> load "alina.m"; Loading "alina.m" > alina3(100,102,~T); > file := Open("outfile","w"); > file; User file > fprintf file, "%o\n", S; > > > Flush(file); > > > > load "alina.m"; Loading "alina.m" > Open; Intrinsic 'Open' Signatures: ( F, M) -> File Open file with filename F with mode M, and return file > Open; Intrinsic 'Open' Signatures: ( F, M) -> File Open file with filename F with mode M, and return file > CuspForms; Intrinsic 'CuspForms' Signatures: ( N) -> ModFrm The space of weight-2 cusp forms on Gamma_0(N) over the rational numbers. ( N, R) -> ModFrm The space of weight-2 cusp forms on Gamma_0(N) over the ring R. ( N, k) -> ModFrm The space of weight-k cusp forms on Gamma_0(N) over the rational field. ( N, k, R) -> ModFrm The space of weight-k cusp forms on Gamma_0(N) over the ring R. By definition this is the tensor product of CuspForms(N,k,IntegerRing()) with R. Thus CuspForms(N,k,GF(p)) is the SERRE space of mod-p modular forms, not the Katz space. ( eps, k) -> ModFrm ( M) -> ModFrm The space of cusp forms associated to the space M of modular symbols, which must have sign +1 or -1. > CuspForms(1,12,GF(11)); Full space of cusp forms of level 1, weight 12, and dimension 1 > S := $1; > qExpansion(S,10); [* q + 9*q^2 + 10*q^3 + 2*q^4 + q^5 + 2*q^6 + 9*q^7 + 9*q^9 + O(q^10) *] > qExpansion; Intrinsic 'qExpansion' Signatures: ( M, prec) -> List ( B, prec) -> List ( f) -> RngSerPowElt ( S) -> RngSerPowElt ( f, prec) -> RngSerPowElt The q-expansion of the modular form f to absolute precision prec. > 50000/3600.0; 13.88888888888888888888888888 > quit; Total time: 2.740 seconds