> // J_0(43) > M:=MS(43); > C:=CS(M); > D:=ND(C); > D; [ Modular symbols space of level 43, weight 2, and dimension 2, Modular symbols space of level 43, weight 2, and dimension 4 ] > A:=D[2]; > ModularKernel(A); Abelian Group isomorphic to Z/2 + Z/2 Defined on 2 generators Relations: 2*$.1 = 0 2*$.2 = 0 > // However, however says "However, there are no endos of degree 4 that are totally positive." > // However, with thought, however says, "However, I'm totally wrong! 2-sqrt(2)". > L1:=IntegralBasis(A); bL1:=[Representation(L1[i]) : i in [1..#L1]]; > bL1; [ (0 1 0 0 0 0 0), (0 0 0 1 0 0 0), (0 0 0 0 0 1 0), ( 1 0 -1 0 1 0 0) ] > Basis(A); > Basis(A); [ {-1/25, 0} + -1*{-1/17, 0} + {-1/14, 0}, {-1/39, 0}, {-1/32, 0}, {-1/21, 0} ] > qEigenform(A,17); q + a*q^2 - a*q^3 + (-a + 2)*q^5 - 2*q^6 + (a - 2)*q^7 - 2*a*q^8 - q^9 + (2*a - 2)*q^10 + (2*a - 1)*q^11 + (2*a + 1)*q^13 + (-2*a + 2)*q^14 + (-2*a + 2)*q^15 - 4*q^16 + O(q^17) > Parent($1); Power series ring in q over Univariate Quotient Polynomial Algebra in a over Rational Field with modulus a^2 - 2 > Restrict(Tn(M,2),bL1); [ 1 0 0 -1] [ 0 1 1 -1] [-1 1 -1 0] [-1 0 0 -1] > T2:=$1; > S:=2-T2; > MinimalPolynomial(S); x^2 - 4*x + 2 > Roots(PolynomialRing(RealField())!x^2 - 4*x + 2); [ <0.58578643762690495119831127579030192143, 1>, <3.4142135623730950488016887242096980785, 1> ] > B:=D[1]; > IntersectionGroup(A,B); Abelian Group isomorphic to Z/2 + Z/2 Defined on 2 generators Relations: 2*$.1 = 0 2*$.2 = 0 > L1L2:=IntegralBasis(A+B); > bL1L2:=[Representation(L1L2[i]) : i in [1..#L1L2]]; > L2:=IntegralBasis(B); > bL1:=[Representation(L1[i]) : i in [1..#L1]]; > bL2:=[Representation(L2[i]) : i in [1..#L2]]; > basis:=bL1 cat bL2; > Coordinates(VectorSpaceWithBasis(basis),bL1L2[1]); [ 1/2, 0, 0, 1/2, 1/2, 0 ] > Coordinates(VectorSpaceWithBasis(basis),bL1L2[2]); [ 1, 0, 0, 0, 0, 0 ] > Coordinates(VectorSpaceWithBasis(basis),bL1L2[3]); [ 0, 1/2, 1/2, -1/2, 0, 1/2 ] > a:=VectorSpace(Q,4)![ 1/2, 0, 0, 1/2]; > b:=VectorSpace(Q,4)![ 0, 1/2, 1/2, -1/2];a:=VectorSpace(Q,4)![ 1/2, 0, 0, 1/2]; > a; (1/2 0 0 1/2) > b; ( 0 1/2 1/2 -1/2) > a*S; (1 0 0 2) > b*S; ( 0 0 1 -1) > LRatio(A,1); 2/7 > TamagawaNumber(A,43); 7 > TorsionBound(A,11); 7 [ 196, 196, 9604, 25921 ] > Periods(A,97); [ (0.5250281159132219433729491620 + 0.8066018577029307230283142376*i -0.2259499583067642118739519173 - 1.766644676299599532273333141*i), (0.8241062742261960348649172089 - 0.1534409622571770568748354978*i 0.5981563162241222986475767259 - 1.920085638612119493276485634*i), (-0.2990781583129740914919680469 - 0.9600428199601077799031497354*i -0.8241062745308865105215286433 - 0.1534409623125199610031524930*i), (-0.8241062742261960348649172090 - 0.1534409622571770568748354978*i -0.5981563162241222986475767260 - 1.920085638612119493276485634*i) ] > IntegralBasis(A); [ {-1/39, 0}, {-1/32, 0}, {-1/21, 0}, {-1/25, 0} + -1*{-1/17, 0} + {-1/14, 0} ] > 20^7*8; 10240000000 > 10^7*8; 80000000 > 20^6; 64000000 > C:=HyperellipticCurve(x^6+2*x+1); > C; Hyperelliptic Curve defined by y^2 = x^6 + 2*x + 1 over Rational Field > J:=Jacobian(C); > EulerFactor(J,7); 49*T^4 + 7*T^3 + 9*T^2 + T + 1 > EulerFactor(J,97); 9409*T^4 + 582*T^3 + 26*T^2 + 6*T + 1 > time C:=HyperellipticCurve(x^6+12*x+191); time J:=Jacobian(C); time [EulerFactor(J,p) : p in [11,17,37,97]]; Time: 0.009 Time: 0.000 [ 121*T^4 + 77*T^3 + 28*T^2 + 7*T + 1, 289*T^4 - 17*T^3 + 16*T^2 - T + 1, 1369*T^4 - 74*T^3 + 46*T^2 - 2*T + 1, 9409*T^4 - 1649*T^3 + 187*T^2 - 17*T + 1 ] Time: 0.039 > 0.1*20^6; 6399999.999999999999999999999 > $1/(3600); 1777.777777777777777777777777 > 1777/24.0; 74.04166666666666666666666666 > save "showing.session"; Saving Magma state to "showing.session" > quit;