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CHAPTER 1

Tori and Abelian Varieties

In the first section of this chapter we recall the definition of algebraic groups and
some basic facts about them, attempting to put the classes of groups that will
interest us – abelian varieties and algebraic tori – in a somewhat larger perspective.
We quickly specialize to diagonalizable groups while the next sections treat abelian
varieties.

There are several good reasons to discuss tori in detail. They appear as degen-
erations of abelian varieties, their characters are weights of Hilbert modular forms,
and their finite subgroups are involved in defining level structures on abelian vari-
eties.

In general, we assume that this is not the first time the reader is exposed to
these topics. In particular, we assume familiarity with basic algebraic geometry,
elliptic curves and elliptic modular forms.

1. Algebraic Groups

In this section we follow very closely Borel [5], where the reader may find also a
moderate introduction to algebraic geometry.

Let k be a field with an algebraic closure K and let ks be the separable closure
of k in K. We denote Gal(ks/k) by Γ throughout this section. We shall denote by
k[G] the ring of regular functions on a variety G over the k.

Definition 1.1. An algebraic group over k is a quasi-projective variety G over
k together with morphisms

m : G×G −→ G,(1.1)

inv : G −→ G,(1.2)

and identity element e, such that the following diagrams commute:

G×G×G
m×1 //

1×m
��

G×G
m,

��
G×G m

// G

G
(e,1) //

(1,e)

��

1

%%JJJJJJJJJJJ G×G
m,

��
G×G m

// G

G
(inv,1) //

(1,inv)

��

e

%%JJJJJJJJJJJ G×G

m.

��
G×G m

// G

(1.3)

Where we use e to denote also the constant map G −→ e.

Thus, from a “classical” point of view, an algebraic group G is nothing else than
a group G(K), with identity element e ∈ G(k), such that the group operations
are algebraic. From a “modern” point of view, i.e., scheme-theoretic, an algebraic
group is a functor associating to each k-algebra R the group of R-rational points
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6 1. TORI AND ABELIAN VARIETIES

of G, G(R), such that the natural maps G(R) −→ G(S) induced from a morphism
of k-algebras R −→ S are all group homomorphisms. Group schemes are discussed
in Appendix A.

An algebraic group G is called an affine or linear algebraic group if it is an affine
variety or, equivalently, if it can be embedded as group variety in GLn(K) for
some n; see [5, Prop. 1.10, p.54]. Thus, an affine algebraic group is a subgroup
of GLn defined by a collection of polynomial equations. Examples are provided by
SLn,On,SOn,Sp2n, the upper triangular matrices, the unipotent matrices. Here
the reader will notice that he is already familiar with, e.g., the ιδεα GLn. That
is, with a functor associating to any ring R a group GLn(R). Thus, GLn becomes
more a “group machine” than a particular group. That is precisely the scheme
theoretic point of view.

If a group G is affine, the group structure may be equivalently defined by giving
the maps, dual to (1.3), on the coordinate ring:

m̃ : k[G] −→ k[G×G] ∼= k[G]⊗k k[G],(1.4)

ĩnv : k[G] −→ k[G],(1.5)

ẽ : k[G] −→ k.(1.6)

The maps m̃, ĩnv, and ẽ are called co-multiplication, co-inverse and co-unit respec-
tively. They have the very special property of being ring homomorphisms. The
reader is invited to reflect on that. Such a structure is called a Hopf algebra.

Example 1.2. Let Gm = GL1 be the multiplicative group. We have

k[Gm] = k[x, x−1] ∼= k[x, y]/(xy − 1);(1.7)

(the second presentation shows it is affine). The co-multiplication, co-inverse and
co-unit maps are:

m̃(x) = x⊗ x, ĩnv(x) = x−1, ẽ(x) = 1.(1.8)

Example 1.3. Let Ga = A
1
k be the additive group. We have

k[Ga] = k[x];(1.9)

m̃(x) = x⊗ 1 + 1⊗ x, ĩnv(x) = −x, ẽ(x) = 0.(1.10)

Exercise 1.4. Write GL2 as an affine variety. Write its co-multiplication, co-
inverse and co-unit morphisms. Do the same for the upper-triangular matrices in
GL2.

An algebraic group G is called abelian if it is connected and projective (we will
show later that every such abelian group is necessarily commutative). The reader
is already familiar with elliptic curves. Except for the zero abelian variety, these
are the simplest abelian varieties. Indeed, every abelian variety of dimension one
is an elliptic curve. This follows, at least in the case of characteristic zero, from
Theorem 6.3 below. A product of elliptic curves is an abelian variety. The Jacobian
variety of a smooth curve of genus g is an abelian variety of dimension g, and in
fact every abelian variety is a homomorphic image of a Jacobian. See [73, Section
10]. See Section 6 for more examples.
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If G is an algebraic group, then its identity component G0 is a normal subgroup of
finite index.

Exercise 1.5. Prove this! What is the identity component of O2(R)? O2(C)?

Theorem 1.6. (Chevalley’s theorem) Let G be a connected algebraic group.
Then G has a unique maximal connected affine subgroup L and G/L is an abelian
variety:

0 −→ L −→ G −→ G/L −→ 0.(1.11)

Proof. See [12] and [15].

Remark 1.7. In Theorem 1.6 abelian varieties and affine groups appear as
opposite sides in the ”spectrum” of algebraic groups, yet it may happen that the
abelian variety G/L degenerates into the simplest kind of an affine group: a torus
(see below). Such degenerations arise for example in the context of compactifica-
tions of moduli spaces of abelian varieties.

A typical example of degeneration is the family of elliptic curves over the open
unit disk in C:

y2 = x(x− ε)(x− 5), 0 < |ε| < 1.(1.12)

Figure 0.5.

If there was a proper moduli scheme for elliptic curves (a concept we shall
discuss further below, but for the time being can be thought of as a complete
variety parameterizing isomorphism classes of elliptic curves) this family would
have to have a limit at zero. The obvious way to complete this family is by taking
the fiber above zero to be y2 = x2(x − 5). This is no longer an elliptic curve.
However, if we delete the singular point (0, 0) the remaining variety is a family
of algebraic groups (with the identity point always being the point at infinity)
over |ε| < 1. The fiber above zero being in fact isomorphic to Gm. We obtain a
family of elliptic curves degenerating to the multiplicative group Gm. The theory
of compactification of moduli spaces of abelian varieties is the content of [31].

Definition 1.8. Let G,H be two algebraic groups over k. We let Hom(G,H)
denote the homomorphisms as algebraic groups from G to H defined over any
extension of k. We let Homk(G,H) stand for those defined over k.

Note that Homks(G,H) is a Γ-set. The action is given by

(γh)(x) = γ(h(γ−1x)).(1.13)
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If we write G as a quasi-projective variety in Pnk , then every x ∈ G(K) can be
thought of as a n + 1 tuple (x0 : · · · : xn) with xi ∈ K. Then for σ ∈ Γ we have
σx = (σx0 : · · · : σxn) (there is a unique extension of the Γ-action on G(ks) to
G(k)). However, the Galois action can be defined intrinsically:

Let X be a scheme over the field F , where F is either ks or K. Suppose
that X can be defined over k. That is, there is a scheme X0 over k such that
X = X0×k F (we use often this shorthand for X×Spec(k) Spec(F )). Then for every
Galois automorphism γ ∈ Γ we can define a conjugation morphism

τγ : X −→ X,(1.14)

as follows. Let φ : Spec(F ) −→ Spec(F ) be the morphism induced from the field
homomorphism γ−1 : F −→ F . Then τγ is the morphism

X0 ×k F
idX0×φ−−−−−→ X0 ×k F .(1.15)

We remark that if X0 = Spec(k[x1, . . . , xn]/(f1, . . . , fm)) then

X = Spec(F [x1, . . . , xn]/(f1, . . . , fm)),(1.16)

the isomorphism of X with X0 ×k F is coming from the ring isomorphism

F [x1, . . . , xn]/(f1, . . . , fm) ∼= k[x1, . . . , xn]/(f1, . . . , fm)⊗k F.(1.17)

The morphism

X
τγ−−−−→ X,(1.18)

is induced from

k[x1, . . . , xn]/(f1, . . . , fm)⊗k F
a⊗γ−1(r)←a⊗r←−−−−−−−−−− k[x1, . . . , xn]/(f1, . . . , fm)⊗k F .

(1.19)

Thus, τγ takes the ideal (x1 − α1, . . . , xn − αn) to the ideal (x1 − γ(α1), . . . , xn −
γ(αn)). That is, the effect of τγ on points (in the naive sense) is just

τγ(α1, . . . , αn) = (γ(α1), . . . , γ(αn)).(1.20)

N.B. Although τγ is a morphism of schemes, it is not a morphism of schemes over
F .

If X0, Y0 are two schemes over k then Γ acts on HomF (X0 ×k F, Y0 ×k F ) by
the rule

φ 7→ τγ ◦ φ ◦ τ−1
γ .(1.21)

In particular, getting back the case algebraic groups G,H, defined over k, one
can prove

Homk(G,H) = Homks(G,H)Γ.(1.22)

This is descent argument. We refer the reader to [78] and [6] for more on Galois
action and descent. Note that if H is commutative then Hom(G,H) is a Γ-module.

Definition 1.9. The characters of G are the group

X(G) = Hom(G,Gm).(1.23)
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Note that if f ∈ X(G) then, in particular, f is a non-vanishing regular function
on G. Thus, for abelian varieties, X(G) is trivial (since any morphism from a
projective variety to an affine one is constant). However, as mentioned above,
abelian varieties may degenerate into affine groups, and even into affine groups G
for which X(G) determines completely the group G. These are called diagonalizable
groups and are discussed extensively below.

Definition 1.10. The co-characters (or, multiplicative one parameter sub-
groups ) of an algebraic group G are

X∗(G) = Hom(Gm, G).(1.24)

There is a pairing

X∗ ×X −→ Hom(Gm,Gm) = Z.(1.25)

Exercise 1.11. Prove that X(GL2) is a free abelian group of rank 1 gener-
ated by the determinant character. Find X∗(GL2) and the pairing X∗ ×X −→ Z

explicitely.

Lemma 1.12. (Independence of characters) The subset X(G) ⊂ K[G] is lin-
early independent over K.

Proof. It is a classical theorem due to Dedekind. See [5, Lemma 8.1, p.111]

Definition 1.13. We say that G is diagonalizable if K[G] = K[X(G)], where
K(G) is the affine coordinate ring of G and K[X(G)] is the linear span over K of
X(G). If furthermore, X(G)k := Homk(G,Gm) spans k[G], we say that G is split
over k.

Theorem 1.14. Assume Y ⊂ X(G)k spans k[G]. Then:

1. Y = X(G). In particular, X(G)k = X(G).
2. k[G] = k[X(G)] as Hopf algebras, where the right hand side stands for the

group algebra of the group X(G) with co-multiplication induced from the
diagonal map

∆ : X(G) −→ X(G)×X(G), ∆(f) = (f, f),(1.26)

and co-inverse given by

ĩnv : X(G) −→ X(G), ĩnv(f) = f−1.(1.27)

3. If H is a closed subgroup of G, then H is diagonalizable and is split over k .

Proof. 1. We have k[G] = k[Y ] ⊂ k[X(G)k] ⊂ k[G] and X(G)k is inde-
pendent over k. Thus Y = X(G)k. Applying that to Y = X(G)k ⊂ X(G)K
we get the rest.

2. The only thing to verify is that the structure on both sides agree. This is
straightforward. The algebra structure is provided by the definition. The
co-algebra follows from these considerations: if m̃ : k[G] −→ k[G] ⊗ k[G] is
co-multiplication, then (m̃f)(x, y) = f(x ∗ y), where ∗ is multiplication in
G. If f is in X(G), then f(x ∗ y) = f(x)f(y). This shows that m̃f = f ⊗ f ,
i.e., the diagonal morphism on X(G) induces m̃f = f ⊗ f .
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3. By definition, K[H] is a homomorphic image of K[G] = K[X(G)] and is
thus spanned by the images of X(G), which are characters on H. Thus,
H is diagonalizable, K[H] = K[X(H)], and K[G] −→ K[H] is the group
algebra epimorphism ψ∗ : K[X(G)] −→ K[X(H)] induced by the group ho-
momorphism ψ : X(G) −→ X(H). But then, since X(G) = X(G)k, it is
clear that the kernel is defined over k and X(H) = X(H)k. In fact, Ker(ψ∗)
is generated by {m− 1|m ∈ Ker(ψ)}.

Remark 1.15. 1. Under the assumptions of the theorem, since G is of
finite type over k, X(G) is finitely generated, and therefore we have a sur-
jective group algebra homomorphism k[Grm] = k[Zr] −→ k[X(G)] = k[G]
for some r ∈ N. Thus, G is a closed subgroup of Gmr. One views Gmr as
embedded diagonally in GLr, hence the name “diagonalizable”. Conversely,
Theorem 1.14 says that any closed subgroup of Gmr is diagonalizable in our
sense.

2. Let G be diagonalizable and k ⊂ k′ ⊂ K. Then G is split over k′ iff
X(G) = X(G)k′ .

Proposition 1.16. The contravariant functor,

G 7→ X(G),(1.28)

from the category of k-split diagonalizable groups and k-homomorphisms of alge-
braic groups, to the category of finitely generated Z-modules and homomorphisms
of modules is fully faithful.

Proof. We have a natural map

Homk(G,H) −→ HomZ(X(H), X(G)).(1.29)

The claim we are making is that it is an isomorphism. In particular, (exchanging k
with K), we see that all the homomorphisms between such groups are defined over
k.

One simply verifies that any closed circle (starting from any point) in the
following triangle is the identity:

Homk(G,H)

))RRRRRRRRRRRRRR

HomHopf algebras(k[H], k[G])

44jjjjjjjjjjjjjjjj
HomZ(X(H), X(G)).oo

(1.30)

Definition 1.17. An algebraic group G isomorphic over K to Gmn is called
an n-dimensional torus.

Let G be an n-dimensional torus, then G is a connected diagonalizable group
of dimension n. As remarked before, if G is diagonalizable and X(G) ∼= Z

n then
G is a n-dimensional torus. Suppose that G is a connected diagonalizable group
of dimension n. Since Gm is connected of dimension 1, its only connected reduced
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subgroups are 1 and Gm. (In characteristic p the assumption of reduced is impor-
tant. See Example 1.23). Thus every element of X(G) is either trivial or surjective.
Hence, X(G) is a free abelian group of rank n. We proved:

Proposition 1.18. The following are equivalent:

1. G is a n-dimensional torus;
2. G is a connected diagonalizable group of dimension n;
3. G is diagonalizable and X(G) ∼= Z

n.

Corollary 1.19. A closed connected subgroup of a torus is a torus and is a
direct factor.

Proof. Apply Proposition 1.16 and 1.18.

Fact 1.20. Every diagonalizable group G over k is split over ks, thus over a
finite extension. (Essentially because Γ is compact (being a profinite group) and
the representation ρ associated to X(G) is continuous with discrete image, hence
finite; the group G is split over L, the fixed field of Ker(ρ), which is a finite field
extension of k.)

Recall that a bilinear group homomorphism φ : A × B −→ C is called a perfect
pairing if

∀a ∈ A,φ(a, b) = 0 =⇒ b = 0(1.31)

and if

∀b ∈ B,φ(a, b) = 0 =⇒ a = 0.(1.32)

Example 1.21. Let A be a finite abelian group, B = A∗ = Hom(A,C×). Then
the pairing

A×B −→ C
×, (a, ψ) 7→ ψ(a).(1.33)

is perfect.

Proposition 1.22. Let T be a torus defined over k, Γ = Gal(ks/k).
a) X(T ) = X(T )ks , X∗ = X∗(T )ks . Hence,

X(T )k = X(T )Γ , X∗(T )k = X∗(T )Γ.(1.34)

b) The pairing

X∗(T )×X(T ) −→ Z(1.35)

is a perfect pairing of Γ-modules.

Proof. By Proposition 1.16, for any ks-split diagonalizable group G we have

Hom(G,T ) = Homks(G,T ).(1.36)

In particular, X∗ = X∗(T )ks , and hence X∗(T )k = X∗(T )Γ. We leave the proof
of b) to the reader as an exercise (be sure to check also the compatibility with the
action of γ ∈ Γ).

Let G be a diagonalizable k-group (but not necessarily k-split). Since G splits over
ks, we have

K[G] = K ⊗ks ks[X(G)] , ks[G] = ks[X(G)].(1.37)
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The action of Γ on an element
∑
aαα ∈ ks[X(G)] is

γ(
∑

aαα) =
∑

(γaα)γα for γ ∈ Γ.(1.38)

We conclude that the Γ-module X(G) determines k[G] = ks[X(G)] uniquely.
If H is another diagonalizable group, then Hom(G,H) = Homks(G,H), and hence
the following assertions are equivalent:

1. h ∈ Hom(G,H) is defined over k;
2. h is Γ-equivariant ;
3. h∗ : ks[H] −→ ks[G] is Γ-equivariant;
4. X(h) : X(H) −→ X(G) is Γ-equivariant.

Let A be the category of diagonalizable groups over k with morphisms being k-
homomorphisms of algebraic groups. Let B be the category of finitely generated
continuous Γ-modules X, without p-torsion if char k = p > 0, with Γ-equivariant
homomorphisms. Here continuous means that the map

Γ×X −→ X(1.39)

is continuous where Γ is given its profinite topology and X the discrete topology.
Or still simpler, the action of Γ factors through a finite quotient (X being finitely
generated).

We remark that for X an abelian group, k[X] contains nilpotent elements if
and only if char k = p > 0 and X has p-torsion. Since varieties are reduced by
definition (i.e. the sheaf of regular functions contains no nilpotent elements), we
have to exclude this case. To illustrate we give

Example 1.23. Suppose k = Z/pZ, and X = Z/pZ. We get

k[X] = k[y]/(yp − 1),(1.40)

the group scheme µp,k of p-th roots of unity over k, and y−1 is clearly nilpotent. In
the context of group schemes µp,k is a connected diagonalizable subgroup scheme
of Gm, but in the context of group varieties it must be excluded. See Appendix A,
Section 3.

Theorem 1.24. The functor of characters

X : A −→ B, G 7→ X(G)(1.41)

is an anti-equivalence of categories, between the category A of diagonalizable groups
and the category B of continuous Γ-modules with no p-torsion if char(k) = p.

Proof. By proposition 1.16 and the remarks just made, the only thing we
need to show is essential surjectivity, that is, every object in B is the character
module of some object in A.

Let M be a finitely generated Γ-module. Let G be the associated affine group
with affine coordinate ring ks[M ], an algebra of finite type over ks. If m ∈M , then
m defines a character of G by

ks[x, x−1] −→ ks[G] = ks[M ],(1.42)

x 7→ m.(1.43)



1. ALGEBRAIC GROUPS 13

(m being invertible in ks[M ]), and one easily verifies that in fact M = X(G)
(because M ⊂ X(G) and it spans ks[G] as in Theorem 1.14). Hence, G is diago-
nalizable.

Consider now (ks[M ])Γ. It satisfies

ks ⊗ (ks[M ])Γ = ks[M ],(1.44)

and hence gives G a k-structure. The equality (1.44) is essentially the assertion
that if Γ acts continously semi-linearly, i.e.

γ(ax) = γ(a)γ(x) (a ∈ ks, x ∈ ks[M ]),(1.45)

on a ks-vector space V , there exists a k-basis to V . This in turn follows from

H1(Γ,GLn(ks)) = 1.(1.46)

One can also prove it directly (see [5, Section AG 14.2]).

Remark 1.25. We have seen that diagonalizable groups are completely deter-
mined by their character module considered as a Γ-module. In particular, since
GLn(Z) is the automorphism group of Gnm, one sees that the n-dimensional tori
are equivalent to Galois representations ρ : G −→ GLn(Z) up to conjugacy. All n-
dimensional tori are forms of Gnm (that is, they become isomorphic to Gnm over K),
and in fact H1(Γ,Aut(Gnm)) – the pointed set classifying forms of Gnm– is indeed
naturally identified with the set of Galois representations ρ modulo conjugacy.

Exercise 1.26. 1. Classify n -dimensional tori over the field Z/pZ. Sug-
gestion: Do first the one and two dimensional cases.

2. If you know some class field theory, classify one dimensional tori over Q.

Remark 1.27. One often writes ks[M ] in the form

ks[Xα : α ∈M ]/(Xα+β −XαXβ , X0 − 1).(1.47)

We finish this section by giving some general methods to construct tori.

Example 1.28. Restriction of scalars. Let L/k be a separable field extension
of degree d. We assume L ⊂ ks, where ks is our fixed separable closure. Let
{σ1, ..., σd} be the embeddings of L into ks. This a Γ-set:

L

τ◦σi   @@@@@@@@
σi // ks

τ

��
ks

.(1.48)

Let us write

τ ◦ σi = στ(i).(1.49)

Consider the continuous Γ-module

M =
d⊕
i=1

σiZ.(1.50)

Let G be the unique, up to isomorphism, algebraic torus with X(G) = M . Note
that G is a d-dimensional torus. It is denoted ResL/kGm.



14 1. TORI AND ABELIAN VARIETIES

To generalize our construction, consider an algebraic variety X/L. Define ResL/kX
as a functor

ResL/kX : k − alg −→ Sets, ResL/kX(B) = X(B ⊗k L).(1.51)

One can show that there exists an algebraic variety over k, unique up to k iso-
morphism, such that ResL/kX is its functor of points. This variety is denoted by
ResL/kX as well.

Exercise 1.29. Let L/k be a quadratic extension of fields. Write ResL/kGm
explicitly as an affine variety over k. Write also the co-multiplication and co-inverse
morphisms.

To tie together the functorial and the lattice approach, note that a ks-point of G
amounts to a homomorphism M −→ ks×, or, with the choice of the standard basis
on M , simply to a d-tuple, (x1, . . . , xd), of elements of ks×. Therefore, for every
field extension k′ of k in ks, we have

G(k′) = {(x1, . . . , xd) : τ(xi) = xτ(i), ∀τ ∈ Gal(ks/k′)}.(1.52)

In particular, G(k) is naturally isomorphic to L×, and in fact for every separable
field extension k′ of k we find a natural identification of G(k′) with (k′⊗L)×. That
shows that G is ResL/kGm.

Example 1.30. Tensor and Hom constructions. Let T be a d-dimensional
torus over k and let O be the ring of integers of an algebraic number field. Let
us assume that O is contained in the endomorphism ring of T . We remark that
such examples exist in abundance, because the endomorphism ring of T over ks is
Md(Z).

Given a projective O-module M of rank r, we define two new tori over k, both
of dimension rd. They are denoted T ⊗OM and HomO(M,T ). As functor of points
they are defined by the following formulae: For every k-algebra B

(T ⊗O M)(B) = T (B)⊗O M,(1.53)

(HomO(M,T )) = HomO(M,T (B)).(1.54)

We leave it to reader to verify that these are indeed the functor of points of tori
over k. We remark that the character modules are given by

X(T ⊗O M) = X(T )⊗O M, X(HomO(M,T )) = HomO(M,X(T )).(1.55)

Example 1.31. Serre tori. Let K be a CM field of degree 2g with its totally
real field K+. We remind the reader that by definition K is a totally imaginary
quadratic extension of a totally real field. Let G = ResK/QGm as in Example 1.28.
The character module of G can be explicitly written as

X(G) =
{∑

nσ · σ : σ ∈ Hom(K,Qs), nσ ∈ Z
}
.(1.56)

Let τ be complex conjugation. Then τ acts on X(G). Consider the Γ-module N
given by

N =
{∑

nσ · σ : nσ + nστ = nρ + nρτ , ∀σ, ρ
}
.(1.57)

Note that N is of rank g + 1. It defines a g + 1 dimensional torus (called a Serre
torus) over Q.



2. MODULI PROBLEMS 15

2. Moduli Problems

In this section we discuss moduli problems and moduli spaces. We mainly focus
on ideas rather than on the solutions because the solutions – the moduli spaces
themselves – are studied closely in later chapters. Some of the paragraphs in this
section will be better understood only after reading on the book.

The notion of a moduli space is rather a set of examples or problems than a well
defined notion. Usually, by a moduli problem one means a certain kind of classifica-
tion problem. Large part of mathematics is devoted, or motivated by, classification
problems: classifying topological spaces up to homotopy; classifying all the finite
simple groups; classifying Hilbert spaces up to isomorphism etc. Usually a distin-
guishing feature of the classification problems called moduli problems is that they
appear in the context of geometry, and that one considers families of objects as
well.

In the context of algebraic geometry one may choose the most general approach
and define a moduli problem as follows: Fix a base scheme S. A moduli problem
over S is a contravariant functor

Φ : SchS −→ Sets(2.1)

from the category of schemes over S to the category of sets. Assume that this
functor is representable, i.e., that there exists a scheme T −→ S such that the
functor of points of T , hT , is naturally equivalent to Φ. That is, that there exists
a natural isomorphism

hT (R) := MorS(R, T ) ∼= Φ(R),(2.2)

where R varies over S-schemes. One may then call T a fine moduli scheme. If T
is equi dimensional over S (and nice enough such that this makes sense), then one
may call dimS(T ) the number of moduli of the moduli problem Φ.

It seems that the first moduli problem, as such, was described and solved by B.
Riemann. It is still a problem that motivates much research in algebraic geometry.
In this case one fixes an integer g ≥ 2 and takes Φ to be the functor associating
to a scheme T the isomorphism classes of smooth curves C −→ T of genus g (here
S = Spec(Z) and hence omitted). Riemann made the statement that this problem
has 3g − 3 moduli. Local deformation theory as developed by Kodaira-Spencer,
[63], i.e. the theory of infinitesimal deformations (and in particular deformations
over the base k[ε], ε2 = 0, k a field, called also first order deformations ), dictates
that the k[ε] deformations of a curve C are parameterized by H1(C, TC), where
TC designates the tangent sheaf of C. By the Riemann-Roch theorem and Serre’s
duality

dim H1(C, TC) = dim H0(C,O(2KC)) = 3g − 3.(2.3)

See Section 6 and Chapter 3, Section 5 for more examples.
There does not exists a fine moduli scheme for this problem. It is a general

philosophy that the existence of a fine moduli space that represents a functor of
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isomorphism classes of certain objects, 1 usually rules out the possibility that the
objects being parameterized have automorphisms, as some curves do. However,
there exists a coarse moduli space for this problem.

A coarse moduli scheme is a scheme T −→ S such that (i) there exists a
morphism of functors Φ −→ hT ; (ii) for every algebraically closed field k, with
Spec(k) −→ S, the morphism of functors gives a bijection T (Spec(k)) ∼= Φ(Spec(k))
and moreover (iii) every morphism Φ −→ hX from Φ to the functor of points of a
S-scheme X, factor through Φ −→ hT for a unique morphism T −→ X.

Coarse moduli schemes may exist when fine moduli schemes do not. For exam-
ple, there exists a coarse moduli scheme for the functor Φ of isomorphism classes
of curves of genus g (still g ≥ 2). We shall denote it by Mg.

Often the existence and the “justification” for the existence of coarse moduli
spaces is the following. One adds structure to the original problem, i.e., considers
a functor Φ′ with a natural (“forgetful”) morphism Φ′ −→ Φ, such that in fact Φ
is obtained from Φ′ by a “nice” equivalence relation ∼. For example, in the case
of curves, we may take Φ′ to be the moduli problem of isomorphism classes of
m-pointed smooth curves. That is, a curve together with m-distinct points on it .
When m is large enough, that is m ≥ N(g) where N(g) depends only on the genus,
this moduli problem is rigid. That is, an automorphism of a curve of genus g fixing
the m marked points is necessarily the identity. The functor Φ′ is representable;
there exists a fine moduli space for it, sayMg,m. The spaceMg is then a quotient
of Mg,m by an equivalence relation coming from forgetting the marked points.

It follows tautologically(!) that if there exists a fine moduli scheme T for a
moduli problem Φ, then there exists a universal object U −→ T . That is there
exists an element U ∈ Φ(T ) with the following property: Let R be a S-scheme and
ER : Φ(R) −→ T (R) be the given bijection. Let x ∈ Φ(R) and ER(x) : R −→ T the
corresponding morphism. By contravariance we get an object ER(x)(U) ∈ Φ(R). It
is equal to x. In the case of m-pointed curves, this boils down to saying that there
exists a universal m-pointed curve U −→Mg,m such that for every scheme R the
isomorphism classes of m-pointed curves over R are precisely {f∗(U) : f ∈ T (R)}
(remember that a point f ∈ T (R) is, by definition, a morphism R −→ T ).

The moduli problems we will be interested in are those of classifying abelian va-
rieties with certain extra structure. This extra structure is meant to rigidify the
moduli problem. Some moduli schemes of elliptic curves are discussed in Section 3,
and of abelian varieties in Section 2.2. We do not presume to actually prove the
existence of such moduli schemes. What we shall actually show is that for some
moduli problems (e.g. elliptic curves and abelian varieties with real multiplication)
there are certain quotients of a power of the complex upper half plane H that are
“likely” to be coarse moduli schemes. In fact they are, but we shall only demon-
strate a natural bijection between the points of such quotients and the value of
the respective moduli problem on the scheme Spec(C). This falls short of actually
proving they are coarse moduli schemes.

We want to draw the reader’s attention to a phenomenon she encountered before
(or so we expect): There is no universal elliptic curve.

1Without the proviso on the functor representing isomorphism classes it is easy to give

examples where automorphisms form no obstruction. Grassmannians and formal group laws are
such examples
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Recall that the coarse moduli scheme of elliptic curves is given by the j-line;
two elliptic curves are isomorphic if and only if they have the same j invariant.
There doesn’t exist an elliptic curve over the j-line such that its fibre over every j0
is the elliptic curve with invariant j0. This has to do, of course, with the j-line not
being quite a fine moduli scheme. There is, however, such an elliptic curve over the
j-line with the points 0 and 1728 removed: E.g., y2 + xy = x3 − 36

j−1728x−
1

j−1728 .
If we ask for the moduli of elliptic curves with a 7 torsion point (this is a rigid
problem) then there exists a fine moduli scheme and thus a universal elliptic curve
over it. This moduli scheme is an open sub-variety of P1. Given t ∈ A1 associate
to it the elliptic curve y2 + (1 + t − t2)xy + (t2 − t3)y = x3 + (t2 − t3)x2. It has
discriminant t7(t−1)7(t3−8t2 +5t+1). The moduli scheme is then the complement
of the zero locus of the discriminant. The 7 torsion point is (0, 0). We have taken
those examples from Silverman [107, Chapter III.1, Appendix C.13].

For elliptic curves, if one takes as extra structure, say, an isomorphism of the
n-torsion points (n ≥ 3) with (Z/nZ)2 then one gets a rigid moduli problem repre-
sentable by a fine moduli scheme over Z[ζn]. Although the same level structure is
rigid (that is, objects do not have any automorphism except the identity) for abelian
varieties one needs to put some more structure to obtain nice moduli schemes. The
reason has to do with the way one construct these moduli schemes.

The usual procedure is to realize all the objects one parameterizes as sub va-
rieties of a projective space of a fixed dimension, having special properties. Thus
they are typically parameterized a sub variety of an appropriate Hilbert scheme.
For curves of genus greater then 1, the divisor 3K (K the canonical divisor) is very
ample, and thus all curves of genus g appear as sub varieties of P5g−6. See [20,
Section 1]. For elliptic curves, 3 · 0E is a very ample divisor, and all elliptic curves
appear as sub varieties of P2 (Weierstrass equation). One proceeds to construct the
moduli scheme as a sub-variety of a quotient of the appropriate Hilbert scheme.

Giving a projective embedding into a fixed projective space requires a choice of
a very ample divisor and a choice of basis for its global sections. All these are extra
data and one attempt to discard it. The choice of basis is corrected by dividing the
Hilbert scheme by the action of PGLn. The choice of ample divisor is corrected
by considering divisors up to algebraic equivalence. For elliptic curves, the last
correction is not needed because there is a canonical choice of an ample divisor, viz.,
0E . However, for abelian varieties there is no such choice and one needs to choose
an ample divisor up to algebraic equivalence. Since two divisors on an abelian
variety are algebraically equivalent if and only if they define the same map from
the abelian variety to its dual, one finds the usual definition of a polarization as
a map from the abelian variety to its dual induced by an ample line bundle (see
Definitions 1.14 and 6.27). We note that while for elliptic curves the Néron-Severi
group – the group of divisors modulo algebraic equivalence – is just Z, for an abelian
variety, though it is still a torsion free abelian group, it may happen that it is of
rank greater than 1 and thus there is no natural choice of polarization.

Thus, a typical moduli problem for abelian varieties is that of parameterizing
triples (A, λ, γ) where A is an abelian variety of a given dimension (otherwise the
moduli scheme would be a disjoint union according to dimension), a polarization
λ : A −→ At (that is: a map from A to its dual abelian variety that comes from an
ample line bundle) which should be thought of as an equivalence class of projective
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embeddings, and a level structure γ (Typically a choice of a point, or several points
on the abelian variety that rigidifies the moduli problem).

3. Moduli of Elliptic Curves

In this section, as the title suggests, we examine the moduli schemes corresponding
to pairs composed of an elliptic curve and an associated level structure. We assume
the reader is familiar with the basic theory of elliptic curves.

Every abelian variety of dimension 1 is an elliptic curve. By an elliptic curve
E over a ring R, we mean a group scheme E over Spec(R), of relative dimension
one, which is proper with geometrically connected fibers. Equivalently, locally on
Spec(R), the scheme E can be given a Weierstrass equation y2 + a1xy + a3y =
x3 + a2x

2 + a4x+ a6 with variables x, y.

Definition 3.1. Let R be a ring in which n is invertible and assume that R is
a Z[ζn]-module (ζn = e2πi/n).

1. A full symplectic level-n-structure (or a Γ(n)-structure) on an elliptic curve
E over R is an isomorphism of constant group schemes over R

α : (Z/nZ)2 −→ E[n].(3.1)

We further require that under α the Weil pairing on E[n] induces the sym-
plectic pairing on (Z/nZ)2 determined by < (1, 0), (0, 1) >= ζn.

2. A Γ1(n)-level structure is a choice of a point P ∈ E[n](R) of order n.
3. A Γ0(n)-level structure is a choice of cyclic subgroup H ⊂ E(n) of order n

that is defined over R.

Remark 3.2. 1. The phrase “constant group schemes over R” amounts to
saying that all the n-torsion points of E are defined over R.

2. By a symplectic pairing of (Z/nZ)2 we mean a map

φ : (Z/nZ)2 × (Z/nZ)2 −→ µn(R),(3.2)

such that φ is bilinear and antisymmetric.

We consider the following functors:

M(n) : R 7→M(n)(R) := {isomorphism classes over R of (E,α)}(3.3)

M1(n) : R 7→M1(n)(R) := {isomorphism classes over R of (E,P )}(3.4)

M0(n) : R 7→M0(n)(R) := {isomorphism classes over R of (E,H)}(3.5)

To clarify, two pairs (E1, α1) and (E2, α2) in M(n)(R) are isomorphic over R if
there exists an isomorphism f : E1 −→ E2, defined over R, such that f ◦ α1 = α2.
Similarly for Γ1(n) and Γ0(n) level structures. Thus, we always have (E,P ) ∼=
(E, h(P )), for h ∈ AutR(E). For most elliptic curves h could only be ±1, but for
some curves there are more possibilities.

We have the following natural transformations of functors:

M(n) −→M1(n),(3.6)

given by

(E,α) 7→ (E,α(1, 0)),(3.7)
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and

M1(n) −→M0(n),(3.8)

given by

(E,P ) 7→ (E,< P >),(3.9)

where < P > means the cyclic group generated by P .

Consider now elliptic curves over C. Let H be the complex upper half plane

H = {z ∈ C : Im(z) > 0}.(3.10)

Let τ ∈ H, and let Lτ be the lattice corresponding to τ , i.e.,

Z+ Z · τ.(3.11)

Let Eτ be the elliptic curve

C/Lτ .(3.12)

Later, in Example 6.39, we shall see that every elliptic curve is isomorphic to Eτ
for a suitable τ ∈ H, and we shall prove that under the Weil pairing

<,>: Eτ [n]× Eτ [n] −→ µn,(3.13)

we have

<
1
n
,
τ

n
>= exp(2πi/n) = ζn.(3.14)

Granted that, we get a symplectic level-n-structure

α : (Z/nZ)2 −→ Eτ [n],(3.15)

by setting α(1, 0) = 1
n and α(0, 1) = τ

n . We also get a:
• Γ1(n) level structure by taking Pτ to be α(1, 0) on Eτ .
• Γ0(n) level structure by taking Hτ to be the subgroup

{
a
n |a = 0, . . . , n− 1

}
on Eτ .

Let Γ(n),Γ1(n),Γ0(n) be the following congruence subgroups of SL2(Z):

Γ(n) =
{(

a b
c d

)
≡
(

1 0
0 1

)
mod n

}
,(3.16)

Γ1(n) =
{(

a b
c d

)
≡
(

1 ∗
0 1

)
mod n

}
,(3.17)

Γ0(n) =
{(

a b
c d

)
≡
(
∗ ∗
0 ∗

)
mod n

}
.(3.18)

Let µ =
(
a b
c d

)
∈ SL2(Z), τ ′ = µτ . A short calculation yields that τ and τ ′

define isomorphic couples in the following settings:

(Eτ , ατ ) ∼= (E′τ , α
′
τ ) ⇐⇒ µ ∈ Γ(n),(3.19)

(Eτ , Pτ ) ∼= (E′τ , P
′
τ ) ⇐⇒ µ ∈ Γ1(n),(3.20)

(Eτ ,Hτ ) ∼= (E′τ ,H
′
τ ) ⇐⇒ µ ∈ Γ0(n).(3.21)
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Moreover, we have the following diagram:

Γ(N)\H τ 7→C/(Z+Zτ)−−−−−−−−−−−−−→
α(1,0)= 1

n , α(0,1)= τ
n

M(N)(C)y y
Γ1(N)\H τ 7→C/(Z+Zτ)−−−−−−−−→

P= 1
n

M1(N)(C)y y
Γ0(N)\H τ 7→C/(Z+Zτ)−−−−−−−−→

H=< 1
n>

M0(N)(C)

(3.22)

Exercise 3.3. Take a point τ for which one of the coverings is ramified. Ex-
press that in terms of automorphisms of the elliptic curve Eτ .

We recall that the open Riemann surfaces Γ(N)\H,Γ1(N)\H and Γ0(N)\H denoted
customarily by Y (N)(C), Y1(N)(C) and Y0(N)(C) respectively can be compactified
canonically by adding the orbits of P1(Q) under the group Γ(N),Γ1(N) and Γ0(n)
respectively. The resulting curves are denoted accordingly X(N)(C), X1(N)(C)
and X0(N)(C).

For sake of completeness we give information of indices and genus. ****

4. Modular Forms

In this section, we present modular forms as sections of line bundles. Though our
presentation is quite sell-contained, we assume that the reader is familiar with the
usual definition of modular forms, and our intention is to present a re-interpretation
and some interesting phenomena.

Let Γ be a discrete subgroup of SL2(R).

Definition 4.1. A holomorphic function j : Γ × H −→ C
× is called a factor

of automorphy if for all µ1, µ2 ∈ Γ and τ ∈ H:

j(µ1µ2, τ) = j(µ1, µ2τ)j(µ2, τ).(4.1)

One calls (4.1) the cocycle relation. Indeed, if we view Γ as acting on the multi-
plicative abelian group O×H of non-vanishing holomorphic functions on H by the
rule (fγ)(τ) = f(γτ), then the association

Γ −→ O×H, µ 7→ j(µ, ·)(4.2)

is a 1-cocycle in Z1(Γ,O×H).

Example 4.2. Let k be an integer. Let

jk(µ, τ) : Γ×H −→ C, jk(µ, τ) = (cτ + d)k,(4.3)

where µ =
(
a b
c d

)
∈ Γ, τ ∈ H. Then jk is a factor of automorphy.

The following diagram demonstrates the compatibility of the action of Γ on
H× C:
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Figure 1.

Definition 4.3. For Γ ⊂ SL2(Z) torsion free (i.e. Γ contains no elliptic ele-
ments), we define the Hodge bundle Ek as the quotient:

H× C/Γ,(4.4)

with the action of Γ given by (τ, α) ∼µ (µτ, jk(µ, τ)α)

Some remarks are in order: First, recall that a groupG acts properly and discon-
tinuously on a topological space X, if for any pair of compact subsets K1,K2 ⊂ X
the set

{g ∈ G|gK1 ∩K2 6= ∅}(4.5)

is finite. Also, the action of G on X is said to be free, if gx = x for some x ∈ X
and g ∈ G implies g is the identity. So, using that Γ acts freely and properly
discontinuously on H × C , we get that the Hodge bundle Ek is well-defined as a
complex manifold. And since Γ is torsion free, Ek is a line bundle over Γ\H.

Secondly, we note that E⊗kk
′ ∼= (E⊗k)⊗k

′
, because, in general, if Li, i = 1, 2,

are two line bundles defined by factors of automorphy hi, then L1 ⊗ L2 is defined
by the factor of automorphy h1h2.

Definition 4.4. A modular form of weight k and level Γ is a global section
of the line bundle Ek over Γ\H, i.e., an element of H0(Γ\H,Ek). Equivalently, a
function

f : H −→ C,(4.6)

such that

f(µτ) = jk(µ, τ)f(τ).(4.7)

We denote the vector space of modular forms of weight k and level Γ by F(C, k,Γ).

Remark 4.5. Some care has to be taken here. A modular form in the sense
above is meromorphic at the cusps. The Hodge bundle extends to the compactified
curve Γ\H∗ and a modular form of weight k and level Γ is usually taken to be a
section of Ek over Γ\H∗. I.e., one adds the requirement of being holomorphic at
the cusps. To distinguish we shall say “holomorphic modular forms” and use the
notation M(C, k,Γ).

Starting with the property (4.7), one may define modular forms of weight k and
level Γ for Γ not necessarily torsion free, e.g., for SL2(Z), as holomorphic functions

f : H −→ C,(4.8)
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satisfying

f(µτ) = jk(µ, τ)f(τ).(4.9)

Again, the usual terminology requires holomorphity at infinity as well. In the
case where Γ is not torsion free, these are the global sections of a sheaf on Γ\H
which is generally not invertible. The problem is with the ramification of the map
H −→ Γ\H that obstructs the descent of the Hodge bundle to the quotient. To see
that indeed there is an obstruction take the case Γ = SL2(Z) and note that

from µ0 =
(
−1 0
0 −1

)
we get f(µ0τ) = f(τ) = (−1)kf(τ)

from µ1 =
(

0 −1
1 0

)
we get f(µ1i) = f(i) = ikf(i)

from µ2 =
(

0 −1
1 1

)
we get f(µ2ω) = f(ω) = ωkf(ω)

(ω = exp(2πi/3)) and hence every section of the sheaf of modular forms of weight k
and level SL2(Z) vanishes: (i) identically, if 2 - k; (ii) at i, if 4 - k; (iii) at ω, if 3 - k.
On the other hand, it is well known that SL2(Z)\H ∼= C. The isomorphism is given
in fact by the j-invariant. Since C is simply connected, any invertible sheaf over it
(or equivalently, any line bundle) is trivial. But triviality of the line bundle implies
the existence of a non-vanishing section! That is impossible, since µ1, µ2 ∈ SL2(Z).
See also the digression on factors of automorphy in Section 6.1

Exercise 4.6. Show that E12 descends to a line bundle on SL2(Z)\H. How
does that fit with the existence of the cusp form ∆?

Interesting references in this context are [77] and [79].

We may interpret the Hodge bundle E1 in the following way: Given τ ∈ H,

γ =
(
a b
c d

)
∈ Γ, we have an isomorphism of elliptic curves (induced by multi-

plication):

Eτ = C/Z+ Zτ ∼←−−−−−−−−−−
×(cτ+d)=j(γ,τ)

Eγτ = C/Z+ Z
(
aτ+b
cτ+d

)
,(4.10)

which induces a map between the tangent spaces

C = tEτ,0 ←−−−−
×cτ+d

tEµτ,0 = C,(4.11)

and therefore, a map between the cotangent spaces

t∗Eτ,0
∼−−−−→

×cτ+d
t∗Eµτ,0 .(4.12)

Consider the projection map

Euniv,Γ := Γ\Ẽuniv,Γ
π−−−−→ Γ\H,(4.13)

where Ẽuniv,Γ = {(τ, x) : x ∈ C/Z+ Zτ}, the action of Γ being given by (τ, x) ∼
(γτ, j(γ, τ)−1x). We see that the family of elliptic curves Ẽuniv,Γ over H descend
to a family of elliptic curves Euniv,Γ over Γ\H (which is the “universal family with
level Γ”) and that the relative tangent space of Euniv,Γ over Γ\H is defined by the
factor of automorphy j(γ, τ)−1.
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Conclusion: Let Γ be torsion free. A modular form of weight k and level Γ is a
section of e∗(t∗Euniv,Γ

⊗k), where e : Γ\H −→ Euniv,Γ is the identity section induced
from τ 7→ (τ, 0).

Remark 4.7. The reader may notice how the fact that there exists a universal
family is connected to the fact that the map H −→ H/Γ is unramified and to the
fact that the automorphism group of an elliptic group with “Γ structure” is trivial.
See Exercise 3.3.

Let f be a modular form of weight k and level Γ. Taking the last perspective, we
have therefore a map:

(E,Γ)R
f7−→ f(E,Γ) ∈ H0(E,ω⊗k).(4.14)

Here E is an elliptic curve over a C-algebra R and ω is the sheaf over Spec(R) of
relative holomorphic forms on E. That is, ω = π∗Ω1

E/R. It is a projective rank 1
module over R. Every such holomorphic differential form is translation invariant
and therefore there is a canonical identification of ω with the relative cotangent
sheaf at zero t∗E/R,0.

Suppose we choose ω0 to be some non-vanishing differential on E, and consider:

(E,Γ, ω0)
f7−→ f(E,Γ)

ωk0
∈ R.(4.15)

Replacing ω0 with λω0, for λ ∈ R×, we get:

(E,Γ, λω0)
f7−→ f(E,Γ)

λωk0
= λ−kf(E,Γ, λω0),(4.16)

so we may think of a modular form f (with level Γ, weight k) as a rule

(E,Γ, ω0)R
f7−→ f(E,Γ, ω0) ∈ R(4.17)

such that f(E,Γ, λω0) = λ−kf(E,Γ, λω0) and f depends only on the isomorphism
class of (E,Γ, ω0) and commutes with base change. The point of this gymnastics is
that such a definition makes sense if we replace C by any base scheme B and allow
R to be any B-algebra! This insight is due to Katz.

Remark 4.8. The last interpretation of modular forms is perhaps best moti-
vated by the classical view of modular forms as certain homogenous functions of
lattices. Take for simplicity Γ = SL2(Z).

To give an elliptic curve E/C up to isomorphism is to give a lattice LE in C
up to homothety. Thus to give an elliptic curve with a non-vanishing differential
(E/C, ω0) is to give a unique lattice in C, LE,ω0 . Hence, a modular form f gives a
function on lattices in C. Since we have the relation

LE,λω0 = λLE,ω0(4.18)

the property f(E, λω0) = λ−kf(E,ω0) is translated to the property f(λL) =
λ−kf(L). I.e., f is a function of lattices that is homogenous of weight k. See
also [101, Chapter VII], [66, Chapter 3, Section 2].

Let f be a modular form with respect to the group Γ0(N) for some N . Since the

matrix
(

1 1
0 1

)
belongs to Γ0(N) it follows that f(τ + 1) = f(τ). Therefore, f
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has a Fourier expansion, called a q-expansion with respect to the variable q = e2πiτ

f =
∑
n≥−N

anq
n.(4.19)

A similar expansion can be obtained in every cusp with respect to a suitable pa-
rameter. The holomorphic modular forms have q-expansions with an = 0 at every
cusp if n < 0, and the cusp forms have q-expansions with an = 0 at every cusp
if n ≤ 0. We note that if we let Ek denote the unique extension of Ek to a sheaf
on X0(N)(C) = Γ0(N)\H∗ that is invertible at the cusps divisor cusps, then the
holomorphic modular forms of weight k are just the sections H0(X0(N)(C),Ek),
while the cusp forms of weight k are sections of H0(X0(N)(C),Ek(−cusps)).

5. Some Examples of Modular Forms

5.1. Level 1. Let k be an even integer, k ≥ 4. The Eisenstein series of weight
k is the complex valued function on the upper half plane

GQk (τ) =
∑′ 1

(mτ + n)k
.(5.1)

The sum extending over all integers m,n such that (m,n) 6= (0, 0). It is well known
that this is a modular form of level one and weight k. See [101, Chapter VII]. We
normalize GQk such that the q-expansion starts with one and denote it then by EQk
or simply by Ek. Then the expansion of EQk is given by (loc. cit.)

form q-expansion

EQ4 1 + 240
∑∞
n=1 σ3(n)qn

EQ6 1− 504
∑∞
n=1 σ5(n)qn

EQ8 1 + 480
∑∞
n=1 σ7(n)qn

EQ10 1− 264
∑∞
n=1 σ9(n)qn

EQ12 1 + 65520
691

∑∞
n=1 σ11(n)qn

EQ14 1− 24
∑∞
n=1 σ13(n)qn

,(5.2)

where σr(n) =
∑
d|n d

r, and in general

Ek(q) = 1 + 2ζ(1− k)−1
∞∑
n=1

σk−1(n)qn.(5.3)

It is well known that the graded ring of modular forms of level 1 over the
complex numbers, ⊕∞k=0M(k,SL2(Z)), is isomorphic to the free polynomial ring
in two variables C[E4, E6] of weights 4 and 6 respectively. The modular form
∆ = 1

1728 (E3
4 − E2

6) is a cusp form of weight 12 that induces an injection

M(k,SL2(Z)) −→M(k + 12,SL2(Z)),(5.4)

whose image is of codimension one, consisting of all the cusp forms of weight k+12.
Thus, for k ≥ 0,

dim M(k + 12,SL2(Z)) = dim M(k,SL2(Z)) + 1.(5.5)
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The dimensions for small weight are given in the following table:

weight dimension basis weight dimension basis

0 1 1 12 2 ∆, EQ12

2 0 – 14 1 EQ14

4 1 EQ4 16 2 ∆EQ4 , E
Q

16

6 1 EQ6 18 2 ∆EQ6 , E
Q

18

8 1 EQ8 20 2 ∆EQ8 , E
Q

20

10 1 EQ10 22 2 ∆EQ10, E
Q

22

.(5.6)

The modular form ∆ has some important properties making it one of the key players
in the theory. First, it has a product expansion

∆ = q

∞∏
n=1

(1− qn)24,(5.7)

that shows that ∆ does not vanish on the upper half plane, and has integral
Fourier coefficients

∑∞
n=1 τ(n)qn. The coefficients τ(n) are the famous Ramanujan

τ -function. Second, it is the unique cusp form of its weight and thus an eigenvalue
for all the Hecke operators. Third, it has the interpretation of being (up to a con-
stant) the discriminant of the elliptic curve Eτ associated to τ ∈ H by means of the
Weierstrass ℘-function (and that shows again that ∆ does not vanish).

5.2. Higher level. Let f be a modular form of level 1 and weight k considered
as a function on H. Consider the function

τ 7→ g(τ) := f(Nτ).(5.8)

Let γ =
(
a b
c d

)
be a matrix in Γ0(N). Then g(γτ) = f(Nγτ) = f(NγN−1Nτ)

= f(
(

a Nb
c/N d

)
Nτ) = (cτ+d)kf(Nτ) = (cτ+d)kg(τ). Thus g(τ) is a modular

form of level Γ0(N) and weight k.
Such modular forms are very important. Consider for example the modular

function of level N given by

τ 7→ u(τ) :=
∆(Nτ)
∆(τ)

.(5.9)

The divisor of this function is supported at the cusps. In fact, for N prime there are
two cusps c1, c2 on X0(N) and this function proves the Manin-Drinfeld theorem:

every divisor D of degree zero supported at the cusps is torsion. That is, there
exists a positive integer n and a function h whose divisor is nD.

Exercise 5.1. Bound the order of the divisor c1 − c2. In fact, one can prove
that the order is exactly the numerator of (N − 1)/12 but this is harder. See [89,
Section 3] and [90, Section 4] for generalizations.

In general, one considers the value of this function at a point τ . Since it has
integral Fourier coefficients it extends to a function over the arithmetic scheme over
Z[1/N ] – the proper regular model of X0(N) – and still its divisor is supported at
the cusps because the g.c.d. of the Fourier coefficients is 1. Thus, from the moduli
interpretation we see that if the elliptic curve corresponding to τ is defined over
Q
alg and has everywhere potential good reduction then u(τ) is at least an S-unit,



26 1. TORI AND ABELIAN VARIETIES

where S is the set of primes dividing N . Moreover, this unit lies in the moduli
field of Eτ , which is equal to the residue field of τ as a point on the algebraic curve
X0(N). In case τ corresponds to an elliptic curve with complex multiplication one
can further find this moduli field and the Galois action via the theory of complex
multiplication and Shimura’s reciprocity law. Those units are called Siegel’s units.
. See [66, Chapter 12] and [26, Chapter 2.2].

It is not our intention to give a systematic introduction to the theory of elliptic
modular forms, i.e. to modular forms for some congruence subgroup of SL2(Z), but
rather to give some interesting examples that connect to the material to be discussed
in this book. We thus restrict our attention to two constructions of modular forms:
Eisenstein series and theta series. We follow Ogg [88], where the reader can find
proofs and more details.

Eisenstein series. Let k ≥ 3. 2 Let N be a fixed positive integer and c, d be
two integers. Generalizing the construction of the Eisenstein series of level one, one
defines

Gk(τ ; c, d,N) =
∑′

m ≡ c (mod N)
n ≡ d (mod N)

1
(mτ + n)k

.(5.10)

It is easy to verify that Gk(τ ; c, d,N) is a modular form of weight k and level
Γ(N). One can modify the construction and define the restricted Eisenstein series
G∗k(τ ; c, d,N) for (c, d,N) = 1 as

G∗k(τ ; c, d,N) =
∑′

m ≡ c (mod N)
n ≡ d (mod N)

(m,n) = 1

1
(mτ + n)k

.(5.11)

Also G∗k(τ ; c, d,N) is a modular form of weight k and level Γ(N). The two kinds of
Eisenstein series are related by explicit formulae ([88, IV-34]).

The restricted Eisenstein series G∗k(τ ; c, d,N) have the wonderful property that
their q-expansion starts with zero at all cusps except for the cusp −c/d where the
q-expansion starts with a constant α that is independent of c and d. The restricted
Eisenstein series are thus seen to generate the space of Eisenstein series.

Recall the notation f |γ:

(f |γ)(τ) = (ad− bc)k/2(cτ + d)−kf(γτ), γ =
(
a b
c d

)
∈ GL2(R)+.(5.12)

We have with this notation

G∗k(τ ; (c, d), N)|γ = G∗k(τ ; (c, d)γ,N).(5.13)

([88, IV-33]). Thus, from orbits of Γ0(N) in the set of pairs of residues (c, d) modulo
N such that (c, d,N) = 1, we get Eisenstein series for Γ0(N).

2For level subgroups, unlike the case of SL2(Z) they may be non-trivial modular forms of
odd weight, though there are non of negative weight.
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Theta series. Let r be an even integer and let

Q(x) =
1
2
txAx =

1
2

r∑
i,j=1

aijxixj(5.14)

be a positive definite integral quadratic form. That is A = (aij) is a symmetric
r×r matrix of integers whose diagonal elements are even, and A is positive definite.
One defines the determinant of Q, denoted D, as the determinant of A, and ∆, the
discriminant of Q, as (−1)r/2D. The least positive integer N with A∗ = NA−1

integral symmetric matrix is called the level of Q, and the integral positive definite
form it defines

Q∗ =
1
2
txA∗x(5.15)

is the adjoint form to Q. One always have N |D|Nr. See [88, Chapter VI].
The theta series associated to Q is defined as

θ(τ,Q) =
∑
v∈Zr

e2πi·Q(v)τ

= 1 +
∞∑
n=1

aQ(n)qn/2, q = e2πiτ (sic!).
(5.16)

Here the coefficients aQ(n) are the representation numbers of Q, i.e., aQ(n) is the
number of vectors v ∈ Z solving the equation Q(x) = n.

Let ε be the character ε(n) =
(

∆
n

)
(Jacobi symbol. See [51, Page 56]). Then

the main theorem is that θ(τ,Q) is a modular form for Γ0(n) of character ε and
weight r/2. (This construction can be generalized using spherical functions. See
[88, VI-10]).

It turns out that to get modular forms of level 1 the number of variables must
be divisible by 8. See [101, Chapter VII, 6.5].

Example 5.2. 1. Let QN (x) = Nx2 corresponding to the matrix AN =
2N . Note that θ(τ,QN ) = θ(Nτ,Q1) and

θ(τ,QN ) = 1 + 2
∞∑
n=1

qNn
2/2.(5.17)

We note that

θ(τ,Q1) = 1 + 2
∞∑
n=1

qn
2/2 = Θ

[
0
0

]
(0, τ),(5.18)

(Riemann’s theta function, [33, Chapter VI]). The level and discriminant of
Q1 is 2 and we get that θ(τ,Q1) is a modular form of weight 1/2, level Γ0(2)
and trivial character.

2. Let Q(x) = x2
1 + x2

2 + x2
3 + x2

4 corresponding to the diagonal matrix A =
diag[2, 2, 2, 2]. It is a quadratic form in four variables, of level 2 and dis-
criminant 16. It therefore defines a modular form of level Γ0(2), weight 2
and trivial character.

θ(τ,Q) = 1 +
∞∑
n=1

anq
n/2,(5.19)
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where an is the number of expressions of n as a sum of four squares (negative
numbers allowed). Note that

θ(τ,Q) = θ(τ,Q1)4.(5.20)

A classical formula gives an elementary expression for the coefficients an:

Proposition 5.3. (Jacobi) The number of representation an of n as a
sum of four squares is

an =

{
8
∑
d|n d n odd

24
∑
d|n,d≡1 (2) d n even

.(5.21)

Two strategies for proving this Proposition are as follows: (i) Observe
that since X0(2) is of genus zero, there is a unique modular form of level
2 up to a scalar. Thus, one constructs a modified Eisenstein series of level
two and compares coefficients. See [80, Chapter 1, Section 15]. (ii) Use the
product expansion of θ(τ,Q1) to derive the formulae directly (loc. cit.).

Connection to supersingular elliptic curves. Let p be a prime number and
consider the set of isomorphism classes of supersingular elliptic curves over Fp.
There are } = g + 1 of them where g is equal the genus of X0(p):

g =

{
p+1
12 −

1+(−1
p )

4 − 1+(−3
p )

3 p 6= 2
0 p = 2

.(5.22)

Exercise 5.4. Prove formula (5.22) from Hurwitz genus formula using that
SL2(Z)\H has genus zero.

Let E be an elliptic curve over Fp. We recall here various equivalent ways of
saying that E is supersingular: (i) E has no physical p-torsion: E[p](Fp) = {0};
(ii) there exists an embedding of the group scheme αp into E; (iii) there does not
exist an embedding of µp into E; (iv) the Frobenius morphism FrE : E −→ E(p)

is purely inseparable; (v) the multiplication by p map [p] : E −→ E is purely
inseparable; (vi) the ring of endomorphisms of E is isomorphic to a (maximal)
order of the quaternion algebra Bp,∞ – the quaternion algebra over Q ramified at
the two places p and ∞; (vii) for n large enough FrnE is an endomorphism of E and
its characteristic polynomial has Newton polygon w.r.t. the p-adic valuation which
is a straight line; (viii) the formal group of E has height 2.

See [107, V.3] for some of the equivalences. The others you can do once you read
Chapter 6 Section 7 and Appendix A. We recall that furthermore the j-invariant
of a supersingular curve is in Fp2 ;

There is an interesting characteristic p method to prove formula (5.22). One con-
siders the Γ0(p)-level moduli problem of parameterizing elliptic curves with a given
subgroup of order p. One proves that there exists a coarse moduli scheme for this
moduli problem, which is a regular scheme that is a flat relative curve Y0(p) over
Z. Over the complex numbers Y0(p)(C) ∼= Γ0(p)\H.

To actually have a proper morphism X0(p) −→ Spec(Z), one needs to throw
in the cusps. The cusps may also be given a moduli interpretation using the
concept of generalized elliptic curves. See [22]. This interpretation shows that
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there are two cusps lying over the unique cusp of X0(1) (the j-line). One is un-
ramified, and the other has ramification of order p, and that moreover this per-
sists in characteristic p. One proves that X0(p) is a regular integral scheme and
the morphism X0(p) −→ Spec(Z) is proper and flat. Over the complex numbers
X0(p)(C) ∼= Γ0(p)\H∗.

One goes on to prove that in characteristic p, the reduction of X0(p) consists of
two components that intersect transversely precisely above the supersingular points
of X0(p). See Figure ***

Figure 2.

The proof is based on the construction of two “sections”

X0(1) (mod p)⇒ X0(p) (mod p).(5.23)

One section is a true section and is obtained by sending an elliptic curve E to the
pair (E,Ker(FrE)) (note that if E is ordinary Ker(FrE) is a form of µp) and the
other is obtained by sending E to (E,Ker(VerE)), where VerE : E −→ E(1/p) (note
that if E is ordinary Ker(VerE) is a form of Z/pZ). Leaving aside the problem of
non-integral base schemes, there is still the problem that VerE is usually defined
only after a base change. See Appendix A for groups schemes and the morphisms
Fr,Ver.

Thus the true state of affairs is that X0(p) (mod p) is composed of two com-
ponents that we denote X0(p)µp and X0(p)Z/pZ. Those two components intersect
precisely over the supersingular points. The map

X0(p)µp −→ X0(1) (mod p),(5.24)

is an isomorphism, while the map

X0(p)Z/pZ −→ X0(1) (mod p),(5.25)

is purely inseparable of degree p. Thus, both components have genus zero, and
the total genus of X0(p) (mod p) (which, courtesy of flatness, is also the genus
of every fiber of X0(p) −→ Spec(Z)) is the genus of the intersection graph of the
components. This graph consists of two vertices, with } edges between them, and
has thus genus }− 1.

Fix representatives for the supersingular elliptic curve E1, . . . , E}. For every i and
j we can consider the abelian group

Ii,j = Hom
Fp

(Ei, Ej).(5.26)

It is a left End(Ej) module and a right End(Ei) module. The function f 7→ deg(f)
is a positive definite integral quadratic form Qi,j on Ii,j in four variables. One
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defines the theta series

θ(τ,Qi,j) :=
1

|Aut(Ej)|
∑
b∈Ii,j

qdeg(b).(5.27)

The main theorem is that the θ(τ,Qi,j) are modular forms of weight 2 and level
Γ0(p) (with trivial character) that span the space of modular forms of weight 2 and
level Γ0(p).

We refer the interested reader to [42], [70], [96] for more on this fascinating
story. The proof that the level and character are as stated follows of course from
the theorem of Theta series we explained above and is in [96, Theorem 2.14].

Example 5.5. There is a unique supersingular elliptic curve E over a field of
characteristic two. Its endomorphism ring is the ring Z[i, j, (1 + i+ j+ k)/2] in the
rational Hamilton quaternions H, where following classical notation we write the
Hamilton quaternions as Q⊕Qi⊕Qj ⊕Qk with the relations

−1 = i2 = j2 = k2, ij = k = −ji.(5.28)

This ring is the free Z module on 1, i, j and (1+i+j+k)/2. The norm of an element
a+ bi+ cj + dk is a2 + b2 + c2 + d2, and is equal to its degree as an endomorphism
of E. We see that up to a scalar, the theta function derived from E is the theta
function of the form

Q(a+ bi+ cj + dk) = a2 + b2 + c2 + d2.(5.29)

We arrive at Example 5.2, 2.

Exercise 5.6. The situation above can be made explicit. We leave the verifi-
cations of details to the reader.

The equation for E may be chosen as

y2 + y = x3.(5.30)

The substitutions

x 7→ u2x+ s2, y 7→ y + su2x+ t,(5.31)

give an automorphism of E if and only if the following equations are satisfied:

u3 = 1, s4 + s = 0, t2 + t+ s6 = 0.(5.32)

We write this automorphism as (u, s, t)x, (u, s, t)y. The group of automorphisms is
visibly of order 24. Now,

(u1, s1, t1)(u, s, t) = (u1u, s1 + u1s, t1 + t+ u2
1s1s

2).(5.33)

This shows that there is a unique element of order two. It is (1, 0, 1) and we
denote it by −1. The notation is justified since in its action on E it is equal to the
automorphism [−1], acting by (x, y) 7→ (x, y + 1). Handy formulas are

(u, s, t)2 = (u2, s(1 + u), us3), −(u, s, t) = (u, s, t+ 1).(5.34)

We deduce that there are precisely six elements of order four. They are the elements
of the set {(1, s, t) : s3 = 1, t2 + t+ 1 = 0}.

Let s1, s2 and s3 be the solutions to s3 = 1 and let t1, t2 be the solutions to
t2 + t+ 1 = 0. We may assume that s1s

2
2 = t1. With these conventions we let

i := (1, s1, t1), j := (1, s2, t1), k := (1, s3, t1).(5.35)
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The usual relations are satisfied:

i2 = j2 = k2 = −1, ij = −ji = k.(5.36)

It follows that {±1,±i,±j,±k} is Q8 – the group of quaternions of order 8. The
cyclic group C3 of order 3 given by {(u, 0, 0) : u3 = 1} acts by conjugation on Q8,
permuting cyclically the elements i, j, k, and

Aut(E) ∼= C3 nQ8.(5.37)

6. Abelian Varieties over C

In this section we describe the theory of abelian varieties over the complex numbers.
We often refer to the excellent book by Lange and Birkenhake [67]. The reader may
also consult [109], [16] and [75] and [85]. We found it necessary, regretfully, to omit
most proofs in order to keep these lecture notes to a reasonable size. Nevertheless,
we go into detail in describing abelian varieties over C in hope of arming the novice
with some intuition when facing the much more strenuous presentation of abelian
varieties (or schemes) over arbitrary fields in later sections.

We assume some familiarity with Lie groups. Specifically, with the definition
of a complex Lie group as a analytic manifold with a group structure such that the
group operations are analytic, and with the exponential map that we recall below.

Definition 6.1. Let k be a field. An abelian variety A over k is a projective,
connected algebraic group.

We consider the case k = C. Let V denote a g-dimensional vector space over
C and Λ a lattice in V (i.e. a subgroup of rank 2g such that Λ ⊗ R ∼= V under
the map λ ⊗ α 7→ αλ ). A complex torus is a complex Lie group isomorphic to
X = V/Λ for some lattice Λ. Note that X is compact.

Remark 6.2. Do not confuse a complex torus with an algebraic torus as in
Section 1.

Theorem 6.3. Any connected compact complex Lie group X is a complex torus.

Proof. We first prove that
•X is abelian.
Consider the commutator map

X ×X −→ X,(6.1)

(x, y) 7→ [x, y] = xyx−1y−1.(6.2)

Let U be an open neighborhood of 1. Let x ∈ X. Since [x, 1] = 1 ∈ U and [·, ·]
is continuous, for every x ∈ X, we have open sets Vx and Wx, with x ∈ Vx and
1 ∈Wx, such that [Vx,Wx] ⊂ U . Since X is compact,

X = ∪x∈XVx = ∪i=1,··· ,nVxi (for some x1, · · · , xn).(6.3)

Let W = ∩ni=1Wxi , an open neighborhood of 1. Then

[X,W ] ⊂ U.(6.4)

We may assume that there exists an isomorphism U ∼= C
g. Hence, for every w ∈W

we get an analytic function

X −→ C
g ; x 7→ [x,w].(6.5)
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This function must be constant since X is compact. Hence, for every w ∈ W , we
have [X,w] = 1 and thus

[X,W ] = 1.(6.6)

The set W is open and contains the identity element, so it generates an open
subgroup Q of X that has the property [Q,X] = 1; but in a topological group, any
open subgroup is also closed. Thus, Q = X is abelian.
• It follows from the theory of Lie groups that for every complex Lie group X,

there exists a unique holomorphic map

C× V −→ X ; (t, v) 7→ φv(t),(6.7)

where V = tX,1 is the tangent space at 1, such that

1. φv(t) is a holomorphic homomorphism in t: φv(t1 + t2) = φv(t1)φv(t2). In
our case, since X is abelian, we write φv(t1 + t2) = φv(t1) + φv(t2).

2. Tφv(t) takes the unit tangent vector to C at zero to v (i.e. Tφv( ddt |0) = v).

One defines the exponential map

e : V −→ X(6.8)

by

e(v) = φv(1).(6.9)

Figure 3.

The two maps C −→ X given by

t 7→ φsv(t) ; t 7→ φv(st) (s fixed )(6.10)

are holomorphic homomorphisms with derivatives at zero equal to sv. Thus, by
uniqueness,

φsv(t) = φv(st),(6.11)

and therefore

e(sv) = φv(s).(6.12)

Consider the map

f : C −→ X(6.13)

given by

t 7→ e(tx) + e(ty) = φx(t) + φy(t)(6.14)
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for some fixed x, y ∈ X. Then

f(t1 + t2) = e((t1 + t2)x) + e((t1 + t2)y)

= φx(t1 + t2) + φy(t1 + t2)

= φx(t1) + φx(t2) + φy(t1) + φy(t2)

= (φx(t1) + φy(t1)) + (φx(t2) + φy(t2))

= f(t1) + f(t2)

.(6.15)

Therefore f is a holomorphic homomorphism with derivative at 0 equal to x+y
(use the chain rule). Thus, f(t) = φx+y(t). Plugging in t = 1, we get

e(x) + e(y) = e(x+ y);(6.16)

so e : V −→ X is a homomorphism. The image of e is an open subgroup (it contains
a neighborhood of 1) and since X is connected , e is surjective. Having X compact
gives us that the kernel is a lattice Λ, since lattices are the only discrete subgroups
of vector spaces with compact quotient.

Corollary 6.4. Every abelian variety over C is a complex torus, hence the
group law is commutative.

Corollary 6.5. Let X be a complex torus. Then

X[n] : = {x|x ∈ X : nx = 0}

∼=
1
n

Λ/Λ

∼= (Z/nZ)2g.

(6.17)

Corollary 6.6. Once we fix isomorphisms Λi ∼= Z
2gi , we have an isomor-

phism of groups

Hom(X1, X2) ∼= {M ∈Mg1×g2(C) : MΛ1 ⊂ Λ2} ↪→ {M ∈M2g1×2g2(Z)}.(6.18)

In particular, Hom(X1, X2) is a torsion free abelian group of rank ≤ 4g1g2.

Corollary 6.7. Complex compact connected g-dimensional Lie groups are pa-
rameterized by:

GLg(C)\GL2g(R)/GL2g(Z).(6.19)

Proof. Any two lattices in R2g ∼= C
g are equivalent under GL2g(R). The

equivalence is obtained by first choosing a basis for the lattice (this gives the matrix
in GL2g(R). Changing the choice of basis amounts to moding out by GL2g(Z).
Thus, GL2g(R)/GL2g(Z) is a bijection with lattices in R2g. Moding out by GLg(C)
(embedded in GL2g(R) by the isomorphism R

2g ∼= C
g) amounts to the fact that two

complex tori Cg/L1 and Cg/L2 are isomorphic iff there exists a matrix M ∈ GLg(C)
such that ML1 = L2.

Remark 6.8. While every g-dimensional abelian variety over C is a complex
torus the converse does not hold if g > 1. In fact, the moduli of complex tori is g2

dimensional, while that of abelian varieties is g(g+1)/2 dimensional. We remarked
before (see Section 2) that the moduli of curves of genus g is 3g − 3 for g > 1.
We sketch here the argument for abelian varieties following the same reasoning of
Kodaira-Spencer we used for curves.
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The Kodaira-Spencer theory dictates that the universal k[ε]-deformation, i.e.,
first order deformation, of an abelian variety X is given by H1(X, tX), where tX is
the tangent sheaf to X. I.e., the sheaf of derivations. Moreover, the cup product
map “evaluating the differential on a derivation”

H1(X, tX)×H0(X,Ω1
X) −→ H1(X,OX),(6.20)

yields an isomorphism

H1(X, tX) = Hom(H0(X,Ω1
X),H1(X,OX)).(6.21)

Now, for abelian variety one can identify H0(X,Ω1
X) with the cotangent space at

zero t∗X,0, and H1(X,OX) with the tangent space of the dual abelian variety tXt,0
discussed extensively below (Section 6.2). Thus,

H1(X, tX) = tX,0 ⊗ tXt,0.(6.22)

That shows that the first order deformations are of dimension g2.
Moreover, if X is principally polarized (Section 6.2) 3 then this polarization

λ gives a map λ∗ from tX,0 to tXt,0. The theory then identifies the deformations
preserving the polarization with the symmetric tensors of tX,0 ⊗ tXt,0 (under the
involution induced by v ⊗ w 7→ λ−1

∗ (w)⊗ λ∗(v)) giving moduli of dimension g(g +
1)/2.

Exercise 6.9. Deduce that if a complex compact curve is a complex Lie group
then it must be of genus 1. Prove, using just topological tools, that a closed real
two dimensional manifold is a topological group if and only if it has genus 1.

Exercise 6.10. Prove that any holomorphic differential on an abelian variety
X/k is translation invariant (and hence non-vanishing). Conclude the identification
H0(X,Ω1

X/k) = t∗X,0 used above.

6.1. The Appell-Humbert theorem. Let’s recall Chow’s theorem.

Theorem 6.11. Let P be a complete algebraic variety over C and Z ⊂ P a
closed analytic subset of P ; then there is an algebraic sub-variety Z of P such that
Z(C) ∼= Z, as complex analytic spaces.

Proof. See [41, Page 167].

Definition 6.12. Let X be a complete analytic variety. A line bundle L −→ X
is ample if ∃k > 0 such that L⊗k is very ample, i.e., if we have an embedding:

X ↪→ P(H0(X,Lk)),(6.23)

x 7→ {hyperplane of sections vanishing at x}.(6.24)

If one chooses a basis s0, . . . , sn to Γ(X,L⊗k), we can also write such an embedding
as

x 7→ (s0(x) : · · · : sn(x)).(6.25)

Corollary 6.13. A complex torus is an abelian variety if and only if it has
an ample line bundle L.

3More generally, in any characteristic in fact, if X has a polarization that is a separable map.
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We would like to understand when is the complex torus Cg/Λ an abelian variety.
Given the corollary, the main problem we are faced with is:

(6.26) “When does Cg/Λ have an ample line bundle?,

and even more, what are all the line bundles on Cg/Λ?′′

The Appell-Humbert supplies a complete answer to those questions.

First, let us make a digression on factors of automorphy (compare Definition 4.1):
Let X = C

g/Λ be a complex torus, π : Cg −→ X the natural projection and L a
line bundle on X. Because Cg is simply connected, every line bundle on it is trivial,
i.e. π∗L ∼= C

g×C. Let Tλ be the translation map on Cg : Tλ(x) = x+λ. For every
λ ∈ Λ, we have

T ∗λπ
∗L = (π ◦ Tλ)∗L = π∗L.(6.27)

But

(T ∗λ (π∗L))x = π∗Lx+λ,(6.28)

by definition of the pullback of a line bundle. This implies the existence of a
holomorphic non-vanishing map

j(λ) : Cg −→ C
×(6.29)

such that

j(λ1)(λ2 + v) · j(λ2)(v) = j(λ1 + λ2)(v)(6.30)

(it is the same compatibility requirement as in Section 4 ). We let Λ act on holo-
morphic functions f by λf(v) = f(λ+ v). We see that

j(λ1 + λ2) = λ2j(λ1) · j(λ2)(6.31)

It follows that

j ∈ Z1(Λ,O×(Cg)),(6.32)

where O×(Cg) denote the group of non-vanishing holomorphic functions on Cg.
Conversely, any j ∈ Z1(Λ,O×(Cg)) induces a line bundle on Cg/Λ whose isomor-
phism class depends only on the image of j in H1(Λ,O×(Cg))

One can show the following

Proposition 6.14. There exists canonical isomorphisms:

Pic(X) : = { isomorphism classes of line bundles on X}
∼= H1(X,O×X) (Sheaf cohomology)
∼= H1(Λ,O×(Cg)) (Group cohomology).

(6.33)

Proof. See [67, Page 24].

Thus, we are only left with the task of describing this latter group !

Definition 6.15. A Riemann form on Cg with respect to Λ is a hermitian form
H : Cg × Cg −→ C such that E = Im H (meaning E(u, v) = Im(H(u, v))) satisfies

E : Λ× Λ −→ Z.(6.34)
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Recall that a hermitian form is C-linear in the first variable, C-linear in the
second variable, and H(v, w) = H(w, v).

Definition 6.16. A semi-character with respect to a Riemann form H is a
map

χ : Λ −→ C1 := {z ∈ C : |z| = 1}(6.35)

such that

χ(λ1 + λ2) = χ(λ1)χ(λ2) exp(πiE(λ1, λ2)).(6.36)

Note that although χ is not necessarily a character, χ2 is a character.

Exercise 6.17. 1. Let L be a lattice in C. Find all Riemann forms and
quasi-characters on L. In particular, deduce that a non-trivial Riemann
form always exists.

2. Find a lattice in C2 that has no non-trivial Riemann form.

We define a group structure on the set

(6.37) G = {(H,χ) : H a Riemann form with respect to Λ,

χ a semi-character with respect to H}.

by putting

(H1, χ1) + (H2, χ2) = (H1 +H2, χ1χ2).(6.38)

An element (H,χ) ∈ G induces a line bundle on Cg/Λ denoted L(H,χ), defined by
the factor of automorphy j(H,χ):

j(H,χ)(λ)(v) = χ(λ) exp(πH(v, λ) +
π

2
H(λ, λ)), v ∈ Cg, λ ∈ Λ.(6.39)

Theorem 6.18. (Appell-Humbert) There exists an isomorphism of groups,

G ∼= Pic(X), (H,χ) 7→ L(H,χ).(6.40)

In particular,

L(H1,χ1) ⊗ L(H2,χ2)
∼= L(H1+H2,χ1χ2).(6.41)

Moreover, L(H,χ) is ample if and only if H is positive definite .

Proof. See [67], Page 32 and Proposition 5.2, Page 86.

Corollary 6.19. A complex torus X = C
g/Λ is an abelian variety if and only

if there exists a positive definite Riemann form H with respect to Λ.

Remark 6.20. 1. One can show E is alternating (i.e. skew commutative)
and satisfies the identity

E(ix, iy) = E(x, y).(6.42)

Conversely, given an alternating form E satisfying Equations (6.42) and
(6.34) it is easy to check that the function H(x, y) = E(ix, y) + iE(x, y) is
a Riemann form.
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2. One may obtain semi-characters as follows: Assume E is non-degenerate. It
is well-known (Elementary Divisors Theorem) that there exists a basis

x1, . . . , xg, y1, . . . , yg,(6.43)

such that E is given by the matrix:( 0 D
−D 0

)
,(6.44)

where 0 stands for the g × g zero matrix and D is a g × g diagonal matrix
with diagonal entries di ∈ N, such that d1|d2| · · · |dg . Put

Λ1 = Span
Z
{xi : i = 1, . . . , g}, Λ2 = Span

Z
{yi : i = 1, . . . , g}.(6.45)

Clearly

Λ = Λ1 ⊕ Λ2.(6.46)

Then Cg = RΛ1 ⊕ RΛ2, and we write the decomposition of a vector v ∈ Cg
accordingly as

v = v1 + v2.(6.47)

Put

χ(v) = exp[πi · E(v1, v2)].(6.48)

Then

χ(v + w) = exp[πi · E(v1 + w1, v2 + w2)]

= exp[πi(E(v1, v2) + E(w1, w2) + E(v1, w2) + E(w1, v2))]

= χ(v) · χ(w) · exp[πi(E(v1, w2) + E(w1, v2))]

= χ(v) · χ(w) · exp[πi(E(v, w))],

(6.49)

because Λ1,Λ2 are isotropic with respect to E.

Remark 6.21. Given L ∈ Pic(X), we may ask what is the associated Riemann
or hermitian form?

Consider the exact sequence of sheaves on X:

0 −→ Z −→ O e2πi(−)

−→ O× −→ 0.(6.50)

The associated cohomology sequence gives a map

Pic(X) := H1(X,O×X) −→ H2(X,Z).(6.51)

Under this map, the line bundle L is sent to an element c1(L) ∈ H2(X,Z) called
the first Chern class of L. However,

H2(X,Z) = ∧2H1(X,Z).(6.52)

That is, if X = C
g/Λ then H2(X,Z) consists of alternating Z-valued bilinear forms

on H1(X,Z) = Λ (To an element
∑
φi ∧ψi associate the alternating form (v, w) 7→∑

φ(v)−ψ(w). Thus c1(L) is such a bilinear form E which is precisely ImH where
H is the Riemann form associated to L.
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6.2. The dual abelian variety.

Definition 6.22. Let X be a complex torus. The Néron-Severi group of X is
defined as the image of the homomorphism H1(X,O×X) −→ H2(X,Z). It is denoted
by NS(X). We put NS0(X) = NS(X)⊗Q.

Remark 6.23. The Néron-Severi group is also the group of divisors on X mod-
ulo algebraic equivalence.4 Using our knowledge on complex tori we see that for
X = V/Λ, NS(X) can be identified with the group of Riemann forms H with
respect to Λ. Since it is a subgroup of H2(X,Z) = H1(X,Z) ∧ H1(X,Z) (via
H 7→ Im(H)), it is a free Z-module of rank ≤ g(2g − 1), where g = dim(X). See
[47, p.447] for further details. We let NS(X)+ denote the elements corresponding
to positive definite Riemann forms with respect to Λ.

Definition 6.24. The subgroup of Pic(X) given by

{(0, χ) : χ : Λ −→ C1 is a homomorphism}(6.53)

is called the dual abelian variety. It is also denoted by Pic0(X), Xt, or X∨.

These groups are related by an exact sequence:

0 −→ Pic0(X) −→ Pic(X) −→ NS(X) −→ 0(6.54)

The dual abelian variety Pic0 carries a canonical complex structure, as we will see
shortly. To be precise, that canonical complex structure is part of the definition of
the dual abelian variety. We ease notation and write Pic0(X) = {χ|χ : Λ −→ C1}.

Consider the complex torus X = V/Λ, where V is g-dimensional vector space, and
Λ is a full lattice. Put

Ω = Ω(X) = Hom
C
(V,C),(6.55)

where C means C-anti-linear; Ω is a complex vector space of dimension g and

f ∈ Ω ⇐⇒ f(v1) + f(v2) = f(v1 + v2), f(λv) = λf(v).(6.56)

The pairing

Ω× V −→ C, (f, v) 7→ f(v)(6.57)

is bi-additive, C-linear in the first variable, and C-linear in the second variable. We
have an isomorphism

Ω
∼=−−−−→ HomR(V,R)(6.58)

given by

l 7−→ Im l.(6.59)

The inverse is given by k 7−→ l, where l(v) = −k(iv) + ik(v). Thus,

Ω× V −→ R, (l, v) 7−→ Im(l(v))(6.60)

is a perfect R-linear pairing.

Put

Λ̂ = {l ∈ Ω : Im l(v) ∈ Z ∀v ∈ Λ}.(6.61)

4This allows one to define the Néron-Severi group of every variety. It need not be torsion
free.
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It is the Z-dual of Λ with respect to the real pairing between Ω and V . Then Λ̂ is
the kernel of the surjective map

Ω −→ Pic0(X), l 7−→ e2πi·Iml.(6.62)

We get

Ω/Λ̂ ∼= Pic0(X).(6.63)

Therefore Pic0(X) has a canonical complex structure induced from that of Ω.

Before giving a theorem linking X to X∨, let us give a few definitions. Let L be a
line bundle on X. Define

φL(x) = T ∗xL ⊗ L−1,(6.64)

where

Tx : X −→ X, Tx(y) = x+ y,(6.65)

is the translation-by-x morphism and T ∗x denotes the pullback of the line bundle L
by Tx. Recall that L−1

(H,χ) = L(−H,χ−1). One can show:

T ∗xL(H,χ)
∼= L(H,χµx),(6.66)

with µx(λ) = e2πiE(x,λ), λ ∈ Λ. Here, we extend E to V by R-linearity.

Exercise 6.25. Prove the identity (6.66) by comparing the factors of auto-
morphy of both sides.

Thus, φL : X −→ Pic0(X) is given by a closed formula

φL(x) = e2πi(E(x,−)) ∈ Hom(Λ,C1).(6.67)

Corollary 6.26. The map φL is surjective if and only if E is non-degenerate.

Definition 6.27. A polarization of X is a homomorphism f : X −→ X∨ such
that f = φL for some ample line bundle L.

Remark 6.28. 1. A polarization is an isogeny, that is, it is a surjective
homomorphism of abelian varieties with finite kernel. The degree of the
polarization is the order of the kernel. It is its degree as a finite morphism.

2. A polarization is an isogeny, but the converse is not true. Indeed, if φ is a
polarization then −φ is an isogeny that is never a polarization.

Exercise 6.29. Prove the last remark.

Definition 6.30. A polarization is principal if it is an isomorphism.

Exercise
F 6.31. Find an abelian variety having no principal polarization.

Exercise 6.32. Let L = L(H,χ) and E = Im(H). Prove that φL is a principal
polarization iff the pairing E : Λ× Λ −→ Z is surjective.

We remark that for any abelian variety A, we can always find a principally
polarized abelian variety B such that A is isogenous to B. This follows quite easily
from the theory we have developed above and the reader may enjoy proving it to
himself. In the case of arbitrary base field this follows from the finite Heisenberg
group associated by Mumford to (X,L).



40 1. TORI AND ABELIAN VARIETIES

One can parameterize abelian varieties, endowed with a rigid level structure
and a polarization, by a fine moduli scheme. Let Hg be Siegel’s upper half space{(

A B
C D

)
= τ ∈Mg(C) : τ = τ t, Im(τ)� 0

}
.(6.68)

It turns out that the coarse moduli scheme of couples (A, λ), A a g-dimensional
complex abelian variety, λ a principal polarization of A, is Sp(2g,Z)\Hg. The
action of Sp(2g,Z) is given by τ 7→ (Aτ +B)(Cτ +D)−1.

Theorem 6.33. Let X be a complex torus, X = V/Λ. Let X∨ be the dual
complex torus with its canonical complex structure.

1. X∨∨ is canonically isomorphic to X.
2. Hom(X,X∨) consists of bilinear forms H on V such that ImH(Λ,Λ) ⊆ Z

(C-linear in the first variable, and C-anti-linear in the second variable).
3. The map φ ∈ Hom(X,X∨) is of the form φL, for some L, iff the associated

form H is hermitian, i.e. H(x, y) = H(y, x). It is a polarization iff H is a
positive definite Riemann form with respect to Λ.

4. Let f : X −→ Y be a homomorphism of complex tori. Consider the following
diagram:

Ω(Y )
f̃∗ //

��

Ω(X)

��
Pic0(Y )

f∗
// Pic0(X)

(6.69)

where f∗ = f∨ is the pullback of line bundles, and f̃∗ the lifting to the
universal covering space. Then f̃∗ is just the pull-back

f∗ : Hom
C
(Ω(Y ),C) −→ Hom

C
(Ω(X),C).(6.70)

It follows easily that

(f + g)∨ = f∨ + g∨, (fg)∨ = g∨f∨, f∨∨ = f.(6.71)

5. Let Φ : X −→ X∨ be a polarization. The Weil pairing associated to Φ is
defined as:

X[n]×X[n] 1×Φ−−−−→ X[n]×X∨[n]
∼=−−−−→ 1

nΛ/Λ× 1
n Λ̂/Λ̂

−−−−→ µn,

(6.72)

via the map
1
n

Λ/Λ× 1
n

Λ̂/Λ̂ −→ µn(C)

(x, k) 7−→ e2πi·n·k(x),
(6.73)

where we think of Λ̂ as {k ∈ Ω = HomR(V,R)|k(λ) ∈ Z ∀λ ∈ Λ}. The Weil
pairing is an alternating bilinear pairing.

Exercise 6.34. Complete the proof of the above theorem. At this point it
is mainly unfolding the definitions. Prove also that the Weil pairing is perfect iff
(deg(Φ), n) = 1.
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Definition 6.35. Let B be a semi-simple algebra over Q. Let Tr denote its
reduced trace to Q. By an involution on B we understand an isomorphism ρ :
B −→ B, x 7→ xρ of Q vector spaces such that (xy)ρ = yρxρ. An element of B is
called symmetric (with respect to ρ) if x = xρ. When ρ is understood we shall also
denote it by x 7→ x∗.

An involution x 7→ x∗ on B is a positive involution if Tr(xx∗) > 0 for all x 6= 0.
Given a positive involution x 7→ x∗ we say that an element b ∈ B is positive if
Tr(xbx∗) > 0 for any x 6= 0.

Definition 6.36. Let λ be a polarization on an abelian variety A, and put
End0(A) = End(A)⊗Q. The Rosati involution associated to λ is the map

End0(A) −→ End0(A)

f 7→ f∗ := λ−1f∨λ
(6.74)

Fact 6.37. The Rosati involution is a positive involution on End0(A). See [67,
Theorem 1.8, Chapter 5 ].

The semi-simple rational finite-dimensional algebras were classified by Albert.
Since every abelian variety A has some polarization, it follows that the endomor-
phism algebras of abelian varieties all fall into this category. We follow [105, Section
1].

Every division algebra over Q with a positive involution belongs to the following
four types of algebras.

1. (Type I) Totally real algebraic number field L.
2. (Type II) Central simple algebra B over L such that the simple components

of B ⊗ R are all isomorphic to M2(R).
3. (Type III) Central simple algebra B over L such that the simple components

of B ⊗ R are all isomorphic to the Hamilton quaternions over R.
4. (Type IV) Central simple algebra B over a totally imaginary quadratic ex-

tension of L.
Recall that the canonical involution σ is defined by x 7→ σ(x) = x − Tr(x). The
positive involutions are respectively:

1. The identity.
2. Let a ∈ B be an element such that a2 is a totally negative element of L,

we ρ(x) = aσ(x)a−1. Then ρ is a positive involution and every positive
involution ρ is obtained that way.

3. The canonical involution.
4. This case is more subtle. We only remark that if B is a CM field containing
L then the involution is complex conjugation.

Let λ : A −→ At be a polarization. Define a map

NS0(A) ↪→ End0(A),(6.75)

φλ : L(H,χ) 7→ λ−1φL.(6.76)

Fact 6.38. The set φλ(NS0(A)) is composed of the symmetric elements of
End0(A) (under the Rosati involution), and the set φλ(NS0(A)+) is made of the
positive symmetric elements of End0(A). See [67, Chapter V, Proposition 2.1]
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Example 6.39. Elliptic curves
We finish this section by examining explicitely some of the results discussed above
in the particular case of elliptic curves.

Let

Λ = Z+ Zτ, Im(τ) > 0.(6.77)

Let E be the elliptic curve C/Λ. Let E : Λ×Λ −→ Z be the real alternating pairing
determined by E(τ, 1) = 1. We have

E(aτ + b, cτ + d) = ad− bc.(6.78)

How does one determine the associated Hermitian form H? If H(1, 1) = α, then
H(z1, z2) = z1z2α. Recall that H(x, y) = E(ix, y) + iE(x, y), so

α = H(1, 1) = E(i, 1) + iE(1, 1)

= E (i, 1)

= E

(
1

Im(τ)
· τ − <(τ)

Im(τ)
, 1
)

= E

(
1

Im(τ)
· τ, 1

)
=

1
Im(τ)

> 0,

(6.79)

since τ ∈ H. Note also that Im(τ) = area of a fundamental domain of the lattice Λ.
Hence H is a positive definite Riemann form with respect to Λ. Since every other
Hermitian form is proportional to H by a positive real scalar, such a form would
be a Riemann form with respect to Λ if and only if this scalar is a positive integer,
because the associated real form must be integer valued on Λ×Λ. We deduce that
H generates the Néron-Severi group of E .

Let us calculate the dual lattice Λ̂. Recall the procedure of defining the dual abelian
variety. It is defined as a quotient of Ω = Hom

C
(C,C) by a lattice dual to Λ. We

use the identification

C −→ Hom
C
(C,C), c 7−→ lc,(6.80)

where lc(1) = c, and hence, lc(a+ bτ) = a+ bτ · c. We write a general element in C
as α+ βτ , where α and β are real numbers, and obtain

Λ̂ = {c : Im(lc(Λ)) ⊆ Z}
= {c : Im(lc(1)), Im(lc(τ)) ∈ Z}
= {c : Im(c) ∈ Z, Im(τc) ∈ Z}
= {α+ βτ : Im(α+ βτ) = β · Im(τ) ∈ Z, Im(ατ + βττ) = −α · Im(τ) ∈ Z}

=
1

Im(τ)
Λ

∼= Λ

(6.81)

Therefore the dual elliptic curve is isomorphic to the original.
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Choose any semi-character χ with respect to H. We have the polarization

E
ΦL(H,χ)−−−−−→ E∨.(6.82)

under which y 7−→ e2πiE(y,−). Let us calculate the Weil pairing:
1
n

Λ× 1
n

Λ −→ 1
n

Λ× 1
n

Λ̂ −→ µn.(6.83)

By definition

(x, y) 7→ (x,ΦL(H,χ)(y)) 7→ (ΦL(H,χ)(y)(nx)),(6.84)

and in particular,

(1/n, τ/n) 7→ (1/n, e2πiE(τ/n,−)) 7→ e2πiE(τ/n,1) = e2πi/n.(6.85)



44 1. TORI AND ABELIAN VARIETIES



CHAPTER 2

Complex Abelian Varieties with Real
Multiplication and Hilbert Modular Forms

1. Algebraic Preliminaries

Let L be a field extension of Q.

Definition 1.1. A field L is a totally real field of degree [L : Q] = g, if every
embedding σ ∈ Emb(L,C) = {σ1, . . . , σg} factorizes via R:

L ↪→
σi
R, ∀i ∈ {1, . . . , g}.(1.1)

We will assume henceforth that L is totally real. Here are some important
examples:

1. L = Q;
2. L = Q(

√
D), for D > 1 square-free;

3. L = Q(ζm)+, i.e. the subfield of Q(ζm) fixed under complex conjugation,
where ζm is a primitive m− th root of unity.

Given any set S ⊂ L we denote by S+ the totally positive elements of S. Namely,
the elements s ∈ S such that σi(s) > 0 for all i.

We let OL denote the ring of integers of L. We let DL = DL/Q denote the
different ideal of L over Q. Thus,

D−1
L/Q =

{
` ∈ L : TrL/Q(`r) ∈ Z ∀r ∈ OL

}
.(1.2)

We let dL = Norm(DL/Q) denote the discriminant of L.
Let Cl(L) stand for the ideal class group of L and let h denote its order. Let

Cl(L)+ stand for the strict ideal class group in L and denote its order by h+. Thus,
if A,B are two fractional ideals of L then A = B in Cl(L) (resp. Cl(L)+) if and
only if there exists λ ∈ L× (resp. λ ∈ L×+) such that A = λB.

Note the exact sequence

1 −→ L×/OL∗L×+ −→ Cl(L)+ −→ Cl(L) −→ 1.(1.3)

There is also an isomorphism L×/L×+ −→ {±1}g taking an element ` to the signs
of its embeddings (sign(σ1(`)), · · · , sign(σg(`))). Thus [Cl(L)+ : Cl(L)] divides 2g.

Exercise 1.2. Show that [Cl(L)+ : Cl(L)] = [(OL×)+ : (OL×)2].

There is an equivalent way of defining Cl(L)+. Recall that Cl(L) is the group
of projective OL-module of rank 1 up to isomorphism. Indeed, every such module
is isomorphic to a fractional ideal and that ideal is determined up to multiplication
by λ ∈ L×. We define an OL-module with a notion of positivity to be a projective
OL-module M of rank 1 together with a linear order <i on the real vector space
M ⊗σi R for every i. That is, a choice of connected component of M ⊗σi R.

45
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We may then talk about the group of isomorphism classes of projective OL -
modules of rank 1 with a notion of positivity that we call temporarily Cl(L)++. An
isomorphism of OL modules M1,M2 with notion of positivity, is an isomorphism of
modules φ : M1 −→M2 such that the induced maps φ⊗σi 1 respect the ordering.

One verifies that the natural map Cl(L)++ −→ Cl(L) has fibers that are prin-
cipal homogenous spaces under L×/OL∗L×+ and that there is a natural map

Cl(L)+ −→ Cl(L)++,(1.4)

obtained by taking on a fractional ideal A the natural orderings induced from the
embeddings L σi−→ R

g, where i = 1, . . . , g. It is easily checked that this map is
injective and this identifies Cl(L)+ with Cl(L)++.

We also remark that two notions of positivity on M are equal if and only if
they define the same positive cone. The positive cone consists of the elements of
M that are ≥ 0 under any of the given orders on M .

2. Complex Abelian Varieties with Real Multiplication

Let L be a totally real field of degree g over Q.

Definition 2.1. A complex abelian variety with real multiplication (abbrevi-
ated RM) by OL is a g-dimensional abelian variety over C together with a given
embedding

ι : OL ↪→ End(A).(2.1)

Example 2.2. 1. For L = Q, elliptic curves satisfy the conditions of the
definition.

2. Consider the product E × E and the totally real field L = Q(
√
D) with

D > 1 square free. The action of
√
D (respectively 1+

√
D

2 ) is given by a

matrix of the form
(
a b
c −a

)
(resp.

(
(1 + a)/2 b/2
c/2 (1− a)/2

)
, and a is

odd, b, c are even), when D ≡ 2, 3 mod 4 (resp. D ≡ 1 mod 4). Note that
D = a2 + bc.

3. For any elliptic curve E, say over C, consider:

E ⊗Z OL ∼= Eg(2.2)

with the canonical right OL action. The isomorphism being obtained by
choosing a Z-basis to OL. We get an abelian variety over C such that

(E ⊗Z OL)(C) = E(C)⊗Z OL.(2.3)

4. If A has RM by OL, so does the dual abelian variety A∨. That is, given a
map

ι : OL −→ End(A),(2.4)

we define

ι∨ : OL −→ End(A∨)(2.5)

by

ι∨(φ) = φ∨,(2.6)

where φ∨ is the dual map to φ.
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5. First, we say that an abelian variety is simple if it has no proper sub-abelian
variety. For example, an elliptic curve is simple. By replacing the notion of
isomorphism by the notion of isogeny the simple abelian varieties become
the basic building blocks of the category of abelian variety. More precisely:

Theorem 2.3. (Poincaré) The category of abelian varieties considered
up to isogeny is semi-simple with simple objects given by simple abelian va-
rieties, i.e. every abelian variety is isogenous to a product

An1
1 × · · ·A

nk
k , Ai simple ,(2.7)

and the ni, Ai, are uniquely determined by A up to isogeny.

We say that A is iso-simple if A is isogenous to Br for some simple
abelian variety B. We shall see in Corollary 2.6 that every abelian with RM
is iso-simple.

Let J0(p) = Jac(X0(p)) = Jac(Γ0(p)\H∗). Then it is a fact that the
simple factors (the Ai’s) of J0(p) are abelian varieties with real multiplication
(by some field Li).

2.1. Complex and rational representations.
The structure map,

ι : OL ↪→ End(A),(2.8)

can be extended by tensoring with Q to:

ι⊗ 1 : OL ⊗Q = L ↪→ EndQ(A) = End(A)⊗Q.(2.9)

Suppose that A = C
g/Λ. Any endomorphism r of A induces an endomorphism r̃

on the universal covering space Cg such that the following diagram commutes:

C
g

��

r̃ //
C
g

A
r // A

OO(2.10)

We define the complex representation to be the map:

ρC : EndQ(A) −→ GLg(C), r 7→ r̃.(2.11)

We have an integral representation:

ρQ : End(A) −→ EndZ(Λ) ∼= M2g(Z).(2.12)

The last isomorphism requires a choice of a Z-basis for Λ. It gives the rational
representation as the map

ρQ : EndQ(A) −→ EndQ(Λ⊗Q) ∼= M2g(Q).(2.13)

Proposition 2.4. The rational map ρQ is conjugate to ρC ⊕ ρC.

Proof. Let N = ρC(r) be the complex representation of an endomorphism
r ∈ EndQ(A): Put Re(N) = N+N

2 , Im(N) = N−N
2i . We have the matrix

M =
(

Re(N) −Im(N)
Im(N) Re(N)

)
.(2.14)
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The matrix M is describing the action of N = ρC(r) with respect to the basis
1
0
...
0

 , · · · ,


0
0
...
1

 ,


i
0
...
0

 , · · · ,


0
0
...
i

 .(2.15)

Since Λ⊗ R = C
g, M is ρQ(r) up to conjugation. Thus, we only need to show

that M is conjugate to
(
N 0
0 N

)
. But(

I iI
iI I

)(
ReN −Im(N)

Im(N) Re(N)

)(
1
2

)(
I −iI
−iI I

)
=
(
N 0
0 N

)
.(2.16)

Corollary 2.5. The tangent space tA,0 to A at the origin is a free OL ⊗ C-
module of rank 1. 1

Proof. Note that the tangent space tA,0 to A at the origin is canonically Cg.
Thus it is left to check that each σi appears exactly (equivalently, at least) once in
the action of L on tA,0. This action is described by the complex representation of
L as a subspace of EndQ(A). Since L is totally real the complex conjugate of the
complex representation of L is equivalent to itself, and hence, by Proposition 2.4,
the rational representation is equal to twice the complex representation. However,
in the rational representation (being rational) every character σi has to appear with
the same multiplicity. Hence, every σi appears in the complex representation as
well.

Corollary 2.6. Any complex abelian variety with RM is iso-simple.2

Proof. The follows from the following considerations. Let Br be a maximal
iso-simple factor of A. Then L ↪→ GLr(End(B)) and the tangent space to B at the
origin is a free OL ⊗ C-module. Hence g|dim(Br).

2.2. Construction of families of abelian varieties with real multipli-
cation.
Let us fix some notation. For ` ∈ L and t = (t1, . . . , tg) ∈ Cg we put

` · t = ` · (t1, . . . , tg) = (σ1(`)t1, . . . , σg(`)tg).(2.17)

For the rest of the chapter, fix fractional ideals A,B of OL.
Given z = (z1, . . . , zg) ∈ Hg , put

Λz = A · (z1, . . . , zg) + B · (1, . . . , 1)

= {(σ1(a)z1 + σ1(b), . . . , σg(a)zg + σg(b)) : a ∈ A, b ∈ B} ⊆ Cg.
(2.18)

Note that Λz is a lattice: First,

rank Z(Λz) ≤ rank ZA + rank ZB ≤ 2g.(2.19)

On the other hand,

Λz ⊗Z R ∼=
g∏
i=1

(Rzi + R) ∼= C
g,(2.20)

1In the context of this Corollary, see Chapter 3, Section 5.
2In fact, this holds for every abelian variety with real multiplication
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since Im(zi) > 0. Thus Λz must be of rank 2g and contains an R-basis to Cg. That
is, Λz is a lattice.

We let Az be the complex torus Cg/Λz. We now proceed to construct polar-
izations on Az. Using the connection between Riemann forms and polarizations
(see Section 6.1), we turn our attention to constructing certain R-bilinear anti-
symmetric forms.

Let r ∈ L and define

Er : A⊕B× A⊕B −→ Q,(2.21)

Er((x1, y1), (x2, y2)) = TrL/Q(r(x1y2 − x2y1)).(2.22)

The proof of the following Lemma is left to the reader

Lemma 2.7. 1. Er is an alternating bilinear form.
2. The image of Er is in Z if and only if r ∈ (DL/QAB)−1.

Note that for all ` ∈ OL, α ∈ A⊕B, β ∈ A⊕B,

Er(`α, β) = Er(α, `β).(2.23)

Transport Er to Λz and extend R-linearly to Cg. We get an antisymmetric R-
bilinear pairing

Er,z : Cg × Cg −→ R,(2.24)

with the property

Er,z(` · t, t′) = Er,z(t, ` · t′).(2.25)

Moreover

Er,z(Λz,Λz) ⊆ Z⇔ r ∈ (DL/QAB)−1.(2.26)

If r 6= 0, Er,z is also perfect, by property of the trace. It also follows from the
following:

Lemma 2.8. Let

Hr,z((x1, . . . , xg), (y1, . . . , yg)) =
g∑
i=1

xiyiσi(r)
Im(zi)

.(2.27)

Then Hr,z is an hermitian form and ImHr,z = Er,z.

Proof. This form is clearly hermitian. To prove the last statement, it is
enough to show

ImHr,z((x1, . . . , xg), (y1, . . . , yg)) = Er,z((x1, . . . , xg), (y1, . . . , yg)),(2.28)

for (x1, . . . , xg) ∈ A · (z1, . . . , zg) and (y1, . . . , yg) ∈ B · (1, . . . , 1). (Because Er,z
and ImHr,z are antisymmetric bilinear forms, they are determined by their values
on such couples). But
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Im {H (σ1(a)z1, . . . , σg(a)zg), (σ1(b), . . . , σg(b))}

=
g∑
i=1

Im

{
σi(a)ziσi(b)σi(r)

Im(zi)

}

=
g∑
i=1

σi(a)σi(b)σi(r)

= TrL/Q(abr)

= Er((a, 0), (0, b))

= Er,z(a · (z1, . . . , zg), b · (1, . . . , 1)).

(2.29)

We note that if (x2, y2) ∈ A⊕B, then the set

{(x1, y1) ∈ L⊕ L : Er((x1, y1), (x2, y2)) ∈ Z, ∀(x2, y2) ∈ A⊕B}(2.30)

is precisely

(rDL/QB)−1 ⊕ (rDL/QA)−1.(2.31)

Hence in the case Er,z defines a polarization, its degree is equal to

= [(rDL/QB)−1 : A] · [(rDL/QA)−1 : B]

= [(rDL/QAB)−1 : OL]2

= Norm(rDL/QAB)2.

(2.32)

Summing up, we get:

Corollary 2.9. Let z ∈ Hg and r ∈ L. The form Er,z defines a polarization

on Az iff r ∈
(

(DL/QAB)−1
)+

. If this holds, then Az is an abelian variety with

RM by OL, and the degree of the polarization given by Er,z is Norm(rDL/QAB)2.
In particular, there exists an r such that Er,z is principal iff AB = D−1

L/Q in Cl(L)+.

Definition 2.10. Let (A, ι) be an abelian variety with RM by OL. Let

MA := {λ : A −→ A∨ : λ = λ∨, λ is an OL-linear homomorphism} ⊆ NS(A),
(2.33)

M+
A := {λ ∈MA : λ is a polarization} ⊆ NS(A)+.(2.34)

We callMA the polarization module of A andM+
A the positive cone of polarizations.

Exercise 2.11. Let λ : A −→ B be an isogeny of two (g-dimensional) abelian
varieties with real multiplication. Show that if λ is OL-linear and non-zero then λ
is an isogeny.

Lemma 2.12. 1. MA is a projective OL-module of rank 1. In particular,

` ∈ OL, λ ∈MA =⇒ λ ◦ ` ∈MA.(2.35)

2. The set M+
A is a positive cone. Moreover, MA is generated by M+

A.
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Proof. We first check thatMA is an OL-module. We write more pedantically
λ ◦ ` as λ ◦ ι(`). Then (λ ◦ ι(`))∨ = ι(`)∨ ◦ λ∨ = ι∨(`) ◦ λ = λ ◦ ι(`), using that
λ∨ = λ and that λ is OL-linear. It is also clear that λ◦ ι(`) is OL-linear. ThusMA

is an OL-module, torsion free (hence projective) by Exercise 2.11.
Next, we remark that any abelian variety A over C with RM by OL has an OL

linear polarization. This follows from considerations as in Theorem 2.16. See also
See [97, Proposition 1.17]. Thus M+

A is not empty.
To see MA is of rank one, take some λ ∈M+

A and get an embedding

MA ↪→ CentEnd0(A)(L)sym,(2.36)

where sym on the right hand side signifies the elements fixed by the Rosati in-
volution defined by λ. The classification of endomorphism algebras with positive
involution shows that we must have the image ofMA⊗Q equal to L. See Chapter 1,
Section 6.2.

The rest follows from the general principles given there. The Rosati involution
induced by some element ofM+

A must induce the identity on L. Thus the embedding
MA ↪→ L given by (2.36) identifiesMA with a fractional ideal a of L, and identifies
M+

A with a+.

In particular, (MA,M+
A) is naturally an OL-module with a notion of positivity

(via the embedding in End0(A)).
In contrast to the case of elliptic curves, E = C/Λ, where all lattices Λ are

indistinguishable as Z-modules, in the case of a totally real field L of degree g > 1
and abelian varieties with RM, Cg/Λ, the lattice Λ is a projective rank 2 module
over OL and as such has a canonically associated ideal class of Cl(L), called its
Steinitz class, See [34, Chapter II.4]. If we write Λ ∼= A ⊕ B, and in fact every
projective rank 2 module can be written this way, then the Steinitz class is AB.
More canonically, it is

∧2
OL Λ.

Those Steinitz classes give a discrete invariant of abelian varieties with RM by
OL and already show that components of the moduli space of abelian varieties with
RM, map into Cl(L). The consideration of polarization would show that there is a
natural bijection between the components of the moduli space and Cl(L)+.

Definition 2.13. The group GL(A⊕B)+ consists of the matrices{(
a b
c d

)
: a, d ∈ OL, b ∈ A−1B, c ∈ AB−1, ad− bc ∈ (O×L )+

}
(2.37)

with matrix multiplication.

Remark 2.14. Note that GL(A ⊕ B)+ is the set of matrices
(
a b
c d

)
in

GL2(L) with totally positive determinant, such that

(A,B)
(
a b
c d

)
= (A,B) .(2.38)

The group G = GL(A⊕B)+ acts on Hg from the left by(
a b
c d

)
z =

(
. . . ,

σi(a)zi + σi(b)
σi(c)zi + σi(d)

, . . .

)
.(2.39)

We also define the special linear subgroup of GL(A⊕B)+:
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Definition 2.15. The group SL(A⊕B) is the subgroup of GL(A⊕B)+ com-
posed of matrices with determinant 1.

Theorem 2.16. 1. The isomorphism classes of (A, ι)/C such that there
exists an isomorphism

(MA,M+
A) ∼−−−−→ (C,C+), C = (DLAB)−1,(2.40)

are parameterized by GL(A⊕B)+\Hg.
2. The isomorphism classes of (A, ι)/C together with a given isomorphism

m : (MA,M+
A) ∼−−−−→ (C,C+), C = (DLAB)−1(2.41)

are parameterized by SL(A⊕B)\Hg.

Remark 2.17. There is of course a difference between the two statements.
There is more elbow room in the first case since any xε ∈ (O×L )+ induces an
isomorphism:

(C,C+) ∼−−−−→ (C,C+).(2.42)

The possible m’s form in fact a principal homogeneous space under (O×L )+. Fix
(A, ι,m). For any isomorphism φ : (B, j) ∼−→ (A, ι) the diagram:

B

φ

��

φ∗f // B∨

A
f // A∨

φ∨

OO(2.43)

identifies (MA,M+
A) with (MB ,M+

B). Let m : (MA,M+
A) ∼= (C,C+) be an iso-

morphism. Then the induced isomorphism (MB ,M+
B) ∼= (C,C+) is the following:

If g ∈MB then

φ∗m(g) = m((φ−1)∨gφ−1).(2.44)

Now, take in particular (B, j) = (A, ι) and φ equal to multiplication by ε−1, where
ε ∈ O×L . Then

φ∗m(g) = m((ε)∨gε) = m(gε2).(2.45)

Thus

(A, ι,m) ∼= (A, ι,mε2).(2.46)

Therefore, for every µ ∈ (O×L )2,

(A, ι,m) ∼= (A, ι,mµ).(2.47)

Generically, the only endomorphisms of (A, ι) are ι(OL), as one may verify directly
taking (A, ι) = Az, where z = (z1, . . . , zg) are independent variables over L.

Thus, generically, the map

(A, ι,m) −→ (A, ι,∃m)(2.48)

has degree
[
(O×L )+ : (O×L )2

]
= [PGL(A⊕B)+ : PSL(A⊕B)].



2. COMPLEX ABELIAN VARIETIES WITH REAL MULTIPLICATION 53

Proof. (Of Theorem) Let µ =
(
a b
c d

)
be an element of GL(A⊕B)+, and

let

z = (z1, . . . , zg) ∈ Hg, 1 = (1, . . . , 1).(2.49)

We have

Λz = A · z + B · 1 Λµz = A · µz + B · 1.(2.50)

First, by direct calculation, we check that (A,B)µ = (A,B), for µ ∈ GL(A⊕B)+.
Consider the map

f : Cg −→ C
g, x 7→ x ·M,(2.51)

where

M = diag(σ1(c)z1 + σ1(d), . . . , σg(c)zg + σg(d)).(2.52)

Under this map

f(Λµz) = Λµzdiag(. . . , σi(c)zi + σi(d), . . . )(2.53)

is the lattice

(2.54)

{
(
. . . , σi(α)

(
σi(a)zi + σi(b)
σi(c)zi + σi(d)

)
+ σi(β), . . .

)
diag(. . . , σi(c)zi + σi(d), . . . ) :

(α, β) ∈ A⊕B}.
This lattice is equal to{(

. . . , σi

(
(α, β)

(
a b
c d

))(
zi
1

)
, . . .

)
: (α, β) ∈ A⊕B

}
.(2.55)

Because (A,B)µ = (A,B), for µ ∈ GL(A ⊕B)+, this set is precisely Λz. Thus f
induces a map

f : Aµz −→ Az.(2.56)

This map an isomorphism of abelian varieties with OL-action, because L acts di-
agonally: for ` ∈ L

` 7−→

σ1(`)
. . .

σg(`)

 ,(2.57)

because the action of ` on any element in A · z + B · 1 is

α · z + β· 7→ `α · z + `β · 1 = (α · z + β · 1)

σ1(`)
. . .

σg(`)

 .(2.58)

This holds also for the extends action of L to R⊗Z (A · z + β · 1) = C
g.

Recall that by Lemma 2.8

Hr,z((x1, . . . , xg), (y1, . . . , yg)) = (x1, . . . , xg)diag
(
. . . ,

σi(r)
Im(zi)

, . . .

)t
(y1, . . . , yg).

(2.59)
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Let us calculate f∗Hr,z(x, y). We have

(2.60)

f∗Hr,z(x, y) = (x1, . . . , xg)diag(. . . , σi(c)zi + σi(d), . . . )diag(. . . ,
σi(r)

Im(zi)
, . . . )

diag(. . . , σi(c)zi + σi(d), . . . )t(y1, . . . , yg)

= (x1, . . . , xg)diag(. . . , bi, . . . )t(y1, . . . , yg),

where

bi = σi(r) ·
|σi(c)zi + σi(d)|2

Im(zi)
=

σi(r)
Im(µzi)

σi(ad− bc) =
σi(r)

Im(µz)i
σi(ad− bc).(2.61)

Hence

f∗Hr,z = H(detµ)r,µz.(2.62)

Thus, if we want to get an isomorphism of (Az, ι,mz) to (Aµz, ι,mµz), we need
detµ = 1.

To prove the first statement of the theorem, we still need to prove the assertions
(A) and (B) below.

(A) If Az ∼= Az′ as abelian varieties with RM by OL, and z, z′ ∈ Hg, show that
there exists a µ in GL(A⊕B)+ such that µz = z′.

Suppose that Az ∼= Az′ as abelian varieties with RM by OL. Let M : Cg −→ C
g

be the transformation inducing the isomorphism:

Az′ = C
g/Λz′ −→ C

g/Λz = Az.(2.63)

The action of L on tAz,0 = tAz′ ,0 = C
g is diagonal, and since M commutes with this

action and the σi are independent, M must be a diagonal matrix diag(m1, . . . ,mg).
We can write mi = σi(c)zi + σi(d), for some c, d ∈ L. Then M takes B · 1 ⊆ Λz′
into Λz. That is, for every β ∈ B

((σ1(c)z1 + σ1(d))σ1(β), . . . , (σg(c)zg + σg(d))σg(β)) ∈ Λz.(2.64)

We must therefore have c ∈ B−1A, d ∈ OL. On the other hand, any α · z′ (with
α ∈ L) is mapped into Q⊗ Λz .That is, for suitable a, b ∈ L:

(2.65) ((σ1(c)z1 + σ(d))σ1(α) · z′1, . . . , (σg(c)zg + σg(d))σg(α) · z′g)
= ((σ1(a)z1 + σ1(b), . . . , σ1(a)zg + σb(b)).

Take α = 1, so z′i = σ1(a)z1+σ1(b)
σ1(c)z1+σ1(d) , for

(
a b
c d

)
= µ ∈ GL2(L). Since µ preserves

lattices, it is actually in GL(A ⊕ B), and µ · z = z′ gives σi(detµ) > 0 for all i.
That is, µ ∈ GL(A⊕B)+.

(B) Given (A, ι) such that (MA,M+
A) ∼= (C,C+), then (A, ι) ∼= (Az, ι), for some

z ∈ Hg.

Write A = C
g/Λ. Since Λ is a projective rank 2 OL-module, we may write Λ ∼=

A′ ⊕ B′ for some fractional OL-ideals A′,B′, and the isomorphism class of Λ is
determined by its Steinitz class A′B′ [34, Theorem 13, p.95 ]. See also 2.2. The
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polarization module of Cg/Λ is (
∧2
OL Λ)∗ = (DL/QA′B′)−1. Hence, Λ ∼= A ⊕ B.

We know that ρC ∼ diag(σ1(l), . . . , σg(l)).
We may therefore choose coordinates on Cg such that: A = C

g/Λ,Λ ∼= A⊕B
and the action of L is given by the diagonal map. If necessary, we may still change
coordinates by diagonal matrices, so that the map:

φ : A⊕B −→ Λ,(2.66)

extends to a linear map on:

φ : L⊕ L −→ Q · Λ,(2.67)

satisfying φ(0, 1) = (1, . . . , 1) and φ(1, 0) = (z1, . . . , zg). Every L-linear Riemann
form is easily seen to be of the form:

H(r,z)(x, y) =
∑ xiyiσi(r)

Imzi
, r ∈ (DL/QAB)−1.(2.68)

It defines a polarization, i.e., is positive definite, if and only if for every i we
have sign(σi(r)) = sign(Im(zi)). We conclude that if we choose A,B such that
Λ ∼= A⊕B and NS(A)+ ∼= (DAB)−1+, then Im(zi) > 0 for all i, hence A = Az for
some z ∈ Hg.

Fix representatives of Cl(L)+ of the form {(A,A+)}.

Corollary 2.18. 1.

{Isomorphism classes of (A, ι)/C} ←→
∐

(A,A+)

GL(OL ⊕ A)+\Hg,(2.69)

with (A, ι) parameterized by GL(OL ⊕ A)+ iff there exists an isomorphism

(MA,M+
A) ∼=

(
(DLA), (DLA)−1 +

)
.(2.70)

2.

{Isomorphism classes of (A, ι,m)/C} ←→
∐

(A,A+)

SL(OL ⊕ A)\Hg.(2.71)

Remark 2.19. There is a way to compactify GL(A ⊕ B)+\Hg that follows
the lines of the classical theory for elliptic curves: We add the finite set of points
GL(A ⊕B)+\P1(L) to GL(A ⊕B)+\Hg. The action of GL(A ⊕B)+ on P1(L) is
the usual one: (

a b
c d

)(
α
β

)
=
(
aα+ bβ
cα+ dβ

)
.(2.72)

There is charm in the following

Proposition 2.20. For any two fractional ideals A,B of L we have

|GL(A⊕B)+\P1(L)| = h,(2.73)

where h is the class number of L.

Proof. Consider the map:

GL(A⊕B)+\P1(L) −→ Cl(L),(2.74)

given by (
α
β

)
7→ (A,B)

(
α
β

)
= αA + βB.(2.75)



56 2. REAL MULTIPLICATION AND HILBERT MODULAR FORMS

Using (A,B)µ = (A,B) for µ ∈ GL(A⊕B)+, we see that the map is well-defined.
It is surjective because every fractional ideal C of L is of the form C = αA+βB, for
some α, β ∈ L. Indeed, every ideal class contains infinitely many prime ideals. Take
α and β such that αAC−1 and βBC−1 are distinct prime ideals. Or if one wishes to
use less machinery: assume w.l.o.g. that C = OL and that A is integral. Consider
OL/A =

∑
(OLpi/pi

eiOLpi), where A =
∏

pi
ei (Chinese Reminder Theorem). We

may assume that B is integral. Again by the CRT (weak approximation), we may
choose β ∈ L such that for every i we have βBOLpi = OLpi and βB ⊂ OL.

We now show that this map is injective. Suppose that in the class group of L
we have

αA + βB = α′A + β′B.(2.76)

Multiplying t(α, β) by a suitable λ ∈ L×, we may assume that (2.76) is an equality
of fractional ideals

αA + βB = α′A + β′B.(2.77)

Let C−1 = αA + βB. Then

OL = αAC + βBC = α′AC + β′BC.(2.78)

Note that α, α′ ∈ (AC)−1 and β, β′ ∈ (BC)−1. We may then find A,A′ ∈ AC and
B,B′ ∈ BC such that

1 = αA+ βB = α′A′ + β′B′.(2.79)

Consider the matrices of determinant 1

M =
(
α −B
β A

)
, N =

(
α′ −B′
β′ A′

)
.(2.80)

Note that M t(1, 0) = t(α, β) and N t(1, 0) = t(α′, β′). Thus, NM−1 t(α, β) =
t(α′, β′). Now,

NM−1 =
(
α′A+ βB′ α′B − αB′
β′A− βA′ β′B + αA′

)
.(2.81)

This is a matrix in GL(A ⊕ B)+ (in fact, in SL(A ⊕ B)+), e.g., α′B − αB′ ∈
(AC)−1BC + (AC)−1BC = A−1B.

To make GL(A⊕B)+\P1(L)
∐

GL(A⊕B)+\Hg into a topological space one defines
a fundamental system of neighborhoods at (i∞, . . . , i∞) by setting:

Ur := {z ∈ Hg|Im(zi) > r ∀i} , r ∈ R.(2.82)

Acting on those neighborhoods by elements µ ∈ GL2(L), we get neighborhoods of
all (α : β) ∈ P1(L), and this extends the topology to GL(A⊕B)+\P1(L)

∐
GL(A⊕

B)+\Hg. One then show that in fact this topological space has a structure of a
normal compact complex variety. This compactification is called the Satake com-
pactification of GL(A⊕B)+\Hg. See [36, Chapter II, p.44].

From the point of view of moduli, one may ask whether the cusps have a mod-
uli interpretation. As in the curve of elliptic curves, the answer is yes. In the
case of elliptic curves the moduli interpretation is given using generalized elliptic
curves. The precise formulation requires some care, especially when introducing
level structure. We refer to [22], [27].
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Ignoring the case of level structure, we may very roughly say that the compacti-
fied moduli space classifies semi-abelian varieties with RM byOL. By a semi-abelian
variety G over a base scheme S we understand a group scheme over S, π : G −→ S,
such that π is smooth and every geometric fiber of π is an extension of an abelian
variety by a torus. We say that the semi-abelian scheme G −→ S has real multi-
plication if there is given an embedding of rings OL ↪→ EndS(G), such that the Lie
algebra of G −→ S, i.e., the relative tangent space tG/S is a locally free sheaf of
OL ⊗Z OS-modules of rank 1.3

Now suppose that one of the geometric fibres of G −→ S, say Gs is not an
abelian variety. Then we have

0 −→ T −→ Gs −→ A −→ 0,(2.83)

where T is a non-trivial torus and A is an abelian variety. The ring OL acts
non-trivially on T and therefore L acts non trivially on the rational vector space
X(T )⊗Q, where X(T ) are the characters of T . It follows that dim(X(T )⊗Q) = g
and therefore Gs = T . That is,

Lemma 2.21. A semi-abelian variety with RM has fibers that are either tori
or abelian varieties.

We further note, that if the torus T is split then its RM structure is completely
determined by the lattice of characters X(T ) as an OL-module. This lattice has
rank g and is therefore a projective OL-module of rank 1. Thus, we expect that
there would be h cusps to the compactified moduli space, corresponding to the split
tori of dimension g with RM by OL. This is indeed the case.

Finally we note the following. The stabilizer of (i∞, . . . , i∞) in SL(A ⊕ B) 4 is

precisely the matrices
(
a b
0 d

)
where a and d are in OL and satisfy ad = 1, and

b is any element the ideal D = A−1B. This group is isomorphic to

OL× nD.(2.84)

Dividing first only by the action of D, we get local coordinates as follows: we choose
a basis ν1, . . . , νg to the dual of D (with respect to the trace pairing). Then

x1 = exp2πi·Tr(ν1τ), . . . , xg = exp2πi·Tr(νgτ),(2.85)

(τ = (τ1, . . . , τg) and Tr(ντ) = σ1(ν)τ1 + · · · + σg(ν)τg) are local coordinates
for D\Hg around (i∞, . . . , i∞). Every function f invariant under the action of
D, namely under translation by the elements of D (as every modular form w.r.t.
GL(A⊕B)+ is) has a Taylor expansion

f =
∑
n∈Zg

anx
n(2.86)

(using multi-index notation). But this is the same as writing

f =
∑
ν∈D∨

aν exp2πi·Tr(ν·τ) .(2.87)

3One needs to modify the definition if dL is not invertible on S. See Chapter 5
4The groups SL(A ⊕B) and GL(A ⊕B)+ have the same number of cusps and only minor

modifications are needed to discuss the case of GL(A⊕B)+. The difference eventually amounts
to some extra relations satisfied by the coefficients of the q-expansion.
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This is the q-expansion we shall define in Chapter 5, Section 2.

3. Hilbert Modular Forms

We keep the notation of the previous sections. Thus L is totally real of de-
gree g, with different DL, discriminant dL and ring of integers OL; Emb(L,C) =
{σ1, . . . , σg}, h+ = |Cl(L)+|, and h = |Cl(L)|. In what follows, A and B are
fractional ideals, and

GL(OL ⊕ A)+ =
{(

a b
c d

)
: a, d ∈ OL, b ∈ A, c ∈ A−1, ad− bc ∈ O× +

L

}
.(3.1)

Given a matrix δ =
(
δ1 δ2
δ3 δ4

)
∈ GL2(R)+, put

j(δ, z) = (δ3z + δ4)(det δ)−1/2.(3.2)

For a vector k ∈ Zg, and given µ ∈ GL2(L)+, put:

jk(µ, z) =
g∏
i=1

j(σi(µ), zi)ki .(3.3)

For f : Hg −→ C, put

(f |kµ)(z) = jk(µ, z)−1f(µz).(3.4)

For a group Γ ⊆ GL(OL ⊕ A)+ of finite index we make the following

Definition 3.1. A Hilbert modular form of weight k and level Γ is a holomor-
phic function

f : Hg −→ C,(3.5)

such that

f |kµ = f, ∀µ ∈ Γ.(3.6)

I.e.,

(3.7) f
(σ1(a)z1 + σ1(b)
σ1(c)z1 + σ1(d)

, . . . ,
σg(a)zg + σg(b)
σg(c)zg + σg(d)

)
=

(
g∏
i=1

(σi(c)zi + σi(d))ki det(σi(µ))−ki/2
)
f(z1, . . . , zg).

And we also require f to be holomorphic at infinity in the following sense:

Let M =
{
a :
(

1 a
0 1

)
∈ Γ
}

. (Note that [GL(OL ⊕ A)+ : Γ]A−1 ⊆ M ,

therefore M is a projective OL-module of rank 1). Then f is invariant under
translation by elements of M ,

f |k
(

1 b
0 1

)
= f(z1 + σ1(b), . . . , zg + σg(b)) = f(z1, . . . , zg),(3.8)

and hence possesses a q-expansion:

f(z) =
∑
ν∈M∨

aνe
2πiTr(ν·z),(3.9)
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with M∨ =
{
` ∈ L : TrL/Q(`m) ∈ Z,∀m ∈M

}
, and using the notation Tr(ν · z) =

σ1(ν)z1 + · · · + σg(ν)zg. (When Γ = GL(OL ⊕ A−1)+, we have M ∼= A−1 and
M∨ ∼= AD−1

L/Q; in the case L = Q, g = 1, we retrieve:

f(τ) =
∑
n∈Z

ane
2πinτ ,(3.10)

with an = 0 for n < 0 ).
We require, that if g is a modular form of weight k and level Γ, then for every

µ ∈ GL2(L)+, f := g|kµ has a q-expansion:

f(z) =
∑
ν∈M∨

aνe
2πiTr(ν·z),(3.11)

with aν = 0 unless ν = 0 or ν � 0. Here the module M is the one associated to
the group µΓµ−1.

Under the topology defined in Remark 2.19, this means that f possesses a
holomorphic Taylor expansion at every cusp. The next theorem tells us that in fact
for g > 1 the holomorphy requirement we imposed is automatic !

Theorem 3.2. (Köcher’s Principle) Let f(z) =
∑
ν∈M∨ aνe

2πiTrν·z be a mod-
ular form of weight k and level Γ. Assume g > 1, then

aν 6= 0 =⇒ ν � 0 or ν = 0.(3.12)

Proof. First, a lemma:

Lemma 3.3. Put rk(ε) =
∏g
i=1 σi(ε)

−ki/2, for ε ∈ O×+
L . If

(
ε 0
0 1

)
∈ Γ ,

then

aν = rk(ε)aεν(3.13)

Proof. Let A(ε) =
(
ε 0
0 1

)
. On the one hand,

f(εz) = f(σ1(ε)z1, . . . , σg(ε)zg)

=
∑
ν∈M∨

aνe
2πiTr(εν·z).(3.14)

On the other hand,

f(εz) = jk(A(ε), z)f(z)

= rk(ε)
∑
ν∈M∨

aνe
2πiTrν·z.(3.15)

Equating coefficients of e2πiTr(εv·z) we are done.

Assume now that aν0 6= 0 for some ν0 6= 0 such that ν0 is not totally positive:
without loss of generality, σ1(ν0) < 0. Find ε� 0 such that

σ1(ε) > 1, σi(ε) < 1 for all 2 ≤ i ≤ g(3.16)

and
The existence of such ε follows from the fact that Γ is of finite index in GL(O⊕A)+

and the lattice structure of the units modulo roots of unity.
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Consider the terms of
∑
ν∈M∨ aνe

2πiTrν·z, parameterized by ν0ε
m,m = 1, 2, . . . .

Put z = i. Then

aν0εme
−2πTr(ν0ε

m) = aν0rk(ε)−me−2πTr(ν0ε
m).(3.17)

But when m −→∞, e−2πTr(ν0ε
m) ∼ e−2πσ1(ν0)·σ1(ε)m , and the exponential growth

insures rk(ε)−me−2πTr(ν0ε
m) −→∞. So the general term does not approach zero

and thus the sum is divergent; contradiction.

There is a geometrical explanation to the Köcher principle: If Γ is torsion free,
a modular form f of weight k is a section a of line bundle on Γ\Hg. In fact, jk(µ, z)
is the factor of automorphy for this line bundle. This is very similar to the case
of elliptic curves discussed in Chapter 1, Section 4. One can interprete this line
bundle in terms of moduli. Recall that for every z ∈ Hg we constructed an abelian
variety

Az = C
g/(OL · z + A · 1)(3.18)

with OL-action and polarization module. The trivial line bundle

C
g ×Hg −→ Hg(3.19)

could be interpreted canonically as either the tangent space tAz,0 or the cotangent
space t∗Az,0 to Az at the origin. The usual decomposition Cg = ⊕gi=1C is in fact a
decomposition of t∗Az,0 into 1-dimensional vector spaces ⊕gi=1Li,z such that OL acts
on Li,z via σi.

Let k = (0, . . . , 1, . . . , 0) (1 in the i-th place) then jk(µ, z) is the automorphy
factor for the line bundle Li,z. That is, the relative cotangent space to the ”uni-
versal” polarized abelian scheme with (DLA)−1-polarization X −→ Γ\Hg, denoted
t∗X ,Γ\Hg decomposes into line bundles: t∗X ,Γ\Hg = ⊕gi=1Li such that OL acts on Li
via σi.

The transformation law (3.6) shows that a modular form f of weight k is a
global section of the line bundle determined by the factor of automorphy jk(µ, z).
That is, f ∈ Γ(Γ\Hg,⊗gi=1L

⊗ki
i ).

As discussed above, one may add finitely many cusps5 to Γ\Hg and get a
compact normal complex manifold Γ\Hg∗. Moreover, the line bundle ⊗gi=1L

⊗ki
i

extends to Γ\Hg∗ and f extends to a meromorphic section of a this line bundle. If f
is not holomorphic then normality implies that its divisor of poles is of codimension
1 (and thus “visible” on Γ\Hg). Thus f holomorphic on Γ\Hg implies that f is
holomorphic on Γ\Hg∗ if g > 1.

Definition 3.4. A Hilbert modular form f with respect to Γ is a cusp form if
the constant a0 in the Fourier expansion of f |kµ is zero for all µ ∈ GL2(L)+.

Put

M(C, k,Γ) = complex vector space of modular forms of weight k, level Γ.
(3.20)

and

S(C, k,Γ) = complex vector space of cusp forms of weight k, level Γ.(3.21)

LetM(C,Γ) = ⊕
k∈Zg
M(C, k,Γ) and S(C,Γ) = ⊕

k∈Zg
S(C, k,Γ). The ringM(C,Γ) is

a Zg-graded ring and S(C,Γ) is a graded ideal of it.

5In fact, h points if Γ = GL(OL ⊕ A)+ or SL(OL ⊕ A)+.
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Proposition 3.5. 1. If some ki ≤ 0 and k 6= (0, . . . , 0) thenM(C, k,Γ) =
{0} .

2. M(C, 0,Γ) = C,M(C, 0,Γ) = {0}.
3. If S(C, k,Γ) 6=M(C, k,Γ), then k1 = · · · = kg.

Proof. The case g = 1 is classical and we shall assume it known, though the
argument below could be used to prove this case as well.

We note that we may replace Γ by a smaller group and hence we may assume
that Γ has no elliptic elements. We shall use the fact, mentioned above, that for
g > 1 the nonsingular complex variety Γ\Hg has a compactification Γ\Hg∗ and it
is a normal variety to which every modular form extends and thus the divisor of
every modular form on Γ\Hg∗ is already visible in Γ\Hg.

Part 2 of the Proposition follows easily, because modular forms of weight 0
are identified with holomorphic functions on a normal compact variety and are
therefore constant.

Let f ∈ M(C, k,Γ), f 6= 0. A twisted diagonal curve mod Γ′ is a curve of
the form {µ(z, . . . , z) : z ∈ H} mod Γ′ (for µ a fixed element of GL2(L)+). Note
that letting µ range over GL2(L)+, {µ(z, . . . , z) : z ∈ H} is dense in Hg (Note that
GL2(L)+ is dense in

∏g
i=1 GL2(R)+). Thus ∃µ ∈ GL2(L)+ such that

f |kµ is not zero on {(z, . . . , z) ∈ H} mod Γ′.(3.22)

Take Γ′ ⊆ Γ with Γ′ commensurable to Γ, such that f |kµ is modular with
respect to Γ′. Consider the diagonal map

H/Γ′′ Φ−−−−→ Hg/Γ′,(3.23)

well-defined for some congruence subgroup Γ′′ ⊂ SL2(Z). Then Φ∗(f |kµ) is a non-
zero modular form of weight

∑g
i=1 ki with respect to Γ′′. Hence

g∑
i=1

ki ≥ 0.(3.24)

Consider first the case
∑g
i=1 ki > 0 and some ki, say k1, is 0. Let f ∈ Mk(Γ). We

will show ultimately that f = 0. We have a0 = rk(ε)a0, for
(
ε 0
0 1

)
∈ Γ. Since

k 6= 0 :

rk(ε) =
n∏
i=2

(σi(ε))ki/2 < 1,(3.25)

for a suitable ε, and that implies that a0 = 0. The same argument holds for (f |kµ)
for any µ ∈ GL2(L)+; that is, under GL2(L)+, all the cusps are equivalents, so we
just need to consider the q-expansion at one cusp. Thus, f is a cusp form.

Before proving that f = 0 we note that the same argument proves Part 3: If k
is not parallel, then we can always find ε such that:

rk(ε) =
n∏
i=1

(σi(ε))ki/2 6= 1,(3.26)

and
(
ε 0
0 1

)
∈ Γ. Hence the constant coefficient of the expansion is zero, and we

have a cusp form. That is, if f ∈M(C, k,Γ)\S(C, k,Γ) then k1 = · · · = kg.
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Let us finish the proof of Part 1. Recall the formula:

Im(δτ) =
det(δ)Im(τ)
|δ3τ + δ4|2

, δ =
(
δ1 δ2
δ3 δ4

)
∈ GL2(R)+.(3.27)

Put

g(z) =

(
g∏
i=1

(Imzi)ki/2
)
f(z).(3.28)

•g(z) is holomorphic in z1, (k1 = 0)!
•|g| is Γ-invariant:

|g(µz)| =

(
g∏
i=1

(Im(σi(µ)zi))ki/2
)
|f(µz)|

=
g∏
i=1

(
det(σi(µ)) · Im(zi)
|σi(c)zi + σi(d)|2

)ki/2 g∏
i=1

|σi(c)zi + σi(d)|ki(detσi(µ))−ki/2|f(z)|

= |g(z)|

(3.29)

•|g| = 0 at the cusps (a0 = 0).
The two last statements imply that if |g| is bounded on Hg (because Γ\Hg∗

is compact), hence, by Liouville’s theorem, g is constant as a function of z1. Fix
some (z1, . . . , zg). The assumption yields:

∀µ ∈ Γ |g(z1, σ2(µ)z2, . . . , σg(µ)zg)| = |g(z)|.(3.30)

However, {z1, σ2(µ)z2, . . . , σg(µ)zg)}µ∈Γ is dense in {z1}×Hg−1, hence |g| constant
implies |g| = 0, so f = 0.

Consider now the case
∑g
i=1 ki ≥ 0 and some ki is negative; say k1 < 0. There

exists a non-zero modular form G4 of weight 4 on Γ (see Section 5.1). Consider
f̃ = f4G−k1

4 . It is a cusp form of weight k̃ = (k̃1, . . . , k̃g), and
∑
k̃i > 0, k̃1 = 0.

Therefore f̃ = 0, hence f = 0.

Definition 3.6. A Hilbert modular form of level Γ0(B) and weight k is an h+

tuple

(f1, . . . , fh+),(3.31)

where each fi is a modular form of weight k with respect to the subgroup Γ(A,B)
of GL2(OL ⊕ A−1)+, where

Γ(A,B) =
{(

a b
c d

)
: a, d ∈ OL, b ∈ A−1, c ∈ AB, ad− bc ∈ O×+

L

}
.(3.32)
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4. More on the diagonal curve

Consider the case [L : Q] = 2. To ease notation we assume that L ⊂ C and we
write Emb(L,C) = {1, σ}. We have a commutative diagram:

H

��

// H2

��
H/SL2(Z) Φ // H2/SL2(OL)

,(4.1)

where Φ is the diagonal map: Φ(z) = (z, z), and SL2(OL) = SL2(OL ⊕OL).

Proposition 4.1. The map Φ is generically injective.

Proof. Let λ ∈ SL2(OL) be a matrix such that for all z ∈ H there exists τ ∈ H

such that λ(z, z) = (τ, τ). Then ∀z we have σ(λ)−1λz = z. So σ(λ)−1λ =
(
a b
c d

)
and cz2 + dz = az + b for every z ∈ H. Hence b = c = 0 and a = d, with ad = 1.
That is, σ(λ)−1λ = ±1. We have to consider two cases:

1. σ(λ) = λ =⇒ λ ∈ SL2(Z).

2. σ(λ) = −λ =⇒ λ =
√
d

(
a b
c d

)
, a, b, c, d ∈ Z =⇒ detλ 6= 1,

whence a contradiction. Thus, the stabilizer of the diagonal in SL2(OL) is SL2(Z)
and the proof is complete.

4.1. Modular interpretation. Let τ ∈ H and let Λ be the lattice Z+Zτ in
C; let Λ̃ be the lattice OL · (τ, τ) +OL · (1, 1) in C2. Consider the map

C −→ C⊗OL, z 7→ z ⊗ 1.(4.2)

It induces a map

C/Λ Φ−→ C⊗OL/Λ⊗OL.(4.3)

Under the isomorphism C ⊗ OL ∼= C
2, given by z ⊗ ` 7→ t(`z, σ(`)z), the lattice

Λ⊗OL is mapped to the lattice Λ̃. Let E = C/Λ. We note that the map Φ is non
other then the map

E −→ E ⊗Z OL,(4.4)

given by r 7→ r ⊗ 1.
Assume that OL = Z

[√
d
]
, with basis 1,

√
d. Then

Λ̃ =
〈(

τ
τ

)
,

( √
dτ

−
√
dτ

)
,

(
1
1

)
,

( √
d

−
√
d

)〉
,(4.5)

and
√
d acts on C2 by

( √
d 0

0 −
√
d

)
. The rational representation of

√
d with

respect to the basis given in (4.5) is:
√
d 7→


0 d
1 0

0 0
0 0

0 0
0 0

0 d
1 0

 .
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We may change the coordinate on C2 by:(
1
√
d

1 −
√
d

)−1

= − 1
2
√
d

(
−
√
d −

√
d

−1 1

)
.(4.6)

Under that change of coordinates Λ̃ is mapped to

˜̃Λ =
〈(

τ
0

)
,

(
0
τ

)
,

(
1
0

)
,

(
0
1

)〉
,(4.7)

(This lattice is obviously defining E × E) and
√
d acts now on C2 by(

1
√
d

1 −
√
d

)−1( √
d 0

0 −
√
d

)(
1
√
d

1 −
√
d

)
=
(

0 d
1 0

)
(4.8)

(with the same rational representation).

What are the OL-linear symmetric homomorphisms µ : E × E −→ (E × E)∨ ?
Let λ : E × E −→ (E × E)∨ be the canonical polarization. That is, if we let

pi : E × E −→ E be the projection on the i-th component then λ = φL, where
L = p∗1OE([0])⊗ p∗2OE([0]).

Remark 4.2. The map µ is OL-linear iff µm = m∨µ for all m ∈ OL, iff
(λ−1µ)m = (λ−1m∨λ)(λ−1µ).

Recall that µ 7−→ λ−1µ gives an embedding NS0 ↪→ End0(A)sym, that m 7−→
λ−1m∨λ is the Rosati involution defined by λ. In our case, identifying End(E2)
with M2(End(E)), where End(E) = Z or an order in an imaginary quadratic field,
one finds that the Rosati involution is given by(

a b
c d

)
7−→

(
a∨ c∨

b∨ d∨

)
,(4.9)

where ∨ is complex conjugation. Thus, the symmetric elements are the elements of
the form (

α β
β∨ δ

)
,(4.10)

with α, δ ∈ Z and β ∈ End(E).

Write λ−1µ =
(

α β
β∨ δ

)
, take m =

(
0 d
1 0

)
. The map µ is OL-linear iff(

α β
β∨ δ

)(
0 d
1 0

)
=
(

0 1
d 0

)(
α β
β∨ δ

)
.(4.11)

That is, if and only if (
β dα
δ dβ∨

)
=
(
β∨ δ
dα dβ

)
.(4.12)

So β = β∨, δ = αd, and this implies:

MA =
{(

α β
β dα

)
: α, β ∈ Z

}
,(4.13)
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M+
A =

{(
α β
β dα

)
∈MA : α > 0, dα2 − β2 > 0

}
.(4.14)

But D−1
L =

〈
1
2 ,

1
2
√
d

〉
and MA

∼= D−1
L as OL-modules via(

α β
β dα

)
7−→ α · 1

2
+ β · 1

2
√
d
,(4.15)

because

(4.16)
(
α β
β dα

)(
0 d
1 0

)
=
(

β dα
dα dβ

)
7−→

β · 1
2

+ dα · 1
2
√
d

= (α · 1
2

+ β · 1
2
√
d

)
√
d.

Under this isomorphism,

M+
A 7−→

{
α · 1

2
+ β

1
2
√
d

: α > 0, dα2 > β2

}
=
{
α · 1

2
+ β

1
2
√
d

: α+
β√
d
> 0, α− β√

d
> 0
}

= (D−1
L )+.

(4.17)

Note that this fits with SL2(OL)\H2 = SL2(OL ⊕OL)\H2 parameterizing abelian
varieties, constructed from lattices OL · τ + OL, and having polarization module
(D−1

L , (D−1
L )+).

5. Construction Of Hilbert Modular Forms

5.1. Eisenstein series. Fix a fractional ideal A of L.
The complex manifold

GL(OL ⊕ A−1)+\Hg.(5.1)

parameterizes complex abelian varieties with RM by OL and polarization module
(AD−1

L , (AD−1
L )+). Take B a fractional ideal of L with class B in Cl(L). Put

k = (k, . . . , k), k ≥ 2, k ∈ 2Z.

Definition 5.1. The Eisenstein series of weight k and class B is:

Gk,B(z) := N(B)k
∑′′

(α,β)∈BA⊕B

N(αz + β)−k.(5.2)

where the symbol ′′ indicates the following: We say that (α, β) and (µ, δ) are
associated if there exists an ε ∈ O×L such that:

(α, β) = (εµ, εδ).(5.3)

This is an equivalence relation, and the summation is over representatives of equiv-
alence classes different from {(0, 0)}. We use the notation N(v) = N(v1, . . . , vg) =
v1 · · · vg.

Let us show that an Eisenstein series of weight k and class B in indeed well-defined:
If (α, β) ∼ (µ, δ), say (α, β) = (εµ, εδ), the norms satisfy

N(αz + β)−k = N(ε)−kN(µz + δ)−k = N(µz + δ)−k,(5.4)

because k is parallel and k is even implies N(ε)−k = 1.
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Remark 5.2. The sum converges for k > 2, and also for k = 2, provided g > 1,
and defines a holomorphic function on Hg. Note that Gk,B depends only on the
ideal class of B.

An Eisenstein series is modular form with respect to GL(OL⊕A−1)+. To see that
note first that the group GL2(OL⊕A−1)+ is contained in the automorphism group
of BA⊕B:

(BA⊕B)µ = BA⊕B, ∀µ ∈ GL2(OL ⊕ A−1)+.(5.5)

This follows from the definition of GL2(OL ⊕ A−1)+ as invertible elements with
totally positive determinant of the ring(

OL A−1

A OL

)
.(5.6)

The action of GL2(OL⊕A−1)+ respect the equivalence relation we defined on pairs

(α, β) ∈ BA⊕B. Furthermore, let µ =
(
a b
c d

)
then

N(αµz + β)k = [N(α(az + b) + β(cz + d))][N(cz + d)−1]−k

= N

(
(α, β)

(
a b
c d

)(
z
1

))−k
N(cz + d)k.

(5.7)

Thus

Gk,B(µz) = N((cz + d))kGk,B(z) = jk(µ, z)Gk,B(z),(5.8)

where, as usual,

jk(µ, z) = N((cz + d))kN(detµ)−k/2 = N((cz + d))k.(5.9)

Definition 5.3. Let A be an ideal class, b an integral ideal. Put

ζA(k) =
∑

c∈A,c⊆OL

N(c)−k; σk−1,A(b) =
∑

c∈A,b⊆c⊆OL

N(c)k−1.(5.10)

Theorem 5.4. 1. The modular forms Gk,B on GL(OL ⊕ A−1)+\Hg are
linearly independent over C, and span a vector space of dimension h =
|Cl(L)|.

2. The Fourier expansion of Gk,B with respect to the cusp (i∞, . . . , i∞) is

Gk,B = c

ζDLB(1− k)
2g

+
∑

ν∈AD−1
L ,ν�0

σk−1,BDL((ν)A−1DL)e2πiTrνz

 ,(5.11)

with c = (2πi)kg

(k−1)!g d
1/2−k
L .

Remark 5.5. The number ζDLB(1−k)

2g is a rational number by a theorem of
Siegel, and σk−1,BDL((ν)A−1DL) are integers by definition.

In what follows, we give a heuristic explanation for the rationality of ζDLB(1− k):
The algebraic variety V whose underlying analytic variety (formed of its com-

plex points) is isomorphic analytically to GL(OL ⊕ A−1)+\Hg is defined over Q
and so is the space of modular forms of parallel weight k. In fact if X −→ V is
the universal object then the space of modular forms is Γ(V,det t∗⊗kX ,V ). This vector
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space is contained in Hom(V,det t∗X ,V ), a space with a natural G(C/Q)-action since
both A and det t∗X ,V are defined over Q.

If f is a modular form, so is fσ for σ ∈ Gal(C/Q). The q-expansion principle
says that the q-expansion of f is in some sense algebraic. It is really the development
of f to power series with respect to local parameters in the local ring at infinity
that are defined over the rationals. That is, if f =

∑
ν∈AO−1

L
aνe

2πiTrνz, we expect
that fσ =

∑
ν∈AO−1

L
aσνe

2πiTrνz. Thus, the constant(
ζB,DL(1− k)

2g

)
−
(
ζB,DL(1− k)

2g

)σ
=
(

1
c
Gk,B

)
−
(

1
c
Gk,B

)σ
(5.12)

is a modular form of weight k > 0, which is possible only if this constant is zero.

Exercise 5.6. Prove that a modular form of weight k 6= (0, . . . , 0) which is
not zero has infinitely many terms in its q-expansion.

We also define the following Eisenstein series:

EL,∗k =
1
c

∑
B∈Cl(L)

Gk,B ,(5.13)

and

ELk = 2gζL(1− k)−1EL,∗k .(5.14)

Thus, the q-expansion of EL,∗k at the cusp (i∞, . . . , i∞) is

ζL(1− k)
2g

+
∑

ν∈AD−1
L ,ν�0

σk−1((ν)A−1DL)e2πiTrνz,(5.15)

where

σk−1(b) =
∑

b⊆c⊆OL

N(c)k−1.(5.16)

5.2. Other methods of constructing modular forms. We indicate more
methods of constructing modular forms. In essence they all come one way or
another from theta series. The first method, that we now demonstrate by a
particular example, is to pull back modular forms from other modular varieties.

Let A be a fractional ideal of L, taken with its natural notion of positivity,
and consider the (coarsely) representable functor Φ of abelian varieties with RM
and polarization module A. That is, the functor assigning to a scheme S the
isomorphism classes of triples over S

(A, ι,m : (MA,M+
A) ∼= (A,A+)).(5.17)

Choose an element λ ∈ A+, consider it as an element ofM+
A, and let d = (d1| . . . |dg)

be the elementary divisors of Ker(λ). There is a natural transformation of functors
from the functor Φ to the (coarsely) representable functor Ψ of abelian varieties
of dimension g with a polarization having elementary divisors d = (d1, . . . , dg). If
we let MA(C) denote the moduli scheme over C that (coarsely) represents Φ, and
we let Sd(C) denote the moduli scheme that (coarsely) represents Ψ, 6 we get a

6Scheme likeMA usually go under the name of Hilbert modular schemes (not to be confused
with Hilbert schemes!), while the schemes Sd usually go under the name of Siegel modular schemes.
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morphism of schemes

f :MA(C) −→ Sd(C).(5.18)

(Such morphisms and their generalizations, are usually called modular embeddings,
though they are rarely embeddings. Another example of such a map is the diagonal
curve discussed in Section 4 and Section 4.1). One may write (5.18) explicitely.
See [106, pp. 640-1]. It can be formulated as coming from a suitable embedding of
GL2(L) in Sp(2g,Q), and the interpretation of the moduli spaces as double cosets
spaces of the adelic points of these algebraic groups.

Every modular form of weight k on Sd(C) (that means: f : Hg −→ C such that

f(γτ) = det(Cτ +D)kf(τ), γ =
(
A B
C D

)
(5.19)

in a suitable subgroup of Sp(2g,Z)) pulls back to a modular form on MA(C) of
parallel weight (k, . . . , k). While this may be checked by laborious calculation,
using the explicit form of the map f : MA(C) −→ Sd(C), it may also be justified
easily using Katz view of modular forms. We discussed that view point in the case
of elliptic curves in Chapter 1, Section 4. The case of abelian varieties with RM is
similar and is discussed in Chapter 5, Section ??.

Based on that we argue as follows. Given

(A, ι : OL ↪→ EndS(A),m : (MA,M+
A) −→ (A,A+), ω)/S(5.20)

where ω is an OL ⊗ OS basis to t∗A/S , we get the data (A, λ, ω′), with ω′ a basis
for det t∗A/S . Here, we first decompose OL ⊗OS as ⊕σ∈Emb(L,C)OS (OS is a sheaf
of C-algebras), and get from ω an OS basis, {ω1, . . . , ωg} to t∗A/S . We then let
ω′ = ω1 ∧ · · · ∧ ωg. Thus, the rule is

(A, ι,m, ω)/S 7−→ f(A, λ, ω′).(5.21)

It is immediate that this is a modular form!

Take for example the case when A = OL and λ is the principal polarization corre-
sponding to 1. Then we consider a map

GL(OL ⊕D−1
L/Q)+\Hg −→ Sp(2g,Z)\Hg.(5.22)

On Hg one can define Riemann’s theta functions with characteristic
[

ε
ε′

]
∈ Q2g

by

Θ
[

ε
ε′

]
(τ) =

∑
N∈Zg

exp
(

2πi
{

1
2
t(N + ε)τ(N + ε) + t(N + ε)ε′

})
.(5.23)

They are holomorphic functions on Hg. One can show, using the transformation

formula for theta functions ([67, Chapter 8.6]) that if nε, nε′ ∈ Zg then Θ8n
[

ε
ε′

]
is

a modular form of weight 4n on the principal congruence subgroup of level 2n; if n is
even Θ2n

[
ε
ε′

]
is a modular form of weight n on the principal congruence subgroup

of level n; Θ2
[

ε
ε′

]
is a modular form of weight 1 on the principal congruence

subgroup of level 4n2.
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By pulling back these modular forms we get Hilbert modular forms, of some
level. We note that the construction is arithmetic. The morphism

f :MOL −→ S(1,...,1)(5.24)

exists over any scheme. The theta functions often have the g.c.d. of their coeffi-
cients equal to one, and in any event the g.c.d. divides 2n if nε, nε′ ∈ Z.

We remark that Shimura used vector valued modular forms in [106, pp. 640-
642] to obtain Hilbert modular forms of weight (1, . . . , 1, 2, 1, . . . , 1).

Exercise
F 5.7. For which weights are there non-zero modular forms? (Same

question in positive characteristic).

6. Siegel’s formula

Consider the case A = OL. Let

Φ : SL2(Z)\H −→ SL2(OL)\H(6.1)

be the diagonal curve. Let Fk = Φ∗EL,∗k . It is a modular form on SL2(Z) of weight
gk with q-expansion:

Fk =
ζL(1− k)

2g
+
∞∑
n=1

ak(n)qn,(6.2)

where

ak(n) =
∑

ν ∈ (D−1
L

)+

Tr(ν) = n

σk−1((ν)DL) =
∑

ν ∈ (D−1
L

)+

Tr(ν) = n

∑
(ν)DL⊆A⊆OL

N(A)k−1.(6.3)

Lets apply this when g = k = 2. Since the space of modular forms on SL2(Z) of
weight 4 is one dimensional, F2 is a multiple of

G4,SL2(Z) =
ζQ(−3)

2
+
∞∑
n=1

c3(n)qn =
1

240
+ q + · · · .(6.4)

Hence 1
4ζL(−1)/ 1

240 = a2(1), and

ζL(−1) =
1
60

∑
ν ∈ (D−1

L
)+

Tr(ν) = 1

∑
(ν)DL⊆A⊆OL

N(A).(6.5)

Lemma 6.1. We have the following identity:

a2(1) =
∑

a ∈ Z, |a| <
√
dL

a ≡ dL (mod 2)

σ1

(
dL − a2

4

)
.(6.6)

Proof. We have

D−1
L =

{
1√
dL

(
a+ b

√
dL

2

)
: a, b ∈ Z, a, b ≡ dL (mod 2)

}
=

1√
dL
OL.(6.7)

Exercise 6.2. Write the totally positive elements ν of trace 1 in D−1
L explicitly.

Find out the ideals νDL and obtain the formula

a2(1) =
∑

|a| <
√
dL

a ≡ dL (mod 2)

∑
(
a+
√
dL

2 )⊆A⊆OL

N(A).(6.8)
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We rewrite (6.8) as

a2(1) =
∑

|a| <
√
dL

a ≡ dL (mod 2)

∑
d| dL−a

2

4

d · Sa,dL(d),(6.9)

where

Sa,dL(d) =
∑

(
a+
√
dL

2 )⊆A⊆OL, NA=d

1.(6.10)

We claim that Sa,dL(d) = 1. Write

(
a+
√
dL

2
) =

∏
Saii S

ci
i

∏
Rβii

∏
T µii ,(6.11)

where the first product run over split primes, the second over ramified primes and
the last one over inert primes.

Recall that the primes dividing
√
dL are precisely the ramified primes. If

valTi(
a+
√
dL

2 ) > 0 then valTi(
a−
√
dL

2 ) > 0, which implies that valTi(
√
dL), being

equal to valTi(
a+
√
dL

2 + a−
√
dL

2 ) is positive. Contradiction. If both valSi(
a−
√
dL

2 ) =
valSi(

a+
√
dL

2 ), and valSi(
a+
√
dL

2 ) are positive, then valSi(
√
dL) > 0. Again, a con-

tradiction. We conclude that we may write:(
a+
√
dL

2

)
=
∏
Saii

∏
Rβii , for i 6= j,Si 6= Sj , Sj .(6.12)

Therefore
dL − a2

4
=
∏

saii
∏

rβii , (si) = SiSi, (ri) = R2
i .(6.13)

The inclusion a+
√
dL

2 ⊆ A, NA = d implies,

d =
∏

s
a
′
i
i

∏
r
β
′
i
i , a

′

i ≤ ai, β
′

i ≤ βi.(6.14)

And therefore

A =
∏
Sa
′
i
i

∏
Rβ
′
i
i ,(6.15)

That is, A is uniquely determined by d and the condition (a+
√
dL

2 ) ⊆ A, NA = d,
hence the claim.

Corollary 6.3. Siegel’s formula

ζL(−1) =
1
60

∑
a ∈ Z, a ≡ dL (mod 2)

|a| <
√
dL

σ1

(
dL − a2

4

)
.(6.16)

Exercise 6.4. (See [13]) Prove

ζK(−3) =
1

120

∑
a ∈ Z, a ≡ dL (mod 2)

|a| <
√
dL

σ3

(
dL − a2

4

)
.(6.17)



CHAPTER 3

Abelian Varieties with Real Multiplication over
General Fields

In this chapter we explain some methods of studying abelian varieties in positive
characteristic. After defining abelian varieties over a general field, the dual abelian
variety, polarization and the Weil pairing, we turn to study finite Heisenberg groups.
These groups, introduced by Mumford, allow one to study line bundles on abelian
varieties and their behaviour under isogenies and are replacing, in the situation of
characteristic p, the more powerful tool given by the Appell-Humbert theorem.

We discuss various methods to understand abelian varieties over a field of
positive characteristic: The Honda-Tate method that describes isogeny classes of
abelian varieties over finite fields; Serre-Tate coordinates that describe ordinary
abelian varieties and their deformations over an algebraically closed field of finite
characteristic, and Deligne’s refinement. Following Chai-Norman and Ribet, we
give some applications to moduli spaces.

1. Abelian Varieties over a General Field

In this section, we will develop some general features of abelian varieties defined
over any field k. Recall that an abelian variety A over k is a connected, reduced
projective algebraic group.

Lemma 1.1. (Rigidity lemma) Let f : V ×W −→ U be a morphism of algebraic
varieties over k. Assume

1. V is projective.
2. There exist v0 ∈ V,w0 ∈W such that

f({v0} ×W ) = f(V × {w0}) = {u0} .(1.1)

Then f(V ×W ) = {u0}.

Proof. Let U0 ⊆ U be an open affine set such that u0 ∈ U0, let πW : V ×
W −→W be the projection and let

Z = πW (f−1(U\U0)).(1.2)

The set U\U0 is closed. Since V is projective, hence proper over k, πW is a closed
map, and thus Z is closed. The set Z is also characterized by by the following
property:

w 6∈ Z ⇐⇒ f(V × {w}) ⊆ U0.(1.3)

Hence W\Z is a non empty, hence dense, open set in W . For w 6∈ Z, f(V ×{w0}) is
a point, being the the image of a projective variety in an affine subset. Combining
this with

f({v0} ×W ) = {u0} ,(1.4)

71
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we get,

f(V × (W\Z)) = {u0} .(1.5)

Since V × (W\Z) is dense in V ×W , we conclude: f(V ×W ) = {u0}.

Corollary 1.2. Every morphism f : A −→ B of abelian varieties over k is of
the form Tb ◦ h where h : A −→ B is a homomorphism of abelian varieties, b ∈ B,
and Tb is the translation-by-b-map: Tb(b′) = b′ + b.

Proof. Replacing f by Tb ◦ f , with b = −f(0), we may assume f(0) = 0 and
we need to prove that f is a homomorphism. We apply the rigidity lemma to the
morphism

F : A×A −→ B,(1.6)

given by

F = f ◦mA −mB ◦ (f, f).(1.7)

(I.e., on points, F (x, y) = f(x+ y)− f(x)− f(y)).
The assumptions of the rigidity lemma hold: F (A× {0}) = 0B = F ({0} ×A).

Hence F is the constant map with image 0B . I.e., f is a homomorphism.

Corollary 1.3. The group law on an abelian variety is commutative.

Proof. Apply Corollary 1.2 to the inverse morphism:

inv : A −→ A.(1.8)

It gives that inv is a homomorphism, hence the group law is commutative.

Corollary 1.4. There is a unique group law on A for which 0A is the identity.

Proof. Apply the corollary 1.2 to the identity map !

One can prove that the multiplication by n map, denoted [n] (or simply n), is
an isogeny of degree n2g. That is, it is a surjective homomorphism and A[n], the
Kernel of [n], defined by the cartesian diagram:

A[n] closed−−−−−−→
immersion

Ay y[n]

Spec(k) −−−−→ A

,(1.9)

is an affine group scheme of order n2g (where g = dimA), i.e. A[n] = Spec(R)
where R is a Hopf algebra of dimension n2g. If char(k) = 0, or (char(k), n) = 1,
then A[n] is étale, i.e., A[n]⊗k ks ∼= (Z/nZ)2g. If char(k) = p and n = p, then

|A[p](k)| ≤ pg.(1.10)

By a theorem of Oort [94, (15.11)] every finite commutative group scheme over a
perfect field embeds as a subgroup of some abelian variety.

Exercise 1.5. Write the automorphism group as a semi direct product of
translations and group automorphisms. Find the connected component of this
algebraic group. Deduce that it needs not be of finite type.

Use the notion of polarization to find subgroups of finite order. What Galois
representations can you obtain this way?
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1.1. The dual abelian variety. Let Pic(A) denote the isomorphism classes
of line bundles on A ⊗ k. It is an abelian group under the operation of tensor
product. For every line bundle L the map:

ΦL : A −→ Pic(A),(1.11)

ΦL(x) = T ∗xL ⊗ L−1,(1.12)

is a homomorphism of groups:

Theorem 1.6. (Theorem of the Square) We have:

T ∗x+yL ⊗ L−1 ∼= T ∗xL ⊗ L−1 ⊗ T ∗yL ⊗ L−1.(1.13)

Proof. See [72, Theorem 4.5]

Let Pic0(A) denote the isomorphism classes of line bundles L such that ΦL ≡ 0.
Note that for all L, Im(ΦL) ⊆ Pic0(A):

T ∗y (T ∗xL ⊗ L−1)⊗ (T ∗xL ⊗ L−1)−1 = T ∗x+yL ⊗ T ∗yL−1 ⊗ T ∗xL−1 ⊗ L = 0.(1.14)

Note that Pic0(A) is a subgroup of Pic(A). This follows from the formula: ΦL⊗M =
ΦL + ΦM. One defines the Néron-Severi group , NS(A), by

NS(A) = Pic(A)/Pic0(A).(1.15)

Then:

0 −→ A∨ −→ Pic(A) −→ NS(A) −→ 0.(1.16)

Exercise 1.7. Let k = C. Use Appell-Humbert theorem to show Pic0(A) is
precisely the dual abelian variety we defined previously.

One denotes Pic0(A) also by A∨, or At, and calls it the dual abelian variety. The
name is justified by the following theorem and further properties we list below. The
proofs of these properties will take us too much astray, and we content ourselves
with referring to [76], especially Chapters 8 and 13.

Theorem 1.8. There exists an abelian variety A∨/k such that A∨(k) is in
isomorphism (as groups) with Pic0(A).

Moreover, on A×A∨ there is a line bundle P, unique up to isomorphism, called
the Poincaré bundle, with the following properties:

1. For every α ∈ A∨ the line bundle P|A×{α} represents that element of Pic0(A)
given by α.

2. P|{0}×A∨ is trivial.

Fact 1.9. 1. If L is ample, then ΦL : A −→ A∨ is an isogeny, i.e. a sur-
jective homomorphism with finite kernel (but the converse is not necessarily
true).

2. A ∼= (A∨)∨ canonically. The isomorphism is given in fact by t 7→ P|t×A∨ .
Moreover, the Poincaré bundle on A×A∨, when A is interpreted as A∨∨, is
the same bundle.

3. Let f1, f2 be homomorphisms and f∨1 , f
∨
2 : B∨ −→ A∨ the corresponding

homomorphisms of the dual abelian varieties (f∨i (L) is just the pull-back
f∗i (L)). Then it is a theorem that (f1 + f2)∨ = f∨1 + f∨2 .
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Exercise 1.10. Use the fact that A∨ is an abelian variety to deduce the the-
orem of the square from Corollary 1.2.

Theorem 1.11. Let

0 −−−−→ H −−−−→ A
f−−−−→ B −−−−→ 0(1.17)

be an exact sequence with A,B abelian varieties, and H a finite group scheme.
Then

0 −−−−→ H∨ −−−−→ B∨
f∨−−−−→ A∨ −−−−→ 0(1.18)

where f∨(L) = f∗(L), and H∨ is the group scheme dual to H, i.e., representing
the functor S 7→ Hom(H(S),Gm(S)).

We refer to Appendix A for properties of group schemes.

Proof. See [75, Theorem 1, Section 15, Chapter III, p. 143]

Remark 1.12. The duality theory of abelian varieties and the special role of
the Poincaré bundle can be developed much further. In particular, there is a Fourier
transform. See [84], [25].

Remark 1.13. The relation f ◦f∨ = [deg(f)] holds for elliptic curves, but does
not hold in general if dim(A) > 1.

Definition 1.14. We define a polarization of A to be a homomorphism,

f : A −→ A∨,(1.19)

such that f = ΦL for some ample line bundle L.

Fact 1.15. If f is a polarization, then f is an isogeny and f = f∨ (under
(A∨)∨ ∼= A). Hence, the kernel of a polarization is a self-dual group scheme.

The polarization is called principal if f is an isomorphism. Since A is a variety,
A ⊆ PN , for some N , by definition. Thus A possesses an ample line bundle. In
particular, A always carries some polarization and is isogenous to its dual A∨.

For every commutative group scheme H over k, there exists a perfect pairing

H ×H∨ −→ Gm.(1.20)

Now,

0 −−−−→ A[n] −−−−→ A
n−−−−→ A −−−−→ 0,,(1.21)

gives:

0 −−−−→ (A[n])∨ −−−−→ A∨
n∨−−−−→ A∨ −−−−→ 0.(1.22)

On the other hand, note that 1∨ = 1, and since (f + g)∨ = f∨ + g∨, it follows by
induction that n∨ = n. Thus we conclude that

A∨[n] = A[n]∨,(1.23)

and we therfore obtain a perfect pairing.:

A[n]×A[n]∨ −→ Gm.(1.24)

If λ : A −→ A∨ is a polarization, we get a bilinear, antisymmetric, Gal(k/k)-
invariant pairing:

〈 , 〉λ : A[n]×A[n] −→ Gm,(1.25)



2. FINITE HEISENBERG GROUPS 75

〈x, y〉λ = 〈x, λ(y)〉 .(1.26)

This pairing is called the Weil pairing. It is perfect iff (deg λ, n) = 1.
We mentioned in Section 1 that if char(k) = p > 0 then

|A[p](k)| ≤ pg.(1.27)

One may prove this by showing that if A is isogenous to B, then

|A[p](k)| = |B[p](k)|.(1.28)

Take B = A∨, and use the Weil pairing:

A[p]×A[p]∨ −→ Gm.(1.29)

If we put H = A[p](k), K = A∨[p](k). The map

H ×K −→ Gm(k)(1.30)

factors through µp and we get:

H ×K −→ µp(k) = 1.(1.31)

Hence K ⊆ H⊥. The perfectness implies |K| ≤ p2g/|H|. On the other hand,
|K| = |H|, thus |H| ≤ pg.

2. Finite Heisenberg Groups

Over the complex numbers, the Appell-Humbert theorem allows one complete un-
derstanding of line bundles on abelian varieties and thus of polarizations and their
behaviour under isogenies. The Appell-Humbert theorem rests on the fact that
we have a surjective analytic map Cg −→ A where Cg is a contractible space that
is independent of A. In characteristic p, there is no similar construction known.
Thus one needs other methods to manage line bundles and polarizations. This is
provided by the finite Heisenberg group defined by Mumford. For an extensive
treatment, see [76] and [67]. See also [82].

Let A be an abelian variety over an algebraically closed field k, and L an am-
ple line bundle on A. We assume, for simplicity, that either char(k) = 0, or
(degL, char(k)) = 1.

Definition 2.1. Let: G(L) := {φ|φ : L −→ L} such that φ is an isomorphism
of L that covers a translation map on the base and induces a linear map on fibers.
That is, there exists a ∈ A such that the following diagram commutes and φ is
linear on fibers:

L φ−−−−→ Ly y
A

Ta−−−−→ A

.(2.1)

The group law is composition: φ2 ◦ φ1 is given by

L φ1−−−−→ L φ2−−−−→ Ly y y
A

Ta1−−−−→ A
Ta2−−−−→ A

.(2.2)

One calls G(L) the Heisenberg group, or Theta group, associated to (A,L).
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An equivalent way of defining G(L) is as the set of pairs (ψ, a), where a ∈ A
and ψ : L −→ T ∗aL is an isomorphism. Indeed, let ρ : L −→ A be the projection.
Then T ∗aL = {(x, l) : ρ(l) = Ta(x) = x+ a}. The map ψ : L −→ T ∗aL has the form
(ρ(`), `) 7→ (ρ(`), φ(`)), for some φ, where ρ(φ(`)) = ρ(`) + a. Thus,

L φ−−−−→ Lyρ yρ
A

Ta−−−−→ A

.(2.3)

Conversely, given φ such that (2.3) holds, define ψ(ρ(`), `) = (ρ(`), φ(`)). We note
that in this language we have (φ2, a2) ◦ (φ1, a1) = (T ∗a1

φ2 ◦ φ1, a1 + a2).

The group G(L) sits in an exact sequence:

0 −−−−→ Gm −−−−→ G(L) π−−−−→ K(L) −−−−→ 0.(2.4)

The group K(L) is defined as {a : T ∗aL ∼= L} = Ker(ΦL). Fixing a, φ is unique up
to a scalar. To see that, note that if φ′ is another such map, then

φ ◦ φ′−1 : L −→ L(2.5)

is an isomorphism of line bundles, and thus for every a ∈ A the morphism f :
La −→ La is multiplication by a constant f(a) and f(a) 6= 0,∞. We get therefore
a morphism f : A −→ Gm. But A is projective and Gm is affine, hence f is constant.

We have the following:

Fact 2.2. deg(L) = dimk Γ(A,L), and |K(L)| = (deg(L))2.

One finds immediately that Gm ⊂ Z(G(L)), the center of the Heisenberg group,
and we may define an alternating bilinear pairing, the Mumford pairing

eL : K(L)×K(L) −→ Gm,(2.6)

by

eL(x, y) = [x̃, ỹ],(2.7)

where x̃, ỹ are lifts of x and y, respectively, to G(L), and [a, b] = aba−1b−1.

Definition 2.3. A subgroup H ⊆ K(L) is isotropic if eL(H,H) = 1.

Definition 2.4. A subgroup H̃ of G(L) is called a level subgroup if π(H̃) ∼= H̃.
If H = π(H̃), we say H̃ is above H .

Exercise 2.5. There exists a level subgroup H̃ above H iff H is isotropic.

Let f : A −→ B be an isogeny of abelian varieties, M an ample line bundle on B.
Let L = f∗M. Then we have a canonical level subgroup HM above H = Kerf . It
is constructed as follows: Given a ∈ Kerf ,

T ∗aL ∼= T ∗a f
∗M∼= (f ◦ Ta)∗M∼= f∗M∼= L.(2.8)
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All isomorphisms being canonical. This yields a canonical isomorphism φa : L ∼=
T ∗aL, for every a ∈ H and HM = {φa : a ∈ H} is a level subgroup of G(L) above
H. Conversely, given a level subgroup H̃ ⊂ G(L), let H = π(L) and consider:

L −−−−→ L/H̃y y
A

pH−−−−→ A/H

.(2.9)

This is an inverse construction:

HL/H̃ = H̃.(2.10)

The construction is in fact a manifestation of the theory of descent. Using it one
shows that there is bijection between the level subgroups over H and the line
bundles M on A/H such that p∗H(M) = L. This is the true content of the two
exact sequences:

0 −−−−→ H −−−−→ A
pH−−−−→ A/H −−−−→ 0,(2.11)

and

0 −−−−→ H∨ −−−−→ Pic(A/H)
p∗H−−−−→ Pic(A) −−−−→ 0.(2.12)

Note that any two level subgroups H1,H2 over H differ by a character χ of H: Let
x ∈ H and x′, x′′ be its lifts to H1 and H2 respectively. Let χ(x) = (x′)−1(x′′).
Then χ is a character. Conversely, if χ ∈ H∨ and H1 is a level subgroup over H
define H2 by {x · χ(π(x)) : x ∈ H1}.

Lemma 2.6. Let f : A −→ B be an isogeny with kernel H, M an ample line
bundle on B, and L = f∗M. Then

K(M) ∼= H⊥/H.(2.13)

Proof. Let HM be the level subgroup corresponding toM defined above. To
prove the claim, consider the set of all possible liftings of isomorphisms

M φ−−−−→ My y
B

Tb−−−−→ B

(2.14)

to elements of G(L). It is easy to see that for φ ∈ G(M) the lifting p∗Hφ is an
element of G(L) commuting with HM, and p∗Hφ is well-defined up to a choice of an
element of Ker(pH) = H. Indeed, given a ∈ A such that f(a) = b there is a unique
morphism φ′ completing the following diagram:

p∗HM
φ′−−−−→ p∗HMy y

A
Ta−−−−→ A

f−−−−→

M φ−−−−→ My y
B

Tb−−−−→ B

.(2.15)

Conversely, every automorphism in π−1(H⊥) = CentG(L)(HM) will descend to
an automorphism of M. Thus, in fact G(M) ∼= CentG(L)(HM)/HM and hence
K(M) ∼= H⊥/H.
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Fact 2.7.

degM = degL/|Kerf |.(2.16)

This also follows from descent theory: Γ(B,M) ∼= Γ(A, f∗M)HM .

Corollary 2.8. 1. We have the following equalities:

(degM)2 = |K(M)| = |H⊥|/|H| = (degL/|H|)2 = |K(L)|/|H|2.(2.17)

2. We have |K(L)| = |H| · |H⊥|. Hence, eL is a perfect pairing and Gm =
Z(G(L)).

Corollary 2.9. Every abelian variety A/k is isogenous to a principally po-
larized abelian variety.

Proof. Let L be an ample line bundle on A. Let H ⊂ K(L) be a maximal
isotropic subgroup.1 Let H̃ be a level subgroup above H. Let M be the line
bundle L/H̃ on A/H. Clearly (A,φL) is isogenous to (A/H, φM). Moreover, by
Corollary 2.8, deg(M) = |H⊥/H| = 1.

There is a connection between the Mumford pairing eL and the Weil pairing: As-
sume that M is an ample line bundle on A and M = L⊗n. Then,

x ∈ K(M) ⇐⇒ T ∗xM∼=M
⇐⇒ (T ∗xL)n ∼= Ln

⇐⇒ (T ∗xL ⊗ L−1)n ∼= 0

⇐⇒ n · φL(x) = 0

⇐⇒ x ∈ [n]−1K(L)

(2.18)

Therefore, if L is of degree 1, then K(L) = {0} and K(M) = A[n]. One can prove
that Mumford’s pairing eM and Weil’s pairing <,>φL are equal:

eM(x, y) =< x, y >φL , x, y ∈ A[n].(2.19)

If one accepts (2.19) then one obtains that the eM pairing is Galois equivariant and
depends only on the class of M mod Pic0, and, on the other hand, that the Weil
pairing is an alternating pairing. The proof of (2.19) is not hard but requires going
in detail into the identification of H∨ as the kernel of Pic(A/H) −→ Pic(A).

The finite Heisenberg groups are instrumental in the construction of moduli spaces
for abelian varieties and in studying isogenies between them. Over the complex
numbers this translates to identities between Riemann theta functions. An exhaus-
tive treatment may be found in Mumford’s trilogy, [80], [81], [82]. Our discussion
below is intended mainly to whet the reader’s appetite.

Suppose that L is a very ample line bundle on A. Then a choice of basis
s0, . . . , sr of Γ(A,L) gives a projective embedding

A −→ P
r,(2.20)

a 7→ (s0(a) : · · · : sr(a)).(2.21)

For a general variety A there is no canonical way to choose the basis. In the case of
abelian varieties, one can use the fact that Γ(X,L) is an irreducible representation

1We only discussed those notions in the case where the degree of L is prime to the charac-
teristic of k. However, the theory may be extended to cover the general case.
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of G(L) to try and narrow down the choices of bases, making such a choice “almost
canonical”.

Definition 2.10. A representation ρ of G(L) into GLn is called of weight 1 if
for every x ∈ Gm, ρ(x) acts as multiplication by x.

Theorem 2.11. (Stone-Von Neumann) Under the assumptions above, there
exists a unique irreducible representation of weight 1. 2

Proof. Let V be such a representation, and choose a maximal isotropic sub-
group H of K(L). Let H̃ be a level subgroup above H. We may decompose V
according to characters of H̃

V = ⊕
χ∈H̃∗

V χ.(2.22)

We denote the summand corresponding to the trivial character by V 1. Let

κ : G(L) −→ H̃∗,(2.23)

be defined by

κ(g) = [·, g].(2.24)

Let v ∈ V χ and g ∈ G(L). Then for h ∈ H̃,

h(gV ) = (hg)V = ([h, g]gh)V

= [h, g]χ(h)gV

= (κ(g)χ)(h) · gV.
(2.25)

Hence

gV χ = V κ(g)·χ.(2.26)

Therefore, if one V χ 6= 0, then every V χ 6= 0 and they are all isomorphic as vector
spaces. Let v ∈ V 1, v 6= 0. Then (2.25) implies that Span{gv : g ∈ G(L)} is a sub
representation W of G(L) whose intersection with V 1 is k · v. Hence W = V and
V 1 is one dimensional.

Choose a section [gψ : ψ ∈ H̃∗] to κ; and choose a basis v to the one dimensional
vector space V 1. Then

V = ⊕
ψ∈H̃∗

gψk · v.(2.27)

Every element in G(L) can be written uniquely as xyz, with x ∈ k×, y ∈ {gψ} and
z ∈ H̃. (Ker(κ) = k× · H̃, because H was chosen to be maximal.) We see that
the representation is completely determined (2.27). The only thing that matters is
zgψ = rgψ′z for some ψ′. We remark that in fact (2.27) shows that V ∼= IndG

k×H̃
k

(where k is the trivial one dimensional representation).

Remark 2.12. Almost canonical bases.

2This theorem was greatly generalized by Weil [121], [122], who used it to derive and gener-
alize Siegel’s theorem on quadratic equations. A theorem now known as the Siegel-Weil theorem.
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We now apply the representation theory of G(L) to geometry. First note that
Γ(A,L) is a representation of G(L). The action being described by the following
diagram:

L φ−−−−→ Lxs xφ·s
A ←−−−−

T−1
a

A

.(2.28)

That is,

φ · s = φ ◦ s ◦ T−1
a .(2.29)

The center of G(L) acts by scalars and dim Γ(X,L) has the dimension of the unique
irreducible representation of weight 1. Therefore Γ(A,L) is that unique irreducible
representation.

Let L be a symmetric ample line bundle. That is, [−1]∗L ∼= L. This induces a
canonical automorphism ι of G(L), where ι(φ) = ι∗φ.

Let d1, . . . , dg with 1|d1|d2| · · · |dg be the elementary divisors of K(L), i.e.
K(L) ∼= ⊕(Z/diZ)2. One can show G(L) ∼= G(d1,...,dg), where

G(d1,...,dg) = k× × (⊕gi=1Z/diZ)× (⊕gi=1Z/diZ)∗,(2.30)

and

(α, x, φ)(β, y, ψ) = (αβψ(x), x+ y, φψ).(2.31)

An isomorphism θ : G(L) −→ G(d1,...,dg) restricting to the identity on C×, and
satisfying θ ◦ ι = [−1] ◦ θ (where [−1] on the right hand side is the automorphism
G(d1,...,dg) given by (α, x, φ) 7→ (α,−x, φ−1)) is called a theta level structure. . If
M is an ample symmetric line bundle of degree one and L = M⊗n, a theta level
structure on G(L) is intermediate between full level n structure and full symplectic
level 2n structure (see [76]).

One may consider the moduli of triples (A,L, θ). Here A is abelian variety (or,
more generally, an abelian scheme), L is an ample line bundle of fixed elementary
divisors d1, . . . , dg, and θ : G(L) −→ G(d1,...,dg) is a theta level structure. Because
of the relation to the usual level structures, proving the representability of such a
functor is virtually equivalent to proving the representability of the usual moduli
functors.

Given θ, there is an evident choice of level subgroup H̃, the one corresponding to
{(1, x, 0)}, and there is an evident choice of a section to κ, the one corresponding to
{(1, 0, ψ)}. Then choosing an non-zero element (unique up to scalar) Θ of Γ(A,L)H̃ ,
we get a basis {gψΘ} to Γ(A,L), where the gψ are representatives to the cosets of
k×H̃ in G(L) corresponding to {(1, 0, ψ)}. The bases obtained by this method are
“almost canonical”; they depend on the finitely many choices for θ.

Define a map

A −→ P(Γ(A,L)),(2.32)

by

a 7−→ ((gψΘ)(a))ψ∈H∗ .(2.33)
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According to Mumford, when L is ample enough (e.g., an 8-th power of an am-
ple symmetric line bundle of degree 1), this embeds our moduli space as a quasi-
projective variety. The point corresponding to (A,M, θ) is ((gψΘ)(0A)), where 0A
is the identity. More than that, this construction actually gives the universal family
over the moduli space.

Over C, for the line bundle considered in the discussion of the Appell-Humbert
theorem, those gψΘ are, up to a common exponent factor, Riemann’s theta func-

tions Θ
[

ε
ε′

]
:

Θ
[

ε
ε′

]
(τ) =

∑
N∈Zg

exp
(

2πi
{

1
2
t(N + ε)τ(N + ε) + t(N + ε)ε′

})
.(2.34)

3. Honda-Tate Theorem

Let k be a field, A/k an abelian variety of dimension g. Let ` be a prime such that
(`, char(k)) = 1 if char(k) 6= 0.

Define the `-adic Tate module

T`(A) = lim
←−

A[`n](k).(3.1)

An element of T`(A) is thus a sequence (xn)n≥0, where x0 = 0, and `xn+1 = xn. It
has a natural Gal(k/k) action.

Exercise 3.1. Let Γ be an abelian group, then we may define T`(Γ) in the
same fashion: T`(Γ) = lim

←−
Γ[`n]. It may again be described as sequences (xn)n≥0,

where xn ∈ Γ, x0 = 0, and `xn+1 = xn. The addition is by component-wise
addition and the zero element is the sequence consisting of xn = 0 for all n.

Show that T`(Γ) is a torsion-free Z` module and that Aut(Γ) acts as automor-
phisms on T`(Γ). (N.B. When going back to the case of abelian varieties note that
Γ = A(k) and not A. In particular, Gal(k/k) acts on A(k), and it does not act as
automorphisms of the variety A! The representation Gal(k/k) −→ Aut(T`(A)) is
called the `-adic representation).

An important example is taking Γ to be the group of roots of unity of `-power
order in k. We shall denote T`(Γ) in this case by Z`(1).

If Γ and ∆ are G-modules and

Γ× Γ −→ ∆(3.2)

is a G-equivariant alternating pairing, we have an induced G-equivariant pairing

T`(Γ)× T`(Γ) −→ T`(∆),(3.3)

and hence a G-equivariant homomorphism
2∧
Z`

T`(Γ) −→ T`(∆).(3.4)

That is, the following diagram commutes:∧2
T`(Γ) −−−−→ T`(∆)y∧2g

yg∧2
T`(Γ) −−−−→ T`(∆)

.(3.5)



82 3. ABELIAN VARIETIES WITH REAL MULTIPLICATION OVER GENERAL FIELDS

Use this to show that for an elliptic curve E over a totally real number field k,
taking

Γ = E(k), ∆ = lim
←−
n

µ`n(3.6)

and the Weil pairing, we get that the `-adic representation is odd. That is, complex
conjugation has determinant −1.

We come back to the case of abelian varieties. If A and B are two abelian varieties
over k, then we have a natural map commuting with the Galois group action,

Homk(A,B)⊗Z Z` −→ HomGk(T`(A), T`(B)).(3.7)

We remark that the module T`(A) is a free Z`-module of rank 2g. The map in
(3.7) is always injective with torsion free cokernel. When k is a finite field (Tate
[112]), or a function field over a finite field (Zarhin [125], [126]) or a number
field (Faltings [32]) or a finitely generated field over Q (Faltings [32]) then it is an
isomorphism. There are obvious cases when this is not so.

Let A/k be an abelian variety, k = Fpr . We refer the reader to Appendix A
for definition and discussion of the Frobenius and Verschiebung morphisms, and to
properties of group schemes. We define Φ = FrrA = FA(pr−1) ◦ · · ·FrA(p) ◦FrA. Then

Φ : A −→ A(pr) = A(3.8)

is a homomorphism of degree (pg)r = pgr and ker(Φ) is a finite connected group
scheme of A of order pgr. Using Ver we see that

Ker(Φ) ⊂ A[pr].(3.9)

Moreover, since Ker(Φ) is a connected group scheme,

Ker(Φ)(k) = {0} .(3.10)

This may also be seen directly: x ∈ A(k) implies that there exists an ` such that
Φ`(x) = x. Incidentally, since A[p] is a group scheme of order p2g, this shows again
that |A[p](k)| ≤ pg.

For any prime `, including ` = p, we let:

T`(A) = lim
←−

A[`n].(3.11)

Whether ` = p or not, we get an endomorphism:

Φ ∈ Endk(T`(A)).(3.12)

Let ∆ be the characteristic polynomial of Φ (for ` 6= p). One can prove that ∆ has
coefficients in Z, is independent of ` and has degree 2g.

Theorem 3.2. (Honda-Tate)

1. Let A be a Fq-simple abelian variety. Then E = EndFq (A)⊗ZQ is a division
algebra with center Q [π], π = Frq = (Frp)r, q = pr. The number π is an
algebraic integer such that for every embedding Q [π] ↪→ C, we have |π| = √q
(We call such an algebraic integer π a q-Weil number).
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2. For any prime ν of Q [π],

invν(E) =


1
2 ν real
0 ν complex
ordν(π)
ordν(q) [Q [π]ν : Qp] ν|p
0 otherwise

(3.13)

Moreover, dimA = 1
2 [Q [π] : Q] ·

√
[E : Q [π]] and e =

√
[E : Q [π]] is the

lowest common denominator of the invv(E)’s. The characteristic polynomial
of π is m(T )e, where m(T ) is the minimal polynomial of π over Q.

3. Two simple abelian varieties A and A′ over Fq are isogenous over Fq iff
there exists an isomorphism φ : Q[πA] −→ Q[π′A] such that φ(πA) = π′A.

4. Every q-Weil number comes from a Fq-simple abelian variety.

Remark 3.3. 1. In Part 1 of the theorem, the abelian variety does not
need to be Fq-simple. For example, put π = p. Hence q = p2, and

invν(E) =


1
2 ν real
1
2 ν = p

0 otherwise
.(3.14)

We infer that π corresponds to an elliptic curve X over Fp2 , and E =
EndFp2 (X) ∼= Bp,∞, the “unique” quaternion algebra over Q ramified at p
and ∞. This is a supersingular elliptic curve.

Now do the calculation with π =
√
p, so q = p and Q[π] = Q[

√
p].

invν(E) =

{
1
2 ν real
0 otherwise

.(3.15)

The quaternion algebra E over Q[
√
p] is split at all finite places and rami-

fied at the two real places. Then, the corresponding abelian variety A is 2
dimensional, and A is simple abelian surface over Fp. But A it is not simple
over Fp2 , because over Fp2 we get the previous computation leading to the
elliptic curve X. In fact, A is isogenous to a product X1×X2, where the Xi

are elliptic curves. Moreover, since π2 = p induces the Frobenius morphism
of each Xi/Fp2 , we see that X1 and X2 are both Fp2-isogenous to X above.

2. There is a bijection between Fq-isogeny classes of simple abelian varieties
over Fq and characteristic polynomials of q-Weil numbers.

3. Take a supersingular elliptic curve over Fq. Enlarging q, we have E = Bp,∞.
Then π ∈ Q and replacing q by q2, we get π = q. Conclusion: Every two
supersingular elliptic curves are isogenous over an algebraically closed field.

4. Examples of q-Weil numbers giving elliptic curves: Let π be a solution to

X2 − βX + q = 0 for |β| < 2
√
q, β ∈ Z. Then π = β±

√
β2−4q

2 is totally
imaginary, |π| =

√
q, hence q = ππ. If π is not associated to π, then p is

split in Q[π].

See [111],[74], [119], [123], [100] for more on this fascinating subject.

Exercise 3.4. Estimate the number of isogeny classes of elliptic curves over
Fq.
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Exercise 3.5. Fix q, (q, 2) = 1, and an elliptic curve E : y2 = x3 +ax+ b over
Fq. For every d ∈ Fq let Ed be the quadratic twist dy2 = x3 + ax+ b of E. Among
all quadratic twists, how many isomorphism classes are there? how many isogeny
classes?

4. Ordinary Abelian Varieties and Serre-Tate Coordinates

4.1. Ordinary abelian varieties. Let k be an algebraically closed field of
characteristic p > 0. An abelian variety A over k is ordinary if

|A[p](k)| = pg.(4.1)

As explained in Section 1, this is the maximal power of p possible. The property
of being ordinary is stable under isogeny. If A/Fq is an abelian variety and ∆ is
the characteristic polynomial of Frq, then we will see later the A is ordinary iff the
Newton polygon has two slopes, 0 and 1. N.B.: Ordinary is an assertion about the
Newton polygon of ∆, while the isogeny class is an assertion about ∆ itself, and
hence stronger. In fact

Exercise 4.1. Use Honda-Tate, and in particular Remark (3.3)(4), to show
that there are infinitely many isogeny classes of ordinary elliptic curves over Fp.

Remark 4.2. Ordinary abelian varieties are of paramount importance because
they are almost always dense subsets of moduli spaces ([120]), ordinary is an open
property, and ordinary abelian varieties can be studied most effectively using Serre-
Tate theory.

Let Ck be the category with:
1. Objects consisting of triples (R,mR, φ), where R is a local Artinian ring,

mR is its maximal ideal, and φ : R/mR
∼−→ k.

2. Morphisms: Mor(R1, R2) are local homomorphisms ψ : R1 −→ R2 induc-
ing the identity on k. Recall that a local homomorphism of local rings is a
homomorphism satisfying mR1 = φ−1(mR2).

Consider the functor F of local deformations of A/k:

Ck −→ Sets,(4.2)

given by

(4.3) F(R) = {A/R an abelian scheme with an identification Φ : A⊗R k
∼−→ A,

up to isomorphisms inducing the identity on A}.
By fundamental results of Grothendieck, Mumford and Schlessinger (see [91] for
discussion and references), there exists a complete local noetherian ring O = M̂A/k
3 with residue field k such that the functor of points h of Spec(O) pro-represent F .

3This notation is intended to suggest that O is the completion of the local ring of the point

corresponding to A/k in the moduli space M of abelian varieties, if such existed. In fact, if

one rigidifies the situation by introducing more structure into the deformation problem (e.g.,
polarization, real multiplication) then the corresponding complete local ring that pro-represents

the new functor (it would be a quotient of O by some ideal) is the completion of the local ring of
the moduli space M parameterizing such an object at the point corresponding to A + the extra

data.

As a General Principle, if one has a fine moduli space M representing a functor F , and

x ∈ M(k), then M̂x – the completion of the local ring of M at x – pro-represents the local
deformation functor F|Ck with the initial data given by the object parameterized by x.
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That is

h(R) = MorSpec(k)(SpecR, SpecO) = Hom(O, R) = F(R), ∀R ∈ Ck,(4.4)

where the ring homomorphisms are local homomorphisms. We shall discuss those
notions in more detail in Chapter 6. In particular, we shall state precisely a theorem
of Serre and Tate that asserts that the deformations of an abelian variety A over an
algebraically closed field k of characteristic p are the same as the deformations of
its p-divisible group lim

−→
A[pn]. For ordinary abelian varieties over k the p-divisible

group is composed of the local part, which is the completion of a split torus, and
the étale part which is a constant group scheme isomorphic to (Qp/Zp)g. Rigidity
for tori implies that the deformations are all given by extension classes of these two
groups. It is thus possible to describe those in a very explicit manner. This is done
in [61]. We describe the final result below.

4.2. Serre-Tate coordinates. Let A be an abelian variety over an alge-
braically closed field k of characteristic p.

Theorem 4.3. (Serre-Tate Coordinates)
1. We have an isomorphism of functors on the category Ck:

M̂A/k(−) ∼= HomZp((TpA)(k)⊗Zp (TpA∨)(k), Ĝm(−)), R ∈ Ck.(4.5)

2. Let R ∈ Ck, and let A/R, B/R be deformations of two ordinary abelian
varieties A/k, B/k, respectively, with corresponding bilinear forms qA, qB.
A homomorphism f : A −→ B extends to homomorphism f : A −→ B if and
only if

qA(x, f∨(y)) = qB(f(x), y), ∀x ∈ TpA(k), y ∈ TpB∨(k).(4.6)

We recall that if A is ordinary, then TpA(k), TpA∨(k) are free Zp-modules of rank
g, and that Ĝm is defined by

Ĝm = lim
−→

µpn .(4.7)

Exercise 4.4. Prove that for R ∈ Ck, Ĝm(R) = 1 + mR. Thus (4.5) says that
for all R ∈ Ck:

F(R) = M̂A/k(R) = HomZp(TpA(k)⊗Zp TpA∨(k), 1 + mR).(4.8)

Choosing coordinates for TpA(k), TpA∨(k) as Zp modules, we find

M̂A/k
∼= Z

g2

p ⊗Zp Ĝm ∼= Ĝm

g2

.(4.9)

More importantly, for every R ∈ Ck, the deformations of A over R, M̂A/k(R) =
F(R), correspond to Zp-linear maps:

A/R ←→ <,>A: TpA(k)× TpA∨(k) −→ 1 + mR.(4.10)

A remarkable consequence of the existence of the Serre-Tate coordinates is the
existence a natural group structure on MA/k. This group law is simply given by
”addition” of bilinear forms (N.B.: The bilinear forms are with values in multiplica-
tive group. Thus the sum of bilinear forms is obtain by multiplying their values).
In particular, it has a distinguished element, the identity of the group which is just
the trivial bilinear pairing <,>≡ 1.
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Definition 4.5. For every R, we let Acan/R be the deformation corresponding
to the pairing <,>≡ 1. It is called the canonical lift of A to R.

By taking limits, we can also get a canonical lift to W (k) (this uses results of
Grothendieck on algebraization of formal schemes and uses implicitly the existence
of a polarization on the “limit” object “lim

−→
Acan/(W (k)/pnW (k))”).

One sees from the criterion furnished by (4.6) that Endk(A) lifts to Acan/k. In
general, a deformation A/W (k) such that Endk(A) lifts to A/W (k) corresponds to
a W (k)×-valued pairing satisfying

< x, f∨(y) >=< f(x), y > ∀f ∈ End(A), x ∈ TpA(k), y ∈ TpA∨(k).(4.11)

If k = Fp, then this property characterizes the canonical lift. Essentially, because
A is defined over some Fq, and then the endomorphisms of A given by f = Frq,
f∨ = Verq, behave very differently. The action of f and f∨ on the group schemes
µqr and Z/qrZ are given by the following table:

µqr Z/qrZ

f raising to q power;
Ker(f) = µq

id

f∨ id multiplying by q;
Ker(f∨) = qr−1

Z/qrZ

.(4.12)

We note that over k, A[qr] ∼= µgqr⊕(Z/qrZ)g. Assume thatA/W (k) is a deformation
with a bilinear form <,> such that every endomorphism of A lifts to A. We want
to show that A = Acan. Let U1 denote the units of W (k) that are congruent to 1
modulo p. It is enough to show that for every r the induced pairing

<,>: TpA(k)/qrTpA(k)× TpA∨(k)/qrTpA∨(k) −→ U1/U
qr

1 ,(4.13)

is trivial. Apply fr. Since fr is an endomorphism of A, we must have

< x, (f∨)ry >=< fr(x), y >, ∀(x, y) ∈ TpA(k)× TpA∨(k).(4.14)

However, on TpA(k)/qrTpA(k) ∼= A[qr](k) ∼= (Z/qrZ)g the morphism fr is the
identity, while on TpA

∨(k)/qrTpA∨(k) ∼= A∨[qr](k) ∼= (Z/qrZ)g, the morphism
(f∨)r is zero. This proves that (4.13) is trivial.

We further remark, that if λ is a principal polarization of A, and we use it to
identify TpA with TpA∨, then the deformations of (A, λ) (as a principally polarized
abelian variety) are given by the symmetric elements of

HomZp(TpA(k)⊗Zp TpA∨(k), Ĝm(−)).(4.15)

Example 4.6. If M is the moduli space of principally polarized abelian vari-
eties (with level n structure, n ≥ 3), x ∈M(k), then

M̂x = M̂(A,λ)/k
∼= Ĝm

g(g+1)
2

,(4.16)

where Mx is the formal spectrum of the completion of the local ring of x in M, where
M̂(A,λ)/k is the complete local ring that pro-represents the functor of deformations
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of (A, λ) over Ck, and where the last isomorphism is valid for A ordinary. Thus,
at least at ordinary points, we know that M is non-singular of dimension g(g+1)

2
(though this is true at every point).

Following Chai-Norman [11] we give another application of the Serre-Tate coordi-
nates.

Definition 4.7. A Γ0(p) level structure is a pair of two principally polarized
abelian variety (A, λA) and (B, λB) of dimension g, and an isogeny:

(A, λA)
f−→ (B, λB),(4.17)

such that f∗λB = pλA.

Put V = TpA, W = TpB. Let us compute the structure of the moduli space of
Γ0(p) level structure at a formal neighborhood of an ordinary point. The local
deformation functor Ck −→ Sets is given by:

(4.18) R 7−→ { symmetric pairings

<,>V : V ⊗ V −→ Ĝm(R), <,>W : W ⊗W −→ Ĝm(R),

such that < v, f∨(w) >V =< f(v), w)W , for v ∈ V,w ∈W}.

By the Elementary Divisors Theorem, we may choose bases (v1, . . . , vg) for V , and
(w1, . . . , wg) to W , such that

f(v1) = w1, . . . , f(va) = wa; f(va+1) = pwa+1, . . . , f(vg) = pwg,(4.19)

and hence

f∨(w1) = pv1, · · · , f∨(wa) = pva; f∨(wa+1) = va+1, · · · , f∨(wg) = vg.(4.20)

We have a g(g+1)
2 -dimensional space of pairings such that:

< vi, f
∨(wj) >V =< f(vi), wj >W , ∀i, j.(4.21)

More precisely, the conditions

< vi, pvj >V =< wi, wj >W , 1 ≤ i ≤ a, 1 ≤ j ≤ a,(4.22)

give an a(a+1)
2 -dimensional space; the conditions

< vi, vj >V =< wi, wj >W , 1 ≤ i ≤ a, a+ 1 ≤ j ≤ g,(4.23)

give an a(g − a)-dimensional space; the conditions

< vi, vj >V =< pwi, wj >W , a+ 1 ≤ i ≤ g, a+ 1 ≤ j ≤ g,(4.24)

give a (g−a)(g−a+1)
2 -dimensional space. Together we get a(a + 1)/2 + a(g − a) +

(g − a)(g − a+ 1)/2 = g(g + 1)/2 dimensions. Therefore, the following theorem is
proved.

Theorem 4.8. (Chai-Norman) The coarse moduli space M for Γ0(p)-level
structure at an ordinary point f : (A, λA) −→ (B, λB) satisfies

M̂(f :A −→ B)
∼= Z

g(g+1)
2

p ⊗Zp Ĝm.(4.25)
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5. Abelian Varieties with Real Multiplication over a General Field

Let k be a field. Let L be a totally real field of degree g with discriminant dL.

Definition 5.1. An abelian variety with real multiplication by OL (or, an
“abelian variety with RM” for short) is an abelian variety A over k together with
an embedding of rings

ι : OL ↪→ Endk(A),(5.1)

such that the Deligne-Pappas condition holds:
(DP) A⊗OLMA

∼= A∨.

A few remarks are in order. First, since OL acts on A it also acts on A∨ by
duality. One defines then the symmetric OL-linear homomorphisms

MA = {λ : A −→ A∨ : λ ◦ ι(r) = ι(r)∨ ◦ λ, ∀r ∈ OL} .(5.2)

The abelian variety A ⊗OLMA and the homomorphism A ⊗OLMA
∼= A∨ are all

determined uniquely by their behavior on k-algebras R:

(A⊗OLMA)(R) = A(R)⊗OLMA; x⊗ λ 7→ λ(x).(5.3)

Secondly, one can show that if A satisfies the (DP) condition, so does A∨.
The module MA is a projective OL-module of rank one endowed with a natural
notion of positivity determined by the cone of polarizations inMA. C.f. Chapter 2,
Section 2.2.

Thirdly, if (char(k), dL) = 1 or char(k) = 0 then the (DP) condition is equiv-
alent to Rapoport’s condition :

(R) t∗A/k is a free OL ⊗Z k-module of rank 1, and MA is a projective
OL-module of rank 1.

This condition is heuristically easier to understand. We remark that for abelian
varieties in characteristic zero, or for ordinary abelian varieties condition (R) holds
automatically, provided they have an OL-linear polarization. See Chapter 2 Corol-
lary 2.5 and Corollary 6.4 below.

Let us engage again in Kodaira-Spencer heuristics:
The moduli space of complex abelian varieties with RM is g-dimensional. If a

reasonable moduli scheme, say over Spec(Z), for abelian varieties with RM exists at
all, we expect it then to be of relative dimension g. The Kodaira-Spencer method
(see Chapter 1 Remark 6.8) allows us to compute the tangent space to the moduli
problem. It is given by

HomOL(t∗A, tA∨).(5.4)

If condition (R) holds this is a g-dimensional space. Thus condition (R) is natural
to impose. However, it turns out that the moduli scheme is then not proper over
Spec(Z), not only because of lack of cusps (that are necessary because degenerations
of abelian varieties with RM to semi-abelian varieties with RM exist), but because
of families of abelian varieties with RM satisfying (R) degenerating into abelian
varieties with OL-action not satisfying (R). Deligne and Pappas discovered [21]
that abelian varieties with RM satisfying (R) satisfy (DP) and, moreover, the
property of (DP) is preserved under degenerations.
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It also turns out, see [21] (see also [3]), that the moduli scheme is singular at
all fibers dividing dL, the singular locus is of codimension 2 and consists precisely
of all points where condition (R) fails.

Lemma 5.2. The Condition (R) always implies Condition (DP). If (p, dL) =
1, the conditions are equivalent.

Proof. To be supplied.

Examples of abelian varieties with real multiplication can be constructed in charac-
teristic zero by means of the complex uniformization given in Chapter 2 Section 2.2.
One can then obtain examples in characteristic p by reducing modulo a suitable
prime ideal.

Since the moduli space of abelian varieties with RM is smooth over Z[d−1
L ],

every abelian variety in characteristic p, (p, dL) = 1, can be lifted to characteristic
zero. The same holds for characteristic p such that p|dL, but one needs a more
elaborate argument, due essentially to Mumford (see [91, p. 249]). It is a general
principle saying, roughly, that if your object (in this case an abelian variety with
RM) is a special fibre on a nice enough family, over an equi-characteristic integral
scheme, of objects of the same kind. And if the generic fibre of such this family
lifts to characteristic zero, then the special fibre lifts as well.

It is enough therefore, given an abelian variety with RM in characteristic p,
represented by a point x in the moduli space, to construct a smooth curve in
the moduli space modulo p that passes through x and whose generic fibre is non-
singular point of the ambient moduli space; namely, that the relative cotangent
is generically free. At least for g = 2 such a curve may be constructed using a
Moret-Bailly family (See [3]). In general, such a curve exists because the moduli
space is quasi-projective and the singularities are of codimension 2.

Another way to produce examples is to use the Honda-Tate Theorem (The-
orem 3.2) to construct first isogeny classes having multiplication by some order
in OL, and then finding particular representatives for this isogeny class that have
multiplication by the whole of OL.

6. Irreducibility of the Moduli Space of µp∞-level Structure

Let L be a totally real field of degree g = [L : Q], with ring of integers OL,
different DL, and discriminant dL . In this section, we follow Ribet’s proof of the
irreducibility of the moduli space of abelian varieties in characteristic p with µp-level
structure when (p, dL) = 1. The argument is essentially that of monodromy.

We first give the scheme theoretic analogue of our definition of abelian varieties with
RM generalizing the notion of abelian variety with real multiplication of Definition
5.1.

Definition 6.1. Let S be a scheme in which dL is invertible. An abelian
scheme with real multiplication by OL is a couple (A/S, ι), where A/S is an abelian
scheme and

ι : OL ↪→ End(A/S)(6.1)
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is a ring injection such that tA/S , the relative tangent sheaf (also denoted by
Lie(A/S)), is a locally free OL ⊗Z OS-module of rank 1, and such that the OL-
module of symmetric OL-linear homomorphisms to the dual abelian scheme is a
projective rank 1 module in the étale topology.

Remark 6.2. If we let A∨/S be the dual abelian scheme, and define:

ι∨ : OL −→ End(A∨/S), ι∨(m) = (ι(m))∨.(6.2)

Then (A∨/S, ι∨) is again a abelian scheme with real multiplication.

Let us restrict our attention to the case of an algebraically closed field k of
characteristic p not dividing the discriminant. Let A/k be an ordinary abelian
variety of dimension g with real multiplication by OL. Consider the Tate module
TpA(k) (∼= Z

g
p) as a module over Zp ⊗ OL. Note that Zp ⊗ OL acts faithfully on

TpA(k) because Zp/pnZ⊗OL acts faithfully on A[pn](k):
One can show that A has a polarization of degree prime to p (see the proof of

Lemma 5.2), hence A[p] is a self-dual group scheme, since this polarization on A
induces an isomorphism of A[p] with A∨[p] = A[p]∨. So,

A[pn](k) ∼= (µpn)g ⊕ (Z/pnZ)g ∼= µpn ⊗OL ⊕ (Z/pnZ)⊗OL,(6.3)

and the faithfulness of the action of Zp/pnZ⊗OL on µpn ⊗OL is equivalent to the
faithfulness on (µpn)g. But,

Lie(µp ⊗OL) = Lie(A/k) = tA/k.(6.4)

Therefore Zp/pnZ ⊗ OL acts faithfully on µpn ⊗ OL and by duality of OL-groups
also on Z/pnZ⊗OL.

Corollary 6.3. The Zp ⊗OL-module TpA(k) is free of rank 1.

Corollary 6.4. An ordinary abelian variety with RM satisfies condition (R).

What are the deformations of (A/k, ι) ?

Apply Serre-Tate coordinates: for R ∈ Ck, we look for the pairings

<,>: TpA(k)⊗ TpA∨(k) −→ Ĝm(R),(6.5)

such that:

< x,my >=< mx, y >, ∀x ∈ TpA(k), y ∈ TpA∨(k), m ∈ OL.(6.6)

Fix a generator y of TpA∨(k) as an Zp ⊗OL module. Define

φy : TpA(k) −→ Ĝm, φy(x) =< x, y > .(6.7)

Note that φy(mx) =< x,my >, and hence φy determines the pairing. Con-
versely, given a homomorphism φ : TpA(k) −→ Ĝm define a pairing by < x,my >=
φ(mx). One checks that this is a well defined OL-bilinear pairing <,>: TpA(k) ⊗
TpA

∨(k) −→ Ĝm(R). Thus the OL-pairings are identified with Hom(TpA(k), Ĝm),
and one concludes:

Proposition 6.5. There is an isomorphism

M̂(A/k,ι)
∼= Ĝm

g
.(6.8)
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Definition 6.6. A full level n structure on a abelian scheme with real multi-
plication (A/S, ι) is an isomorphism of constant group schemes with OL-action

α : (OL/nOL)2 ∼−→ A[n].(6.9)

(Note that we do not take necessarily a symplectic level structure).

Theorem 6.7. (Rapoport [97, Lemme 1.23, p.267]) If n ≥ 3 the functor over
Z[ 1

ndL
]-schemes:

S −→ {(A/S, ι, α)} / ∼=(6.10)

is representable by a smooth morphism M−→ Z[ 1
ndL

] of relative dimension g.

Corollary 6.8. For (p, n) = 1, the components of M⊗ Fp are the same as
the components of M⊗ C.

Proof. Recall Zariski’s Main Theorem:

Theorem 6.9. Let f : X −→ Y be a birational projective morphism of noe-
therian schemes, and assume that Y is normal. Then for every y ∈ Y , f−1(y) is
connected. See [47, Corollary 11.4, p. 280, Chapter III].

The Main Theorem yields that the geometric fibers are connected; but since
the scheme M is smooth over its base, these fibers are geometrically regular of
equi-dimension g. In fact, the points corresponding to a fixed full level n struc-
ture form a component, so the set of components of either M⊗ Fp or M⊗ C is
Isom(OL/nOL)2, A[n]) = Isom(µn,Z/nZ) (which has cardinality φ(n).

See [97, Théorème 1.28, p. 268, Variante 6.2, p. 325] for more details.

We may ask how do level structures behave under reduction mod p when the prime
p divides the level. After all, a regular scheme over Spec(Zp) with an irreducible
generic fibre may very well have a reducible special fibre. E.g., Spec(Zp[x, y]/(xy−
p) −→ Spec(Zp) (Figure ****); or see Kodaira’s classification of the special fibre
of the Néron model of an elliptic curve (e.g., [108, Chapter IV.8]). This is quite
a subtle question and to study one such level structure (the µpr level structure
defined below), just for ordinary points, we would requires Deligne’s description of
ordinary abelian varieties over finite fields.

Figure 4.

Let A be a g-dimensional abelian variety over Fq, q = pr. Fix an algebraic

closure Fq and an embedding W (Fq)
φ
↪→ C. Assume that A is ordinary; then, via

φ, we get a canonical lifting AC of A to C: AC := Acan ⊗W (Fq)
C. Put

T (A) = H1(AC,Z).(6.11)

It is a lattice in C of rank 2g. Note that Frq ∈ EndW (Fq)
(A) = EndC(AC), hence it

defines a linear operator F ∈ End(T (A)).
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Theorem 6.10. (Deligne [19]) The functor

(6.12) {ordinary abelian varieties over Fq} −→
{free even rank Z− lattices with an endomorphism F

such that the conditions 1, 2, 3, 4 hold},

A 7−→ (T (A), F )(6.13)

is an equivalence of categories. The conditions are the following:
1. F is a semisimple operator all whose eigenvalues have complex absolute value√

q.
2. Half the roots of the characteristic polynomial of F are p-adic units.
3. There exists a linear operator V such that FV = q.
4. There exist free Zp-modules T ′p, T

′′
p such that; (a) T ⊗ Zp = T ′p ⊕ T ′′p , (b)

rankZpT
′
p = rankZpT

′′
p , and (c) F|T ′p is invertible and F|T ′′p is divisible by q.

Remark 6.11. If the condition 1 holds, then {2, 3} ⇐⇒ 4.

Remark 6.12. In fact, starting from A/Fq, T = T (A), then T ′p, T
′′
p are non-

other than TpA(Fq) and TpA
∨(Fq).

Corollary 6.13. Let (A/Fq, ι) be an abelian variety with RM by OL. We
get an induced embedding T (ι) : OL −→ End(T (A)) such that the image of OL
commutes with F . Thus,

(A, ι) −→ (T (A), F, T (ι))(6.14)

is an equivalence between ordinary abelian varieties with RM by OL over Fq and
free even rank OL-lattices with an OL-endomorphism F such that the conditions
1, 2, 3, 4 hold.

Given a ∈ OL such that ((a), (p)) = 1, and n such that a2 − 4pn � 0, let

T = OL[x]/(x2 − ax+ pn).(6.15)

It is a Z-lattice of rank 2g and a free OL-module (of rank 2). Let F be multiplication
by x; then OL acts on T as ordinary multiplication. Note that T ⊗Q is a CM field,
hence F is semisimple.

|x| = |a±
√
a2 − 4pn

2
| = |a+

√
a2 − 4pn

2
· a−

√
a2 − 4pn

2
| 12 =

√
pn.(6.16)

Mod p, x solves the equation x(x−a) = 0. This implies that half of the roots of the
characteristic polynomial of F are p-adic units. Take V = −(x− a) then FV = pn.
Conclusion: The conditions imposed in Corollary 6.13 on (T, F, ι) are satisfied
and (T, F, ι) corresponds to an ordinary abelian variety A of dimension g with RM
by OL over Fpn .

Remark that T ⊗ Zp = T ′p ⊕ T ′′p and F acts on T ′p by an invertible OL-linear
endomorphism. We conclude that F = Frpn acts on TpA(k) by the unique η ∈
(OL ⊗ Zp)× such that η2 − aη + pn = 0.

Remark 6.14. T ∼= OL ⊕ OL as OL-modules, hence the polarization module
of the associated abelian variety with RM is just D−1

L . Replacing OL by A−1 in
(6.15), we get the polarization module A2D−1

L . It is easy to modify the construction
to get any polarization module (and not just those of the form A2 · D−1

L ). We will
assume that henceforth. Thus we have the following
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Corollary 6.15. If M is the coarse moduli space of abelian varieties with RM
then every component of M⊗ Fp contains an ordinary point.

This follows because Corollary 6.8 gives that the components of M⊗ Fp, with
no level structure, are in bijection with classes A ∈ Cl(L)+. Ribet’s construction
gives an ordinary point on each component.

Corollary 6.16. The ordinary locus is a dense open subset, hence it is irre-
ducible in every component.

Indeed, the Serre-Tate coordinates imply that the ordinary locus is open.

Definition 6.17. A µpn-level structure on an abelian scheme with RM by OL
(A/S, ι) is an OL-equivariant embedding

µpn ⊗D−1
L/Q −→ A[pn].(6.17)

A µp∞-level structure is a compatible sequence of such embeddings.

Remark 6.18. 1. An abelian variety with RM and a µpn -level structure is
ordinary.

2. The coarse moduli space of abelian varieties with RM together with level
µpn (n ≤ ∞) exists; denote it by M(µpn) −→ Spec(Z) for any n ≥ 0 (M =
M(µp0)). If n ≥ 2 it is a fine moduli space. Let M(Fp, µpn) be the reduction
modulo p of M(µpn) and let M(Fp)ord be the ordinary part of M(Fp). Then
the fibers of

f : M(Fp, µpn) −→M(Fp)ord(6.18)

are principal homogeneous spaces under (OL/pnOL)× ( for n = ∞, take
(OL ⊗ Zp)× ).

Theorem 6.19. (Ribet [98]) Let A ∈ Cl(L)+, let B be the component of
M(Fp)ord corresponding to A, and let N be the preimage of B under the morphism
f : M(Fp, µpn) −→M(Fp)ord. Then, N is geometrically irreducible.

Proof. To simplify the exposition, assume that B corresponds to the polar-
ization class D−1

L . It is enough to prove the claim for n =∞.
The morphism

f : N −→ B(6.19)

is étale with fibers being principal homogeneous spaces under (OL⊗Zp)×. It gives
a p-adic character

χ : π1(B⊗ Fp) −→ (OL ⊗ Zp)×.(6.20)

The preimage N is irreducible if and only if χ is surjective .
Now,

π1(B⊗ Fp) =
⋂
n

π1(B⊗ Fpn),(6.21)

and

OL ⊗ Zp = lim
←−
OL ⊗ (Z/pkZ).(6.22)
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Therefore, it is enough to prove that for every k there exists an N such that for
every n ≥ N the homomorphism π1(B⊗ Fpn)

χ−→ (OL/pkOL)× is surjective.
Given α ∈ (OL/pkOL)×, choose a ∈ OL, such that a ≡ α mod pk, and choose

N > k such that a2 − 4pn � 0 for n ≥ N . Consider the ordinary abelian variety
(A, ι) over Fpn constructed as in (6.15) from OL, a, n.

Let z ∈ B(Fpn) be the point corresponding to (A, ι) with residue field k(z).
Let χ0 be the composition:

π1(Spec(k(z))) −→ π1(B⊗ Fpn)
χ−→ (OL/pkOL)×.(6.23)

But

π1(Spec(k(z))) = π1(Spec(Fpn)) ∼= Ẑ(6.24)

and < Frpn > is a dense subgroup of π1(Spec(k(z))) that provides the isomorphism
with Ẑ. The character χ0 is just the action of Frpn on the fiber of f : N −→ B

over z. That is, it is the action of χ0 on µpk ⊗OL ↪→ A[pk]. By duality, this is the
action of Frpn on Tp(A/Fpn) mod pk. This was given by η ∈ (OL⊗Zp)× such that
η2 − aη + pn = 0. We may read this equation mod pk obtaining η(η − α) = 0. We
get that χ0 acts by η ≡ α mod pk viewed as in (OL/pkOL)×.



CHAPTER 4

p-adic Elliptic Modular Forms

1. Introduction

In its simplest appearance, as defined by Serre [102], a p-adic modular form is a
power series

∞∑
n=0

anq
n, an ∈ Qp,(1.1)

which is a limit, in a suitable sense, of usual modular forms with coefficients in
Q. Another approach is due to Dwork [29], who used p-adic analytic functions on
modular curves, endowed with the action of the U -operator. Those notions were
superseded and generalized by Katz, who gave a more conceptual definition of such
a form as a section of a line bundle over open sets of the moduli space of elliptic
curves with level structure.

In the next two sections we shall describe briefly two sources of motivation for
the study of p-adic modular forms: first, p-adic L-functions, and second, deforma-
tions of Galois representations.

1.1. p-adic L-functions. Let K be a number field of degree g = [K : Q]. Its
zeta function:

ζK(s) =
∑

a⊂OK

1
Norm(a)s

=
∏

p ⊂ OK
p prime

1
1−Norm(p)−s

, <(s) > 1,(1.2)

can be continued meromorphically to the complex plane and satisfies the following
functional equation:

(1.3) AsΓ
(s

2

)r1
Γ(s)r2ζK(s) = A1−sΓ

(
1− s

2

)r1
Γ(1− s)r2ζK(1− s),

A = 2−r2π−g/2
√
dk.

Here Γ is the complex gamma function interpolating the values Γ(n + 1) = n! for
a nonnegative integer n. Note that the product in (1.2), called an Euler product,
shows that ζK does not vanish for <(s) > 1.

The set of poles of the gamma function is precisely the nonpositive integers.
The gamma function does not vanish on the real line. Therefore, if K is not totally
real (i.e. r2 > 0), then ζK(1−m) = 0 for every integer m > 1; if K is totally real,

95
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then ζK(1 −m) = 0 for every odd integer m > 1. Thus, we are interested in the
numbers ζK(1−m),m ≥ 2, where m is an even integer, and K is totally real.1

Recall that ζK(1−m),m ≥ 2 is a rational number (See Chapter 3, Section 5.1).
As a further indication that there is bound to be interesting information encoded
in these values, we recall that the ubiquitous Bernoulli numbers appear as special
values of the Riemann’s zeta function ζQ:

ζQ(1− k) = −Bk
k
, k ≥ 2.(1.4)

Here Bk is the k-th Bernoulli number, which is zero for k odd. We include a table
of some values of ζQ.

k ζQ(1− k) k ζQ(1− k)
2 −1

22·3 20 283·617
23·3·52·11

4 1
23·3·5 22 −131·593

22·3·23

6 −1
22·32·7 24 103·2294797

24·32·5·7·13

8 1
24·3·5 26 −657931

22·3
10 −1

22·3·11 28 9349·362903
23·3·5·29

12 691
23·32·5·7·13 30 −1721·1001259881

22·32·7·11·31

14 −1
22·3 32 37·683·305065927

26·3·5·17

16 3617
25·3·5·17 34 −151628697551

22·3
18 −43867

22·33·7·19 36 26315271553053477373
23·33·5·7·13·19·37

Another motivation is Siegel’s formula:∫
SL2(OL)\Hg

(−1)n
1

(2π)n
dx1 ∧ dy1

y2
1

∧ · · · ∧ dxn ∧ dyn
y2
n

= 2ζL(−1),(1.5)

for the hyperbolic volume of SL2(OL)\Hg.

Let p be a prime. Let g = [K : Q] and gp = [K ∩ Q(µp∞) : Q], where µp∞ is the
group of p-power roots of unity in C. We have the following congruence relations:

Theorem 1.1. (Kummer’s congruences) 2

1. Assume p ≥ 3,m > 0 even.
a) If gpm 6≡ 0 (mod p− 1) then valp(ζK(1−m)) ≥ 0.
b) If gm ≡ 0 (mod p− 1) then valp(ζK(1−m)) ≥ −1− valp(gm)

2. val2(ζK(1−m)) ≥ g − 2− val2(gm)
3. If m ≡ m′ (mod pn(p− 1)), and gm 6≡ 0 (mod p− 1), then

(1− pm−1)ζK(1−m) ≡ (1− pm
′−1)ζK(1−m′) (mod pn+1)(1.6)

We shall prove certain parts of this theorem in Corollary 4.9 and in Corollary 5.3
in Chapter 5. The link to modular forms is that one can find special values, say
ζK(1−m) or L(1−m,χ) where χ is a Dirichlet character, as leading coefficients
of modular forms whose higher coefficients are integral. We already saw and used

1Those special values of the zeta function are connected to ratios of the orders of the torsion
part of the K-groups of OK . It turns out that even when ζK(1−m) = 0, the leading coefficient

of the Taylor expansion around that point still retains the K-theoretic interpretation. See [64]
2In fact this theorem can be improved, using Hilbert modular forms. See [38]. It can also

be formulated for the prime 2.
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that for the zeta function in Chapter 5.1, 6. More general constructions appear in
[23]. See also [115].

One of the reasons for interest in this theorem is that it provides the p-adic
interpolation of the values ζK(1−m) (m ≥ 2 even) by a continuous function whose
domain is Zp. The group Zp plays an essential role in Galois theory (e.g., via the
Kronecker-Weber theorem); Iwasawa has also developed a very satisfactory theory
of Zp-extensions, using p-adic L-functions. See [117, Chapters 7, 13].

A more subtle link comes as follows: Let A denote the p-Sylow subgroup of
Cl(Q(ζp)). Recall that p divides |Cl(Qp)| iff p divides the numerator of some
Bernoulli number Bk, for k = 2, . . . , p− 3 ([117, Theorem 5.16]); in that case, p is
called an irregular prime.

Exercise
F 1.2. Prove there are infinitely many irregular primes. (Hint: One

way to prove it is to use Clausen-von Staudt theorem and Kummer congruences).
It is not known whether infinitely many regular primes exist.

Let G = Gal(Q(ζp)/Q). The abelian group A can be considered as a Zp[G]-module.
The group G is provided with an isomorphism to (Z/pZ)×; a residue class n oper-
ating by ζp 7→ ζnp . Let ω be the Teichmüller character; it is the unique character of
conductor p with values in µp−1 ⊂ Zp such that

ω(n) ≡ n mod p, n 6≡ 0 (mod p).(1.7)

Exercise 1.3. Find the p-adic values of ω for p = 5.

The character ω is a generator for the character group Ĝ of G,

Ĝ =
{
ωi : 0 ≤ i ≤ p− 2

}
.(1.8)

We decompose A in wi-eigenspaces:

A =
p−2
⊕
i=0

Ai.(1.9)

We have A0 = 0 (trivially), and A1 = 0 (this needs proof). For every i = 2, . . . , p−2,
it is known that Ai is killed by the generalized Bernoulli number B1,ω−i , that has
the property

B1,ω−i ≡
Bp−i
p− i

mod p.(1.10)

We recall that for every Dirichlet character χ of conductor f , the generalized
Bernoulli numbers Bn,χ are defined via the expansion of the following function
in one variable:

Fχ(t) =
f∑
a=1

χ(a)teat

eft − 1
=
∞∑
n=0

Bn,χ
tn

n!
.(1.11)

The formula (1.4) for the values ζQ(1−m) can be generalized:

L(1−m,χ) = −Bm,χ
m

,m ≥ 1.(1.12)

The analogue of Theorem 1.1 enables one to prove:

Theorem 1.4. (Kubota-Leopoldt) There exists a unique p-adic meromorphic
function Lp(s, χ) (χ a Dirichlet character) with the following properties:
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1.

Lp(s, χ) =
a−1

s− 1
+
∞∑
n=0

an(s− 1)n, an ∈ Q(χ) := Q({χ(a) : a ∈ Z}),(1.13)

a−1 =
{

1− 1
p χ = 1

0 χ 6= 1
.(1.14)

The series converges in the disc {s ∈ Cp : |s− 1| < r} , r = |p|
1
p−1 |q|−1

> 1
( if p 6= 2, put q = p; otherwise, put q = 4 ).

2. For n a positive integer, we have

Lp(1− n, χ) = (1− (χ · ω−n)(p)pn−1) · L(1− n, χ · ω−n).(1.15)

For the proof see [52, Chapter 3], or [117, Chapter 5.2]; Cp is a completion of
an algebraic closure of Qp.

1.2. Deformation of Galois representations. Let S be a finite set of
primes of Q. Let GS be the Galois group of the maximal extension of Q unramified
outside S, F a field of characteristic p, ĈF the category of complete noetherian local
rings (R,mR) with a given isomorphism R/mR

∼= F.
Let ρ : GS −→ GL2(F) be a representation. Given R ∈ ĈF, we say that

ρ : GS −→ GL2(R)(1.16)

is a deformation of ρ if the composition with the projection to F is ρ. Two
deformations ρ1, ρ2 over R are equivalent if they are conjugate by a matrix in
GL2(R) ∩ (1 + M2(mR)), that is, in the kernel of the map GL2(R) −→ GL2(F)
induced by the projection. One says that ρ is ordinary at S0 ⊂ S, if for every
inertia group Il over a prime of S0, the submodule (R×R)Il of vectors fixed under
Il is a free rank 1 R-module which is a direct summand of (R × R)Il . A Galois
representation ρ is said to be absolutely irreducible if there is no extension F′ of F
such that the representation space F′n associated to ρ⊗F F′ has a proper subspace
invariant under the action of GS .

Theorem 1.5. (Mazur) If ρ is ordinary at S and absolutely irreducible, then
there exists a universal deformation ρU over a ring RU , i.e. the deformation func-
tor:

Dρ : ĈF −→ Sets,(1.17)

is representable,

Dρ(R) = Hom(RU , R),(1.18)

and ρU : GS −→ GL2(RU ) is universal among all deformations of ρ.

Let ρ ∈ Sk(Γ1(n), R) be a newform that is an eigenvector for the Hecke op-
erators Tl, l 6 |pN and the diamond operators. One can attach to f a Galois
representation (Deligne, Serre, Eichler, Shimura ***):

ρf : GS −→ GL2(R),(1.19)

S = { prime |N} ∪ {p,∞} , S0 = {l ∈ S : ρ is ordinary at l}.
Modular deformations, i.e. deformations coming from modular forms have been

studied intensely in the last two decades, with some crowning achievements, such
as the Shimura-Taniyama conjecture, now a theorem due mostly to Wiles, to the
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effect that all elliptic curves over Q are modular. We recall the celebrated Serre
conjecture: Let p ≥ 3.

Conjecture 1.6. Let ρ : Gal(Q/Q) −→ GL2(F) be an irreducible, odd, two-
dimensional representation. There exists a normalized eigenform f of level N(ρ),
weight k(ρ) and character ε(ρ) such that:

ρ ∼ ρf .(1.20)

One important point is that the weight, level, and character are all specified.
See [103] Sections 1-2. Excellent notes on Serre’s conjecture are in preparation by
Ribet and Stein [99].

Recall the moduli space M(µNp∞) of elliptic curves with Γ1(N)-structure and
Γ1(µp∞)-structure (µpn ↪→ E,∀n). One let V1,∞ be (essentially) the space of all
functions on M(µNp∞) “defined over R”. It is a space in which every space of
classical modular forms Sk(Γ1(Npν), R) injects, and their union is dense in V1,∞.
There is a certain Hecke algebra T acting on V (N,R) and an eigenvector f for

T corresponding to a homomorphism T
φf−→ R −→ F; let mf be the kernel of the

composition. We call the completion of T at mf the universal modular deformation
Rm(f).

Suppose ρ is absolutely irreducible and Ip-ordinary. Let R(ρ) be the associated
universal deformation ring.

Conjecture 1.7. (Mazur) The universal deformation ring and the universal
modular deformation are isomorphic:

R(ρ) ∼= Rm(f),(1.21)

i.e. all deformations of a modular residual representation are (p-adically) modular.

See [40] for a more complete introduction to deformations of Galois represen-
tation.

2. Congruences between Modular Forms mod p

In this section, we explore some classical congruences involving coefficients of q-
expansions of modular forms. We begin our discussion trying to stay as “lowbrow”
as possible, so that a story emerges out of concrete facts.

To begin with, there are striking congruences for the Fourier coefficients τ(n)
of ∆:

∆(q) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn.(2.1)

We recall that ∆ (discussed in Chapter 5) is the unique cusp form of weight 12 for
SL2(Z), hence an eigenform for all the Hecke operators. This already implies the
relations:

τ(mn) = τ(m)τ(n), (m,n) = 1; τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1), p prime.
(2.2)

Perhaps the most elegant of the congruences satisfied by ∆, found by Ramanujan,
is:

τ(n) ≡ σ11(n) mod 691.(2.3)

Here is a table of some values of τ(n):
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n τ(n) n τ(n)

1 1 13 -577738

2 -24 14 401856

3 252 15 1217160

4 -1472 16 987136

5 4830 17 -6905934

6 -6048 18 2727432

7 -16744 19 10661420

8 84480 20 -7109760

9 -113643 21 -4219488

10 -115920 22 -12830688

11 534612 23 18643272

12 -370944 24 21288960

Exercise
F 2.1. What can you say on the sign of τ(n)?

Ramanujan’s τ function played a very important role in the development of the
theory of modular forms. We just mention the consequence of Deligne’s deep work
[17], [18] on the Weil conjectures:

|τ(n)| ≤ σ0(n)n11/2,(2.4)

(called “Ramanujan’s conjecture”) and the intriguing

Conjecture 2.2. (Lehmer) τ(n) 6= 0, ∀n ≥ 1.

Recall that the Eisenstein series Em = EQm for m ≥ 4 even, are modular forms
of level 1 and weight m (Chapter 5) and have the following q-expansion

EQm = 1 +
2

ζQ(1−m)

∞∑
n=1

σm−1(n)qn = 1− 2m
Bm

∞∑
n=1

σm−1(n)qn.(2.5)

We also define

E∗m = EQ,∗m =
ζQ(1−m)

2
EQm(2.6)

=
ζQ(1−m)

2
+
∞∑
n=1

σm−1(n)qn.(2.7)

Put

P = E2 = 1− 24
∑

σ1(n)qn(2.8)

Q = E4 = 1 + 240
∑

σ3(n)qn(2.9)

R = E6 = 1− 504
∑

σ5(n)qn(2.10)

Ramanujan’s congruence

τ(n) ≡ σ11(n) (mod 691)(2.11)

is equivalent to

∆ ≡ E∗12 (mod 691).(2.12)
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To see this, recall that

∆ =
1

1728
(Q3 −R2),(2.13)

because the right hand side is a normalized cusp form of weight 12. Granting
ourselves the expression

E∗12 =
1

65520
(441Q3 + 250R2),(2.14)

and noting that 441 · 1728 ≡ 65520 mod 691, and 250 ≡ −441 mod 691, the
congruence (2.12) follows, because the polynomials in Q,R expressing both sides
are congruent mod 691. We also note that E690 ≡ 1 mod 691. We shall see that
all the congruences are of these types. That is, congruences, say modulo the prime
p = 691, are either coming from p-integral polynomial expressions being congruent
modulo 691, or from E690 ≡ 1 mod 691.

The expression (2.14) follows from

Lemma 2.3. Put Fm = E∗m
(m−2)! . Then, for m ≥ 4 even,

(m− 2)(m+ 5)
12

Fm+4 = F4Fm + F6Fm−2 + · · ·+ FmF4.(2.15)

Proof. The Weierstrass ℘ function is given by

℘(z, τ) =
1
z2

+ 2
∞∑

m∈2N

(−1)
m+2

2 (2π)m+2Fm+2z
m,(2.16)

and it satisfies the differential equation

℘′(z, τ)2 = 4℘(z, τ)3 − g2(τ)℘(z, τ)− g3(τ),(2.17)

where g2(τ)/E4(τ) and g3(τ)/E6(τ) are constant and the derivatives are taken with
respect to the variable z. The second derivative is:

℘′′(z, τ) = 6℘(z, τ)2 − g2(τ)/2.(2.18)

Compare both sides of (2.18): The coefficient of zm on the left hand side is

2 · (−1)
m+4

2 (2π)m+4(m+ 1)(m+ 2)Fm+4,(2.19)

while on the right hand side we have:

6 · 4 ·
∑

l + k = m,
l, k even

(−1)
l+2+k+2

2 (2π)l+2+k+2Fk+2Fl+2 + 6 · 4 · (−1)
m+4

2 (2π)m+4Fm+4.

(2.20)

The Lemma follows.

Here are some explicit expressions

E2 = P E8 = Q2

E4 = Q E10 = QR
E6 = R E12 = 1

691 (441Q3 + 250R2)
E14 = Q2R
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Let M = ⊕Mk, the ring of modular forms on SL2(Z). For every ring B ⊃ Z we
let M(B) = ⊕kMk(B) be the subring of modular forms whose Fourier coefficients
belong to B. Let S = ⊕kSk be the ideal of cusp forms. Recall that

M =M(C) = C[Q,R](2.21)

is a free polynomial ring in two variables and that f 7→ f ·∆ yields an isomorphism

Mk(B) ∼= Sk+12(B)(2.22)

for every R.

Lemma 2.4. Let f be a modular form, and

Of = Z[a0(f), a1(f), . . . ].(2.23)

Then f has a unique expression as an isobaric element of

Of [∆, Q]⊕ROf [∆, Q].(2.24)

Proof. The uniqueness is easy and is left as an exercise to the interested
reader. We prove the existence by induction on the weight. For k < 12, it is clear.
For k ≥ 12, k = 4a+ 6b, we obtain the cusp form f − a0(f)QaRb = ∆ · g. We have
Og ⊂ Of (because q−1∆ ∈ Z[[q]]×), and the result follows by induction.

Exercise 2.5. Prove that Of is finitely generated over Z.

Before addressing the issue of determining all the congruences between modular
forms on SL2(Z), we discuss a certain derivation operator θ due to Ramanujan.

Let θ be the derivation

θ = q
d

dq
=

1
2πi

d

dτ
.(2.25)

Given a q-expansion f =
∑
anq

n, we obtain a new q-expansion θf =
∑
nanq

n. We
shall use the following

Fact 2.6. We have

P (τ) = P (τ + 1), P (−1
τ

) = τ2P (τ) +
12τ
2πi

.(2.26)

Theorem 2.7. (Ramanujan) If f ∈Mk, then

δkf := 12θf − kPf ∈Mk+2.(2.27)

Proof. We want to show: (δkf)(− 1
τ ) = τk+2δkf(τ).

τk+2δkf(τ) = 12τk+2θf(τ)− k
(
τ2 · P (τ) +

12τ
2πi

)
τkf(τ) +

12k
2πi

τk+1f(τ)(2.28)

= −k(Pf)(−1
τ

) +
12k
2πi

τk+1f(τ) + 12τk+2θf(τ)(2.29)

On the other hand

(θf)(τ) =
1

2πi
d

dτ

(
1
τk
f(−1

τ
)
)

= − k

2πi
τ−(k+1)f(−1

τ
) + τ−(k+2)θf(−1

τ
).(2.30)

Replacing in (2.30) τ by − 1
τ , using k even and (2.28), we get:

12(θf)(−1
τ

) =
12k
2πi

τk+1f(τ) + 12τk+2(θf)(τ) = τk+2δkf(τ) + kPf(−1
τ

),(2.31)

and (2.27) follows.
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Definition 2.8. Define δ : M −→M , δ = ⊕δk. If f ∈ Mk, δf = δkf =
12θf − kPf .

Exercise 2.9. Verify the following identities:

δQ = −4R, δR = −6Q2, δ∆ = 0, δP = −P 2 −Q.(2.32)

Corollary 2.10. 1. δ is the unique derivation of M such that

δQ = −4R, δR = −6Q2.(2.33)

2. C[P,Q,R] is stable under δ.

Proof. The only thing to prove is that δ is a derivation. Indeed,

δ(f1f2) = 12θ(f1 · f2)− (k1 + k2)Pf1f2(2.34)

= (12θf1 − k1Pf1)f2 + (12θf2 − k2Pf2)f1(2.35)

= δ(f1)f2 + δ(f2)f1.(2.36)

We now begin to study modular forms modulo p, and we look first at the q-expansion
map modulo p. While in characteristic zero the q-expansion map

M(C) = ⊕kMk(C) −→ C[[q]],(2.37)

is an injective ring homomorphism, this is not true in characteristic p. As we
shall see, first for SL2(Z) (by “naive” methods) and then in greater generality, the
q-expansion map is injective on each Mk but has a kernel on M.

Definition 2.11. Let Nk = Mk(Z(p)). We identify Nk with its image under
the q-expansion map. Thus Nk consists of all q-expansions of modular forms of
weight k on SL2(Z) whose coefficients are p-integral. We let

N = ⊕kNk ↪→ Z(p)[[q]].(2.38)

Let Ñ be the reduction of N ⊂ Z(p)[[q]] modulo p, so Ñ ⊂ Fp[[q]].

Theorem 2.12. Let p ≥ 5.
1. N = Z(p)[Q,R].
2. Let A be the polynomial such that A(Q,R) = Ep−1. Then, via the q-

expansion map, 3

Ñ ∼= Fp[Q,R]/(Ã− 1).(2.39)

Proof. Lemma 2.4 gives N = Z(p)[Q,∆] ⊕ RZ(p)[Q,∆]. Note that ∆ =
1

1728 (Q3 −R2) ∈ Z(p)[Q,R]. Thus the first assertion follows.

Let

A = Ker(Fp[Q,R] −→ Ñ ).(2.40)

The ideal A cannot be maximal, else both R̃− 1 and Q̃− 1 would be algebraic over
Fp. But gcd(240, 504, p) = 1, and therefore the coefficient of q in either Q̃ − 1 or
R̃−1 is not zero, contradiction. By the Clausen - von Staudt Theorem 2ζ(1−p)−1

is zero modulo p. Thus, Ep−1 has q-expansion congruent to 1 modulo p. Therefore

3We use ˜ to denote reduction modulo p. When we write Q̃ etc., we mean the reduction of
the q-expansion of Q modulo p



104 4. p-ADIC ELLIPTIC MODULAR FORMS

Ã− 1 ∈ A and since dim(Fp[Q,R]) = 2, we conclude that it is enough to show that
Ã− 1 is irreducible. We shall use the following

Fact 2.13. (Igusa [50]) The polynomial Ã has simple roots.

We will prove this fact later, in much greater generality in fact. See Theorem 3.5.

Suppose Ã− 1 is reducible, then it has a factor of the form

Φ(Q,R) = Φn(Q,R) + · · ·+ 1,(2.41)

(n < p − 1, Φi = weight i part). The group F×p acts on the graded ring Fp[Q,R]
(where Q has weight 4 and R has weight 6): If ζ ∈ F∗p and g is homogenous of
weight n then [ζ]g = ζng. We note that Ã− 1 is fixed by this action. Therefore,

[ζ]Φ(Q,R) = ζnΦn(Q,R) + · · ·+ 1(2.42)

is a distinct factor of Ã − 1, and hence Φ(Q,R) · [ζ]Φ(Q,R) divides (Ã − 1). By
weight considerations, Φn(Q,R) · ζnΦn(Q,R) divides Ã, hence Ã has a repeated
factor, contradicting Fact 2.13.

Corollary 2.14. 1. Ñ has a natural Z/(p− 1)Z grading,

Ñ = ⊕
α∈Z/(p−1)Z

Ñα, Ñα = ∪
k≡α mod p−1

Ñk.(2.43)

2. Let f ∈ Nk, f ′ ∈ Nk′ and f 6≡ 0 mod p. Then f ≡ f ′ mod p implies that
k ≡ k′ mod p− 1.

Let A(Q,R), B(Q,R) be the polynomials such that A(Q,R) = Ep−1 and B(Q,R) =
Ep+1. Examples for p = 5, 7, 11 and 13 are provided in Page 101.

Theorem 2.15. 1. Ã(Q̃, R̃) = 1, B̃(Q̃, R̃) = P̃ .
2. δÃ = B̃, δB̃ = −QÃ.
3. The polynomials Ã and B̃ are relatively prime.
4. The algebra Ñ is stable under the derivation θ.

Proof. First, recall that

Ep+1 = 1− 2(p+ 1)
Bp+1

∑
σp(n)qn.(2.44)

However, by the Kummer congruences (Theorem 1.1)

Bp+1

p+ 1
≡ B2

2
mod p,(2.45)

and obviously σp(n) ≡ σ1(n) mod p for all n. Hence,

Ep+1 ≡ P (mod p).(2.46)

We now compute the action of δ:

δÃ(Q̃, R̃) = 12θÃ(Q̃, R̃)− (p− 1)P̃ Ã(Q̃, R̃)(2.47)

= P̃(2.48)

= B̃(Q̃, R̃).(2.49)
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Therefore, δA(Q,R) − B(Q,R) has q-expansion with coefficients in pZ(p). Hence
by Lemma 2.4, δA(Q,R)−B(Q,R) is in pZ(p)[Q,∆]⊕RpZ(p)[Q,∆] = pZ(p)[Q,R].
Thus, δA−B = 0 mod p.

We use a similar argument for B:

δB̃(Q̃, R̃) = 12θB̃(Q̃, R̃)− (p+ 1)P̃ B̃(Q̃, R̃)(2.50)

= 12θP̃ − P̃ 2(2.51)

= δP̃ + P̃ 2(2.52)

= −Q̃(2.53)

= −Q̃Ã(Q̃, R̃).(2.54)

(We used Exercise 2.9). Thus, δB̃(Q̃, R̃) = −Q̃Ã(Q̃, R̃), whence δB̃ = −QÃ.
We next prove that the polynomials Ã and B̃ are relatively prime. Say

Ã = Φ(Q,R) ·Ψ(Q,R),(2.55)

where necessarily (Φ,Ψ) = 1. Then

B̃ = δÃ = δΦ ·Ψ + δΨ · Φ.(2.56)

If Φ|B̃ then Φ|δΦ (Ã has no repeated factor). But wt(δΦ) = wt(Φ) + 2 and we get
a contradiction, because Fp[Q,R] has no elements of weight 2.

Finally, we see that P̃ ∈ Ñ , hence θf = 1
12 (δf + kPf) ∈ Ñ .

3. Operators and Systems of Eigenvalues

3.1. A higher brow view of modular forms in characteristic p. So far
we discussed modular forms in characteristic p as the reduction modulo p of modular
forms in characteristic zero, and that from two perspectives: first, as the reduction
of the algebra Z(p)[Q,R] modulo p; second, as the reduction of q-expansions

∑
anq

n

of modular forms such that an ∈ Z(p).
Those view points are clearly very restricted and artificial. Moreover, the meth-

ods use very heavily the description of modular forms on a very particular group:
SL2(Z). One would like to consider modular forms in a more intrinsic way, along
the lines hinted in Chapter 1, Section 4. This point of view is due to Katz and uses
in an essential way the fact that modular forms are “living” over moduli spaces.

Recall the definition of an abelian variety with RM by OL (L a totally real field)
with µn level structure: Let S be a scheme over which dL is invertible. Then we
consider triples (A, ι, β)/S , where A/S is an abelian scheme, ι : OL −→ EndS(A)
is an embedding of rings making the relative tangent space tA/S into a locally
free OL ⊗ OS module of rank 1, and β : µN ⊗ D−1

L −→ A is an OL-equivariant
homomorphism. Moreover, the module of symmetricOL-homomorphisms A −→ At

is a projective OL-module of rank 1 in the étale topology.
The existence of a µN structure implies that the fiber of A/S, over every point

of S with residue field of characteristic dividing N , is ordinary.

Lemma 3.1. Let N ≥ 4. The moduli problem of abelian varieties with RM and
µN level is rigid.
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Proof. Let A = (A, ι, β)/S be an abelian variety with RM and µN level.
We may assume S is the spectrum of an algebraically closed field. Let D be the
centralizer of L in End(A) ⊗ Q. It is known that D is either L, a CM field such
that D+ = L, or a quaternion algebra over L that is ramified everywhere at ∞.
See [8], Lemma 6.

Let OD = D ∩ End(A). If ξ ∈ OD is an automorphism of A preserving the
polarization, then ξξ∗ = 1, where ∗ is the unique positive involution of D. Hence, ξ
is of finite order. It follows that the field L(ξ) is either L, or a CM field whose totally
real subfield is L, and that ξ is a root of unity of order n. The case of L(ξ) = L
is just the case of ξ = ±1 and is easily dispensed with. We assume that L(ξ) 6= L.
Hence, [L(ξ) : Q] = 2g. Equivalently, 1 < φ(n), φ(n)|2g and L ∩Q(ξ) = Q(ξ)+.

If ξ preserves a µN -level structure, it follows that Ng|deg(1 − ξ). Hence, n
is a prime power. Say n = `r, ` a prime. Then deg(1 − ξ) = `2g/φ(n). Since
φ(n) > 1, this is divisible by a g-th power if and only if φ(n) = 2. On the other
hand, φ(n) = `r−1(`− 1). This implies r = 1 and ` = 3, or r = 2 and ` = 2. Both
imply N < 4.

It follows from the general theory of moduli spaces of abelian varieties that the
moduli problem of µN -level is representable by a scheme M(µN ) over Z[d−1

L ].4 The
morphism M(µN ) −→ Z[(NdL)−1] is smooth of relative dimension g. There exists
a universal object AU = (AU , ιU , βU ) −→M(µN ).

We now restrict our attention to the case of elliptic curves. That is L = Q. We
shall later on (Chapter 5) lift the general discussion from the point we now leave
it.

Definition 3.2. Let N ≥ 4. Let M(B,µN ), B a Z[(NdL)−1]-algebra, denote
the base change M(µN ) ×Spec(Z[(NdL)−1]) Spec(B). It represents abelian schemes
with RM and µN level structure over bases S −→ Spec(B). Let

AB = (AB , ιB , βB) −→M(B,µN )(3.1)

denote its universal object (obtained by base change from (AU , ιU , βU ) −→M(µN )).
A modular form f over B of weight k and µN -level is a section of the k-th

tensor power of the relative cotangent space: (t∗AB/M(B,µN ))
⊗k.

Using the property of the moduli space as classifying triples (A, ι, β)/S/B, and
the fact that if (A, ι, β)/S is parameterized by a morphism φ : S −→M(B,µN ) of
schemes over B then φ∗(t∗AB/M(B,µN ))

⊗k = (t∗A/S)⊗k we find the following reformu-
lation of Definition 3.2:

Definition 3.3. Let N ≥ 4. A modular form over B of weight k and µN level
is a rule f associating to any triple (A, ι, β)/S/B an element f((A, ι, β)/S/B) in
(t∗A/S)⊗k. The rule f is compatible with isomorphisms and commutes with base
change.

Using that the sheaf (t∗A/S)⊗k over S has the property of being locally free (in
general, for RM, we shall use that condition (R) holds) we arrive at the following
reformulation:

4In fact, using condition (DP), we may get it over Z.



3. OPERATORS AND SYSTEMS OF EIGENVALUES 107

Definition 3.4. LetN ≥ 4. A modular form overB (B a Z[(NdL)−1]-algebra)
of weight k and µN level, is a rule f associating to any quadruple (A, ι, β, ω)/R/B,
where R is a B-algebra, and where ω is an R-basis to t∗A/R, an element

f(A, ι, β, ω) ∈ R(3.2)

that depends only on the isomorphism class of (A, ι, β, ω)/R, commutes with base
change, and satisfies

f(A, ι, β, α−1ω) = αkf(A, ι, β, ω), ∀α ∈ R×.(3.3)

Unfortunately, it is quite hard to come up with a definition of a modular form using
this language. This leaves the analytic methods as the most powerful methods of
generating modular forms. To the rescue comes the q-expansion principle. It allows
one to study modular forms defined analytically as arithmetic objects.

First, note that since modular forms are sections of one scheme over another,
there is a Galois action. In particular, if B is a field then Gal(B/B) acts on the
modular forms defined over B.

Theorem 3.5. (q-expansion principle) Let N ≥ 4 and let f be a complex
modular form. Let

∑
n anq

n be the q-expansion of f with respect to the cusp i∞.
1. The form fσ, σ ∈ Aut(C), has q-expansion

∑
n a

σ
nq
n; f is defined over a

ring R ⊂ C if and only if an ∈ R for all n.
2. Let k ⊂ C be a number field. Let Ok be its ring of integers, and let pCOk

be a prime ideal relatively prime to NdL. Let f be a modular form over
k. Then there exists a ∈ k such that aan ∈ R for all n. Assume that f is
defined over R, then f (mod p) (i.e., the section obtained after base change
(−)×R R/p) is zero if and only if every an belongs to p.

Remark 3.6. Below (Chapter 5, Section 2) we introduce q-expansions in every
characteristic. It would allow a sharper formulation of the q-expansion principle.
Namely, that q-expansions commute with base change.

We note that the group (Z/NZ)× acts as automorphisms on M(µN ). Finally,
we define a modular form f over B of level 1 and weight k as a couple of modular
forms g, h of levels 4 and 5 respectively, that are defined over B[1/2] and B[1/5]
(resp.), are (Z/4Z)× and (Z/5Z)× equivariant (resp.), and agree under pull-back
to B[1/10].

One has to note that there could be modular forms in characteristic p that are
not obtained from characteristic zero. E.g., there could be forms of weight 1 and
level 1.

3.2. Operators. We discuss some operators acting on modular forms in char-
acteristic p. We assume, for simplicity, that our modular forms are defined over a
field F.

Definition 3.7. (Hecke Operators) For every prime `, different from the char-
acteristic of F, we define the operator T` as follows: For every couple (E,ω)/R con-
sisting of an elliptic curve over an F-algebra R and ω a non vanishing differential
(i.e., an R-basis to t∗E/R),

(T`f)(E,ω) =
1
`

∑
H<E

f(E/H, πH∗ω).(3.4)
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The sum extends over all subgroup schemes H of E of order `; for every H we
denote by πH : E −→ E/H the natural morphism.

One verifies immediately that T`f is a modular form over F of the same weight
as f , and that the Hecke operators commute with each other. Thus the free algebra
Z[T` : ` 6= char(F)] acts on modular forms of weight k.

If F = C the definition of the Hecke operators takes the usual form. Let
E = C/(Z+ τZ). Then the subgroups H of order ` corresponds to the `+ 1 points
in the projective space obtained from (`−1

Z/Z)+(`−1τZ/τZ) that we identify with
(Z/`Z)2. The points {(a : 1) : 0 ≤ a ≤ ` − 1} and (1 : 0) account for all of them
and give us the subgroups H of E that are of order `. Using the obvious notation,
the lattices LH = H + (Z+ τZ) all contain the lattice Z+ τZ and the natural map

C/(Z+ τZ) −→ C/LH ,(3.5)

is an isogeny with kernel H under which dz 7→ dz.
Now, the point (a : 1) gives us the lattice spanned by {1, τ, τ+a

` }, or simply by
{1, τ+a

` }. Thus, the points {(a : 1) : 0 ≤ a ≤ `− 1} contribute to the sum in (3.4)
1
`

∑
0≤a≤`−1 f( τ+a

` ). The other point (1 : 0) defines the lattice spanned by { 1
` , τ}.

The pair (C/( 1
`Z+ τZ), dz) is isomorphic to (C/(Z+ `τZ), 1

`dz) and contributes to
the sum 1

` f(C/(Z+ `τZ), 1
`dz) = `k−1f(`τ). Therefore, we find that for a modular

form f of weight k,

T`f(τ) = `k−1f(`τ) +
1
`

∑
0≤a≤`−1

f(
τ + a

`
).(3.6)

This is the classical formula for Hecke operators.

One can calculate the effect of T` on q-expansions. See [108] Chapter I, Proposition
10.3. If f has q-expansion

∑
n anq

n then

T`f(q) =
∑
n

a`nq
n + `k−1

∑
n

anq
`n.(3.7)

The last formula shows, by the q-expansion principle, that the action of Tp on modu-
lar forms in characteristic p that are reduction of modular forms from characteristic
zero is well-defined and its effect on q-expansions is

∑
anq

n 7→
∑
apnq

n.
One may ask if there is a more intrinsic definition of this operator. For example,

if there is an analogue of Definition 3.7 for the operator Tp. First, note that a
problem immediately arrises from the fact that if φ : E −→ E′ is a non-separable
isogeny, as the one coming from dividing by the kernel of Frobenius, then φ∗ acts as
zero on the cotangent space and one can not push-forward differentials. However,
the problem is precisely the one created by the Frobenius morphism and can be
circumvented by thinking about “Frobenius the base-change” and not “Frobenius
the morphism”. We therefore make the following:

Definition 3.8. Let f be a modular form of level 1 defined over a field F of
characteristic p. We define the modular form V f of level 1 over F, by

(V f)(E,ω) = f(E(p), ω(p)).(3.8)

(See Appendix A for generalities on Frobenius and Verschiebung).

For example, if E is given by a Weierstrass equation y2 + a1xy + a3y = X3 +
a2x

2 + a4x+ a6 with Néron differential ω = dx/(2y + a1x+ a3) then E(p) is given
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by y2 + ap1xy+ ap3y = X3 + ap2x
2 + ap4x+ ap6 and ω(p) is again the Néron differential

dx/(2y + ap1x+ ap3).
Now, V f(E,α−1ω) = f(E(p), (α−1ω)(p)) = f(E(p), α−p(ω)(p)) = αpkV f(E,ω).

Therefore V f is of weight pk. The effect of V on q-expansions can be computed
easily once Tate objects are introduced. The q-expansion is evaluation of the mod-
ular form at a particular Tate object, and, by definition, this evaluation commutes
with base change. 5 If f(q) =

∑
n anq

n then

(V f)(q) =
∑
n

anq
pn.(3.9)

To get an operator which does not raise the weight, we use the Verschiebung mor-
phism. We make the following

Definition 3.9. Let f be a modular form of level 1 defined over a field F of
characteristic p. We define the modular form Uf of level 1 over F, by

(Uf)(E,ω) = f(E/H, πH∗ω),(3.10)

where H is the kernel of the Verschiebung morphism.

One sees that if f is of level 1, defined over F, and of weight k, then so is Uf .
The effect on q-expansions can be calculated to be

(Uf)(q) =
∑
n

apnq
n.(3.11)

Thus Uf is the reduction modulo p of the operator Tp on forms of weight greater
then 1. This gives us an intrinsic characteristic p definition of Tp. Note that Tp is
thus defined on all characteristic p modular forms of all weights. It is clear from
the definitions that the operators U, V commute with the operators T`.

The next operator acting on modular forms in characteristic p that we mention is
the operator θ discussed above. It takes modular forms of weight k to modular
forms of weight k + p+ 1 and its effect on q-expansions is∑

n

anq
n θ7−→

∑
n

nanq
n.(3.12)

It therefore follows that θp−1 raises weight by p2 − 1 and acts on q-expansions by

θp−1(
∑
n

anq
n) =

∑
(n,p)=1

anq
n.(3.13)

The following identities on q-expansions are immediate:

UV = 1, V U = 1− θp−1.(3.14)

Let us denote the operator of multiplication by the modular form Ẽp−1, whose
q-expansion is 1, by [h]. I.e., [h]f = Ẽp−1f . It raises the weight by p − 1 and
commutes with T`, U, V and θ.

5The base change of the Tate object (Gm/periods, dt/t) over Fp[[q]] is the “same” object but

considered over Fp[[qp]].
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We summarize all this. Let f be a modular form over a field F of characteristic p,
of weight k and level 1. Let

f(q) =
∑
n

anq
n(3.15)

be its q-expansion.

operator effect on weight effect on q-expansion
T` (` 6= p) k 7→ k

∑
n a`nq

n + `k−1
∑
n anq

`n

U k 7→ k
∑
n apnq

n

V k 7→ pk
∑
n anq

pn

θ k 7→ k + p+ 1
∑
n nanq

n

[h] k 7→ k + p− 1
∑
n anq

n

Some relations satisfied by these operators on q-expansions are the following:

T`U = UT`, T`V = V T`;
θT` = `T`θ;
UV = 1, V U = 1− θp−1;
Uθ = 0, θV = 0.

Let Ñ be the reduction modulo p of the q-expansions of all p-integral modular
forms on SL2(Z) as in Section 2. We note that there is a well defined action of
T`, [h], θ, V and U on Ñ .

Proposition 3.10. There is an exact sequence

0 −−−−→ Ñ V−−−−→ Ñ θ−−−−→ Ñ U−−−−→ Ñ −−−−→ 0 .(3.16)

Proof. We already observed that Uθ = 0 and θV = 0. Clearly V is injective
and since UV = 1, U is surjective. Let f ∈ Ker(θ). Then f = (I − θp−1)f = V Uf
and hence f ∈ Im(V ). Finally, let f ∈ Ker(U). Then f(q) =

∑
(n,p)=1 anq

n.
Therefore, f = θp−1f and hence f ∈ Im(θ).

We note that the definition of the operators T` for (`,N) = 1, U and V extends
verbatim to the case of modular forms of level µN , where N is prime to char(F).
The operator θ extends as well: just repeat the discussion taking level µN into
account. These operators are also defined on all modular forms in characteristic
p. In addition there are the operators < d > for every class d ∈ (Z/NZ)×. Their
action is given by

(< d > f)(E,ω, βN ) = f(E,ω, [d] ◦ βN ).(3.17)

3.3. Filtration and systems of eigenvalues. We use the notations of Sec-
tion 2. We consider the reduction modulo p of modular forms of level 1, or rather
their q-expansions, modulo p. Let us fix 0 ≤ α ≤ p−1 and view Ñα as an ascending
union:

Ñα
×Ep−1
↪→ Ñα+p−1

×Ep−1
↪→ Ñα+2p−2

×Ep−1
↪→ · · · .(3.18)

Definition 3.11. Let f ∈ Ñα. Define the filtration of f , w(f), to be the least
k such that f ∈ Ñk.
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In fact w(f) ≡ α mod p− 1.

Lemma 3.12. 1. Let f ∈ Nk, f = Φ(Q,R) ∈ Z(p)[Q,R], and suppose that
f̃ 6= 0. Then

w(f̃) < k ⇔ Ã|Φ̃.(3.19)

2. Let f ∈ Ñα. Then

w(θf) ≤ w(f) + p+ 1,(3.20)

with equality iff w(f) 6≡ 0 mod p.
3. Let f ∈ Ñα. Then

w(V f) = pw(f).(3.21)

4. Let f ∈ Ñα, then

w(Uf) ≤ 1
p

(w(f) + p2 − 1),(3.22)

with equality iff w(f) ≡ 1 mod p.

Proof. 1. Say Φ̃ = ÃΨ̃. Let Ψ ∈ Z(p)[Q,R] be any isobaric lift of Ψ̃ and

g = Ψ(Q,R). Then g̃(q) = f̃(q), and wt(Ψ̃) < wt(Φ̃), hence w(f̃) < k.
Conversely, if w(f̃) < k let g be a modular form of weight w(f̃) such that

g̃(q) = f̃(q). Write g = Ψ(Q,R). Then g̃(q) = f̃(q) implies (Ã− 1)|(Φ̃− Ψ̃).
Since wt(Ψ̃) < wt(Φ̃), we get Ã|Φ̃.

2. Let g ∈ Nw(f) such that g̃ = f . Say g = Φ(Q,R). Let k = wt(f). Recall
that

12θf̃ = 12θg̃ = ˜ω(f)Ep+1g + Ep−1δg ∈ ˜Nω(f)+p+1.(3.23)

Then

w(θf) < w(f) + p+ 1 ⇐⇒ Ã| ˜ω(f)BΦ +AδΦ

⇐⇒ Ã| ˜ω(f)BΦ

⇐⇒
(Ã,B̃)=1

Ã|˜ω(f)Φ̃

⇐⇒ either w(f) ≡ 0 mod p or Ã|Φ̃,

(3.24)

but the latter is impossible, because of Part 1.
3. We write f = Φ̃(Q̃, R̃) with deg(Φ) = w(f), and by Part 1 Ã 6 |Φ̃. Clearly,
V f = Φ̃p(Q̃, R̃) and thus w(V f) ≤ pw(f). But again, Part 1 implies that
w(V f) < pw(f) ⇐⇒ Ã|Φ̃p. This cannot happen, because Ã has simple
factors.

4. Part 2 implies that w(θp−1f) ≤ w(f) + p2 − 1. The inequality is strict iff
there exists a j, 0 ≤ j < p − 1 such that p|(w(f) + j(p + 1)); equivalently,
w(f) 6≡ 1 mod p.

Now, V Uf = f − θp−1f , and using Part 3 we get

pw(Uf) = w(V Uf) = w(f − θp−1f) ≤ max
{
w(f), w(θp−1f)

}
.(3.25)

This gives the inequality w(Uf) ≤ 1
p (w(f) + p2− 1). The equality occurs iff

w(f) ≡ 1 mod p.
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Corollary 3.13. 1. If w(f) ≡ 1 mod p, Uf 6= 0.
2. If w(f) > p+ 1, then w(Uf) < w(f).

Definition 3.14. Let Wk = Ñk ⊗ Fp/Ñk−p+1 ⊗ Fp.

We note that Corollary 3.13 gives the following: If k > p+1, then U annihilates
Wk.

We now focus our attention on the structure of Ñ as a Hecke algebra. The first
question is about how many different systems of eigenvalues exist modulo p? To
that end we first make a

Definition 3.15. A set
{
λ` : λ` ∈ Fp, ` 6= p prime

}
is called a system of eigen-

values if there exists 0 6= f ∈ N ⊗ Fp such that T`f = λ`f for all ` 6= p.

Even though we have infinitely many such systems in characteristic zero, in
characteristic p, the situation is different:

Theorem 3.16. (Jochnowitz)[55] There exist only finitely many systems of
eigenvalues.6

Proof. It is enough to prove the finiteness of systems for all the Wk’s. Given
1 ≤ a ≤ p− 1, we define the twisted Hecke module

Wk[a] := Wk ⊗F F,(3.26)

where T` acts on f ⊗ r by T`(f)⊗ `ar.
Note that if {λ`} is a system in Wk then {λ``a} is a system in Wk[a]. Therefore,

it is enough prove the following
Claim: If j > 2p then Wj

∼= Wm[a] as Hecke modules for some 1 ≤ a ≤ p− 1 and
m < j.

Case 1. j 6≡ 1 mod p.
Lemma 3.12 states that w(θf) ≤ w(f) + p + 1 with equality if w(f) 6≡ 0 mod p.
Thus, θ : Wk ↪→Wk+p+1 if w(f) 6≡ 0 mod p. If k ≥ p+ 1, this is an isomorphism.
This follows from calculating the dimensions of the two vector spaces. A verification
we leave to the reader.

Let us apply these observations for k = j − p− 1 noting that θ ◦ T` = `T` ◦ θ.
Since k ≥ p+ 1 and k 6≡ 0 mod p, we get Wj−p−1[1] ∼= Wj .
Case 2. j ≡ 1 mod p.

In this case, since j > 2p > p+1, by Corollary 3.13 and Lemma 3.12, U induces
a homomorphism:

U : Wj ↪→W j−1
p +p.(3.27)

Composing with V : W j−1
p +p ↪→Wj+p2−1, we get

V ◦ U : Wj ↪→Wj+(p+1)(p−1).(3.28)

This map must be an isomorphism by the same dimension count. Therefore, U is
an isomorphism.

6This theorem was much superseded by the results of Ash-Stevens. See [1], [2].
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3.4. Congruences mod pm. Let p ≥ 5, f ∈ Q[Q,R]. Let f(q) =
∑
anq

n be
the q-expansion of f . By assumption, an ∈ Q. Define

valp(f) := inf {valp(an) : n = 0, 1, 2, . . . } .(3.29)

It follows from the q-expansion principle 3.5 that valp(f) > −∞.

Theorem 3.17. (Serre) Let m ≥ 1. Let f, f ′ ∈ Q[Q,R] of weight k, k′, respec-
tively. Suppose f 6= 0. If valp(f − f ′) ≥ valp(f) +m, then

k′ ≡ k mod (p− 1)pm−1.(3.30)

Proof. By multiplying by p−valp(f), we may assume that valp(f) = 0 and
hence we are given that valp(f − f ′) ≥ m. Namely, both f and f ′ are p-integral
and

f ≡ f ′ mod pm, m ≥ 1.(3.31)

In particular, f ≡ f ′ (mod p) and by Corollary 2.14

k′ ≡ k mod p− 1.(3.32)

Hence, the theorem is true for m = 1. Assume now that m ≥ 2. We shall use the
following

Exercise 3.18.

Er ≡ 1 mod pm ⇐⇒ r ≡ 0 mod (p− 1)pm−1.(3.33)

Let h = k′− k. Replacing f ′ by f ′E(p−1)pn(n� 0) we may assume that h ≥ 4.
We know that h ≡ 0 mod p−1. Let r = valp(h)+1. We want to show that r ≥ m.

Suppose that r < m. We claim that p−r(fEh − f ′) is p-integral and

p−r(fEh − f ′) ≡ p−rf(Eh − 1) mod p.(3.34)

We have

fEh − f ′ = f − f ′ + f(Eh − 1).(3.35)

Now, f − f ′ ≡ 0 (mod pm) and Eh − 1 ≡ 0 (mod pr). Thus p−r(fEh − f ′) is
p-integral, and r < m implies (3.34).

We have:

p−r(Eh − 1) = λφ,(3.36)

where λ ∈ Z×p and φ =
∑∞
n=1 σh−1(n)qn. Let

g := λ−1p−r(fEh − f ′).(3.37)

Then (3.34) implies that

g = fφ mod p.(3.38)

Put:

φ̃ = g̃/f̃ .(3.39)

Note that φ̃ is well-defined since f̃ is not zero. Since wt(g) = k′ is congruent to
wt(f) = k modulo p − 1, φ̃ belongs to the quotient field of Ñ 0. We shall use the
following fact.

Fact 3.19. (See Corollary 5.4) Ñ 0 is a Dedekind domain.
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We claim that φ̃ is integral over Ñ 0. To see this, first note that

φ̃− φ̃p ≡
∑

(p,n)=1

σh−1(n)qn mod p.(3.40)

Define, for r ∈ Z, (n, p) = 1,

σ̃r(n) =
∑
d|n

dr mod p.(3.41)

Then

σ̃−1(n) = σ̃1(n)/n, σ̃r(n) = σ̃pr(n) = σ̃r+p−1(n).(3.42)

Consider the following identity:

θh−1
( ∞∑
n=1

σ1(n)qn
)
≡
∞∑
n=1

nh−1σ̃1(n)qn

≡
∑

(n,p)=1

σ̃1(n)
n

qn (h ≡ 0 (mod p− 1))

=
∑

(n,p)=1

σ̃−1(n)qn

≡
∑

(n,p)=1

σ̃h−1(n)qn (h ≡ 0 (mod p− 1))

= φ̃− φ̃p.

(3.43)

Therefore,

φ̃− φ̃p = − 1
24
θh−1(P̃ ) = − 1

24
θh−1(Ẽp+1) = − 1

24
θp−2(Ẽp+1),(3.44)

(θp−1 is idempotent). The last expression shows that φ̃− φ̃p belongs to

˜Np+1+(p−2)(p+1) = Ñp2−1 ⊂ Ñ 0.(3.45)

This proves the claim of integrality, hence that φ̃− φ̃p belongs to Ñ 0, plus the fact
that

φ̃− φ̃p = − 1
24
θp−2(Ẽp+1).(3.46)

Now, the filtration of φ̃−φ̃p is max
{
ω(φ̃), ω(φ̃p)

}
= max

{
ω(φ̃), p · ω(φ̃)

}
= p·ω(φ̃).

But Lemma 3.12 says that ω(θp−2Ẽp+1) = p2 − 1, and this is a contradiction.

4. Serre’s p-adic Modular Forms and p-adic Zeta Functions

Throughout this section p ≥ 5.

Let m be a positive integer. Put

Xm = Z/(pm−1(p− 1))Z = Z/pm−1
Z× Z/(p− 1)Z,(4.1)

and

X = lim
←−

Xm = Zp × Z/(p− 1)Z.(4.2)
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Since the maps Z −→ Xm are surjective, we get that the injection Z ↪→ X has
a dense image. Define for v = v1v2 ∈ Z×p = U1 × µp−1 and k = (k1, k2) ∈
Zp × Z/(p− 1)Z

vk := vk1
1 vk2

2 ∈ Z×p .(4.3)

In this way

X = Endcont(Z×p ).(4.4)

Definition 4.1. We say k = k1k2 in X is even if k ∈ 2X. Equivalently, k2 is
even or (−1)k = 1.

Definition 4.2. A p-adic modular form (à la Serre) is a formal power series
f =

∑
anq

n, where:
1. an ∈ Qp.
2. There exists a sequence (fi)i∈N of modular forms of level 1 and weight ki

with rational Fourier coefficients, such that

valp(f − fi)
i −→ ∞−−−−−→ ∞.(4.5)

Theorem 4.3. (Serre) The weights ki have a limit in X. This limit depends
only on f and not on the particular sequence (fi)i∈N. It is called the weight of f .

Proof. For i� 0, valp(fi) = valp(f) (uniform convergence), and given any m
for j � i� 0, we have

valp(fi − fj) ≥ valp(f) +m = valp(fi) +m.(4.6)

Since by Theorem 3.17 ki ≡ kj mod (p− 1)pm−1, there exists a limit to the ki’s.
If f ′1, f

′
2, . . . is another sequence converging to f , consider the sequence

f1, f
′
1, f2, f

′
2, . . .!(4.7)

The weight of f is always even simply because it is a limit of even weights.
Note that under valp, the space of p-adic modular forms is a p-adic Banach space.
That is, it is a vector space over Qp with a norm p−valp(f) and the space is complete
with respect to this norm. That means that if fi are p-adic modular forms forming
a Cauchy sequence with respect to the norm, then the limit of the fi’s exists.

Exercise 4.4. Prove that 1
Ep−1

= lim
m

Ep
m−1
p−1 .

Theorem 4.5. Let m be a positive integer. Let f, f ′ be two p-adic modular
forms of weight k, k′ ∈ X respectively and assume f 6= 0. Then valp(f − f ′) ≥
valp(f) +m implies that k = k′ in Xm = Z/pm−1

Z× Z/(p− 1)Z.

Exercise 4.6. Prove the Theorem 4.5.

The following corollary is one of the most amazing results of the theory of p-adic
modular forms. It is an integral analog of Siegel’s Theorem on the rationality of
values of zeta function (Chapter 2, Remark 5.5). Recall that the idea behind the
proof of that theorem was that if all the higher coefficients of a modular form are
rational so is the leading coefficient. Thus there is a “rational” influence of the
higher coefficients on the first coefficient. The following corollary says that this
influence can be refined to an integral influence: If all the higher coefficients are
p-adic integers then the leading coefficient has a valuation bounded from below in
terms of the weight alone!



116 4. p-ADIC ELLIPTIC MODULAR FORMS

Corollary 4.7. Let f = a0 + a1q + a2q
2 + · · · be a p-adic modular form of

weight k 6= 0. Let m ≥ 0 be such that k 6= 0 in Xm+1. Then

valp(a0) +m ≥ inf
n≥1
{valp(an)} .(4.8)

Proof. If a0 = 0 then valp(a0) = ∞ and the assertion holds. Else a0 6= 0
and we let f ′ := a0 be a modular form of weight 0. We have valp(f − f ′) =
infn≥1 {valp(an)}. If, on the contrary, infn≥1 {valp(an)} > valp(a0) + m, i.e., if
valp(f − f ′) ≥ valp(f ′) + (m+ 1), then Theorem 4.5 implies that k ≡ 0 in Xm+1, a
contradiction.

Corollary 4.8. Let k be such that (p − 1) 6 | k. If ai are integral for every
i ≥ 1 then a0 is also integral.

Proof. Take m = 0 in Corollary 4.7.

Corollary 4.9. Let L be a totally real field of degree g. For p such that kg 6≡ 0
mod p− 1, we have that ζL(1− k) is p-integral. More generally,

valp(ζL(1− k)) ≥ −1− valp(kg).(4.9)

Proof. Recall the modular form of level 1 and weight kg defined in Chapter 2,
Section 6:

Φ∗(2−gζL(1− k)Ek,D−1
L

) =
ζL(1− k)

2g
+
∞∑
n=1

( ∑
ν∈D−1+

L

σk−1((ν)DL)
)
qn,(4.10)

where Φ : H −→ Hg is the diagonal map.
The leading coefficient of this modular form is ζL(1−k)

2g , and the higher coeffi-
cients are p-integral (in fact, integers).

If kg 6≡ 0 mod p−1, then Corollary 4.8 says that the leading coefficient is also
p-integral.

To get the general inequality, we may assume k̃ = kg is congruent to 0 modulo
p− 1. Let m = valp(k̃) + 1; then k̃ 6= 0 in Xm+1, hence

valp(ζL(1− k)) +m ≥ inf {valp(an)} ≥ 0.(4.11)

Corollary 4.10. Let

f (i) =
∞∑
n=0

a(i)
n qn, i = 1, 2, ...(4.12)

be a sequence of p-adic modular forms of weight k(i). Suppose:

1. For n ≥ 1, a(i)
n −→ an ∈ Qp uniformly in n. (That is, there exists a power

series limit in the valp-topology, limi(
∑∞
n=1 a

(i)
n qn) ).

2. k(i) −→ k ∈ X, and k 6= 0.

Then a
(i)
0 −→ a0 ∈ Qp and

f =
∞∑
n=0

anq
n(4.13)

is a p-adic modular form of weight k.
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Proof. By deleting some f (i)’s, we may assume that there exists an m ≥ 0
such that all the k(i)’s have non zero image in Xm+1. Now, uniform convergence
implies there is a t ∈ Z such that

valp(a(i)
n ) ≥ t, ∀n,∀i ≥ 1.(4.14)

By Corollary 4.7 valp(a
(i)
0 ) ≥ t−m. Hence, there exists a subsequence ij such that

a
(ij)
0

j −→ ∞−−−−−→ a0 ∈ Qp. Then clearly,

f = lim f (ij) = a0 + a1q + a2q
2 + . . . .(4.15)

is a p-adic modular form of weight k.
Remark that in a compact metric space a sequence converges if and only if every

converging subsequence converges to the same limit. If ij is another converging
subsequence a(ij)

0 −→ a0, then f = a′0 +
∑∞
n=1 anq

n is a p-adic modular form of
weight k, hence

f − f = a0 − a′0(4.16)

of weight k, but also of weight zero! Since k 6= 0 we must have a0 − a′0 = 0.

Example 4.11. p-adic Eisenstein series. Let k ∈ X, and define

σ∗k−1(n) =
∑
d|n

(d, p) = 1

dk−1, n ≥ 1, n ∈ Z.(4.17)

Assume k is even, choose ki ≥ 4 such that ki −→ k in X, and ki −→∞ in R.
Then σk−1(n) −→ σ∗k−1(n) in Zp uniformly in n. Therefore, by Corollary 4.10, the
modular forms Gki converge p-adically to a p-adic modular form G∗k. Moreover,

G∗k =
1
2
ζ∗p (1− k) +

∞∑
n=1

σ∗k−1(n)qn(4.18)

is a p-adic modular form of weight k, where we define

ζ∗p (1− k) = lim
i
ζQ(1− ki).(4.19)

(The existence of the limit is a consequence of Corollary 4.10!) One calls G∗k the
p-adic Eisenstein series of weight k. Note that even if k is an integer G∗k 6= Gk.

Remark 4.12. It is known that the Eisenstein series E2 of weight 2 is not a
classical modular form. But for any prime p, the q-expansion of E2 indeed arises
from a p-adic modular form.

Theorem 4.13. (Serre) Put h = (s, n) ∈ X (odd). Then

ζ∗p (1− (s, n)) = Lp(s, ω1−n),(4.20)

where ω is the Teichmüller character.

Recall that Lp(s, χ) interpolates the special values of classical L function L(s, χ).
Thus Serre’s construction creates the “correct” p-adic zeta functions: they inter-
polate p-adically special values of classical L functions. One can generalize Serre’s
construction to get a p-adic zeta function for L totally real (see Serre’s paper in
[101]).
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5. A Geometric Approach to Congruences

The methods of the previous sections rely very much, so it seems, on the specific
structure of the ring of modular forms on SL2(Z). To obtain a more general theory
that works for level structures as well as for Hilbert modular forms, we reconsider
the question of congruences. This time from a purely characteristic p approach.
Thus our original object of study are modular forms in characteristic p and not the
reduction of modular forms from characteristic zero. Already for elliptic modular
forms there is a difference, but for Hilbert modular forms the difference becomes
much more dramatic, with important characteristic p modular forms that cannot
be lifted to characteristic zero.

We shall only treat the case of elliptic curves here, allowing ourselves a sim-
pler picture then in the general Hilbert modular case that would be discussed in
Chapter 5.

Let N ≥ 4 be an integer. Let M = M(Fp, µN ) be the fine moduli space parameter-
izing elliptic curves E/R over Fp-algebras R, endowed with a µN level structure:

βN : µN/R ↪→ E/R.(5.1)

We may compactify M to a scheme M∗ by adding finitely many cusps. In fact,
M∗ represents a similar modular problem involving generalized elliptic curves as in
[22]. The scheme M∗ is integral, geometrically irreducible, regular proper scheme
of dimension 1.

Let M(µp) = M(Fp, µNp) be the fine moduli space representing elliptic curves
E/R over Fp-algebras R, endowed with a µNp level structure:

βN × βp : µN/R × µp/R ↪→ E/R.(5.2)

Let M∗(µp) be the scheme obtained by adding the cusps. The scheme M∗(µp) is
not proper. In fact, if we let Mord denote the open subscheme of M∗ obtained by
deleting the points corresponding to the supersingular elliptic curves then we have
a surjective étale Galois morphism

M∗(µp) −→Mord,(5.3)

with Galois group (Z/pZ)×.

5.1. The Hasse invariant. Let (E, βN , ω)/R be an elliptic curve over an
Fp-algebra R, with µN -level βN and a non-vanishing differential ω. We define a
modular form H, called the Hasse invariant, as follows. We consider the exact
sequence

0 −−−−→ H0(E,Ω1
E/R) −−−−→ H1

dR(E) −−−−→ H1(E,OE) −−−−→ 0 .(5.4)

There is a perfect pairing

H0(E,Ω1
E/R)×H1(E,OE) ∪−→ H1(E,Ω1

E/R) ∼= H0(E,OE)∗ = R(5.5)

(using Serre’s duality) and we let η ∈ H1(E,OE) be the element dual to ω under
this pairing.

The sheaf OE is a sheaf of rings of characteristic p and therefore the Frobenius
map f 7→ fp induces a homomorphism of sheaves of abelian groups OE −→ OE
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and hence a map (called Frobenius) on cohomology

Fr : H1(E,OE) −→ H1(E,OE),(5.6)

which is Frobenius linear: Fr(αv) = αpFr(v) for α ∈ R and v ∈ H1(E,OE). We let
H(E, βN , ω) be the unique element of R such that

Fr(η) = H(E, βN , ω) · η.(5.7)

One easily verifies that the definition commutes with base change and depends only
on the isomorphism class of (E,ω). Moreover, if α ∈ R× then the element dual to
α−1ω is αη and Fr(αη) = αpFr(η) = αp−1H(E,ω)αη. That is,

H(E, βN , α−1ω) = αp−1H(E, βN , ω).(5.8)

Thus, we proved the first half of the following proposition. The second part follows
from the more general discussion of Tate objects given in Chapter 5, Section 2.

Proposition 5.1. The Hasse invariant H is a modular form over Fp of level
one and weight p− 1. Its q-expansion at every cusp is 1.

5.2. The kernel of the q-expansion. LetM(Fp, k, µN ) (N ≥ 4 prime to p)
be the vector space of modular forms defined over Fp, of weight k and level µN .

Theorem 5.2. (Serre – Swinnerton-Dyer) The kernel of the q-expansion map

⊕
k∈Z
M(Fp, k, µN ) −→ Fp[[q]],(5.9)

is generated by H − 1.

Proof. Let R be the ring of regular functions on the curve M∗(µp). Let
Gm/q(Z) be a Tate object represented by a cusp Tate of M∗(µp).

Proposition 5.3. There is a surjective ring homomorphism

r : ⊕
k∈Z
M(Fp, k, µN )� R,(5.10)

such that the composition

⊕
k∈Z
M(Fp, k, µN )� R ↪→ R̂Tate(5.11)

is the q-expansion map at the cusp Tate.

Given the Proposition, if we further prove that Ker(r) = (H − 1) the Theorem
is proved.

To construct the map r we first construct modular forms a(k) for k ∈ Z with
the following properties (compare [43]):

• a(k) is a modular form over Fp of µp-level and weight k.
• a(k)a(k′) = a(kk′)
• a(k) does not vanish.

Indeed, given a µp level structure

βp : µp ↪→ E,(5.12)

we have an induced isomorphism

dβp : t∗E/R −→ t∗µp/R = R · dt
t
.(5.13)

Thus we get a canonical element ωcan = (dβp)−1(dt/t) in t∗E/R. This gives the
modular form a(1). We note that since ωcan is non-vanishing a(1) is non-vanishing.
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We simply put a(k) = a(1)k, a non-vanishing modular form of weight k and level
µp. Moreover, since for the Tate object ωcan is the canonical differential, the q-
expansion of a(1) (and hence of every a(k)) is 1.

We now define the map r by

M(Fp, k, µN ) 3 f 7→ f

a(k)
∈ R.(5.14)

The properties of the forms a(k) guarantee that this provides a well defined ring
homomorphism ⊕

k∈Z
M(Fp, k, µN ) −→ R. Furthermore, since the q-expansion of a

modular form is obtained by evaluating it at a Tate object over a base which is
isomorphic to the completion of the moduli space at this point, the composition of
r with the inclusion R ↪→ R̂Tate is the q-expansion.

We define an action of (Z/pZ)× on ⊕
k∈Z
M(Fp, k, µN ) and on R. Given a modular

form f of weight k and α ∈ (Z/pZ)× we define

[α]f = αkf.(5.15)

Given a function g ∈ R we define

([α]g)(E, βN × βp) = g(E, βN × (βp ◦ α)),(5.16)

where we denote by α : µp −→ µp the homomorphism of “raising to the α power”.
We claim that the map r is equivariant for this action. Indeed, the same

definition given for functions g ∈ R may well be given for modular forms on M∗(µp).
Namely, by twisting the µp level. Thus

[α]r(f) =
[α]f

[α]a(k)
=

f

[α]a(k)
.(5.17)

(Note: as a modular form on M∗(µp) f is invariant under the action of (Z/pZ)×.
Thus [α]f = f . But, as a modular form on M∗ we have by definition [α]f = αkf).
Now,

([α]a(1))(E, βp) = a(1)(E, βp ◦ α)(5.18)

= d(βp ◦ α)−1(dt/t)(5.19)

= dβ−1
p dα−1(dt/t).(5.20)

Since dα(dt/t) = dtα/tα = αtα−1dt/tα = αdt/t, we find that dα−1(dt/t) = α−1dt/t
and hence that [α]a(1) = α−1a(1). Therefore,

[α]a(k) = α−ka(k),(5.21)

and

[α]r(f) = αkr(f) = r([α]f).(5.22)

We note that

R =
p−2
⊕
k=0

Rk,(5.23)

where Rk = {f ∈ R : [α]f = αkf}. Then r(M(Fp, k, µN )) ⊂ Rk.
We already know that H − 1 ∈ Ker(r). Let now f1 + · · ·+ fa be in the kernel

of r. Say, fi is of weight ki. We assume that for i 6= j, ki 6= kj . By replacing fi by
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fi + fi(H − 1) for suitable i’s and sufficiently many times, we may assume that if
i 6= j then ki 6= kj modulo p− 1. But then every r(fi) lies in a different summand
of the right hand side of Equation (5.23). Hence, every r(fi) = 0.

Note that on any fixed weight the q-expansion , equivalently the map r, is
injective. This is evident from Equation (5.14). Thus, for every i, fi = 0.

Finally, the map r is surjective. Let g ∈ Rk. Define f = g · a(k) · Hn. Then
f is invariant under the Galois group of M∗(µp) −→Mord. Hence, it defines a
meromorphic modular form on M, with poles supported on the supersingular locus.
Now, the Hasse invariant vanishes on the supersingular locus. This follows readily
from interpreting H1

dR(E) as the Dieudonné module of E[p]. See Appendix A. Thus,
for n� 0 the modular form f would be holomorphic. Clearly, r(f) = g.

Corollary 5.4. We have

Ñ 0 = ⊕
k≡0 (mod p−1)

M(F, k, µN )/(H − 1) ∼= R0;(5.24)

R0 is the ring of regular functions on the affine regular modular curve M(F, µN )ord.
Hence, Ñ 0 is a Dedekind domain.

5.3. Operators revisited. We use the method of Section 5.2 to interprete
the operators T`, < d >,U, V and θ via the isomorphism

r : ⊕kM(Fp, k, µN )/(H − 1) ∼= R,(5.25)

where R is the ring of regular functions on the affine curve M∗(Fp, µNp). The a
priory observation that the formulae for those operators are given solely in terms
of their q-expansion and that for T` it depends on the weight only modulo p − 1
indicates that “they are coming from R”. To define those operators we shall think
of the points of R as pairs (E, βNp).

Let g ∈ R. Define

(T`g)(E, βNp) =
1
`

∑
H⊂E

g(E/H, πH ◦ βNp);(5.26)

The summation ranging over all subgroups of order ` of E and πH : E −→ E/H is
the projection. We claim that

r(T`f) = T` r(f).(5.27)

First note that

r(f)(E, βNp) = f(E, βN , βp∗(dt/t)).(5.28)

where we put βp∗ = (dβp)−1. This follows immediately from checking the q-
expansions. Hence,

r(T`f)(E, βNp) = (T`f)(E, βN , βp∗(dt/t))(5.29)

=
1
`

∑
H⊂E

f(E/H, πH ◦ βN , ωH),(5.30)



122 4. p-ADIC ELLIPTIC MODULAR FORMS

where ωH is the differential induced from βp∗(dt/t) via E −→ E/H. That is, ωH =
(πH ◦ βp)∗(dt/t). On the other hand,

(T`r(f))(E, βNp) =
1
`

∑
H⊂E

r(f)(E/H, πH ◦ βNp)(5.31)

=
1
`

∑
H⊂E

r(f)(E/H, πH ◦ βN , (πH ◦ βp)∗(dt/t)).(5.32)

Formula (5.27) follows.

We defined for a modular form f

(< d > f)(E, βN , ω) = f(E, βN ◦ d, ω).(5.33)

We define for g ∈ R

(< d > g)(E, βNp) = (E, βN ◦ d, βp∗(dt/t)).(5.34)

Clearly,

r(< d > f) =< d > r(f).(5.35)

We defined for a modular form f

(V f)(E, βN , ω) = f(E(p), β
(p)
N , ω(p)).(5.36)

The scheme M(F, µNp) is a scheme defined over Fp. We thus have a Frobenius
morphism

Fr : M(F, µNp) −→M(F, µNp).(5.37)

Given a function g ∈ R we let

V g = g ◦ Fr.(5.38)

From a moduli perspective, since the point corresponding to (E(p), β
(p)
Np) is Fr of

the point corresponding to (E, βNp):

(V g)(E, βNp) = g(E(p), β
(p)
Np).(5.39)

In particular,

(V r(f))(E, βNp) = f(E(p), β
(p)
N , (β(p)

p )∗(dt/t))(5.40)

= f(E(p), β
(p)
N , (βp∗(dt/t))(p))(5.41)

= (V f)(E, βN , βp∗(dt/t))(5.42)

= r(V f)(E, βNp).(5.43)

That is,

r(V f) = V r(f).(5.44)

Given an elliptic curve E let E[V ] denote the kernel of Verschiebung. Given a
pair (E, βN ) (resp. (E, βNp)) we get a well-defined pair (E/E[V ], πE[v] ◦βN ) (resp.
(E/E[V ], πE[v] ◦ βNp)). We defined for a modular form f

(Uf)(E, βN , ω) = f(E/E[V ], πE[v] ◦ βN , ωE[V ]),(5.45)
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where ωE[V ] is the differential on E/E[V ] which is the image of ω under the sepa-
rable map πE[v] : E −→ E/E[V ]. We define for a function g ∈ R

(Ug)(E, βNp) = g(E/E[V ], πE[v] ◦ βNp).(5.46)

One easily verifies

r(Uf) = Ur(f).(5.47)

Finally, given a function g ∈ R we define

θg =
dg

KS(a(2))
.(5.48)

We explain our notation. There is a well known isomorphism, called the Kodaira-
Spencer isomorphism,

KS : (t∗EU/M(F,µN ))
⊗2 −→ Ω1

M(F,µN )/F(cusps),(5.49)

for every field k of characteristic prime to N . In particular, one can associate to
a modular form f of weight 2 over M(F, µN ) a differential KS(f) on that curve.
This differential is holomorphic iff the modular form is a cusp form.

Over the complex numbers this is very familiar: If f is a modular form of weight
2 (i.e. a section of (t∗EU/M(C,µN ))

⊗2) then f(τ)dτ is a meromorphic differential with
at most simple poles supported at the cusps. Indeed

f(γτ)dγτ = (cτ + d)2f(τ) · (cτ + d)a− (aτ + b)c
(cτ + d)2

dτ(5.50)

= f(τ)dτ.(5.51)

At i∞, if f(q) =
∑
n anq

n then q = exp(2πi·τ) implies dq/q = 2πi·dτ and therefore
f(τ)dτ = 2πi · f(q)(dq/q), which is holomorphic if and only if f is a cusp form.

The covering

M∗(Fp, µNp) −→M∗(Fp, µN )ord,(5.52)

of non-singular affine curves, extends uniquely to a covering of non-singular proper
curves

M†(Fp, µNp) −→M∗(Fp, µN ).(5.53)

Moreover, M†(Fp, µNp) may be defined intrinsically as M∗(Fp, µN )[a(1)] – the
scheme obtained from M∗(Fp, µN ) by adjoining the (p− 1)-st root of the section H
of the line bundle (t∗EU/derM∗(Fp,µNp))

⊗p−1.
The morphism M†(Fp, µNp) −→M∗(Fp, µN ) is thus a finite separable mor-

phism of degree p− 1, commuting with the action of (Z/pZ)× (in fact, M∗(Fp, µN )
is the quotient by this action), and its ramification divisor is (p−2)W1, where W1 is
the supersingular locus. In particular, it is totally ramified over the supersingular
locus.

Now, when dealing with level µNp, (N, p) = 1, in characteristic p, the Kodaira-
Spencer isomorphism needs to be modified. On the one hand, if we let f denote
the morphism M†(Fp, µNp) −→M∗(Fp, µN ) then

f∗(t∗EU/M(F,µN )) = t∗EU/M(F,µNp).(5.54)
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On the other, since the separable morphism f : M∗(Fp, µNp) −→M(Fp, µN ) is
completely (but tamely) ramified over the supersingular locus W1, we get

f∗Ω1
M∗(Fp,µN ) = Ω1

M†(Fp,µNp)((2− p)W1).(5.55)

(See [47, IV.2]). Putting it all together, we get an isomorphism

KS : (π∗t∗EU/M(F,µNp))
⊗2 −→ Ω1

M∗(Fp,µNp)(cusps + (2− p)W1).(5.56)

It follows that a(2) defines a differential whose order of vanishing along W1 is
p = 2 + (p− 2).

We claim that r(θf) = θr(f). This is readily checked via the q-expansions. If the
q-expansion of a function g is

∑
anq

n then θg has expansion (
∑
nanq

n−1dq)/(dq/q)
(the differential on the Tate curve corresponding to a(2) is dq/q). Thus,

r(θf) = θr(f).(5.57)

Some of the delicate behaviour of the operator θ can be explained by this interpre-
tation. First

Lemma 5.5. Let g ∈ Rk0 . Then the expansion of g around every supersingular
point P has the form

akP x
kP + akP+p−1x

kP+p−1 + akP+2(p−1)x
kP+2(p−1) + . . . ,(5.58)

where kP ≡ k0 (mod p− 1). The filtration of the q-expansion g(q) is

w(g(q)) = −min{kP : P ∈W1}.(5.59)

Proof. The shape of the Taylor expansion follows immediately from the fact
that every supersingular point is a fixed point of the group action (Z/pZ)× and
g ∈ Rk0 . The second fact is also evident, because a(b), as a modular form, vanishes
to order b at such point.

Corollary 5.6. Let f be a modular form of weight k and filtration w(f).
Then:

1. w(f) < k iff f vanishes along W1, or equivalently, H|f ;
2. w(V f) = p · w(f);
3. w(θf) ≤ w(f) + p+ 1 with equality holding iff p 6 |w(f).

Proof. The first assertion is immediate. Note that the Taylor expansion of
r(f) at a supersingular point P starts with x−k+t where t is not zero iff f vanishes
at P .

To see the effect of V , we note that the Taylor expansion of r(f) at some
supersingular point starts with a−w(f)x

−w(f) ( a−w(f) 6= 0) and at all other points
with terms of not smaller degree. The Taylor expansion of V r(f) starts at some
point with cx−pw(f), because V r(f) = r(f) ◦ Fr and at all other points with terms
of not smaller degree.

To prove the last assertion, note that if at some supersingular point r(f) has
expansion akP x

kP + akP+p−1x
kP+p−1 + akP+2(p−1)x

kP+2(p−1) + . . . then θr(f) has
expansion starting with ckxk−1−p (using that dg starts with kxk−1 and a(2) with
x−p). Thus, w(θf) ≤ w(f) + p+ 1 with equality iff p 6 |w(f).
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6. p-adic Elliptic Modular Forms

6.1. Test objects and overconvergent forms. Let B be a p-adic ring. By
that we mean that B ∼= lim

←−
B/pnB, and so, in particular, B is a Zp-algebra. Note

that examples are provided by the ring of integers R of a finite extension of Qp,
and by any quotient R/(πn) of R, where π is a uniformizer. One may take n = 1,
or more generally any field of characteristic p.

We fix:
• B – a p-adic ring. (“The base ring”).
• r – an element of B. (“The growth gauge”).

Definition 6.1. Let A be a p-adic ring which is a B-algebra. A test object of:

• level µN ,
• growth condition r,
• over B,

is a quadruple:

(E,ω, βN , Y )/A,(6.1)

such that:

• E/A is an elliptic curve, i.e. a proper, smooth group scheme over Spec(A),
such that the geometric fibers are connected curves of genus one;
• ω ∈ t∗E/A is a relative non-vanishing differential;
• βN : µN/A ↪→ E is an embedding of group schemes over Spec(A);
• Y ∈ A satisfies Y · Ep−1(E,ω) = r.

Example 6.2. 1. Given (E,ω, βN )/A, such Y need not exist. For example:
if r = 1 (or any unit) the condition is that Ep−1(E,ω) ∈ A×. This excludes
every elliptic curve E such that E (mod m) is supersingular, where m is a
maximal ideal. Indeed: the ring A is p-adic, so pA 6= A, and we take m to
be any maximal ideal. Note that if a ∈ pA then (1− a)−1 = 1 + a+ a2 + . . .
converges in A. Therefore pA is contained in the Jacobson radical of A.
That is, every maximal ideal contains pA. The reduction (E mod m, ω
mod m) is an elliptic curve together with a non-vanishing differential. Since
the reduction modulo p of Ep−1 is the Hasse invariant, it vanishes at all
supersingular elliptic curves over fields of characteristic p with any choice of
differential. Thus

(6.2) Ep−1(E,ω) (mod m) ≡ Ep−1(E mod m, ω mod m) = 0 mod m

iff E (mod m) is supersingular.

2. Examining the idea further, note that if Ep−1(E,ω) = p, then indeed it may
happen that p1/(p−1) ∈ A and then Ep−1(E, p1/(p−1)ω) = 1, but p

1
p−1ω is

not a non-vanishing differential over A. That is (E, p1/(p−1)ω) is not a test
object over A.

3. On the other extreme, if r = p, and say Ep−1(E,ω) = p, then (E,ω, βN , 1)
is a test object.

4. Given (E,ω, βN , Y )/A, any other Y is of the form Y +t, with t·Ep−1(E,ω) =
0. Note that if Ep−1(E,ω) is invertible, Y is uniquely determined.
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5. If (E,ω, βN , Y )/A is a test object, so is (E, λω, βN , λp−1Y )/A for λ ∈ A×.
Indeed,

(λp−1Y ) · (Ep−1(E, λω)) = λp−1Y λ−(p−1)Ep−1(E,ω) = r.(6.3)

Equivalently, a test object could be thought of as that data

(E, βN , Y )/A, Y ∈ (t∗E/A)−(p−1)(6.4)

such that Y · Ep−1 = r, where Ep−1 is interpreted as a rule associating to
E/A a section of (t∗E/A)p−1.

Definition 6.3. A p-adic modular form (à la Katz) of:
• weight k ∈ Z,
• level µN ,
• growth r,
• defined over B,

is a rule associating to a test object (of level µN and growth r) (E,ω, βN , Y )/A an
element f(E,ω, βN , Y ) ∈ A such that:

• f(E,ω, βN , Y ) depends only on the isomorphism class of the test object
(E,ω, βN , Y )/A;
• the rule f commutes with base change;
• for every λ ∈ A× and every test object (E,ω, βN , Y )/A

f(E, λω, βN , λp−1Y )/A = λ−kf(E,ω, βN , Y )/A.(6.5)

Definition 6.4. The space of modular forms over B, of µN -level, weight k
and growth condition r is denoted by F(B, k, µN ; r). If r 6∈ B×, they are called
overconvergent modular forms.

Given s ∈ B, we have a B-module homomorphism

F(B, k, µN ; sr) −→ F(B, k, µN ; r),(6.6)

f 7→ f ′, f ′(E,ω, βN , Y )/A = f(E,ω, βN , sY )/A.(6.7)

If s ∈ B×, then this is an isomorphism. Thus, whenever r ∈ B×, we might as well
take r = 1. We shall see in Corollary 6.15 that for r = 1 these are Serre’s p-adic
modular forms.

In the case r = 1, as we pointed out, we discard all elliptic curves with super-
singular reduction; but if we consider growth condition r 6∈ B×, it could very well
happen that the modular form in question is defined also on some portion of the
supersingular disks of the moduli space of elliptic curves with level µN -structure,
besides being defined on the complement. This is why such forms are called “over-
convergent”. To be precise, the very definition of the supersingular disks uses Ep−1

([14, Sections 1-2]). The disk of radius n may be defined as all the Qp points x of
M(Qp, µN ) such that Ex has good reduction modulo p and for one (equivalently,
any) differential ωx on Ex such that (Ex, ωx) has good reduction (i.e., ωx extends
to a non-vanishing differential over O

Qp
) we have |Ep−1(Ex, ωx)| ≤ p−n. In fact the

growth r actually controls the growth of the coefficients of the Laurent expansions
of these forms around the supersingular disks.
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Every classical modular form f of weight k, level N , over B defines a p-adic modular
form (still denoted f) in F(B, k, µN ; r):

f(E,ω, βN , Y )/A := f(E,ω, βN )/A.(6.8)

As an example of a truly p-adic modular form, consider the modular form in F(B, 1−
p, µN ; r) given by:

f(E,ω, βN , Y )/A = Y.(6.9)

This is indeed a p-adic modular form. The requirement on base change and iso-
morphism class being obvious. By definition,

f(E, λω, βN , λp−1Y ) = λp−1Y = λ−(1−p)f(E,ω, βN , Y ).(6.10)

Therefore, the weight is 1− p.
If r = 1, then Y · Ep−1(E,ω) = 1, i.e.,

Y =
1

Ep−1
.(6.11)

We remark that this is also a modular form à la Serre (Exercise 4.4).

6.2. q-expansion for p-adic modular forms. If Ep−1(E,ω) is invertible,
then in any test object (E,ω, βN , Y ) we must take Y = r · Ep−1(E,ω)−1. This
applies in particular to the Tate curve Tate(q) = Gm/q(Z) over B. The Tate curve
carries a canonical µN -level:

βcan : µN ↪→ Gm −→ Tate(q),(6.12)

and a canonical differential ωcan induced from the differential dt/t on Gm. The
cusp (Tate(q), βcan) is called the standard cusp.

Definition 6.5. Let f be a p-adic modular form,f ∈ F(B, k, µN ; r). The q-
expansion of f is

f

(
Tate(q), ωcan, βcan,

r

Ep−1(Tate(q), ωcan)

)
∈ B((q)).(6.13)

Similarly, for any cusp (Tate(q), βN ) we define the q-expansion of f by

f

(
Tate(q), ωcan, βN ,

r

Ep−1(Tate(q), ωcan)

)
∈ B((q)).(6.14)

We call f holomorphic (respectively, cusp) form if all its q-expansion lies in
B[[q]] (respectively, in q ·B[[q]]] at every cusp). We denote the holomorphic (resp.
cusp) forms by

M(B, k, µN ; r) (resp. S(B, k, µN ; r)).(6.15)

Proposition 6.6. Take any X ∈ {F,M,S}. Then

X(B, k, µN ; r) = lim
←−

X(B/pnB, k, µN ; r).(6.16)

Proof. All our objects are p-adic: B = lim
←−

B/pnB, and to give an elliptic
curve over A is equivalent to giving an inductive system

E1/(A/pA) ↪→ E2/(A/p2A)
↪→ E3/(A/p3A)

↪→ . . . .(6.17)
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We offer some remarks:

1. The q-expansion of a p-adic modular form f ′ induced from a classical mod-
ular form f as in (6.8) is the same q-expansion as of f .

2. The q-expansion is injective. See Corollary 6.13.

6.3. The case when p is nilpotent. In this section we let p ≥ 5 be a prime
and N ≥ 4 is an integer prime to p. As before B be a p-adic ring. We now assume
further that p is nilpotent in B.

We use our usual notation

M(B, k, µN )(6.18)

for classical holomorphic modular forms over B, of µN -level structure and weight
k. We denote by

F(B, k, µN )(6.19)

the classical modular forms over B, of µN -level structure and weight k with possible
poles at infinity. As above, F(B, k, µN ; r) is the space of p-adic modular forms with
growth r. Given j ≥ 0, define a map:

F(B, k + j(p− 1), µN ) −→ F(B, k, µN ; r)(6.20)

f 7→ f̃ , f̃(E,ω, βN , Y )/A = Y jf(E,ω, βN ).(6.21)

We claim that f̃ is a p-adic modular form of weight k. Indeed

f̃(E, λω, βN , λp−1Y ) = (λp−1Y )jf(E, λω, βN )

= λj(p−1)Y jλ−(k+j(p−1))f(E,ω, βN )

= λ−kf̃(E,ω, βN , Y ).

(6.22)

(Alternately, Y j is a modular form of weight −j(p − 1). See (6.10)). Under this
map, Ep−1f is sent to Ẽp−1f , and

Ẽp−1f(E,ω, βN , Y ) = Y j+1f(E,ω, βN ) · Ep−1(E,ω, βN )

= r · Y jf(E,ω, βN )

= r · f̃ .

(6.23)

Therefore, we have obtained a well-defined homomorphism of B-modules as follows:(
⊕
j≥0
F(B, k + j(p− 1), µN )

)
/(Ep−1 − r) −→ F(B, k, µN ; r).(6.24)

Here (Ep−1−r) stands for the submodule generated by {(Ep−1−r)f : f ∈ F(B, k+
j(p− 1), µN )}.

Proposition 6.7. The map(
⊕
j≥0
F(B, k + j(p− 1), µN )

)
/(Ep−1 − r)

∼=−→ F(B, k, µN ; r)(6.25)

is an isomorphism.
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Proof. Consider the functors:

F1:

A ∈ B-algebra 7→ F1(A),(6.26)

where F1(A) consists of isomorphism classes of the following data:

• (E, βN , Y )/A,
• Y ∈ ω−(p−1)

E , such that Y · Ep−1 = r,

where ωE = t∗E/A.
This functor is equivalent to the functor associating to A ∈ B-algebra the

following data:

• g : Spec(A) −→M(B,µN ),
• Y ∈ g∗(L), such that Y · g∗Ep−1 = r,

where L = ω−(p−1), ω = t∗EU/M(B,µN ).

The functor F1 is a subfunctor of F2:

F2:

A ∈ B-algebra 7→ F2(A),(6.27)

where F2(A) consists of isomorphism classes of the following data:

• (E, βN , Y )/A,
• Y ∈ ω−(p−1)

E ,

which is by the same token equivalent to the functor associating to A the following:

• g : Spec(A) −→M(B,µN ),
• Y ∈ g∗(L).

The last functor is representable by the M(B,µN )-scheme Spec(S(L∨)).7 The
condition that a section Y satisfies Y ·g∗(Ep−1) = r is exactly that locally, if the ho-

momorphism Spec(S(L∨)) −→M(B, µN) describing Y is given by Ai[x1] Y−→ Ai,
we have Y (Ep−1) = Y · Ep−1 = r.

Hence F1 is representable by the M(B,µN ) scheme:

α = Spec(S(ωp−1)/(Ep−1 − r)) ↪→ Spec(S(ωp−1)) −→M(B,µN ).(6.28)

We write f : α −→M(B,µN ).

7The notation is as follows: for a line bundle L −→ X we let L∨ = L−1 denote the dual line

bundle on X. We let S(L) denote the sheaf of symmetric algebra on X constructed from L. We
let Spec(S(L∨)) −→ X denote the associated affine morphism. See [47, Exercises II 5.16-5.18].
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We may identify the space F(B, k, µN ; r) of p-adic modular forms over B of
weight k with growth r as follows:

F(B, k, µN ; r) = H0(α, f∗ωk)

(6.29)

= H0(M(B,µN ), ωk ⊗ f∗Oα) (Leray’s spectral seq., [47, Ex. III, 4.1])(6.30)

= H0
(
M(B,µN ), ωk ⊗⊕∞j=0ω

j(p−1)/(Ep−1 − r)
)

(6.31)

= H0
(
M(B,µN ),⊕∞j=0ω

k+j(p−1)/(Ep−1 − r)
)

(6.32)

=∗ H0
(
M(B,µN ),⊕∞j=0ω

k+j(p−1)
)
/(Ep−1 − r)(6.33)

= ⊕∞j=0F(B, k + j(p− 1), N)/(Ep−1 − r).(6.34)

Let us explain the equality marked by ∗. Note that b = ⊕∞j=0ω
k+j(p−1) is quasi-

coherent sheaf on the affine scheme M(B,µN ). We have an exact sequence:

0 −−−−→ b
×(Ep−1−r)−−−−−−−→ b −−−−→ b/(Ep−1 − 1) −−−−→ 0 .(6.35)

Since all higher cohomology of quasi-coherent sheaves on affine schemes vanish we
get an exact sequence:

(6.36) 0 −→ H0(M(B,µN ), b)
×(Ep−1−r)−→ H0(M(B,µN ), b)

−→ H0(M(B,µN ), b/(Ep−1 − r)) −→ 0 .

A similar argument, using the compactified curve M∗(B,µN ) gives

M(B, k, µN ; r) = H0
(
M∗(B,µN ), (⊕∞j=0ω

k+j(p−1))/(Ep−1 − r)
)
.(6.37)

Though (⊕∞j=0M(B, k+j(p−1), µN ))/(Ep−1−r) is contained in this space, generally
they are not equal. However, when r is a p-adic unit they are.

Proposition 6.8. Let r be a p-adic unit. Then

M(B, k, µN ; r) ∼=
(
⊕∞j=0M(B, k + j(p− 1), µN )

)
/(Ep−1 − r),(6.38)

and

S(B, k, µN ; r) ∼=
(
⊕∞j=0S(B, k + j(p− 1), µN )

)
/(Ep−1 − r).(6.39)

Proof. The idea is to use the affine curve

M(B,µN )ord := M∗(B,µN )− {supersingular locus}(6.40)

instead of the affine curve M(B,µN ) used before. We may assume without loss of
generality that r = 1. Consider:
F1: The functor associating to a B-algebra A the data:

• g : Spec(A) −→M∗(B,µN ),
• Y ∈ g∗(L) such that Y · g∗Ep−1 = 1,

where L = ω−(p−1).

F2: The functor associating to a B-algebra A the data:
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• g : Spec(A) −→M∗(B,µN ),
• Y ∈ g∗(L).

The functor F1 is a subfunctor of the functor F2, which is represented by the scheme

Spec(S(L∨)) −→M∗(B,µN ).(6.41)

A similar reasoning gives that F1 is represented by the scheme

β = Spec(S(L∨)/(Ep−1 − 1)) −→M∗(B,µN ).(6.42)

Still better, the structural morphism of β factors through M(B,µN )ord. Thus F1

is represented by

f : β −→M(B,µN )ord.(6.43)

Let ω denote the sheaf of modular forms on Mord(B,µN ). Let X be one of the
symbols M,S. We define a sheaf b by

X =

{
ωk X = M

ωk(−cusps) X = S

.(6.44)

Then

X(B, k, µN , 1) = H0(β, b)(6.45)

= H0(M(B,µN )ord, b⊗ f∗Oβ)(6.46)

= H0
(
M(B,µN )ord, b⊗ (⊕∞j=0ω

j(p−1))/(Ep−1 − 1)
)

(6.47)

= H0
(
M(B,µN )ord, b⊗⊕∞j=0ω

j(p−1)
)
/(Ep−1 − 1)(6.48)

= ⊕∞j=0X(B, k + j(p− 1), µN )/(Ep−1 − 1).(6.49)

Here X = M (resp. S) if X = M (resp. S), and the equalities follows from the
same considerations as in the proof of Proposition 6.7.

6.4. The case of r a unit. An immediate consequence of the Propositions 6.7
and 6.8 is the following

Theorem 6.9. Let N ≥ 4 be an integer. Let p ≥ 5 be prime and let B be a
p-adic ring. Let r ∈ B×. Then

M(B, k, µN ; r) = lim
←−
n

(
⊕∞j=0M(B/pnB, k + j(p− 1), µN )

)
/(Ep−1 − r),(6.50)

and

S(B, k, µN ; r) = lim
←−
n

(
⊕∞j=0S(B/pnB, k + j(p− 1), µN )

)
/(Ep−1 − r).(6.51)

Note that we could have equally written

M(B, k, µN ; r) = lim
←−
n

(
⊕∞j=0M(Z, k + j(p− 1), µN )⊗B/pnB

)
/(Ep−1 − r),

(6.52)

and

S(B, k, µN ; r) = lim
←−
n

(
⊕∞j=0S(Z, k + j(p− 1), µN )⊗B/pnB

)
/(Ep−1 − r).(6.53)
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Note that the sums appearing on the right hand sides are not finite anymore. To
gain some firm grip on the space of p-adic modular form we introduce a kind of
“basis” for that space. This is the topic of the next section.

6.5. Katz’s expansion. Consider the map:

M(Zp, k + j(p− 1), µN )
×Ep−1−→ M(Zp, k + (j + 1)(p− 1), µN ).(6.54)

We note that upon reduction modulo p this map is injective, as is obvious from
looking at q-expansions. This implies:

• The map in (6.54) is injective.
• The map in (6.54) splits.

We choose complements:

(6.55) M(Zp, k + (j + 1)(p− 1), µN ) =

Ep−1 · M(Zp, k + j(p− 1), µN ) ⊕ A(Zp, k + (j + 1)(p− 1), µN ).

(A(Zp, k, µN ) = M(Zp, k, µN )). We may tensor with B and we get the same
equality with B-coefficients. Then

j
⊕
j=0

A(B, k + a(p− 1), µN ) ∼=M(B, k + j(p− 1), µN );(6.56)

the map given by

(f0, . . . , fj) 7→
j∑

a=0

fa · Ej−ap−1 .(6.57)

Consider the p-adically complete B-module:

(6.58) Arigid(B, k, µN ) ={ ∞∑
a=0

ba : ba ∈ A(B, k + a(p− 1), µN ), ba −→ 0 p-adically uniformly

}
.

(i.e. ∀n,∃c(n) such that a > c(n) implies pn|ba). If B is a d.v.r. with quotient field
K then taking Arigid(B, k, µN ) to be the unit ball in Arigid(K, k, µN ) we get that
Arigid(K, k, µN ) is a p-adic Banach space.

Proposition 6.10. (Katz’s expansion) For every growth condition r there
exists an isomorphism:

Arigid(B, k, µN ) ∼−→
ψ
M(B, k, µN ; r)(6.59)

given by
∞∑
a=0

ba 7→ �
∞∑
a=0

raba/E
a
p−1 �,(6.60)

where the right hand side stands for the p-adic modular form whose value on a test
object (E,ω, βN , Y )/A (where Y · Ep−1(A,ω) = r) is:

�
∞∑
a=0

ba/E
a
p−1 � (E,ω, βN , Y ) =

∞∑
a=0

Y aba(E,ω, βN ).(6.61)
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Proof. One easily sees that ψ is a well-defined continuous homomorphism of
B-modules (in particular, the sum on the right hand side converges). Note that
M(B, k, µN ; r) is the p-adic completion of

(
⊕∞j=0M(B, k + j(p− 1), µN )

)
/(Ep−1−

r).
Consider the following diagram:

Arigid(B, k, µN )
ψ // M(B, k, µN ; r)

j
⊕
a=0

A(B, k + a(p− 1), µN )
η //

ξ

OO

M(B, k + j(p− 1), µN )

φ

OO
.(6.62)

In this diagram:

η(
j∑

a=0

ba) =
j∑

a=0

ba · Ej−ap−1 (an isomorphism);(6.63)

ξ(
j∑

a=0

ba) =
j∑

a=0

ba (the natural inclusion);(6.64)

ψ(
∞∑
a=0

ba)(E,ω, βN , Y ) =
∞∑
a=0

Y aba(E,ω, βN );(6.65)

φ(f)(E,ω, βN , Y ) = Y j · f(E,ω, βN ).(6.66)

The diagram commutes:

φ(η(
j∑

a=0

ba))(E,ω, βN , Y ) = φ(
j∑

a=0

ba · Ej−ap−1)(E,ω, βN , Y )(6.67)

= Y j(
j∑

a=0

baE
j−a
p−1)(E,ω, βN )(6.68)

=
j∑

a=0

Y aba(E,ω, βN )(6.69)

= ψ(ξ(
j∑

a=0

ba))(E,ω, βN , Y ).(6.70)

Now, every element x of M(B, k, µN ; r) can be written as

∞∑
j=0

sj , sj ∈M(B, k + j(p− 1), µN ), sj −→ 0 p-adically.(6.71)

Note that when we say
∑∞
j=0 sj ∈M(B, k, µN ; r), we really mean that as a function

whose values on a test object are given by (
∑
sj)(E,ω, βN , Y ) :=

∑
Y jsj(E,ω, βN ).

Hence, this element really is ψ(
∑
sj) if the sum belongs to Arigid(B, k, µN ) !
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Improving on Equation (6.71), one can write x as:
∞∑
j=0

sj , sj ∈ A(B, k + j(p− 1), µN ).(6.72)

Moreover, still sj −→ 0 p-adically. Indeed, if pN divides sj = aj + bj , where aj ∈
A(B, k+j(p−1), µN ) and bj ∈ Ep−1 ·M(B, k+(j−1)(p−1), µN ) then pN |bj . Thus,
collecting terms backwards does not destroy convergence! sj −→ 0 p-adically, and
thus

∑∞
j=0 sj ∈ Arigid(B, k, µN ). This shows that ψ is surjective.

To prove the injectivity of ψ, assume that ψ(
∑∞
a=0 ba) = 0. Fix an integer N0.

Then for some N1 we have a > N1 ⇒ pN0 |ba. Thus

ψ(
N1∑
a=0

ba) ≡ 0 (mod pN0).(6.73)

However, ψ(
∑N1
a=0 ba) = φ(η(

∑N1
a=0 ba)) = φ(

∑N1
a=0 baE

N1−a
p−1 ). Therefore,

φ(
N1∑
a=0

baE
N1−a
p−1 ) ≡ 0 (mod pN0).(6.74)

But,

(6.75) M(B, k +N1(p− 1), µN )/(pN0) =M(B/(pN0), k +N1(p− 1), µN ) ↪→
M(B/(pN0), k, µN ; r) = M(B, k, µN ; r)/(pN0).

Thus
∑N1
a=0 ba ≡ 0 (mod pN0), and hence

∑∞
a=0 ba ≡ 0 (mod pN0) for every N0.

This implies
∑∞
a=0 ba = 0.

Corollary 6.11. Let r2 = rr1. Then the natural map

M(B, k,N ; r2) −→M(B, k,N ; r1),(6.76)

(given by f 7→ f ′ and f ′(E,ω, βN , Y ) = f(E,ω, βN , rY )) is given by
∞∑
a=0

ba 7→
∞∑
a=0

raba(6.77)

and is thus injective.

6.6. Properties of q-expansions of p-adic modular forms.

Proposition 6.12. Let b ∈ B be an element dividing a positive power of p.
Let f ∈M(B, k, µN ; 1). The followings assertions are equivalent:

1. f ∈ b ·M(B, k, µN ; 1).
2. The q-expansion of f lies in b ·B[[q]].

Proof. Since the q-expansion is B-linear, the implication 1 =⇒ 2 is clear.
Now, let us prove 2 =⇒ 1. Note that

M(B/bB, k, µN ; 1) = Arigid(B/bB, k, µN ) = Arigid(B, k, µN )/bArigid(B, k, µN ).
(6.78)

Thus, replacing B by B/bB, we may assume that b = 0 and that p is nilpotent in
B. We aim to prove that the q-expansion map is injective.
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For p nilpotent, f is a finite sum
∑d
a=0 ba, ba ∈ A(B, k+ a(p− 1), µN ), and its

q-expansion is

f(Tate(q), ωcan, βcan, E−1
p−1) =

d∑
a=0

E−ap−1 · (q − expansion of ba)(6.79)

=
d∑
a=0

q − expansion of (Ed−ap−1 · ba)
Edp−1

,(6.80)

so the q-expansion of
∑d
a=0E

d−a
p−1 · ba is zero. By the q-expansion principal for

classical modular forms
∑d
a=0E

d−a
p−1 · ba is zero. This implies that each ba is zero,

because (b0, . . . , bd) ∈
∑M
a=0A(B, k + a(p− 1), µN ) ∼=M(B, k + d(p− 1), µN ).

Corollary 6.13. The q-expansion map on p-adic modular forms is injective.

Theorem 6.14. Let f(q) ∈ B[[q]] be a power series. The following assertions
are equivalent:

1. f(q) is the q-expansion of an element f ∈M(B, k, µN ; 1).
2. For all n, there exists a positive integer M(n), M(n) ≡ 0 mod pn−1, and

a classical modular form gn ∈ M(B, k + M(n)(p − 1), µN ) such that the
q-expansion gn(q) ≡ f(q) mod pn.

Proof. First, let us show that 2 =⇒ 1. Writing Ep−1(q) = 1 + px, we see
that Ep

n−1

p−1 ≡ 1 mod pn. Now, multiplication of gn by Ep
n−1

p−1 changes the weight
by (p−1)pn−1, so we can assume M(n) is increasing. Let ∆(n) ≡M(n+1)−M(n),
so

gn+1 − gn · E∆(n)
p−1 ∈ pn · M(B, k + (p− 1)M(n+ 1), µN ),(6.81)

(since ∆(n) ≡ 0 mod pn−1).
Hence, g0 +

∑∞
a=0(ga+1 − ga · E∆(a)

p−1 ) ∈M(B, k, µN ; 1). Modulo pn this sum is

g0 + (g1 − g0E
∆(0
p−1)) + · · ·+ (gn − gn−1 · E∆(n−1)

p−1 ).(6.82)

But Ep−1 = 1 in M(B, k, µN ; 1), so the telescopic sum is equal to gn. Hence, the
q-expansion is lim gn(q) = f(q).

The implication 1 =⇒ 2 can be proved as follows: Let f ∈ M(B, k, µN ; 1).
Then

f = ψ(
∞∑
a=0

ba), ba ∈ A(B, k + a(p− 1), µN ).(6.83)

Consider cn = ψ(
∑n
a=0 ba) = φ(η(

∑n
a=0 ba)) ∈M(B, k+n(p−1), µN ). Take M(n)

to be suitably increasing powers of p and gn = cM(n).

Corollary 6.15. Serre’s p-adic modular forms of weight k ∈ Z are the same
as p-adic modular forms à la Katz of growth condition 1: M(B, k, µN ; 1).

7. The Ring of Divided Congruences

In this section we follow Katz [59]. Let p ≥ 5 be a prime number and let k be
a perfect field of characteristic p. We fix the following notation
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W (k)
the ring of infinite Witt vectors over k.

Wm(k) the ring of Witt vectors of length m over k (equal to
W (k)/pmW (k)).

N an integer ≥ 3 and prime to p (auxiliary level).
ζ a fixed root of unity of order N in k (or in W (k) via the

Teichmüller lift).
M(W (k), N) the fine moduli scheme of elliptic curves over W (k) alge-

bras with symplectic levelN structure ((Z/nZ)2 ∼= E[N ]
s.t. the symplectic pairing given by < (1, 0), (0, 1) >= ζ
corresponds to the Weil pairing).

M∗(W (k), N) the canonical compactification of M(W (k), N) obtained
by adding cusps.

M0
m is M(Wm(k), N) = M(W (k), N)⊗W (k) Wm(k).

S0
m is the open subscheme of M0

m where the Hasse invariant
is invertible.

Mm is M∗(Wm(k), N) = M∗(W (k), N)⊗W (k) Wm(k).
Sm is the open subscheme of Mm where the Hasse invariant

is invertible.
We remark that the schemes Sm and S0

m are affine and that the structural mor-
phisms Sm −→Wm(k) and S0

m −→Wm(k) are smooth with an irreducible special
fiber. We have the compatibilities:

Sm = Sm+1 ⊗Wm+1(k) Wm(k), S0
m = S0

m+1 ⊗Wm+1(k) Wm(k).(7.1)

We let

Tm,n −→ Sm(7.2)

be the étale covering of µpn -level: βpn : µpn ↪→ E. That is, Tm,n represents
the moduli functor of elliptic curves over Wm(k)-algebras with symplectic level N
structure and µpn structure. The covering Tm,n −→ Sm is thus Galois with Galois
group (Z/pnZ)×. It follows that Tm,n is an affine scheme and that the morphism
Tm,n −→Wm(k) is smooth. We have the compatibility

Tm,n = Tm+1,n ⊗Wm+1(k) Wm(k).(7.3)

The schemes T1,n appeared before in Section 6. We offer a panoramic view:
...

...
...y y y

T1,3 −−−−→ T2,3 −−−−→ T3,3 −−−−→ . . .

Z/pZ

y y y
T1,2 −−−−→ T2,2 −−−−→ T3,2 −−−−→ . . .

Z/pZ

y y y
T1,1 −−−−→ T2,1 −−−−→ T3,1 −−−−→ . . .

(Z/pZ)×
y y y
S1 −−−−→ S2 −−−−→ S3 −−−−→ . . .

.(7.4)
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The horizontal arrows are all closed immersions. The vertical arrows are all étale
Galois coverings. Let Vm,n be the ring of regular functions on Tm,n. We get the
dual diagram, with horizontal arrows being surjective and vertical arrows being
inclusions.

...
...

...x x x
V1,3 ←−−−− V2,3 ←−−−− V3,3 ←−−−− . . .x x x
V1,2 ←−−−− V2,2 ←−−−− V3,2 ←−−−− . . .x x x
V1,1 ←−−−− V2,1 ←−−−− V3,1 ←−−−− . . .x x x
V1,0 ←−−−− V2,0 ←−−−− V3,0 ←−−−− . . .

.(7.5)

Note that

Vm+1,n/p
mVm+1,n

∼= Vm,n.(7.6)

We let

Tm,∞ = lim
←−
n

Tm,n, T∞,∞ = lim
−→
m

Tm,∞.(7.7)

We remark that the scheme T∞,∞ represents the functor of W (k)- algebras

R 7→ Iso. classes of (E, βp∞ : Ĝm
∼=−→ Ê).(7.8)

Let

Vm,∞ = lim
−→
n

Vm,n, V∞,∞ = lim
←−
m

Vm,∞.(7.9)

Note that

Vm+1,∞/p
mVm+1,∞ ∼= Vm,∞.(7.10)

The rings Vm,n are smooth Wm algebras and via the standard cusp we have

Vm,n ⊂Wm[[q]].(7.11)

Lemma 7.1. The cokernel Wm[[q]]/Vm,n is a flat Wm-module.

Proof. Since Wm is a local ring, the assertion amounts to

p · f(q) ∈ Vm,n ⇒ f(q) ∈ Vm,n.(7.12)

Let g ∈ Vm,n with a q-expansion p · f(q). Now

Vm,n ⊗Wm
W1 = Vm,n ⊗Wm

k = V1,n ↪→ k[[q]].(7.13)

Thus g is zero modulo pVm,n.
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Corollary 7.2. For m ≤ ∞ we have an injection

Vm,∞ ↪→Wm[[q]](7.14)

with a Wm flat cokernel.

Consider the group scheme µpn /A = Spec A[x]/(xp
n − 1). Let B = A[x]/(xp

n − 1).
Then

Ωµpn/Spec(A) = ΩB/A(7.15)

is the B-module generated by dx with the relation d(xp
n − 1) = 0. That is, ΩB/A

is the B-module

B[x]/(xp
n

− 1, pnxp
n−1).(7.16)

It is free over B iff pn = 0 in B.
We conclude that the schemes Tm,n with m ≤ n are special in that that the

level structure

βpn : µpn /R −→ A/R, R ∈Wm −Alg,(7.17)

induces an isomorphism

t∗µpn/R
∼= t∗A/R.(7.18)

In particular, there exists a canonical modular form of weight 1, a(1) on Tm,n for
m ≤ n corresponding to the image of the canonical generator dx/x of t∗µpn/R.

Exercise 7.3. Prove that under the maps

Tm,n+1 −→ Tm,n m ≤ n(7.19)

and

Tm,n −→ Tm+1,n m+ 1 ≤ n(7.20)

the modular forms a(1) agree. Conclude that there exists a modular form of weight
1 on the schemes Tm,∞ and T∞,∞.

We let

a(i) := a(1)i,(7.21)

denote the modular form of weight i on the scheme Tm,n with m ≤ n (including
m =∞).

For every m let

Rm = ⊕
k≥0

Γ(Mm, ω
k)(7.22)

be the graded ring of classical modular forms on the scheme Mm (ω = π∗t
∗
EU/Mm

).
Let

R∞ = ⊕
k≥0

Γ(M,ωk),(7.23)

be the graded ring of classical modular forms on the scheme M .
Now, fix m and define a homomorphism

rm : Rm −→ Vm,m ↪→ Vm,∞,(7.24)
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by

rm(
∑

fi) =
∑

fi/a(i), fi ∈ T (Mm, ω
i).(7.25)

We define

r∞ : R∞ −→ V∞,∞,(7.26)

by the composition

R∞ −−−−→ lim
←−
m

Rm
lim
←−

rm

−−−−→ lim
←−
m

Vm,m = V∞,∞ .(7.27)

Since the q-expansion of a(1) is one at the standard cusp, the q expansion of
rm(

∑
fi) is just

∑
fi(q), where fi(q) is the q-expansion of fi and it belongs to

Wm[[q]].
Let

Im,m1CRm(7.28)

be the ideal of Rm consisting of all sums
∑
fi such that

∑
fi(q) ≡ 0 (mod pm1) at

the standard cusp.

Lemma 7.4. Let
∑
fi ∈ Im,m1 , then the q expansion

∑
fi(q) with respect to

any cusp satisfies
∑
fi(q) ≡ 0 mod pm1 .

Proof. We are given that rm(pm−m1
∑
fi), which is a function on the irre-

ducible scheme Tm,m, is expressed in the local ring a certain point (i.e., the one
belonging to the standard cusp) by zero. Therefore, the function rm(pm−m1

∑
fi)

is zero, and hence is zero in every local ring on Tm,m. In particular, it is zero in
the local ring of any other cusp. That is, all its q-expansions are zero.

Corollary 7.5. Let
∑
fi ∈ Im,m1 . Then for all a ∈ (Z/pmZ)×∑
aifi(q) ∼= 0 mod pm1 .(7.29)

Proof. The Galois action of (Z/pmZ)× on Vm,m is best described on points:
The effect of a ∈ (Z/pm/Z)× is (E, βpn) 7→ (E, βpn ◦ a). As in the proof of Theo-
rem 5.2 one verifies that rm is equivariant with respect to this action when we let
a act on a modular form of weight i by ai.

Let
∑
fi ∈ Im,m1 (m1 ≤ m). Then pm−m1rm(

∑
fi) is zero in Vm,m1 . Since

Wm[[q]]/Vm,m1 is a flat Wm-module, there exists an h ∈ Vm,m1 such that

rm(
∑

fi) = pm1h.(7.30)

The function h is unique modulo pm−m1 and we obtain a well defined homomor-
phism

γm1 : Im,m1 −→ Vm−m1,m ⊂ Vm−m1,∞.(7.31)

We write symbolically,

γm1 =
1
pm1

rm.(7.32)

Passing to the limit, we get a homomorphism

γm1 : I∞,m1 −→ V∞,∞.(7.33)
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If
∑
fi ∈ I∞,m1 then

∑
fi ∈ R∞ = ⊕kΓ(M,ωk) and

∑
fi(q) ≡ 0 (mod pm1);

furthermore,

(γm1(
∑

fi))(q) =
1
pm1

∑
fi(q).(7.34)

We have the following diagram

R∞ −−−−→ 1
pI∞,1 −−−−→

1
p2 I∞,2 −−−−→ . . . −−−−→ D ⊂ R∞

[
1
p

]
yr∞ yp·γ1

yp2·γ2 . . .
yβ

V∞,∞ −−−−→ V∞,∞ −−−−→ V∞,∞ −−−−→ . . . −−−−→ V∞,∞

.(7.35)

(Horizontal arrows being the natural inclusions). The Zp-algebra D is precisely

the elements in R∞
[

1
p

]
with p-integral q-expansion. It is called the ring of divided

congruences.

Theorem 7.6. For every m, the map

β(m) : D/pmD −→ V∞,∞/p
mV∞,∞ = Vm,∞,(7.36)

induced from β, is an isomorphism.

Proof.

• β(m) is injective.
Let

∑
fi ∈ p−nI∞,n be in the kernel of β(m). Then

∑
fi(q) ≡ 0 (mod pm).

Therefore,
∑
fi ∈ p−nI∞,n+m = pm(p−n−mI∞,n+m) ⊂ pmD.

• β(m) is surjective.
We claim that if β(1) : D/pD −→ V1,∞ is surjective then β(m) : D/pmD −→ Vm,∞
is surjective. Indeed, if β(1) : D/pD −→ V1,∞ is surjective and x ∈ Vm,∞, there
exists an element g ∈ D such that β(m)(g) ≡ x (mod pVm,∞). Therefore β(m)(g)−
x = px1 for some x1 ∈ Vm,∞, etc.. The process stops because p is nilpotent in Vm,∞.
It remains to show that

• β(1) is surjective.
We know that the composition

R∞ −→ V1,∞ −→ V1,1(7.37)

is surjective (see the proof of Theorem 5.2). We shall abuse notation and denote
this map by β(1) as well.

Artin-Schreier theory says the following: Let A be a ring of characteristic p
(e.g. A = V1,n) and B ⊃ A a finite étale A algebra with Galois group Z/pZ (e.g.
B = V1,n+1), then there exists b ∈ B such that: (i) bp − b ∈ A; (ii) ` ∈ Z/pZ acts
by b 7→ b+ `. Such an element b is unique up to addition of elements from A. Note
that any element b ∈ B such that b 7→ b+ 1 under some element of Z/pZ generated
B as an A-module. We call such an element an Artin-Schreier generator for B over
A.

We next note that the group Z×p acts on D. First, Z×p acts on R∞[1/p] by

[a](
∑

fi) =
∑

aifi.(7.38)

By Corollary 7.5 the action preserves D.
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Lemma 7.7. (Key Lemma) Let n ≥ 1. There exists an element dn ∈ D such
that for every k ≥ 0

[1 + pn+k](dn) ≡ dn + pkEp−1 (mod pk+1D).(7.39)

We first explain how the Theorem follows from the Key Lemma. We know that

β(1) : R∞ � V1,1.(7.40)

It follows that for n ≥ 1 we have

V1,n+1 = V1,n[β(1)(dn)],(7.41)

where dn is the element provided by the Key Lemma. Indeed,

[1 + pn+1](dn) ≡ dn + pEp−1 (mod p2D)(7.42)

and

dn + pEp−1 ≡ dn (mod pD),(7.43)

whence β(1)(dn) ∈ V1,n+1 (because Aut(V1,n+1/V1,n) = (1 + pnZp)/(1 + pn+1
Zp)).

Similarly,

[1 + pn](dn) ≡ dn + Ep−1 ≡ dn + 1 (mod pD).(7.44)

Thus, dn is an Artin-Schreier generator for V1,n+1 over V1,n and (7.41) follows.
Therefore, the map

β(1) : R∞ −→ V1,n(7.45)

is surjective for every n and that implies that

β(1) : R∞ −→ V1,∞(7.46)

is surjective because R∞ is p-adically complete.

Proof of Key Lemma. The proof is by induction on n. For n = 1 take

d1 =
1− Ep−1

p
.(7.47)

We calculate that for a suitable integer c

[1 + p1+k](d1) = [1 + p1+k]
(

1− Ep−1

p

)
(7.48)

=
1− (1 + p1+k)p−1Ep−1

p
(7.49)

=
1− Ep−1

p
− (p− 1)p1+kEp−1

p
− p2+2k

p
· c · Ep−1(7.50)

= d1 + pkEp−1 (mod pk+1D).(7.51)

Suppose that d1, . . . , dn were constructed. As noted, for ` ≤ n
V1,`+1 = V1,`[β(1)d`], (β(1)d`)− (β(1)d`)p ∈ V1,`.(7.52)

Thus,

V1,n = β(1)(R∞[d1, . . . , dn−1]),(7.53)

and

(β(1)dn)− (β(1)dn)p = β(1)cn(7.54)
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for some cn ∈ R∞[d1, . . . , dn−1]. Hence, dn − dpn − cn ∈ Ker(β(1)) = pD. We let

dn+1 =
dn − dpn − cn

p
.(7.55)

It is an element of D. We check the Galois action. First:

(7.56) [1 + p(n+1)+k](dn+1) =

[1 + p(n+1)+k](dn)−
(
[1 + p(n+1)+k](dn)

)p − [1 + p(n+1)+k](cn)
p

.

On the other hand, by induction,
• [1 + pn+(1+k)](dn) ≡ dn + pk+1Ep−1 (mod pk+2D).
•
(
[1 + pn+(1+k)](dn)

)p ≡ dpn (mod pk+2D) .
• [1 + pn+(1+k)](cn) ≡ cn (mod pk+2D) (true for any c ∈ R∞[d1, . . . , dn]).

Put together this yields

[1 + p(n+1)+k](dn+1) ≡ dn − dpn − cn + pk+1Ep−1

p
(7.57)

≡ dn+1 + pkEp−1 (mod pk+1D).(7.58)

Corollary 7.8. The ring of divided congruences D is p-adically dense in the
space of Katz functions V∞,∞.



CHAPTER 5

p-adic Hilbert Modular Forms

In this chapter we follow the conceptual frame work laid in Chapter 4. We shall
not be able to present a theory as complete as for elliptic curves simply because
the theory is not yet worked out!

The motivation for studying p-adic Hilbert modular forms includes the same
reasons given in Chapter 4. Namely, they include p-adic interpolation of L-functions
associated to totally real fields (see Cassou-Noguès [7] and Deligne-Ribet [23]), and
deformations of Galois representations of a totally real field.

When developing the theory of p-adic modular forms one must abandon the
hope of using specific knowledge of the ring of modular forms over C and using
“down to earth arguments” as, say, in Chapter 4, Section 2. That distinguishes the
case of g > 1 from the elliptic case. On a conceptual level this is expected: while for
g = 1 there is “one modular curve” (i.e. up to correspondences; or lim

←−
Γ(n)\H),

for g > 1 there is “one modular variety” (in the same sense) for every totally real
field of degree g over Q.

1. Algebraic Hilbert Modular Forms

Let N ≥ 4 be an integer. Let

M(µN ) −→ Spec(OL[d−1
L ])(1.1)

be the fine moduli scheme parameterizing abelian varieties with real multiplication
and µN level structure A = (A, ι, βN ) satisfying condition (R) (it exists in fact over
Z[d−1

L ]). See Chapter 4, Section 5.
For any scheme f : B −→ Spec(OL[d−1

L ]) let

M(B,µN ) = M(µN )×Spec(OL[d−1
L ]) B −→ B.(1.2)

It is the fine moduli space for abelian varieties with real multiplication and µN level
structure over base schemes S ∈ Sch/B. If B = Spec(R) we just write M(R, µN ).
Let

π : AU −→M(µN )(1.3)

be the universal object and let AB be the induced universal object over M(B,µN ).
We let

ω = t∗AU/M(µN )(1.4)

be the sheaf over M(µN ) of relative cotangent spaces at the origin. Similarly, for
f : B −→ Spec(OL[d−1

L ]) we let

ωB = t∗AB/B = f∗ω.(1.5)

When there is no danger of confusion we write ω for ωB .

143
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The sheaf ωB is a locally freeOB-module of rank g and is a locally freeOL⊗OB-
module of rank one.

Let B be a OL[d−1
L ]-algebra. In order to define weights for Hilbert modular forms

we introduce the following functor TB . It is a functor from B-algebras to abelian
groups given by

R 7→ TB(R) = (OL ⊗Z R)×, R ∈ B-Alg.(1.6)

Then TB is a group scheme over Spec(B), which is in fact a torus. 1 That is, for
every geometric point Spec(k) −→ Spec(B) the scheme T ×Spec(B) Spec(k), which
represents the functor

R 7→ (OL ⊗R)× ∼=
g
⊕
i=1
R×, R ∈ k-Alg,(1.7)

is isomorphic to Gm
g
/k.

Let L̃ be a Galois closure of L. If we take B to be an OL̃[d−1
L ]-algebra, where

OL̃ is the ring of integers of L̃, then TB is a split torus: if we enumerate the
embeddings

σ1, · · · , σg : L ↪→ L̃,(1.8)

then

OL ⊗B =
g
⊕
i=1
B,(1.9)

by the map induced from

a⊗ 1 7→ (σ1(a), . . . , σg(a)),(1.10)

and we get a canonical isomorphism

TB = Gm
g
/B .(1.11)

Assume henceforth that B is an OL̃[d−1
L ]-algebra. The character group X(TB) is

given by the free abelian group (written multiplicatively)

X(TB) =< χ1, . . . , χg >(1.12)

on the characters χ1, . . . , χg, where χi is the projection of TB on the i − th com-
ponent

TB = Gm
g
/B −→ Gm/B .(1.13)

We are ready to define modular forms. Over M(B,µN ) the vector bundle ω de-
composes as a direct sum of line bundles

ω = ω(χ1)⊕ · · · ⊕ ω(χg).(1.14)

This decomposition comes from Equation (1.9), OL ⊗ B = ⊕gi=1B, where we also
denote the i-th projection from OL ⊗B to B by

χi : OL ⊗B −→ B.(1.15)

1In fact TB = (ResOL/ZGm)×Spec(Z) Spec(B).
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Note that χi(a ⊗ 1) = σi(a) as an element of B. Thus, OL acts on ω(χi) via the
homomorphism χi : OL ⊗B −→ B. We define for χ = χa1

1 · · ·χ
ag
g

ω(χ) = ω(χ1)⊗a1 ⊗ · · · ⊗ ω(χg)⊗ag .(1.16)

It is a line bundle over M(B,µN ). We remark that if ω is defined by a cocycle
ξ ∈ H1(M(B,µN ), (OL ⊗ OM(B,µN ))×) then ω(χ) is defined by the image of ξ
under the map

H1(M(B,µN ), (OL ⊗OM(B,µN ))×)
χ−−−−→ H1(M(B,µN ),O×M(B,µN )) .(1.17)

Note that the same construction applies for every abelian scheme A −→ S (where
S −→ Spec(OL̃[d−1

L )) with real multiplication and µN level structure. Indeed, via
the classifying morphism S −→M(µN ), A is AS . If we wish to make the depen-
dence on A clear, we shall write ωA(χ).

Definition 1.1. A Hilbert modular form f over B, of µN -level and weight
χ ∈ X(TB) is a section of ωB(χ).

Equivalently,

Definition 1.2. A Hilbert modular form f over B, of µN -level and weight
χ ∈ X(TB) is a rule

A 7→ f(A) ∈ ωA(χ),(1.18)

commuting with base change and depending only on the isomorphism class of A.

Let R be an OL̃[d−1
L ]-algebra and assume that ωA is a free OL ⊗ R module

of rank 1. A generator ω ∈ ωA is called a non-vanishing differential. We may
equivalently define a Hilbert modular form as follows:

Definition 1.3. A Hilbert modular form f over B, of µN -level and weight
χ ∈ X(TB) is a rule

(A,ω)/R 7→ f(A,ω) ∈ R(1.19)

(R a B-algebra, ω a non-vanishing differential), commuting with base change and
depending only on the isomorphism class of (A,ω)/R, such that

f(A,α−1ω) = χ(α)f(A,ω), α ∈ (OL ⊗R)× = TB(R).(1.20)

Remark 1.4. If B = C, a Hilbert modular form of weight χ = χa1
1 · · ·χ

ag
g is a

complex Hilbert modular form of weight (a1, . . . , ag). See Chapter 3, Page 60. As
a matter of notation we use

Norm = χ1 · · ·χg.(1.21)

Thus, a Hilbert modular form of parallel weight k is of weight Normk is this termi-
nology.

Definition 1.5. We denote by

M(B,χ, µN )(1.22)

the space of Hilbert modular forms over B of weight χ and level µN .
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2. Tate Objects and the q-expansion

The purpose of this section is to define and state the properties of the q-expansion
of a Hilbert modular form over arbitrary base rings. This q-expansion is to be
obtained as a “special value” of the Hilbert modular form at particular abelian
varieties with real multiplication - The Tate objects. For simplicity of exposition we
shall treat only the case of parallel weight. The analogous assertions for non-parallel
weight are correct with the necessary evident modifications. E.g., the base rings
should be over the ring of integers of a Galois closure of L (so that the different
weights are defined, etc.).

Given a closed point x ∈M(B,µN ) and a choice of local parameters t1, . . . , tg at
x such that Ôx ∼= B[[t1, . . . , tg]] and a trivialization of t∗

AU/M(B,µN )
around x, every

modular form can be expressed uniquely as an element of Ôx by a Taylor series
expansion. Moreover, this expansion is the value of the modular form at AU |Ôx .
The q-expansion is obtained by performing a similar process around a cusp. That
is, in its essence it is nothing more than a Taylor expansion. Alas, several problems
arise:

• The cusps are not regular points of M∗(B,µN ).
• The universal family AU over M(B,µN ) does not extend to a family of

abelian varieties over M∗(B,µN ) and, in particular, there does not exists
an abelian scheme with real multiplication over the completion of the local
ring of a cusp that extrapolates the existing family over the “punctured”
local ring.

Now, while for elliptic curves there is a totally satisfactory solution for this problem
obtained by considering generalized elliptic curves (a family of generalized elliptic
curves is allowed to have fibers that are a cyclic configuration of P1’s - an “N-
gon”) – a concept flexible enough to yield a universal object EU/M∗

Q
(B,µN ) that

extends the universal family of elliptic curves EU/MQ(B,µN ), when g > 1 no such
solution seems to be available at this time. Instead we must consider a whole class
of polarized semiabelian schemes with real multiplication A −→ Spec(S) over base
schemes S, such that S is a normal local noetherian ring; the family is abelian
outside the unique closed point s0; s0 maps to a particular cusp of M∗L(B,µN ). We
then evaluate any modular form (of parallel weight) at A|Spec(S)−{s0} and obtain
a value lying in a suitable localization of S. This value turns out to be dependent
only on the cusp to which s0 maps and “descends” to an element of the completion
of the local ring of that cusp on M∗L(B,µN ).

Fix a totally real field L of degree g over Q and let OL be the ring of integers and
D−1
L/Q the inverse different. Let c be a fixed fractional ideal of L. We think of c, or

rather on its class in Cl(L)+, as defining a module with a notion of positivity and
therefore a component of M(B,µN ).

Let a, b be two fractional ideal of L such that

c = ab−1.(2.1)

Recall (Chapter 2, Section 2.2) that over C, c-polarized abelian varieties with real
multiplication come from the lattice b⊕ (DLa)−1 via various embeddings

b⊕ (DLa)−1 −→ b · τ ⊕ (DLa)−1 · 1, τ ∈ Hg.(2.2)
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Indeed, we computed that the polarization module is (DL · b · (DLa)−1)−1 = c.
The moduli space over C of c-polarized abelian varieties with real multiplication is
isomorphic to 2

SL(b⊕ (DLa)−1)\Hg.(2.3)

The group SL(b⊕ (DLa)−1) contains the translations

τ 7→ τ + α, α ∈ (DLab)−1.(2.4)

Therefore, every modular form over C has a q-expansion with respect to the totally
positive elements of ab = ((DLab)−1)∨:

f(a,b)an = a0 +
∑

α∈(ab)+

aαq
α, qα = e2πi·Tr(α·τ).(2.5)

The ring Z[[qα : α = 0 or α ∈ (ab)+]] (where q0 = 1 and qαqβ = qα+β) is not noe-
therian – a somewhat awkward situation for algebraic geometry. We thus consider
“approximations” of this ring. Let

∆ = {`1, · · · , `g}(2.6)

be a set of Q-linear functionals on the g-dimensional rational vector space L that
are independent and have the property

`i(L+) ⊆ Q+.(2.7)

We say that an element m ∈ L is ∆-positive if

`i(m) ≥ 0, ∀i.(2.8)

Given a lattice M ⊂ L we let

M∆−pos = {m ∈M : m is ∆− positive}.(2.9)

One observes that M∆−pos is a finitely generated monoid, whilst M+ = {m ∈ M :
m ∈ L+} is not. We also note that

M+ =
⋂
∆

M∆−pos.(2.10)

Exercise 2.1. Prove the assertions made on M∆−pos and M+. Prove that a
discrete monoid M ⊂ L is finitely generated iff M ⊗Q+ is finitely generated.

Example 2.2. Let L = Q(
√

2) = {a + b
√

2 : a, b ∈ Q}. Let M = OL. Let `1
and `2 be the following functionals

`1(a+ b
√

2) = a, `2(a+ b
√

2) = a− b.(2.11)

Let ∆ = {`1, `2}. Note that (OL)∆−pos is generated by 1 +
√

2 and −
√

2. See
Figure ****

Figure ****

2For any two ideals d, e such that (DLde)−1 = c we may take SL(d⊕ e)\Hg . The advantage

in choosing different groups is that the stabilizer of i∞ in SL(d ⊕ eHg) contains d−1e. Thus, by
the choosing properly the group we mod by we get rid of the need to work with other cusps beside
i∞.
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Note that OL+ is not finitely generated. See Figure ****

Figure ****

We define

Z[[M ; ∆]] =
{∑

aαq
α : aα ∈ Z, α ∈M∆−pos

}
.(2.12)

It is a ring under the rules

q0 = 1, qαqβ = qα+β .(2.13)

Note that if x1, . . . , xn are generators of M∆−pos then Z[[M ; ∆]] is a quotient of
Z[[x1, . . . , xn]]. Therefore, Z[[M ; ∆]] is a local noetherian ring.

Exercise 2.3. Prove that Z[[M ; ∆]] is complete with respect to the ideal I
generated by {qα : α ∈M+}. Prove that it is a normal domain.

We let

Z((M ; ∆)) = Z[[M ; ∆]][U−1], U = {qα : α ∈M+}.(2.14)

Exercise 2.4. Let α be an element of M such that `i(α) > 0 for all i. Prove
that

Z((M ; ∆)) = Z[[M ; ∆]][(qα)−1].(2.15)

Prove also that

Z((M ; ∆)) = {
∑
α

aαq
α : aα ∈ Z, α ∈M,∃n s.t. aα = 0 unless `i(α) ≥ n,∀i}.

(2.16)

Exercise 2.5. Prove that the natural map α 7→ εα defines an action of OL×+

on the ring Z((M ; ∆)). Note that it doesn’t act on Z[[M ; ∆]].3

Consider the torus T = Gm ⊗Z D−1
L/Qa−1 over the ring S = Z((ab; ∆)). Recall that

for any R ∈ S− alg we have

T(R) = R× ⊗Z D−1
L/Qa−1(2.17)

and that characterizes T. The character group of T is a = (D−1
L/Qa−1)∨.

3When dealing with non-parallel weight one needs to modify the action by introducing the
rk(ε) factors.
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We claim that there exists a canonical OL-linear homomorphism

q : b −→ Gm ⊗Z D−1
L/Qa−1,(2.18)

where b can be interpreted as a constant group scheme. To begin with, there is a
given Z-linear map

q : ab −→ Gm(S),(2.19)

given by

q(α) = qα.(2.20)

We can define a unique OL-linear map,

q : ab −→ Gm ⊗Z D−1
L/Q,(2.21)

having the property

(1⊗ TrL/Q)(q(α)) = q(α) = qα,(2.22)

where of course

1⊗ TrL/Q : Gm ⊗Z D−1
L/Q −→ Gm ⊗Z Z = Gm.(2.23)

Tensoring Equation (2.21) by ⊗OLa−1, we get the map

q : b −→ Gm ⊗Z D−1
L/Qa−1.(2.24)

Fact 2.6. The quotient Gm ⊗D−1
L/Qa−1/q(b) can be algebraized to an abelian

scheme with real multiplication (called Tate objects) by OL, Tatea,b(q), over the
ring S = Z((ab; ∆)) which carries a canonical c = ab−1-polarization. The relative
cotangent space is given by

t∗Tatea,b(q)/S
∼= S

dt

t
⊗Z a.(2.25)

If a = OL (and hence b = c−1) the abelian scheme Tatea,b(q) carries a canonical
differential

ωcan =
dt

t
⊗ 1,(2.26)

and a canonical µN -level for every N

βN,can : µN ⊗D−1
L/Q ↪→ Gm ⊗D−1

L/Q/q(c
−1).(2.27)

Definition 2.7. The Tate objects TateOL,c−1(q) over S = Z((c−1; ∆)) are
called standard Tate objects (or standard cusps). They have a canonical c-polarization,
non-vanishing differential ωcan and canonical µN -level structures βN,can for every
N . We shall denote such an object by Tatec(q).

We note that

Tatea,b(q)⊗OL c ∼= Gm ⊗Z D−1
L/Qa−1ab−1/q(bab−1)(2.28)

∼= Gm ⊗D−1
L/Qb−1/q(a)(2.29)

= Tateb,a(q).(2.30)

That is, Tateb,a(q) is the dual abelian variety to Tatea,b(q).
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Given a Hilbert modular form (of parallel weight) over a base ring B, we define its
q-expansion at the standard cusp Tatea,b(q) by

fc(q) = f(Tatec(q)⊗S SB , ιcan, λcan, ωcan, βN,can) ∈ SB := Z((c−1; ∆))⊗Z B.
(2.31)

In general, to obtain q-expansions at every cusp we need to specify a differential
and level structures. Thus given B, one chooses an isomorphism

j : a⊗Z B ∼= OL ⊗Z B.(2.32)

This allows one to identify Gm ⊗ D−1
L/Qa−1 with Gm ⊗ D−1

L/Q over the base SB =
Z((c−1; ∆))⊗Z B. We let ω(j) and βN,j be the resulting non-vanishing differential
and µN -level structures obtained via this identification.

Definition 2.8. The q-expansion of a Hilbert modular form f defined over B
(of parallel weight) at the cusp Tatea,b,j(q) is

fa,b,j(q) = f(Tatea,b,j(q)/SB , ιcan, λcan, ω(j), βN,j) ∈ SB := Z((ab; ∆))⊗Z B.
(2.33)

Note that immediately from the definition we obtain that the q-expansion com-
mutes with base change and has bounded denominators.

Theorem 2.9. (q-expansion principle) Let g > 1. 4

1. The q-expansion fa,b,j(q) of a Hilbert modular form f defined over B, of
polarization module c = ab−1 and of level N at the cusp Tatea,b,j(q) is inde-
pendent of ∆ and lies in fact in Z(( (ab)+ ))U

2
N⊗B, where UN is the group of

units of OL that are congruent to 1 modulo N . The ring Z(( (ab)+ ))U
2
N ⊗B

is isomorphic to the completion of the local ring of the cusp (a, b, j) on
M∗(B,µN ).

2. The q-expansion map is an injective Galois equivariant homomorphism

M(B,Normk, µN ) −→ Z(( (ab)+ ))U
2
N ⊗B(2.34)

that commutes with base change.
3. Let f be a complex Hilbert modular form of polarization module c. Let jC : a⊗
C −→ OL ⊗ C be the natural identification. Then the algebraic q-expansion

fa,b,j(q) = f(Tatea,b,j(q)/SB , ιcan, λcan, ω(j), βN,j)(2.35)

is equal to the analytic q-expansion

f(a,b)an = a0 +
∑

α∈(ab)+

aαq
α.(2.36)

We refer the reader to [9], [97], [60], [31] and [30] for a complete exposition of
the theory of q-expansions.

4For g = 1 see Chapter 4, Theorem 3.5. The only difference is the Koecher principle.
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3. Hasse Invariants

3.1. Definition and main properties of partial Hasse invariants. Let
R be a ring of characteristic p. Let f : A −→ Spec(R) be an abelian scheme. The
exact sequence for R a field

0 −→ H0(A,Ω1
A/R) −→ H1

dR(A/R) −→ H1(A,OA) −→ 0(3.1)

can be jazzed up to a sequence of sheaves 5

0 −→ R0f∗Ω1
A/R −→ H1

dR(A/R) −→ R1f∗OA −→ 0.(3.5)

The identification H1(A,OA) ∼= tAt/R for R a field, where tAt/R is the tangent space
at zero TAt,0 or equivalently Lie(At/R) 6, can be extended to an identification

R1f∗OA ∼= tAt/R.(3.6)

Given a polarization λ : A −→ At of degree prime to p we get an isomorphism

λ∗ : tA/R −→ tAt/R,(3.7)

and hence, a perfect paring

< ·, · >λ: R0f∗Ω1
A ×R1f∗OA −→ R, (a, b) 7→< a, λ−1

∗ (b) > .(3.8)

Here < a, λ−1
∗ (b) > stands for the natural pairing

t∗A/R × tA/R −→ R.(3.9)

Assume that p is not ramified in L. Let F be a fixed finite field isomorphic to the
residue field of any of the residue fields of the prime factors of p in L̃. We now
define modular forms h1, . . . , hg in characteristic p (more precisely, over F) that we
call partial Hasse invariants.

Assume that A = (A, ι, βN )/R is an abelian variety with real multiplication and
µN -level over an F-algebra R. Assume further that t∗A/R is a free OL ⊗R module.
Let ω be a non-vanishing differential. Then ω gives an R-basis to t∗A/R

ω1, . . . , ωg.(3.10)

Letting ei be the i-th idempotent of the ring OL ⊗R = ⊕gi=1R, we have ωi = eiω.
Let λ be an OL-linear polarization of degree prime to p.

Lemma 3.1. Such λ exists.

5Here Hi
dR(A/R) are the right derived hypercohomology Rif∗Ω∗A/R. That is, we have the

hyper cohomology of the global sections functor with respect to the sequence

0 −→ ∗ OA
d−→ ∗ Ω1

A/R
d−→ ∗ Ω2

A/R
d−→ · · ·(3.2)

(Ωi
A/R

= (ΩA/R)⊗i). See [44, Section 11.4], and [87, Section 5]. It comes with a spectral sequence

Hq(A,Ωp
A/R

)⇒ Hn
dR(A/R).(3.3)

The construction can be made into a sheaf on the base. Furthermore, when the base is affine, as
we indeed assume, the global sections of the sequence (3.5) give an exact sequence:

0 −→ H0(A,Ω1
A/R) −→ H1

dr(A/R) −→ H1(A,OA) −→ 0.(3.4)

6Note that over C, the sequence 0 −→ Z −→ OA −→ O×A −→ 0 gives

H1(A,Z) −→ H1(A,OA) −→ H1(A,O×A)0 = At, making the identification H1(A,OA) clear in

this case.
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Proof. This follows from the proof of Lemma 5.2 in Chapter 3.

Let

< ·, · >λ: t∗A/R × tAt/R −→ R(3.11)

be the associated pairing, and let

η1, . . . , ηg(3.12)

be the dual basis over R to tAt/R = R1f∗OA.

Lemma 3.2. The natural action of Fr : R1f∗OA −→ R1f∗OA, induced form
OA −→ OA by x 7→ xp, permutes the OL-eigenspaces Rηi.

Proof. It is enough to prove that [a] · Fr(ηi−1) = σi(a)Fr(ηi−1) for a ∈ OL.
But the action of Fr commutes with endomorphisms 7. Thus

[a] · Fr(ηi−1) = Fr([a] · ηi−1)(3.13)

= Fr(σi−1(a)ηi−1)(3.14)

= σpi−1(a)Fr(ηi−1)(3.15)

= σi(a)Fr(ηi−1).(3.16)

Let i 7→ φ(i) be the permutation induced by the action of Frobenius on Rηi.

Definition 3.3. The i-th partial Hasse invariant hi(A,ω) is the unique ele-
ment of R such that

Fr(ηφ−1(i)) = hi(A,ω)ηi.(3.17)

We shall write symbolically

hi(A,ω) =
Fr(ηφ−1(i))

ηi
.(3.18)

Theorem 3.4. The rule

(A,ω) 7→ hi(A,ω)(3.19)

is a Hilbert modular form over F, of level 1 and weight χpφ−1(i)χ
−1
i and is indepen-

dent of λ. Its q-expansion at every cusp is 1.

Proof. To simplify notation we shall assume henceforth that p is inert in OL̃.
In this case we may work over OL,p-algebras. We choose F = OL/(p). We write
σ1, . . . , σg for the embedding L −→ Lp. We assume that

σ ◦ σi = σi+1,(3.20)

where σ is the unique lift of the Frobenius map Fr : F −→ F given by x 7→ xp .
The verification that the rule hi commutes with base change and depends only

on the isomorphism class is straightforward. It is also evidently independent of the
µN -level structure βN . We calculate the weight:

Let α ∈ (OL ⊗R)×. The basis for t∗A/R obtained from α−1ω is

ei([α−1]ω) = [ei · α−1] · [ei] · ω = χi(α)−1[ei]ω, i = 1, · · · , g.(3.21)

7Either because of the fact that endomorphisms induce homomorphisms of Dieudonné mod-

ules, or because we are using two independent factorialities of H1(A,OA): with respect to the
space A (endomorphisms) and with respect to the coefficients OA (Frobenius).
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The dual basis is thus

χ1(α)η1, · · · , χg(α)ηg,(3.22)

and
Fr(χi−1(α)ηi−1)

χi(α)ηi
= χpi−1(α)χ−1

i (α) · Fr(ηi−1)
ηi

.(3.23)

That is,

hi(A,α−1ω) = (χpi−1χ
−1
i )(α)hi(A,ω).(3.24)

Hence, hi is of weight χpi−1χ
−1
i .

Let λ′ be another OL-linear polarization of degree prime to p. Then λ′ = mλ for
some m ∈ L such that (m, p) = 1. We have

< x, y >λ=< x,my >λ′ .(3.25)

Hence, if η1, . . . , ηg are λ dual to ω1, · · · , ωg then mη1, · · · ,mηg are λ′ dual to
ω1, · · · , ωg. But,

Fr(mηi−1)
mηi−1

=
mFr(ηi−1)
mηi−1

=
Fr(ηi−1)
ηi−1

.(3.26)

Therefore, hi is independent of λ.

We now address the issue of q-expansions. We first remark that it would follow
from the map

r : ⊕
χ∈X(T)

M(F, χ, µN ) −→ R,(3.27)

(which is the analogue of the map (5.10) in Theorem 4.1) that it is enough to
prove that the q-expansion of hi is 1 at one cusp of every component of the moduli
space M(F, µN ). Let Tate = Gm ⊗ D−1

L /q(b) be a standard Tate object with
its canonical OL-structure ιcan, canonical µN -level structure βN,can, and canonical
non-vanishing differential ωcan. It is a scheme over S where S *** Then

t∗Tate/S
∼= S ⊗Z OL ·

dt

t
.(3.28)

The canonical isomorphism is provided by the invariant differential dt/t of Gm with
coordinate t.

We have, over a perfect ring of characteristic p:

< Fr(ηi−1), ωi >λ=< ηi−1,Ver(ωi) >
(1/p)
λ .(3.29)

Therefore, it is enough to show that

Ver(wcan,i) = wcan,i−1, ∀i.(3.30)

This amounts to the identity

eiVer = Ver ei−1(3.31)

as operators on t∗Tate/S . Now,

(a⊗)1Ver = Ver(a⊗ 1), (a⊗ rp)Ver = Ver(1⊗ r).(3.32)
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Hence, we just assert that the automorphism v : OL ⊗ R −→ OL ⊗ R given by
v(a⊗ r) = a⊗ rp takes ei−1 to ei. Since clearly v(ei−1) is a multiple of ei (consider
the action of OL) the assertion follows from ei being orthogonal idempotents

1 = e1 + · · ·+ eg, e2
i = ei, ∀i.(3.33)

For further study of the partial Hasse invariants see [37]. In Corollary 11.7 we
prove the following

Theorem 3.5. The divisor of hi is reduced.

Let

H = h1 · · ·hg(3.34)

be the total Hasse invariant. It is the determinant of the Hasse-Witt matrix and is
a Hilbert modular form over F (in fact over Z/pZ) of level 1 and of weight Normp−1.
It has q-expansion 1 at every cusp. In Chapter 11.2 we relate the divisors of the
hi’s to a certain stratification of M(F, µN ) studied in [39]. In particular it follows
that the divisors

Wi = (hi),(3.35)

are reduced and “as transversal to each other as possible”.

Exercise 3.6. Prove that for g = 1 and p ≥ 5, H is the reduction modulo p
of the normalized Eisenstein series Ep−1. What goes wrong for p = 2, 3? Can you
provide a geometric explanation for this?

3.2. Further properties. Following [116] we state prove the following

Lemma 3.7. Let A = (A, ι, βN )/k be an ordinary abelian variety with real mul-
tiplication (and µN -level) over a field k ⊇ F. Then A[p]0 ∼= µp⊗D−1

L iff there exists
a non-vanishing differential ω ∈ Ω1

A/k = Ω1
A[p]0/k such that hi(A,ω) = 1 for all i.

Proof. If A[p]0 ∼= µp⊗D−1
L then the same computation giving the q-expansion

shows that for the canonical non-vanishing differential ω on µp ⊗ D−1
L we get

hi(A,ω) = 1 for every i.
Conversely, let ω ∈ Ω1

A/k be a non-vanishing differential such that hi(A,ω) = 1
for every i. We may assume without loss of generality that k is a perfect field. We
identify H0(A,Ω1

A/k) with the Dieudonné module of A[p]0. The Dieudonné module
of µp ⊗D−1

L/Q is canonically k ⊗OL, where the OL action is the evident one: Fr is
the zero map and Ver is the map determined by xp ⊗m 7→ x⊗m.

We define a map

ψ : H0(A,Ω1
A/k) −→ k ⊗OL(3.36)

by

(
∑

xi ⊗mi)ω 7→
∑

xi ⊗mi.(3.37)

It is obviously an isomorphism of k⊗OL modules. Since Fr is zero on H0(A,Ω1
A) the

only question remaining is whether ψ is Ver-equivariant. But this just boils down
to the assertion that Ver(eiω) = ei−1ω, which in turn holds iff hi(A,ω) = 1.
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4. The Kernel of the q-expansion

Similar to the case of g = 1, the identification of the kernel of the q-expansion
map is based on comparing modular forms of µN -level with functions of µNp level.
To simplify the exposition, we assume that p is inert in L. This is merely a technical
requirement if one assumes that p is unramified in L. See for [37] an explanation
of the yoga.

Let N ≥ 4 be a fixed integer prime to p. As before, we denote by M(F, µN )
the fine moduli scheme of triples A = (A, ι, βN )/S of abelian varieties A with real
multiplication ι and µN level structure βN : µN ⊗ D−1

L ↪→ A over F schemes S.
We let M∗(F, µN ) be the compactification obtained by adjoining the cusps. We let
M(F, µNp) (resp. M∗(F, µNp)) be the moduli space with µNp-structure, which we
write as βN × βp (resp. with the cusps added). The morphisms

M(F, µNp) −→M(F, µN )ord, M∗(F, µNp) −→M∗(F, µN )ord,(4.1)

are Galois coverings (with Galois group isomorphic to (OL/(p))×) of the open
scheme consisting of the ordinary locus of M(F, µN ) and M∗(F, µN ), respectively
(the cusps are ordinary). The components of M∗(F, µNp) are the same as those of
M∗(F, µN )ord. This follows from Ribet’s Theorem 6.19.

Theorem 4.1. Fix a polarization module. Let (a, a+) be a representative of
the polarization module. Let Tate be a standard Tate object for this ideal a as in
Section 2. The kernel of the q-expansion map,

⊕
χ∈X(TF)

M(F, χ, µN ) −→ F[[qν : ν ∈ H]](4.2)

(H consisting of the totally positive elements of ***), is the ideal

(h1 − 1, . . . , hg − 1).(4.3)

Proof. We consider Tate as a cusp on M(F, µNp). Let R be the ring of
regular functions on M(F, µNp). We define a surjective map,

r : ⊕
χ∈X(TF)

M(F, χ, µN ) −→ R,(4.4)

such that the composition,

⊕
χ∈X(TF)

M(F, χ, µN ) −→ R ↪→ ̂OM(F,µNp),Tate,(4.5)

is the q-expansion map. We then prove that

Ker(r) = (h1 − 1, . . . , hg − 1).(4.6)

This, together with the surjectiveness of r, would prove the Theorem and also give
Corollary 4.4.

To define the map r we first need a construction.

Lemma 4.2. For every χ ∈ X(TF) there exists a canonical modular form a(χ)
on M∗(F, µNp) such that:

• a(χ) has weight χ.
• a(χ) has q-expansion 1 at Tate.
• a(χ)a(χ′) = a(χχ′).
• a(χ) doesn’t vanish.
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Proof. Given (A, βp)/R over a ring R. we have an induced isomorphism

βp∗; t∗µp⊗D−1
L

−→ t∗A/R.(4.7)

The image of dt/t is a non-vanishing differential ω on A/R. We let

a(χi) = eiω.(4.8)

For χ = χa1
1 · · ·χ

ag
g we let

a(χ) = a(χ1)a1 · · · a(χg)ag .(4.9)

The properties of the a(χ)’s are easily verified.

We now define

r(f) =
f

a(χ)
, f ∈M(F, χ, µN ),(4.10)

and extend it by linearity to

r : ⊕
χ∈X(TF)

M(F, χ, µN ) −→ R.(4.11)

The properties of the a(χ)’s ensure it is a ring homomorphism. Furthermore, the
composition in (4.5) is the q-expansion. First note that the q-expansion of r(f) is
the same as that of f . Second, it follows from *** that the q-expansion of r(f)
with respect to a Tate object is non other than its expression in the local ring of
the cusp corresponding to that Tate object.

At this point we may conclude:
• I := Ker(r) is the kernel of the q-expansion map.
• I ⊇ (h1 − 1, . . . , hg − 1).
• The q-expansion map is injective on every fixed weight, because r restricted

to any M(F, χ, µN ) is injective!
The next ingredient is defining a
Galois action: Let F× = (OL/(p))× act on

• f ∈M(F, χ, µN ) by [α]f = χ(α)f .
• g ∈ R by ([α]g)(A, βp) = g(A, βp ◦ (1⊗ α)).

One verifies that r is equivariant for this Galois action and that in fact F× =
Gal(M∗(F, µNp)/M∗(F, µN )ord). Let us note that F× ↪→ (F⊗F)× = TF(F). There-
fore, every character χ ∈ X(TF) gives a homomorphism χ : F× −→ F

×. We let

X(1)p = {χ ∈ X(TF) : χ(F×) = 1}(4.12)

=< χp1χ
−1
2 , . . . , χpiχ

−1
i+1, . . . , χ

p
gχ
−1
1 > .(4.13)

Kummer theory gives

R = ⊕
χ∈X/X(1)p

Rχ.(4.14)

Lemma 4.3. We have the identity [α]a(χ) = χ−1(α)a(χ).

Proof. (Of Lemma). It is enough to prove that

[α]a(χi) = χ−1
i (α)a(χi).(4.15)
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Now, a(χi)(A, βp) = eiβp∗
dt
t ⊗ 1. Note that 1 ⊗ α acts by 1 ⊗ α on the tangent

space of µp⊗D−1
L/Q and (1⊗α)∗ acts of the cotangent space by (1⊗α)−1 whenever

this is defined. Thus,

[α]a(χi)(A, βp) = ei(βp ◦ (1⊗ α))∗
dt

t
⊗ 1(4.16)

= βp∗ei(1⊗ α)∗
dt

t
⊗ 1(4.17)

= χi(α)−1βp∗ei
dt

t
⊗ 1(4.18)

= χi(α)−1a(χi)(A, βp).(4.19)

r is surjective: Given g ∈ Rχ let

f = g · a(χ) ·Hn, n� 0.(4.20)

Then f is a holomorphic modular form on M∗(F, µNp) which is F×-invariant. Hence
f is a meromorphic modular form on M∗(F, µN ), which is holomorphic if n � 0.
Clearly r(f) = g.

Ker(r) = (h1 − 1, . . . , hg − 1): Let fψ1 + · · · + fψr be in the kernel of r (with fψi
of weight ψi ∈ X(TF)). We may assume without loss of generality that for i 6= j,
ψi 6= ψj .

Replacing fψi by fψi + fψi(hj − 1) sufficiently many times and for appropriate
i’s and j’s we may further assume that

i 6= j ⇒ ψi 6= ψj (mod X(1)p).(4.21)

But since r is equivariant, every r(fψi) “falls” in a different eigenspace in the
decomposition R = ⊕χ∈X/X(1)pR

χ. Thus every r(fψi) = 0. But r is injective on
every M(F, χ, µN ). Thus, fψi = 0 for every i.

Corollary 4.4. We have

⊕
χ∈X(TF)

M(F, χ, µN )/(h1 − 1, . . . , hg − 1) ∼= R.(4.22)

Corollary 4.5. The kernel of the q-expansion

⊕
k∈Z
M(F,Normk, µN ) −→ F[[qν : ν ∈ ∗ ∗ ∗]](4.23)

is (H − 1).

Remark 4.6. Theorem 4.1 and its Corollaries hold for any cusp.

5. Applications

Corollary 5.1. The q-expansion map over C is injective.

Proof. The kernel of the q expansion is Gal(Lalg/L) equivariant and hence
the kernel is generated by modular forms with coefficients in L. Let

∑t
i=1 fψi ∈
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⊕M(C, χ, µN ) be such a sum of modular forms with q-expansion equal to zero. We
assume that for i 6= j we have ψi 6= ψj . Now, choose a (inert8 ) prime p such that

• The q-expansion of every fψi is p-integral and is non-zero modulo p.
• The weights ψ1, . . . , ψt are non congruent modulo X(1)p.

Then the reduction of the forms fψi modulo p is well defined, fψi 6≡ 0 (mod p) and
the weights are distinct in X/X(1)p. It follows from Theorem 4.1 that each fψi
(mod p) is zero. A contradiction.

Recall Siegel’s construction. For g > 1 and k ≥ 2 (or g = 1 and k ≥ 4) there
exists an Eisenstein series E∗k = EL,∗k (and a normalized Eisenstein series Ek = ELk )
of level 1, weight Normk and q-expansion

E∗k = 2−gζL(1− k) +
∑

ν∈OL+

ck,νq
ν , Ek = 2gζL(1− k)−1E∗k ,(5.1)

where

ck,ν =
∑

OL⊇c⊇(ν)

Norm(c)k−1.(5.2)

Corollary 5.2. We have the following bound on denominators:

k 6≡ 0 (mod p− 1)⇒ ζL(1− k) is p integral.(5.3)

Proof. Assume that p divides the denominator of ζL(1 − k). Then we have
the following congruence of q-expansions:

Ek(q)− 1 ≡ 0 (mod p).(5.4)

However, the ring ⊕M(F, χ, µN )/(h1 − 1, . . . , hg − 1) is X/X(1)p graded. Thus,
the homogenous parts of the relation Ek(q) − 1 ≡ 0 (mod p) also belong to (h1 −
1, . . . , hg−1). Since 1 6∈ (h1−1, . . . , hg−1), it follows that Ek(q)−1 is a homogenous
element. That is

Normk ≡ 1 (mod X(1)p).(5.5)

That is, the map Normk : F× −→ F
× is the trivial character. Hence (p− 1)|k.

Corollary 5.3. We have the following congruences between values of zeta
functions. Suppose that k 6≡ 0 (mod p− 1) then

k ≡ k′ (mod p− 1)⇒ ζL(1− k) ≡ ζL(1− k′) (mod p).(5.6)

Proof. Let α = 2−g(ζL(1− k)− ζL(1− k′)). Consider the congruence

E∗k − E∗k′ − α = 0 (mod p).(5.7)

Using a grading argument, we infer from Normk ≡ Normk′ 6≡ 1 (mod X(1)p) that
α ≡ 0 (mod p). That is, ζL(1− k) ≡ ζL(1− k′) (mod p).

This method of obtaining bounds on the denominator of the zeta function of L and
congruences between its values at negative integers can be generalized considerably
to cover the cases k ≡ 0 (mod p−1) and to give congruences modulo pm. The idea,
following Serre and Katz, is to consider the moduli space modulo pm, and use the
easy congruences on the higher coefficients of suitable Eisenstein series to obtain

8If a number field has one inert prime, it has infinitely many inert primes. We insist on

inert primes only because we formulated the q-expansion kernel for inert primes. But, in fact, the
argument easily generalizes to any totally real number field and non-ramified primes.
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information on the constant term. The details may be found in [38]. We include
here the results for completeness and for the reader’s convenience. It seems they
are sharp.

Proposition 5.4. Let p be inert in L. Let k ≥ 2.
1. Let p 6= 2, then if k ≡ 0 (mod p− 1)

valp(ζL(1− k)) ≥ −1− valp(k),(5.8)

and ζL(1− k) is p-integral if k 6≡ 0 (mod p− 1).
2. If p = 2, then

val2(ζL(1− k)) ≥ g − 2− val2(k).(5.9)

Proposition 5.5. Let p be inert in L. Let k, k′ ≥ 2 and k ≡ k′ (mod (p −
1)pm).

1. If k 6≡ 0 (mod p− 1) then

(1− pg(k−1))ζL(1− k) ≡ (1− pg(k′−1))ζL(1− k′) (mod pm+1).(5.10)

2. If k ≡ 0 (mod p− 1) but p 6= 2, then

(1− pg(k−1))ζL(1− k) ≡ (1− pg(k′−1))ζL(1− k′) (mod pm−1−valp(k·k′)).(5.11)

3. If p = 2, then

(1− 2g(k−1))ζL(1− k) ≡ (1− 2g(k′−1))ζL(1− k′) (mod 2m+g−2−val2(k·k′)).
(5.12)

Proposition 5.6. There exists a notion of filtration on Hilbert modular forms.
Given a q-expansion b(q) such that it is a q expansion of some Hilbert modular form,
there exists a unique modular form f0 such that the set of all modular forms with
q-expansion b(q) is the set

{f0 ·
g∏
i=1

haii : ai ≥ 0}.(5.13)

We call the weight of f0 the filtration of the q-expansion b(q).

Proof. If f and g have the same q-expansion then r(f) = r(g), and vice versa.
We are given that b(q) is a q-expansion of some Hilbert modular form of weight,
say, χ. Let f ′ be a function on M(F, µNp) such that f ′ ∈ Rχ and in the local ring of
the appropriate cusp f ′ = b(q). Then all the meromorphic modular forms having q
expansion b(q) are of the form f ′ · a(χ) ·

∏
haii where the ai ∈ Z. But the divisor of

hi is a reduced effective divisor Wi. Therefore, there is a choice a∗1, . . . , a
∗
g such that

f0 = f ′ · a(χ) ·
∏
h
a∗i
i is holomorphic and non-vanishing on (H) = W1 ∪ · · · ∪Wg. It

follows that every other holomorphic form with the same q-expansion is a multiple
f0 ·

∏g
i=1 h

ai
i with ai ≥ 0.

6. p-adic Hilbert Modular Forms

This section is modeled after Chapter 4, Section 6. Many of the definitions and
proofs extend verbatim, with additional supporting arguments needed every once
in a while. We shall therefore be brief and let the reader refer back to Chapter 6
whenever needed. For simplicity we shall discuss only Hilbert modular forms of
parallel level. The totally real field is of course fixed and is denoted by L; the
prime p is unramified and for simplicity of exposition assumed to be inert in L.
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6.1. Test objects and overconvergent forms. We fix a Hilbert modular
form with respect to L, denoted for heuristic reasons by E` with the following
properties:

• E` has level 1.
• E` has q-expansion E`(q) with coefficients in OLp;
• E`(q) is congruent to 1 modulo p.
• E` has weight Norm` and (p− 1)|`.

Remark 6.1. 1. Such a modular form always exists. Indeed, for n � 0
the modular form Hn over F lifts to a modular form of level 1 over OLp.

2. Given Leopoldt’s conjecture one can choose E` to be the Eisenstein series
E∗` in (5.1).

We fix:
• B – a p-adic ring.
• r – an element of B.

Definition 6.2. Let C be a p-adic ring which is a B-algebra. A test object of:
• level µN ,
• growth condition r,
• over B,

is a quadruple:

(A,ω, βN , Y )/C ,(6.1)

such that:
• A/C is an abelian variety with real multiplication (A, ι) defined over C such

that condition (R) holds;
• ω ∈ t∗A/C is a relative non-vanishing differential;
• βN : µN/C ⊗D−1

L ↪→ A is an embedding of group schemes over Spec(C);
• Y ∈ C satisfies Y · E`(A,ω) = r.

If (A,ω, βN , Y )/C is a test object, so is (A, λω, βN ,Normλ`Y )/C for λ ∈ C×. In-
deed,

(Normλ`Y ) · (E`(A, λω)) = (Normλ`Y )(Normλ−`)E`(A,ω) = r.(6.2)

Equivalently, a test object could be thought of as

(A, βN , Y )/C , Y ∈ (det t∗A/C)−`(6.3)

such that Y ·E` = r, where E` is interpreted as a rule associating to A/C a section
of (det t∗A/C)`.

Definition 6.3. A p-adic Hilbert modular form (à la Katz) of:
• weight Normk, k ∈ Z,
• level µN ,
• growth r,
• defined over B,

is a rule associating to (A,ω, βN , Y )/C an element f(A,ω, βN , Y ) ∈ C such that:
• f(A,ω, βN , Y ) depends only on the isomorphism class of the test object

(A,ω, βN , Y )/C ;
• the rule f commutes with base change;
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• for every λ ∈ C× and every test object (A,ω, βN , Y )/C

f(A, λω, βN ,Normλ`Y ) = Normλ−kf(A,ω, βN , Y ).(6.4)

Definition 6.4. The space of Hilbert modular forms over B, of µN -level,
weight Normk and growth condition r is denoted by F(B, k, µN ; r). If r 6∈ B×,
they are called overconvergent modular forms.

Again, the study of modular forms of growth r ∈ B× amounts to the case
r = 1. In that case we discard all abelian varieties having non-ordinary reduction.

Every classical modular form f of weight Normk, level N , over B defines a p-adic
modular form (still denoted f) in F(B, k, µN ; r):

f(A,ω, βN , Y )/C := f(A,ω, βN )/C .(6.5)

As an example of a truly p-adic modular form, consider

f(A,ω, βN , Y ) = Y.(6.6)

By definition,

f(A, λω, βN ,Normλ`Y ) = Normλ`Y = Normλ`f(A,ω, βN , Y ).(6.7)

Therefore, it is a modular form in F(B,Norm−`, µN ; r).

6.2. q-expansion for p-adic modular forms. If E`(A,ω) is invertible, then
in any test object (A,ω, βN , Y ) we must have Y = r · E`(A,ω)−1. This applies
in particular to the standard Tate object Tatec(q) = Gm ⊗ D−1

L /(c−1) over SB =
Z[[c−1+; ∆]]⊗B. The Tate object carries a canonical µN -level:

βcan : µN ⊗D−1
L ↪→ Gm ⊗D−1

L −→ Tatec(q),(6.8)

and a canonical differential ωcan induced from the differential dt/t⊗1 on Gm⊗D−1
L .

Definition 6.5. Let f be a p-adic Hilbert modular form, f ∈ F(B, k, µN ; r).
The q-expansion of f in the cusp Tatec(q) is

f

(
Tatec(q), ωcan, βcan,

r

E`(Tate(q), ωcan)

)
∈ Z[[qν : ν ∈ c−1+]]U

2
N ⊗Z B.(6.9)

Similarly, for any cusp (Tatea,b,j(q), βN ) we define the q-expansion of f by

f

(
Tatea,b,j(q), ωcan,j , βN,j ,

r

E`(Tatea,b,j(q), ωcan)

)
∈ Z[[qν : ν ∈ (ab)+]]U

2
N ⊗Z B.

(6.10)

We call f holomorphic (respectively, cusp) if all its q-expansion lies in B[[qν :
ν ∈ (gerab)+]] for every cusp (respectively, has no constant coefficient at every
cusp). We denote the holomorphic (resp. cusp) forms by

M(B, k, µN ; r) (resp. S(B, k, µN ; r)).(6.11)

Proposition 6.6. 1. Take any X ∈ {F,M,S}. Then

X(B, k, µN ; r) = lim
←−

X(B/pnB, k, µN ; r).(6.12)
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2. (Koecher’s principle) For g > 1,

F(B, k, µN ; r) = M(B, k, µN ; r).(6.13)

Proof. All our objects are p-adic. The same proof as in Chapter 4, Proposi-
tion 6.6 works.

Koecher’s principle follows from the fact that the Tate objects are defined over
normal local rings of dimension greater than 1 (See Section 2). Since divisors have
codimension 1 we conclude a modular form whose q-expansion is a rational function
on the base with no poles outside the closed point, is regular.

We offer the same remarks as in Page 128.
1. The q-expansion of a p-adic modular form f ′ induced from a classical mod-

ular form f as in (6.5) is the same q-expansion as of f .
2. The q-expansion is injective. See Corollary 6.10.

6.3. The case when p is nilpotent. In this section we let p be a prime and
N ≥ 4 an integer prime to p. As before B be a p-adic ring. We now assume further
that p is nilpotent in B. We use our usual notation

M(B, k, µN )(6.14)

for classical Hilbert holomorphic modular forms over B, of µN -level structure and
weight Normk. We shall assume that g ≥ 2. Thus

F(B, k, µN ) =M(B, k, µN )(6.15)

where F(B, k, µN ) are the classical modular forms over B, of µN -level structure
and weight k with possible poles at infinity. As above, M(B, k, µN ; r) is the space
of holomorphic p-adic Hilbert modular forms with growth r. Given j ≥ 0, define a
map:

M(B, k + j`, µN ) −→M(B, k, µN ; r)(6.16)

f 7→ f̃ , f̃(A,ω, βN , Y )/C = Y jf(A,ω, βN ).(6.17)

We claim that f̃ is a p-adic Hilbert modular form of weight Normk. Indeed,

f̃(A, λω, βN ,Normλ`Y ) = (Normλ`Y )jf(A, λω, βN )

= Normλj`Y jNormλ−(k+j`)f(E,ω, βN )

= Normλ−kf̃(A,ω, βN , Y ).

(6.18)

Under this map, E`f is sent to Ẽ`f , and

Ẽ`f(A,ω, βN , Y ) = Y j+1f(A,ω, βN ) · E`(A,ω, βN )

= r · Y jf(A,ω, βN )

= r · f̃ .

(6.19)

Therefore, we have obtained a well-defined homomorphism of B-modules as follows:(
⊕
j≥0
M(B, k + j`, µN )

)
/(E` − r) −→M(B, k, µN ; r).(6.20)

Here (E` − r) stands for the submodule generated by {(E` − r)f : f ∈ F(B, k +
j`, µN )}.
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The analogue of the isomorphism(
⊕
j≥0
F(B, k + j`, µN )

)
/(E` − r)

∼=−→ F(B, k, µN ; r)(6.21)

existing for g = 1 (Chapter 4, Proposition 6.7) is probably not true. The proof
there, recall, was based on the fact that the modular curve with no cusps is affine.
However, some information along these lines (e.g. Equation ( 6.32) has an ana-
logue). Moreover, in analogue to the elliptic case (Chapter 4, Proposition 6.8) we
do have

Proposition 6.7. Let r be a p-adic unit in B any p-adic ring (p not necessarily
nilpotent). Then

M(B, k, µN ; r) ∼=
(
⊕∞j=0M(B, k + j`, µN )

)
/(E` − r),(6.22)

and

S(B, k, µN ; r) ∼=
(
⊕∞j=0S(B, k + j`, µN )

)
/(E` − r).(6.23)

As in passing from Proposition 6.8 to Theorem 6.9, one deduces the general
case from the case where p is nilpotent.

Assume that p is nilpotent. The proof for holomorphic modular forms is prac-
tically the same. One needs to use that the ordinary locus M(F, µN )ord (the cusps
are ordinary) is affine. This follows from the fact that its complement is (H) and
H is a section of an ample line bundle.

For the case of cusps forms one needs that cusp forms are sections of a suitable
quasi-coherent sheaf (and thus its higher cohomology on an affine scheme vanishes).
This is a bit delicate (and technically demanding). We refer the interested reader
to [38].

6.4. Katz’s expansion. Consider the map:

M(OLp, k + j`, µN ) ×E`−→M(OLp, k + (j + 1)`, µN ).(6.24)

We note that upon reduction modulo p this map is injective. This implies that the
map in (6.24) is injective and splits. We choose complements:

(6.25) M(OLp, k + (j + 1)`, µN ) =

E` · M(OLp, k + j`, µN ) ⊕ A(OLp, k + (j + 1)`, µN ).

(A(OLp, k, µN ) = M(OLp, k, µN )). We may tensor with B and we get the same
equality with B-coefficients. Then

j
⊕
j=0

A(B, k + a`, µN ) ∼=M(B, k + j`, µN );(6.26)

the map given by

(f0, . . . , fj) 7→
j∑

a=0

fa · Ej−a` .(6.27)

Consider the p-adically complete B-module:

(6.28) Arigid(B, k, µN ) ={ ∞∑
a=0

ba : ba ∈ A(B, k + a`, µN ), ba −→ 0 p-adically uniformly

}
.
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By the same methods of Chapter 6.5 we prove:

Proposition 6.8. (Katz’s expansion) For every growth condition r there ex-
ists an isomorphism:

Arigid(B, k, µN ) ∼−→
ψ
M(B, k, µN ; r)(6.29)

given by
∞∑
a=0

ba 7→ �
∞∑
a=0

raba/E
a
` �,(6.30)

where the right hand side stands for the p-adic Hilbert modular form whose value
on a test object (A,ω, βN , Y )/A (where Y · E`(A,ω) = r) is:

�
∞∑
a=0

ba/E
a
` � (A,ω, βN , Y ) =

∞∑
a=0

Y aba(A,ω, βN ).(6.31)

6.5. Properties of q-expansions of p-adic modular forms.

Proposition 6.9. Let b ∈ B be an element dividing a positive power of p. Let
f ∈M(B, k, µN ; 1). The followings assertions are equivalent:

1. f ∈ b ·M(B, k, µN ; 1).
2. The q-expansion of f lies in b ·B[[q]].

The proof is the same as the proof of Proposition 6.12.

Corollary 6.10. The q-expansion map on p-adic modular forms is injective.

Theorem 6.11. Let f(q) ∈ B[[q]] be a power series. The following assertions
are equivalent:

1. f(q) is the q-expansion of an element f ∈M(B, k, µN ; 1).
2. For all n, there exists a positive integer M(n), M(n) ≡ 0 mod pn−1, and a

classical modular form gn ∈M(B, k+M(n)`, µN ) such that the q-expansion
gn(q) ≡ f(q) mod pn.

Proof. First, let us show that 2 =⇒ 1. Writing E`(q) = 1 + px, we see that
Ep

n−1

` ≡ 1 mod pn. Now, multiplication of gn by Ep
n−1

` changes the weight by
`pn−1, so we can assume M(n) is increasing. Let ∆(n) ≡M(n+ 1)−M(n), so

gn+1 − gn · E∆(n)
` ∈ pn · M(B, k + `M(n+ 1), µN ),(6.32)

(since ∆(n) ≡ 0 mod pn−1).
Hence, g0 +

∑∞
a=0(ga+1 − ga · E∆(a)

` ) ∈M(B, k, µN ; 1). Modulo pn this sum is

g0 + (g1 − g0E
∆(0
` )) + · · ·+ (gn − gn−1 · E∆(n−1)

` ).(6.33)

But E` = 1 in M(B, k, µN ; 1), so the telescopic sum is equal to gn. Hence, the
q-expansion is lim gn(q) = f(q).

The implication 1 =⇒ 2 can be proved as follows: Let f ∈ M(B, k, µN ; 1).
Then

f = ψ(
∞∑
a=0

ba), ba ∈ A(B, k + a`, µN ).(6.34)

Consider cn = ψ(
∑n
a=0 ba) = φ(η(

∑n
a=0 ba)) ∈ M(B, k + n`, µN ). Take M(n) to

be suitably increasing powers of p and gn = cM(n).
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We didn’t define Serre modular forms. But the definition is rather obvious.

Definition 6.12. A p-adic Hilbert modular form (à la Serre) over Lp, of level
µN , is a uniform p-adic limit of Hilbert modular forms over L, of level µN .

Such a modular form would have a limit which is a weight in Zp. This follows
from the results in [38].

Corollary 6.13. Serre’s p-adic modular forms of weight Normk ∈ Z are the
same as p-adic modular forms à la Katz of growth condition 1: M(B, k, µN ; 1).
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CHAPTER 6

Deformation Theory of Abelian Varieties

The goal of this chapter is to explain the local deformation theory of abelian va-
rieties in characteristic p, concentrating on the case of abelian varieties with real
multiplication. Some of the applications we have in mind are proving that the
divisor of the Hasse invariant is a reduced normal crossing divisor.

Non-standard conventions is that N = {0, 1, 2, 3, . . . }, while N∗ = {1, 2, 3, . . . },
and that W (R) denotes the “full” Witt vectors while Wp(R) denotes the Witt
vectors with components a power of p. The ring Wp(R) is the “usual” ring of Witt
vector (e.g., Wp(Z/pZ) = Zp). It is denoted elsewhere in this book by W (R).

Most attributions will be omitted. The results are due foremost to Kodaira-
Spencer, Grothendieck, Serre, Tate, Dieudonné, Cartier, Lazard, Mumford, Nor-
man, Deligne, Rapoport, Oort, Zink and others.

Here is a rough diagram of the strategy for studying deformations of abelian vari-
eties we are going to present:

Abelian varieties Serre-Tate−−−−−−−→
←−−−−

(connected)
p-divisible groups

Tate−−−−−−−→
←−−−−

(smooth)
Formal groups

Cartier, Dieudonné
−−−−−−−−−−−−→

←−−−−
Cartier-Dieudonné

modules
Mumford, Norman−−−−−−−−−−→
←−−−−−−
Oort, Zink

Displays

1. Fine moduli schemes

Fix a rational prime p, an integer g ≥ 1, and an integer n ≥ 3 such that (n, p) = 1.
We shall assume we are in one of the following situations :

I. We consider principally polarized abelian schemes (A, λ, α)/S of relative dimen-
sion g, and full level-n-structure. Thus, A −→ S is an abelian scheme of relative
dimension g, λ : A −→ At is an isomorphism, defined locally on S by a relatively
ample line bundle, and α : (Z/nZ)2g −→ A[n] is an isomorphism of constant S-
group schemes.

There exists a fine moduli space A −→ Spec(Z) for such data. That is, there
exists a scheme A −→ Spec(Z) representing the functor

S 7→ {S − isomorphism classes of (A, λ, α)/S}.(1.1)

Definition 1.1. Let S −→ T be a morphism of schemes and (A, λ, α)/S be
given. A deformation of (A, λ, α)/S to T is a triple (A′, λ′, α′)/T together with an
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isomorphism over S

(A′, λ′, α′)×T S ∼= (A, λ, α).(1.2)

Two deformations, (A′, λ′, α′) and (A′′, λ′′, α′′), are isomorphic if there exists an
isomorphism of abelian schemes over T , say ϕ : A′ −→ A′′, such that ϕ|S is the
identity, ϕ∗λ′′ = λ′, and ϕ ◦ α′ = α′′.

Let k be a field. Let Λ = k if k has characteristic zero and Λ = Wp(k) (infinite
Witt vectors) if k has characteristic p. Let Ck the category of local artinian rings
Λ-algebras (R,mR) together with a given isomorphism R/mR

∼= k. Morphisms are
local homomorphisms of rings inducing the identity on k.

Fix an object (A, λ, α)/Speck and consider the functor Ck −→ Sets given by

R 7→ { isomorphism classes of deformations over Spec(R) of (A, λ, α)/k}.(1.3)

This functor is known to be representable by a ring, say RU , and if x ∈ A(k) is the
moduli point corresponding to (A, λ, α)/S , then

RU ∼= ÔA,x.(1.4)

We shall say we are in the situation Ip if all schemes are Fp -schemes.

II. We are given a totally real number field L of degree g over Q. We denote by OL
its ring of integers, by DL its different ideal relative to Q and by dL its discriminant.
We assume that p - dL. Write p as a product of prime ideals

p = p1 · . . . · pr(1.5)

in OL, and let

fi = deg(pi/p), f = lcm{fi}.(1.6)

Fix a field F of pf elements. Note that if we let σ denote the Frobenius automor-
phism on F as well as on the Witt vectors W (F), then the embeddings of L in
W (F)⊗Z Q can be indexed by

σ(j,i), 1 ≤ j ≤ r, 1 ≤ i ≤ f,(1.7)

in such a way that

σ ◦ σ(j,i) = σ(j,i+1).(1.8)

We consider triples (A, λ, βN )/S where S is a Z[dL−1]-scheme, consisting of an
abelian variety A −→ S of relative dimension g, an embedding ι : OL −→ End(A/S)
such that condition (R) holds (Chapter 3, Section 5), and an OL-equivariant em-
bedding βN : µN ⊗D−1

L −→ A.
There exists a fine moduli scheme M(µN ) −→ Z[d−1

L ] for such data. The same
remarks concerning deformations, deformations over Ck etc. apply here with the
obvious modifications. We shall say we are in case IIp if all schemes are F-schemes.

Most local deformations theories over p-adic rings for I or II (or similar scenarios)
pass through the p-divisible group,

A(p) = lim
−→
n

A[pn],(1.9)

of the abelian variety A. See [11] for a review of the available tools and [113],
[104], for essentials on p-divisible groups.
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From now on, let k stand for a fixed field of characteristic p. Let A/k be an abelian
variety.

Theorem 1.2. (Serre-Tate) For every ring R in Ck the functor

A 7→ A(p),(1.10)

induces an equivalence of categories between the category of deformations A of A
over R with morphisms being morphisms of abelian schemes over R, to the category
of deformations of A(p) into p-divisible groups over R with the morphisms being
morphisms of p divisible groups whose restriction to A(p) comes from an endomor-
phism of A/k.

One immediately deduces that in case I we have an equivalence of categories{
Isomorphism classes of

deformations of (A, λ, α)/k
to R

}
−→

{
Isomorphism classes of

deformations of (A(p), λ(p))/k
to R

}
,(1.11)

where λ(p) : A(p) −→ At(p) ∼= (A(p))t is deformed into symmetric isomorphism
λ : G −→ Gt.

In case II we have an equivalence of categories{
Isomorphism classes of

deformations of (A, ι, α)/k
to R

}
−→

{
Isomorphism classes of

deformations of (A(p), ι(p))/k
to R

}
,(1.12)

where ι(p) : OL −→ End(A(p)) is deformed to homomorphisms ι : OL −→ End(G).

Remark 1.3. Note that the extra level structure disappears. This follows from
rigidity of étale group schemes; i.e., there always exists a way to extend this level
structure to any such deformation, and uniquely so. Note also that we do not
require condition (R) to hold for a deformation. It is automatically satisfied.

Example 1.4. Let E/k be an ordinary elliptic curve over k. Then

E(p) ∼= Qp/Zp
/k
⊕ Ĝm/k,(1.13)

where

Ĝm = lim
−→

µpn .(1.14)

We find a coarser formulation of the Serre-Tate coordinates discussed in Chapter 3,
Section 4.2; there is a canonical deformation, or canonical lift, of E(p) to R. Namely

Qp/Zp
/R
⊕ Ĝm/R.(1.15)

Clearly it has the property that every endomorphism of E(p) extends to it. We
conclude that for every R ∈ Ck there exists a canonical lift of E over R, say Ecan/R
with the property

EndR(Ecan) ∼= Endk(E).(1.16)

The same argument applies to ordinary abelian varieties.
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2. Proof of the Serre-Tate theorem

We follow Drinfeld’s proof as presented in [?]. Consider a more general scenario:
We are given two rings, R and R0, and a ring homomorphism ϕ : R −→ R0 with
kernel I, such that there exists a b with Ib = 0 and there exists an a such that
pa = 0 in R0. We consider two categories:
• AbR = Category of abelian schemes over R with morphisms being homomor-

phisms of abelian schemes.
• DefR = Category of triples (A/R0, G/R, ι), where A/R0 is an abelian scheme,

G/R is a p-divisible group and ι : A(p) −→ G|R0 is an isomorphism. An arrow
(A/R0, G/R, ι) −→ (A′/R0, G

′/R, ι′) is a homomorphism f : G −→ G′ whose re-
striction f0 : A(p) −→ A′(p), induced via ι and ι′, is induced also from a homomor-
phism of abelian schemes A −→ A′.

We have a natural functor

Φ : AbR −→ DefR; Φ(A) = (A⊗R R0, A(p)/R, ιcan).(2.1)

Theorem 2.1. (Serre-Tate) The functor Φ is an equivalence of categories.

Proof. We first make a

Definition 2.2. Let G be either a finite flat group scheme over R or an abelian
scheme over R. Let J be an ideal of R. Define a group functor GJ on R−Alg by

GJ(S) = Ker(G(S) −→ G(S/J)),(2.2)

where here and below S/J stands for S ⊗R (R/J).

Lemma 2.3. Let q = pab. Then

[q]GI = 0.(2.3)

Proof. We assume that G is an abelian scheme. After localizing on R, we may
assume thatG = SpfR[[x1, . . . , xd]] with augmentation ideal topologically generated
by x1, . . . , xd (for a finite flat group scheme, write G = Spec R[x1, . . . , xd]/a for a
suitable ideal a and augmentation idea generated by x1, . . . , xd).

Let S ∈ R−Alg and α ∈ GJ(S). Then we may identify α with a vector
(α1, . . . , αd) with αi ∈ JS. Writing

([pa]α)i = paαi + higher order terms in α1, . . . , αd,(2.4)

we see that [pa]α ∈ GIJ+J2 . Applying this to J = I, I2, I3, ... we see that [q]GI =
0.

Note that the lemma also holds for a p-divisible group over R.

Proposition 2.4. Let G and H be either p-divisible groups or abelian schemes
over R. Let G0 and H0 be the objects obtained from G and H, respectively, by base
change to R0.

1. The groups HomR(G,H) and HomR0(G0,H0) are torsion free.
2. The homomorphism HomR(G,H) −→ HomR0(G0,H0) is injective.
3. Given f0 in HomR0(G0,H0) there exists a unique homomorphism q̃f0 in

HomR(G,H) lifting qf0.
4. The homomorphism f0 lifts to a homomorphism f̃0 in HomR(G,H) if and

only if G[q] ⊂ Ker(q̃f0).
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Proof. Part 1 is clear. For 2, we note that

Ker(HomR(G,H) −→ HomR0(G0,H0)) = HomR(G,HI).(2.5)

But HI is torsion and HomR(G,H) is torsion free!
3. Let α ∈ G(S) and let ᾱ denote its image in G(S/I). Regarding ᾱ as an

element of G0(S/I), we write f0(ᾱ) for the image in H0(S/I). Since the map
H(S) −→ H(S/I) is surjective, we may lift f0(ᾱ) to some α′ ∈ H(S). Let

q̃f0(α) = qα′.(2.6)

This is well defined, because any other choice of a lift, say α′′ differs from α′ by
an element of HI(S), hence killed by q. Immediate verification shows that q̃f0 is a
homomorphism and its uniqueness follows from part 2.

4. Clearly if f0 lifts to some f̃0 then, by uniqueness, q̃f0 = qf̃0 and therefore
q̃f0 kills G[q]. Conversely, if q̃f0 kills G[q] we may factor it as q̃f0 = qg for some
g ∈ HomR(G,H). Let g0 ∈ HomR0(G0,H0) be the homomorphism induced by g.
Then qg0 = qf0 as both are obtained by restricting q̃f0. Since HomR0(G0,H0) is
torsion free, g0 = f0.

Let us show now that Φ is fully-faithful. I.e., that

HomR(A,B) −→ Hom((A0, A(p)), (B0, B(p)))(2.7)

is an isomorphism. We know it is injective by Proposition 2.4. Let, therefore, f be
in Hom(A0, B0) and φ be in Hom(A(p), B(p)) such that

f(p) = φ0,(2.8)

where here and below “(p)” denotes passing to the p-divisible and the subscript “0”
denotes base change to R0. Using Proposition 2.4, we see that the homomorphism
qf lifts uniquely to a homomorphism q̃f ∈ HomR(A,B) and f lifts to HomR(A,B)
if and only if q̃f kills A[q]. But q̃f kills A[q] if and only if q̃f(p) kills A[q]. Since
q̃f(p) is a lift of qφ0 to A(p) and since φ0 does lift to A(p), we have, by part 4 of
Proposition 2.4 that q̃f(p) kills A[q]. Therefore f lifts.

It remains to prove essential surjectivity of Φ. Let (A0, G, ι) be an object of DefR.
Because R −→ R0 is a nilpotent thickening there exists some abelian scheme B
lifting A0 to R. This can be deduced for example from [83, 6.3]. Let α0 be the
isomorphism B(p)0 −→ G0. Let q̃α0 ∈ HomR(B(p), G) be the canonical lift of qα0.
Let K = Ker(q̃α0). Then K is a finite flat group scheme such that K0 = A0[q], and
D := B/K is an abelian scheme. The map q̃α0 induces an isomorphism between
D(p) and G, which under the identification D0 = A0/A0[q] is equal to α0.

3. Deformation of p-divisible groups

Let R be a ring. By an n-dimensional smooth commutative formal group over R,
or simply, n-dimensional formal group, we mean the following: It is a power series
ring R[[x1, . . . , xn]] together with n power series

F (x, y) = (F1(x, y), . . . , Fn(x, y))(3.1)

in the 2n variables x = (x1, . . . , xn) and y = (y1, . . . , yn). The following are required
to hold for every i:
• Fi(x, 0) = xi, Fi(0, y) = yi.
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• Fi(x, y) = Fi(y, x).
• Fi(F (x, y), z) = Fi(x, F (y, z)).

Define inductively the multiplication by m maps [m]:

[1](x) = x; [m](x) = F ([m− 1](x), x).(3.2)

Note that [m](x) = ([m]1(x), . . . , [m]n(x)) defines a endomorphism of R[[x]] by

xi 7→ [m]i(x).(3.3)

We say that the formal group is p-divisible if R[[x]], considered as an R[[x]] module
via [p](x), is a finitely generated module.

Example 3.1. Let n = 1. Define the additive formal group Ĝa /R over any
ring R by

Fa(x, y) = x+ y.(3.4)

Thus,

[p](x) = px.(3.5)

One verifies that Ĝa is p-divisible if and only if p ∈ R×. Remark that Ĝa/R is the
completion of Ga/R = Spec(R[x]) along the zero section defined by the ideal sheaf
(x).

Example 3.2. Let n = 1. Define the multiplicative formal group Ĝm /R over
any ring R by

Fm(x, y) = x+ y − xy.(3.6)

Equivalently, 1− Fm(x, y) = (1− x)(1− y). Thus,

1− [p](x) = (1− x)p.(3.7)

One verifies that Ĝm is p-divisible for every p. In fact {1, x, . . . , xp−1} span R[[x]]
as a module (via [p](x)) over R[[x]]. Remark that Ĝm/R is the completion of
Gm/R = Spec(R[t, t−1]) = Spec(R[1 − x, (1 − x)−1]), where x = 1 − t, along the
zero section defined by the ideal sheaf (x).

Note that Fm is the group law of 1− exp(−x). That is

1− exp(−(x+ y)) = Fm(1− exp(−x), 1− exp(−y)).(3.8)

Example 3.3. Let ε and δ be free variables. Define a power series Fε,δ(x, y) in
Z[1/2][[ε, δ]] by

Fε,δ(x, y) =
x
√
`(y) + y

√
`(x)

1− εx2y2
, `(x) = 1− 2δx2 + εx4.(3.9)

The fact that this is a formal group law is quite tedious to check directly. A more
insightful approach is to prove that this is the formal group associated to the elliptic
curve E : y2 = `(x) with the zero point (0, 1).

As a special case, take ε and δ equal to one. Then the formal group is simply

F (x, y) =
x+ y

1 + xy
.(3.10)
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It is immediate to verify the axioms in this case. Note that F (x, y) is the group
law of the hyperbolic tangent

tanh(x) =
ex − e−x

ex + e−x
.(3.11)

That is,

tanh(x+ y) = F (tanh(x), tanh(y)).(3.12)

Theorem 3.4. (Tate [113]) Let (R,m) be a complete noetherian local ring with
residue field k = R/m a field of characteristic p. Then the category of connected
p-divisible over R is equivalent to the category of p-divisible smooth commutative
formal groups over R.

Note that every R in Ck is of this form. Thus, to study local deformations of data
I or II, one is led to consider p-divisible formal groups over local artinian rings.
We remark that the situation that will ultimately interest us is when both the
p-divisible group and its dual are connected. To deal with the general situation
one uses the theory of mixed extensions (see [11]). We further remark that certain
strengthening of Tate’s theorem are known. For example, if one generalizes the
notion of a formal group to objects “looking locally like a formal group”, then
Tate’s theorem holds for p-adic rings R (i.e., R ∼= lim

←
R/pnR) – see [69].

Proof. To be supplied.

4. Commutative smooth formal groups

We follow Lazard [Laz] in our exposition of the study of commutative smooth
formal groups, or simply, formal groups, via their Cartier-Dieudonné modules. We
shall refer for most details to loc. cit..

Before embarking, we remark that while Cartier-Dieudonné theory works for
any formal group (commutative, smooth) over any commutative associative ring
with 1, the applications to studying deformations of p-divisible groups are limited
to specific rings, e.g., artinian local rings.

LetK be any commutative associative ring with 1 and denote by nil(K) the category
of commutative nil-algebras A over K. This means that every element in A is
nilpotent. Note that A has no identity element. We also let nil(K,n) be the full
sub-category of nil(K) consisting of nil-algebras A such that for every x1, . . . , xn+1

in A we have x1 · . . . · xn+1 = 0.

We are interested in three closely related functors from the category nil(K) to the
category of pointed sets ∗Sets. They are the following:

• Models: These are the functors

D(I) : nil(K) −→ ∗Sets; D(I)(A) = A(I),(4.1)

where I is any index set and A(I) = {(aα)α∈I : aα = 0 except for finitely many α}.
• Formal modules: For any free K-module L, define a functor

L+ : nil(K) −→ ∗Sets; L+(A) = A⊗K L.(4.2)
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• Formal varieties: A formal variety over K is a functor

V : nil(K) −→ ∗Sets(4.3)

isomorphic to D(I) for some I.

Thus, formal modules are examples of formal varieties. A choice of a K-basis pro-
vides such an isomorphism. Formal varieties appear naturally in algebraic geometry
in the following way:

Let V be an n-dimensional algebraic variety over K and let v ∈ V be a non-
singular K-rational point. The completion of the local ring of v is isomorphic, by
a choice of local coordinates, to K[[x1, . . . , xn]]. The functor defined on nil(K) by

A 7→ HomCont
K (K[[x1, . . . , xn]],K ⊕A),(4.4)

where

HomCont
K (K[[x1, . . . , xn]],K ⊕A) := lim

←−
Homk(K[[x1, . . . , xn]]/Ij ,K ⊕A)(4.5)

and I is the maximal ideal of K[[x1, . . . , xn]], is identified with Dn. More canoni-
cally, the completion of V along v, V̂ , defines a formal variety taking every nil-K-
algebra A to Mor(Spec(K⊕A), V̂ ) (morphisms in the category of formal varieties).

A particular case of great importance is when V is an abelian variety (resp.
scheme) and v is its zero point (resp. section). This includes Example 3.3 as a
special case. The case when V is the additive group (resp. multiplicative group)
leads to Example 3.1 (resp. Example 3.2).

Formal varieties form a category whose morphisms are functorial morphisms (nat-
ural transformation) of functors. If V and W are formal varieties, we denote by
Mor(V,W) the morphisms from V to W.

Lemma 4.1. (Morphism Lemma, [Laz, p.10]) The functorial morphisms

f : D(I) −→ D,(4.6)

are in bijection with formal power series
∑
α∈N(I) cαx

α with c0 = 0 (multi in-
dex notation). A morphism f : D(I) −→ D(J) is defined by its components fj :
D(I) −→ D, j ∈ J .

Proof. The only point here is that any morphism f : D(I) −→ D can be
expressed as a power series. Given λ = (J, n) with J a finite subset of I and n an
integer, let Aλ be freely generated in nil(K,n) by elements {xλ,i : i ∈ J}.

Consider the point xλ in D(I)(Aλ) given by xλ = (xλ,i)i∈I , where xλ,i = 0 for
i 6∈ J . Then fAλ(xλ) is an element of Aλ and can thus be written as

fAλ(xλ) =
∑

α ∈ N(I), 0 < |α| ≤ n
supp(α) ⊂ J

cλ,αx
α(4.7)

for uniquely determined cλ,α ∈ K. But for any A ∈ nil(K) and any x ∈ A we can
find λ = (J, n) and φ : Aλ −→ A such that x = φ(xλ). By functoriality

fA(x) =
∑

α ∈ N(I), 0 < |α| ≤ n
supp(α) ⊂ J

cλ,αx
α.(4.8)
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Finally, applying this consideration for the case x = xλ′ ∈ Aλ′ for λ′ = (J ′, n′) and
λ = (J, n) such that J ′ ⊂ J and n′ ≤ n, one sees that cλ,α depend only on α.

4.1. Curves. Let V be a formal variety. A curve γ in V is a morphism

γ : D −→ V.(4.9)

Put

C(V) = Mor(D,V)(4.10)

– the set of curves in V. One defines T γ to be the induced map

T γ : D|nil(K,1) −→ V|nil(K,1),(4.11)

and calls it the tangent to γ. We further let

T V = {T γ : γ ∈ C(V)} ,(4.12)

and call it the tangent space to V. We make T into a functor by defining T f for
f : V −→ W by the formula

T f ◦ T γ = T (f ◦ γ).(4.13)

One easily verifies, using the Morphism Lemma, that any curve in C(D(I)) is
of the form γ =

∑
n≥1 ant

n for some an ∈ K(I) and vice versa. Then T γ is just
a1 ∈ K(I). Beside showing that the definition of tangent agrees with the intuitive
one, it also gives a canonical isomorphism of T D(I) with K(I), and thus T D(I) is
canonically a free K-module. One can show further that given a formal variety V,
the K-linear structure on T V deduced from a choice of isomorphism V ∼= D(I) is
in fact independent of the choice of isomorphism. Furthermore, if f : V −→ W is a
morphism then T f is K-linear. One puts:

dim(V) = dimK(T V).(4.14)

The concept of curves is crucial to the whole theory we are about to present. The
following results are evidence for that.

Theorem 4.2. (Isomorphism Theorem, [Laz, I.8]) A morphism of formal va-
rieties f : V −→ W is an isomorphism if and only if T f : T V −→ T W is an
isomorphism.

The proof is quite easy. One direction is immediate. For the other, one passes to
models and applies the Morphism Lemma, which reduces the assertion to formal
inversion of power series.

Lemma 4.3. (Curves Lemma, [Laz, I.10]) The functor V 7→ C(V) is faithful.
That is, if f and f ′ are morphisms from V to W and f ◦ γ = f ′ ◦ γ for every
γ ∈ C(V), then f = f ′.

The argument is easy: Reduce to the the case V = D(I) and W = D and use
the morphism lemma and enough “test curves” to show that f − f ′ (the difference
defined using the power series expression) is actually zero.



176 6. DEFORMATION THEORY OF ABELIAN VARIETIES

4.2. Formal groups. A formal variety G is called a formal group if G is a
commutative group object in the category of formal varieties. This amounts to
giving morphisms

m : G × G −→ G, inv : G −→ G,(4.15)

such that the expected diagrams commute. Still more concretely, it is equivalent
to giving for every A ∈ nil(K) a group structure on G(A) that is functorial in A.

We see that if G = D(I) this agrees with the previous notion of (smooth com-
mutative) formal groups defined in Section 3 using power series. Note that the
coordinates of the formal power series F (x, y) = (F1(x, y), . . . , Fn(x, y)) are the co-
ordinates for the morphism m : Dn×Dn −→ Dn constructed from F . The simplest
examples of formal groups are thus Ĝa = D with F (x, y) = x + y and Ĝm = D
with F (x, y) = x+ y − xy.

A more interesting example is provided by the completion Â of an abelian variety
A at its identity. We explained above that Â is a formal variety, and we note that
the multiplication morphism m : A×A −→ A induces a multiplication map

Â× Â −→ Â,(4.16)

making it into a formal group. See also Example 3.3.

If G is a formal group then V 7→ Mor(V,G) is a contravariant functor from formal
varieties to abelian groups. In particular C(G) is an abelian group! We shall write
the addition in this group as

γ1 +
G
γ2.(4.17)

4.3. Operators on C(G). Given ϕ ∈ Mor(D,D) we define a composition
operator,

comp(ϕ) : C(G) −→ C(G),(4.18)

by

comp(ϕ) · γ = γ ◦ ϕ.(4.19)

Note that

comp(ϕ1 ◦ ϕ2) = comp(ϕ2) ◦ comp(ϕ1).(4.20)

We define the following composition operators:
• For n ≥ 1, let Vn denote comp(ϕ) for ϕ(t) = tn.
• For c ∈ K, let [c] denote comp(ϕ) for ϕ(t) = ct.
• For n ≥ 1, define an operator Fn as follows: Fix an isomorphism G ∼= D(I).

Given γ ∈ C(G), let σγ : Dn −→ G be defined by

σγ(t1, . . . , tn) = γ(t1) +
G
. . . +

G
γ(tn).(4.21)

One can prove ([Laz, I.11]) that σγ factors as sγ ◦ symn, where

symn(x1, . . . , xn) = (
∑

xi,
∑
i<j

xixj , . . . , x1 · . . . · xn).(4.22)

One defines

Fn · γ(t) = sγ(0, . . . , 0, (−1)n−1t).(4.23)
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Consider C as a functor on the category of formal groups, and consider the ring of
natural transformations of this functor. Denote it by Cart(K). Every composition
operator we defined above is an element of Cart(K).

Theorem 4.4. In Cart(K) the following relations hold:

[1K ] = V1 = F1 = 1Cart(K); [c][d] = [cd]; FnFm = Fnm; VnVm = Vnm;(4.24)

[c]Vn = Vn[cn]; Fn[c] = [cn]Fn; FnVn = n · 1Cart(K);(4.25)

VnFm = FmVn, if (n,m) = 1.(4.26)

Most of the properties are easy to verify from the definition. For the proof see
[Laz, I.10, III.3, IV.1]. Note that in general [c] + [d] 6= [c + d], and in particular
n · 1Cart(K) 6= [n]. Also, in general, VnFn 6= n · 1Cart(K).

Example 4.5. The formal group Ĝa (compare Example 3.1):
Let γ(t) =

∑
ant

n and γ′ =
∑
a′nt

n be two elements of C(Ĝa). Then

γ +
Ĝa

γ′(t) =
∑

(an + a′n)tn,(4.27)

and

[c]γ(t) =
∑

anc
ntn, Vmγ(t) =

∑
ant

mn, Fmγ(t) =
∑

mamnt
n.(4.28)

In particular, letting γa(t) = t, we get Fmγa = 0 for all m > 1. See [Laz, III.3].

Example 4.6. The formal group Ĝm (compare Example 3.2):
Let γ and γ′ be as above. Then

γ +
Ĝm

γ′(t) =
∑

a′′nt
n,(4.29)

where

a′′n = an + a′n −
∑

0<i<n

aia
′
n−i.(4.30)

We also have

[c]γ(t) =
∑

anc
ntn, Vmγ(t) =

∑
ant

mn.(4.31)

Let γm(t) = t, then Fnγm = γm for all n.

How does one compute Fn? There is a formal “trick” for that. Let G be a formal
group. One has formally the identity

VmFmγ =
m∑
i=1
G

[ζi]γ,(4.32)

where ζ is a primitive m-th root of unity (which need not exist in K) and where∑
G denotes summation +

G
. Thus, for example, VmFmγm = ζt +

Ĝm

. . . +
Ĝm

ζmt =
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1−
∏m
i=1(1− ζit) = tm, which gives Fmγm = γm. More generally,

VmFmγ = (
∑

anζ
ntn) +

Ĝm

. . . +
Ĝm

(
∑

anζ
mntn)

= 1−
m∏
i=1

(1−
∑
n

anζ
intn).

Definition 4.7. Let V be a formal variety and let (γi)i∈I be an indexed set of
curves in V. It is a called a basic set of curves if (T γi)i∈I is a K-basis for T V.

Proposition 4.8. ([Laz, III 6.1]) Let G be a formal group and (γi)i∈I be a
basic set of curves. Then any curve γ ∈ C(G) can be written uniquely as

γ =
∑

m≥1,i∈I
G
Vm[xm,i]γi, ∀m (xm,i)i∈I ∈ K(I).(4.33)

Conversely, every such expression defines a curve γ ∈ C(G).

Example 4.9. In the formal group Ĝa, the set {γa} is a basic set of curves.
Every curve can be written uniquely as

∞∑
n=1

ant
n =

∞∑
n=1

G
Vn[an]γa.(4.34)

Example 4.10. In the group Ĝm, the set {γm} is a basic set of curves. What
is
∑
Ĝm

Vn[xn]γm?
If we write the result as

∑
ant

n then
∑
ant

n =
∑
Ĝm

xnt
n. Equivalently,

1−
∞∑
n=1

ant
n =

∞∏
n=1

(1− xntn).(4.35)

One proves that the ai’s and the xi’s are functions of each other. We may write∑
Vn[xn]γm +

∑
Vn[yn]γm =

∑
Vn[zn]γm,(4.36)

and the zn are determined by the identity∏
(1− xntn)

∏
(1− yntn) =

∏
(1− zntn).(4.37)

We define:
• W+(K) = KN

∗
with the addition law (xn) + (yn) = (zn).

• Ŵ+(K) = K(N∗) with the addition law (xn) + (yn) = (zn).

Remark 4.11. The group W+(K), canonically isomorphic to C(Ĝm), is iso-
morphic to the group of infinite Witt vectors over Z. See [48, Section 17.1 ], “ Lots
of Witt vectors”, for lots on Witt vectors. See also Section 6.1 below.

Let γw be the canonical curve in Ŵ+ given by γw(t) = (t, 0, 0, . . . ) and define curves
εi by εi(t) = (0, . . . , 0, t

i
, 0, . . . ). In fact, εi = Fiγw.

Theorem 4.12. (Representation Theorem, [Laz, III.4]) There exists a canon-
ical isomorphism

C(G) ∼= Hom(Ŵ+,G).(4.38)
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It is defined as follows: Given γ ∈ C(G) there exists a unique homomorphism of
formal groups

uγ : Ŵ+ −→ G,(4.39)

such that

γ = uγ ◦ γw.(4.40)

Corollary 4.13. There is a canonical bijection

Cart(K) −→ C(Ŵ+).(4.41)

Proof. Given x ∈ Cart(K) associate to it the curve xγw in C(Ŵ+). For any
formal group G and γ ∈ C(G) we have,

xγ = x(uγ ◦ γw) = uγ ◦ (xγw).(4.42)

This shows that the map

Cart(K) −→ C(Ŵ+), x 7→ xγw,(4.43)

is injective. To show it is surjective, we argue as follows: Given γ′ ∈ C(Ŵ+), define
an operator x in Cart(K) by

xγ = uγ ◦ γ′.(4.44)

We need to check that for any morphism f : G −→ G′ we have x(f ◦ γ) = f ◦ (xγ).
Indeed x(f ◦ γ) = uf◦γ ◦ γ′ = f ◦ uγ ◦ γ′ = f ◦ (xγ). Since this holds for any
morphism, we may apply that to m : G ×G −→ G to deduce that x is additive.

We have found a bijection Cart(K) −→ C(Ŵ+) by sending x to xγw. The curves
(εi)i∈N∗ form a basic set of curves in Ŵ+ and hence by Proposition 4.8 every curve
can be uniquely expressed as∑

i,m∈N∗
Vm[xm,i]εi =

∑
i,m∈N∗

Vm[xm,i]Fiγw, ∀m, (xm,i)i ∈ K(N∗).(4.45)

Corollary 4.14. The ring Cart(K) has the following description:

Cart(K) =

 ∑
i,m∈N∗

Vm[xm,i]Fi : ∀m (xm,i)i ∈ K(N∗)

 .(4.46)

5. Modules over Cart(K)

We have seen that for every formal group G the group C(G) is a module over
Cart(K). These modules have certain properties which we attempt to single out
now. Our motivation is to use such modules to establish an equivalence of categories
between them and formal groups. The main new ingredient we need to pay attention
to are topological properties.

Let x =
∑
i,m∈N∗ Vm[xm,i]Fi be an element of Cart(K). Put

ord(x) = min{m : ∃n xm,n 6= 0}.(5.1)

One may verify ([Laz, IV.2]) that

ord(x± y) ≥ min{ord(x), ord(y)}, ord(xy) ≥ ord(x),(5.2)
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ord([a+ b]− [a]− [b]) > 1.(5.3)

Define ideals In of Cart(K) by

In = {x : ord(x) ≥ n}.(5.4)

Under the topology defined by these ideals Cart(K) becomes a complete Hausdorff
topological ring.

Definition 5.1. 1. A uniform Cart(K)-module is a topological continuous
Cart(K)-module C such that for any indexed set (xj)j∈J in Cart(K) converging to
zero, and for any set of elements (γj)j∈J , we have

∑
j∈J xjγj converging in C.

2. For a uniform module C we let Cn be the closure of the sum of all the
subgroups ViC for i ≥ n. Then C is a complete Hausdorff module with respect to
the Cn’s. Let

grnC = Cn/Cn+1.(5.5)

3. A reduced Cart(K)-module C is a uniform module C such that the following
hold:

• Its topology is the Cn topology.
• The homomorphism gr1C −→ grnC given by multiplication by Vn is bijec-

tive for every n.
• The K-module gr1C is free.

The following theorem is the main theorem of this theory. It is due to P. Cartier.

Theorem 5.2. (Main Theorem, [Laz, III.11]) The category of formal groups
over K with morphisms given by homomorphisms of formal groups, is equivalent
to the category of reduced Cart(K)-modules with morphisms given by continuous
Cart(K)-linear maps. The equivalence is given by

G 7→ C(G).(5.6)

Unfortunately, this theorem is not stated precisely enough in some early references.
A fact that led to minor inaccuracies in the applications of the theory to deforma-
tions of abelian varieties.

It is of interest to understand, at least “qualitatively”, how does one associates a
formal group to a reduced Cart(K)-module C. As a “simple” motivating example
one may keep in mind the universal formal deformation of a supersingular elliptic
curve.

Given any uniform Cart(K)-module C, one associates to it a functor Γ from
the category of formal varieties to the category of abelian groups

V 7→ Γ(V).(5.7)

The definition of Γ is motivated by the following reasoning: If C comes from a
formal group G, then Γ(V) should be equivalent to Mor(V,G). Since the functor C
is faithful, we have an injection

Mor(V,G) ↪→ Mor(C(V), C(G)).(5.8)

Since C is to be identified with C(G), one defines Γ(V) as a certain functorial
subgroup of Mor(C(V), C). It consists of all the maps of the following form:
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Let (γj)j∈J be any indexed set of elements of C and (πj)j∈J : V −→ D(J) a
morphism. Define a morphism f : C(V) −→ C by

f(δ) =
∑
j∈J

comp(πj ◦ δ) · γj , δ : D −→ V.(5.9)

One denotes f by
∑
πj ? γj .

Let us assume now further that C is reduced. A V -basis for C is an indexed
set (γj)j∈J of elements of C such that the γj mod V C are a K-basis of the free
K-module gr1C = C/C2. One then proves that every element in C may be written
uniquely as

∑
n,j∈N∗ Vn,j [xn,j ]γj where for every n we have (xn,j)j∈J ∈ K(J). One

shows that C is in bijective correspondence with C(D(J)) given by associating to
a curve ϕ = (ϕj) : D −→ D(J) the element

∑
j∈J comp(ϕj) · γj of C. One further

shows that there is a functorial isomorphism of topological groups

Mor(V, D(J)) ∼= Γ(V),(5.10)

obtained by associating to (πj) : V −→ D(J) the element
∑
j∈J πj ? γj .

6. The Q-case

Theorem 6.1. (The Q theorem, [Laz, II.3]) Assume that K is a Q-algebra and
G,G′ are two formal groups over K. Then, to any K-linear map u : T G −→ T G′,
there exists a unique formal group homomorphism f : G −→ G′ such that T f = u.

Thus, the category of formal groups over K is equivalent to the category of free
K-modules. The equivalence is given by the fully-faithful functor T . In particular,
there exist unique formal group isomorphisms:

logG : G −→ (T G)+, expG : (T G)+ −→ G,(6.1)

which are inverses of each other and such that

T logG = Id, T expG = Id.(6.2)

Example 6.2. For Ĝa the logarithm and exponent are of course the identity
maps. For Ĝm we have

log
Ĝm

(x) = − log(1− x), exp
Ĝm

(x) = 1− exp(−x).(6.3)

For the case of W+ see Section 6.1. For the case of elliptic curves, see [124]
and [107]. We can not resist mentioning though the following beautiful theorem
connecting the arithmetic and geometry of elliptic curves.

Theorem 6.3. (Honda, [49]) Let E be an elliptic curve over Q; let L(E/Q, s) =∑∞
n=1 ann

−s be its L-function. Put f(x) =
∑∞
n=1 ann

−1xn and let G be the formal
group D over Q with logarithm logG = f(x). Then G is a formal group over Z and
is isomorphic to the formal group of the Néron model of E over Z.

6.1. Digression on Witt vectors. We follow [48, Section 17]. Define poly-
nomials

wn(x1, . . . , xn) =
∑
d|n

dx
n/d
d ∈ Z[x1, . . . , xn].(6.4)
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We shall write x = (x1, x2, . . . ) and would consider wn also as functions of x. Thus,
for example,

w1(x) = x1, w2(x) = x2
1 + 2x2, w3(x) = x3

1 + 3x3, w4(x) = x4
1 + 2x2

2 + 4x4, . . . .

(6.5)

One proves that there exists polynomials

Σn(x1, . . . , xn; y1, . . . , yn) ∈ Z[x1, . . . , xn; y1, . . . , yn], n = 1, 2, . . . .
Πn(x1, . . . , xn; y1, . . . , yn) ∈ Z[x1, . . . , xn; y1, . . . , yn], n = 1, 2, . . . .
ιn(x1, . . . , xn) ∈ Z[x1, . . . , xn], n = 1, 2, . . . .

such that for every n

wn(Σ) = wn(x) + wn(y), wn(Π) = wn(x) · wn(y), wn(ι) = −wn,(6.6)

where we have put

Σ = (Σ1,Σ2, . . . ), Π = (Π1,Π2, . . . ), ι = (ι1, ι2, . . . ).(6.7)

Define a ring functor from the category of commutative rings to itself

W : Rings −→ Rings, A 7→W (A),(6.8)

where W (A) is the Witt ring AN
∗

with addition and multiplication defined by Σ,Π
and i. Namely,

x+ y = Σ(x; y), x · y = Π(x; y), −x = ι(x).(6.9)

Still more visibly,

(a1, a2, . . . ) + (b1, b2, . . . ) = (Σ1(a1; b1),Σ2(a1, a2; b1, b2), . . . ),
(a1, a2, . . . ) · (b1, b2, . . . ) = (Π1(a1; b1),Π2(a1, a2; b1, b2), . . . ),
−(a1, a2, . . . ) = (ι(a1), ι(a1, a2), . . . ).

One may amuse himself by calculating the first of these polynomials:

Σ1(x1; y1) = x1 + y1, Σ2(x1, x2; y1, y2) = x2 + y2 − x1y1, . . . .
Π1(x1; y1) = x1y1, Π2(x1, x2; y1, y2) = x2y

2
1 + y2x

2
1 + 2x2y2, . . . .

ι1(x1) = −x1, ι2(x1, x2) = −x2
1 − x2, . . . .

One can prove using Equation (6.6) that this indeed gives a ring structure. Let Ŵ
be the sub-functor, such that

Ŵ (A) = A(N∗).(6.10)

Then clearly the underlying additive group of Ŵ , denoted Ŵ+ is a formal group.
Indeed, the formal group law is non other than

F (x, y) = (Σ1(x; y),Σ2(x; y), . . . ).(6.11)

The map

x = (x1, x2, . . . )
log−−−−→ w(x) = (w1(x), w2(x), . . . ),(6.12)

is the logarithm of the formal group Ŵ+.
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Consider now the ring 1 + tA[[t]] endowed with a ring structure as follows: The
usual multiplication of power series is decreed addition. To define multiplication,
write formally

1 + x1t+ x2t
2 + · · · =

∞∏
i=1

(1− ξit), 1 + y1t+ y2t
2 + · · · =

∞∏
j=1

(1− ηjt) .(6.13)

Then
∞∏

i,j=1

(1− ξiηjt) = 1 + P1(x1; y1)t+ P2(x1, x2; y1, y2)t2 + . . . .(6.14)

Multiplication is defined by

(6.15) (1 + x1t+ x2t
2 + . . . ) ? (1 + y1t+ y2t

2 + . . . ) =

1 + P1(x1; y1)t+ P2(x1, x2; y1, y2)t2 + . . . .

The map

E : W (A) −→ 1 + tA[[t]], E(a1, a2, . . . ) =
∞∏
i=1

(1− aiti),(6.16)

is an isomorphism of rings. This justifies Remark 4.11, as well as the notation.

Fix a prime p. We may then consider only “the p-part” of W and Ŵ . That is,
consider only n’s that are power of p. Bearing this in mind, we change notation (as
is customary) and let

φn(x0, · · · , xn) =
n∑
i=0

pixp
n−i

i = xp
n

0 + · · ·+ pn−1xpn−1 + pnxn.(6.17)

That is, φn = wpn . Then, the polynomials sn = Σpn , pn = Πpn and in = ιpn define
a ring structure on Wp(A) = AN

∗
and Ŵp(A) = A(N∗). This is clear from what was

said above.

A fundamental result concerning Wp(K) where K is a finite field of characteristic
p, is that Wp(K) is the unique, up to isomorphism, discrete complete valuation ring
of characteristic 0 with residue field K. The maximal ideal is

m = {(0, x2, x3, · · · ) : xi ∈ K}.(6.18)

The map

K× −→Wp(K), x 7→ (x, 0, 0, . . . ),(6.19)

is the Teichmüller lift. That is, the image of x is the unique root of unity reducing
to x modulo the maximal ideal.

Since Wp is a functor, one may ask what is the functorial map Wp(K) −→Wp(K)
corresponding to the Frobenius map x 7→ xp on K? It is given just by

(x0, x1, x2, . . . ) 7→ F (x0, x1, x2, . . . ) := (xp0, x
p
1, x

p
2, . . . ).(6.20)

There is another map, the verschiebung,

V : Wp(K) −→Wp(K), V (x1, x2, . . . ) = (0, x1, x2, . . . ).(6.21)
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It is a map of the underlying additive group, but does not respect multiplication.
A fundamental relation is

FV = V F = [p].(6.22)

7. Formal groups in characteristic p

If one is willing to work in characteristic p only, then the constructions above can
be simplified. Let us assume henceforth that K is of positive characteristic p.

One replaces the ring Cart(K) by the ring Cartp(K). It is the sub ring of Cart(K)
consisting of all the sums∑

i,n∈N

V n[xn,i]F i, ∀n (xn,i)i ∈ K(N),(7.1)

where

V n := Vpn , F i = Fpi .(7.2)

Recall the relations (let V = V 1 and F = F 1):

F iF j = F i+j , V iV j = V i+j , FV = p · 1,(7.3)

[a]V = V [ap], F [a] = [ap]F, [ab] = [a][b],(7.4)

and the special feature of characteristic p:

V F = p · 1.(7.5)

Henceforth, we let Wp(K) stand for the Witt vectors over K (consisting in fact of
the p-power components of the previously defined W+(K)). One can prove that
the map

op : Wp(K) −→ Cartp(K),(7.6)

defined by

op(x) = op(x1, x2, . . . ) =
∑

V n[xn]Fn,(7.7)

is a ring homomorphism, and the following identities hold:

Fm(op)(x) = op( F
m

x)Fm, op(x)V m = V mop( F
m

x).(7.8)

In particular, every Cartp(K)-module is canonically a Wp(K)-module via the ring
homomorphism op. We remark that the same holds for Cart(K) for a general ring
K. The map op(x1, x2, . . . ) =

∑
Vn[xn]Fn is an embedding of W (K) in Cart(K).

One defines in the same way the notions of uniform and reduced Cartp(K)-modules
(but see below). An element γ in a Cartp(K)-module is called p-typical if Fnγ = 0
for every n prime to p. Let

Cp(G) ⊂ C(G)(7.9)

be the subgroup of p-typical curves.
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Theorem 7.1. (Main Local Theorem, [Laz, IV.7, IV.8]) Let K be a ring of
characteristic p. The functor

G 7→ Cp(G),(7.10)

is an equivalence of categories from the category of formal groups over K, to the
category of reduced Cartp(K)-modules.

Further simplifications occurring in characteristic p are:
• A Cartp(K)-module C is uniform if and only if ∩nV nC = {0}.
• A Cartp(K)-module C is reduced if and only if it is uniform, V is injective

and C/V C is a free K-module.
• Every γ ∈ C(G) has a unique expression γ =

∑
(n,p)=1 Vnγn for appropriate

γn ∈ Cp(G). This implies that Cp(G)/V Cp(G) ∼= T G.

Remark 7.2. In the definition of a reduced module one requires that ∩iV iC =
{0}. Why? The operation V is coming from the “Frobenius map”,

R[[x1, . . . , xn]] −→ R[[x1, . . . , xn]],(7.11)

taking xi to xpi . This makes it clear it should be nilpotent. But note that the
corresponding action on the p-divisible group is again Frobenius. Thus, in the
covariant theory that we present, the operator V on the module corresponds to
the Frobenius morphism on the p-divisible group. Since the p-divisible group is
connected, the nilpotence of V is reflecting the fact that on a connected p-divisible
group Frobenius is nilpotent.

8. Classification of p-divisible groups in characteristic p, Newton
polygons and types

Recall that we are given a totally real field L, and let K stand for a characteristic p
ring and k for an algebraically closed field of characteristic p. We use R to denote a
general ring but whenever we say Cartp(R)-module, or consider Cp(G) for a formal
group G over R, it is tacitly assumed that R has characteristic p. All formal groups
in this section are finite dimensional.

Definition 8.1. 1. A formal group with real multiplication by L, or simply,
formal group with RM, is a formal group G over a ring R, together with an embed-
ding of rings

ι : OL −→ EndR(G),(8.1)

making T G into a locally-free OL ⊗R-module of rank 1.
2. A Cart(R)-module (resp. Cartp(R)-module) with RM , is a reduced Cart(R)-

module (resp. Cartp(R)-module) C together with an embedding of rings

ι : OL −→ End(C)(8.2)

(endomorphisms of topological Cartier modules), making gr1C into a locally free
OL ⊗R-module of rank 1.

Clearly, Theorem 5.2 (resp. Theorem 7.1) implies that the functor

G 7→ C(G), (resp. G 7→ Cp(G)),(8.3)

is an equivalence of categories between formal groups with RM and morphisms com-
muting with the OL-structure, to the category of reduced modules with morphisms
of Cartier modules commuting with the OL-structure.
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Recall that a formal group G over k is p-divisible, if, fixing an isomorphism G ∼= Dg,
the ring Dg becomes a finite module over itself via the homomorphism Dg −→ Dg

induced by multiplication by p on the formal group. Equivalently, the module
Cp(G)/pCp(G) is a finite k-module. We remark that for a p-divisible group G one
has that Cp(G) is a free Wp(k)-module of finite rank.

Two p-divisible groups G1,G2, over k are called isogenous (notation: G1 ∼ G2)
if there exists a surjective homomorphism G1 −→ G2 with finite kernel. This is an
equivalence relation. The groups G1 and G2 are isogenous if and only if Cp(G1)⊗Q
and Cp(G2)⊗Q are isomorphic as Cartp(k)⊗Q modules.

The classification of p-divisible formal groups over k up to isogeny was carried
out by Dieudonné, and up to isomorphism by Manin in [68]. Note that the theory
in [68] is contravariant, while we survey the covariant theory.

Theorem 8.2. (Dieudonné, [Laz, VI.7, VI.8], [68, II.4]) The category of p
divisible formal groups up to isogeny, over an algebraically closed field k of char-
acteristic p, is semi-simple. The simple objects are precisely the p-divisible groups
Gm,n for m,n ∈ N∗ and (m,n) = 1 or (m,n) = (1, 0).

The group Gm,n has dimension m and is determined by its Cartp(k) module
Cm,n = Cp(Gm,n) where

Cm,n = Cartp(k)/(Fm − V n).(8.4)

Remark 8.3. The group G1,0 is just Ĝm and is isomorphic to the formal group
of an ordinary elliptic curve over k. The group G1,1 is isomorphic to the formal
group of a supersingular elliptic curve over k. Sometimes one puts G0,1 := Qp/Zp,
even though this is not a formal group in our sense.

Definition 8.4. We say that Gm,n (or Cm,n) has slope m
m+n of length m + n.

The height of a p-divisible group G is the integer h such that the p-torsion subgroup
scheme of G has rank ph. (Thus, the length of Cm,n is in fact the height of Gm,n).
One gives G0,1 slope 1 of length 1.

If G is any p-divisible group over k and

G ∼ ⊕ Gmi,ni(8.5)

(repetitions allowed), we associate to it a unique lower convex polygon in the
plane, having increasing slopes, such that the polygon starts at (0, 0) and ends at
(height(G),dim(G)), and has for every (mi, ni) a segment of slope mi

mi+ni
of length

mi + ni. We call it the Newton polygon of G.

Remark 8.5. Let A/Fq be a g-dimensional abelian variety (q a power of p)
and let φ be that iterate of Frobenius satisfying φ(x) = xq. Assume that |A[p](Fq)|
= 1. Then A(p) is a connected p-divisible group, or, equivalently, a formal group,
of dimension g and height 2g. Its Newton polygon is symmetric in the sense that a
slope λ appears with length r if and only if the slope 1− λ appears with length r.
The polygon starts at (0, 0) and ends at (2g, g).

Consider φ as an endomorphism of A, hence of A(p), or of the free Wp(Fq)-
module Cp(A(p)). Viewed in this way, it has a characteristic polynomial over
Wp(Fq), whose Newton polygon is the Newton polygon of A(p) as a formal group.

Suppose we are given a reduced Cartp(k)-module C. How does one find the Newton
polygon?
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In practice this is not easy to find! But consider a very lucky scenario: Suppose
that with respect to some basis (e1, . . . , en) of the module C (a free Wp(k)-module
of rank n = height(G)), the matrix [V ] of the operator V has entries in Wp(Fpm).
The operator V m is represented by the matrix

[V m] = [V ][V ]σ
−1
. . . [V ]σ

−(m−1)
(8.6)

(here σ stands for Frobenius). Considering V m as an operator on the Wp(Fpm) span
of (e1, . . . , en), we find it is a linear operator represented by the matrix [V m]. Take
the Newton polygon N ′ of the characteristic polynomial of this matrix, and let N
be the polygon obtained by dividing N ′ by m. That is, (x, y) ∈ N iff (x,my) ∈ N ′.
Then N is the Newton polygon of C.

Example 8.6. (B. Gross) Consider the field Fp2 where p ≡ 3 (mod 4) and
i ∈ Fp2 satisfies i2 = −1. Suppose that V is given with respect to some basis by
the matrix

[V ] =
−1
2

(
1− p (p+ 1)i

(p+ 1)i p− 1

)
.(8.7)

The usual linear polynomial is x2 + p, which would give the Newton polygon

Figure 5.

However, this is not the Newton polygon of the module. Indeed, if one changes
basis by the matrix

N =
(

1 i
i 1

)
,(8.8)

then the resulting matrix of V is

N [V ](N−1)σ
−1

=
(
p 0
0 1

)
.(8.9)

Evidently, the Newton polygon is

Figure 6.
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Note also that V 2 is given by

1
2

(
p2 + 1 (p2 − 1)i

(1− p2)i p2 + 1

)
.(8.10)

Its linear characteristic polynomial is (x2 − 2(p2 + 1)x + p2)/4 and its Newton
polygon is twice the Newton polygon in *****

Example 8.7. The module C2,3 is generated freely by F, 1, V, V 2, V 3. The
matrix of V is 

0 0 0 0 p
p 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .(8.11)

It has characteristic polynomial x5 − p2 whose Newton polygon is

Figure 7.

Let ` be the graph of any convex function f : [0, h] −→ R. Say f(h) = d. Let G
be a d-dimensional p-divisible formal group over R of height h. We say that the
Newton polygon of G is above ` if for every homomorphism ϕ : R 7→ k, from R
to an algebraically closed field k, the Newton polygon of G ⊗R k is above ` in the
sense that no point of the polygon is strictly below ` (if (x, y) is a point of that
polygon then y ≥ f(x)). We remark that this property only depends on the point
Ker(ϕ) ∈ Spec(R).

Theorem 8.8. (Grothendieck’s Specialization Theorem, [62, 2.3.1]) The set of
points in Spec(R) for which the Newton polygon of G is above ` is Zariski closed.

Corollary 8.9. In case Ip (resp. IIp), for every ` there exists a closed subset
N` of A(Fp) = A⊗ Fp (resp. M(µN ,F) = M(µN )⊗ F) universal for the condition
that the Newton polygon is above `. That is, if (A, λ, α)/R (resp. (A, ι, α)) has the
property that the Newton polygon of A(p)/R is above `, then the unique classify-
ing morphism Spec(R) −→ A(Fp) (resp. Spec(R) −→M(µN ,F)) corresponding to
(A, λ, α)/R (resp. (A, ι, α)) factors through N`.

Remark 8.10. Of course one can restrict to ` which is actually one of the
Newton polygons appearing. Conjectures regarding those sub schemes N` appeared
for case Ip in [92] and for case IIp in [39].

Recently de Jong and Oort proved the following theorem:
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Theorem 8.11. (Purity Theorem, [54]) Let R be a noetherian local ring of
characteristic p and G a p-divisible group over R. Assume that the Newton polygon
of G is constant over R\{mR}. Then, either dim(R) ≤ 1 or the Newton polygon of
G is constant over R.

Using this theorem one obtains lower bounds on dim(N`) and upper bounds on the
dimension of components of N` containing supersingular points (loc. cit, Introduc-
tion). These are points such that the Newton polygon of the associated abelian
variety is a straight line from (0, 0) to (2g, g). Among them, the easiest to describe
are the superspecial points. A geometric point x of A(Fp), or M(µN ,F), is super-
special if the associated abelian variety has p-divisible group isomorphic to Gg1,1.
By a theorem of Oort [93] an abelian variety is superspecial iff its a number is
maximal. The Cartp(k)-module of such a p-divisible group is generated freely over
Wp(k) by generators x1, y1, . . . , xg, yg on which F acts by

0 −p
1 0 0

0 −p
1 0

. . .

0
0 −p
1 0


.(8.12)

Definition 8.12. Let G be a formal group with RM over k. We define the type
of G to be the isomorphism class of the representation of OL ⊗ k on Dα(G) where

Dα(G) = Cp(G)/(Cp(G)V + Cp(G)F ).(8.13)

Note that Dα(G) = T G/FT G. The isomorphism class of this representation can be
written as a formal sum

∑
(j,i) ε(j,i)σ(j,i), where ε(j,i) is zero or one, or also with a

vector

τ(G) = (τ1(G), . . . , τr(G)),(8.14)

where ε(j,i) = 1 iff (j, i) ∈ τj(G) (thus, τj(G) is a subset of {(j, i) : 1 ≤ i ≤ fj}).

Definition 8.13. Given a formal group G over k and given any τ = (τ1, . . . , τr)
with τj a subset of {(j, i) : 1 ≤ i ≤ fj}, we say that τ(G) ≥ τ , if for every j we have
τj(G) ⊇ τj .

Given a formal group G over an F-algebra R, we say that τ(G) ≥ τ if for
every homomorphism ϕ : R −→ k of R to an algebraically closed field k, we have
τ(G ×R k) ⊇ τ . (This depends only on the point Ker(ϕ) ∈ Spec(R)).

Theorem 8.14. (Specialization Theorem) Given a type τ and a formal group
G over R, the set of points of Spec(R) where τ(G) ≥ τ is Zariski closed.

Proof. Consider the linearization F ] of F ,

F ] : T G ⊗R,σ R −→ T G,(8.15)

where σ : R −→ R is the Frobenius and F ](x⊗λ) = λF (x). Note that F ](x⊗λp) =
λpF (x) = F (λx) = F (λx⊗ 1). Hence F ] is well defined.
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We could have formulated the notion of type using T G/Im(F ]). First, for
m ∈ OL we have F ](mx⊗ λ) = λF (mx) = λmF (x) = mF ](x⊗ λ). Thus, F ] is an
OL ⊗R-linear map. If we decompose

T G = ⊕gi=1Ri,(8.16)

according to the decomposition

OL ⊗R = ⊕gi=1Ri,(8.17)

then for every i we have

F ] : Ri−1 ⊗R,F R −→ Ri.(8.18)

In fact this map is given by multiplication by an element ai ∈ R. Then the subset
of Spec(R) such that i does not belong to the type is precisely Ba (i.e. where ai is
invertible and there “R = aiR”.).

Given an abelian scheme with RM (A, λ, ι) over an F-scheme S, we define τ(A) =
τ(A(p)0).

Corollary 8.15. For every τ there exists a Zariski closed subset Wτ of M(µN ,F)
which is universal for the property τ(A, λ, ι) ⊇ τ .

Remark 8.16. One may ask: if G is the formal group of an abelian variety A
with RM why not consider C/(V C + F 2C) etc.? The answer is that in the case
of RM, the type determines over an algebraically closed field the p-torsion group
scheme A[p] ([39]). Thus no new information is gained by this generalization. In
the case Ip, though, this leads to the Ekedahl-Oort stratification!

9. Mid-way summary

k – an algebraically closed field of positive characteristic p.
Ck,p – category of local artinian k-algebras with residue field k.
L – a totally real number field of degree g over Q in which p is inert.
F – a fixed field of pg elements.
M – moduli space of abelian varieties with RM by OL.
x – a k-rational point of M parameterizing the object (A, ι).

There is an implicit µN -level (N ≥ 3 structure and prime to p) whenever we deal
with M or x. Assume that the p-divisible group A(p) is connected and let Gk be
the corresponding divisible formal group. Then

ÔM⊗F,x ∼= Runiv
(A,ι)

∼= Runiv
(A(p),ι(p))

∼= Runiv
(Gk,ιk).(9.1)

Let us call the last ring simply RU. In the above isomorphisms, the universal rings
are with respect to deformations over objects of Ck,p (and are just the reduction
mod p of the universal ring of deformations over Ck).

It follows that there exists a Cartp(RU)-module CU such that for every ring
R in Ck,p and a deformation (GP , ιR) of (Gk, ιk) over R, there exists a unique
ring homomorphism ϕ : RU −→ R such that CU ⊗W (RU) W (R) ∼= Cp(GR) as
OL ⊗ Cartp(R)-modules.

Finally, we remark that since p is inert, A(p) is connected if and only if A is not
ordinary. This follows from observing that A[p](k) is a module over the field of pg

elements OL/(p).
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10. Displays

Displays are a machinery developed to simplify and normalize the presentation of
a reduced Cartp(R)-module, where R is a simple enough ring; e.g., a complete
noetherian local ring. The need in finding a simplified presentation arises when one
wants to study explicitly the local deformations of abelian varieties or p-divisible
groups. For example, to study how the Newton polygon or type varies locally.

Let k be an algebraically closed field of characteristic p > 0, and let G be a formal
group over k. There is no doubt that the Cartier-Dieudonné module of G is “the
right thing”. One of the reasons the theory works so well is the following: Let R
be a perfect ring of characteristic p. Let Wp(R)[F, V ] be the ring consisting of all
the expressions {

a0 +
n∑
i=1

aiF
i +

m∑
i=1

biV
i : ai, bi ∈Wp(R)

}
.(10.1)

Make it into a ring by the obvious addition and multiplication determined by the
relations;

FV = V F = p, Fa = FaF, V Fa = aV.(10.2)

Then:
• This makes Wp(R)[F, V ] into a ring! (perfectness is needed)
• The image of the natural map Wp(R)[F, V ] −→ Cartp(R) is dense.
This phenomenon is responsible for a considerable simplification in the study

of Cartp(R)-modules.
The question is how to extend this notion to the case of, say, local artinian ring

of characteristic p with residue field k (we do narrow our ambitions here, but that in
fact suffices for the applications later). One way is, of course, to use Cp as described
above, but it turns out that such modules are not “nice enough”. A modification
was found recently by Thomas Zink [127], following ideas of Mumford, Norman
and Oort.

10.1. Basics. Let p be a prime. Let R be a characteristic p ring. Denote by

x 7→ Fx, x 7→ V x,(10.3)

the Frobenius and verschiebung morphisms of Wp(R) respectively. Let

IR = VWp(R) = {(0, r1, r2, . . . ) : ri ∈ R}.(10.4)

Note that R = W (R)/IR.

Definition 10.1. Let M and N be Wp(R)-modules. An additive map

α : M −→ N(10.5)

is called F -linear map if it satisfies

α(λ ·m) = Fλ · α(m), ∀λ ∈Wp(R),m ∈M.(10.6)

Let α] be the Wp(R)-linear map,

α] : Wp(R)⊗Wp(R), F M −→ N, α](λ⊗m) = λ · α(m).(10.7)

We say that α is an epimorphism (resp. mono-morphism, isomorphism) if α] is an
epimorphism (resp. mono-morphism, isomorphism).
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Definition 10.2. A 3n-display over R is a quadruple (P,Q, F, V −1) such that:
• P is a finitely generated projective Wp(R)-module.
• Q ⊂ P is a Wp(R)-submodule.
• F : P −→ P and V −1 : Q −→ P are F -linear maps.
The following holds:
(i) IRP ⊂ Q ⊂ P and there is a decomposition P = L ⊕ T as Wp(R)-module

such that Q = L⊕ IRT .
(ii) V −1 : Q −→ P is an F -linear epimorphism.
(iii) ∀x ∈ P,w ∈Wp(R), we have

V −1( V w · x) = w · Fx.(10.8)

Remark 10.3. Note that “there is no V map”. Note also the identity

Fx = V −1( V 1 · x)(10.9)

(= p · V −1x if x ∈ Q). Thus F is determined by V −1.

Displays form a category. A morphism

ϕ : (P1, Q1, F1, V
−1
1 ) −→ (P2, Q2, F2, V

−1
2 )(10.10)

is a morphism ϕ : P1 −→ P2 of Wp(R)-modules such that:

ϕ(Q1) ⊂ Q2, ϕF1 = F2ϕ, ϕV −1
1 = V −1

2 ϕ.(10.11)

Assume that R is a noetherian local ring of characteristic p. Then the divisible
formal groups over R correspond to reduced Cartp(R)-modules C such that C is a
finitely generated projective Wp(R)-module. If R is also perfect, this means that
C/pC is a finitely generated R-module, because in this case IR = pWp(R). Such
modules can then equivalently be described as free Wp(R)-modules M of finite rank,
endowed with additive maps F, V : M −→M such that

F (w · x) = Fw · x, V ( Fw · x) = w · V x, FV = V F = p.(10.12)

Furthermore, M/VM and VM/pM are free R-modules and there exists an n such
that V nM ⊂ pM . The last condition is implicit for every reduced Cartp(R)-module
M , because ∩V iC = {0}. The equivalence rests on the fact that the natural map
Wp(R)[F, V ] −→ Cartp(R) is injective with dense image.

We recall, mainly for the sake of completeness, the notion of a Dieudonné module.
If R is a perfect ring, one denotes by Wp(R)[F, V ] the non-commutative polynomial
ring in the variables F and V , subject to the relations

FV = V F = p, Fa = FaF, V Fa = aV.(10.13)

One calls a finitely generated projective Wp(R)[F, V ]-module M which is finitely
generated projective Wp(R) module, a Dieudonné module if M/VM and VM/pM
are projective R-modules.

Now let R be any ring of characteristic p. Let (P,Q, F, V −1) be a display over R
with a decomposition P = L⊕T as in Definition 10.2. After localizing on R we may
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assume that P,Q,L and T are all free Wp(R)-modules. Choose bases e1, . . . , ed of
T and ed+1, . . . , eh of L. There exists scalars αij ∈Wp(R) such that

Fej =
h∑
i=1

αijei, j = 1, . . . , d,(10.14)

V −1ej =
h∑
i=1

αijei, j = d+ 1, . . . , h.(10.15)

Note that this determines V −1|L and V −1|IRT because V −1(V w ·x) = w ·Fx. Thus
(10.14) determines V −1 and hence also F . Moreover, the matrix (αij) is invertible.
This follows from

Lemma 10.4. ([127, 1.4]) The map

V −1 ⊕ F : L⊕ T −→ P,(10.16)

given by (x, y) 7→ V −1x+ Fy, is an F -linear isomorphism.

Conversely, given Equations (10.14) for (αij) invertible in Mh(Wp(R)), we can
define a 3n-display over R. Indeed, let T be the free Wp(R)-module on e1, . . . , ed,
and let L be the free Wp(R)-module on ed+1, . . . , eh. Put

P = L⊕ T, Q = L⊕ IRT,(10.17)

and define F and V −1 by the additional relations:

Fej =
h∑
i=1

pαijei, j = d+ 1, . . . , h,(10.18)

V −1( V wej) =
h∑
i=1

wαijei, j = 1, . . . , d.(10.19)

Remark 10.5. The name “displays” is articulating the fact that in Equations
(10.14) and (10.18) the maps F and V −1 are “displayed”.

In general a V operator does not exist. The following definition attempts to
define the nilpotency of V “were it to exist”. We remark that a more natural (and
complicated) definition can be given, without using the choice of display, which
actually describes the nilpotence of some operator that always exists. See [127,
Section 1].

Definition 10.6. Let (P,Q, F, V −1) be a 3n-display and (αij) a displaying
matrix as in Equation (10.14). Let

(βkl) = (αij)−1, B = (βkl)d+1≤k,l≤h,(10.20)

where β denotes β (mod IR). Let B(pi) denote the matrix obtained from B by
raising each coefficient to the pi-power. We say (P,Q, F, V −1) is a display if for
some N ,

B(pN ) . . . B(p)B = 0.(10.21)

We also say then that V −1 satisfies the nilpotence condition.
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Remark 10.7. If R is perfect then V −1 is described by the matrix
(
A B
C D

)
with respect to the basis pe1, . . . , ped, ed+1, . . . , eh. In this case we may also define
an operator V , given with respect to the same basis by

((αij)−1)F
−1

= (βij)F
−1
.(10.22)

To know whether the operator V is nilpotent on the whole module P with respect
to the p-adic topology (as is required for a Dieudonné module), we need to care
only about

(βij)F
−1

d+1≤i,j≤h =: BF
−1

(mod p).(10.23)

The nilpotence is just that for some N

BF
−1
BF

−2
. . . BF

−(N+1)
= 0.(10.24)

Operating by FN+1 we get precisely the condition above.

The proof of the following proposition is straight-forward.

Proposition 10.8. ([127, 1.10]) The category of 3n-displays over a perfect
ring R is equivalent to the category of Dieudonné modules over R. Moreover, the
displays correspond exactly to the Dieudonné modules for which V is topologically
nilpotent for the p-adic topology; i.e., to those which extend to a reduced p-divisible
Cartp(R)-module.

It follows that the category of displays over a perfect ring R is equivalent to
the category of divisible formal groups over R.

Definition 10.9. A 3n-display with RM is a 3n-display (P,Q, F, V −1) to-
gether with an embedding of rings, ι : OL −→ End((P,Q, F, V −1)), that makes
P/Q into a locally-free (on R) OL ⊗ R-module of rank 1. A display with RM is a
3n-display with RM which is a display.

Note that IRP ⊂ Q so the definition makes sense and in fact P/Q is isomorphic
to T/IRT .

10.2. Examples.
1. The multiplicative display Pm. Let Pm = (P,Q, F, V −1) be defined as

follows: P = Wp(R), Q = IR, Fw = Fw and V −1( V w · x) = w · V −1(x). One
obtains a decomposition P = L ⊕ T by putting L = {0}. Thus d = h = 1
and the nilpotency condition holds vacuously. We remark that we have seen that
Cp(Ĝm) = Ŵp(R)+ and that justifies the name.

Let Pgm be the g-fold product of P. Write Pgm = (P g, Qg, F, V −1). Say R is in
F−Alg. Then

P g = Wp(R)g ∼=
ϕ
Wp(R)⊗Wp(Fp) OL.(10.25)

This gives, via ϕ, an action of OL on P g, which makes it into a display with RM.
Such displays are obtained from ordinary abelian varieties with RM.

2. The superspecial display Psp. Let Psp = (P,Q, F, V −1) where:

P = Wp(R)e2 ⊕Wp(R)e1 = L⊕ T,(10.26)
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and Q = L⊕ IRT . Let the matrix
(

0 −1
1 0

)
define the display. One checks easily

that the nilpotence condition holds (B = 0).
We define a superspecial display to be one isomorphic to Pnsp for some n, and

a superspecial display with RM is a display with RM isomorphic to Pgsp. Such
displays are obtained from superspecial abelian varieties with RM.

The standard superspecial display is defined as follows: Let P = (P,Q, F, V −1)
with displaying 2g × 2g matrix

02 . . .
0 −1
1 0

0 −1
1 0 02

0 −1
1 0

... 02

. . . . . . . . .
0 −1
1 0 02


.(10.27)

(We let 0n stand for the n× n zero matrix). The action of OL is given by

a 7→ diag(σ1(a), σ1(a), . . . , σg(a), σg(a)),(10.28)

One can prove this is a superspecial display with RM.

We remark that if k is an algebraically closed field of characteristic p then there
are finitely many isomorphism classes of superspecial abelian varieties with RM
over k (in fact also in the situation Ip). One can prove that over such field every
superspecial display with RM is isomorphic to the standard superspecial display.
However there is usually more then one isomorphism class of superspecial abelian
varieties.

The reason superspecial abelian varieties (or displays) are of such importance
is the following

Theorem 10.10. Let τ ⊂ {1, . . . , g}. Every component of Wτ contains a su-
perspecial point.

For the proof see [39]. One may think of the superspecial points as “extreme
points” of M⊗ F, which often play a role similar to the cusps.

10.3. Base change and deformations. Let φ : S −→ R be a ring homomor-
phism and let P = (P,Q, F, V −1) be a 3n-display over S. Define the base change
to R of P, denoted PR = (PR, QR, FR, V −1

R ), as follows:
• PR = Wp(R)⊗Wp(S) P .
• QR = Ker(Wp(R)⊗Wp(S) P −→ R⊗S (P/Q)).
• FR = F ⊗ F . That is, FR(λ⊗ x) = Fλ⊗ F (x).
• V −1

R is defined as the unique Wp(R)- F -linear homomorphism satisfying:

V −1
R (w ⊗ y) = Fw ⊗ v−1y, w ∈Wp(R), y ∈ Q;(10.29)

V −1
R ( V w ⊗ x) = w ⊗ Fx, x ∈ P.(10.30)

We remark that if P = L⊕ T , then QR = Wp(R)⊗Wp(S) L⊕ IR ⊗Wp(S) T .
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It is easy to verify that if P is a display (not merely a 3n-display) then PR is
a display as well. If every element of Ker(φ) is nilpotent, the converse is true.

Definition 10.11. Let P0 be a display over R. Let φ : S −→ R be a homo-
morphism of rings. A deformation of P0 over S is a display P over S together with
an isomorphism PR ∼= P0.

10.4. The main result. We present a somewhat simplified form of Zink’s
theorem.

Theorem 10.12. ([127, Theorem 9]) Let R be a ring of characteristic p. As-
sume that R is a complete local ring, or a ring such that R is an algebra of finite
type over a field k.

There exists a functor BT from the category of displays over R to the category
of divisible formal groups over R, which is an equivalence of categories.

See [127, Theorem 3.2] for the definition of the functor BT . It would suffice to
know that the Cartp(R) module of BT (P) is

Cartp(R)⊗Wp(R) P/ < F ⊗ x− 1⊗ Fx, V ⊗ V −1y − 1⊗ y >x∈P,y∈Q(10.31)

where the brackets denote the Cartp(R)-module generated by the specified gener-
ators.

Thus, heuristically speaking, the display P singles out the essential part of the
Cartier-Dieudonné module.

11. The universal display

Let k be a field of characteristic p. Let Ck,p be the category of local artinian
k-algebras with residue field k. We will describe the universal display over Ck,p.

Let Λ be a topological ring such that the topology on Λ is given by ideals

Λ = a0 ⊃ a1 ⊃ · · · ⊃ an ⊃ . . . ,(11.1)

such that aiaj ⊂ ai+j . Assume that Λ is complete and separated with respect to
this topology and is of characteristic p. A 3n-display over Λ is called a display if
its base change to Λ/ai is a display, in the sense of Definition 10.2, for every i.

We remark that this modification is especially tailored to suit rings like the
ring k[[t1, . . . , tg]] with ai equal to the power series in monomials of degree greater
or equal to i.

Definition 11.1. Let P = (P,Q, F, V −1) be a display over k. Define the
functor of deformations

DefP : Ck,p −→ Sets,(11.2)

sending each ring R in Ck,p to the isomorphism classes of pairs (P̃, j) consisting of
a display P̃ over R and an isomorphism j : P̃k −→ P.

One can prove that this functor is pro-representable by a ring

RU = k[[tk` : 1 ≤ k ≤ d, d+ 1 ≤ ` ≤ h]],(11.3)

where tk` are free parameters and d and h are as in Equation (10.14) for P. Let
Tk` be the Teichmüller lifts (or any other lifts) of tk` to Wp(RU). Let T = (Tk`).
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Let (αij) be the displaying h× h matrix for P. Note that (αij) ∈ GLh(Wp(k))
and can thus be considered in GLh(Wp(RU)). Consider the matrix

(αu
ij) =

(
Id T
0 Ih−d

)
(αij).(11.4)

The symbol Ir stands for the r × r identity matrix. Write

(αij) =
(
A B
C D

)
,(11.5)

where A is of size d× d, B of size d× (h− d) etc.. Then, we may write

(αu
ij) =

(
A+ TC B + TD

C D

)
.(11.6)

Let PU denote the display over RU (meaning, modules over Wp(RU) etc.) defined
by the matrix (αU

ij ) in (11.6), then PU is the universal display (see [127, Section
2.2]).

It may be beneficial to recall what that means! It says that for every ring R in Ck,p
and a deformation (P̃, j) over R with an isomorphism j : P̃k −→ P, there exists a
unique morphism φ : RU −→ R such that (PU

φ,R, j
U
φ,R) is isomorphic to (P̃, j).

Remark 11.2. Using the theory of bi-extensions, Norman and Oort [86] proved
that in situation Ip, the condition for keeping the polarization is the Riemann
conditions on T ; i.e., that T is symmetric. This is also explained in [127].

11.1. Polarization and Endomorphisms conditions. We would like to
examine now the universal display in the case of RM. As usual, the totally real
field L of degree g is fixed, and we assume for simplicity that p is inert in L. We
consider a display P = (P,Q, F, V −1) with RM defined over an algebraically closed
field k of characteristic p, such that the free Wp(k) module P is a free OL ⊗Wp(k)
module of rank 2. These are the displays that actually come from abelian varieties
with RM. We have

OL ⊗Wp(Fp) Wp(k) ∼= ⊕gi=1Wp(k).(11.7)

One may thus decompose P such that

P = ⊕gi=1Pi,(11.8)

where each Pi is a free Wp(k)-module of rank 2, and OL acts on Pi via its i-th
embedding in Wp(k). See also (1.7). Since the maps F and V −1 are F -linear, it
follows that for every i

F (Pi) ⊂ Pi+1, V −1(Pi) ⊂ Pi+1.(11.9)

In the case at hand, both L and T of the normal decomposition are of rank g since
T/IkT is of rank g over k (where IkCWp(k) is the maximal ideal). It is important
to note that the normal decomposition is not canonical in any sense. In fact, since
k is perfect V exists, and we may find basis xi, yi to Pi such that yi is in the image
of V and the image of V (i.e. Q) is spanned by px1, y1, . . . , pxg, yg. Then L can be
taken to be the span of the yi’s and T of the xi’s. We consider the basis

x1, . . . , xg, y1, . . . , yg.(11.10)
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The matrix (αij) giving the display of P with respect to this basis is of the
form

(αij) =
(

d2(a2, . . . , ag, a1) d2(b2, . . . , bg, b1)
d2(c2, . . . , cg, c1) d2(d2, . . . , dg, d1)

)
,(11.11)

where the notation d2 stands for a sub-diagonal matrix. That is:

d2(s2, . . . sg, s1) =


0 s1

s2 0
s3 0

. . . . . .
sg 0

 .(11.12)

Follow now the recipe for the universal display PU = (PU, QU, FU, V −1,U) using
this displaying matrix. Consider also the universal display with RM, PU,L, which
is a base change of PU, obtained by dividing RU by an ideal.

To compute this ideal we argue as follows: assuming (as we do) that one knows
M⊗F to be non-singular of dimension g, it is enough to find some extension of the
OL-action to PU, and some ideal a such that the following hold:
• Considered mod a, i.e. on PU

RU/a, this extended action of OL defines a display
with RM.
• The formal variety Spf(RU/a) is a non-singular g-dimensional sub variety of

Spf(RU).

Thus, first write

PU = ⊕gi=1P
U
i ,(11.13)

where each PU
i is a free Wp(RU)-module of rank 2, extending the decomposition

in (11.8).
Secondly, choose a to be the ideal (tij : i 6= j). The condition that one needs

to verify is that (mod a) we have an equality:

(
Σ(a) 0

0 Σ(a)

)(
A+ TC p(B + TD)

C pD

)
=
(
A+ TC p(B + TD)

C pD

)(
Σ(a) 0

0 Σ(a)

)F
.

(11.14)

This is immediate to verify. Therefore, we have proven

Theorem 11.3. ([39]) The universal ring for deformations of a display P with
RM over k to displays with RM over rings of Ck,p is the ring Ru,L = k[[t1, . . . , tg]].
If (

d2(a2, . . . , ag, a1) d2(b2, . . . , bg, b1)
d2(c2, . . . , cg, c1) d2(d2, . . . , dg, d1)

)
(11.15)

is the displaying matrix for P, then the displaying matrix for the universal display
with RM, PU,L, can be take to be

(
d2(a2 + t2c2, . . . , ag + tgcg, a1 + t1c1) d2(b2 + t2d2, . . . , bg + tgdg, b1 + t1d1)

d2(c2, . . . , cg, c1) d2(d2, . . . , dg, d1)

)
.

(11.16)
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11.2. The local structure of Wτ and Hasse invariants. We are now in
position to determine the local structure of the varieties Wτ and to gain better
understanding of the Hasse invariants.
Let k ∈ F−Alg and (A, ι) an abelian variety with RM over k (with µN -level, N ≥ 3,
that we suppress from the notation) such that A(p) is connected (equivalently, since
p is inert, non-ordinary). Let P be the corresponding display defined by a displaying
matrix as in (11.15). We first notice the following

Fact 11.4. We have i ∈ τ(A) if and only if ai = 0 (mod p).

Now, if ai 6= 0 (mod p) (i.e. i 6∈ τ(A)) then ai+tici (mod p) is an invertible element
of k[[t1 . . . , tg]] and hence ai + Tici is invertible in Wp(k[[t1, . . . , tg]]). Therefore,
every specialization of the universal display would have type not containing i. That
is, if A has type τ every “generification” of A has type contained in τ . Moreover,
it is evident that for every ρ ⊂ τ the variety Wρ is defined locally at x (where x is
the moduli point of (A, ι)) by the ideal a = (ti : i ∈ ρ). One obtains

Theorem 11.5. (Goren-Oort, [39]) The sub-varieties Wτ are non-singular va-
rieties of pure dimension g − |τ |. Furthermore, Wτ ∩Wσ = Wτ∪σ.

We now discuss the Hasse invariants. Recall first the definition (see Chapter 5,
Section 3.1). Given A/R with RM, where R is an F-algebra and a non-vanishing
differential ω ∈ t∗A/R, letting e1, . . . , eg be the orthogonal idempotents of OL⊗Fp R,
we get a basis (e1ω, . . . , egω) of t∗A/R. We have taken a dual basis (w.r.t. some
OL-linear polarization) to tAt/R, say (η1, . . . , ηg) and put

hi(A, ι, ω) = Fηi−1/ηi.(11.17)

We could have equally taken a basis (η′1, . . . , η
′
g) for tA/R and let hi(A, ι, ω) =

Fη′i−1/η
′
i.

Now, tA/R ∼= P/Q where P = (P,Q, F, V −1) is the display associated to A.
The isomorphism is chosen to respect the OL-action and therefore (in the notation
of Section 11.1) the η′i is a multiple by an invertible element of Wp(k) of xi, at least
(mod p). The same arguments may now be applied to the universal deformation of
P given by Equation (11.16). Thus, if RU,L = k[[t1, . . . , tg]], we get

Lemma 11.6. There exists c ∈Wp(RU,L) such that

hi(A, ι, ω) = c(ai + Tici) (mod p).(11.18)

Corollary 11.7. We have an equality of divisors:

(hi) = Wi.(11.19)

In particular, the divisor of hi is reduced. Let H = h1 · · ·hg, then the divisor of H
is a reduced normal crossing divisor, equal to the complement of the ordinary locus.

The following corollary may give some “intuitive feeling” to why must every
component of Wτ contain a superspecial point. We recall a theorem of Bailly saying
that if ω is the sheaf of Hilbert modular forms of parallel weight 1, then there exists
an r such that ω⊗r is an ample line bundle.

Corollary 11.8. (Raynaud’s trick) The divisor (H) is ample. Thus every
family of ordinary abelian varieties over a complete positive dimensional variety
S −→ Spec(F), say A −→ S, is isotrivial.



200 6. DEFORMATION THEORY OF ABELIAN VARIETIES

Proof. Indeed, for large enough k, we have that rk · (H) is the divisor of the
section Hrk of the very ample line bundle ω⊗rk(p−1), hence a very ample divisor.
Thus, (H) is ample.

Now, the sheaf ω⊗r extends to an ample line bundle over a compactification
M∗(F), and therefore the complement of (H) in M∗(F), which contains the ordinary
locus, is affine. Thus a complete sub-variety of M∗(F) that is disjoint with (H) must
be zero-dimensional.

Given the family A −→ S, one may find a complete variety T and a finite
morphism π : T −→ S such that π∗A −→ T is endowed with a µN -level structure
(N ≥ 3). Let M(µN ,F) stand for the moduli space of abelian varieties with RM
and this level structure. Then, there exists a morphism ψ : T −→M(µN ,F) such
that π∗A is the pull-back by ψ of the universal family over M(µN ,F). But, by the
above, the image of ψ is connected and zero-dimensional. That is, π∗A is constant,
that is to say, A −→ S is isotrivial.



APPENDIX A

Group Schemes

The problem we face in this section is to give the reader a feeling that he knows what
group schemes are about, aware of the main examples, can follow the arguments
concerning them that are spread all over this book, and can even make some of his
own proofs for simple facts, and on the other hand to stay within a certain length
limit. Since extensive treatises and several survey papers do exists (e.g. [24], [35],
[46], [114], [118], [94]), we shall offer a rather peculiar choice of topics, assuming
that the interested reader would consult the above references for a more complete
picture. E.g., we will not prove the main theorems, but will prove all kind of exotic
statements that are relevant to the issues discussed in the book.

We shall assume that the reader speaks, though not necessarily fluently, the lan-
guage of schemes. This is imperative since many of the group schemes that interest
us are not reduced, and hence are beyond the scope of classical algebraic geometry.
Perhaps the inevitability of learning the subject is clear when one learns that the
group scheme of the p-torsion of an elliptic curve of a field of characteristic p has
either p geometric points (ordinary case) or non at all (supersingular case). The
only way to retain the harmony of “p-torsion being of order p2” is to consider the
group scheme of p-torsion, which is indeed of order p2, as a group scheme.

1. Some Definitions

Let π : G −→ S be a scheme over S. One says G is a group scheme if there exist S
- morphisms

inv : G −→ G, m : G×G −→ G,(1.1)

and a section

e : S −→ G,(1.2)

such that the following diagrams commute (compare (1.3)):

G×G×G
m×1 //

1×m
��

G×G
m ,

��
G×G m

// G

G
(e◦π,1) //

(1,e◦π)

��

1

%%JJJJJJJJJJJ G×G
m ,

��
G×G m

// G

G
(inv,1) //

(1,inv)

��

e◦π

%%JJJJJJJJJJJ G×G

m .

��
G×G m

// G

(1.3)

As schemes are completely determined by their functor of points, an equivalent
definition is: The functor of point hG of G gives a functor

hG : SchS −→ Groups.(1.4)

It is often this last definition which is easily verified.
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A group scheme π : G −→ S is called affine if the morphism π is affine. It means
that for every open affine U = Spec(R) of S we have G|U := G×S U is affine, say
equal to Spec(R[x1, . . . , xr(U)]/IU ). In that case the group law is determined by
morphisms that are R-algebra homomorphisms (compare Chapter 1 (1.4)):

m̃ : R[x1, . . . , xr(U)]/IU −→ R[x1, . . . , xr(U)]/IU ⊗R R[x1, . . . , xr(U)]/IU ,(1.5)

ĩnv : R[x1, . . . , xr(U)]/IU −→ R[x1, . . . , xr(U)]/IU ,(1.6)

ẽ : R[x1, . . . , xr(U)]/IU −→ R.(1.7)

The kernel of ẽ is called the augmentation ideal.
A group scheme π : G −→ S is called flat if the morphism π is flat. That

means that one can cover S by a open affine sets U = Spec(R) such that over each
U there exists a covering of G by open affine sets V = Spec(R′) such that R′ is
a flat R-algebra. Recall that this means that the functor M 7→ M ⊗R R′, from
R-modules to R′-modules is exact. Though probably not clear from the definition,
this means that G varies continuously over S. See [78, Chapter III.10].

A group scheme π : G −→ S is called finite if π is a finite morphism. Thus,
locally on S, one can write G as Spec(R[x1, . . . , xr(U)]) −→ Spec(R) and the module
R[x1, . . . , xr(U)] is a finite R-module. If G is also flat, then this R module is locally
free of a certain rank. This rank is constant if S is connected. In general, given a
finite flat group scheme G over S, we assume that the rank is constant and call it
the rank of G.

A subgroup scheme H of a group scheme π : G −→ S is a closed subscheme that
is a group scheme under the morphisms induced from those of G. Suppose that
π : G −→ S is an affine group scheme and that S = Spec(R) is affine. Write
G = Spec(RG) for a suitable R algebra RG, and let IG be the augmentation ideal
of G. Let H be a subgroup scheme, then H = Spec(RG/J) for a some ideal J .
The properties forced on J are that J ⊂ IG, that m̃(J) ⊂ J ⊗ RG + RG ⊗ J and
that ĩnv(J) ⊂ J . Conversely, every ideal J with such properties defines a closed
subgroup scheme.

Let G′ = Spec(RG′) be another group scheme affine over S. Giving a homomor-
phism f : G −→ G′ of S-group schemes is equivalent to giving a homomorphism
φ : RG′ −→ RG that commutes with the maps m̃, ĩnv and ẽ. The kernel of f is
defined as the fibre product

Ker(f) //

��

G

f

��
S

e // G′

.(1.8)

It is always a subgroup scheme. Even not in the affine case. In the affine case, the
ideal J of RG defining Ker(f) is φ(IG′)RG.

The notion of a quotient group scheme is much harder. Even if one attempts to
divide by a normal subgroup scheme. We remark that the quotient by a finite flat
group scheme always exists. ****
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2. Digression on Frobenius and Verschiebung

Let S be a scheme of characteristic p. That is, p = 0 in the structure sheaf OS of
S. There is then a morphism Frabs : S −→ S, the absolute Frobenius, that is given
as the identity map on the underlying topological space of S and as the map of
raising to the p-power on the structure sheaf OS .

Let f : X −→ S be a scheme over S. Define X(p) as a fibre product in the
following cartesian diagram

X(p) //

��

X

f

��
S

Frabs // S

.(2.1)

The operation X 7→ X(p) is a covariant functor from the category of S schemes to
itself.

Exercise 2.1. Determine how to define the Frobenius of a morphism and ver-
ify that we indeed get a functor. Is it an exact functor? faithful?

The commutative diagram

X
Frabs //

f

��

X

f

��
S

Frabs // S

.(2.2)

produces by the universal property of fibre product a morphism Fr = FrX , called
the Frobenius morphism,

Fr : X −→ X(p).(2.3)

Note that it is a morphism of S schemes.

For example, let k be a perfect field of characteristic p, S = Spec(k), and let
X be the scheme Spec(k[x1, . . . , xn]/(f1, . . . , fm)). Then the scheme X(p) is given
by Spec(k[x1, . . . , xn]/(g1, . . . , gm)) where gi is obtained from fi by raising each
coefficient of fi to the p power. (In particular, if fi are all in Fp then X(p) ∼= X).
The morphism Fr : X −→ X(p) is given by the homomorphism of k-algebra

k[x1, . . . , xn]/(g1, . . . , gm) −→ k[x1, . . . , xn]/(f1, . . . , fm),(2.4)

determined uniquely by xi 7→ xpi for i = 1, . . . , n. In terms of the functor of points,
the morphism Fr : X −→ X(p) corresponds to

hX 7→ hX(p)(2.5)

given for any k-algebra R by

(2.6) hX(R) = {(r1, . . . , rn) : fi(r1, . . . , rn) = 0 ∀i}
7→ hX(p)(R) = {(r1, . . . , rn) : gi(r1, . . . , rn) = 0 ∀i}

by

(r1, . . . , rn) 7→ (rp1 , . . . , r
p
n).(2.7)
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The functoriality of the construction easily gives that if X −→ S is a group scheme
then so is X(p) −→ S and Fr : X −→ X(p) is a group homomorphism.
Returning to the general case, assume that G is a finite flat commutative group
scheme or an abelian scheme (see below) over S. Then duality theory provides
one with a morphism Ver : G(p) −→ G called the Verschiebung morphism. One
considers the morphism Fr : Gt −→ (Gt)(p). Here Gt is the dual group scheme (see
below) if G is a finite flat group scheme, or the dual abelian scheme. Upon dualizing
we obtain a morphism Ver = VerG

Ver := Frt : G(p) −→ G.(2.8)

The main property of Ver is that it is a group homomorphism satisfying

FrG ◦VerG(p) = [pG(p) ], VerG(p) ◦ FrG = [pG].(2.9)

3. Important Examples

1. The multiplicative group Gm. For every ring R

Gm/R := Spec(R[x, x−1]),(3.1)

with

m̃(x) = x⊗ x, ĩnv(x) = x−1, ẽ(x) = 1.(3.2)

It is the group scheme associating to any R-algebra T the group T× of invertible
elements in T . The augmentation ideal is generated by x− 1. For every R-algebra
R′ we have Gm/R′ = Gm/R ×Spec(R) Spec(R′) – a feature of many of the examples
below.
2. The roots of unity µN . Let N be a positive integer. For every ring R we
define the group of N -th roots of unity by

µN = Spec(R[x]/(xN − 1)),(3.3)

with

m̃(x) = x⊗ x, ĩnv(x) = x−1, ẽ(x) = 1.(3.4)

It is the group scheme associating to any R-algebra R′ the multiplicative group
{ζ ∈ R′ : ζN = 1} (the N -th roots of unity in R′. Or rather, the roots of unity
of order N , if we want to point out that there might be more, or less, than N of
them). The group µN is the kernel of the homomorphism Gm −→ Gm given by
x 7→ xN , or, in terms of points, for every R-algebra R′

µN (R′) −→ µN (R′), ζ 7→ ζN .(3.5)

Note that by our recipe for kernels µN is to be defined by the image of IGm , which
is indeed the case. We further remark that if R has characteristic p then µp is the
kernel of Fr : Gm/R −→ Gm/R. More generally, µpn = Ker(Frn).

Exercise 3.1. Let N be prime. Prove that µN/R has no non-proper subgroup
schemes. Note that for many R′ the abstract group µN (R′) is not simple.

3. The additive group Ga. For every ring R define the group scheme Ga as

Ga := Spec(R[x]),(3.6)

with

m̃(x) = x⊗ 1 + 1⊗ x, ĩnv(x) = −x, ẽ(x) = 0.(3.7)
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It is the group scheme assigning to every R-algebra R′ the underlying additive group
of R′. In general the homomorphisms of Ga are just the maps induced by x 7→ rx
for r ∈ R that include the multiplication by n maps x 7→ nx. Assume however that
R has characteristic p a prime number. Then the map of raising-to-the-p-power,
given on the coordinate ring by x 7→ xp, is a homomorphism of groups. It is in fact
the Frobenius morphism defined above.

Thus, if R if a perfect ring of characteristic p, End(Ga/R) ⊃ R{τ} – the non
commutative ring of polynomials in the variable τ . Every element f of R{τ} has a
unique expression of the form f = r0 + r1τ + · · ·+ rnτ

n and τr = rpτ . The action
of f on End(Ga/R) is given by

x 7→ r0x+ r1x
p + · · ·+ rnx

pn .(3.8)

This structure is fundamental to the theory of Drinfeld modules. See [28].
4. The group αpr . Let R be a ring of characteristic p. We define the group
scheme αpr/R as the kernel of Frr : Ga −→ Ga. Thus, by our recipe for kernels,

αpr/R = Spec(R[x]/(xp
r

),(3.9)

with

m̃(x) = x⊗ 1 + 1⊗ x, ĩnv(x) = −x, ẽ(x) = 0.(3.10)

It associates to every R-algebra R′ the additive group of nilpotent elements of order
pr of R′. That is, {a ∈ R′ : ap

r

= 0}.

Exercise 3.2. Let R be a field of characteristic p. Prove that End(αp/R) = R.

5. The group GLn. For notational simplicity we just define GL2. For every R,
we let

GL2/R := Spec(R[a, b, c, d, (ad− bc)−1]),(3.11)

with m̃ given by

m̃(a) = a⊗ a+ b⊗ c, m̃(b) = a⊗ b+ b⊗ d,(3.12)

m̃(c) = c⊗ a+ d⊗ c, m̃(d) = c⊗ b+ d⊗ d,(3.13)

with ĩnv given by

ĩnv(a) = d(ad− bc)−1, ĩnv(b) = −b(ad− bc)−1,(3.14)

ĩnv(c) = −c(ad− bc)−1, ĩnv(d) = a(ad− bc)−1,(3.15)

and with ẽ given by

ẽ(a) = 1, ẽ(b) = 0, ẽ(c) = 0, ẽ(d) = 1.(3.16)

It is the group scheme associating to each R-algebra R′ the group of 2×2 invertible
matrices with entries in R.

The reader is well acquainted with the group homomorphism

det : GL2 −→ Gm(3.17)

given by the determinant.

Exercise 3.3. Write this homomorphism in terms of the coordinate rings. The
kernel is a the group scheme SL2. What is the ideal defining it?
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6. A non commutative group scheme of order p2. Let R be a ring of
characteristic p. We define a subgroup scheme of GL2 in functorial terms. For
every R-algebra R′ it is given by the matrices(

ζ α
0 1

)
, ζ ∈ µp(R′), α ∈ αp(R′).(3.18)

Exercise 3.4. Check that this a group scheme and write it as an affine group
scheme. Prove it is of rank p2 and non commutative.

Exercise
F 3.5. Prove that this group scheme is isomorphic to µp n αp. For

that you have to first make sense of the last expression.

7. The constant group scheme Γ. Let Γ be a finite abelian group in the usual
sense of freshmen algebra course. Let R be a ring and S = Spec(R). We define the
constant group ring Γ defined by Γ as

Γ =
∐
γ∈Γ

(Spec(R))γ = Spec ⊕
γ∈Γ

Rγ = Spec RΓ.(3.19)

This defines an S-scheme π : Γ −→ S. Suppose that S is connected and T is a
connected S-scheme. Then Γ(T ) = Γ. This explains the name ”constant”.

We may identify RΓ with R[Γ] := {
∑
aγγ : aγ ∈ R}. This identification sends

γ ∈ R[Γ] to the delta function at γ – an element of RΓ. Therefore, the multiplication
law induced on R[Γ] is not the usual one of the group ring, but rather

(
∑

aγγ)(
∑

bγγ) =
∑

aγbγγ.(3.20)

To emphasize that we shall write R[Γ]. So far what we said holds for every finite
set. The group scheme structure on Γ comes from the group structure on Γ. One
finds that the comorphisms are

m̃(γ) =
∑
δ∈Γ

γδ ⊗ δ−1, ĩnv(γ) = γ−1, ẽ(γ) = 0.(3.21)

Exercise 3.6. Given a finite flat commutative group scheme π : G −→ S, one
can define a dual group scheme. The construction being local on the base, we may
restrict to S = Spec(R). Then G is given by an R-algebra, say T . It comes equipped
with co-multiplication, co-inverse and augmentation maps m̃ : T −→ T ⊗R T , ĩnv :
T −→ T and ẽ : T −→ R. Let us denote the multiplication by µ : T ⊗T −→ T and
the structure map by ε : R −→ T .

Consider now the finite R-module T ∗ := HomR(T,R). Show that the map m̃
induces multiplication on T ∗ and that T ∗ becomes an R-algebra with structure map
induced from ẽ. Show that there is a natural group structure on Spec(T ∗) for which
co-multiplication is induced by µ, co-inverse is induced by ĩnv and augmentation
(co-unit) is induced by ε. The group scheme Spec(T ∗) is called the dual group
scheme to G and is usually denoted G∗, Gt, Ĝ or G∨.

The adjective “dual” is justified in that that there is a canonical perfect pairing

G×Gt −→ Gm,(3.22)

and (Gt)t is naturally isomorphic to G. See ****.
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Exercise 3.7. Show that the dual group scheme of Γ is the diagonalizable
group scheme, discussed extensively in Chapter 1, Section 1 (but we allow p-torsion
now), whose coordinate ring is R[Γ]. Note that this is the same set as the coordinate
ring R[Γ] but now multiplication is the “usual” multiplication in a group ring:

(
∑
γ∈Γ

aγγ)(
∑
γ∈Γ

bγγ) =
∑
γ∈Γ

∑
δ∈Γ

aγδbδ−1γ,(3.23)

while co-multiplication is given by γ 7→ γ ⊗ γ.

Exercise 3.8. Show that µN and Z/nZ are dual to one another.

8. Étale group schemes. Recall that a morphism of schemes π : T −→ S is
called étale if it is finite, flat and unramified. It means that locally it is of the
form Spec(R[x]/(f(x))) −→ Spec(R) for a separable polynomial f . Heuristically,
this is a concept that puts together the notion of a topological covering map and a
separable field extension. See [71] for more on étale morphisms.

A group scheme π : G −→ S is called étale if the morphism π is étale. The main
fact one employs about étale group schemes is that after a suitable base change they
become constant group schemes. The group µN is an étale group scheme if and
only if the characteristic of every geometric point of S is prime to N .

Exercise 3.9. Let R be a field of characteristic p and let ` be a prime. Prove
that the group scheme µ`/R is étale over R if and only if p 6= `.

Suppose that R is a field, S = Spec(R) and K is an algebraic closure of R.
Then the category of étale group schemes is equivalent to the category of finite
Gal(K/R) sets. See [114] or [71].
9. The p-torsion group scheme A[p]. Let π : A −→ S be an abelian scheme.
That is π : A −→ S is a group scheme, the morphism π is proper, flat, with geo-
metrically connected fibres. An abelian scheme is always commutative. It should
be thought of as a continuously varying family of abelian varieties (possibly over
fields of different characteristics). A typical example is the relative Jacobian. If
C −→ S is a family of curves, then one can put their Jacobian varieties together
to one abelian scheme π : A −→ S whose fibres are the Jacobian varieties of the
corresponding curves.

Let π : A −→ S be an abelian scheme of relative dimension g. For every integer
n we denote by [n] the multiplication by n map. It is a proper flat morphism (see
[83]) and its kernel is a finite flat group scheme of order n2g that is denoted A[n].
Let S0 be the open subscheme of S where the primes dividing n are invertible.
Then A[n] is étale over S0, and S0 is maximal with such property. That is, if k is
a field of characteristic p and A/k is an abelian variety then A[p] is never étale. In
fact, its largest étale quotient is of order ≤ pg. If equality exists, one says that A
is ordinary.

We provide some examples of the structure of p-torsion of a g-dimensional
abelian variety A over an algebraically closed field of characteristic p.

Example 3.10. g = 1. Every elliptic curve is automatically principally polar-
ized. This implies that A[p] is self-dual. There are two possibilities:

• A is ordinary elliptic curve:

A[p] ∼= µp ⊕ Z/pZ.(3.24)
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Here µp is the kernel of Frobenius and Z/pZ is the kernel of Verschiebung.
We remark here that for any abelian variety of dimension g in characteristic
p Frobenius has degree pg.
• A is not an ordinary elliptic curve. Then A is called a supersingular elliptic

curve. One has a non-split exact sequence

0 −→ αp −→ A[p] −→ αp −→ 0.(3.25)

The embedded αp is unique and is both the kernel of Frobenius and Ver-
schiebung. One has in fact Fr = −Ver. For every two supersingular elliptic
curves A1, A2 over k (algebraically closed !) we have A1[p] ∼= A2[p]. Thus
we shall denote this group scheme by M .

Example 3.11. g = 2. We assume that A is principally polarized, hence A[p]
is self-dual. There are four possibilities:

• A is ordinary:

A[p] ∼= µ2
p ⊕ Z/pZ

2
.(3.26)

Here µ2
p is the kernel of Frobenius and Z/pZ2 is the kernel of Verschiebung.

• A has étale part of order p. In this case, as in fact forced by self-duality, we
have

A[p] ∼= M ⊕ µp ⊕ Z/pZ,(3.27)

where M is the p-torsion of a supersingular elliptic curve. Thus A[p] contains
a unique αp. In this case, the kernel of Frobenius is αp ⊕ µp and the kernel
of Verschiebung is αp ⊕ Z/pZ.

• A[p] has no étale part. In this case A is supersingular (but be careful: for
g ≥ 3 having no physical p-torsion (i.e., trivial étale quotient) does not imply
super-singularity, though super-singularity implies no physical p-torsion).
There are two possibilities:

(i) A is superspecial. That is, A is isomorphic to a product of supersin-
gular elliptic curves. In this case

A[p] ∼= M2.(3.28)

Note that αp ⊕ αp embeds in A[p] and is in fact the kernel of both maps
Frobenius and Verschiebung.

(ii) A is not superspecial. We remark that A is always isogenous to a
product of two supersingular elliptic curves. In this case one has a filtration

H ⊂ G ⊂ A[p],(3.29)

where H ∼= αp, where G/H ∼= αp ⊕ αp, and where A[p]/G ∼= αp. The kernel
of Frobenius G1 and the kernel of Verschiebung G2 are contained in G and
we have an exact sequence

0 −→ H −→ G1 ⊕G2 −→ G −→ 0.(3.30)

We remark that neither G1 nor G2 are isomorphic to M . The group scheme
G1 is killed by Fr and Ver2, the group scheme G2 is killed by Fr2 and Ver
and G1 is dual to G2.
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4. The Basic Exact Sequence

Let (R,m) be a henselian local ring. Recall that this means that Hensel’s lemma
holds in R. That is, if f(x) ∈ R[x] and α0 ∈ R are such that f(α0) ≡ 0 (mod m)
and f ′(α0) 6≡ 0 (mod m) then there exists an α ∈ R such that f(α) = 0 and α ≡ α0

(mod m). Examples include fields and complete local rings.
Let S = Spec(R) and let π : G −→ S be a finite flat group scheme. Then there

exists a canonical exact sequence

0 −→ G0 −→ G −→ Gét −→ 0.(4.1)

In this sequence G0 is the connected component of the identity. The group Gét is
étale and is in fact the largest étale quotient of G. If R is a perfect field then the
sequence splits and G is a semi-direct product G0

oGét. For proofs see [114]. If R
is a perfect field and G is commutative then we may decompose further G0 and Gét.
The procedure being similar, we explicate only the case of G0. One consider the
dual group scheme H = (G0)t. It can be decomposed as H = H0×H ét. Dualizing,
we get G0 = G0−0 × G0−ét where G0−0 is connected with connected dual, G0−ét

is connected with étale dual. Similarly, Gét decomposes into a direct sum of an
étale group with connected dual Gét-0 and an étale group with étale dual Gét-ét.
All together

G ∼= G0−0 ×G0−ét ×Gét-0 ×Gét-ét.(4.2)

Using this decomposition, the category of finite flat commutative group schemes
over a perfect field R decomposes into a direct sum of four categories: connected
groups with connected dual, connected groups with étale dual, étale groups with
connected dual, and étale groups with étale dual.

We provide some further remarks about connected group schemes. Let R be a
perfect field and G a finite commutative connected group scheme over R. Then the
underlying topological space of G consists of only one point, equivalently G is the
spectrum of a local ring. Still equivalently, G has a unique geometric point. The
last property also proves our claim. If G has more then one geometric point then
its étale quotient is not trivial.

If R is a field of characteristic zero one can show that every connected group
scheme is the trivial group. Assume now that R is a field of characteristic p. Then
one can “effectively” construct the connected component of the identity in G. Let
G = Spec(T ) for an R-algebra T , and let IG be the augmentation ideal. Let I(pb)

G

be the ideal generated by all pb powers of elements of I (usually strictly included
in Ip

b

). Let I∞G = ∩bI(pb)
G . Then

G0 = Spec(T/I∞G ).(4.3)

Equivalently, let G[Frb] denote the kernel of the Frobenius morphism iterated b

times, Fr : G −→ G(pb). Then

G0 =
⋃
b

G[Frb].(4.4)
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5. Group Schemes over a Perfect Field of Characteristic p

In this section we make the following standing assumptions: k is a perfect field of
characteristic p; π : G −→ Spec(k) is a finite commutative group scheme of order
pg for some g.

The main tool in studying a group scheme like G is its Dieudonné module. Here we
give the recipe of covariant Dieudonné modules. It differs from the theory exposed
in [24] by taking duals.

Consider the non-commutative ring A = W (k)[F, V ], where W (k) is the ring
of infinite Witt vectors over k with the Frobenius automorphism σ, F and V are
variables and

FV = V F = p, Fλ = λσF, λV = V λσ, ∀λ ∈W (k).(5.1)

Then there is an equivalence of categories between finite commutative groups G
over k of p-power order and finite A-modules that we denote by

G 7→ D(G).(5.2)

It has the following properties:
(1) It commutes with base-change. In particular

D(G(p)) = D(G)×A,σ A.(5.3)

(2) Under this correspondence the map induced by Fr : G −→ G(p) is the σ(−1)-
linear map V : D(G) −→ D(G). Similarly, the map Ver : G −→ G(1/p) induces the
σ-linear map Fr : D(G) −→ D(G).

(3) There is duality:

D(Gt) = HomA(D(G), A).(5.4)

In particular, G is local-local (resp. local-étale, resp. étale-local) if and only if
both F and V are nilpotent on D(G) (resp. V nilpotent and F is an isomorphism
on D(G); resp. F nilpotent and V is an isomorphism on D(G)).

(4) The order of G is pr where r is the length of D(G) as a W (k)-module.

Example 5.1. The group αp has the Dieudonné module k, where F , V and p
act as zero. I.e., A/(F, V ), where (F, V ) denote the left ideal AF + AV generated
by F and V .

Example 5.2. The group µp has the Dieudonné module k, where p and V act
as zero and F acts as Frobenius. (We remark again that we take the covariant
Dieudonné module). I.e., A/(V, 1− F ).

Example 5.3. The group scheme Z/pZ has Dieudonné module k with p and
F acting as zero and V acting as the inverse of Frobenius. I.e., A/(F, 1− V ).

Example 5.4. The group scheme M of Example (3.10) has Dieudonné module
A/(F 2, V 2, F + V ), while the group schemes G1 and G2 appearing in Example
(3.11) have Dieudonné modules A/(V, F 2) and A/(F, V 2) respectively.

Dieudonné modules are a very powerful tool in studying p-power finite commutative
group schemes. For example, the k-forms of a group G over ksep that can be defined
over k are given by H1(Gal(ksep/k),Aut(D(G))). This is often readily computable.
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Example 5.5. Let G = αp over ksep. Then End(D(αp)) = ksep. By Hilbert’s
90 we conclude that αp has no forms!

Example 5.6. Let G = µp. Then End(D(µp)) = {λ ∈ ksep : λp = λ}. That is
End(D(µp)) = Fp. Now H1(Gal(ksep/k),F×p ) ∼= k×/(k×)p−1 by Kummer theory.

Example 5.7. Consider M . Its Dieudonné module is ksepe1 ⊕ ksepe2 with F
acting by Fe1 = e2, Fe2 = 0 and V e1 = −e2, V e2 = 0. Note that this module
is cyclic with generator e1. An endomorphism f is thus completely determined by
f(e1) = ae1 + be2. In fact f(e2) = f(Fe1) = Ff(e1) = aσe2. The conditions on
f being a map of Dieudonné modules is that f commutes with V and F . That is
−aσ−1

e2 = V f(e1) = f(V e1) = f(−e2) = −aσe2. That is, a ∈ Fp2 .
If we identify f with the couple (a, b), then

End(M) = {(a, b) : a ∈ Fp2 , b ∈ ksep}(5.5)

with component-wise addition and multiplication given by

(α, β)(a, b) = (αa, βa+ bασ).(5.6)

The identity is (1, 0) and hence

Aut(M) = {(a, b) : a ∈ F×p2 , b ∈ ksep}.(5.7)

One has an exact sequence of Gal(ksep/k) modules:

1 −→ (ksep,+) −→ Aut(M) −→ F
×
p2 −→ 1.(5.8)

The maps are β 7→ (1, β) and (α, β) 7→ α. In fact it splits, as Galois modules, by
α 7→ (α, 0). That is, Aut(M) = ksep o F×p2 .

Let us assume that Fp2 ⊂ k. Since H1(Gal(ksep/k), ksep) = 1 ((ksep,+) is
cohomologically trivial), we get an injection

H1(Gal(ksep/k),M) ↪→ H1(Gal(ksep/k),Fp2) = k×/(k×)p
2−1,(5.9)

by Kummer theory.
It is easy to see that H1(Gal(ksep/k),M) ↪→ H1(Gal(ksep/k),Fp2) is surjective.

That would be obvious if we have dealt with usual (abelian) cohomology because
H2(Gal(ksep/k), k) = 0. But, directly: Given a cocycle β ∈ H1(Gal(ksep/k),Fp2),
σ 7→ α(σ) one lifts it by σ 7→ (α(σ, 0)).

We now look again at the case of an abelian variety A/k of dimension g. Since k is
a perfect field the Verschiebung morphism A −→ A(1/p) is well defined. Let A[Fr]
and A[Ver] be the kernel of Frobenius and the kernel of Verschiebung respectively.
These are subgroup schemes of A of order pg. We have an exact sequence:

0 −−−−→ A[Ver] −−−−→ A[p] Ver−−−−→ A[Fr] −−−−→ 0.(5.10)

We let D denote the Dieudonné module D(A[p]), and we apply the Dieudonné
functor:

0 −−−−→ D[Fr] −−−−→ D Fr−−−−→ FrD −−−−→ 0.(5.11)

Now, assuming that A has a polarization prime to p, there is an isomorphism
of k[Fr,Ver]-modules of D with H1

dR(A) (the action on the latter comes from
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H1
dR(A) ∼= H1

Crys(A/W (k))/pH1
Crys(A/W (k))). 1 The vector space H1

dR has a
canonical filtration

0 −−−−→ H0(A,Ω1
A) −−−−→ H1

dR(A) −−−−→ H1(A,OA) −−−−→ 0.(5.12)

The arrows are defined by a spectral sequence. The sequences (5.10) and (5.12) are
closely related. Indeed, since Fr acts as zero on differential forms, the identification
D = H1

dR(A) implies that D[Fr] = H0(A,Ω1
A). We may further identify H1(A,OA)

with FrD. On the other hand, the map Fr : D −→ D identifies D/D[F ] with D[V ],
only that its not linear: Fr(λa) = λpFr(v). We obtain: H1(A,OA) ∼= D[V ]⊗k,Fr k.
Thus,

0 −−−−→ H0(A,Ω1
A) −−−−→ H1

dR(A) −−−−→ H1(A,OA) −−−−→ 0y∼= y∼= y∼=
0 −−−−→ D(A[V ]) −−−−→ D(A[p]) Fr−−−−→ D(A[F ])⊗k,Fr k −−−−→ 0

.(5.13)

We remark that we are working with the covariant Dieudonné module. Oda [87]
works with the contravariant Dieudonné theory D and obtains in l.c. Corollary 5.11
an identification

0 −−−−→ H0(A,Ω1
A) −−−−→ H1

dR(A) −−−−→ H1(A,OA) −−−−→ 0y∼= y∼= y∼=
0 −−−−→ (k,Fr−1)⊗k D(A[F ]) −−−−→ D(A[p]) Fr−−−−→ D(A[V ]) −−−−→ 0

.

(5.14)

6. The α-group

In this section we define the alpha group of an abelian variety A −→ S over a scheme
S of characteristic p. A caveat is that there is no good way to define this subgroup
scheme as a group scheme of the abelian variety itself. We therefore define it as a
subgroup scheme of the base change A(p) −→ S.

Definition 6.1. Let A −→ S be an abelian scheme. Let

α(A) = Ker(Ver : A(p) −→ A) ∩Ker(Fr : A(p) −→ A(p2)).(6.1)

We call it the alpha group of A.

Some remarks are in order: First, note that α(A) is a group scheme over S.
Second, the construction of α(A) is stable under base change: That is, for every
morphism T −→ S we have

α(A/S)×S T = α(A×S T ).(6.2)

This is nothing more then the behaviour of Ver and Fr under base change and
that Ker(Ver) and Ker(Fr) represent the functors “the kernel of Verschiebung” and
the “kernel of Frobenius”, respectively. Third, let S be a perfect scheme, namely,
the absolute Frobenius morphism Frabs : S −→ S is an isomorphism (e.g. S is the

1The canonical isomorphism is of the contravariant Dieudonné module D(A[p]) = D(A[p])t

with H1
dR(A). However,D(A[p])t = D(At[p]), which may be identified with D(A[p]) as Dieudonné

modules if we have a polarization of degree prime to p.
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spectrum of an algebraically closed field). We may therefore write A = B(p) for
some abelian scheme B −→ S. Then

α(B)(p) = α(A).(6.3)

That is, the group scheme α(A) ⊂ A(p) descends to a group scheme of A. Fourth,
as a sheaf in the fppf topology, α(A) is a “constructible sheaf”.

Definition 6.2. We say that A −→ S has a-number greater or equal to a and
write

a(A) ≥ a,(6.4)

if the rank of α(A) is greater or equal to a.

In particular, for A over an algebraically closed field k, the a number of A in
the sense above, and the a-number of A in the sense of

dimk(αp, A),(6.5)

are the same. Indeed, first

dimk(αp, A) = dimk(αp, A(p)) = dimk(αp, α(A)).(6.6)

Secondly, a commutative finite flat group scheme G −→ S killed by Frobenius and
Verschiebung (in the sense that Ver : G(p) −→ G is the zero morphism) is locally
on S isomorphic to αrp/S. Thirdly, over k the embeddings

αp −→ αrp(6.7)

are parameterized by surjective maps of Hopf k-algebras

k[x1, . . . , xr]/(x
p
1, . . . , x

p
r) −→ k[t]/(tp).(6.8)

Consider first that case r = 1. Then x1 is mapped to f(t) = a0 + a1t + · · · +
ap−1t

(p−1). Then x1 ⊗ 1 + 1⊗ x1 is mapped to f(t)⊗ 1 + 1⊗ f(t) which should be
equal to m∗f(t), where m : αp × αp −→ αp is the multiplication morphism. But

m∗f(t) = a0 ⊗ 1 + a1(t⊗ 1 + 1⊗ t) + . . . ap−1(t⊗ 1 + 1⊗ t)p−1.(6.9)

Equating coefficients we get f(t) = at for some a ∈ k. Thus, coming back to
the general case, giving a morphism αp −→ αrp is equivalent to giving a vector
(a1, . . . , ar) ∈ kr. The correspondence being given by associating to the vector
(a1, . . . , ar) the unique morphism k[x1, . . . , xr]/(x

p
1, . . . , x

p
r) −→ k[t]/(tp) taking xi

to ait. The morphism of groups is injective, if and only of the morphism of algebras
is surjective, if and only if (a1, . . . , ar) is not the zero vector. Furthermore, taking
the case r = 1 we see that the isomorphisms of αp are in natural bijection with k×,
and the natural action of the automorphism associated to a ∈ k× on the embeddings
αp −→ αrp is given by (a1, . . . , ar) 7→ (aa1, . . . , aar). That is, the homomorphisms
of αp to αrp are naturally isomorphic to Ark, and the subgroups of αrp that are

isomorphic to αp are in natural bijection with P(r−1)
k .
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& Cie, éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970.

[36] van der Geer, G. : Hilbert modular surfaces. Ergebnisse der Mathematik und ihrer Grenzge-
biete (3), 16. Springer-Verlag, 1988.

[37] Hasse invariants for Hilbert modular varieties, Israel J. Math., to appear.

[38] Goren, E. Z.: Hilbert modular forms modulo pm – the unramified case, CICMA pre-print
1998-10, submitted, 22 pp.

[39] Goren, E. Z., Oort, F.: Stratifications of Hilbert modular varieties, J. Algebraic Geometry 9
(2000), 111-154.
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(Rennes, 1978), Vol. I, pp. 113–163, Astérisque, 63, Soc. Math. France, Paris, 1979.
[63] Kodaira, K.; Spencer, D. C.: On deformations of complex analytic structures. I, II. Ann. of

Math. (2) 67 (1958), 328–466.

[64] Kolster, M., Nguyen Quang Do, T.: Syntomic regulators and special values of p-adic L-
functions. Invent. Math. 133 (1998), no. 2, 417–447.

[65] Lang, S.: Complex multiplication. Grundlehren der Mathematischen Wissenschaften 255.
Springer-Verlag, 1983.

[66] Lang, Serge: Elliptic functions. With an appendix by J. Tate. Second edition. Graduate Texts

in Mathematics, 112. Springer-Verlag, 1987.
[67] Lange H., Birkenhake, Ch.: Complex Abelian Varieities, Grundlehren der mathematischen

Wissenschaften 302, Springer-Verlag 1992.
[Laz] Lazard, M.: Commutative formal groups. Lecture Notes in Mathematics, Vol. 443. Springer-

Verlag, 1975.

[68] Manin, Yu.I.: The theory of commutative formal groups over fields of finite characteristic.
Russ. Math. Surveys 18 (1963), 1 - 80.

[69] Messing, W.: The crystals associated to Barsotti-Tate groups: with applications to abelian
schemes. Lecture Notes in Mathematics, Vol. 264. Springer-Verlag, Berlin-New York, 1972.
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318, 73–86.

[105] Shimura, G.: On analytic families of polarized abelian varieties and automorphic functions.
Ann. of Math. (2) 78 (1963), 149–192.

[106] Shimura, G.: The special values of the zeta functions associated with Hilbert modular forms.
Duke Math. J. 45 (1978), no. 3, 637–679.

[107] Silverman, J. H.: The arithmetic of elliptic curves. Graduate Texts in Mathematics, 106.

Springer-Verlag, 1986.
[108] Silverman, J. H.: Advanced topics in the arithmetic of elliptic curves. Graduate Texts in

Mathematics, 151. Springer-Verlag, 1994.
[109] Swinnerton-Dyer, H. P. F.: Analytic theory of Abelian varieties. London Mathematical

Society lecture note series 14, Cambridge University Press, 1974.

[110] Swinnerton-Dyer, H. P. F.: On l-adic representations and congruences for coefficients of
modular forms. In Modular functions of one variable, III (Proc. Internat. Summer School,

Univ. Antwerp, 1972), pp. 1–55. Lecture Notes in Mathematics, Vol. 350, Springer, 1973.
[111] Tate, J.: On the conjectures of Birch and Swinnerton-Dyer and a geometric analogue.

Séminaire Bourbaki, Vol.9, Exp. No. 306, 415-440, Soc. Math. France, Paris, 1995.
[112] Tate, J.: Endomorphisms of abelian varieties over finite fields. Invent. Math. 2 (1966) 134–

144.
[113] Tate, J.: p− divisible groups. In Proc. Conf. Local Fields (Driebergen, 1966) pp. 158–183

Springer-Verlag, 1967.

[114] Tate, J.: Finite flat group schemes. In Modular forms and Fermat’s last theorem (Boston,
MA, 1995), 121–154, Springer, 1997.

[115] Tsuyumine, S.: On values of L-functions of totally real algebraic number fields at integers.

Acta Arith. 76 (1996), no. 4, 359–392.
[116] Ulmer, D. L.: On universal elliptic curves over Igusa curves. Invent. Math. 99 (1990), no. 2,

377–391.

[117] Washington, L. C.: Introduction to Cyclotomic Fields. Second Edition, Graduate Text in
Mathematics 83, Springer-Verlag, 1997.

[118] Waterhouse, W. C.: Introduction to affine group schemes. Graduate Texts in Mathematics,
66. Springer-Verlag, 1979.

[119] Waterhouse, W.C., Milne, J.S.: Abelian varieties over finite fields. In 1969 Number Theory

Institue (Prov. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y.,
1969),pp.53-64. Amer. Math. Soc, Providence, R.I., 1971.

[120] Wedhorn, T.: Ordinariness in good reductions of Shimura varieties of PEL-type. Ann. Sci.
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(1965), 1–87.
[123] Yui, N.: On the Jacobian varieties of hyperelliptic curves over fields of characteristic p > 2.

J.Algebra 52 (1978), no. 2, 378-410.

[124] Yui, N.: Formal groups and some arithmetic properties of elliptic curves. In Algebraic geom-
etry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), pp. 630–658, Lecture

Notes in Mathematics, 732, Springer, Berlin, 1979.
[125] Zarhin, J. G.: Isogenies of abelian varieties over fields of finite characteristics. Math. USSR

Sb. 24 (1974), 451-461.

[126] Zarhin, J. G.: A remark on endomorphisms of abelian varieties over function fields of finite
characteristics. Math. USSR Isv. 8 (1974), 477-480.

[127] Zink, Th.: The display of a formal p-divisible group. Universität Bielefeld Preprint 98-017,
February 1998, 155 pp.



220 BIBLIOGRAPHY



Index

T∞,∞, 137

Tm,n, 136

V∞,∞, 137

q, 149

< ·, · >λ, 152

< d >, 110, 122

A(Q,R), 103

Arigid(B, k, µN ), 132, 163

B(Q,R), 104

Bk, 96

Bn,χ, 97

CL(L)+, 45

Cl(L), 45

Fn, 176

H, 119, 154

Im,m1 , 139

Koecher′sprinciple, 162

L function

p adic, 95

p-adic, 97

L-function

p-adic, 95

L(·, χ), 96

Lp(s, χ), 97

M(n), 18

M0(n), 18

M1(n), 18

Mm, 136

M0
m, 136

M∆−pos, 147

NS, 73

NS(X), 38

NS(X)+, 38

NS0(X), 38

P , 100

Pic0, 73

Q, 100

R, 100

R∞, 138

Rm, 138

Sm, 136

S0
m, 136

T`, 121

T`, 107

Tm,∞, 137

U , 109, 123

U operator, 109, 110, 123

V , 108, 122

V operator, 108–110, 122

Vn, 176

Vm,∞, 137

Vm,m, 137

W (k), 136

W+(K), 178

Wm(k), 136

X(G), 9

X(N), 20

X(TB), 144

X0(N), 20

X0(p), 28, 29

X1(N), 20

X∗(G), 9

Y (N), 20

Y0(N), 20

Y0(p), 28

Y1(N), 20

[c], 176

C1, 36

∆, 22

F(B, k, µN ; r), 161

GLn, 205

Ga, 6, 204
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Dieudonné module, 192, 210

different, 45

Dirichlet, 96

Dirichlet character, 96, 97

discriminant, 45

display, 192, 193

deformation, 196

multiplicative, 194

nilpotence condition, 193

superspecial, 194

divisor

algebraic equivalence, 17

Drinfeld, 170

dual abelian scheme, 90

dual abelian variety, 73

dual group scheme, 74

Dwork, 95

Eisenstein series, 24, 26, 65–67

restricted, 26

Elementary Divisors Theorem, 37, 87

elliptic curve, 7, 17, 18, 42

generalized, 28, 56, 146

moduli, 17

ordinary, 207

supersingular, 28, 29, 83, 208

universal, 16

factor of automorphy, 20–22, 35

Faltings, 82

field

totally real, 45

filtration, 110, 124

form

hermitian, 36, 49

Riemann, 35, 36, 42

formal group, 171, 176

p-divisible, 172

height, 186

Newton polygon, 186

slope, 186

additive, 172

multiplicative, 172

real multiplication, 185

formal module, 173

formal variety, 174

Frobenius, 108



224 INDEX

absolute, 203

morphism, 203

functor

of local deformations, 84

of points, 15, 201, 203

representable, 15

Galois

action on points, 8

representation, 95, 98

deformation, 98, 99

irreducible, 98

modular deformation, 98

ordinary, 98

gamma function, 95

Grothendieck, 167

Specialization Theorem, 188

group scheme

GLn, 205

SLn, 205

αpr , 205

µp, 12

p-torsion, 207

étale, 207

additive, Ga, 204

affine, 72, 202

alpha, 212

augmentation ideal, 202

constant, 206

definition, 201

dual, 206

finite, 202

flat, 202

homomorphism, 202

kernel, 202

multiplicative, Gm, 204

non commutative, 206

quotient, 202

rank, 202

roots of unity, µN , 204

subgroup, 202

Hasse invariant, 118, 125

partial, 151, 152

total, 154

Hasse-Witt matrix, 154

Hecke operator, 107, 108, 110, 121

system of eigenvalues, 112

Heisenberg group, 39, 75

Heisenberg group (Theta group), 75

level subgroup, 76

Representation, 79

Hilbert modular form

p-adic

q-expansion, 161

cusp, 161

holomorphic, 161

Serre, 165

p-adic (Katz), 160

algebraic, 145

filtration, 159

Katz’s expansion, 164

overconvergent, 161

Hilbert scheme, 17

Hilbert-Blumenthal abelian varieties, 65

Hodge bundle, 21, 22

holomorphic line bundle, 60

homomorphism

group schemes, 202

kernel, 202

Honda, 181

Honda-Tate Theorem, 89

Honda-Tate theorem, 81, 82

Hopf algebra, 6, 9

Igusa, 104

involution, 41

positive, 41

Rosati, 41

isogeny, 39, 73

Iwasawa, 97

Jochnowitz, 112
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Poincaré Reducibility Theorem, 47

polarization, 17, 39, 50

principal, 34, 39, 50

polarization module, 50, 65

prime

irregular, 97

principal homogeneous spaces, 52, 93

quadratic form, 27

adjoint, 27

determinant, 27

discriminant, 27

integral, 27

level, 27

positive definite, 27

Ramanujan, 99, 102

τ function, 99

θ operator, 102

conjecture, 100

Rapoport, 167

Rapoport’s condition, 88, 90

Raynaud, 199

real multiplication, 46

relative tangent sheaf, 90

representation

`-adic, 81

complex, 47

rational, 47

Ribet, 155

Riemann, 15

Riemann form, 50

Riemann’s theta function, 81

Rigidity lemma, 71

ring

p-adic, 125

local

henselian, 209

ring of divided congruences, 135, 140

RM, 46

Rosati involution, 41

Satake compactification, 56

semi-character, 36, 37, 43

Serre, 95, 113, 119, 167



226 INDEX

conjecture, 99

Serre-Tate coordinates, 85, 90
Serre-Tate Theorem, 169, 170
Shimura, 69

Shimura-Taniyama, 98
Siegel, 66

units, 26
Siegel’s formula, 69, 70

volume, 96
Steinitz class, 54
Stone-Von Neumann Theorem, 79
Swinnerton-Dyer, 119
symmetric elements, 42

Tate, 82, 167
object, 109, 146, 149

standard, 149

Tate module, 81
Teichmüller character, 97, 117

test object, 125, 126, 160
Theorem of the Square, 73
theta series, 27, 67, 69

torsion
p, 12, 28

torus, 10, 11, 13, 57
totally positive, 45

universal
object, 16

upper half

plane, 19
space, 40

Verschiebung, 109

Weil number, 82

Wiles, 98

Zarhin, 82

Zariski’s main theorem, 91
zeta function, 95
p-adic, 114
Euler product, 95

functional equation, 95

Riemann’s, 96
Zink, 167


