HILBERT MODULAR FORMS MODULO p™:
THE UNRAMIFIED CASE

EYAL Z. GOREN

ABSTRACT. This paper is about Hilbert modular forms on certain Hilbert modular varieties associ-
ated with a totally real field L. Let p be unramified in L. We reduce to the inert case and consider
modular forms modulo p™. We study the ideal of modular forms with g-expansion equal to zero
modulo p™, find canonical elements in it, and obtain as a corollary the congruences for the values of
the zeta function of L at negative integers. Our methods are geometric and have also applications
to liftings of Hilbert modular forms and compactification of certain modular varieties.

1. INTRODUCTION

1.1. The contents of this paper. The subject of this paper is the study of Hilbert modular forms
on Hilbert modular varieties and some applications. The modular varieties are those parameterizing
abelian varieties of dimension g with a given action of the ring of integers of a totally real field L
of degree g over Q and certain level structures, some indigenous to characteristic p. We shall be
particularly interested in the case where the domain of the modular form is the modular variety
modulo p™. This allows us to study ¢-expansion modulo p™.

The Hilbert modular forms we consider are modular forms in the sense of Katz [11]. Their weights
are given by characters of a certain split torus over Op. Over the complex numbers this just boils
down to discussing Hilbert modular forms of possibly non-parallel weight.

We assume a priory that the prime p we are dealing with is non-ramified in L. However, one
immediately reduces to the case where the prime is inert. This is a well known principle and we refer
the reader to [5] to see how this works. Assume, henceforth, that p is inert.

Denote the graded ring of Hilbert modular forms of uy-level ((IV,p) = 1), defined over W,,,(F), by
ByexM(W,,(F), x, un). We refer the reader to Section 1.2 for precise definitions. In brief: W, (F)
is isomorphic to Or/(p™); a level ux means an equivariant embedding of Dzl ® pn into the abelian
variety.

The main question we treat is:

“what can one say on the kernel of the g-expansion map on Ey,ex M(W,,(F), x, pin) #”

While in characteristic O the kernel is trivial, the situation is different in characteristic p. A well-
known theorem of P. Swinnerton-Dyer asserts that for g = 1 and m = 1, the kernel is generated by
E,_1 — 1, where E,_; is an Eisenstein of weight p — 1 (see (2.21)), and a well-known theorem of P.
Deligne asserts that F,_; modulo p is the Hasse invariant.

Our results are a generalization of these theorems for general totally real fields and any m. One of
the psychological shifts one has to make is to completely abandon the method of obtaining relations
from reducing from characteristic zero and to work solely modulo p™. Indeed, the question whether
or not E(,_1y,~ — 1 belongs to this kernel depends, for a given r on the field (and need not hold), and
for all 7 > 0 is equivalent to Leopoldt’s conjecture.

For m = 1, that is, modulo p, our results are a direct and precise analog of the above theorems.
The complement of the ordinary locus was studied by F.Oort and the author in [7]. It turns out that
it canonically decomposes as a union UleW{i} (see Section 1.2).
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Theorem 1. (Theorem 2.1) Let p be inert in L. There exist Hilbert modular forms hi,..., hg, over
F, of weights X’fxz_l, e 7X§X1_1 respectively (h; being of weight xfxijrll), such that

(hi) = Wiy

(In particular, the divisor of h; is reduced). The g-expansion of h; at every cusp of M*(F,un) is 1.
Let h = hy---hg. Then h is a modular form of weight NormP~'. It has q-expansion equal to 1 at
every cusp and its divisor is reduced, equal to the complement of the ordinary locus.

We remark that h is non-other then the Hasse invariant, i.e., the determinant of the Hasse-Witt
matrix, and that if g > 1 the h;’s do not lift ever to characteristic zero!
We then prove (compare Theorem 2.3)

Theorem 2. Let p be inert in L. The kernel of the qg-expansion map modulo p is the ideal generated
by {hl —1,...,]7,g—1}.

Regarding the situation modulo p™, our results are less complete. Let I, be the kernel of the
g-expansion map modulo p™. We are able to identify the quotient &, ex M(W,,,(F), x, pun)/ L and
find some canonical elements in I,, that are a generalization of the h;’s. See Theorem 3.8. After
adding level structure one can determine the kernel of the g-expansion map modulo p™ completely.
See Proposition 3.12.

We provide two applications. One is to construct a normal, and explicit, compactification of Hilbert
modular varieties with a “I'1(p)” level structure, i.e., with a p,-level. See Theorem 2.8.

The other application is classical. Recall that by a theorem of C.L. Siegel the values of {1, (1—k), for
k > 2 an integer, are rational numbers and are equal to zero if k is odd. From a modern perspective
this is quite immediate. One considers the modular form of weight %k given by Ej — E} for an
automorphism o. It turns out that this “rational influence” of the higher coefficients on the constant
coefficient can be refined to an “integral influence”. This was proved and developed in the case g =1
by J.-P. Serre [16], and in general by P.Deligne and K. Ribet in [4], [15]. In truth, our methods are
not that far from Deligne-Ribet’s methods [4], [15] (who, in turn, follow ideas of N. Katz [8], [9], [10],
[11] and J.-P. Serre [16]), but our approach is more geometric and is based on [7], [5]. The conclusion
of the congruences is clearly in “Serre’s style”.

Corollary 1. (Corollary 3.11) Let p be inert in L. Let k > 2.
1. Let p # 2, then if k =0 (mod p — 1)

val, (¢ (1 — k) > —1 — val, (),

and (r,(1 — k) is p-integral if k 20 (mod p — 1).
2. If p=2, then

vala(Cr(1 — k)) > g — 2 — valy (k).

Corollary 2. (Corollary 3.15) Let p be inert in L. Let k, k' > 2 and k =k’ (mod (p — 1)p™).
1. If k#0 (mod p— 1) then

(L=p )1 =k) = (1 =p"™ D)1= K)  (mod p™*).
2. If k=0 (mod p—1) but p # 2, then
(1=p" ™ D)1= k) = (1 =p?™ D)1= K)  (mod p™ =l (EHD),
3. If p=2, then
(129 D) (1 — k) = (1 - 290D (1 — ) (mod 2mHo—2-vala(kk)),
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The derivation of the congruences rests on the following Criterion 3.10:

“Let 3 fx € I, Then there exist a, in some W, (IF)-algebra such that 3 a,x(u) =0 (mod p™)
for all w € (Or/(p™))* and a1 = f1.”

It is interesting to note that this criterion allows an inverse in some sense. Given such polynomial
relations one obtains relations between values of zeta functions, provided certain restrictions are
satisfied.

Acknowledgements. We wish to make clear our intellectual debt to the works of Nicholas Katz. Thanks
are due to H. Darmon, K. Khuri-Makdisi and H. Kisilevsky for the interest they took in this work.

1.2. Definitions and Notation. Let L be a totally real field of degree g over Q. Let Of, be its ring
of integers, Dy, the different ideal and dj, the discriminant. Let ¢ be a fractional ideal of L. Let p a
rational prime that is inert in L. Let F be a fixed field of pY elements.

All schemes in this paper are over Z[d}'].

e A HBAS (Hilbert-Blumenthal abelian scheme) over S is a triple
(1.1) A= (A1)

consisting of an abelian scheme 7 : A — S, an embedding of rings ¢ : O, — Endg(A), a polarization
A (Mg, M}) — (c,ct) identifying the Op-module My of symmetric homomorphisms from A to its
dual with ¢ such that the cone of polarizations MX is mapped to ¢*. Furthermore, we require that
tjix/s be a locally free O ® Og-module of rank 1. In particular, the relative dimension of A is g. Here

ta/s stands for the locally free sheaf of Og-modules of rank g given by Lie(A/S) = s*Q4 /g, where
5: 8 — A is the identity section, and t /s stands for its dual. We shall employ this notation for a
general group scheme 7 : G — S. If 7 is proper then also t, /s = mldg)s-

By a non-vanishing differential on a HBAS A, we mean an Op ® Og basis to tZ/S' Locally Zariski,
every HBAS possesses a non-vanishing differential.

o A upn-level structure on a HBAS is a closed immersion of S-group schemes,

(1.2) D' @z pun — A,

that is equivariant for the Op-action. Here Oy, acts canonically on Dzl ®z pn from the left. If p|N
this, of course, implies that A is ordinary at every fibre of characteristic p.

e Let T be the split torus over W (F), associating to a W (F)-algebra R the group

(1.3) T(R) = (O @z R)*.

Let {o1,...,04} be the embeddings of L into W (F), ordered cyclically with respect to the Frobenius
automorphism o of W(F): o o0; = 0,41 (the subscripts read (mod g)). Once we have fixed a choice
of o1, we have then a canonical isomorphism

g
(1.4) Op @z W(F) = 6_91W(IF)

That gives a canonical isomorphism T = G,,Y, and in particular, a canonical isomorphism
(1.5) T(R) = élRX, R e W(F) - Alg. .

We let x1,...,Xxy denote the projections of T on its g components.
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e Let X be the group of characters of T. It is the free abelian group on xi,...,xy. We write X

multiplicatively:

(1.6) X={x{"--xp:ri €ZL}.

It is a principal homogeneous space for the group Z[Z/gZ]. We denote by 1 the trivial character.
Let X(1) be the subgroup of X generated by the elements Xfx;rll:

(1.7) X(1) =< xixz ' xbXs s XX >

It is the subgroup of X consisting of all characters trivial on (Or/(p))* via
g

(1.8) (Or/(P)* = T(F) = SF*.
1=

Similarly, we let X(m) be the subgroup of X consisting of all characters trivial on (Or/(p™))*. See
Section 3.2.

e Let B be a W(F)-algebra. Let x € X. A HMF (Hilbert modular form) over B, of weight x, and
pn-level is a rule,

(19) (A757w)/RHf((A7ﬁvw)/R) € R,

associating to a HBAS A over a B-algebra R, endowed with a py-level § and a non-vanishing dif-
ferential w, an element f((A,3,w),/r) of R. One requires that f((A,3,w),/r) depends only on the
R-isomorphism class of (A, 3,w), commutes with base-change, and satisfies

(110) f((A7 ﬂv CV_IW)/R) = X(a)f((Aa /67 w)/R)v Va € (OL ® R)X
We let M(B, x, un) denote the B-module of HMFs over B, of weight x and uy-level.

e In [7], a stratification of Hilbert modular varieties in characteristic p was obtained by means of a
type. In the case where p is inert, the type of A is the structure of the Dieudonné module of the
a-group of A as an O ® Og-module. In [5], the reader can find how to define this stratification under
less restrictions.

We recall that for every HBAS A over a field k containing I there is associated a type 7(A), which
is a subset of {1,---,g}. It simply encodes the structure of the Dieudonné module of the a-group
of A, a(4), as an Of, ® k-module. For k a perfect field this a-group is Ker(F) N Ker(Ver). In this
case, the Dieudonné module D(a(A)) of a(A) is a k-vector space, of dimension between zero and g,
on which Op, ® k acts. As D(a(A)) is contained in the Dieudonné module of the kernel of Frobenius,
i.e., in the relative cotangent space, we have that D(«(A)) is a sub-sum of ®Y_;k = O ® k. The type
7(A) is just defined by the identity

(1.11) D(a(A)) = Sier(ayk.

For every subset T of {1,--- , g}, one lets W be the closed reduced subscheme of the moduli space,
universal for the property “the type contains 7”. It has codimension |7|. We have W, "W, = W,_,.
For a rigid level structure, W, is regular.

Lemma 1.1. Let N > 4. The moduli problem of HBAS with py-level over Z[d;l]-schemes s rigid.

Proof. Let A be a HBAS. Let D be the centralizer of L in End(A4) ® Q. It is known that D is either
L, a CM field such that DT = L, or a quaternion algebra over L that is ramified everywhere at oo.
See [2], Lemma 6.

Let Op = DNEnd(A4). If £ € Op is an automorphism of A preserving the polarization, then
£€* = 1, where * is the unique positive involution of D. Hence, £ is of finite order. It follows that
the field L() is either L, or a CM field whose totally real subfield is L, and that £ is a root of unity
of order n. The case of L(§) = L is just the case of { = £1 and is easily dispensed with. We assume

that L(¢) # L. Hence, [L(£) : Q] = 2g. Equivalently, 1 < ¢(n), ¢(n)|2g and LN Q(£) = Q(&)™T.
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If € preserves a py-level structure, it follows that N9| deg(1 — &). Hence, n is a prime power. Say
n = (", £ a prime. Then deg(1 — &) = £29/#(") Since ¢(n) > 1, this is divisible by a g-th power if and
only if ¢(n) = 2. On the other hand, ¢(n) = ¢"~1(¢ — 1). This implies r = 1 and £ = 3, or r = 2 and
¢ =2. Both imply N <4. O

e Let B be a W(F)-algebra. We let M¢(B, un) denote the base change to B of the ordinary lo-
cus of the moduli space of HBAS with ppy-level compactified at infinity by its canonical minimal
compactification. This notation is chosen so that for every (N7, N3) = 1, the map

(1.12) ME(B, pnyN,) — ME(B, py)
is an étale Galois covering with Galois group canonically isomorphic to (Or/(N3))*. We elaborate

on this:

Let A be a commutative ring with 1. Let M, M’ be finitely generated free abelian groups, N =
Hom(M,Z) and N’ = Hom(M',Z). Let G,, = Spec(Alg, g ']). We consider the torus

(1.13) G(M) := Spec(A[M])

= Spec(Alz™ : me M]/(2° — 1,2m2™ — 2™t ¥m,m' € M)).
As a functor on schemes over A we may identify it with the functor N ® Gy, 4, where
(1.14) (N®Gpja)(R):=N®z R, Rec A—Alg..

One verifies that

(1.15) Lie(G(M)/A) = N ® Lie(G,,/JA) = N® A - q(%,
and hence,
" " dg
dq

See [1], Exposé II. In the last isomorphism we have m ® a - & corresponding to ax~"dx™.
Let ¢ : M — M’ be a homomorphism. It induces a homomorphism of group schemes ® :

G(M") — G(M), whose effect on functions is ™ — z®(™). The induced map
(1.17) "ty a — tar a

dz™ dxq&('m)
zm T getm)

is given, innocently enough, by Alternately, m ® a - % — ¢p(m)®a-

=&

Consider now the case M = M’ = Oy, and ¢ = [a], the map of multiplication by an element o € Oy,.
That is, we consider the group scheme Dzl ® G,, over A, which is the torus

(1.18) Spec(A[OL]) = Spec(A[z™ : m € Or]/(z° — 1, 2™ — 2™ m,m! € O)).
Thus, [a] acts on functions by ™ +— z*™. The identification of t*Dgl®Gm /A with O, ® A - %‘1 agrees

*

D19 /A as an O ® A-module.

with the action of Op. In particular, the differential 1® % generates t

Let N be prime to p. Given a HBAS with pypn-level, say (4, By X Bpn), we define
(1.19) [a](4, Bn x Bpr) = (4, B8 X (Bpn o [a]))-

We let (Or/(p™))* act on functions f on M(B, pinpn) by

(1.20) ([a] f)(A, Bn x Bpr) = f([0](A, BN X Bpn)).
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2. Mobp p

Let N > 4 and prime to p. Let M*(B, ux) denote the base change to B of the whole moduli space of
HBAS with py-level compactified at infinity. For B an F-algebra, we let Wy;; be the closed reduced
subscheme of M*(B, 1) where the type contains i. See above and [7] for more details.

Theorem 2.1. There exist HMFs hq,...,hqy, over F, of weights XI1)X2_17 e ,ngl_l respectively (h;
being of weight xfx;_ll), such that

(2.1) (he) = Wi,

(In particular, the divisor of h; is reduced). The q-expansion of h; at every cusp of M*(F,un) is 1.
Let h = hy---hg. Then h is a modular form of weight Norm?~'. It has q-expansion equal to 1 at
every cusp and its divisor is reduced, equal to the complement of the ordinary locus.

We refer the reader to [5] for complete details and discussion of the partial Hasse invariants h;. For
completeness, we sketch the proof of the theorem. The following lemma follows immediately from the
discussion in [7].

Lemma 2.2. Let A be a HBAS over a perfect field k containing F. Assume that A is not ordinary.
Then the p-divisible group of A, say A(p), is local and a universal display over Spec(k[[t1,...,t4]])
for its infinitesimal deformations as a HBAS is given by

_(A+TC B+TD
o o= (4170 B4TD)

Here A,B,C and D are g x g matrices that are Teichmiller lifts to W (k[[t1, ..., t4]]) of the display
b = (é 5223 i; ; Eiﬂgj ig) of A, and can be chosen to be of the form
ai
(2.3) A=
Gg

(Similarly for B,C,D). The matriz T is diagonal, with diagonal elements Ty, ...,T,, where T; is the
Teichmdiller lift of t;.

Let
(2.4) €l,...,€g

be the idempotents of Op ®F. Given (4,w),r we get a basis {e1w, ..., eqw} for t} 5. Let {n1,...,ng}
be the basis of t4,r dual to that basis. Let F' be the Frobenius morphism. It is induced by a choice
of prime-to-p Op-polarization that identifies t4,r with HY(A,04). Put

(2.5) hi((A,w)) = Fni/nit1-

One verifies that indeed F7; is a multiple of 7;1 and that h; is a modular form of weight x%x. _:1.
See [5]. Moreover, by the theory of displays, the matrix A + T'C' modulo p is giving the action of
Frobenius on the tangent space of the universal local deformation. One finds that a; (mod p) is, up to
a unit of the base, h;(A,w), and that a; + T;¢; (mod p) is, up to a unit of the base, h; of the universal

deformation with some choice of a non-vanishing differential on it. On the other hand, one can prove
that a; = 0 if and only if i € 7(A). We see that (h;) = Wy, O

Let Rypn denote the ring of regular functions on the scheme M(F, unpn ).
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Theorem 2.3. 1. There exists a natural surjective homomorphism
(2.6) r: & M(F,x, un) — Rnyp,
xeX
whose kernel I is precisely the kernel of the g-expansion map. It is an ideal graded by X/X(1) and

(2.7) I=((h;—1:i=1,...,9).
2. Under the isomorphism provided above, & M(F,x, pun)/I = Rnp, we have
xeX

XEX(1)

Proof. Let 7 : (A", %) — MC(F, iunp) be the universal object. Let
(2.9) 2= tan, gy Mo )

Via g" we get an isomorphism

(210) Q= tD ®;LP—>Spec(]F) QF OM c(F,unp)*

Hence © has a canonical generator we,,: The image of (1 ® %) ® 1. The idempotents {e1,...,eq}
(see (2.4)) give a decomposition

(2.11) Q= éﬂ(xi), Wean = éla(xi).
Given any x € X, x = X' -+ X¢’, we put

(2.12) Q00 = 90" al) = & a(x)®".
Clearly a(x) is a canonical section of Q(x) (wWean is non-vanishing!).

Let f € M(F, x, pn). We write f also for the pull-back of f to M°(F, unp). Let

(2.13) r(f) = f/a(x)

We extend the definition linearly and obtain a ring homomorphism

(2.14) & M(F, x, un) — Rnp.
xeX

It can be interpreted as follows. Given (A, Bn X B,)/r, we have

(2.15) r(O LA By X By) =D f(A, By, (B;) (1@ il
From Equation (2.15) we can conclude two facts:
e The map,
(216) D MORX?NJN) I RNpa
XEX

is W(F)*-equivariant, where o € W(F)* acts on f € M(F,x,un) by [o]f = x(o)f. Indeed
T([O‘]f)(éa ﬂN X 6])) = X(OL)T’(f)(A, 6]\/ X ﬂp) = X(a)f(A7 ﬂNv (ﬂ;)ill@ d?q) = f(A7 ﬂNa a71 . (ﬂ;)ill@
@) = r(f)(A Br % By o [a]) = [al(r(£))(A, By x By).

e Let B be a W ([F)-algebra. Let Std be the standard cusp of M(B, pinpn). It is the Tate object
D' ® Gy /q((¢Dy)~') with its canonical Op-action and polarization (see [11] for details) with its
visible pinpn-level structure and non-vanishing differential. Evaluation at that object is a g-expansion
map.
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Taking again B = F and n = 1 and employing (2.15), we see that the following diagram commutes:

S2) MﬂRXaMN) L) RNp
xexX

(2.17) q — expansion AN 1

OMe (B pin,).Std
It follows that I is the kernel of the g-expansion map.

Note that since (W (F)/(p))* is of order prime to p, we have

2.18 Ryy= @ RY,
(2.18) e peX/X(1) VP
where f € le\’,p if for every a, [o]f = ¢¥(a)f.
Given such f, choose some lift x of ¥ to X and define first a meromorphic modular form g in

M(F, x, un) by
(2.19) g=f-a(x).

In terms of points,

(2.20) 9(A, Bn,w) = f(A,Bn x Bp) - ¢ <(

for any pp-level 3,. This shows that g is indeed of py-level. Clearly, r(g) = f and ¢ has no poles on
the ordinary locus. It follows that ¢’ = g- h* is a holomorphic modular form for k > 0. Here h is the
total Hasse invariant from Theorem 2.1.

Because I is the kernel of the g-expansion, it follows that for every i, h; — 1 € I. In particular:

e (h) = 1 and hence r(¢') = f and the map r is therefore surjective.

o (hi—1,...,hy—1)C I

We next show that I = (hy —1,...,hy —1). Suppose that 7(3>_", f;) = 0. By multiplying by various
hj —1 we may assume that f; is of weight +; and for i # j we have ¢; # v, (mod X(1)). But,
since the map r is W (F)*-equivariant, it follows that each r(f;) = 0, because they fall into different
summands of (2.18). However, on each M(F, x, un), the g-expansion map, hence r, is injective. It
follows that each f; = 0.

To conclude the proof it only remains to prove part 2. But this follows immediately from Equation
(2.18) and the fact that I is generated by elements with weights in X(1). O

Remark 2.4. Let R = ®©ycr R, be a ring graded by an abelian group I'. Let I'g be a subgroup of I'.
Let J be an ideal generated by elements in &,er, R,. Then J is an ideal graded by I'/T'y: Let ¢ € I
If a finite sum > . fy € J, then >°_ 5.1 fy € J.

Although the following corollary will be superseded by Corollary 3.15 below, we include it to demon-
strate the principle of deriving congruences between zeta values from modular forms, as well as to set
notation.

Corollary 2.5. Let L be a totally real field. Let p be a prime that is unramified in L. Let k > 2.
1. If k20 (mod p — 1) then (1 — k) is p-integral.
2. Ifk#£0 (mod p—1) then (r.(1—k)=((1—(k+p—1)) (mod p).

Proof. There exists an Eisenstein series of parallel weight k (i.e., weight Normk)
(2.21) Br=1+29C1—k) " 1.0

where a runs over a lattice depending on the cusp at which the g-expansion is created and the cx_1.q
are sums of (k — 1)-powers of certain rational integers depending on « and the cusp but not on k.
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More precisely, under appropriate choices, the g-expansion on a component of the moduli space has
coeflicients

_ -1p D1t
(2.22) crra= 7k ((»)a”'Dr) veaD
0 otherwise

where for any integral ideal b we let o5 _1(b) = > 5.5 N(c)*~1. See [5] and (3.51). We let
(223) E; = 279411(1 — k) - Ep.

If 29¢(1 — k)~! is not p-integral, then Ex, — 1 =0 (mod p). If k # 0 (mod p — 1) then Norm” # 1
(mod X(1)). This and the fact that I is graded by X/X(1), imply that 1 € I, which is a contradiction.

Assume that £ # 0 (mod p—1). Because the coefficients cx_1 o (mod p) depend only on k& (mod p—1),
there exists some a € Zj,, such that

(2.24) Ep —Epyp1 —a=0 (modp).
But, using the grading, this implies o (mod p) belong to I. That is, « = 0 (mod p). Hence,
(2.25) 279, 1—-k) =279 1—-(k+p—1)) (modp). O

Corollary 2.6. Let H be the kernel of the Norm map (Or/(p))* — (Z/(p))*. Let R‘]|Vp be the ring
of reqular functions of the scheme M®(F, unyp)/H. We have isomorphisms

(2.26) EOM(F, Norm*®= yn)/(h — 1) = Ry,
(2.27) IEOM(]F,Normk,uN)/(h ~1) =R,

Proof. Let X!l ¢ X be the characters trivial on H. Clearly, X =< Norm,X(1) >. It follows
immediately from the theorem that

(2.28) © M(F,x,un)/I= Ry, & M(F,x,un)/I =Ry,
x€X(1) xeX| P
Thus, the assertion is that
(2.29) XE%UM(]F, X i) /T =2 kejOM(F, Norm*®=Y ux)/(h — 1),
and
(2.30) @ M(F,x, )/ 12 & M(F, Norm", )/ (h ~ 1),
N =

In both cases the inclusion D is clear. Thus, the claim amounts to that for any element y € X|! (resp.
X (1)) we may find suitable non-negative r;’s such that x - (xJx5 )" - - (ngfl)rg is a power of Norm.
This is clear. O

The modular forms a(x) have other interesting applications. We now discuss how they may be used to
construct a compactification with nice properties of T 1 := M®(F, inp) — the moduli space of HBAS
over [F-algebras together with pp,-level.

Lemma 2.7. We have an equality of modular forms on T ;:

g—2

(2.31) ala)’ Tt = hfgilh]igﬂ by ohiog
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Proof. Indeed, both sides are modular forms on 77 ; of the same weight and the same g-expansion,
namely, 1. [J
Let, therefore,

(2.32) b = a(xi)"’ 7,

be the modular form on M*(F, un) of weight x” *~1 and g-expansion 1. We fix i and consider the
scheme

(2.33) M = M*(F, )l ).

We explain our notation and terminology:
The map of global sections

(2.34) D(M*(F, i), xi)) — DM (F, un), 2 H)
is induced from a morphism of schemes over M*(F, ux)
(2.35) a: Q) — Q6,

given locally by taking (p? — 1)-powers along the fibre. We define M = M*(F,uN)[b}/(pg_l)] to be
the fibre product with respect to the maps « and b;:
a6g’™h

Let py : M — M*(F, un) be the projection and consider the line bundles p3Q(x;) and pgﬂ(xfgfl)
on M. Let s" be the tautological section

(2.37) s M — piQ(x5),
and let p5b; be the induced section

(2.38) Pibi : M — p3Q(P 7).
The equation

(2.39) (s“)P" " = p3bi

holds on M. In fact M has the following universal property: Given a scheme f : S — M*(F, un)
and s € T'(S, f*Q(x:)) such that s?"~' = f*b;, there exists a unique morphism g : S — M over
M*(F, pun) such that s = g*s*. We leave the verification of this fact to the reader.
One also sees easily that (Or/(p))*, identified with F*, acts faithfully on M. The morphism
M — M*(F,un) is (Or/(p))*-equivariant and exhibits M*(F, ux) as the quotient for this action.
We conclude from Lemma 2.7 and the universal property the existence of an (Or,/(p))*-equivariant
open immersion

(2.40) T1,1 — M.
Note the identity
(2.41) a(Xi)pa(Xi+1)_1 = hl‘.

We have a(xi+1) = a(x;)?/h;. A priory this is a meromorphic modular form on M. But raising both
sides of the equation to the p9 — 1 power, and using Lemma 2.7, we find it must be holomorphic. It
follows that M does not depend on 1.

Theorem 2.8. There exists a normal scheme f: M — M*(F, un), an open immersionT; 1 — M,
and a faithful (Or/(p))* action extending the one on T1 1 such that f exhibits M*(F, un) as the quo-
tient by this action. In particular, f is finite.

The scheme M is the universal scheme for the equation

g—2

(2.42) s = hfgilhfﬂ by _phi,
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and is independent of i. The map f is ramified precisely along the complement of the ordinary locus,
and is totally ramified there. The singular locus of M is of pure codimension 2 and is the pre-image

of Uiz Wi gy -
A point of interest in this theorem is that the “reflexive way” to compactify 77 1, namely by a Drinfeld

I (p)-level structure, though having the virtue of being defined over the integers, gives worse results
in characteristic p. See [13].

3. Mob p™

3.1. Construction of modular forms. Following Katz [8], we let
(3.1) Tm,n = Mc(Wm(F)ﬂ :U’Np")v

where W,,,(F) is the ring of Witt vectors of length m over F. We retain our convention that 7, o
consists only of the ordinary locus (compactified at co). For every n, the morphism T}, ,, — Ty, 0 is
étale Galois with Galois group equal to (Or/(p™))*. For every m,n, the morphism Ty, , — Trnt1.n
is a closed immersion and T, = Timt1,n @ Wi (F). Thus T, is an affine scheme, smooth over
Wi (F), for every m,n. We let V;, ,, be its ring of regular functions. Note that T7 1 = M(F, uny),
that Th o = M°(F, un), and thus that V31 = Ry, and Vi o = Ry in the notation of Section 2. The
schemes T}, ,, and the rings V;, ,, all fit into the following commutative diagrams:

! ! ! I 1 1

Tips — Ty — T332 — ... Vie « Voo « V3o «
82 | | 7 1 1

Ty — Top — T31 — ... Viig « Voi1 « Vap «

! ! ! 7 T T

Tio — Too — 139 — ... Vip « Voo « Vigp «
We let
(33) Ty =10 Tpre Tocooo = lim Ty
and
(3.4) Voo = 1im Vi, Viooo = lim Vi

Lemma 3.1. 1. Fiz 1 < i < g. For every m < n there exist a modular form a(x;) = amn(xi) on
T, of weight x;. It has q-expansion equal to 1 at the standard cusp Std.

2. The a(x;) = amn(x:) are compatible in the following sense:

a. Under the map f : T, yipns — Tn,n we have

(3.5) framn(Xi) = amntn (Xi)-
b. Under the map f : T — Totms m, where m+m' <n, we have
(3.6) f*aerm’,n(Xi) = am,n(Xi)'

Proof. Let (A", By x Byn) — Tin,n be the universal object. Note that
(3.7) t*D£1®,upn—?Wm,(]F) = OL ® t;anW"L(F)'

The invariant differentials t* are contained in
tpn — W (F)

(3.8) Qo) = Wi ()[al/ (¢ —1,p"¢"" ) - dg.

The differential w = ¢*" ~'dq is invariant and p"w = 0. Thus, m < n if and only if t*

D;1®[J,pn — W, (F)
is a free O ® W,,(F)[q]/(¢”" — 1) module of rank 1. Since we assume that m < n, it follows as
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in the proof of Theorem 2.3 that the relative cotangent space of (A", 5% X Bpn) — T n is a free
Or ® Op,, , module of rank 1 with a canonical generator wea, — “the pull-back of (1 ® %) ®17.
Let {e1,...,eq} be the idempotents as in (2.4). Let

(39) a(Xt) = €; * Wean-

It is a modular form of weight y;. The compatibility assertions are easily reduced to the following
simple observations:

e The canonical map
(3.10) DL ® o ey = D' tnint
induces an isomorphism of the relative cotangent spaces.

e The canonical map

—1 —1
(3.11) Dy @ poryw, @ = DL ® oy, )
induces an isomorphism thl®upn~Wm+m/(F) OW,, o (F) Win(F) = tD21®#pnﬁWm(]p)- O

Corollary 3.2. Let x = X|' - -+ xy° € X. Define form <n
(3.12) a(x) = a(x1)"™ - alxg)"™.

Then the a(x) are “independent of (m,n)” and define a modular form a(x) on Teo,co. This modular
form is of weight x and has g-expansion 1 at the standard cusp Std of Too . d

The group (Or ® Z,)* acts as automorphisms of T}, ,,. This action is given in terms of points by

(3.13) [(4, By % Bpr) = (4, By X (Bpr © [a])).
Of course the action factors through (Or/(p™))*. We let
(314) [04] : Tm,n — Tm,n

denote the automorphism induced by «. The morphism [a] induces an automorphism of modular forms
(a diamond operator). This may be seen as follows: The modular forms of weight x are sections of
Q(x) (see (2.11), (2.12)). Let pr : Ty, 5, — T 0 be the natural projection. Then “pr*Q(x) = Q(x)”.
Indeed, (A", By x Bpn) = (A%, BN) X7, 0 Tmn- But [a]*pr* = (profa])* = pr*. Moreover, the formula
for the action on a modular form f s

(3.15) ([a]/)(A, Bn X By, w) = [(A, By X (Bpn o []), w).

Lemma 3.3. Let a € (O /(p™))*. Let a(x) be the modular form on T, , constructed above. Then
(3.16) [a]a(x) = x(a) " a(x).

Let ¢(x) be the minimal non-negative integer such that

(3.17) P =x)(t) =0 (mod p™), Vte (OL/(p™)"

Then p¢Xa(x) is invariant under (O, /(p™))*, and in particular, a(x) is invariant under (O /(p™))
if and only if x is the trivial map (mod p™).

X

Proof. Let x = x| -+ xg’. In terms of points, we have
g

* \— dq .
(3.18) a(X)(A, B % By, w) = [ (e (Bp) T (1 ® ;)/ez- Cw)"
i=1
The assertion follows. [
Let X(m) be the characters in X that are trivial on (O /(p™))* under the composition

(3.19) (OL/(P™)) = (OL & Win(F) = T(Win(F)) == G (Wi (F)) = Win (F) ™.
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We shall discuss X (m) further below. For now, note that X(m + 1) C X(m), and if j is the minimal
non-negative integer such that x € X(m) then

(3.20) c(x) =m—j.
We say that an element x of X(m) is p-positive if in its expression as
(3.21) x=0dxa )™ O ),

every r; > 0.

Corollary 3.4. 1. For every x € X there exists a modular form p™a(x) on Ty,.o = MW (F), un)
of weight x (a(x) is given by (3.12)). Its q-expansion at every cusp is p°X). In particular, for every
x € X(m), the modular form a(x) is a modular form of weight x and g-expansion 1 on T, .

2. Let x € X(m). The modular form a(x) extends to the non-ordinary locus, i.e., it is a modular
form over M*(W,,,(F), un), if and only if x = (xPx5*)™ - - (ngl—l)rg is p-positive. Furthermore,

(3.22) a(x) = hy'---hy?  (mod p).

Proof. Tt follows from Lemma 3.3 that p*®)a(y) is a modular form on Tm,0, of weight x, and that its

g-expansion at every cusp is p°X). This is clear if one thinks on a modular form as in (1.9).
Consider a(x) (mod p). It has the same weight and g-expansion as the r.h.s. of Equation (3.22)

and that proves the equation. The divisor of a(x) on T, , intersects the special fibre in the divisor

of hi' -+ hy’. But according to Theorem 2.1 we have

(3.23) (R" - hge) =Wy + - +rgWigy.

Hence, this divisor is effective if and only if each r; > 0. O

3.2. Digression on X(m). We consider now more closely the group X(m). Let us change notation.
Let G =< o > be a cyclic group of order g. Let Z[G] be the group ring of G and Z,[G] be the group
ring of G over Z,. The group W (F)* is a module over Z[G], where o acts as o - the Frobenius.

e Assume first that p # 2.
We have

(3.24) W (F)* = pu x Uy,

where p is the cyclic group of order p9 — 1 consisting of the roots of unity in W (F), and U,, are the
units congruent to 1 modulo (p™). Clearly, as a Z[G] module,

(3.25) p=Z[G)/(p’ = 1,p—0) =Z[G]/(p - o).
By a theorem of Krasner, [12] Theorem 17, U; is a free Z,[G]-module of rank 1. Hence,

(3.26) Win(F)* = o x Uy fUp = o x U JUP"
and it follows that as a Z[G]-module
(3.27) Win(F)* = ZIG)/(p - 0) ® ZIG]/(p™ ™) = ZIG)/ (0™~ (p = 0)).
Otherwise said:
mo_ m— m  __,m—1
(3.28) X(m) =<xi x27 ..ooxh > .

Note that these are p-positive generators.

e Assume now that p = 2. We have
(3.29) W(F)* =pxUp =px{£1} x U,

where p are the 29 — 1 roots of unity and U is a torsion free subgroup of Uj.
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Assume that g is odd. Then by [12], Theorem 17, we have

(3.30) U~17,q).

Thus, for m =1,

(3.31) Wi(F)* = Z[G]/(2 - o),

and for m > 2

(3.32) Wi (F)* 2 Z[G]/(2 — o) ® Z[G]/ (0, 2) ® Z[G]/(2™2).

The group X (m) is thus the intersection of ideals (2 — o) N (o,2) N (2™~2). We have (2 — o) C (0,2),
(2m=2) C (0,2) if m > 2 and (2™72) D (0,2) if m = 2. Thus,

_J(@2-0) m=1
(3.33) X(m) = {(2m—2(2 o) moa

In any case X(m) has naturally chosen p-positive generators,
(3.34) z,x0, ..., xo97 L,

where x is 2 — o or 2™~ 2(2 — o), depending on the case.

If g is even, the situation is more complicated. The decomposition (3.29) still hold, but U can not
always be chosen to be a G-module. We allow ourselves simply to remark that in the case p = 2 in
fact X(1) = X is the free abelian group generated by x1,...,Xx,. The notion of positivity is the one
obtained by identifying X with Z¢ by sending x; to the i-th standard basis element. The group X(m)
is a sub-lattice and is therefore automatically generated by p-positive elements. Without going into
the details of its structure, we let

(3.35) Y1, s

(s = s(g)) be p-positive generators for it. For the applications we give, the following observation
suffices:

Remark 3.5. The character Norm” belongs to X(m) if and only if 2¢(m) |k, where 2¢(™) i5 the exponent
of the group (Z/(2™))*. Le., e(m) =m — 1 for m = 1,2, and m — 2 for m > 2.

3.3. The g-expansion map mod p'™. In this section we study the kernel of the g-expansion map on
Hilbert modular forms modulo p™ and level prime to p. Our results are not complete in the sense that
we fail to produce a complete set of generators for the kernel I,,, of the g-expansion map. However, see
Theorem 3.8 and Remark 3.13. We do obtain enough information on I,,, to deduce, after introducing
a “technical device”, the classical congruences and estimates on values of (7, at negative integers. See
Corollaries 3.11 and 3.15 below.

We remark that our techniques apply to more general L-functions. But the true difficulty now is
in the construction of Hilbert modular forms with a g-expansion whose constant term is the desired
special value and whose higher coefficients have integrality and congruence properties. For this, see
[4] and [18].

Definition 3.6. Let x € X and consider it as a character x : (Or/(p™))* — Wi, (F)*. Let

(336) Vfrf,m = {f S Vm,m Qe f = X(a)fv Vo € (OL/(pm))X } .
Let V,flfm — the “Kummer part” of V,, ,,, — be given by
(3.37) VEn= > VX

XEX/X(m)

Remark 3.7. Note that if m > 1 the inclusion Vrﬁfm — Viu.m is always a strict inclusion and the sum
in (3.37) is never a direct sum.
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Theorem 3.8. 1. There exists a natural surjective homomorphism of rings

(3.38) ri & MW (F),x, un) — VK.
xeX

Let I, be the kernel of r. Then I, is equal to the kernel of the q-expansion map.
2. Let I, be the ideal I, N\ Dyex (m)M(Wn(F), x, un). The map r induces an isomorphism

(3.39) & MW (F),x,un)/1}, = Vo
XEX(m)

1 om mA1  _pm

8. If p # 2, the ideal I, contains the ideal < a(x:’f" 2 ) —1,... sa(xb x1" ) — 1>, and if
p =2, it contains < a(1p1) — 1,...,a()s) — 1 >, (where for g odd we have s = g and generators as in
(3.84), and for g even the generators are as in (3.35)).

Proof. The proof follows the same line as the proof of Theorem 2.3. We shall therefore be brief.

The map 7 is defined as in Theorem 2.3. Namely, if f € M(W,,,(F), x, un), we let r(f) = f/a(x).
Using Corollary 3.2 we see that f and r(f) have the same g-expansion, and since V;;, ,, is irreducible,
we conclude that I,,, is the kernel of the g-expansion map. Certainly Corollary 3.4 implies that if

P # 2,

m+l _.om m4l _m

(3.40) I, 2 <alx x3* )—1,...,a(xb X177 ) —1>,
and if p = 2,

(3.41) I, D2<a(y)—1,...,a(s) —1>.

Moreover, one verifies that the map r is (Op ® Z,)*-equivariant. where ([a]f) = x(a)f for f €

MW, (F), x, un), and ([o] f)(A, Bn X Bpn) = f(A, By x (Bpn 0 [a])) for f € V,, ;. This shows that
the image of r is contained in V,,If, m- On the other, a construction as in Theorem 2.3, shows that r is

surjective onto V,flfm.
It remains only to note that the equivariance implies also (3.39). O

Remark 3.9. For m > 1, it is not true that I], = I,. This has to do again with (3.37) not being a
direct sum.

The following Criterion follows directly from the methods of the proof of Theorem 3.8. Weak as it
seems, it will suffice to derive the classical congruences between values of (;, (and more generally, of
suitable L-functions).

Criterion 3.10. Let )  fy € Iy. Then there exist ay in some Wy, (F)-algebra such that

(3.42) Y ax(w) =0 (mod p™), Yue (Or/(p™),

and a1 = f1.
Proof. Consider the relation ZX r(fy) = 0. Evaluate it at a point and let the Galois group act. O

Corollary 3.11. Let k > 2.
1. Let p # 2, then if k =0 (mod p — 1)

(3.43) val, (o (1 —k)) > —1 — val,(k),

and (r,(1 — k) is p-integral if k £ 0 (mod p — 1).
2. If p=2, then

(3.44) vala(CL(1 — k) > g — 2 — vala (k).
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Proof. 1. The case k #Z 0 (mod p—1) was treated in Corollary 2.5. Hence, assume k =0 (mod p—1).
Let Ej be as in (2.21). Let

(3.45) ¢ = max{—val,(279((1 — k)), 0}.
If £ = 0 there is nothing to prove. Assume therefore that £ > 0 and consider the congruence
(3.46) Ey—1=0 (mod p*).

Then Criterion 3.10 says that for some a in a W,(FF) algebra, the polynomial a - Norm(z)* — 1 is
identically zero on (Or/(p*))* or, equivalently, the polynomial az* — 1 is identically zero on (Z/p‘Z)*
— a cyclic group of order (p — 1)p*~!. Taking 2 = 1 we see that a = 1. It follows that p*~! divides k
and, hence, val, (k) > £ —1> —val,,(279¢.(1 — k)) — 1.

2. When p = 2 one argues the same and obtains that az* — 1 is identically zero on (Z/2¢Z)*.
Analysis of the structure of this group yields the result. [J

3.4. Adding level p-structure. In this section we briefly discuss modular forms of level uy (for
(N,p) = 1) together with an extra level structure of either the form p,m, or the form I'y(p). The
first additional level structure already appeared above as involving the target of the g-expansion map
modulo p™. It would now appear in the level of the modular forms themselves. This would clarify
the nature of the ideal I,, of Theorem 3.8.

The second level structure is introduced to derive the precise congruences between, say, values of
the zeta function, that are needed to construct the p-adic zeta function. The same technique would
work for a wide variety of L-functions.

Adding p,m level. Let us consider the graded ring modular forms on the scheme 7}, ,,,. We denote
it by M,,,(Np™) := @y exM(Wy, (F), x, tnpm ). The modular forms on T,y o, say M,,(N), embed in
M,,,(Np™) via the canonical projection Ty, y, — Lo 0-

Proposition 3.12. Let I,,(Np™) be the kernel of the q-expansion map on M,,(Np™). Then

(3.47) I,(Np™) =<a(x)—1: x € X >,
and
(3.48) I(N) = I,(Np™) N M,,(N) C L,(Np™?,

where I,,(Np™)! stands for the elements of L, (Np™) invariant under the Galois group (Or/(p™))*.

Proof. First, by Corollary 3.2 indeed a(x) — 1 belongs to I,,,(Np™). Suppose that the g-expansion
of Zx fx is zero. Then we may replace an f, by f, + fy(ay, —1). Repeating this as necessary we
obtain a modular form g of parallel positive weight whose g-expansion is zero. Hence, g is zero. That
is >3 fx €<alx) —1:x € X >. The rest is clear. [J

Remark 3.13. The proposition above clearly demonstrates the problem of determining I,,, (V) explic-
itly. The elements in I,,,(Np™)! need not extend to a holomorphic modular form on T

Adding T'y(p) level. By a T'y(p) level structure on a HBAS A we mean a subgroup scheme H C A[p],
Op-invariant and of order p?. Such a subgroup is automatically isotropic with respect to any Op-
polarization. We refer the reader to [13], [17] and [6] for details. However, it may benefit the exposition
to recall some basic facts without proofs.

Let us denote the fine moduli scheme representing HBAS with level pn and level T'g(p), over W, (F)-
algebras, by S,, (m < o). Let us denote by S°, the ordinary locus. The scheme S; has two
“horizontal” components, denoted S{" and S}, that correspond to taking as H the kernel of Frobenius
or the kernel of Verschiebung, respectively. The natural morphism

(3.49) TS — M (W (F), pn),
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induces an isomorphism, ST — M*(W,,(F), ux), and a totally inseparable morphism of degree p?,
SV — M*(W,,(F), un). The scheme S; has many other components parameterized by the type and
the geometric fibers of 7 are stratified by projective spaces.

Consider the restriction of the section M*(W,,,(F), un) — S§ to T1 o, where as above, T o stands for
the ordinary part of M*(W,,(F), un). Let SE0 be the open subscheme of S,, consisting of ordinary
HBAS A with H being the connected part A[p]. We have the following commutative diagram in which
the vertical arrows are isomorphisms:

SE — SPY — §E0 T
MW (F),un) < Tio — Tmp
Consider the modular form
(3.51) E; =279¢,(1—k)+ Z Z Norm(c)h—1 | e2miTr(v2),

veoLt \cl(v)

It is a modular form of weight Norm” on SLy (O @ Dy,) - a component of M*(C, uy). The coefficient
of 2™ (¥2) can also be written as j,_1((v)), where for every integral ideal b we let

(3.52) or-1(b) = > Norm(c)* .

Or2clb
The function o;_1 is multiplicative:
(3.53) ok—1(b¢) = op—1(b)ok—1(c), (b,c)=1.
It follows that for every prime ideal q, an ideal b C Op, prime to q, and any r > 0, we have
(3.54) or—1(q"716) — ¢/ * Yoy _1(q"6) = gx_1(b),

where ¢ is the rational prime below q and f = f(q/q).
Retaining our assumption that p is inert in L, let us put

(3.55) Oh15(P"0) = 0k-1,(b), (pb) = L.

We obtain then the expansion

de * _ «
(3.56) E;;(Tl, ceyTg) 2 Ei(1,...,7g) —p? YV E (pry, ... ,DTq)
(3.57) = (1 —pg(k—l))2‘9§L(1 —k)+ Z U;C,LP((V))GZMTY(”Z).
veOpt+

The point important to us is that all the coefficients (except the constant one) are k — 1 powers of
natural numbers that are prime to p. Hence, the following holds:
Let k, k' > 2 and k =k (mod (p — 1)p™). Let

(3.58) ¢ = max{—val,(278¢,(1 — k)), —val,(278¢(1 — X)), 0},
and put
(3.59) r = max{val,(k), val,(k")}, ' = min{val,(k), val,(k')}.

Note the following points: (i) If p # 2 then 0 < ¢ < 1+ 7; (ii) If p = 2 then 0 < ¢ < r + 2; (iii) If
k #£0 (mod p — 1) then £ = 0. They all follow from Corollary 3.11.

We may further assume, w.l.o.g., that if p = 2 then vals (k) < valy (k') and that k and &’ are even. Let

(3.60) i:{l P72
2 p=2
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There exists an « € Zj, such that
(3.61) pZEIZ - peE};, —a=0 (modpmtitt).

(The congruence meaning a congruence of g-expansions). In fact
(3.62) a=p' ((1 = p? 279 (1= k) — (1= p?* TD)279¢ (1~ k’)) :

Now, the point is that pZE;i,pZE,L and « are modular forms over C of level I'g(p) having integral

: F,0 et 0t
g-expansion, hence are modular forms on Sy, i1, hence on S, /.. ,. Therefore, p"E},p"E;, and « are

meromorphic modular forms on 75,440 With poles supported on the complement of the ordinary
locus (The poles coming from the singularities of S,,). Criterion 3.10 holds also for meromorphic
modular forms and we obtain that there exist a, b such that

(3.63) ap'z® —bp'a¥ —a =0, Vo e (Z/(p"TTH)*.
Since, for every z € Z/(p"))* we have z¥ = 2* (mod p™*%), we deduce that there exists a ¢ in a

Wnyi-algebra such that cz® —a = 0 (mod p™*?) for every z in (Z/(p™*%))*. Taking v = 1 we see
that the following holds

(3.64) a(z® —1) =0 (mod p™*?), Vx € (Z/(p™))*.

Remark 3.14. The reader notices that we “lose” information by going from (3.63) to (3.64). We
remark that the congruences obtained are “good enough” for the purposes of p-adic interpolation.

We separate cases:
(i) k20 (mod p — 1). Then £ = 0, and one gets that a =0 (mod p™*1).
(ii) K =0 (mod p — 1) but p # 2. We observe that

(3.65) val,(k) + 1 = min{val,(x* — 1) : x € Z,p Jx}.

We therefore obtain that val,(«) >m+1—(r+1)=m —r.
(iii) k=0 (mod p — 1) and p = 2. (We still assume that k is even, since k odd implies that k' is
odd and we get ¢1(1 — k) = (. (1 — k') = 0). Observe:

(3.66) valy(k) + 2 = min{valy(x* — 1) : x € Z,2 Jx}.
Therefore, a« = 0 (mod pm+i=(valz(k)+1)),

We sum up the above discussion in

Corollary 3.15. Let k, k' > 2 and k = k' (mod (p — 1)p™).
1. If k£ 0 (mod p — 1) then

(3.67) (1=p?™ N1 —k) = (1 —p*® D) (1 —K)  (mod p™ ™).
2. If k=0 (mod p—1) but p # 2, then

(3.68) (1 =p?* (1= k) = (1 —p? )G —K)  (mod prm T (D),
3. If p=2 then

(3.69) (1—=29F"N (1—k)=(1=29F "D (1= k) (mod 2mt9-2-vala(kk)y,
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4. LIFTINGS
Proposition 4.1. Any modular form f € M(W,,(F), x, pun) can be lifted t0 Teo,c0-

Proof. Clearly the regular function f/a(x) € Vinm C Vin,eo can be lifted to Vi oo Indeed, Vi 0o =
Voo,00 @ Wi (F). On the other hand, by Corollary 3.2, a(x) itself lifts to Teo,00. O

A much more subtle question is that of lifting a modular form f € M(W,,(F), x, un) to a modular
form in M(W (F), x, un). For example, take m = 1. The modular forms h; do not lift, because any
non-cusp form of finite level must have parallel weight. Or, any modular form of finite level must
have non-negative weights. This does not contradict Proposition 4.1. The level there is infinite. The
following theorem says, heuristically, that the h;’s are the prototype of modular forms that can not
be lifted. The geometric explanation for this phenomenon is that the line bundle Q(x), for x not a
multiple of Norm, does not extend to a line bundle over the minimal compactification, though it does
extend to a line bundle over any smooth toroidal compactification.

Theorem 4.2. Let B be any W (F)-algebra and let By, = B @ W,,(F). The map

(41) D M(BaX7N’N) — D M(317X7/1'N)/Ila
x€X xeX
is surjective. The map
(42) D M(37X31U'N)Cllsp — @ M(Bmax,,qu)cusp/Im7
xXeX xeX

18 surjective.
Proof.

Lemma 4.3. ( [14], Proposition 6.11.) If f € M(B1,x, un) has some g-expansion in which the
constant term is non-zero then x € X(1).

Thus, if f is not a cusp form then for a suitable g € I; we have that f + ¢ is of weight Norm” for
some k > 0, which we may take as large as needed.

Let us put 7% = M*(W(F), un) — the moduli space of HBAS over W (FF)-algebras with uy-level
with its Satake compactification. Recall the notation (2.12). It is well know that Q(Norm) extends to
T% and that Q(Norm) is an ample line bundle (our level is rigid). It follows that for k& large enough
every section of Q(Normk ) can be lifted. We may therefore restrict our attention to cusp forms.

Let D < T be the cusps and 70 = T° — D. Let T%" be a smooth toroidal compactification. We
have a commutative diagram

TO N Tt or

(4.3) NoLb
TS

The map b is proper and the other two maps are open immersions. Let D®** be the pre-image of D.

Lemma 4.4. There exists a quasi-coherent sheaf S(x) on T whose global sections are cusp forms of
weight x.

The theorem follows immediately from the lemma. For k large enough all the higher cohomology
of S(x) ® Q(Norm") vanishes and there are thus no obstructions to liftings. It remains to prove the
lemma:

There exists a semi-abelian variety with real multiplication

(4.4) (A, By) = T
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Let Q =7, 5.y 7w and define Q(x) as usual (on T° this agrees with our previous definition). Let
T be the ideal sheaf defining D¥*. Let

(4.5) S(x) = m(200) @ 7).

The sheaf S(x) is quasi-coherent sheaf on 7°. We need only show that its global sections are cusp
forms. The map from T'(T%, S(x)) = ['(T**,Q(x) ® I) to T(T°,Q(x)) € M(W (F), x, tn), given by
restriction, is clearly injective. It has image contained in the cusp forms. Indeed, if f € T'(T%, S(x))
and f its image, then the g-expansion of f is non-other then f viewed as an element of the structure
sheaf of the completion of 7%°F along Z. For this one needs to choose a particular trivialization of
Q(x) in a neighbourhood of the component of D*" under consideration. See [3], Main Theorem.

Conversely, a cusp form f, viewed as a section of I'(T°, Q(x)), or I'(T°, S(x)) extends to an a priory
meromorphic section f of T'(T, S(x)), whose expression as an element of the structure sheaf of the
completion of T%°" along Z has zero constant coefficient. That just means that locally around DT it
belongs to Z. See loc. cit. (x). O

Remark 4.5. The point of Theorem 4.2 is that it says that every HMF modulo p, say f, can lifted to
characteristic zero, in the sense that its g-expansion can be lifted. Le., though often one can not lift
the modular form f itself, there does exist a modular form g of characteristic zero and weight equal
to the weight of f modulo X(1), whose g-expansion is equal to the g-expansion of f modulo p.

Practically the same proof gives the following:

Let f be a modular form over W,,,(F) whose constant coefficient in one g-expansion is a unit. Then
f has weight in X(m) and its g-expansion lifts to a g-expansion of a HMF over W (F) of the same
level and weight in X(m). A similar statement holds for cusp forms.

In fact the method of the proof allows one to control the difference between the weights of f and
the “lift” if one has an effective bound on k such that H' (T, S(x) ® Q(Norm*)) = 0.

5. TABULATION OF SOME ZETA VALUES

Remark 5.1. The calculations were done using PARI and are subject to the following reservations:
(i) My lack of expertise in such calculations. (ii) The validity of a factor being a prime. In particular,
almost surely, those numerators which are not decomposed at all are composite. (iii) However, the
factorization of the denominator is always into true primes.

Field: L = Q.
k C@(l — k) k C@(l — k)
=T 283-617
2 = 2 #8301
— 013 T8 gEt
4 e 22 | =2
2°.3.5 2<4.3.23
6 =1 24 | 1032294797
g~ — LirshitLd
8 T 26 =059
24.3.5 22.3
10 — 28 | 9249-362903
22.3.11 23.3.5.29
691 —T731 1001259881
12 V] 30 o R At
23.32.5.7.13 22.32.7.11.31
—1 37.683-305065927
14 > 32 3
=5 TstostdtesT
16 JBulT 34 | —LDIGZ8COTOT
25.3.5.17 22.3
13 — 13867
22.33.7.19

Field: L = Q(V2).
Ideals: Ramified: 2; Split: 7,17,23,31; Inert: 3,5,11,13,19,29.

k Cr(l —k) k ¢r(1 —k)
B} T B B B B
22.3 0 23.3.52 11
4 TT 22 13T-593-169471-1358111T-31T9022T700T
23.3.5 22.3.23
6 192 94 | 11:19.103:977.3343.2204797.678737272814753
22.32.7 24.32.5.7
3 24611 26 | O57931-39944352181 19666901 7604031 TET
24.3.5 22.3
10 PEYEIIESS 28 | O3AU-362003-473581 1 40I8EI0TA8204034TIIG0S63T
22.3.11 23.3.5.29
1o | 13:691-3031619 30 79-1721-1190511-10012595;%12-501077394625 042928744719
23.32.5.7 22.32.7.1]
1a | ILI51 78007661 32 | STBU-BE330ZIT-ITI502753: SU5065027-32035706UA8504090226600
22.3 26.3.5 17
16 | 79-3617-558366571709 32 | ILI3759-15162 GU755T-0433401 1 2506873639T0556 7440995835717
25.3.517 22.3
43867-194507186357160071
18 3723
22.33.7.19
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Field: L = Q(/5).
Ideals: Ramified: 5; Split: 11,19, 29, 31; Inert: 2,3,5,7,13,17,23.

k Cr(l —k) k (1 —k)
T 283-617-564172514549641
2 | i 20 5
2-3-5 2<.3.54.11
T07-131-149-593-47058898298437
4 22 )32
22.3.5 2.3.5.23
6 67 24 | 103-1093-1214221-2294797-36228867817
2 3 32
2:32.5.7 23.32.5.7.13
] ;92 26 | 19:5839:657931-823345533268358047
23.3.5 ER
10 To12T6T 28 | Z969-9349-362903-2735340507483319678769
2:3-52.11 22.3.5.29
12 | ©9L-I15092T 30 | L7 L72ZI-I3815257 33847091 1001250881 1313314282173
22.32. 5.7.13 2:32.52.7.11 3]
14 17»33%46579 32 | 37 I31-683-305065927-3389247557-5530193421920211463
1 33 1 317 6613350 27TIE0500F Th1 6386075513026 77023020495T7 —
6 24,3517 3 2-3-5
18 | AL43867- 317680421570
2.33.5.7-19
Field: L = Q(v/7).
Ideals: Ramified: 2,7; Split: 3,19,29,31; Inert: 5,11,13,17,23.
E | ¢L(A—k)
2
S
4 35
G 273257
2
32.7
37040933
8 235
10 13" 2073517757
311
6911355989 85300877
12 2
T‘Tmf’rzggé’}%ovmwm—
3617 1494552660374041255373
16 223517
18 | Z29-21529-23801 43867 54327457 7837461
33.7.19
20 | ZB3:BI7-IZ301447409 77 7GEEEI007 79824073
52.11
9o | 2:132.131.593.773.829.6449-654804091271409612853
24 . = - >
26 I OSETG5TIS T TAGETI0RE53 B BUI9TI 704649976009 TS TO0S
28 [ I39-034U 65093 367003 2631045 29005 2T Z3US 5 AAET IR TZIGA0ESATY

Field: L = Q(¢7)T = Qe /(2 + 22 — 2@ — 1)
Ideals: Ramified: 7; Split: 13,29; Inert: 2,3,5,11,17,19,23, 31.
k L1 —k)
-1
2 e
4 2357
6 =393
32.7
3 142490119
22.3.5.7
10 | —I141452374871
RN
1o | B9I-10903:278995143079
2.32.5.7.13
14 | —1033-54105393320962035689
3.7
16 | 3817-10387-6097171-300890401061287
23.35717
18 | —97-438670105 35:?27474306 13301627809
0 2.3.52.7.11
25 | —I31503-751-1657-05131-2557424168676190300514 101539043
24 2 32,
26 — 15 ‘6o
o
28 | USAUEZATL-302003 74303532583 1505: 0755277505405 20007 - 588 53 (320453854703 TT
30 | —L721-3373-1001259881 11 U503 78500600 T8 TE0AT50A305 TA0ZGA558 7565 7075835080477A20
35 | 37-GB3:24847-38575843-1250 - 13 4’ - -
34 — . . -

21
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Field: L = Q(¢11)" = Q[z]/(2® + 2% — 42% — 322 + 32 + 1)
Ideals: Ramified: 11; Split: 23; Inert: 2,3,5,7,13,17,19, 29, 31.

k CL(l—k)
2

—24.5
2 311

27111941
4 5.
6 —22.5.521.4888380551

32.7.11

1372T-2520121-T0246257585T
8 3:5-11
10 | —27:5-98178488021-1560850707193521481

RI NI
12 | ZBILI6070S 6134561 Z0TIUI0 LI T0T33507 7040 52T
5.7-11-1
14 | —27:5:31.71.109841-4712650115236500312066042412229825266552711
[ T3523T
16 2.3.5.11.17
18 | —27:5:43867-113011.83581816407760752766271903598144077685G878764991606492392923228841381
33.7.11.19
20 | ZSLZE3BIT 8y 8051783 10060637203 145112 104105 7756238 D8 83637340035 10003102487 5I50I TS U8 TA6ETT
3.52.11
99 | —=2%:5:31.131.503.2111.0811.4754681-150743667211-748530934469 19685887 19378106517487509425242700571390702015324593161626701
112

31 | ZIAUUUZO U T TR TS B0 0T T TG U0 E A 06 200 T 963337 702033 37 T TR TG00 76 T3A69 6600035 7T

CONNS

44782829144056234056572114064826020
3-11
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