[was@modular papers]$ [was@modular papers]$ Magma V2.8-10 Thu Apr 11 2002 02:35:01 on modular [Seed = 2820782682] Type ? for help. Type -D to quit. Loading startup file "/home/was/magma/local/emacs.m" Loading "/home/was/magma/local/init.m" > Attach("compute_cokerq.m"); > ComputeM2(23); >> ComputeM2(23); ^ Runtime error in 'ComputeM2': 2 must exactly divide argument 1. > ComputeM2(23*2); Computing modular symbols of level 46 Time: 0.100 ComputeM2( N: 46 ) RandomElementOf( S: Modular symbols space of level 46, weight 2, and dimension 5 ) In file "/home/was/people/edixhoven/papers/compute_cokerq.m", line 41, column 28: >> return &+[Random(-2,2)*B.Random(1,d) : i in [1..3]]; ^ Runtime error in '.': Bad argument types Argument types given: SeqEnum[ModSymElt], RngIntElt > ComputeM2(23*2); Computing modular symbols of level 46 Time: 0.050 ComputeM2( N: 46 ) RandomElementOf( S: Modular symbols space of level 46, weight 2, and dimension 5 ) In file "/home/was/people/edixhoven/papers/compute_cokerq.m", line 41, column 11: >> return &+[Random(-2,2)*S.Random(1,d) : i in [1..3]]; ^ Runtime error in '&+': Universe has no addition algorithm > ComputeM2(23*2); Computing modular symbols of level 46 Time: 0.040 Compute W2 Time: 0.040 Compute image under W2 ComputeM2( N: 46 ) In file "/home/was/people/edixhoven/papers/compute_cokerq.m", line 61, column 30: >> time W2T := MakeLattice([b*W2 : b in Basis(T)]); ^ Runtime error in '*': Arguments 1 and 2 have incompatible coefficient rings > ComputeM2(23*2); Computing modular symbols of level 46 Time: 0.050 Compute W2 Time: 0.030 Compute image under W2 [ ( 0 0 0 1 -1 0 0 0), ( 0 0 1 0 0 0 -1 -1), ( 0 0 1 -1 0 -1 1 1), ( 0 2 0 0 0 -2 0 0), ( 0 1 1 -1 -2 1 0 0) ] [-1 1 -1 2 0] [ 0 0 -1 2 -1] [ 0 -1 0 2 -1] [ 0 0 0 1 0] [ 0 0 0 0 1] ComputeM2( N: 46 ) In file "/home/was/people/edixhoven/papers/compute_cokerq.m", line 63, column 30: >> time W2T := MakeLattice([b*W2 : b in Basis(T)]); ^ Runtime error in '*': Arguments 1 and 2 have incompatible coefficient rings > ComputeM2(23*2); Computing modular symbols of level 46 Time: 0.030 Compute W2 Time: 0.030 Compute image under W2 [ ( 0 0 1 0 -1 0 0 0), ( 0 0 1 -2 1 0 0 0), ( 0 2 0 0 0 -2 0 0), ( 0 2 0 0 0 0 -2 -2), ( 0 2 -1 -2 -1 2 0 0) ] [ 0 0 0 0 0 0 0 -1] [ 0 -1 1 -1 0 0 0 0] [ 0 0 0 -1 0 -1 1 1] [ 0 0 -1 0 0 -1 1 1] [ 0 0 0 0 -1 0 0 0] [ 0 0 0 0 -2 1 0 0] [ 1 0 0 0 -2 0 1 1] [-1 0 0 0 0 0 0 0] ComputeM2( N: 46 ) In file "/home/was/people/edixhoven/papers/compute_cokerq.m", line 63, column 30: >> time W2T := MakeLattice([b*W2 : b in Basis(T)]); ^ Runtime error in '*': Arguments 1 and 2 have incompatible coefficient rings > A := ComputeM2(23*2); Computing modular symbols of level 46 Time: 0.040 Time: 0.000 Compute W2 Time: 0.040 Compute image under W2 Time: 0.000 Abelian Group isomorphic to Z/10 Defined on 1 generator Relations: 10*$.1 = 0 Mapping from: Lattice of rank 5 and degree 8 to Abelian Group isomorphic to Z/10 Defined on 1 generator Relations: 10*$.1 = 0 > A := ComputeM2(23*2); Computing modular symbols of level 46 Time: 0.040 Time: 0.000 Compute W2 Time: 0.030 Compute image under W2 Time: 0.000 > A; Abelian Group isomorphic to Z/4 + Z/8 Defined on 2 generators Relations: 4*A.1 = 0 8*A.2 = 0 > A := ComputeM2(37*2); Computing modular symbols of level 74 Time: 0.060 Time: 0.010 Compute W2 Time: 0.050 Compute image under W2 Time: 0.000 > A; Abelian Group isomorphic to Z/2 + Z/6 Defined on 2 generators Relations: 2*A.1 = 0 6*A.2 = 0 > A := ComputeM2(431*2); Computing modular symbols of level 862 Time: 0.890 Time: 0.130 Compute W2 Time: 0.430 Compute image under W2 Time: 0.960 > A; Abelian Group isomorphic to Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/190 + Z/351095517506063025827121466868134429313328702694618323469139815519934160 Defined on 11 generators Relations: 2*A.1 = 0 2*A.2 = 0 2*A.3 = 0 2*A.4 = 0 2*A.5 = 0 2*A.6 = 0 2*A.7 = 0 2*A.8 = 0 2*A.9 = 0 190*A.10 = 0 351095517506063025827121466868134429313328702694618323469139815519934160*A.11 = 0 >