unknown terminal "dumb" [was@form finding_modular_forms]$ [was@form finding_modular_forms]$ Magma V2.7-1 Mon Jan 22 2001 22:42:56 on form [Seed = 2680754903] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R ellap idxG0 CS MS S factormod modcharpoly DC ND Tn factorpadic padiccharpoly ES NS Z fcp qexp F Q charpoly fn x > eps := DirichletCharacter(189); >> eps := DirichletCharacter(189); ^ Runtime error in 'DirichletCharacter': Bad argument types Argument types given: RngIntElt > G := DirichletGroup(189); > G; Group of Dirichlet characters of modulus 189 over Rational Field > factor(189); [ <3, 3>, <7, 1> ] 1 > Conductor(a); 3 > eps := a; > G := DirichletGroup(189); > G.1; $.1 > G.2; $.2 > Conductor(G.1); 3 > Conductor(G.2); 7 > eps := G.1; > eps; $.1 > time M := ModularSymbols(eps, 7, GF(7), +1); >> time M := ModularSymbols(eps, 7, GF(7), +1); ^ Runtime error in 'ModularSymbols': Bad argument types Argument types given: GrpDrchElt, RngIntElt, FldFin, RngIntElt > time M := ModularSymbols(eps, 7, +1, GF(7)); >> time M := ModularSymbols(eps, 7, +1, GF(7)); ^ Runtime error in 'ModularSymbols': Bad argument types Argument types given: GrpDrchElt, RngIntElt, RngIntElt, FldFin > BaseRing(eps); Rational Field > BaseExtend(eps,GF(7)); $.1 > eps_mod7 := BaseExtend(eps,GF(7)); > eps_mod7; $.1 > // alternative ----> G := DirichletGroup(189, GF(7)); > time M := ModularSymbols(eps, 7, +1); Time: 55.880 > M; Full Modular symbols space of level 189, weight 7, character $.1, and dimension 144 > R:=PolynomialRing(GF(7)); > I := [<79,x>, <107,x>, <139,x>]; > time V:=Kernel(I,M); [Interrupted] > time M := ModularSymbols(eps_mod7, 7, +1); Time: 6.579 > R:=PolynomialRing(GF(7)); > time V:=Kernel(I,M); Time: 2.780 > V; Modular symbols space of level 189, weight 7, character $.1, and dimension 6 > fcp(Tn(V,3)); [Interrupted] > fcp(DualHeckeOperator(V,3)); [ ] 1 > fcp(DualHeckeOperator(V,5)); [ ] 1 > fcp(DualHeckeOperator(V,7)); [ ] 1 > for [p : p in [2..97] | IsPrime(p)] do p, fcp(DualHeckeOperator(V,7)); end for; >> for [p : p in [2..97] | IsPrime(p)] do p, fcp(DualHeckeOperator(V,7)); end ^ User error: bad syntax > for p in [p : p in [2..97] | IsPrime(p)] do p, fcp(DualHeckeOperator(V,7)); end for; 2 [ ] 1 3 [ ] 1 5 [ ] 1 7 [ ] 1 11 [ ] 1 13 [ ] 1 17 [ ] 1 19 [ ] 1 23 [ ] 1 29 [ ] 1 31 [ ] 1 37 [ ] 1 41 [ ] 1 43 [ ] 1 47 [ ] 1 53 [ ] 1 59 [ ] 1 61 [ ] 1 67 [ ] 1 71 [ ] 1 73 [ ] 1 79 [ ] 1 83 [ ] 1 89 [ ] 1 97 [ ] 1 > for p in [p : p in [2..97] | IsPrime(p)] do p, fcp(DualHeckeOperator(V,p)); end for; > 2 [ ] 1 3 [ ] 1 5 [ ] 1 7 [ ] 1 11 [ ] 1 13 [ , ] 1 17 [ ] 1 19 [ , ] 1 23 [ ] 1 29 [ ] 1 31 [ , ] 1 37 [ ] 1 41 [ ] 1 43 [ ] 1 47 [ ] 1 53 [ ] 1 59 [ ] 1 61 [ , ] 1 67 [ ] 1 71 [ ] 1 73 [ , ] 1 79 [ ] 1 83 [ ] 1 89 [ ] 1 97 [ , ] 1 > fcp(DualHeckeOperator(V,151)) > ; [ ] 1 > fcp(DualHeckeOperator(V,227)); [ ] 1 > fcp(DualHeckeOperator(V,241)); [ ] 1 > fcp(DualHeckeOperator(V,277)); [ ] 1 > time C:=CuspidalSubspace(M); Time: 0.190 > time N:=NewSubspace(C); [Interrupted] > Restrict(eps_mod7,27); $.1 > Restrict(eps_mod7,9*7); $.1 > Restrict(eps_mod7,7); >> Restrict(eps_mod7,7); ^ Runtime error in 'Restrict': Conductor of argument 1 does not divide argument 2. > Restrict(eps_mod7,3*7); $.1 > I1 := [<13, x+3>, <79,x>, <107,x>, <139,x>]; > I1 := [<13, x+3>, <79,x>, <107,x>, <139,x>]; > I2 := [<13, x+4>, <79,x>, <107,x>, <139,x>]; > I1; [ <13, x + 3>, <79, x>, <107, x>, <139, x> ] > I2; [ <13, x + 4>, <79, x>, <107, x>, <139, x> ] > time V1:=Kernel(I1,M); Time: 0.629 > time V2:=Kernel(I2,M); Time: 0.540 > V1; Modular symbols space of level 189, weight 7, character $.1, and dimension 4 > V2; Modular symbols space of level 189, weight 7, character $.1, and dimension 2 > for p in [p : p in [2..29] | IsPrime(p)] do p, fcp(DualHeckeOperator(V1,p)); end for; 2 [ ] 1 3 [ ] 1 5 [ ] 1 7 [ ] 1 11 [ ] 1 13 [ ] 1 17 [ ] 1 19 [ ] 1 23 [ ] 1 29 [ ] 1 > for p in [p : p in [2..29] | IsPrime(p)] do p, fcp(DualHeckeOperator(V2,p)); end for; 2 [ ] 1 3 [ ] 1 5 [ ] 1 7 [ ] 1 11 [ ] 1 13 [ ] 1 17 [ ] 1 19 [ ] 1 23 [ ] 1 29 [ ] 1 > time M27 := ModularSymbols(Restrict(eps_mod7,27), 7, +1); Time: 0.769 > time D:=Decomposition(M27,13); Time: 0.280 > D; [ Modular symbols space of level 27, weight 7, character $.1, and dimension 6, Modular symbols space of level 27, weight 7, character $.1, and dimension 1, Modular symbols space of level 27, weight 7, character $.1, and dimension 1, Modular symbols space of level 27, weight 7, character $.1, and dimension 4, Modular symbols space of level 27, weight 7, character $.1, and dimension 2, Modular symbols space of level 27, weight 7, character $.1, and dimension 2, Modular symbols space of level 27, weight 7, character $.1, and dimension 2 ] > I := [<79,x>, <107,x>, <139,x>]; > V27 := Kernel(I,M27); > V27; Modular symbols space of level 27, weight 7, character $.1, and dimension 0 > time M63 := ModularSymbols(Restrict(eps_mod7,9*7), 7, +1); Time: 2.130 > time M63 := ModularSymbols(Restrict(eps_mod7,9*7), 7, +1); Time: 2.160 > V63 := Kernel(I,M63); > V63; Modular symbols space of level 63, weight 7, character $.1, and dimension 0 > time M := ModularSymbols(eps, 7, +1); Time: 55.330 > time T2:=DualHeckeOperator(M,2); Time: 3.200 > fcp(T2); [Interrupt twice in half a second; exiting] Total time: 560.420 seconds [was@form finding_modular_forms]$ [was@form finding_modular_forms]$ [was@form finding_modular_forms]$ exit exit Process magma finished unknown terminal "dumb" [was@form finding_modular_forms]$ [was@form finding_modular_forms]$ Magma V2.7-1 Mon Jan 22 2001 23:21:33 on form [Seed = 3683459487] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R ellap idxG0 CS MS S factormod modcharpoly DC ND Tn factorpadic padiccharpoly ES NS Z fcp qexp F Q charpoly fn x > G := DirichletGroup(189); > eps := a; > time M := ModularSymbols(eps, 7, +1); Time: 55.509 > G := DirichletGroup(189, CyclotomicField(6)); > eps := a; > eps := a*b^5; > Conductor(eps); 63 > Conductor(b); 7 > Conductor(a); 9 > Conductor(a^3); 3 > Order(a); 6 > eps := a^3*b^5; > Conductor(eps); 21 > IsEven(eps); true > time M := ModularSymbols(eps, 2, +1); Time: 0.520 > load "some_code"; Loading "some_code" > KernelIntersection(2); Time: 0.000 KernelIntersection( k: 2 ) Kernel( I: [ <79, x>, <107, x>, <139, x>, <151, x> ], M: Full Modular symbols space of level 27, weight 2, character ... ) In file "/home/was/modsym/decomp.m", line 455, column 18: >> fT := Evaluate(f, DualHeckeOperator(M,p)); ^ Runtime error in 'Evaluate': Bad argument types Argument types given: RngUPolElt, ModMatFldElt > KernelIntersection(3); Time: 0.230 Time: 0.289 Modular symbols space of level 27, weight 3, character $.1, and dimension 2 > load "some_code"; Loading "some_code" > KernelIntersection(3); Time: 0.229 Time: 0.899 Modular symbols space of level 27, weight 3, character $.1, and dimension 2 > V:=$1; > V; Modular symbols space of level 27, weight 3, character $.1, and dimension 2 > for p in [p : p in [2..29] | IsPrime(p)] do p, fcp(DualHeckeOperator(V,p)); end for; 2 [ ] 1 3 [ ] 1 5 [ ] 1 7 [ ] 1 11 [ ] 1 13 [ ] 1 17 [ ] 1 19 [ ] 1 23 [ ] 1 29 [ ] 1 > qEigenform(V,29); q + a*q^2 + 2*q^4 + 6*a*q^5 + 5*q^7 + 6*a*q^8 + 2*q^10 + 2*a*q^11 + 4*q^13 + 5*a*q^14 + 3*q^16 + 6*a*q^17 + 5*q^19 + 5*a*q^20 + 3*q^22 + 3*a*q^23 + 2*q^25 + 4*a*q^26 + 3*q^28 + O(q^29) > f:=qEigenform(V,97); q + a*q^2 + 2*q^4 + 6*a*q^5 + 5*q^7 + 6*a*q^8 + 2*q^10 + 2*a*q^11 + 4*q^13 + 5*a*q^14 + 3*q^16 + 6*a*q^17 + 5*q^19 + 5*a*q^20 + 3*q^22 + 3*a*q^23 + 2*q^25 + 4*a*q^26 + 3*q^28 + 3*a*q^29 + 6*q^31 + 6*a*q^32 + 2*q^34 + 2*a*q^35 + 6*q^37 + 5*a*q^38 + 5*q^40 + 6*a*q^41 + q^43 + 4*a*q^44 + q^46 + 5*a*q^47 + 4*q^49 + 2*a*q^50 + q^52 + 5*a*q^53 + 4*q^55 + 2*a*q^56 + q^58 + 4*a*q^59 + q^61 + 6*a*q^62 + 3*a*q^65 + 4*q^67 + 5*a*q^68 + 3*q^70 + 5*a*q^71 + 2*q^73 + 6*a*q^74 + 3*q^76 + 3*a*q^77 + 4*a*q^80 + 2*q^82 + a*q^83 + 5*q^85 + a*q^86 + 4*q^88 + 2*a*q^89 + 6*q^91 + 6*a*q^92 + 4*q^94 + 2*a*q^95 + O(q^97) > Parent($1); Power series ring in q over Univariate Quotient Polynomial Algebra in a over GF(7) with modulus a^2 + 2 > for k in [k : k in [3..11] |IsOdd(k)] do k,KernelIntersection(k); end for; Time: 0.220 Time: 0.909 3 Modular symbols space of level 27, weight 3, character $.1, and dimension 2 Time: 0.470 Time: 0.170 5 Modular symbols space of level 27, weight 5, character $.1, and dimension 0 Time: 0.740 Time: 0.289 7 Modular symbols space of level 27, weight 7, character $.1, and dimension 0 Time: 1.039 Time: 1.590 9 Modular symbols space of level 27, weight 9, character $.1, and dimension 2 Time: 1.290 Time: 1.889 11 Modular symbols space of level 27, weight 11, character $.1, and dimension 2 > V9:=KernelIntersection(9); Time: 1.030 Time: 1.630 > qEigenform(V9,29); q + a*q^2 + 2*q^4 + 6*a*q^5 + 5*q^7 + 6*a*q^8 + 2*q^10 + 2*a*q^11 + 4*q^13 + 5*a*q^14 + 3*q^16 + 6*a*q^17 + 5*q^19 + 5*a*q^20 + 3*q^22 + 3*a*q^23 + 2*q^25 + 4*a*q^26 + 3*q^28 + O(q^29) > V11:=KernelIntersection(11); Time: 1.329 Time: 1.919 > > > qEigenform(V11,29); q + a*q^2 + q^4 + a*q^5 + 3*a*q^8 + 6*q^10 + 4*a*q^11 + 3*q^13 + 6*q^16 + 2*a*q^17 + 4*q^19 + a*q^20 + 3*q^22 + 3*a*q^23 + q^25 + 3*a*q^26 + O(q^29) > for k in [k : k in [12..20] |IsOdd(k)] do k,KernelIntersection(k); end for; Time: 1.650 Time: 2.279 13 Modular symbols space of level 27, weight 13, character $.1, and dimension 2 Time: 1.999 Time: 2.769 15 Modular symbols space of level 27, weight 15, character $.1, and dimension 2 Time: 2.310 Time: 1.430 17 Modular symbols space of level 27, weight 17, character $.1, and dimension 0 Time: 2.700 Time: 3.700 19 Modular symbols space of level 27, weight 19, character $.1, and dimension 2 > Parent(qEigenform(V11,29)); Power series ring in q over Univariate Quotient Polynomial Algebra in a over GF(7) with modulus a^2 + 1 > f:=qEigenform(V,97); > f; q + a*q^2 + 2*q^4 + 6*a*q^5 + 5*q^7 + 6*a*q^8 + 2*q^10 + 2*a*q^11 + 4*q^13 + 5*a*q^14 + 3*q^16 + 6*a*q^17 + 5*q^19 + 5*a*q^20 + 3*q^22 + 3*a*q^23 + 2*q^25 + 4*a*q^26 + 3*q^28 + 3*a*q^29 + 6*q^31 + 6*a*q^32 + 2*q^34 + 2*a*q^35 + 6*q^37 + 5*a*q^38 + 5*q^40 + 6*a*q^41 + q^43 + 4*a*q^44 + q^46 + 5*a*q^47 + 4*q^49 + 2*a*q^50 + q^52 + 5*a*q^53 + 4*q^55 + 2*a*q^56 + q^58 + 4*a*q^59 + q^61 + 6*a*q^62 + 3*a*q^65 + 4*q^67 + 5*a*q^68 + 3*q^70 + 5*a*q^71 + 2*q^73 + 6*a*q^74 + 3*q^76 + 3*a*q^77 + 4*a*q^80 + 2*q^82 + a*q^83 + 5*q^85 + a*q^86 + 4*q^88 + 2*a*q^89 + 6*q^91 + 6*a*q^92 + 4*q^94 + 2*a*q^95 + O(q^97) nn> Parent(f); Power series ring in q over Univariate Quotient Polynomial Algebra in a over GF(7) with modulus a^2 + 2 > F:=GF(49); > MinimalPolynomial(s); x^2 + 6*x + 3 > S:=Polynomial(F); >> S:=Polynomial(F); ^ Runtime error in 'Polynomial': Bad argument types Argument types given: FldFin > S:=PolynomialRing(F); > Roots(t^2+2); [ , ] > Z:=BaseRing(Parent(f)); > Z; Univariate Quotient Polynomial Algebra in a over Finite field of size 7 with modulus a^2 + 2 > coefff:=Eltseq(f); > coefff; > coefff; [ 1, s^20, 0, 2, 6*s^20, 0, 5, 6*s^20, 0, 2, 2*s^20, 0, 4, 5*s^20, 0, 3, 6*s^20, 0, 5, 5*s^20, 0, 3, 3*s^20, 0, 2, 4*s^20, 0, 3, 3*s^20, 0, 6, 6*s^20, 0, 2, 2*s^20, 0, 6, 5*s^20, 0, 5, 6*s^20, 0, 1, 4*s^20, 0, 1, 5*s^20, 0, 4, 2*s^20, 0, 1, 5*s^20, 0, 4, 2*s^20, 0, 1, 4*s^20, 0, 1, 6*s^20, 0, 0, 3*s^20, 0, 4, 5*s^20, 0, 3, 5*s^20, 0, 2, 6*s^20, 0, 3, 3*s^20, 0, 0, 4*s^20, 0, 2, s^20, 0, 5, s^20, 0, 4, 2*s^20, 0, 6, 6*s^20, 0, 4, 2*s^20 ] > c:=[ 1, s^20, 0, 2, 6*s^20, 0, 5, 6*s^20, 0, 2, 2*s^20, 0, 4, 5*s^20, 0, 3, 6*s^20, 0, 5, 5*s^20, 0, 3, 3*s^20, 0, 2, 4*s^20, 0, 3, 3*s^20, 0, 6, 6*s^20, 0, 2, 2*s^20, 0, 6, 5*s^20, 0, 5, 6*s^20, 0, 1, 4*s^20, 0, 1, 5*s^20, 0, 4, 2*s^20, 0, 1, 5*s^20, 0, 4, 2*s^20, 0, 1, 4*s^20, 0, 1, 6*s^20, 0, 0, 3*s^20, 0, 4, 5*s^20, 0, 3, 5*s^20, 0, 2, 6*s^20, 0, 3, 3*s^20, 0, 0, 4*s^20, 0, 2, s^20, 0, 5, s^20, 0, 4, 2*s^20, 0, 6, 6*s^20, 0, 4, 2*s^20 ]; > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > c; [ 1, s^20, 0, 2, s^44, 0, 5, s^44, 0, 2, s^36, 0, 4, s^12, 0, 3, s^44, 0, 5, s^12, 0, 3, s^28, 0, 2, s^4, 0, 3, s^28, 0, 6, s^44, 0, 2, s^36, 0, 6, s^12, 0, 5, s^44, 0, 1, s^4, 0, 1, s^12, 0, 4, s^36, 0, 1, s^12, 0, 4, s^36, 0, 1, s^4, 0, 1, s^44, 0, 0, s^28, 0, 4, s^12, 0, 3, s^12, 0, 2, s^44, 0, 3, s^28, 0, 0, s^4, 0, 2, s^20, 0, 5, s^20, 0, 4, s^36, 0, 6, s^44, 0, 4, s^36 ] > G; Group of Dirichlet characters of modulus 27 over Rational Field > G:=DirichletGroup(27, F); > G; Group of Dirichlet characters of modulus 27 over Finite field of size 7^2 > E:=Elements(G); > #E; 6 > Evaluate(E[1],2); 1 > Evaluate(E[2],2); 3 > Evaluate(E[3],2); 2 > Evaluate(E[4],2); 6 > Evaluate(E[5],2); 4 > GCD(18,48); 6 > Parent( Evaluate(E[5],2)); Finite field of size 7^2 > Eltseq( Evaluate(E[5],2)); [ 4, 0 ] > GCD(EulerPhi(3^4),48); 6 > GCD(EulerPhi(3^3*7),48); 12 > Order(s^20); 12 > G:=DirichletGroup(27*7, F); > E:=Elements(G); > Evaluate(E[1],2); 1 > Evaluate(E[2],2); 3 > Evaluate(E[3],2); 2 > #E; 36 > s^(-20) > ; s^28 > [i : i in [1..#E] | Evaluate(E[i],2) eq s^28 ]; [] >