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1. Introduction

Oestere and Masser'sbcconjectureasserts that for any given > 0,
if a,b and c are coprime positive integers satisfyirg+ b = c then
¢ <. N(a b, c)**¢, whereN(a, b, ¢) is the product of the distinct primes
dividing abc Their conjecture has a wide variety of interesting, sometimes
surprising, consequences (such as Fermat's Last Theorem, other than per-
haps finitely many examples). Vojta [14, page 84] showed how to formulate
the abcconjecture in arbitrary number fields (from which Elkies [5] ele-
gantly deduced Faltings’s Theorem). We will describe a version of this
conjecture after introducing the basic notation.

Given a number fieldK we defineAx := |Dg |V where Dk
is the discriminant for the field extensiok/Q. For non-zero numbers
a1, &, ...,8, € K we define the (absolutd)eightand theconductorof
{a1, @, ...,a,} to be

H(a, &, ..., an) = [ [max(laall,, 2zl .- -, llaall,) and

N(a, ag, ..., 8n) = Nk (ag, a2, ..., a) = [ [ Ipll,"
pel
respectively, where ranges over all the normalized valuationskof and
| is the set of prime ideals of K for which ||ay ||y, [|a2]lp., - - ., llan [, are
not all equal. More precisely; ranges over the prime idegisof K with
Ipll, = Normk o(p)~YK‘@; and over all of the embeddings: K — C
with Jja]|, = [a*|¥K,

* The first author is a Presidential Faculty Fellow, supported, in part, by the National
Science Foundation.
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We will now describe Elkies’ reformulation of Vojta’s conjecture (though
one should note that he did not require uniformity over different number
fields in the proof in [5]). Note that the conjecture that we state does
follow from Vojta’s “General Conjecture” 5.2.6 in [14] under the additional
assumption thdtK : Q] is bounded.

The uniform abcconjecture for number fields. For any givens > O, if
a+ b+ c = 0, wherea, b and c are algebraic numbers in some number
field K then

(1) H(a, b, c) <. (AxN(a, b, c))**.

Remark.We stress that the value &f is independent of the fiel&. On

the other hand both terms on the right side of (1) are dependemt on
and one might ask whether the conjecture over some high degree field
extension could possibly imply a stronger criterion for an equation defined
in a subfield, than the conjecture in that subfield. In fadt is a number

field containingK, then Ax < A_ whereasNk(a,b,c) > N_(a b, c).
HoweverAx Nk (a, b, ¢) < A_N_(a, b, ¢), so (1) is most stringent whef

is the field of definition ofa andb.

In this paper we will apply the uniforrabc-conjecture to the very large
solutions of Diophantine equations that arise from modular functions and
deduce a lower bound for the class number of imaginary quadratic fields.
This extends an idea of Chowla [1,2] who indicated, via a conjecture of
Hall, how unlikely it is thatQ(,/—p) has class number one, since We-
ber [15] showed that there would then be an enormous solution in integers to
x® — py? = —1728 (in fact where is the integer nearest &v?/3).

Theorem 1. The uniformabcconjecture for number fields implies that

@ h(—d)z{%+o(1)}% > s
(a,b,c)

reduced

for any fundamental discriminantd < O (that is, an integer which is not
divisible by the square of an odd prime, wittd = 1 (mod 4, or 8 or
12 (mod 16). The sum is over quadratic formig, b, ¢) of discriminant
—d =b?—4ac,with—a<b<a<cor0<b<a=c(thatis, reduced).

Mahler [11] showed that if (2) holds then the Dirichletfunction
L(s, xd4), whereyq := (;d) has no real zero in the interval-dc/ logd <
s < 1, for some sufficiently small constaot> 0 (actually Mahler showed
a little less than this but it is not hard to suitably modify his proof). We will
refer to such zeros as “Siegel zeros”. We can thus deduce:

Theorem 2. The uniformabcconjecture for number fields implies that
there are no “Siegel zeros” of Dirichlet-functions for characterg=2)
with —d < 0.
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Our proof provides no insight into the question of “Siegel zeros” of
Dirichlet L-functions for characterég) with d > 0. Indeed there is no
suitable analogous theory of modular functions for positive discriminants.

If we knew that the unifornrabcconjecture holds with an explicit con-
stant, then our estimate in Theorem 1 could be given explicitly. As a con-
sequence we would be able to solve several outstanding problems about
quadratic fields. For example, one would be able to determine all of Euler's
“convenient numbers’numeri idone), which are thosel for which there
is just one ideal class per genus, in the ideal class gro@¢f—d).

Using a result of Selberg and Chowla [12], we will obtain, in Sect. 3, an
unconditional asymptotic formula relating the quantities in (2):

Theorem 3. For any fundamental discriminartd < 0 we have

3)
E: log logd 2 L'(Lx)\ * vd 1
h(_d)_{§+o< logd )}<1+IogdL(1,Xd))> logd azc a’

The estimate givenin (2) is asymptotically the same as the lower bound of
(3), if L'(1, xa)/L(1, xq) = o(logd). Indeed this quantitjs O(log logd)
if the Riemann Hypothesis is true far(s, xq4) (as we will prove at the
beginning of Sect. 3.1). Thus, under this assumption, we have an infinite se-
guence of “best possible examples” in the unifabt-conjecture, running
through a sequence of number fields with rapidly growing degree.

We note that if we were to replackyx by Aﬁ, for someA > 1, in
the conjectural estimate (1), then we can obtain analogous, though slightly
weaker, results.

Elkies suggested to us that one might apply our same methods to other
Diophantine equations arising from modular functions. In Sect. 4 we exam-
ine one other example and this leads to another proof of Theorems 1 and 2,
and another infinite sequence of “best possible examples” in the uniform
abcconjecture, running through a sequence of number fields with rapidly
growing degree. Perhaps if one takes algebraic points on any given modular
curve, which arise from modular functions (for example, Heegner points),
and then map those points B3 using a Belyi map as in [5], one obtains
other such “best possible examples” in the unif@ieconjecture.

Zagier suggested to us that one might apply similar methods to other
differences of singular moduli, using the beautiful and restrictive formulae
of [9] to obtain bounds. We have not succeeded, as yet, in so producing any
new examples, though this does seem to be another good avenue to pursue.
We will discuss this further in Sect. 4.

Remark on NotationThroughouts > 0 will be assumed to be an arbitrarily
small fixed constant. However it may beldferents from one line to the
next.
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As usualA <« B and B > A both mean that there exists a constant
¢ > O such thatA < cBfor all suchAandB. We write f < gwhenf « g
andg « f.

The value of an infinite surEp, over zeros of ah. -function, should be

understood to mean lif.co 3 . imy <7

2. Complex multiplication

For 7 in the upper half plane, set= €?7*. As explained by Weber [15],
the classical theory of complex multiplication tells us about special values
of the j-invariant,

(1 +240%,, (de d3) q”>3
q[l @-gn*

n>1

(4) j(:=

1
= 744+ 196884 + ..

and the functions, (1) andy;s() related toj(r) by

(5) (@ = 72(D° = y3(0)? + 1728
Suppose that-d is a fundamental discriminant. The value ff) at
T = *l%*/jd or @ (as—d = 1 or 0 (mod 4) is an algebraic integer

whose conjugates are the numbgrs*), wheret* runs through the values

‘bg—g/‘_d asax? + bxy+ cy? runs through a complete set of representative
guadratic forms from each equivalence class of positive definite binary
guadratic forms of discriminantd.

Weber [15] notes that if the class numbe¢—d) = 1 then y,(7)
and y3(t)/+/—d are both integers, and indeed very large integers by (4).
Chowla [1,2] observed that this is very unlikely to happen in view of the
relation (5). Indeed Chowla so deduced that there are only finitely many
with h(—d) = 1 by applying Hall's conjecture to the Diophantine equation
emerging from (5). Hall's conjecture is a consequence of the origibal
conjecture, and it is an easy exercise to make the same deduction directly
from the originalabc-conjecture. The unifornabcconjecture for number
fields allows us to extend Chowla’s observation to the general case, by
working in a field containing bothr, (7) andys(1).

If dis relatively prime to 6 then Weber showed thatr) andys(t) both
belong to the fieldM = k(j(r)), wherek := Q(+/—d). This field is the
Hilbert class field ok, which is the maximal unramified abelian extension
of k; as such we hava, = Ay = +/d. We now bound the discriminant of
the field containing»(t) andys(t), no matter what the value of g@ d).
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Lemma 1. If K = k(»(7), y3(1)), wherer is as above, thex < 6./d.

Proof. For many of the facts used in this proof see [15] and [13]. Beth)
andys(t) are in the field of modular functions of level 6; that is, both are
invariant unde"(6), and the coefficients of the Fourier expansion at each
cusp all belong to the field of sixth roots of unity. Thus beilr) andys(t)

are inL, the ray class field ok (mod 6, by Shimura’s Reciprocity Law
(actually these facts were already well-known to Weber [15]). THuS L

and Ak < AL. Now, by the conductor-discriminant formula, the relative
discriminant ofL /k is given byD x = [, f,, where the product is over
all characterg of the ray class groupmod 6 of k, and f, is the conductor

of x. Moreoverf, divides 6 for all suchy, and soD|_  divides 8-, which

implies thatA_ /Ay < 6. The result follows since\, = +/d.

Remark A more careful analysis would allow us to reduce the factor of 6.

Proof of Theorem INote that for any algebraic integeione hafN(«, 1) <
H(x, 1), so that in a solution to

(5) y3(1)? — y2(1)° 4+ 1728=0
we have

Nk (72(7)%, y3(1)?, 1728 < Nk (y2(7), )Nk (3(7), 1)
< H(2(1), DH(y3(1), 1)
= H(2(0)% D*H(ys(n)?, D2
< H2(03, y3(0)%, 1728°/°.

Therefore, by applying the uniforrabcconjecture to (5§ in the field K,
and using Lemma 1 to bourtk, we deduce that

H(y2(D)°, y3(0)?, 1728 <, d***.
Therefore, by (5), we have
(6) H(j(0). D) < H(j(D, j(r) — 1728 1728 <, d**.
We now determine a lower bound fat(j(t), 1). Gauss [6] showed

that there is a representativé of every ideal class witla < ,/d/3 (and
this corresponds to the reduced quadratic form in every equivalence class

of binary quadratic forms). Sincg/q| = evd/a we deduce from the
g-expansion forj(z*) in (4) that

max{| j(t*)]. 1} = eV,
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Remembering that in the definition of height the valuations were normalized
to take account of the degree of the field extension, we thus have

(7
1/h(—d)
H(j(, D = (E[max{u(r >|,1}) “eXp<h(—d); a )

Comparing this with (6) implies Theorem 1.

Remark. Assuming the Generalized Riemann Hypothesis [fas, x)
(so that we can take.'(1, x)/L(1, x) = O(loglogd) in Theorem 3)
we deduce thatH(j(r),1) = d3(logd)®®, from (7). Assuming the
uniform abcconjecture, the proof of Theorem 1 implies that
Nk (72(D), DNk (73(D), 1)) > H(j(0), D°P/dY? = d>2r°D. On the
other handNk (y2(7), 1) < H(y2(1), 1) = H(j(r), D3 = d(logd)°?, and
similarly Nk (y3(1), 1) < H(y3(1), 1) < H(j(r), D¥? = d**(logd)°®.
Combining these estimates gives
(®) Nk (v2(0), 1) = H(ya(n), DD = di*o®

and Nic (y3(1), 1) = H(ya(r), D0 = d¥/2ro®,

The numberd := Normg,qg(y2(7)) has many extraordinary algebraic
properties, as shown by Deuring [4] and Gross and Zagier [9]. Since
Nk (12(1), 1) = H(y2(1), DD one might guess that the height and
conductor ofJ are of roughly the same size. One can show thal) =
H(yo(1), 1)1HoMIK:Q and it is evident that the prime divisors NfJ) and
Nk (y2(7), DU must be the same. HowewistJ) is b& definition square-
free, whereas the prime factogs of Nk (y2(1), )XY may occur with
multiplicity, perhaps even high multiplicity, corresponding to the number
of different prime ideals oK lying abovep which dividey,(7). Indeed we

show in Sect. 5 tha(J) = H(J)°® assuming the Generalized Riemann
Hypothesis.

3. Formulae for L-functions — The proof of Theorem 3

Throughout this section we lgt be the characteyy := (=2).

3.1. Evaluating L-functions ats = 1
For anyy > 2 we have, by partial summation,

L'(L, 0 Z x(p) log p _/°° dyr(t, x)
L, x) p— x(p) y t

where, as usualj(t, x) := > x(p™) log p. If we assume the General-

ized Riemann Hypothesis far(s, x) theny(t, x) = O(t2log?(dt)) (as in
Sect. 20 of [3]), and so the right side of (9)X3log logd), wheny = log* d.

9 + O(logy),

p prime
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Another approach, using the explicit formula (17) and the functional
equation (13) of pages 82 and 83 of [3], bearing in mind $h& real, so
that the zeros of the-function are symmetric about the lines®e= 1/2
and Im(s) = 0, yields

LA x) 2 o L= P
1 B
=2 3t X miat%
p=pe R p p=B+iy, y#0 Bty

wherecy = ${log(7)+yo+(x(—1)+1) log 2} > 0 andy, ~ 0.577215665. .
is the Euler-Mascheroni constant. Notice that every term here is positive
since O< B < 1 and so, by pairing up the zergst+ iy and 1— 8 — iy, we

get
B 1-8 1
P A=t 1
The number of zeros witly| < T is{T/7 + O(1)} log(dT/2er) (page 101

of [3]), and so there arg> logd zeros withTy < |y| < 2Ty, for sufficiently
large To. Combining these last two estimates we thus deduce that

'L, 1

(10)

This estimate will prove useful in the next subsection when we prove Theo-
rem 3.

Remark 1By pairing thep andp terms together, we deduce from (4) of
page 102 of [3], thal'(c, x)/L(0, x) = }_, Re(Y (o — p))+O(logd)
uniformly for 1 < o < 2. Since O< Re(1/(1— p)) < Re(1/(o — p)) when

o =14 1/logdand|1— p| > 1/logd, we obtain

'@ o _ 1 L' (o, x))

whereg is the “Siegel zero”, if it exists (otherwise there is no termlt- )
here). HowevetL' (o, x)/L (o, x)| < |¢'(0)/¢(0)] < logd, so we obtain

L"(1, %) _
Ly 1-8

In factif (1— 8) logd = o(1) then one can modify this argument to improve
the error term ta(log d).

This estimate, combined with Theorem 3, implies Mahler’s result dis-
cussed in the introduction. Related estimates have been obtained in [7]
and [8]; and our remark above can be deduced directly from (4.2) in [10].

+0 (Iogd+

+ O(logd).
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Remark 2 Under the assumption of the Generalized Riemann Hypothesis
we may deduce, from formulae above, that the estimate

> 1_ %Iogd + O(log logd)

p: L(p,)=0

holds uniformly for all quadratic charactegs (mod d).

3.2. The Selberg-Chowla formula

In this subsection we will prove Theorem 3. In [12] Selberg and Chowla
give a highly convergent expansion for Epstein’s zeta-function which can
be deduced as a consequence of Kronecker’s limit formula (when summed
over all ideal classes). They deduce from this an identity, given on the
last line of page 109 in [12] (which contains an important typographical

error where &2Mi®;+ividD/2a;” appears incorrectly ag?™ bJJr'“/'ﬁ") Now

a < ,/d/3 for any reduced binary quadratic for@, b, c) of dlscrlmlnant
—d, so that| exp2izn(b + i+/d)/2a)| = exp(—nn+/d/a) < 1/C" where
C = exp(+/3), and therefore

Z (Z d) eZirm%

n>1 din

-y (zd) =

n>1 din
= Z ca =.004390084081. .
d>1

Thus one can deduce from Selberg and Chowla’s identity that

h(—d)
L'A, ) = E — + — E log(a/d) + O (—) )
6 (a,b,0) a “/a (ab,c) ﬂ
reduced reduced

By adding 7h(—d)logd/2+/d to both sides, and noting that each
log(~/d/a) > 1, we obtain

(11)
nh(—d)(L’(l, x 1 ) 2 1
+Zlogd) =" Y = Y logwd/a |
\/a L@ 0 2 6 (a,b,c) a \/_ (a,b,c)
reduced reduced

using Dirichlet’s class number formul(1, ) = wh(—d)/+/d ford > 4.
We now bound the error term in (11). Lgta) denote the number of

reduced binary quadratic fornia, b, ¢) of discriminant—d, for some inte-

gersb andc. Let p;(a) denote the number of distinct solutiohsnod 2a
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to b> = —d (mod 4a). By the Chinese Remainder Theorem we have
o1(@ = ]—[p|4a{1 + (—d/p)}, and, in factp(a) < r(a), the number of
distinct divisors ofa. Now, b is, by definition, the least residue in absolute
value from a residue class mod &f solutions td»* = —d (mod 4a); there-
fore p(a) < pi(a). On the other hand ifb| < a andb? = —d (mod 4a)
with a < +/d/2 then when we define:= (b? + d)/4a we getc > a so that
(a, b, ¢) is a reduced form. Thereforeaf < +/d/2 thenp(a) = p1(a).

Since log+/d/a) is a decreasing function & we thus deduce that

> logvd/a) =} p(@log(vd/a) < ) r(@log(vd/a).

(ab,0) a>1 a<A
reduced

where A is chosen to be the smallest integer for whigh,_,r(a) >
h(—d). Dirichlet showed thad ,_,r(a ~ Alog A so thatA ~ h(—d)/

log(2h(—d)). Therefore, by partial summation, using Dirichlet’s estimate,
the error term in (11) is

1 Alog A
< — ‘r@@log(v/d/a) « log(+~/d/A

ﬁ; (@log(vd/a) < —=—log(v/d/A)

h(—d) Jd log logd h(—d) logd
<V '°g<h(—d> 'ogh(_d)> N R o

However, by (10), the left side of (11) is h(—d)logd/+/d; and, since
there is always the principal form, with= 1, the main term on the right
side of (11) is> 1. Therefore the above estimate for the error term in
(11) does imply (3) after suitable re-arrangement, and thus we have proved
Theorem 3.

4. Some suggested generalizations

4.1. Thei-function

In an email dated August 22nd, 1994, Elkies suggested that one might try
the same approach with thefunction. Any elliptic curveE can be written

in the formy? = 4x(x — 1)(x — 1). There are, generically, six choices fqr

the roots of the equation

(12) f(X) := 256(x% — X + 1)® — j(E)(x? — x)?,

where j(E) is the j-invariant of the elliptic curveE. If A is a root of (12)
then the six roots are

A LA 1=, /(L —=2), (b =1/, A/(A— D).
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Let A be the root of (12) which is largest in absolute value. If
|A] < 2 then all of the roots of (12) have size betweeg2 And 2, and so
]—[f(a):0 max{1, |«|} < 1. If|A| > 2then maxd, |1|}, max{1, |1—A|} < |A],
whereas maid, |«|} < 1fora =1/x, 1/(1—A), A —1)/r, 0rA/(A—1).
From (12) we havg = |A|?, so that

(13) [T maxy lal} < max(d, |j}}.

f(a)=0

Now A satisfies the equation+ (1 — A) = 1. Moreover. and 1— X are
evidently 2-units, by (12), so th&t(x, 1— A, 1) < 1. Therefore the uniform
abcconjecture implies that(x, 1 — A, 1) <, A{“, whereL = M(}).

Now, A always belongs to the ray class figlthod 2, which is of degree
< 3 overM, so that[L : M] < 3. It can be shown thdiL : M] equals
each of 12 and 3 infinitely often. In the case thgt : M] = 3 then by
studying automorphisms we find that the the equation in (12) splits into
two cubics, the first with roots, (. — 1)/A, 1/(1 — 1), the other with roots
1/x, A/ —1), 1—A. ThusH(x, 1— X, 1) < H(j(v), 1)/6. Combining the
last two estimates thus gives

H(j(p), 1) <. A%

This implies (6) since\| <« d¥/? (as in Lemma 1).
We will return to this, and the cases whdie : M] = 1 or 2 in
a subsequent paper.

4.2. Differences of singular moduli

In an email dated December 2nd, 1994, Zagier asked us whether similar
methods might be applied to other differences of singular moduli (the value
of | at a quadratic imaginary numbey. In [9], Gross and Zagier showed
that the norm of differencegt1) — j(z2) have only small prime factors and
then often to quite high powers (indeed they show how to determine to what
exact power each prime appears), when the discriminants arfid t, are
relatively prime (see the remark after the proof of Theorem 1, above). Our
proof of Theorem 1 may be viewed as applying the unifatma-conjecture

to the equation

(J@ =) + 0 = j(@) = (j(0) = j(@),

wherei? = —1 andw? + w4+ 1 = 0, sincej(i) = 1728 andj(w) = 0. Thus,
in general one might look at

(14) (J(t) — J(r2)) + (j(r2) — J(13)) = (J(12) — }(13)),

especially if the corresponding discriminants are pairwise coprime, since
we then have a considerable amount of information available from [9]:
moreover ifK = Q(j(t1), j(12), j(13), /=01, /=0, v/—d3) then Ay =

v/ dldzdg and[K : Q] = 8h(—d1)h(—dz)h(—d3)
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Asyetwe have been unable to succeed with this strategy, perhaps because
we used the fact, in the proof of Theorem 1, that the relative discriminant
for the field extension containing(t)/® and (j(r) — 17282 over M is
absolutely bounded (see Lemma 1), whereas we have not determined an
analagous property in general.

Another possibility would be to consider (14) when 1o, 73 are all
unequal but have the same discriminant, since Gross and Zagier [9] also
give formulae to describe the discriminant of the minimum polynomial
for j(7).

5. Estimates for the norm of j(7)

Let A := |Normgj),0(j(1)], andJ := Normk q(y2(7)) as above.

5.1. The height ofJ
We will show thatH(A) = H(j(7), 1)!1eWIN-d assuming the General-

ized Riemann Hypothesis, from which it follows that(J) =
H(y2 (1), 1)11HoWIKQ py appropriate scaling. Now, from (7) we have that

INOrMg( )0 (j(0)| = [ [ max(|j(x)1., 1} min{|j(z*)]. 1}

1 .
— exp(zt dy° S+ O(h(—d))) [Imin{li1. 1.

We thus need to understand “small values”j6f): The only zero ofj(r)
occurs at, a primitive cube root of unity inside the fundamental domain for
SL(2,Z). In fact j has a zero of order three there so thHat)| =< |t — o|®

in a small ball aroundv. Thus if t* = (=b 4+ +/—d)/2a and |j(t*)]| is
sufficiently small then, ap| < a < /d/3 for a reduced form,

[j(x)] = |11 — |bl/al® + |y/d/3/a— 1* < ((/d/3 — |b])/a)®
3 bl \* (. 3P\ 3\’ 1
(- Js) <(-F) 2 (-F) > 5

since we must havg|, a < 4/d/3 for this to be small.



520 A. Granville, H.M. Stark

Therefore if|j(z*)| < 1/log®d then /d/3 — a <« +/d/log*d and
so the number of such forms i > o 43 acvd/oga P(@ =

> 0= Ja3-acvd/ ogid (@ < +/d/log?d; and so their total contribution to

[1,. min{|j(z*)], 1} is €2Vd/109d) The contribution of the remaining forms
is > 1/10g”"~® d. Thus we have proved that

A = exp (wa (Z g +0 (@)) + O(h(—d) log Iogd))

(15) = exp<m/a (; g {1+ o ('ﬁ;’gd)})) ,

the last error term obtained by substituting (10) into Theorem 3 to get the

upper boundch(—d) < (+/d/logd)}", . More accurately, Theorem 3
under the assumption of the Generalized Riemann Hypothesis becomes

3h(—d)(logd + O(log logd)) = 7+/d ) :gL\'

Using this formula to estimate the main term in (15) gives
(16)  H(A) = (dlogd)°®)"® = Hj(r), 1){-romhCa),
by (8), as desired.

5.2. The conductor ofJ

For simplicity suppose thatis prime and-d = 1 (mod 6. By the remarks
between (1.5) and (1.6) in [9] we see tihNt)) is the product of those primes
¢ =2 (mod 3 for which 3 can be written as®= x? + ¢y + 3¢z*> where
X, y and z are integers withy + z even. In other wordg is the unique
prime= 2 (mod 3 which divides 8 — x? to an odd power. We deduce that
£ < 3d/4.

We will get an upper bound for the number,of distinct prime factors
of N(J) as follows: For given smak > 0, letL be the set of primes < d*
for which¢ =2 (mod 3 and(—d/¢) = —1. Then

7)
v < |L|+#x < +/3d : Either¢ {3d — x? or ¢?|3d — x? for all £ € L}

< |L|+«/H]_[(1—§) < Jar[(l—%)z

el lel

by the fundamental Lemma of the small sievel {f3d and¢ < d* then

1 (=3/0) (—d/6) 3d/0\ _ [A-1/0%if telL
(18 (2 ) =) (- 50 = fi
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Thus, sincel is prime,

1_[(1— %)2 = {HK(l_ %) (1+ (—ZI/E)) (1_ %Huz

1/2
_ 1 (—d/ﬁ) (3d/€)
A(@Q(“ ; )(1‘7)) '

Inserting this into (17) we obtain

logN(J) <vlogd

1/2
(—=d/0) (3d/¢)
(18) < dlogd(l_[ (1+ ; )(1_T>> .

l<d

Below we will prove that
1 1 -
LR (1+_) (1+( d/p))
a p=vd P P

(19) - Iogdl_[(1+ (_O:)/p)),

p=d

so that, by (15),

log H(3) = log H(A) = x/azgx Jdlogd [ (1+ (“;')/W),

p=d

Dividing this into (18) we obtain

0oy O9ND) [Teza (1 — (—d/0)/0) (1 — (3d/0)/0)\?

log H(J) logd
unconditionally. Notice that the terms in the Euler product with
(=3/¢) = —1 contribute a bounded amount. Thus the Euler product is

= [[,(1 — (—d/£)/£)* <« logd where the product is over those primes
¢ <dwith £ =1 (mod 3. Thus (20) iso(1) unless

1
> s <1
¢<d
(=3/H)=(~d/0)=1
It can be shown that this never happens under the assumption of the Gener-
alized Riemann Hypothesis. Thus we formally state:

If the Generalized Riemann Hypothesis is true thigd) = H(J)°®,
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Proof of (19) From Sect. 3.2 we have

@ _ (a) [Tpall+ (—d/p)}
Z Z IO - Z pla << Z pl a

(a,b, C) a>1 a<+/d a<+/d
reduced
1—[ {1+ ( d/p)}
< R
( 1 '
p<vd

which implies the upper bound implicit in (19). In the other direction we
have

2 1 20(m) (a)
M (+55)2:: X X

p<vd @b.c) m<vd a<Vd/2
(=d/p)=—1 reduced pIm = (~d/p)=—1
zw(n)
> Y
n<+/d/2

since every integen < d may be written in the formam where p|a if
(—d/p) = 1, andp/mif (—=d/p) = —1, and asp1(a) > 2°®@ for sucha.
Now 2°™ equals the number of squarefree divisdrsf n, and so is at
least the number of paiid r, each< ,/x with dr = n andd squarefree.
Therefore

20(N)

REAEED DD DE P

n=x d< /X r<f

d squarefree

Combining these last two displayed equations, wits: +/d/2 gives, via
Mertens’ Theorem,

> = >> I1 (1 + —) :
(a,b,c) p<+d
reduced (—d/p)=1

which gives the lower bound implicit in (19).
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