + zeta_22^8 - 2*zeta_22^7 + 3*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 3*zeta_22^3 + 2*zeta_22^2 - zeta_22 + 1)*q^8 + (-zeta_22^9 + zeta_22^6 - zeta_22^4 - zeta_22^3 - zeta_22 - 1)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22)*q^2 + (zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22 + 1)*q^3 + (zeta_22^9 + zeta_22^5 + zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 1)*q^4 + (zeta_22^9 - 2*zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + zeta_22^5 - zeta_22^4 + 2*zeta_22^3 - zeta_22^2 + 2*zeta_22 - 1)*q^5 + (-2*zeta_22^8 + 2*zeta_22^7 - zeta_22^6 + 2*zeta_22^5 - 3*zeta_22^4 + 2*zeta_22^3 - zeta_22^2 + 2*zeta_22 - 2)*q^6 + (-zeta_22^6 + zeta_22^5 - zeta_22^4 - zeta_22^3 - zeta_22^2 + zeta_22 - 1)*q^7 + (-zeta_22^9 + zeta_22^7 - zeta_22^6 + 2*zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22)*q^8 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + zeta_22^4 + 2*zeta_22^2 - zeta_22 + 2)*q^9 + O(q^10), q + (zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + 1)*q^2 + (-zeta_22^8 + zeta_22^7 - zeta_22^4 + zeta_22^3)*q^3 + (zeta_22^9 + zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - zeta_22^4 - zeta_22^2)*q^4 + (-zeta_22^9 - zeta_22^7 + zeta_22^4 + zeta_22^2 - 1)*q^5 + (-zeta_22^9 + 2*zeta_22^6 - 2*zeta_22^5 + zeta_22^2 - 1)*q^6 + (zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 - 2)*q^7 + (zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 - 1)*q^8 + (2*zeta_22^9 - zeta_22^8 - zeta_22^6 + zeta_22^5 + zeta_22^3 - 2*zeta_22^2 - 1)*q^9 + O(q^10), q + (-zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^2 + (zeta_22^9 - zeta_22^8 - zeta_22^2 + zeta_22)*q^3 + (zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^4 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 + zeta_22^4 + zeta_22^2 - 2*zeta_22 + 1)*q^5 + (-zeta_22^9 + zeta_22^7 - zeta_22^5 + 2*zeta_22^2 - 2*zeta_22)*q^6 + (2*zeta_22^8 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22)*q^7 + (zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 3*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^8 + (-zeta_22^9 - zeta_22^8 + zeta_22^6 - zeta_22^3 + zeta_22 + 1)*q^9 + O(q^10), q + (-zeta_22^6 + zeta_22^5 + zeta_22^3 - zeta_22^2)*q^2 + (zeta_22^7 - zeta_22^6 + zeta_22^3 - zeta_22^2)*q^3 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^5 + zeta_22^3 - zeta_22^2 + 1)*q^4 + (-zeta_22^9 + zeta_22^6 + zeta_22^4 - zeta_22^2 + 1)*q^5 + (-2*zeta_22^9 + 2*zeta_22^8 - zeta_22^5 + zeta_22^3 - zeta_22)*q^6 + (zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2)*q^7 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + zeta_22^4 + zeta_22)*q^8 + (zeta_22^9 + 2*zeta_22^7 - zeta_22^6 - zeta_22^4 + zeta_22^3 + zeta_22 - 2)*q^9 + O(q^10), q + (-zeta_22^8 + zeta_22^7 + zeta_22^5 - zeta_22^4)*q^2 + (-zeta_22^8 + zeta_22^7 + zeta_22 - 1)*q^3 + (-zeta_22^9 + zeta_22^7 - zeta_22^6 + zeta_22^4 + zeta_22^2 - zeta_22 + 1)*q^4 + (-zeta_22^9 + zeta_22^8 + zeta_22^6 + zeta_22^4 - 2*zeta_22^3 + zeta_22^2 + 1)*q^5 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + zeta_22^6 - 3*zeta_22^5 + 3*zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^6 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 + 2*zeta_22^2)*q^7 + (zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^3 + 1)*q^8 + (-2*zeta_22^9 + zeta_22^8 - 2*zeta_22^7 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^9 + O(q^10), q + (zeta_22^8 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^2 + (-zeta_22^6 + zeta_22^5 - zeta_22^2 + zeta_22)*q^3 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - zeta_22)*q^4 + (zeta_22^8 + zeta_22^6 - zeta_22^4 + zeta_22^2 + 1)*q^5 + (zeta_22^8 - zeta_22^6 + zeta_22^4 - 2*zeta_22 + 2)*q^6 + (-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*q^7 + (-zeta_22^9 + zeta_22^6 - zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + zeta_22 - 1)*q^8 + (zeta_22^9 + zeta_22^8 + zeta_22^6 + zeta_22^5 - zeta_22^3 + 1)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 + zeta_22 - 1)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22)*q^3 + (zeta_22^7 + zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - zeta_22^2 - 1)*q^4 + (zeta_22^9 + zeta_22^7 - zeta_22^5 + zeta_22^3 + zeta_22)*q^5 + (2*zeta_22^8 - 2*zeta_22^7 + zeta_22^4 - zeta_22^2 + 1)*q^6 + (-2*zeta_22^7 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^7 + (-zeta_22^8 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^8 + (zeta_22^9 - 2*zeta_22^8 - zeta_22^6 - 2*zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22)*q^2 + (zeta_22^5 - zeta_22^4 + zeta_22 - 1)*q^3 + (zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - zeta_22^6 - zeta_22^4 - 1)*q^4 + (zeta_22^9 + zeta_22^7 - 2*zeta_22^6 + zeta_22^5 + zeta_22^3 + zeta_22 - 1)*q^5 + (zeta_22^9 - zeta_22^7 + 2*zeta_22^4 - 2*zeta_22^3 + 1)*q^6 + (-zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22)*q^7 + (zeta_22^9 - zeta_22^8 - zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 3*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 1)*q^8 + (-zeta_22^9 + zeta_22^7 + zeta_22^6 + zeta_22^4 + zeta_22^3 - zeta_22)*q^9 + O(q^10), q + (zeta_22^5 - zeta_22^4 - zeta_22^2 + zeta_22)*q^2 + (zeta_22^8 - zeta_22^7 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^3 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^3 + zeta_22 - 1)*q^4 + (zeta_22^9 - zeta_22^7 + zeta_22^5 + zeta_22^3 - 1)*q^5 + (2*zeta_22^9 - 2*zeta_22^8 + zeta_22^7 - 2*zeta_22^6 + 3*zeta_22^5 - 2*zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + 2*zeta_22)*q^6 + (zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 - 2*zeta_22)*q^7 + (zeta_22^9 + zeta_22^6 - 2*zeta_22^5 + zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - zeta_22)*q^8 + (zeta_22^8 - zeta_22^6 - zeta_22^5 - zeta_22^3 - zeta_22^2 + 1)*q^9 + O(q^10), q + (zeta_22^7 - zeta_22^6 - zeta_22^4 + zeta_22^3)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^2 - zeta_22)*q^3 + (-zeta_22^8 - zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + zeta_22^3 + zeta_22)*q^4 + (zeta_22^9 - 2*zeta_22^8 + zeta_22^7 + zeta_22^5 + zeta_22^3 - zeta_22^2 - 1)*q^5 + (zeta_22^9 - zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^4 - zeta_22^2 + 2*zeta_22 - 1)*q^6 + (2*zeta_22^9 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2)*q^7 + (zeta_22^8 - zeta_22^6 + zeta_22^5 - 2*zeta_22^4 + zeta_22^3 - zeta_22^2 + 1)*q^8 + (zeta_22^9 - zeta_22^8 - zeta_22^6 + 2*zeta_22^5 + zeta_22^3 + 2*zeta_22 - 1)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 - zeta_22^6 + zeta_22^5)*q^2 + (zeta_22^9 - zeta_22^8 + zeta_22^5 - zeta_22^4)*q^3 + (zeta_22^9 - zeta_22^8 + zeta_22^6 + zeta_22^4 - zeta_22^3 + zeta_22^2 + 1)*q^4 + (-zeta_22^9 + zeta_22^7 + zeta_22^5 - zeta_22^2 - 1)*q^5 + (zeta_22^9 - 2*zeta_22^8 + zeta_22^7 + zeta_22^5 - zeta_22^4 - zeta_22^3 + zeta_22^2 + zeta_22 - 1)*q^6 + (zeta_22^9 - zeta_22^8 + zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3)*q^7 + (-zeta_22^9 + zeta_22^8 - 2*zeta_22^7 + 3*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 3*zeta_22^3 + 2*zeta_22^2 - zeta_22 + 1)*q^8 + (-zeta_22^9 + zeta_22^6 - zeta_22^4 - zeta_22^3 - zeta_22 - 1)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22)*q^2 + (zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22 + 1)*q^3 + (zeta_22^9 + zeta_22^5 + zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 1)*q^4 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - zeta_22^5 + zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^5 + (-2*zeta_22^8 + 2*zeta_22^7 - zeta_22^6 + 2*zeta_22^5 - 3*zeta_22^4 + 2*zeta_22^3 - zeta_22^2 + 2*zeta_22 - 2)*q^6 + (zeta_22^6 - zeta_22^5 + zeta_22^4 + zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^7 + (-zeta_22^9 + zeta_22^7 - zeta_22^6 + 2*zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22)*q^8 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + zeta_22^4 + 2*zeta_22^2 - zeta_22 + 2)*q^9 + O(q^10), q + (zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + 1)*q^2 + (-zeta_22^8 + zeta_22^7 - zeta_22^4 + zeta_22^3)*q^3 + (zeta_22^9 + zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - zeta_22^4 - zeta_22^2)*q^4 + (zeta_22^9 + zeta_22^7 - zeta_22^4 - zeta_22^2 + 1)*q^5 + (-zeta_22^9 + 2*zeta_22^6 - 2*zeta_22^5 + zeta_22^2 - 1)*q^6 + (-zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 + 2)*q^7 + (zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 - 1)*q^8 + (2*zeta_22^9 - zeta_22^8 - zeta_22^6 + zeta_22^5 + zeta_22^3 - 2*zeta_22^2 - 1)*q^9 + O(q^10), q + (-zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^2 + (zeta_22^9 - zeta_22^8 - zeta_22^2 + zeta_22)*q^3 + (zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^4 + (zeta_22^9 + zeta_22^7 - zeta_22^6 - zeta_22^4 - zeta_22^2 + 2*zeta_22 - 1)*q^5 + (-zeta_22^9 + zeta_22^7 - zeta_22^5 + 2*zeta_22^2 - 2*zeta_22)*q^6 + (-2*zeta_22^8 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22)*q^7 + (zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 3*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^8 + (-zeta_22^9 - zeta_22^8 + zeta_22^6 - zeta_22^3 + zeta_22 + 1)*q^9 + O(q^10), q + (-zeta_22^6 + zeta_22^5 + zeta_22^3 - zeta_22^2)*q^2 + (zeta_22^7 - zeta_22^6 + zeta_22^3 - zeta_22^2)*q^3 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^5 + zeta_22^3 - zeta_22^2 + 1)*q^4 + (zeta_22^9 - zeta_22^6 - zeta_22^4 + zeta_22^2 - 1)*q^5 + (-2*zeta_22^9 + 2*zeta_22^8 - zeta_22^5 + zeta_22^3 - zeta_22)*q^6 + (-zeta_22^8 + zeta_22^7 - zeta_22^6 - zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2)*q^7 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + zeta_22^4 + zeta_22)*q^8 + (zeta_22^9 + 2*zeta_22^7 - zeta_22^6 - zeta_22^4 + zeta_22^3 + zeta_22 - 2)*q^9 + O(q^10), q + (-zeta_22^8 + zeta_22^7 + zeta_22^5 - zeta_22^4)*q^2 + (-zeta_22^8 + zeta_22^7 + zeta_22 - 1)*q^3 + (-zeta_22^9 + zeta_22^7 - zeta_22^6 + zeta_22^4 + zeta_22^2 - zeta_22 + 1)*q^4 + (zeta_22^9 - zeta_22^8 - zeta_22^6 - zeta_22^4 + 2*zeta_22^3 - zeta_22^2 - 1)*q^5 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + zeta_22^6 - 3*zeta_22^5 + 3*zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^6 + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 - 2*zeta_22^2)*q^7 + (zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^3 + 1)*q^8 + (-2*zeta_22^9 + zeta_22^8 - 2*zeta_22^7 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^9 + O(q^10), q + (zeta_22^8 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^2 + (-zeta_22^6 + zeta_22^5 - zeta_22^2 + zeta_22)*q^3 + (-zeta_22^9 + 2*zeta_22^8 - zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - zeta_22)*q^4 + (-zeta_22^8 - zeta_22^6 + zeta_22^4 - zeta_22^2 - 1)*q^5 + (zeta_22^8 - zeta_22^6 + zeta_22^4 - 2*zeta_22 + 2)*q^6 + (2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*q^7 + (-zeta_22^9 + zeta_22^6 - zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + zeta_22 - 1)*q^8 + (zeta_22^9 + zeta_22^8 + zeta_22^6 + zeta_22^5 - zeta_22^3 + 1)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 + zeta_22 - 1)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22)*q^3 + (zeta_22^7 + zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - zeta_22^2 - 1)*q^4 + (-zeta_22^9 - zeta_22^7 + zeta_22^5 - zeta_22^3 - zeta_22)*q^5 + (2*zeta_22^8 - 2*zeta_22^7 + zeta_22^4 - zeta_22^2 + 1)*q^6 + (2*zeta_22^7 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*q^7 + (-zeta_22^8 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^8 + (zeta_22^9 - 2*zeta_22^8 - zeta_22^6 - 2*zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^9 + O(q^10), q^23 + (zeta_22^9 - zeta_22^6 - zeta_22^4 - 1)*q^46 + (-zeta_22^9 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 - zeta_22)*q^69 + (-zeta_22^8 + zeta_22^7 + 2*zeta_22^5 + 2*zeta_22^3 + zeta_22 - 1)*q^92 + (-zeta_22^9 + zeta_22^8 - zeta_22^5 + zeta_22^4 + zeta_22)*q^115 + (2*zeta_22^8 + zeta_22^7 + 2*zeta_22^6 - zeta_22^3 + 1)*q^138 + (zeta_22^9 - 2*zeta_22^8 + zeta_22^7 + zeta_22^5 - 1)*q^161 + (-2*zeta_22^9 - zeta_22^7 - zeta_22^6 - zeta_22^5 - 2*zeta_22^3 - zeta_22 + 1)*q^184 + (zeta_22^8 - zeta_22^7 - zeta_22^6 + zeta_22^3 + zeta_22^2 - zeta_22)*q^207, O(q^10), q^23 + (-zeta_22^8 + zeta_22^7 + zeta_22 - 1)*q^46 + (zeta_22^9 + zeta_22^5 - zeta_22^4 - 1)*q^69 + (-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^92 + (zeta_22^9 - zeta_22^6 - zeta_22^4 + zeta_22^3 - 2*zeta_22^2 + zeta_22 - 1)*q^115 + (zeta_22^6 - 2*zeta_22^5 + zeta_22^3 - 2*zeta_22 + 1)*q^138 + (-zeta_22^9 + zeta_22^8 + zeta_22^6 + zeta_22^5 + zeta_22^4 + zeta_22^2 - zeta_22)*q^161 + (zeta_22^9 - zeta_22^8 - zeta_22^7 + zeta_22^6 + zeta_22^5 - zeta_22^4 + 2*zeta_22)*q^184 + (-zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 + zeta_22)*q^207, O(q^10), q^23 + (zeta_22^7 + zeta_22^5 + zeta_22 - 1)*q^46 + (-zeta_22^8 - zeta_22^6 - zeta_22^2 - 1)*q^69 + (zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 - zeta_22^4 - zeta_22)*q^92 + (-zeta_22^5 + zeta_22^4 + zeta_22^3 + zeta_22^2 - zeta_22)*q^115 + (-2*zeta_22^9 + zeta_22^8 - 3*zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + 3*zeta_22^2 - zeta_22 + 2)*q^138 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^3 - zeta_22^2 - zeta_22)*q^161 + (-zeta_22^9 - zeta_22^8 + 2*zeta_22^7 - zeta_22^6 - zeta_22^5 - zeta_22^2 + zeta_22)*q^184 + (2*zeta_22^9 - zeta_22^8 + 2*zeta_22^7 + zeta_22^5 - zeta_22^4 + zeta_22 - 1)*q^207, O(q^10), q^23 + (zeta_22^5 + zeta_22^3 - zeta_22^2 - 1)*q^46 + (-zeta_22^9 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22)*q^69 + (zeta_22^9 + zeta_22^8 - zeta_22^7 - zeta_22^5 - zeta_22^3 + zeta_22^2 + zeta_22)*q^92 + (-zeta_22^8 + zeta_22^7 - zeta_22^6 - 2*zeta_22^4 - zeta_22^2 + zeta_22 - 1)*q^115 + (2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 3*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 + zeta_22 - 1)*q^138 + (-zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 1)*q^161 + (-zeta_22^9 + zeta_22^6 + zeta_22^4 - 2*zeta_22^3 - zeta_22^2 - 2*zeta_22 + 1)*q^184 + (zeta_22^9 + zeta_22^7 + zeta_22^5 + zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 1)*q^207, O(q^10), q^23 + (zeta_22^9 - zeta_22^8 + zeta_22 - 1)*q^46 + (-zeta_22^9 + zeta_22^8 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22)*q^69 + (zeta_22^7 + zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - zeta_22^2 - 1)*q^92 + (-zeta_22^9 - zeta_22^7 + zeta_22^5 - zeta_22^3 - zeta_22)*q^115 + (2*zeta_22^8 - 2*zeta_22^7 + zeta_22^4 - zeta_22^2 + 1)*q^138 + (2*zeta_22^7 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*q^161 + (-zeta_22^8 - zeta_22^5 + 2*zeta_22^4 - zeta_22^3 + zeta_22^2 - 2*zeta_22 + 1)*q^184 + (zeta_22^9 - 2*zeta_22^8 - zeta_22^6 - 2*zeta_22^4 + zeta_22^3 + zeta_22 - 1)*q^207, O(q^10) *] > #$1; 120 > VG_2(S); [* q - zeta_22^2*q^2 + (1/20*zeta_22^5*a^3 + 1/2*zeta_22^5*a^2 - 11/20*zeta_22^5*a - 6/5*zeta_22^5)*q^3 - zeta_22^4*q^4 + (-1/20*zeta_22*a^3 - 1/2*zeta_22*a^2 + 1/20*zeta_22*a + 7/10*zeta_22)*q^5 + (-1/20*zeta_22^7*a^3 - 1/2*zeta_22^7*a^2 + 11/20*zeta_22^7*a + 6/5*zeta_22^7)*q^6 + (-1/8*zeta_22^8*a^3 - 11/8*zeta_22^8*a^2 - 7/8*zeta_22^8*a + 19/8*zeta_22^8)*q^7 + 3*zeta_22^6*q^8 + ((1/10*zeta_22^9 - 1/10*zeta_22^8 + 1/10*zeta_22^7 - 1/10*zeta_22^6 + 1/10*zeta_22^5 - 1/10*zeta_22^4 + 1/10*zeta_22^3 - 1/10*zeta_22^2 + 1/10*zeta_22 - 1/10)*a^3 + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a^2 + (-11/10*zeta_22^9 + 11/10*zeta_22^8 - 11/10*zeta_22^7 + 11/10*zeta_22^6 - 11/10*zeta_22^5 + 11/10*zeta_22^4 - 11/10*zeta_22^3 + 11/10*zeta_22^2 - 11/10*zeta_22 + 11/10)*a - 17/5*zeta_22^9 + 17/5*zeta_22^8 - 17/5*zeta_22^7 + 17/5*zeta_22^6 - 17/5*zeta_22^5 + 17/5*zeta_22^4 - 17/5*zeta_22^3 + 17/5*zeta_22^2 - 17/5*zeta_22 + 17/5)*q^9 + O(q^10), q - zeta_22^4*q^2 + ((-1/20*zeta_22^9 + 1/20*zeta_22^8 - 1/20*zeta_22^7 + 1/20*zeta_22^6 - 1/20*zeta_22^5 + 1/20*zeta_22^4 - 1/20*zeta_22^3 + 1/20*zeta_22^2 - 1/20*zeta_22 + 1/20)*a^3 + (-1/2*zeta_22^9 + 1/2*zeta_22^8 - 1/2*zeta_22^7 + 1/2*zeta_22^6 - 1/2*zeta_22^5 + 1/2*zeta_22^4 - 1/2*zeta_22^3 + 1/2*zeta_22^2 - 1/2*zeta_22 + 1/2)*a^2 + (11/20*zeta_22^9 - 11/20*zeta_22^8 + 11/20*zeta_22^7 - 11/20*zeta_22^6 + 11/20*zeta_22^5 - 11/20*zeta_22^4 + 11/20*zeta_22^3 - 11/20*zeta_22^2 + 11/20*zeta_22 - 11/20)*a + (6/5*zeta_22^9 - 6/5*zeta_22^8 + 6/5*zeta_22^7 - 6/5*zeta_22^6 + 6/5*zeta_22^5 - 6/5*zeta_22^4 + 6/5*zeta_22^3 - 6/5*zeta_22^2 + 6/5*zeta_22 - 6/5))*q^3 - zeta_22^8*q^4 + (-1/20*zeta_22^2*a^3 - 1/2*zeta_22^2*a^2 + 1/20*zeta_22^2*a + 7/10*zeta_22^2)*q^5 + (-1/20*zeta_22^3*a^3 - 1/2*zeta_22^3*a^2 + 11/20*zeta_22^3*a + 6/5*zeta_22^3)*q^6 + (-1/8*zeta_22^5*a^3 - 11/8*zeta_22^5*a^2 - 7/8*zeta_22^5*a + 19/8*zeta_22^5)*q^7 - 3*zeta_22*q^8 + (-1/10*zeta_22^9*a^3 - zeta_22^9*a^2 + 11/10*zeta_22^9*a + 17/5*zeta_22^9)*q^9 + O(q^10), q - zeta_22^6*q^2 + (-1/20*zeta_22^4*a^3 - 1/2*zeta_22^4*a^2 + 11/20*zeta_22^4*a + 6/5*zeta_22^4)*q^3 + zeta_22*q^4 + (-1/20*zeta_22^3*a^3 - 1/2*zeta_22^3*a^2 + 1/20*zeta_22^3*a + 7/10*zeta_22^3)*q^5 + ((1/20*zeta_22^9 - 1/20*zeta_22^8 + 1/20*zeta_22^7 - 1/20*zeta_22^6 + 1/20*zeta_22^5 - 1/20*zeta_22^4 + 1/20*zeta_22^3 - 1/20*zeta_22^2 + 1/20*zeta_22 - 1/20)*a^3 + (1/2*zeta_22^9 - 1/2*zeta_22^8 + 1/2*zeta_22^7 - 1/2*zeta_22^6 + 1/2*zeta_22^5 - 1/2*zeta_22^4 + 1/2*zeta_22^3 - 1/2*zeta_22^2 + 1/2*zeta_22 - 1/2)*a^2 + (-11/20*zeta_22^9 + 11/20*zeta_22^8 - 11/20*zeta_22^7 + 11/20*zeta_22^6 - 11/20*zeta_22^5 + 11/20*zeta_22^4 - 11/20*zeta_22^3 + 11/20*zeta_22^2 - 11/20*zeta_22 + 11/20)*a - 6/5*zeta_22^9 + 6/5*zeta_22^8 - 6/5*zeta_22^7 + 6/5*zeta_22^6 - 6/5*zeta_22^5 + 6/5*zeta_22^4 - 6/5*zeta_22^3 + 6/5*zeta_22^2 - 6/5*zeta_22 + 6/5)*q^6 + (-1/8*zeta_22^2*a^3 - 11/8*zeta_22^2*a^2 - 7/8*zeta_22^2*a + 19/8*zeta_22^2)*q^7 - 3*zeta_22^7*q^8 + (1/10*zeta_22^8*a^3 + zeta_22^8*a^2 - 11/10*zeta_22^8*a - 17/5*zeta_22^8)*q^9 + O(q^10), q - zeta_22^8*q^2 + (1/20*zeta_22^9*a^3 + 1/2*zeta_22^9*a^2 - 11/20*zeta_22^9*a - 6/5*zeta_22^9)*q^3 + zeta_22^5*q^4 + (-1/20*zeta_22^4*a^3 - 1/2*zeta_22^4*a^2 + 1/20*zeta_22^4*a + 7/10*zeta_22^4)*q^5 + (1/20*zeta_22^6*a^3 + 1/2*zeta_22^6*a^2 - 11/20*zeta_22^6*a - 6/5*zeta_22^6)*q^6 + ((1/8*zeta_22^9 - 1/8*zeta_22^8 + 1/8*zeta_22^7 - 1/8*zeta_22^6 + 1/8*zeta_22^5 - 1/8*zeta_22^4 + 1/8*zeta_22^3 - 1/8*zeta_22^2 + 1/8*zeta_22 - 1/8)*a^3 + (11/8*zeta_22^9 - 11/8*zeta_22^8 + 11/8*zeta_22^7 - 11/8*zeta_22^6 + 11/8*zeta_22^5 - 11/8*zeta_22^4 + 11/8*zeta_22^3 - 11/8*zeta_22^2 + 11/8*zeta_22 - 11/8)*a^2 + (7/8*zeta_22^9 - 7/8*zeta_22^8 + 7/8*zeta_22^7 - 7/8*zeta_22^6 + 7/8*zeta_22^5 - 7/8*zeta_22^4 + 7/8*zeta_22^3 - 7/8*zeta_22^2 + 7/8*zeta_22 - 7/8)*a - 19/8*zeta_22^9 + 19/8*zeta_22^8 - 19/8*zeta_22^7 + 19/8*zeta_22^6 - 19/8*zeta_22^5 + 19/8*zeta_22^4 - 19/8*zeta_22^3 + 19/8*zeta_22^2 - 19/8*zeta_22 + 19/8)*q^7 + 3*zeta_22^2*q^8 + (-1/10*zeta_22^7*a^3 - zeta_22^7*a^2 + 11/10*zeta_22^7*a + 17/5*zeta_22^7)*q^9 + O(q^10), q + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^2 + (1/20*zeta_22^3*a^3 + 1/2*zeta_22^3*a^2 - 11/20*zeta_22^3*a - 6/5*zeta_22^3)*q^3 + zeta_22^9*q^4 + (-1/20*zeta_22^5*a^3 - 1/2*zeta_22^5*a^2 + 1/20*zeta_22^5*a + 7/10*zeta_22^5)*q^5 + (1/20*zeta_22^2*a^3 + 1/2*zeta_22^2*a^2 - 11/20*zeta_22^2*a - 6/5*zeta_22^2)*q^6 + (1/8*zeta_22^7*a^3 + 11/8*zeta_22^7*a^2 + 7/8*zeta_22^7*a - 19/8*zeta_22^7)*q^7 + 3*zeta_22^8*q^8 + (1/10*zeta_22^6*a^3 + zeta_22^6*a^2 - 11/10*zeta_22^6*a - 17/5*zeta_22^6)*q^9 + O(q^10), q + zeta_22*q^2 + (-1/20*zeta_22^8*a^3 - 1/2*zeta_22^8*a^2 + 11/20*zeta_22^8*a + 6/5*zeta_22^8)*q^3 - zeta_22^2*q^4 + (-1/20*zeta_22^6*a^3 - 1/2*zeta_22^6*a^2 + 1/20*zeta_22^6*a + 7/10*zeta_22^6)*q^5 + (-1/20*zeta_22^9*a^3 - 1/2*zeta_22^9*a^2 + 11/20*zeta_22^9*a + 6/5*zeta_22^9)*q^6 + (1/8*zeta_22^4*a^3 + 11/8*zeta_22^4*a^2 + 7/8*zeta_22^4*a - 19/8*zeta_22^4)*q^7 - 3*zeta_22^3*q^8 + (-1/10*zeta_22^5*a^3 - zeta_22^5*a^2 + 11/10*zeta_22^5*a + 17/5*zeta_22^5)*q^9 + O(q^10), q + zeta_22^3*q^2 + (-1/20*zeta_22^2*a^3 - 1/2*zeta_22^2*a^2 + 11/20*zeta_22^2*a + 6/5*zeta_22^2)*q^3 - zeta_22^6*q^4 + (-1/20*zeta_22^7*a^3 - 1/2*zeta_22^7*a^2 + 1/20*zeta_22^7*a + 7/10*zeta_22^7)*q^5 + (-1/20*zeta_22^5*a^3 - 1/2*zeta_22^5*a^2 + 11/20*zeta_22^5*a + 6/5*zeta_22^5)*q^6 + (1/8*zeta_22*a^3 + 11/8*zeta_22*a^2 + 7/8*zeta_22*a - 19/8*zeta_22)*q^7 - 3*zeta_22^9*q^8 + (1/10*zeta_22^4*a^3 + zeta_22^4*a^2 - 11/10*zeta_22^4*a - 17/5*zeta_22^4)*q^9 + O(q^10), q + zeta_22^5*q^2 + (1/20*zeta_22^7*a^3 + 1/2*zeta_22^7*a^2 - 11/20*zeta_22^7*a - 6/5*zeta_22^7)*q^3 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^4 + (-1/20*zeta_22^8*a^3 - 1/2*zeta_22^8*a^2 + 1/20*zeta_22^8*a + 7/10*zeta_22^8)*q^5 + (-1/20*zeta_22*a^3 - 1/2*zeta_22*a^2 + 11/20*zeta_22*a + 6/5*zeta_22)*q^6 + (-1/8*zeta_22^9*a^3 - 11/8*zeta_22^9*a^2 - 7/8*zeta_22^9*a + 19/8*zeta_22^9)*q^7 + 3*zeta_22^4*q^8 + (-1/10*zeta_22^3*a^3 - zeta_22^3*a^2 + 11/10*zeta_22^3*a + 17/5*zeta_22^3)*q^9 + O(q^10), q + zeta_22^7*q^2 + (1/20*zeta_22*a^3 + 1/2*zeta_22*a^2 - 11/20*zeta_22*a - 6/5*zeta_22)*q^3 + zeta_22^3*q^4 + (-1/20*zeta_22^9*a^3 - 1/2*zeta_22^9*a^2 + 1/20*zeta_22^9*a + 7/10*zeta_22^9)*q^5 + (1/20*zeta_22^8*a^3 + 1/2*zeta_22^8*a^2 - 11/20*zeta_22^8*a - 6/5*zeta_22^8)*q^6 + (-1/8*zeta_22^6*a^3 - 11/8*zeta_22^6*a^2 - 7/8*zeta_22^6*a + 19/8*zeta_22^6)*q^7 + (3*zeta_22^9 - 3*zeta_22^8 + 3*zeta_22^7 - 3*zeta_22^6 + 3*zeta_22^5 - 3*zeta_22^4 + 3*zeta_22^3 - 3*zeta_22^2 + 3*zeta_22 - 3)*q^8 + (1/10*zeta_22^2*a^3 + zeta_22^2*a^2 - 11/10*zeta_22^2*a - 17/5*zeta_22^2)*q^9 + O(q^10), q + zeta_22^9*q^2 + (-1/20*zeta_22^6*a^3 - 1/2*zeta_22^6*a^2 + 11/20*zeta_22^6*a + 6/5*zeta_22^6)*q^3 + zeta_22^7*q^4 + ((-1/20*zeta_22^9 + 1/20*zeta_22^8 - 1/20*zeta_22^7 + 1/20*zeta_22^6 - 1/20*zeta_22^5 + 1/20*zeta_22^4 - 1/20*zeta_22^3 + 1/20*zeta_22^2 - 1/20*zeta_22 + 1/20)*a^3 + (-1/2*zeta_22^9 + 1/2*zeta_22^8 - 1/2*zeta_22^7 + 1/2*zeta_22^6 - 1/2*zeta_22^5 + 1/2*zeta_22^4 - 1/2*zeta_22^3 + 1/2*zeta_22^2 - 1/2*zeta_22 + 1/2)*a^2 + (1/20*zeta_22^9 - 1/20*zeta_22^8 + 1/20*zeta_22^7 - 1/20*zeta_22^6 + 1/20*zeta_22^5 - 1/20*zeta_22^4 + 1/20*zeta_22^3 - 1/20*zeta_22^2 + 1/20*zeta_22 - 1/20)*a + (7/10*zeta_22^9 - 7/10*zeta_22^8 + 7/10*zeta_22^7 - 7/10*zeta_22^6 + 7/10*zeta_22^5 - 7/10*zeta_22^4 + 7/10*zeta_22^3 - 7/10*zeta_22^2 + 7/10*zeta_22 - 7/10))*q^5 + (1/20*zeta_22^4*a^3 + 1/2*zeta_22^4*a^2 - 11/20*zeta_22^4*a - 6/5*zeta_22^4)*q^6 + (-1/8*zeta_22^3*a^3 - 11/8*zeta_22^3*a^2 - 7/8*zeta_22^3*a + 19/8*zeta_22^3)*q^7 - 3*zeta_22^5*q^8 + (-1/10*zeta_22*a^3 - zeta_22*a^2 + 11/10*zeta_22*a + 17/5*zeta_22)*q^9 + O(q^10), q - q^2 + (-1/20*a^3 - 1/2*a^2 + 11/20*a + 6/5)*q^3 - q^4 + (1/20*a^3 + 1/2*a^2 - 1/20*a - 7/10)*q^5 + (1/20*a^3 + 1/2*a^2 - 11/20*a - 6/5)*q^6 + (-1/8*a^3 - 11/8*a^2 - 7/8*a + 19/8)*q^7 + 3*q^8 + (1/10*a^3 + a^2 - 11/10*a - 17/5)*q^9 + O(q^10), q + zeta_22^2*a*q^2 + (-zeta_22^5*a - zeta_22^5)*q^3 + zeta_22^4*q^4 - zeta_22*a*q^5 + (-zeta_22^7*a - 3*zeta_22^7)*q^6 + (zeta_22^8*a - 3*zeta_22^8)*q^7 - zeta_22^6*a*q^8 + ((2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*a + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1))*q^9 + O(q^10), q + zeta_22^4*a*q^2 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1))*q^3 + zeta_22^8*q^4 - zeta_22^2*a*q^5 + (-zeta_22^3*a - 3*zeta_22^3)*q^6 + (zeta_22^5*a - 3*zeta_22^5)*q^7 + zeta_22*a*q^8 + (-2*zeta_22^9*a - zeta_22^9)*q^9 + O(q^10), q + zeta_22^6*a*q^2 + (zeta_22^4*a + zeta_22^4)*q^3 - zeta_22*q^4 - zeta_22^3*a*q^5 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a + (3*zeta_22^9 - 3*zeta_22^8 + 3*zeta_22^7 - 3*zeta_22^6 + 3*zeta_22^5 - 3*zeta_22^4 + 3*zeta_22^3 - 3*zeta_22^2 + 3*zeta_22 - 3))*q^6 + (zeta_22^2*a - 3*zeta_22^2)*q^7 + zeta_22^7*a*q^8 + (2*zeta_22^8*a + zeta_22^8)*q^9 + O(q^10), q + zeta_22^8*a*q^2 + (-zeta_22^9*a - zeta_22^9)*q^3 - zeta_22^5*q^4 - zeta_22^4*a*q^5 + (zeta_22^6*a + 3*zeta_22^6)*q^6 + ((-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*a + (3*zeta_22^9 - 3*zeta_22^8 + 3*zeta_22^7 - 3*zeta_22^6 + 3*zeta_22^5 - 3*zeta_22^4 + 3*zeta_22^3 - 3*zeta_22^2 + 3*zeta_22 - 3))*q^7 - zeta_22^2*a*q^8 + (-2*zeta_22^7*a - zeta_22^7)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a*q^2 + (-zeta_22^3*a - zeta_22^3)*q^3 - zeta_22^9*q^4 - zeta_22^5*a*q^5 + (zeta_22^2*a + 3*zeta_22^2)*q^6 + (-zeta_22^7*a + 3*zeta_22^7)*q^7 - zeta_22^8*a*q^8 + (2*zeta_22^6*a + zeta_22^6)*q^9 + O(q^10), q - zeta_22*a*q^2 + (zeta_22^8*a + zeta_22^8)*q^3 + zeta_22^2*q^4 - zeta_22^6*a*q^5 + (-zeta_22^9*a - 3*zeta_22^9)*q^6 + (-zeta_22^4*a + 3*zeta_22^4)*q^7 + zeta_22^3*a*q^8 + (-2*zeta_22^5*a - zeta_22^5)*q^9 + O(q^10), q - zeta_22^3*a*q^2 + (zeta_22^2*a + zeta_22^2)*q^3 + zeta_22^6*q^4 - zeta_22^7*a*q^5 + (-zeta_22^5*a - 3*zeta_22^5)*q^6 + (-zeta_22*a + 3*zeta_22)*q^7 + zeta_22^9*a*q^8 + (2*zeta_22^4*a + zeta_22^4)*q^9 + O(q^10), q - zeta_22^5*a*q^2 + (-zeta_22^7*a - zeta_22^7)*q^3 + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*q^4 - zeta_22^8*a*q^5 + (-zeta_22*a - 3*zeta_22)*q^6 + (zeta_22^9*a - 3*zeta_22^9)*q^7 - zeta_22^4*a*q^8 + (-2*zeta_22^3*a - zeta_22^3)*q^9 + O(q^10), q - zeta_22^7*a*q^2 + (-zeta_22*a - zeta_22)*q^3 - zeta_22^3*q^4 - zeta_22^9*a*q^5 + (zeta_22^8*a + 3*zeta_22^8)*q^6 + (zeta_22^6*a - 3*zeta_22^6)*q^7 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*a*q^8 + (2*zeta_22^2*a + zeta_22^2)*q^9 + O(q^10), q - zeta_22^9*a*q^2 + (zeta_22^6*a + zeta_22^6)*q^3 - zeta_22^7*q^4 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*a*q^5 + (zeta_22^4*a + 3*zeta_22^4)*q^6 + (zeta_22^3*a - 3*zeta_22^3)*q^7 + zeta_22^5*a*q^8 + (-2*zeta_22*a - zeta_22)*q^9 + O(q^10), q + a*q^2 + (a + 1)*q^3 + q^4 + a*q^5 + (a + 3)*q^6 + (a - 3)*q^7 - a*q^8 + (2*a + 1)*q^9 + O(q^10), q + zeta_22^2*a*q^2 + (-zeta_22^5*a - zeta_22^5)*q^3 + zeta_22^4*q^4 + zeta_22*a*q^5 + (-zeta_22^7*a - 3*zeta_22^7)*q^6 + (-zeta_22^8*a + 3*zeta_22^8)*q^7 - zeta_22^6*a*q^8 + ((2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*a + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1))*q^9 + O(q^10), q + zeta_22^4*a*q^2 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1))*q^3 + zeta_22^8*q^4 + zeta_22^2*a*q^5 + (-zeta_22^3*a - 3*zeta_22^3)*q^6 + (-zeta_22^5*a + 3*zeta_22^5)*q^7 + zeta_22*a*q^8 + (-2*zeta_22^9*a - zeta_22^9)*q^9 + O(q^10), q + zeta_22^6*a*q^2 + (zeta_22^4*a + zeta_22^4)*q^3 - zeta_22*q^4 + zeta_22^3*a*q^5 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a + (3*zeta_22^9 - 3*zeta_22^8 + 3*zeta_22^7 - 3*zeta_22^6 + 3*zeta_22^5 - 3*zeta_22^4 + 3*zeta_22^3 - 3*zeta_22^2 + 3*zeta_22 - 3))*q^6 + (-zeta_22^2*a + 3*zeta_22^2)*q^7 + zeta_22^7*a*q^8 + (2*zeta_22^8*a + zeta_22^8)*q^9 + O(q^10), q + zeta_22^8*a*q^2 + (-zeta_22^9*a - zeta_22^9)*q^3 - zeta_22^5*q^4 + zeta_22^4*a*q^5 + (zeta_22^6*a + 3*zeta_22^6)*q^6 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a - 3*zeta_22^9 + 3*zeta_22^8 - 3*zeta_22^7 + 3*zeta_22^6 - 3*zeta_22^5 + 3*zeta_22^4 - 3*zeta_22^3 + 3*zeta_22^2 - 3*zeta_22 + 3)*q^7 - zeta_22^2*a*q^8 + (-2*zeta_22^7*a - zeta_22^7)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a*q^2 + (-zeta_22^3*a - zeta_22^3)*q^3 - zeta_22^9*q^4 + zeta_22^5*a*q^5 + (zeta_22^2*a + 3*zeta_22^2)*q^6 + (zeta_22^7*a - 3*zeta_22^7)*q^7 - zeta_22^8*a*q^8 + (2*zeta_22^6*a + zeta_22^6)*q^9 + O(q^10), q - zeta_22*a*q^2 + (zeta_22^8*a + zeta_22^8)*q^3 + zeta_22^2*q^4 + zeta_22^6*a*q^5 + (-zeta_22^9*a - 3*zeta_22^9)*q^6 + (zeta_22^4*a - 3*zeta_22^4)*q^7 + zeta_22^3*a*q^8 + (-2*zeta_22^5*a - zeta_22^5)*q^9 + O(q^10), q - zeta_22^3*a*q^2 + (zeta_22^2*a + zeta_22^2)*q^3 + zeta_22^6*q^4 + zeta_22^7*a*q^5 + (-zeta_22^5*a - 3*zeta_22^5)*q^6 + (zeta_22*a - 3*zeta_22)*q^7 + zeta_22^9*a*q^8 + (2*zeta_22^4*a + zeta_22^4)*q^9 + O(q^10), q - zeta_22^5*a*q^2 + (-zeta_22^7*a - zeta_22^7)*q^3 + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*q^4 + zeta_22^8*a*q^5 + (-zeta_22*a - 3*zeta_22)*q^6 + (-zeta_22^9*a + 3*zeta_22^9)*q^7 - zeta_22^4*a*q^8 + (-2*zeta_22^3*a - zeta_22^3)*q^9 + O(q^10), q - zeta_22^7*a*q^2 + (-zeta_22*a - zeta_22)*q^3 - zeta_22^3*q^4 + zeta_22^9*a*q^5 + (zeta_22^8*a + 3*zeta_22^8)*q^6 + (-zeta_22^6*a + 3*zeta_22^6)*q^7 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*a*q^8 + (2*zeta_22^2*a + zeta_22^2)*q^9 + O(q^10), q - zeta_22^9*a*q^2 + (zeta_22^6*a + zeta_22^6)*q^3 - zeta_22^7*q^4 + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a*q^5 + (zeta_22^4*a + 3*zeta_22^4)*q^6 + (-zeta_22^3*a + 3*zeta_22^3)*q^7 + zeta_22^5*a*q^8 + (-2*zeta_22*a - zeta_22)*q^9 + O(q^10), q + a*q^2 + (a + 1)*q^3 + q^4 - a*q^5 + (a + 3)*q^6 + (-a + 3)*q^7 - a*q^8 + (2*a + 1)*q^9 + O(q^10), q + zeta_22^2*a*q^2 + (-zeta_22^5*a + zeta_22^5)*q^3 + (2*zeta_22^4*a - zeta_22^4)*q^4 + (-2*zeta_22*a + 3*zeta_22)*q^5 + (-zeta_22^7*a - zeta_22^7)*q^6 + (-zeta_22^8*a - zeta_22^8)*q^7 + (zeta_22^6*a + 2*zeta_22^6)*q^8 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^9 + O(q^10), q + zeta_22^4*a*q^2 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a - zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^3 + (2*zeta_22^8*a - zeta_22^8)*q^4 + (-2*zeta_22^2*a + 3*zeta_22^2)*q^5 + (-zeta_22^3*a - zeta_22^3)*q^6 + (-zeta_22^5*a - zeta_22^5)*q^7 + (-zeta_22*a - 2*zeta_22)*q^8 + zeta_22^9*q^9 + O(q^10), q + zeta_22^6*a*q^2 + (zeta_22^4*a - zeta_22^4)*q^3 + (-2*zeta_22*a + zeta_22)*q^4 + (-2*zeta_22^3*a + 3*zeta_22^3)*q^5 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1))*q^6 + (-zeta_22^2*a - zeta_22^2)*q^7 + (-zeta_22^7*a - 2*zeta_22^7)*q^8 - zeta_22^8*q^9 + O(q^10), q + zeta_22^8*a*q^2 + (-zeta_22^9*a + zeta_22^9)*q^3 + (-2*zeta_22^5*a + zeta_22^5)*q^4 + (-2*zeta_22^4*a + 3*zeta_22^4)*q^5 + (zeta_22^6*a + zeta_22^6)*q^6 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1))*q^7 + (zeta_22^2*a + 2*zeta_22^2)*q^8 + zeta_22^7*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a*q^2 + (-zeta_22^3*a + zeta_22^3)*q^3 + (-2*zeta_22^9*a + zeta_22^9)*q^4 + (-2*zeta_22^5*a + 3*zeta_22^5)*q^5 + (zeta_22^2*a + zeta_22^2)*q^6 + (zeta_22^7*a + zeta_22^7)*q^7 + (zeta_22^8*a + 2*zeta_22^8)*q^8 - zeta_22^6*q^9 + O(q^10), q - zeta_22*a*q^2 + (zeta_22^8*a - zeta_22^8)*q^3 + (2*zeta_22^2*a - zeta_22^2)*q^4 + (-2*zeta_22^6*a + 3*zeta_22^6)*q^5 + (-zeta_22^9*a - zeta_22^9)*q^6 + (zeta_22^4*a + zeta_22^4)*q^7 + (-zeta_22^3*a - 2*zeta_22^3)*q^8 + zeta_22^5*q^9 + O(q^10), q - zeta_22^3*a*q^2 + (zeta_22^2*a - zeta_22^2)*q^3 + (2*zeta_22^6*a - zeta_22^6)*q^4 + (-2*zeta_22^7*a + 3*zeta_22^7)*q^5 + (-zeta_22^5*a - zeta_22^5)*q^6 + (zeta_22*a + zeta_22)*q^7 + (-zeta_22^9*a - 2*zeta_22^9)*q^8 - zeta_22^4*q^9 + O(q^10), q - zeta_22^5*a*q^2 + (-zeta_22^7*a + zeta_22^7)*q^3 + ((2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*a - zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^4 + (-2*zeta_22^8*a + 3*zeta_22^8)*q^5 + (-zeta_22*a - zeta_22)*q^6 + (-zeta_22^9*a - zeta_22^9)*q^7 + (zeta_22^4*a + 2*zeta_22^4)*q^8 + zeta_22^3*q^9 + O(q^10), q - zeta_22^7*a*q^2 + (-zeta_22*a + zeta_22)*q^3 + (-2*zeta_22^3*a + zeta_22^3)*q^4 + (-2*zeta_22^9*a + 3*zeta_22^9)*q^5 + (zeta_22^8*a + zeta_22^8)*q^6 + (-zeta_22^6*a - zeta_22^6)*q^7 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a + (2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2))*q^8 - zeta_22^2*q^9 + O(q^10), q - zeta_22^9*a*q^2 + (zeta_22^6*a - zeta_22^6)*q^3 + (-2*zeta_22^7*a + zeta_22^7)*q^4 + ((-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*a + (3*zeta_22^9 - 3*zeta_22^8 + 3*zeta_22^7 - 3*zeta_22^6 + 3*zeta_22^5 - 3*zeta_22^4 + 3*zeta_22^3 - 3*zeta_22^2 + 3*zeta_22 - 3))*q^5 + (zeta_22^4*a + zeta_22^4)*q^6 + (-zeta_22^3*a - zeta_22^3)*q^7 + (-zeta_22^5*a - 2*zeta_22^5)*q^8 + zeta_22*q^9 + O(q^10), q + a*q^2 + (a - 1)*q^3 + (2*a - 1)*q^4 + (2*a - 3)*q^5 + (a + 1)*q^6 + (-a - 1)*q^7 + (a + 2)*q^8 - q^9 + O(q^10), q + zeta_22^2*a*q^2 + (-zeta_22^5*a + zeta_22^5)*q^3 + (2*zeta_22^4*a - zeta_22^4)*q^4 + (2*zeta_22*a - 3*zeta_22)*q^5 + (-zeta_22^7*a - zeta_22^7)*q^6 + (zeta_22^8*a + zeta_22^8)*q^7 + (zeta_22^6*a + 2*zeta_22^6)*q^8 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^9 + O(q^10), q + zeta_22^4*a*q^2 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a - zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^3 + (2*zeta_22^8*a - zeta_22^8)*q^4 + (2*zeta_22^2*a - 3*zeta_22^2)*q^5 + (-zeta_22^3*a - zeta_22^3)*q^6 + (zeta_22^5*a + zeta_22^5)*q^7 + (-zeta_22*a - 2*zeta_22)*q^8 + zeta_22^9*q^9 + O(q^10), q + zeta_22^6*a*q^2 + (zeta_22^4*a - zeta_22^4)*q^3 + (-2*zeta_22*a + zeta_22)*q^4 + (2*zeta_22^3*a - 3*zeta_22^3)*q^5 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1))*q^6 + (zeta_22^2*a + zeta_22^2)*q^7 + (-zeta_22^7*a - 2*zeta_22^7)*q^8 - zeta_22^8*q^9 + O(q^10), q + zeta_22^8*a*q^2 + (-zeta_22^9*a + zeta_22^9)*q^3 + (-2*zeta_22^5*a + zeta_22^5)*q^4 + (2*zeta_22^4*a - 3*zeta_22^4)*q^5 + (zeta_22^6*a + zeta_22^6)*q^6 + ((-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*a - zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^7 + (zeta_22^2*a + 2*zeta_22^2)*q^8 + zeta_22^7*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a*q^2 + (-zeta_22^3*a + zeta_22^3)*q^3 + (-2*zeta_22^9*a + zeta_22^9)*q^4 + (2*zeta_22^5*a - 3*zeta_22^5)*q^5 + (zeta_22^2*a + zeta_22^2)*q^6 + (-zeta_22^7*a - zeta_22^7)*q^7 + (zeta_22^8*a + 2*zeta_22^8)*q^8 - zeta_22^6*q^9 + O(q^10), q - zeta_22*a*q^2 + (zeta_22^8*a - zeta_22^8)*q^3 + (2*zeta_22^2*a - zeta_22^2)*q^4 + (2*zeta_22^6*a - 3*zeta_22^6)*q^5 + (-zeta_22^9*a - zeta_22^9)*q^6 + (-zeta_22^4*a - zeta_22^4)*q^7 + (-zeta_22^3*a - 2*zeta_22^3)*q^8 + zeta_22^5*q^9 + O(q^10), q - zeta_22^3*a*q^2 + (zeta_22^2*a - zeta_22^2)*q^3 + (2*zeta_22^6*a - zeta_22^6)*q^4 + (2*zeta_22^7*a - 3*zeta_22^7)*q^5 + (-zeta_22^5*a - zeta_22^5)*q^6 + (-zeta_22*a - zeta_22)*q^7 + (-zeta_22^9*a - 2*zeta_22^9)*q^8 - zeta_22^4*q^9 + O(q^10), q - zeta_22^5*a*q^2 + (-zeta_22^7*a + zeta_22^7)*q^3 + ((2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*a - zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^4 + (2*zeta_22^8*a - 3*zeta_22^8)*q^5 + (-zeta_22*a - zeta_22)*q^6 + (zeta_22^9*a + zeta_22^9)*q^7 + (zeta_22^4*a + 2*zeta_22^4)*q^8 + zeta_22^3*q^9 + O(q^10), q - zeta_22^7*a*q^2 + (-zeta_22*a + zeta_22)*q^3 + (-2*zeta_22^3*a + zeta_22^3)*q^4 + (2*zeta_22^9*a - 3*zeta_22^9)*q^5 + (zeta_22^8*a + zeta_22^8)*q^6 + (zeta_22^6*a + zeta_22^6)*q^7 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a + (2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2))*q^8 - zeta_22^2*q^9 + O(q^10), q - zeta_22^9*a*q^2 + (zeta_22^6*a - zeta_22^6)*q^3 + (-2*zeta_22^7*a + zeta_22^7)*q^4 + ((2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*a - 3*zeta_22^9 + 3*zeta_22^8 - 3*zeta_22^7 + 3*zeta_22^6 - 3*zeta_22^5 + 3*zeta_22^4 - 3*zeta_22^3 + 3*zeta_22^2 - 3*zeta_22 + 3)*q^5 + (zeta_22^4*a + zeta_22^4)*q^6 + (zeta_22^3*a + zeta_22^3)*q^7 + (-zeta_22^5*a - 2*zeta_22^5)*q^8 + zeta_22*q^9 + O(q^10), q + a*q^2 + (a - 1)*q^3 + (2*a - 1)*q^4 + (-2*a + 3)*q^5 + (a + 1)*q^6 + (a + 1)*q^7 + (a + 2)*q^8 - q^9 + O(q^10), q + (2/11*zeta_22^2*a^3 + 17/11*zeta_22^2*a^2 + 14/11*zeta_22^2*a - 27/11*zeta_22^2)*q^2 + zeta_22^5*q^3 + (-2/11*zeta_22^4*a^3 - 17/11*zeta_22^4*a^2 - 14/11*zeta_22^4*a + 38/11*zeta_22^4)*q^4 + (-2/11*zeta_22*a^3 - 17/11*zeta_22*a^2 - 3/11*zeta_22*a + 49/11*zeta_22)*q^5 + (2/11*zeta_22^7*a^3 + 17/11*zeta_22^7*a^2 + 14/11*zeta_22^7*a - 27/11*zeta_22^7)*q^6 + (-5/33*zeta_22^8*a^3 - 37/33*zeta_22^8*a^2 + 31/33*zeta_22^8*a + 128/33*zeta_22^8)*q^7 - 3*zeta_22^6*q^8 + (-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*q^9 + O(q^10), q + (2/11*zeta_22^4*a^3 + 17/11*zeta_22^4*a^2 + 14/11*zeta_22^4*a - 27/11*zeta_22^4)*q^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*q^3 + (-2/11*zeta_22^8*a^3 - 17/11*zeta_22^8*a^2 - 14/11*zeta_22^8*a + 38/11*zeta_22^8)*q^4 + (-2/11*zeta_22^2*a^3 - 17/11*zeta_22^2*a^2 - 3/11*zeta_22^2*a + 49/11*zeta_22^2)*q^5 + (2/11*zeta_22^3*a^3 + 17/11*zeta_22^3*a^2 + 14/11*zeta_22^3*a - 27/11*zeta_22^3)*q^6 + (-5/33*zeta_22^5*a^3 - 37/33*zeta_22^5*a^2 + 31/33*zeta_22^5*a + 128/33*zeta_22^5)*q^7 + 3*zeta_22*q^8 + 2*zeta_22^9*q^9 + O(q^10), q + (2/11*zeta_22^6*a^3 + 17/11*zeta_22^6*a^2 + 14/11*zeta_22^6*a - 27/11*zeta_22^6)*q^2 - zeta_22^4*q^3 + (2/11*zeta_22*a^3 + 17/11*zeta_22*a^2 + 14/11*zeta_22*a - 38/11*zeta_22)*q^4 + (-2/11*zeta_22^3*a^3 - 17/11*zeta_22^3*a^2 - 3/11*zeta_22^3*a + 49/11*zeta_22^3)*q^5 + ((-2/11*zeta_22^9 + 2/11*zeta_22^8 - 2/11*zeta_22^7 + 2/11*zeta_22^6 - 2/11*zeta_22^5 + 2/11*zeta_22^4 - 2/11*zeta_22^3 + 2/11*zeta_22^2 - 2/11*zeta_22 + 2/11)*a^3 + (-17/11*zeta_22^9 + 17/11*zeta_22^8 - 17/11*zeta_22^7 + 17/11*zeta_22^6 - 17/11*zeta_22^5 + 17/11*zeta_22^4 - 17/11*zeta_22^3 + 17/11*zeta_22^2 - 17/11*zeta_22 + 17/11)*a^2 + (-14/11*zeta_22^9 + 14/11*zeta_22^8 - 14/11*zeta_22^7 + 14/11*zeta_22^6 - 14/11*zeta_22^5 + 14/11*zeta_22^4 - 14/11*zeta_22^3 + 14/11*zeta_22^2 - 14/11*zeta_22 + 14/11)*a + (27/11*zeta_22^9 - 27/11*zeta_22^8 + 27/11*zeta_22^7 - 27/11*zeta_22^6 + 27/11*zeta_22^5 - 27/11*zeta_22^4 + 27/11*zeta_22^3 - 27/11*zeta_22^2 + 27/11*zeta_22 - 27/11))*q^6 + (-5/33*zeta_22^2*a^3 - 37/33*zeta_22^2*a^2 + 31/33*zeta_22^2*a + 128/33*zeta_22^2)*q^7 + 3*zeta_22^7*q^8 - 2*zeta_22^8*q^9 + O(q^10), q + (2/11*zeta_22^8*a^3 + 17/11*zeta_22^8*a^2 + 14/11*zeta_22^8*a - 27/11*zeta_22^8)*q^2 + zeta_22^9*q^3 + (2/11*zeta_22^5*a^3 + 17/11*zeta_22^5*a^2 + 14/11*zeta_22^5*a - 38/11*zeta_22^5)*q^4 + (-2/11*zeta_22^4*a^3 - 17/11*zeta_22^4*a^2 - 3/11*zeta_22^4*a + 49/11*zeta_22^4)*q^5 + (-2/11*zeta_22^6*a^3 - 17/11*zeta_22^6*a^2 - 14/11*zeta_22^6*a + 27/11*zeta_22^6)*q^6 + ((5/33*zeta_22^9 - 5/33*zeta_22^8 + 5/33*zeta_22^7 - 5/33*zeta_22^6 + 5/33*zeta_22^5 - 5/33*zeta_22^4 + 5/33*zeta_22^3 - 5/33*zeta_22^2 + 5/33*zeta_22 - 5/33)*a^3 + (37/33*zeta_22^9 - 37/33*zeta_22^8 + 37/33*zeta_22^7 - 37/33*zeta_22^6 + 37/33*zeta_22^5 - 37/33*zeta_22^4 + 37/33*zeta_22^3 - 37/33*zeta_22^2 + 37/33*zeta_22 - 37/33)*a^2 + (-31/33*zeta_22^9 + 31/33*zeta_22^8 - 31/33*zeta_22^7 + 31/33*zeta_22^6 - 31/33*zeta_22^5 + 31/33*zeta_22^4 - 31/33*zeta_22^3 + 31/33*zeta_22^2 - 31/33*zeta_22 + 31/33)*a - 128/33*zeta_22^9 + 128/33*zeta_22^8 - 128/33*zeta_22^7 + 128/33*zeta_22^6 - 128/33*zeta_22^5 + 128/33*zeta_22^4 - 128/33*zeta_22^3 + 128/33*zeta_22^2 - 128/33*zeta_22 + 128/33)*q^7 - 3*zeta_22^2*q^8 + 2*zeta_22^7*q^9 + O(q^10), q + ((2/11*zeta_22^9 - 2/11*zeta_22^8 + 2/11*zeta_22^7 - 2/11*zeta_22^6 + 2/11*zeta_22^5 - 2/11*zeta_22^4 + 2/11*zeta_22^3 - 2/11*zeta_22^2 + 2/11*zeta_22 - 2/11)*a^3 + (17/11*zeta_22^9 - 17/11*zeta_22^8 + 17/11*zeta_22^7 - 17/11*zeta_22^6 + 17/11*zeta_22^5 - 17/11*zeta_22^4 + 17/11*zeta_22^3 - 17/11*zeta_22^2 + 17/11*zeta_22 - 17/11)*a^2 + (14/11*zeta_22^9 - 14/11*zeta_22^8 + 14/11*zeta_22^7 - 14/11*zeta_22^6 + 14/11*zeta_22^5 - 14/11*zeta_22^4 + 14/11*zeta_22^3 - 14/11*zeta_22^2 + 14/11*zeta_22 - 14/11)*a - 27/11*zeta_22^9 + 27/11*zeta_22^8 - 27/11*zeta_22^7 + 27/11*zeta_22^6 - 27/11*zeta_22^5 + 27/11*zeta_22^4 - 27/11*zeta_22^3 + 27/11*zeta_22^2 - 27/11*zeta_22 + 27/11)*q^2 + zeta_22^3*q^3 + (2/11*zeta_22^9*a^3 + 17/11*zeta_22^9*a^2 + 14/11*zeta_22^9*a - 38/11*zeta_22^9)*q^4 + (-2/11*zeta_22^5*a^3 - 17/11*zeta_22^5*a^2 - 3/11*zeta_22^5*a + 49/11*zeta_22^5)*q^5 + (-2/11*zeta_22^2*a^3 - 17/11*zeta_22^2*a^2 - 14/11*zeta_22^2*a + 27/11*zeta_22^2)*q^6 + (5/33*zeta_22^7*a^3 + 37/33*zeta_22^7*a^2 - 31/33*zeta_22^7*a - 128/33*zeta_22^7)*q^7 - 3*zeta_22^8*q^8 - 2*zeta_22^6*q^9 + O(q^10), q + (-2/11*zeta_22*a^3 - 17/11*zeta_22*a^2 - 14/11*zeta_22*a + 27/11*zeta_22)*q^2 - zeta_22^8*q^3 + (-2/11*zeta_22^2*a^3 - 17/11*zeta_22^2*a^2 - 14/11*zeta_22^2*a + 38/11*zeta_22^2)*q^4 + (-2/11*zeta_22^6*a^3 - 17/11*zeta_22^6*a^2 - 3/11*zeta_22^6*a + 49/11*zeta_22^6)*q^5 + (2/11*zeta_22^9*a^3 + 17/11*zeta_22^9*a^2 + 14/11*zeta_22^9*a - 27/11*zeta_22^9)*q^6 + (5/33*zeta_22^4*a^3 + 37/33*zeta_22^4*a^2 - 31/33*zeta_22^4*a - 128/33*zeta_22^4)*q^7 + 3*zeta_22^3*q^8 + 2*zeta_22^5*q^9 + O(q^10), q + (-2/11*zeta_22^3*a^3 - 17/11*zeta_22^3*a^2 - 14/11*zeta_22^3*a + 27/11*zeta_22^3)*q^2 - zeta_22^2*q^3 + (-2/11*zeta_22^6*a^3 - 17/11*zeta_22^6*a^2 - 14/11*zeta_22^6*a + 38/11*zeta_22^6)*q^4 + (-2/11*zeta_22^7*a^3 - 17/11*zeta_22^7*a^2 - 3/11*zeta_22^7*a + 49/11*zeta_22^7)*q^5 + (2/11*zeta_22^5*a^3 + 17/11*zeta_22^5*a^2 + 14/11*zeta_22^5*a - 27/11*zeta_22^5)*q^6 + (5/33*zeta_22*a^3 + 37/33*zeta_22*a^2 - 31/33*zeta_22*a - 128/33*zeta_22)*q^7 + 3*zeta_22^9*q^8 - 2*zeta_22^4*q^9 + O(q^10), q + (-2/11*zeta_22^5*a^3 - 17/11*zeta_22^5*a^2 - 14/11*zeta_22^5*a + 27/11*zeta_22^5)*q^2 + zeta_22^7*q^3 + ((-2/11*zeta_22^9 + 2/11*zeta_22^8 - 2/11*zeta_22^7 + 2/11*zeta_22^6 - 2/11*zeta_22^5 + 2/11*zeta_22^4 - 2/11*zeta_22^3 + 2/11*zeta_22^2 - 2/11*zeta_22 + 2/11)*a^3 + (-17/11*zeta_22^9 + 17/11*zeta_22^8 - 17/11*zeta_22^7 + 17/11*zeta_22^6 - 17/11*zeta_22^5 + 17/11*zeta_22^4 - 17/11*zeta_22^3 + 17/11*zeta_22^2 - 17/11*zeta_22 + 17/11)*a^2 + (-14/11*zeta_22^9 + 14/11*zeta_22^8 - 14/11*zeta_22^7 + 14/11*zeta_22^6 - 14/11*zeta_22^5 + 14/11*zeta_22^4 - 14/11*zeta_22^3 + 14/11*zeta_22^2 - 14/11*zeta_22 + 14/11)*a + (38/11*zeta_22^9 - 38/11*zeta_22^8 + 38/11*zeta_22^7 - 38/11*zeta_22^6 + 38/11*zeta_22^5 - 38/11*zeta_22^4 + 38/11*zeta_22^3 - 38/11*zeta_22^2 + 38/11*zeta_22 - 38/11))*q^4 + (-2/11*zeta_22^8*a^3 - 17/11*zeta_22^8*a^2 - 3/11*zeta_22^8*a + 49/11*zeta_22^8)*q^5 + (2/11*zeta_22*a^3 + 17/11*zeta_22*a^2 + 14/11*zeta_22*a - 27/11*zeta_22)*q^6 + (-5/33*zeta_22^9*a^3 - 37/33*zeta_22^9*a^2 + 31/33*zeta_22^9*a + 128/33*zeta_22^9)*q^7 - 3*zeta_22^4*q^8 + 2*zeta_22^3*q^9 + O(q^10), q + (-2/11*zeta_22^7*a^3 - 17/11*zeta_22^7*a^2 - 14/11*zeta_22^7*a + 27/11*zeta_22^7)*q^2 + zeta_22*q^3 + (2/11*zeta_22^3*a^3 + 17/11*zeta_22^3*a^2 + 14/11*zeta_22^3*a - 38/11*zeta_22^3)*q^4 + (-2/11*zeta_22^9*a^3 - 17/11*zeta_22^9*a^2 - 3/11*zeta_22^9*a + 49/11*zeta_22^9)*q^5 + (-2/11*zeta_22^8*a^3 - 17/11*zeta_22^8*a^2 - 14/11*zeta_22^8*a + 27/11*zeta_22^8)*q^6 + (-5/33*zeta_22^6*a^3 - 37/33*zeta_22^6*a^2 + 31/33*zeta_22^6*a + 128/33*zeta_22^6)*q^7 + (-3*zeta_22^9 + 3*zeta_22^8 - 3*zeta_22^7 + 3*zeta_22^6 - 3*zeta_22^5 + 3*zeta_22^4 - 3*zeta_22^3 + 3*zeta_22^2 - 3*zeta_22 + 3)*q^8 - 2*zeta_22^2*q^9 + O(q^10), q + (-2/11*zeta_22^9*a^3 - 17/11*zeta_22^9*a^2 - 14/11*zeta_22^9*a + 27/11*zeta_22^9)*q^2 - zeta_22^6*q^3 + (2/11*zeta_22^7*a^3 + 17/11*zeta_22^7*a^2 + 14/11*zeta_22^7*a - 38/11*zeta_22^7)*q^4 + ((-2/11*zeta_22^9 + 2/11*zeta_22^8 - 2/11*zeta_22^7 + 2/11*zeta_22^6 - 2/11*zeta_22^5 + 2/11*zeta_22^4 - 2/11*zeta_22^3 + 2/11*zeta_22^2 - 2/11*zeta_22 + 2/11)*a^3 + (-17/11*zeta_22^9 + 17/11*zeta_22^8 - 17/11*zeta_22^7 + 17/11*zeta_22^6 - 17/11*zeta_22^5 + 17/11*zeta_22^4 - 17/11*zeta_22^3 + 17/11*zeta_22^2 - 17/11*zeta_22 + 17/11)*a^2 + (-3/11*zeta_22^9 + 3/11*zeta_22^8 - 3/11*zeta_22^7 + 3/11*zeta_22^6 - 3/11*zeta_22^5 + 3/11*zeta_22^4 - 3/11*zeta_22^3 + 3/11*zeta_22^2 - 3/11*zeta_22 + 3/11)*a + (49/11*zeta_22^9 - 49/11*zeta_22^8 + 49/11*zeta_22^7 - 49/11*zeta_22^6 + 49/11*zeta_22^5 - 49/11*zeta_22^4 + 49/11*zeta_22^3 - 49/11*zeta_22^2 + 49/11*zeta_22 - 49/11))*q^5 + (-2/11*zeta_22^4*a^3 - 17/11*zeta_22^4*a^2 - 14/11*zeta_22^4*a + 27/11*zeta_22^4)*q^6 + (-5/33*zeta_22^3*a^3 - 37/33*zeta_22^3*a^2 + 31/33*zeta_22^3*a + 128/33*zeta_22^3)*q^7 + 3*zeta_22^5*q^8 + 2*zeta_22*q^9 + O(q^10), q + (2/11*a^3 + 17/11*a^2 + 14/11*a - 27/11)*q^2 - q^3 + (-2/11*a^3 - 17/11*a^2 - 14/11*a + 38/11)*q^4 + (2/11*a^3 + 17/11*a^2 + 3/11*a - 49/11)*q^5 + (-2/11*a^3 - 17/11*a^2 - 14/11*a + 27/11)*q^6 + (-5/33*a^3 - 37/33*a^2 + 31/33*a + 128/33)*q^7 - 3*q^8 - 2*q^9 + O(q^10) *] > VG_3(S); [* q + zeta_22^2*a*q^2 + (zeta_22^5*a^2 - zeta_22^5*a - 4*zeta_22^5)*q^3 + (zeta_22^4*a^2 - 2*zeta_22^4)*q^4 + (-zeta_22^7*a^2 + 2*zeta_22^7*a + 3*zeta_22^7)*q^6 + (2*zeta_22^6*a + 3*zeta_22^6)*q^8 + ((-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*a^2 + (-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*a + (7*zeta_22^9 - 7*zeta_22^8 + 7*zeta_22^7 - 7*zeta_22^6 + 7*zeta_22^5 - 7*zeta_22^4 + 7*zeta_22^3 - 7*zeta_22^2 + 7*zeta_22 - 7))*q^9 + O(q^10), q + zeta_22^4*a*q^2 + ((-zeta_22^9 + zeta_22^8 - zeta_22^7 + zeta_22^6 - zeta_22^5 + zeta_22^4 - zeta_22^3 + zeta_22^2 - zeta_22 + 1)*a^2 + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a + (4*zeta_22^9 - 4*zeta_22^8 + 4*zeta_22^7 - 4*zeta_22^6 + 4*zeta_22^5 - 4*zeta_22^4 + 4*zeta_22^3 - 4*zeta_22^2 + 4*zeta_22 - 4))*q^3 + (zeta_22^8*a^2 - 2*zeta_22^8)*q^4 + (-zeta_22^3*a^2 + 2*zeta_22^3*a + 3*zeta_22^3)*q^6 + (-2*zeta_22*a - 3*zeta_22)*q^8 + (zeta_22^9*a^2 + zeta_22^9*a - 7*zeta_22^9)*q^9 + O(q^10), q + zeta_22^6*a*q^2 + (-zeta_22^4*a^2 + zeta_22^4*a + 4*zeta_22^4)*q^3 + (-zeta_22*a^2 + 2*zeta_22)*q^4 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a^2 + (-2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*a - 3*zeta_22^9 + 3*zeta_22^8 - 3*zeta_22^7 + 3*zeta_22^6 - 3*zeta_22^5 + 3*zeta_22^4 - 3*zeta_22^3 + 3*zeta_22^2 - 3*zeta_22 + 3)*q^6 + (-2*zeta_22^7*a - 3*zeta_22^7)*q^8 + (-zeta_22^8*a^2 - zeta_22^8*a + 7*zeta_22^8)*q^9 + O(q^10), q + zeta_22^8*a*q^2 + (zeta_22^9*a^2 - zeta_22^9*a - 4*zeta_22^9)*q^3 + (-zeta_22^5*a^2 + 2*zeta_22^5)*q^4 + (zeta_22^6*a^2 - 2*zeta_22^6*a - 3*zeta_22^6)*q^6 + (2*zeta_22^2*a + 3*zeta_22^2)*q^8 + (zeta_22^7*a^2 + zeta_22^7*a - 7*zeta_22^7)*q^9 + O(q^10), q + (zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a*q^2 + (zeta_22^3*a^2 - zeta_22^3*a - 4*zeta_22^3)*q^3 + (-zeta_22^9*a^2 + 2*zeta_22^9)*q^4 + (zeta_22^2*a^2 - 2*zeta_22^2*a - 3*zeta_22^2)*q^6 + (2*zeta_22^8*a + 3*zeta_22^8)*q^8 + (-zeta_22^6*a^2 - zeta_22^6*a + 7*zeta_22^6)*q^9 + O(q^10), q - zeta_22*a*q^2 + (-zeta_22^8*a^2 + zeta_22^8*a + 4*zeta_22^8)*q^3 + (zeta_22^2*a^2 - 2*zeta_22^2)*q^4 + (-zeta_22^9*a^2 + 2*zeta_22^9*a + 3*zeta_22^9)*q^6 + (-2*zeta_22^3*a - 3*zeta_22^3)*q^8 + (zeta_22^5*a^2 + zeta_22^5*a - 7*zeta_22^5)*q^9 + O(q^10), q - zeta_22^3*a*q^2 + (-zeta_22^2*a^2 + zeta_22^2*a + 4*zeta_22^2)*q^3 + (zeta_22^6*a^2 - 2*zeta_22^6)*q^4 + (-zeta_22^5*a^2 + 2*zeta_22^5*a + 3*zeta_22^5)*q^6 + (-2*zeta_22^9*a - 3*zeta_22^9)*q^8 + (-zeta_22^4*a^2 - zeta_22^4*a + 7*zeta_22^4)*q^9 + O(q^10), q - zeta_22^5*a*q^2 + (zeta_22^7*a^2 - zeta_22^7*a - 4*zeta_22^7)*q^3 + ((zeta_22^9 - zeta_22^8 + zeta_22^7 - zeta_22^6 + zeta_22^5 - zeta_22^4 + zeta_22^3 - zeta_22^2 + zeta_22 - 1)*a^2 - 2*zeta_22^9 + 2*zeta_22^8 - 2*zeta_22^7 + 2*zeta_22^6 - 2*zeta_22^5 + 2*zeta_22^4 - 2*zeta_22^3 + 2*zeta_22^2 - 2*zeta_22 + 2)*q^4 + (-zeta_22*a^2 + 2*zeta_22*a + 3*zeta_22)*q^6 + (2*zeta_22^4*a + 3*zeta_22^4)*q^8 + (zeta_22^3*a^2 + zeta_22^3*a - 7*zeta_22^3)*q^9 + O(q^10), q - zeta_22^7*a*q^2 + (zeta_22*a^2 - zeta_22*a - 4*zeta_22)*q^3 + (-zeta_22^3*a^2 + 2*zeta_22^3)*q^4 + (zeta_22^8*a^2 - 2*zeta_22^8*a - 3*zeta_22^8)*q^6 + ((2*zeta_22^9 - 2*zeta_22^8 + 2*zeta_22^7 - 2*zeta_22^6 + 2*zeta_22^5 - 2*zeta_22^4 + 2*zeta_22^3 - 2*zeta_22^2 + 2*zeta_22 - 2)*a + (3*zeta_22^9 - 3*zeta_22^8 + 3*zeta_22^7 - 3*zeta_22^6 + 3*zeta_22^5 - 3*zeta_22^4 + 3*zeta_22^3 - 3*zeta_22^2 + 3*zeta_22 - 3))*q^8 + (-zeta_22^2*a^2 - zeta_22^2*a + 7*zeta_22^2)*q^9 + O(q^10), q - zeta_22^9*a*q^2 + (-zeta_22^6*a^2 + zeta_22^6*a + 4*zeta_22^6)*q^3 + (-zeta_22^7*a^2 + 2*zeta_22^7)*q^4 + (zeta_22^4*a^2 - 2*zeta_22^4*a - 3*zeta_22^4)*q^6 + (-2*zeta_22^5*a - 3*zeta_22^5)*q^8 + (zeta_22*a^2 + zeta_22*a - 7*zeta_22)*q^9 + O(q^10), q + a*q^2 + (-a^2 + a + 4)*q^3 + (a^2 - 2)*q^4 + (a^2 - 2*a - 3)*q^6 + (2*a + 3)*q^8 + (-a^2 - a + 7)*q^9 + O(q^10) *] > quit; Total time: 92.269 seconds [was@descent kani]$ exit exit Process magma finished