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1. Introduction

Oesterĺe and Masser’sabc-conjectureasserts that for any givenε > 0,
if a,b and c are coprime positive integers satisfyinga + b = c then
c �ε N(a,b, c)1+ε, whereN(a,b, c) is the product of the distinct primes
dividing abc. Their conjecture has a wide variety of interesting, sometimes
surprising, consequences (such as Fermat’s Last Theorem, other than per-
haps finitely many examples). Vojta [14, page 84] showed how to formulate
the abc-conjecture in arbitrary number fields (from which Elkies [5] ele-
gantly deduced Faltings’s Theorem). We will describe a version of this
conjecture after introducing the basic notation.

Given a number fieldK we define∆K := |DK |1/[K :Q] , where DK
is the discriminant for the field extensionK/Q. For non-zero numbers
a1,a2, . . . ,an ∈ K we define the (absolute)height and theconductorof
{a1,a2, . . . ,an} to be

H(a1,a2, . . . ,an) =
∏
v

max(‖a1‖v, ‖a2‖v, . . . , ‖an‖v) and

N(a1,a2, . . . ,an) = NK (a1,a2, . . . ,an) =
∏
p∈I

‖p‖−1
p ,

respectively, wherev ranges over all the normalized valuations ofK , and
I is the set of prime idealsp of K for which ‖a1‖p, ‖a2‖p, . . . , ‖an‖p are
not all equal. More precisely,v ranges over the prime idealsp of K with
‖p‖p = NormK/Q(p)

−1/[K :Q] ; and over all of the embeddingsv : K → C
with ‖a‖v = |av|1/[K :Q] .
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We will now describe Elkies’ reformulation of Vojta’s conjecture (though
one should note that he did not require uniformity over different number
fields in the proof in [5]). Note that the conjecture that we state does
follow from Vojta’s “General Conjecture” 5.2.6 in [14] under the additional
assumption that[K : Q] is bounded.

The uniform abc-conjecture for number fields. For any givenε > 0, if
a+ b+ c = 0, wherea,b and c are algebraic numbers in some number
field K then

H(a,b, c)�ε (∆K N(a,b, c))1+ε.(1)

Remark.We stress that the value ofH is independent of the fieldK . On
the other hand both terms on the right side of (1) are dependent onK
and one might ask whether the conjecture over some high degree field
extension could possibly imply a stronger criterion for an equation defined
in a subfield, than the conjecture in that subfield. In fact ifL is a number
field containingK , then ∆K ≤ ∆L whereasNK (a,b, c) ≥ NL(a,b, c).
However∆K NK (a,b, c) ≤ ∆L NL(a,b, c), so (1) is most stringent whenK
is the field of definition ofa andb.

In this paper we will apply the uniformabc-conjecture to the very large
solutions of Diophantine equations that arise from modular functions and
deduce a lower bound for the class number of imaginary quadratic fields.
This extends an idea of Chowla [1,2] who indicated, via a conjecture of
Hall, how unlikely it is thatQ(

√−p) has class number one, since We-
ber [15] showed that there would then be an enormous solution in integers to
x3− py2 = −1728 (in fact wherex is the integer nearest toeπ

√
p/3).

Theorem 1. The uniformabc-conjecture for number fields implies that

h(−d) ≥
{π

3
+ o(1)

} √d

logd

∑
(a,b,c)
reduced

1

a
,(2)

for any fundamental discriminant−d < 0 (that is, an integer which is not
divisible by the square of an odd prime, with−d ≡ 1 (mod 4), or 8 or
12 (mod 16)). The sum is over quadratic forms(a,b, c) of discriminant
−d = b2− 4ac, with−a< b≤ a< c or 0≤ b≤ a= c (that is, reduced).

Mahler [11] showed that if (2) holds then the DirichletL-function
L(s, χd), whereχd :=

(−d
·
)
, has no real zero in the interval 1− c/ logd<

s≤ 1, for some sufficiently small constantc > 0 (actually Mahler showed
a little less than this but it is not hard to suitably modify his proof). We will
refer to such zeros as “Siegel zeros”. We can thus deduce:

Theorem 2. The uniformabc-conjecture for number fields implies that
there are no “Siegel zeros” of DirichletL-functions for characters

(−d
·
)

with−d< 0.
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Our proof provides no insight into the question of “Siegel zeros” of
Dirichlet L-functions for characters

(
d
·
)

with d > 0. Indeed there is no
suitable analogous theory of modular functions for positive discriminants.

If we knew that the uniformabc-conjecture holds with an explicit con-
stant, then our estimate in Theorem 1 could be given explicitly. As a con-
sequence we would be able to solve several outstanding problems about
quadratic fields. For example, one would be able to determine all of Euler’s
“convenient numbers” (numeri idonei), which are thosed for which there
is just one ideal class per genus, in the ideal class group ofQ(

√−d).
Using a result of Selberg and Chowla [12], we will obtain, in Sect. 3, an

unconditional asymptotic formula relating the quantities in (2):

Theorem 3. For any fundamental discriminant−d< 0 we have

h(−d) =
{
π

3
+ O

(
log logd

logd

)}(
1+ 2

logd

L ′(1, χd)

L(1, χd))

)−1 √d

logd

∑
(a,b,c)
reduced

1

a
,

(3)

The estimate given in (2) is asymptotically the same as the lower bound of
(3), if L ′(1, χd)

/
L(1, χd) = o(logd). Indeed this quantityis O(log logd)

if the Riemann Hypothesis is true forL(s, χd) (as we will prove at the
beginning of Sect. 3.1). Thus, under this assumption, we have an infinite se-
quence of “best possible examples” in the uniformabc-conjecture, running
through a sequence of number fields with rapidly growing degree.

We note that if we were to replace∆K by ∆A
K , for someA > 1, in

the conjectural estimate (1), then we can obtain analogous, though slightly
weaker, results.

Elkies suggested to us that one might apply our same methods to other
Diophantine equations arising from modular functions. In Sect. 4 we exam-
ine one other example and this leads to another proof of Theorems 1 and 2,
and another infinite sequence of “best possible examples” in the uniform
abc-conjecture, running through a sequence of number fields with rapidly
growing degree. Perhaps if one takes algebraic points on any given modular
curve, which arise from modular functions (for example, Heegner points),
and then map those points toP1 using a Belyi map as in [5], one obtains
other such “best possible examples” in the uniformabc-conjecture.

Zagier suggested to us that one might apply similar methods to other
differences of singular moduli, using the beautiful and restrictive formulae
of [9] to obtain bounds. We have not succeeded, as yet, in so producing any
new examples, though this does seem to be another good avenue to pursue.
We will discuss this further in Sect. 4.

Remark on Notation:Throughoutε > 0 will be assumed to be an arbitrarily
small fixed constant. However it may be adifferentε from one line to the
next.
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As usualA � B and B � A both mean that there exists a constant
c> 0 such thatA< cB for all suchA andB. We write f � g when f � g
andg� f .

The value of an infinite sum
∑

ρ, over zeros of anL-function, should be
understood to mean limT→∞

∑
ρ: |Im(ρ)|≤T.

2. Complex multiplication

For τ in the upper half plane, setq = e2iπτ . As explained by Weber [15],
the classical theory of complex multiplication tells us about special values
of the j -invariant,

j(τ) : =
(

1+ 240
∑

n≥1

(∑
d|n d3

)
qn
)3

q
∏
n≥1

(1− qn)24(4)

= 1

q
+ 744+ 196884q+ . . .

and the functionsγ2(τ) andγ3(τ) related toj(τ) by

j(τ) = γ2(τ)
3 = γ3(τ)

2+ 1728.(5)

Suppose that−d is a fundamental discriminant. The value ofj(τ) at
τ = −1+√−d

2 or
√−d

2 (as−d ≡ 1 or 0 (mod 4)) is an algebraic integer
whose conjugates are the numbersj(τ∗), whereτ∗ runs through the values
−b+√−d

2a asax2 + bxy+ cy2 runs through a complete set of representative
quadratic forms from each equivalence class of positive definite binary
quadratic forms of discriminant−d.

Weber [15] notes that if the class numberh(−d) = 1 then γ2(τ)

andγ3(τ)/
√−d are both integers, and indeed very large integers by (4).

Chowla [1,2] observed that this is very unlikely to happen in view of the
relation (5). Indeed Chowla so deduced that there are only finitely manyd
with h(−d) = 1 by applying Hall’s conjecture to the Diophantine equation
emerging from (5). Hall’s conjecture is a consequence of the originalabc-
conjecture, and it is an easy exercise to make the same deduction directly
from the originalabc-conjecture. The uniformabc-conjecture for number
fields allows us to extend Chowla’s observation to the general case, by
working in a field containing bothγ2(τ) andγ3(τ).

If d is relatively prime to 6 then Weber showed thatγ2(τ) andγ3(τ) both
belong to the fieldM = k( j(τ)), wherek := Q(√−d). This field is the
Hilbert class field ofk, which is the maximal unramified abelian extension
of k; as such we have∆M = ∆k =

√
d. We now bound the discriminant of

the field containingγ2(τ) andγ3(τ), no matter what the value of gcd(6,d).
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Lemma 1. If K = k(γ2(τ), γ3(τ)), whereτ is as above, then∆K ≤ 6
√

d.

Proof. For many of the facts used in this proof see [15] and [13]. Bothγ2(τ)
andγ3(τ) are in the field of modular functions of level 6; that is, both are
invariant underΓ(6), and the coefficients of the Fourier expansion at each
cusp all belong to the field of sixth roots of unity. Thus bothγ2(τ) andγ3(τ)
are in L, the ray class field ofk (mod 6), by Shimura’s Reciprocity Law
(actually these facts were already well-known to Weber [15]). ThusK ⊆ L
and∆K ≤ ∆L . Now, by the conductor-discriminant formula, the relative
discriminant ofL/k is given byDL/k = ∏χ fχ , where the product is over
all charactersχ of the ray class group(mod 6) of k, and fχ is the conductor
of χ. Moreover fχ divides 6 for all suchχ, and soDL/k divides 6[L:k], which
implies that∆L/∆k ≤ 6. The result follows since∆k =

√
d.

Remark: A more careful analysis would allow us to reduce the factor of 6.

Proof of Theorem 1.Note that for any algebraic integerα one hasN(α,1) ≤
H(α,1), so that in a solution to

γ3(τ)
2− γ2(τ)

3+ 1728= 0(5′)

we have

NK (γ2(τ)
3, γ3(τ)

2,1728) � NK (γ2(τ),1)NK (γ3(τ),1)
≤ H(γ2(τ),1)H(γ3(τ),1)

= H(γ2(τ)
3,1)1/3H(γ3(τ)

2,1)1/2

� H(γ2(τ)
3, γ3(τ)

2,1728)5/6.

Therefore, by applying the uniformabc-conjecture to (5′) in the field K ,
and using Lemma 1 to bound∆K , we deduce that

H(γ2(τ)
3, γ3(τ)

2,1728) �ε d3+ε.

Therefore, by (5), we have

H( j(τ),1) ≤ H( j(τ), j(τ)− 1728,1728) �ε d3+ε.(6)

We now determine a lower bound forH( j(τ),1). Gauss [6] showed
that there is a representativeτ∗ of every ideal class witha ≤ √d/3 (and
this corresponds to the reduced quadratic form in every equivalence class
of binary quadratic forms). Since|1/q| = eπ

√
d/a, we deduce from the

q-expansion forj(τ∗) in (4) that

max{| j(τ∗)|,1} � eπ
√

d/a.
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Remembering that in the definition of height the valuations were normalized
to take account of the degree of the field extension, we thus have

H( j(τ),1) =
(∏
τ∗

max{| j(τ∗)|,1}
)1/h(−d)

� exp

(
1

h(−d)

∑
a

π
√

d

a

)
.

(7)

Comparing this with (6) implies Theorem 1.

Remark. Assuming the Generalized Riemann Hypothesis forL(s, χ)
(so that we can takeL ′(1, χ)/L(1, χ) = O(log logd) in Theorem 3)
we deduce thatH( j(τ),1) = d3(logd)O(1), from (7). Assuming the
uniform abc-conjecture, the proof of Theorem 1 implies that
NK (γ2(τ),1)NK (γ3(τ),1)) � H( j(τ),1)1−o(1)/d1/2 = d5/2+o(1). On the
other handNK (γ2(τ),1) ≤ H(γ2(τ),1) = H( j(τ),1)1/3 = d(logd)O(1), and
similarly NK (γ3(τ),1) ≤ H(γ3(τ),1) � H( j(τ),1)1/2 = d3/2(logd)O(1).
Combining these estimates gives

NK (γ2(τ),1) = H(γ2(τ),1)1+o(1) = d1+o(1)(8)

and NK (γ3(τ),1) = H(γ3(τ),1)1+o(1) = d3/2+o(1).

The numberJ := NormK/Q(γ2(τ)) has many extraordinary algebraic
properties, as shown by Deuring [4] and Gross and Zagier [9]. Since
NK (γ2(τ),1) = H(γ2(τ),1)1+o(1), one might guess that the height and
conductor ofJ are of roughly the same size. One can show thatH(J) =
H(γ2(τ),1){1+o(1)}[K :Q] , and it is evident that the prime divisors ofN(J) and
NK (γ2(τ),1)[K :Q] must be the same. HoweverN(J) is by definition square-
free, whereas the prime factorsp of NK (γ2(τ),1)[K :Q] may occur with
multiplicity, perhaps even high multiplicity, corresponding to the number
of different prime ideals ofK lying abovep which divideγ2(τ). Indeed we
show in Sect. 5 thatN(J) = H(J)o(1) assuming the Generalized Riemann
Hypothesis.

3. Formulae for L-functions — The proof of Theorem 3

Throughout this section we letχ be the characterχd :=
(−d
·
)
.

3.1. Evaluating L-functions at s= 1

For anyy ≥ 2 we have, by partial summation,

L ′(1, χ)
L(1, χ)

= −
∑

p prime

χ(p) log p

p− χ(p) = −
∫ ∞

y

dψ(t, χ)

t
+ O(log y),(9)

where, as usual,ψ(t, χ) :=∑pm≤t χ(p
m) log p. If we assume the General-

ized Riemann Hypothesis forL(s, χ) thenψ(t, χ) = O(t1/2 log2(dt)) (as in
Sect. 20 of [3]), and so the right side of (9) isO(log logd), wheny = log4 d.
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Another approach, using the explicit formula (17) and the functional
equation (13) of pages 82 and 83 of [3], bearing in mind thatχ is real, so
that the zeros of theL-function are symmetric about the lines Re(s) = 1/2
and Im(s) = 0, yields

L ′(1, χ)
L(1, χ)

+ 1

2
logd =

∑
ρ: L(ρ,χ)=0

1

ρ
+ c0

=
∑

ρ=β∈ R

1

β
+

∑
ρ=β+iγ, γ 6=0

β

β2+ γ 2
+ c0,

wherec0= 1
2{log(π)+γ0+(χ(−1)+1) log 2}>0 andγ0 ≈ 0.577215665. . .

is the Euler-Mascheroni constant. Notice that every term here is positive
since 0< β < 1 and so, by pairing up the zerosβ + iγ and 1− β − iγ , we
get

β

β2+ γ 2
+ 1− β
(1− β)2+ γ 2

� 1

1+ γ 2
.

The number of zeros with|γ | ≤ T is {T/π + O(1)} log(dT/2eπ) (page 101
of [3]), and so there are� logd zeros withT0 ≤ |γ | ≤ 2T0, for sufficiently
largeT0. Combining these last two estimates we thus deduce that

L ′(1, χ)
L(1, χ)

+ 1

2
logd� logd.(10)

This estimate will prove useful in the next subsection when we prove Theo-
rem 3.

Remark 1: By pairing theρ andρ terms together, we deduce from (4) of
page 102 of [3], thatL ′(σ, χ)/L(σ, χ) = ∑

ρ Re(1/(σ − ρ))+O(logd)
uniformly for 1≤ σ ≤ 2. Since 0< Re(1/(1−ρ))� Re(1/(σ−ρ))when
σ = 1+ 1/ logd and|1− ρ| � 1/ logd, we obtain

L ′(1, χ)
L(1, χ)

= 1

1− β + O

(
logd+ L ′(σ, χ)

L(σ, χ)

)
,

whereβ is the “Siegel zero”, if it exists (otherwise there is no term 1/(1−β)
here). However|L ′(σ, χ)/L(σ, χ)| ≤ |ζ ′(σ)/ζ(σ)| � logd, so we obtain

L ′(1, χ)
L(1, χ)

= 1

1− β + O(logd).

In fact if (1−β) log d = o(1) then one can modify this argument to improve
the error term too(logd).

This estimate, combined with Theorem 3, implies Mahler’s result dis-
cussed in the introduction. Related estimates have been obtained in [7]
and [8]; and our remark above can be deduced directly from (4.2) in [10].
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Remark 2: Under the assumption of the Generalized Riemann Hypothesis
we may deduce, from formulae above, that the estimate∑

ρ: L(ρ,χ)=0

1

ρ
= 1

2
logd+ O(log logd)

holds uniformly for all quadratic charactersχ (mod d).

3.2. The Selberg-Chowla formula

In this subsection we will prove Theorem 3. In [12] Selberg and Chowla
give a highly convergent expansion for Epstein’s zeta-function which can
be deduced as a consequence of Kronecker’s limit formula (when summed
over all ideal classes). They deduce from this an identity, given on the
last line of page 109 in [12] (which contains an important typographical

error where “e2πni(bj+i
√|d|)/2aj ” appears incorrectly as “e2πni bj+i

√|d|
2aj

”). Now

a ≤ √d/3 for any reduced binary quadratic form(a,b, c) of discriminant
−d, so that|exp(2iπn(b+ i

√
d)/2a)| = exp(−πn

√
d/a) ≤ 1/Cn where

C = exp(π
√

3), and therefore∣∣∣∣∣∣
∑
n≥1

∑
d|n

d

 e2iπn (b+i
√

d)
2a

∣∣∣∣∣∣ ≤
∑
n≥1

∑
d|n

d

C−n

=
∑
d≥1

d

Cd − 1
= .004390084081. . .

Thus one can deduce from Selberg and Chowla’s identity that

L ′(1, χ) = π2

6

∑
(a,b,c)
reduced

1

a
+ π√

d

∑
(a,b,c)
reduced

log(a/d)+ O

(
h(−d)√

d

)
.

By adding πh(−d) logd/2
√

d to both sides, and noting that each
log(
√

d/a)� 1, we obtain

πh(−d)√
d

(
L ′(1, χ)
L(1, χ)

+ 1

2
logd

)
= π2

6

∑
(a,b,c)
reduced

1

a
+ O

 1√
d

∑
(a,b,c)
reduced

log(
√

d/a)

 ,
(11)

using Dirichlet’s class number formula,L(1, χ) = πh(−d)/
√

d for d> 4.
We now bound the error term in (11). Letρ(a) denote the number of

reduced binary quadratic forms(a,b, c) of discriminant−d, for some inte-
gersb andc. Let ρ1(a) denote the number of distinct solutionsb mod 2a
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to b2 ≡ −d (mod 4a). By the Chinese Remainder Theorem we have
ρ1(a) � ∏

p|4a{1 + (−d/p)}, and, in factρ(a) ≤ r(a), the number of
distinct divisors ofa. Now, b is, by definition, the least residue in absolute
value from a residue class mod 2a of solutions tob2 ≡ −d (mod 4a); there-
fore ρ(a) ≤ ρ1(a). On the other hand if|b| ≤ a andb2 ≡ −d (mod 4a)
with a<

√
d/2 then when we definec := (b2+d)/4a we getc> a so that

(a,b, c) is a reduced form. Therefore ifa<
√

d/2 thenρ(a) = ρ1(a).
Since log(

√
d/a) is a decreasing function ina, we thus deduce that∑

(a,b,c)
reduced

log(
√

d/a) =
∑
a≥1

ρ(a) log(
√

d/a) ≤
∑
a≤A

r(a) log(
√

d/a),

where A is chosen to be the smallest integer for which
∑

a≤A r(a) ≥
h(−d). Dirichlet showed that

∑
a≤A r(a) ∼ A log A so thatA ∼ h(−d)/

log(2h(−d)). Therefore, by partial summation, using Dirichlet’s estimate,
the error term in (11) is

� 1√
d

∑
a≤A

r(a) log(
√

d/a)� A log A√
d

log(
√

d/A)

� h(−d)√
d

log

( √
d

h(−d)
logh(−d)

)
� log logd

logd
max

{
1,

h(−d) logd√
d

}
.

However, by (10), the left side of (11) is� h(−d) logd/
√

d; and, since
there is always the principal form, witha = 1, the main term on the right
side of (11) is� 1. Therefore the above estimate for the error term in
(11) does imply (3) after suitable re-arrangement, and thus we have proved
Theorem 3.

4. Some suggested generalizations

4.1. Theλ-function

In an email dated August 22nd, 1994, Elkies suggested that one might try
the same approach with theλ-function. Any elliptic curveE can be written
in the formy2 = 4x(x−1)(x−λ). There are, generically, six choices forλ,
the roots of the equation

f(x) := 256(x2 − x+ 1)3− j(E)(x2− x)2,(12)

where j(E) is the j -invariant of the elliptic curveE. If λ is a root of (12)
then the six roots are

λ, 1/λ, 1− λ, 1/(1− λ), (λ− 1)/λ, λ/(λ− 1).
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Let λ be the root of (12) which is largest in absolute value. If
|λ| ≤ 2 then all of the roots of (12) have size between 1/2 and 2, and so∏

f(α)=0 max{1, |α|} � 1. If |λ| > 2 then max{1, |λ|},max{1, |1−λ|} � |λ|,
whereas max{1, |α|} � 1 forα = 1/λ, 1/(1−λ), (λ−1)/λ, or λ/(λ−1).
From (12) we havej � |λ|2, so that∏

f(α)=0

max{1, |α|} � max{1, | j |}.(13)

Nowλ satisfies the equationλ+ (1−λ) = 1. Moreoverλ and 1− λ are
evidently 2-units, by (12), so thatN(λ,1−λ,1) � 1. Therefore the uniform
abc-conjecture implies thatH(λ,1− λ,1)�ε ∆1+ε

L , whereL = M(λ).
Now,λ always belongs to the ray class field(mod 2), which is of degree

≤ 3 over M, so that[L : M] ≤ 3. It can be shown that[L : M] equals
each of 1,2 and 3 infinitely often. In the case that[L : M] = 3 then by
studying automorphisms we find that the the equation in (12) splits into
two cubics, the first with rootsλ, (λ− 1)/λ,1/(1− λ), the other with roots
1/λ, λ/(λ−1),1−λ. ThusH(λ,1−λ,1) � H( j(τ),1)1/6. Combining the
last two estimates thus gives

H( j(τ),1)�ε ∆6+ε
L .

This implies (6) since∆L � d1/2 (as in Lemma 1).
We will return to this, and the cases where[L : M] = 1 or 2 in

a subsequent paper.

4.2. Differences of singular moduli

In an email dated December 2nd, 1994, Zagier asked us whether similar
methods might be applied to other differences of singular moduli (the value
of j at a quadratic imaginary numberτ). In [9], Gross and Zagier showed
that the norm of differencesj(τ1)− j(τ2) have only small prime factors and
then often to quite high powers (indeed they show how to determine to what
exact power each prime appears), when the discriminants ofτ1 andτ2 are
relatively prime (see the remark after the proof of Theorem 1, above). Our
proof of Theorem 1 may be viewed as applying the uniformabc-conjecture
to the equation

( j(τ)− j(i))+ ( j(i)− j(ω)) = ( j(τ)− j(ω)),

wherei 2 = −1 andω2+ω+1= 0, sincej(i) = 1728 andj(ω) = 0. Thus,
in general one might look at

( j(τ1)− j(τ2))+ ( j(τ2)− j(τ3)) = ( j(τ1)− j(τ3)),(14)

especially if the corresponding discriminants are pairwise coprime, since
we then have a considerable amount of information available from [9]:
moreover ifK = Q( j(τ1), j(τ2), j(τ3),

√−d1,
√−d2,

√−d3) then∆K �√
d1d2d3 and[K : Q] = 8h(−d1)h(−d2)h(−d3).
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As yet we have been unable to succeed with this strategy, perhaps because
we used the fact, in the proof of Theorem 1, that the relative discriminant
for the field extension containingj(τ)1/3 and ( j(τ) − 1728)1/2 over M is
absolutely bounded (see Lemma 1), whereas we have not determined an
analagous property in general.

Another possibility would be to consider (14) whenτ1, τ2, τ3 are all
unequal but have the same discriminant, since Gross and Zagier [9] also
give formulae to describe the discriminant of the minimum polynomial
for j(τ).

5. Estimates for the norm of j(τ)

Let A := ∣∣NormQ( j(τ))/Q ( j(τ))
∣∣, andJ := NormK/Q(γ2(τ)) as above.

5.1. The height ofJ

We will show thatH(A) = H( j(τ),1){1+o(1)}h(−d) assuming the General-
ized Riemann Hypothesis, from which it follows thatH(J) =
H(γ2(τ),1){1+o(1)}[K :Q] by appropriate scaling. Now, from (7) we have that

∣∣NormQ( j(τ))/Q( j(τ))
∣∣ =∏

τ∗
max{| j(τ∗)|,1}min{| j(τ∗)|,1}

= exp

(
π
√

d
∑

a

1

a
+ O(h(−d))

)∏
τ∗

min{| j(τ∗)|,1}.

We thus need to understand “small values” ofj(τ): The only zero ofj(τ)
occurs atω, a primitive cube root of unity inside the fundamental domain for
SL(2,Z). In fact j has a zero of order three there so that| j(τ)| � |τ − ω|3
in a small ball aroundω. Thus if τ∗ = (−b+ √−d)/2a and | j(τ∗)| is
sufficiently small then, as|b| ≤ a ≤ √d/3 for a reduced form,

| j(τ∗)| � |1− |b|/a|3 + |√d/3/a− 1|3 � ((√d/3− |b|)/a)3

�
(

1− |b|√
d/3

)3

�
(

1− 3b2

d

)3

�
(

1− 3a2

d

)3

� 1

d3

since we must have|b|,a � √d/3 for this to be small.
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Therefore if | j(τ∗)| < 1/ log9 d then
√

d/3 − a � √d/ log3 d and
so the number of such forms is≤ ∑

0≤√d/3−a�√d/ log3 d ρ(a) ≤∑
0≤√d/3−a�√d/ log3 d r(a) � √d/ log2 d; and so their total contribution to∏
τ∗ min{| j(τ∗)|,1} is eO(

√
d/ logd). The contribution of the remaining forms

is≥ 1/ log9h(−d) d. Thus we have proved that

A = exp

(
π
√

d

(∑
a

1

a
+ O

(
1

logd

))
+ O(h(−d) log logd)

)

= exp

(
π
√

d

(∑
a

1

a

{
1+ O

(
log logd

logd

)}))
,(15)

the last error term obtained by substituting (10) into Theorem 3 to get the
upper boundh(−d) � (

√
d/ logd)

∑
a

1
a . More accurately, Theorem 3

under the assumption of the Generalized Riemann Hypothesis becomes

3h(−d)(logd+ O(log logd)) = π√d
∑

a

1

a
.

Using this formula to estimate the main term in (15) gives

H(A) = (d(logd)O(1)
)3h(−d) = H( j(τ),1){1+o(1)}h(−d),(16)

by (8), as desired.

5.2. The conductor ofJ

For simplicity suppose thatd is prime and−d ≡ 1 (mod 6). By the remarks
between (1.5) and (1.6) in [9] we see thatN(J) is the product of those primes
` ≡ 2 (mod 3) for which 3d can be written as 3d = x2+ `y2+3`z2 where
x, y and z are integers withy + z even. In other words̀ is the unique
prime≡ 2 (mod 3) which divides 3d− x2 to an odd power. We deduce that
` ≤ 3d/4.

We will get an upper bound for the number,ν, of distinct prime factors
of N(J) as follows: For given smallκ > 0, letL be the set of primes̀≤ dκ

for which ` ≡ 2 (mod 3) and(−d/`) = −1. Then

ν ≤ |L| + #{x < √3d : Either` - 3d− x2 or `2|3d− x2 for all ` ∈ L}
(17)

� |L| + √d
∏
`∈L

(
1− 2

`

)
� √d

∏
`∈L

(
1− 1

`

)2

by the fundamental Lemma of the small sieve. If` - 3d and` ≤ dκ then(
1− 1

`

)(
1+ (−3/`)

`

)(
1+ (−d/`)

`

)(
1− (3d/`)

`

)
=
{
(1− 1/`)4 if ` ∈ L
1 if ` 6∈ L
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Thus, sinced is prime,

∏
`∈L

(
1− 1

`

)2

�
{∏
`≤dκ

(
1− 1

`

)(
1+ (−d/`)

`

)(
1− (3d/`)

`

)}1/2

�
(

1

logd

∏
`≤d

(
1+ (−d/`)

`

)(
1− (3d/`)

`

))1/2

.

Inserting this into (17) we obtain

log N(J) ≤ ν logd

� √
d logd

(∏
`≤d

(
1+ (−d/`)

`

)(
1− (3d/`)

`

))1/2

.(18)

Below we will prove that∑
a

1

a
�
∏

p≤√d

(
1+ 1

p

)(
1+ (−d/p)

p

)

� logd
∏
p≤d

(
1+ (−d/p)

p

)
,(19)

so that, by (15),

log H(J) � log H(A) � √d
∑

a

1

a
� √d logd

∏
p≤d

(
1+ (−d/p)

p

)
.

Dividing this into (18) we obtain

log N(J)

log H(J)
�
(∏

`≤d (1− (−d/`)/`) (1− (3d/`)/`)

logd

)1/2

(20)

unconditionally. Notice that the terms in the Euler product with
(−3/`) = −1 contribute a bounded amount. Thus the Euler product is
� ∏

`(1− (−d/`)/`)2 � logd where the product is over those primes
` ≤ d with ` ≡ 1 (mod 3). Thus (20) iso(1) unless∑

`≤d
(−3/`)=(−d/`)=1

1

`
� 1.

It can be shown that this never happens under the assumption of the Gener-
alized Riemann Hypothesis. Thus we formally state:

If the Generalized Riemann Hypothesis is true thenN(J) = H(J)o(1).
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Proof of (19): From Sect. 3.2 we have

∑
(a,b,c)
reduced

1

a
=
∑
a≥1

ρ(a)

a
≤
∑

a≤√d

ρ1(a)

a
�

∑
a≤√d

∏
p|a{1+ (−d/p)}

a

≤
∏

p≤√d

(
1+ {1+ (−d/p)}

p− 1

)
,

which implies the upper bound implicit in (19). In the other direction we
have

∏
p≤√d

(−d/p)=−1

(
1+ 2

p− 1

) ∑
(a,b,c)
reduced

1

a
≥

∑
m≤√d

p|mH⇒ (−d/p)=−1

2ω(m)

m

∑
a≤√d/2

ρ1(a)

a

�
∑

n≤√d/2

2ω(n)

n
,

since every integern < d may be written in the formam where p|a if
(−d/p) = 1, andp|m if (−d/p) = −1, and asρ1(a) � 2ω(a) for sucha.
Now 2ω(n) equals the number of squarefree divisorsd of n, and so is at
least the number of pairsd, r , each≤ √x with dr = n andd squarefree.
Therefore ∑

n≤x

2ω(n)

n
≥

∑
d≤√x

d squarefree

1

d

∑
r≤√x

1

r
� log2 x.

Combining these last two displayed equations, withx = √d/2 gives, via
Mertens’ Theorem,

∑
(a,b,c)
reduced

1

a
�

∏
p≤√d

(−d/p)=1

(
1+ 2

p− 1

)
,

which gives the lower bound implicit in (19).
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