[was@ecstasy pq]$ [was@ecstasy pq]$ Magma V2.7-1 Fri Sep 15 2000 16:28:37 on ecstasy [Seed = 1069828122] Type ? for help. Type -D to quit. Loading startup file "/home/was/modsym/init-magma.m" C IndexGamma0 R factormod padiccharpoly CS MS Tn fcp qexp DC ND Z fn x ES NS charpoly idxG0 F Q ellap modcharpoly > M:=ModularSymbols(11*17); > e:=WindingElement(M); > e; -1*{oo, 0} > wp:=AtkinLehner(M,11); > wq:=AtkinLehner(M,17); > e*wp; {-2/11, -3/17} > e*wq; -1*{-2/11, -3/17} > e*wp in CuspidalSubspace(M); false > (e*wp+e) in CuspidalSubspace(M); false > (e*wp-e) in CuspidalSubspace(M); false > RationalPeriodMapping; >> RationalPeriodMapping; ^ User error: Identifier 'RationalPeriodMapping' has not been declared or assigned > J:=CuspidalSubspace(M); > SubgroupOfTorus(J,e); Abelian Group isomorphic to Z/240 Defined on 1 generator Relations: 240*$.1 = 0 Mapping from: Lattice of rank 1 and degree 34 to Abelian Group isomorphic to Z/240 Defined on 1 generator Relations: 240*$.1 = 0 > SubgroupOfTorus(J,e*wp); Abelian Group isomorphic to Z/240 Defined on 1 generator Relations: 240*$.1 = 0 Mapping from: Lattice of rank 1 and degree 34 to Abelian Group isomorphic to Z/240 Defined on 1 generator Relations: 240*$.1 = 0 > SubgroupOfTorus(J,e*wp-e); Abelian Group isomorphic to Z/15 Defined on 1 generator Relations: 15*$.1 = 0 Mapping from: Lattice of rank 1 and degree 34 to Abelian Group isomorphic to Z/15 Defined on 1 generator Relations: 15*$.1 = 0 > SubgroupOfTorus(J,e*wp+e); Abelian Group isomorphic to Z/8 Defined on 1 generator Relations: 8*$.1 = 0 Mapping from: Lattice of rank 1 and degree 34 to Abelian Group isomorphic to Z/8 Defined on 1 generator Relations: 8*$.1 = 0 > SubgroupOfTorus(J,[e*wp,e]); Abelian Group isomorphic to Z/240 Defined on 1 generator Relations: 240*$.1 = 0 Mapping from: Lattice of rank 2 and degree 34 to Abelian Group isomorphic to Z/240 Defined on 1 generator Relations: 240*$.1 = 0 > SubgroupOfTorus(J,[e*wq,e]); Abelian Group isomorphic to Z/240 Defined on 1 generator Relations: 240*$.1 = 0 Mapping from: Lattice of rank 2 and degree 34 to Abelian Group isomorphic to Z/240 Defined on 1 generator Relations: 240*$.1 = 0 > 240 div 15; 16 > 17+1 > ; 18 > 240 div 18 > ; 13 > 240 div 8; 30 > load "/home/was/modsym/period.m"; Loading "/home/was/modsym/period.m" In file "/home/was/modsym/period.m", line 75, column 1: >> intrinsic DualModularSymbol(M::ModSym) -> Map ^ User error: Illegal intrinsic > phi:=ScaledRationalPeriodMapping(J); > phi(e); >> phi(e); ^ Runtime error in map application: Element is not in the domain of the map > V:=VectorSpace(M); V!Eltseq(e); (0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) > phi(V!Eltseq(e)); (0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) > phi:=ScaledRationalPeriodMapping(J); >> phi:=ScaledRationalPeriodMapping(J); ^ User error: Identifier 'ScaledRationalPeriodMapping' has not been declared or assigned > phi:=ScaledRationalPeriodMap(J); > phi(V!Eltseq(e)); >> phi(V!Eltseq(e)); ^ Runtime error in procedure call: Attempting to call something that is not callable > phi:=ScaledRationalPeriodMap(J); > e*phi; >> e*phi; ^ Runtime error in '*': Bad argument types Argument types given: ModSymElt, ModMatFldElt > a:=V!Eltseq(e) * phi; (-1/30 -1/15 23/240 1/30 -31/240 1/15 1/30 0 -31/240 -1/30 1/15 0 -1/16 -7/240 1/15 1/240 -7/240 -1/16 -1/8 17/240 1/15 1/15 1/240 -7/240 1/30 7/240 -1/10 -1/240 1/16 23/240 -3/80 11/48 -1/16 -1/16) > b:=V!Eltseq(e*wp) * phi; (1/30 1/15 247/240 -1/30 -239/240 14/15 -1/30 0 -239/240 1/30 -1/15 -1 -1/16 -23/240 -1/15 -31/240 -23/240 -17/16 -1/8 193/240 -1/15 14/15 -31/240 -23/240 -1/30 23/240 1/10 31/240 1/16 7/240 -67/80 43/48 -1/16 -1/16) > V!Eltseq(e-e*wp) * phi; (-1/15 -2/15 -14/15 1/15 13/15 -13/15 1/15 0 13/15 -1/15 2/15 1 0 1/15 2/15 2/15 1/15 1 0 -11/15 2/15 -13/15 2/15 1/15 1/15 -1/15 -1/5 -2/15 0 1/15 4/5 -2/3 0 0) > a:=V!Eltseq(e) * phi; > b:=V!Eltseq(e*wp) * phi; > a; (-1/30 -1/15 23/240 1/30 -31/240 1/15 1/30 0 -31/240 -1/30 1/15 0 -1/16 -7/240 1/15 1/240 -7/240 -1/16 -1/8 17/240 1/15 1/15 1/240 -7/240 1/30 7/240 -1/10 -1/240 1/16 23/240 -3/80 11/48 -1/16 -1/16) > b; (1/30 1/15 247/240 -1/30 -239/240 14/15 -1/30 0 -239/240 1/30 -1/15 -1 -1/16 -23/240 -1/15 -31/240 -23/240 -17/16 -1/8 193/240 -1/15 14/15 -31/240 -23/240 -1/30 23/240 1/10 31/240 1/16 7/240 -67/80 43/48 -1/16 -1/16) > -1*a; (1/30 1/15 -23/240 -1/30 31/240 -1/15 -1/30 0 31/240 1/30 -1/15 0 1/16 7/240 -1/15 -1/240 7/240 1/16 1/8 -17/240 -1/15 -1/15 -1/240 7/240 -1/30 -7/240 1/10 1/240 -1/16 -23/240 3/80 -11/48 1/16 1/16) > SubgroupOfTorus(J,[e*wp-17*e]); Abelian Group isomorphic to Z/5 Defined on 1 generator Relations: 5*$.1 = 0 Mapping from: Lattice of rank 1 and degree 34 to Abelian Group isomorphic to Z/5 Defined on 1 generator Relations: 5*$.1 = 0 > #SubgroupOfTorus(J,[e*wp-17*e]); 5 > [a : #SubgroupOfTorus(J,[e*wp-a*e]) eq 1 | GCD(a,240) eq 1]; >> [a : #SubgroupOfTorus(J,[e*wp-a*e]) eq 1 | GCD(a,240) eq 1]; ^ User error: bad syntax > [a : a in [2..240] | GCD(a,240) eq 1 and #SubgroupOfTorus(J,[e*wp-a*e]) eq 1]; [ 209 ] > factor(209); [ <11, 1>, <19, 1> ] 1 > [a : a in [2..240] | GCD(a,240) eq 1 and #SubgroupOfTorus(J,[e*wq-a*e]) eq 1]; [ 31 ] > M33:=MS(3*11); > J33:=CS(M33); > e33:=WindingElement(M33); > w3:=AtkinLehner(M33,3); w11:=AtkinLehner(M33,11); > SubgroupOfTorus(J33,[e33,e33*w3,e33*w11]); > SubgroupOfTorus(J33,[e33,e33*w3,e33*w11]); Abelian Group isomorphic to Z/10 Defined on 1 generator Relations: 10*$.1 = 0 Mapping from: Lattice of rank 1 and degree 6 to Abelian Group isomorphic to Z/10 Defined on 1 generator Relations: 10*$.1 = 0 > [a : a in [2..10] | GCD(a,10) eq 1 and #SubgroupOfTorus(J33,[e33*w3-a*e33]) eq 1]; [] > [a : a in [2..10] | GCD(a,10) eq 1 and #SubgroupOfTorus(J33,[e33*w11-a*e33]) eq 1]; [ 9 ] > [a : a in [2..10] | #SubgroupOfTorus(J33,[e33*w3-a*e33]) eq 1]; [] > [a : a in [1..15] | #SubgroupOfTorus(J33,[e33*w3-a*e33]) eq 1]; [ 1, 11 ] > NS:=NewSubspace(J); > SubgroupOfTorus(NS,e); Abelian Group isomorphic to Z/12 Defined on 1 generator Relations: 12*$.1 = 0 Mapping from: Lattice of rank 1 and degree 26 to Abelian Group isomorphic to Z/12 Defined on 1 generator Relations: 12*$.1 = 0 > 240 div 12; 20 > 209^2 mod 240; 1 > factor(240); [ <2, 4>, <3, 1>, <5, 1> ] 1 > 31^2 mod 240; 1 >