
J. Symbolic Computation (1997) 24, 235–265

The Magma Algebra System I: The User Language†

WIEB BOSMA‡, JOHN CANNON§ AND CATHERINE PLAYOUST¶

Computational Algebra Group, School of Mathematics and Statistics,
The University of Sydney, NSW 2006, Australia

In the first of two papers on Magma, a new system for computational algebra, we
present the Magma language, outline the design principles and theoretical background,
and indicate its scope and use. Particular attention is given to the constructors for
structures, maps, and sets.

c© 1997 Academic Press Limited

1. Introduction

Magma is a new software system for computational algebra, the design of which is
based on the twin concepts of algebraic structure and morphism. The design is intended
to provide a mathematically rigorous environment for computing with algebraic struc-
tures (groups, rings, fields, modules and algebras), geometric structures (varieties, special
curves) and combinatorial structures (graphs, designs and codes).

The philosophy underlying the design of Magma is based on concepts from Universal
Algebra and Category Theory. Key ideas from these two areas provide the basis for a gen-
eral scheme for the specification and representation of mathematical structures. The user
language includes three important groups of constructors that realize the philosophy in
syntactic terms: structure constructors, map constructors and set constructors. The util-
ity of Magma as a mathematical tool derives from the combination of its language with
an extensive kernel of highly efficient C implementations of the fundamental algorithms
for most branches of computational algebra. In this paper we outline the philosophy of
the Magma design and show how it may be used to develop an algebraic programming
paradigm for language design. In a second paper we will show how our design philoso-
phy allows us to realize natural computational “environments” for different branches of
algebra.

An early discussion of the design of Magma may be found in Butler and Cannon
(1989, 1990). A terse overview of the language together with a discussion of some of the
implementation issues may be found in Bosma et al. (1994).

† This research was supported in part by the Australian Research Council.
‡ E-mail: wieb@maths.usyd.edu.au
§ E-mail: john@maths.usyd.edu.au
¶ E-mail: playoust@maths.usyd.edu.au

0747–7171/97/030235 + 31 $25.00/0 sy960125 c© 1997 Academic Press Limited

236 W. Bosma et al.

2. The Magma Philosophy: Design Criteria

The process of designing a computer algebra system involves choosing a mathematical
viewpoint and then selecting one or more programming language paradigms (procedural,
functional, rewrite rule-based etc). A given system will be based on a particular viewpoint
chosen from among the many different ways of looking at an area of mathematics. Not
only are different approaches evident in different branches, but even within a single
branch, quite different viewpoints often co-exist.

Modern algebra is characterized by the process of abstracting minimal sets of axioms
satisfied by some particular class of structures and then attempting to produce a clas-
sification of the entire class of structures satisfying that axiomatic system. The internal
structure of an algebraic structure plays a central role in classification efforts. Important
tools are structure-preserving mappings (morphisms) and actions of structures.

The design of Magma is firmly rooted in this structural view of algebra. The fundamen-
tal notions underlying the system design are those of algebraic structure and morphism.
Having chosen a mathematical viewpoint, it is now appropriate to state a number of
more specific criteria:

• The language should be “universal-algebraic” in the sense that its design philosophy
should strive to be equally appropriate for all branches of algebra and related fields.
• Algebraic structures and their morphisms are to be first class objects.
• The language should ensure that the specification of mathematical objects and

their attributes is precise and unambiguous. The semantics associated with each
object definable in the language should be as close as possible to the standard
mathematical interpretation.
• The user language should support common mathematical notation as far as possible.
• “Mathematical” data structures, such as sets, sequences and mappings, are used

rather than the more standard computer science data structures such as arrays,
lists and trees.
• Efficiency is a paramount concern.

In the following paragraphs we expand on some of these points.

Universality. A system design that provides a satisfactory computational environment
for all areas of mathematics has not yet appeared, and for good reason: it is probably
impossible. For example, an environment supporting computation in analysis, where the
problem of expression simplification is central, will differ very significantly from an en-
vironment for constructive combinatorics where backtrack search is the main tool. On
the other hand the many excellent systems developed for particular branches of math-
ematics (KANT, LiE, PARI, Macaulay, Snappea etc) suffer from the disadvantage that
many practical computations will involve the use of tools from neighbouring areas. We
have chosen to design a system for an area of mathematics that is, hopefully, sufficiently
broad to encompass a large class of mathematical computations that rely heavily on
algebraic calculation, but which is sufficiently constrained that the adoption of a single
mathematical viewpoint will work equally well throughout the area.

First class status for structures. Since, operationally, algebraic structures and individual
“elements” of a structure are each mathematical entities possessing properties which we
seek to investigate, structures need to have first class status in an algebraic language.
Thus, it should be as easy to define a polynomial ring R and perform operations on R

The Magma Algebra System I: The User Language 237

as it would be to define and perform arithmetic with a polynomial. This is in sharp
contrast to the approach taken in systems such as MACSYMA, REDUCE, Maple and
Mathematica which have adopted an “element-centred” model of algebra and provide
virtually no support for structural computation.

Precision and the avoidance of ambiguity. The central notion here is that of “context”:
the answer to mathematical questions (and indeed, their appropriateness) often depends
upon the context in which they are asked. As a simple example, consider the problem
of factoring x3 − 1. At first sight this is an innocuous and appropriate question for a
symbolic algebra package. Upon reflection, however, it is entirely unreasonable to expect
a solution from any system without further context: if, “in the current context” x is
an identifier with the integer 4 assigned to it, then evaluation should yield the answer
x3 − 1 = 32 · 7. A computer algebra system would be able to decide that no “value”
has been assigned to x yet, but ambiguities arise if it assumes next that x refers to
a transcendental element: it will then have to decide over which structure to factor the
polynomial x3−1. One possible solution, often adopted by conventional symbolic algebra
systems in some form, is to make the notion of context explicit: the user specifies a context
in which computation is to be performed, so that a change of context changes the domain
of computation. Serious drawbacks to this approach include the difficulty of computing
simultaneously in various structures, and the counterintuitive change of “meaning” of
objects whenever the exterior context is changed. While such an approach may work
for elementary applications in which computation takes place in a single fixed structure,
in more sophisticated algebraic computation, where objects of one structure interact
with those of another, it becomes difficult if not impossible. The solution chosen for
Magma is to associate with every object its unique context, in the form of the “parent
structure” to which it belongs. It is impossible to define x3 − 1 in Magma without
(explicitly) designating the structure to which it belongs. If, for example, it is defined to
be an element of the polynomial ring Z[x], factorization results in its factorization into
a product of irreducible polynomials over Z.

Efficiency. Since Magma is intended as a heavy-duty research tool, its fundamental
algorithms need to be as fast as possible. The difficulties of achieving satisfactory speed
of execution will be clear to anyone who has undertaken the development of mathematical
software. Since the optimal choice of data structures is crucial for many algorithms, the
implementation of such algorithms in a high-level general algebraic language suffers the
drawback that the use of generic data structures rather than the optimal data structures
for a given problem will often result in the loss of a considerable degree of efficiency. This
is true regardless of whether the language is interpreted or compiled into some low-level
language such as C or Lisp. One approach to this problem is to install fundamental or
particularly time-critical algorithms in the C kernel. To avoid the cost of re-implementing
every relevant algebraic algorithm, the Magma internal system architecture makes it
possible for certain classes of specialist software written independently of Magma to be
installed in the kernel at the cost of a modest amount of effort.

3. Theoretical Foundations

In order to produce a coherent design, we require a model of algebraic computation
that specifies the possible classes of objects that may be defined within the scheme, and
allows the valid operators for a given class of objects to be recognized.

238 W. Bosma et al.

An essential prerequisite for mathematical rigour is a strongly typed system. Ideas from
Universal Algebra and Category Theory have been used to develop a theory of formal
algebraic specification of data structures and their operations (Burstall and Gougen, 1981;
Gougen, 1989). This work underpins semantic models for Computer Algebra systems
such as AXIOM (Jenks and Sutor, 1992) that support strong typing. Recently, Hearn and
Schrüfer have used the theory of order-sorted algebras to develop a proposal for a strongly
typed language for the Computer Algebra system REDUCE (Hearn and Schrüfer, 1995).
This body of work is chiefly concerned with defining a satisfactory system of types in a
particular context and explicating the relationships between the different types.

While no description known to us of the semantics of algebraic computation seems to be
completely satisfactory, we have found that ideas from Universal Algebra and Category
Theory provide a useful framework. Although the description of our model takes its
inspiration from these sources, the Magma notions of algebra, category and variety do
not strictly adhere to the standard definitions. We use these concepts not only to develop
a theory of algebraic types and their representation, but also to identify operations that
are common to large classes of algebraic and geometric structures.

In the next sections we briefly outline the basic ideas of multi-sorted algebras and
categories in order to provide the reader with an understanding of the foundations of
the Magma model. Our overview of universal algebra follows that of Meinke and Tucker
(1992), and the reader is referred to this excellent exposition for a detailed account. For
the notions of category theory we refer the reader to Mac Lane (1971).

3.1. multi-sorted algebras

To define multi-sorted algebras, we fix a non-empty set S of sorts. Although many
familiar algebraic structures may be described as single-sorted algebras, it will be conve-
nient to consider multi-sorted algebras.

A multi-sorted algebra A consists of a family {As : s ∈ S} of non-empty sets As called
carrier sets, together with a signature Σ; the signature identifies certain distinguished
elements of the carrier sets as well as the collection of allowable operations in A, and is
formalized as follows. By S∗ we denote the (possibly empty) set of words in the elements
of S; by λ we will denote the empty word. A signature Σ is an S∗×S indexed collection of
sets {ΣAw,s, w ∈ S∗, s ∈ S}. For each sort S, the set ΣAλ,s ⊂ As consists of the constants of
sort s in A, while for each non-empty word w = s1 · · · sk and sort s the set ΣAw,s consists
of the operations σ:As1 × · · · × Ask → As, of arity k, with domain As1 × · · · × Ask and
co-domain As.

We should therefore speak of “multi-sorted Σ-algebras”, but in the remainder of this
section the abbreviated term “algebras” will be used.

There are three standard constructions which, when applied to algebras, produce new
algebras. These are the subalgebra, quotient algebra and direct product constructions. We
briefly sketch their definitions. Let A and B be S-sorted algebras. Then a subalgebra B
of A is defined as follows:

(i) The carrier sets of B are subsets of the carrier sets of A: i.e., Bs ⊆ As, for s ∈ S.
(ii) The constants of B are identical with those of A: i.e., ΣAλ,s = ΣBλ,s, for s ∈ S.
(iii) The operations on B are obtained by restricting the operations on A to B: i.e.,

σB(b1, . . . , bn) = σA(b1, . . . , bn), for σ ∈ Σw,s, bi ∈ Bsi .

The Magma Algebra System I: The User Language 239

If B is a subalgebra of A then we write B ≤ A. The notion of a subalgebra leads to a
concept that is fundamental for computation: generating set. Let A be an algebra and
let X ⊆ A. Then

〈X〉A =
⋂
X⊆B
B≤A

B

is the subalgebra generated by X ⊆ A. It is not hard to show that this intersection defines
a subalgebra provided the intersection of carrier sets is non-empty. The statement that A
is generated by X ⊆ A is equivalent to 〈X〉A = A. Further, we say that A is finitely
generated if and only if 〈X〉A = A, for some finite set X. The idea of a generating set
provides us with an extremely compact method of representing algebras: rather than
explicitly listing the elements of carrier sets, we will describe them in terms of (usually)
small sets of generators.

A (Σ-)congruence is an S-sorted family of equivalence relations on the carrier sets of
an algebra A which is compatible with the operations on A. Given a congruence ∼= on
an algebra A, it is straightforward to define the quotient algebra Q = A/ ∼= of A with
respect to the congruence ∼= as follows (where [] denotes for any R the canonical map
R→ Q that sends an element of R to its class in Q):

(i) The carrier sets of Q are quotients of the carrier sets of A: i.e., Qs = As/ ∼=s, for
s ∈ S.

(ii) The constants of Q are the classes containing constants from A:
ΣQλ,s = {[c] : c ∈ ΣAλ,s}, for s ∈ S.

(iii) The operations on Q are obtained in the obvious way from those on A:
σQ([a1], . . . , [an]) = [σA(a1, . . . , an)], for σ ∈ Σw,s, and ai ∈ Asi .

If A is an S-sorted Σ-algebra and ∼= is a Σ-congruence on A, then Q = A/ ∼= is also an
S-sorted Σ-algebra.

The direct product of Σ-algebras A and B is the Σ-algebra P defined as follows:

(i) The carrier sets of P are direct products of the carrier sets of A and B: i.e., Ps =
As ×Bs, for s ∈ S.

(ii) The constants of P are the products of corresponding constants, i.e., c(A×B)s =
(cAs , cBs), for s ∈ S.

(iii) The operations on P are obtained componentwise, so for σ ∈ Σw,s, ai ∈ Asi , bi ∈
Bsi : σP ((a1, b1), . . . , (an, bn)) = (σA(a1, . . . , an), σB(b1, . . . , bn)).

This construction is easily extended to products of arbitrary families of algebras.
A (Σ-)homomorphism between algebras A and B is an S-indexed family of mappings

φ = {φs : As → Bs | s ∈ S}
such that cB = φ(cA), for each constant symbol c, and

φs(σA(a1, . . . , an)) = σB(φs1(a1), . . . φsn(an))

for each operator σ. Related terms such as homomorphic image, Σ-isomorphism,
Σ-endomorphism and Σ-automorphism are defined in the obvious manner. It is straight-
forward to show that for a Σ-algebra A, the set End(A), resp. Aut(A), of all endomor-
phisms, resp. automorphisms, of A forms a monoid, resp. group, under composition of
mappings.

240 W. Bosma et al.

A class K of algebras is said to be closed under the formation of subalgebras if, and
only if, whenever A ∈ K and B ≤ A, then B ∈ K. Similarly, we may define closure
of a class K with respect to the formation of quotient algebras, direct products and
homomorphic images.

A class of Σ-algebras closed under the formation of subalgebras, direct products and
homomorphic images is called a variety. Such a class will also be closed under the for-
mation of quotient algebras.

It turns out that varieties arise as classes of Σ-algebras with “the same operations”
on them: algebras satisfying certain polynomial identities on (derived) operators. By
Alg(Σ, P) we will denote the equational class of all Σ-algebras whose operations satisfy
the relations specified by P .

A famous theorem by Birkhoff asserts that a class of (multi-sorted Σ-)algebras forms
a variety if and only if it forms an equational class for some set of equations P .

Example: Commutative Rings
With the above notations we can describe commutative rings as single-sorted algebras as
follows, if we adopt the convention that for single-sorted algebras we abbreviate Σsn,s =
Σn. The algebra consists of a non-empty carrier set R together with signature

Σ0 = {0, 1},Σ1 = {−},Σ2 = {+, ·},Σn≥3 = ∅.

Thus, commutative rings contain 0, 1 (it is convention to assume 0 6= 1), and allow the
unary operation − for negation, as well as the binary operations + and ·.

Commutative rings form a variety, hence an equational class, which can be obtained
from the above Σ-algebra by imposing the equations that express their axioms, i.e.,

(x+ y) + z = x+ (y + z) (associativity of +)
x+ 0 = x = 0 + x (identity for +)
x+ (−x) = 0 = (−x) + x (inverse for +)
x+ y = y + x (commutativity of +)
(x · y) · z = x · (y · z) (associativity of ·)
x · 1 = x = 1 · x (identity for ·)
x · (y + z) = x · y + x · z (distributivity of · over +)
x · y = y · x (commutativity of ·)

Semigroups, groups, abelian groups, and not-necessarily-commutative rings can be ob-
tained as classes of algebras and as equational classes in a similar fashion by choosing
the appropriate subsets of constants, operations and equations from the above. Note
that fields will not form a single-sorted algebra this way, because the additional unary
operation −1 of inversion is not everywhere defined on the carrier set.

Although many of the standard algebraic structures such as semigroups, rings and
R-modules can thus be treated as single-sorted algebras, modelling computation requires
the introduction of additional carrier sets and operations. For example, exponentiation
of elements introduces the integers as a carrier set, membership testing introduces the
booleans, etc. The introduction of such subsidiary carrier sets can be accomplished neatly
by a process known as expansion (see Meinke and Tucker, 1992).

The Magma Algebra System I: The User Language 241

3.2. categories

In category theory, the concepts of similar algebraic structures and their structure
preserving mappings are formalized as follows. A category C consists of

(i) A collection ObC of objects.
(ii) For each pair of objects A,B, a set Hom(A,B) of morphisms from A to B.

(iii) For each ordered triple A,B,C of objects of C, a composition map Hom(B,C) ×
Hom(A,B)→ Hom(A,C).

The following conditions are required to hold:

• The sets Hom(A,B) are disjoint for distinct pairs of objects A,B.
• Composition is associative.
• For each object A, Hom(A,A) contains an identity morphism idA such that for all

objects B and all f in Hom(A,B) and g in Hom(B,A), idA ◦f = f and g ◦ idA = g.

Many familiar classes of algebraic structures and their mappings form categories; in
particular, every variety Alg(Σ, P) forms a category. However, there exist categories
that are not varieties; for example, the category of fields (with the field homomorphisms
between them) is not a variety, since fields are not even algebras.

A morphism of categories C and D is called a functor: it consists of a function F which
acts on objects C 7→ FC and on morphisms f 7→ Ff , such that Ff ∈ Hom(FA,FB) if
f ∈ Hom(A,B), satisfying F idC = idFC and F (g ◦ f) = Fg ◦ Ff . An important class of
functors are the so-called forgetful functors, which simply forget some of the structure of
the objects. Thus, the functors sending a field to the additive group of all its elements,
and that of sending it to the multiplicative group of its non-zero elements, provide two
examples of forgetful functors between the category of fields and that of abelian groups.
As another example, the direct product construct that we encountered in the previous
section is a functor from C to C for various categories C.

A desirable property of varietal categories is the existence of free objects. In terms
of algebras, a Σ-algebra F is free on the indexed family Xs of subsets is:Xs ↪→ Fs for
a class of Σ-algebras C if and only if for any A ∈ C and any S-indexed family of maps
φs:Xs → As there exists a unique Σ-homomorphism ψ which agrees with φ on X, that is,
such that ψs◦is = φs on Xs. In short, every Σ-homomorphism from X factors through F .

Existence of Free Algebras: Let C be a class of Σ-algebras that forms a variety. Then
there exist free algebras in C, and up to isomorphism such a free algebra is charac-
terized by its indexed family of generator cardinalities #Xs. In particular, in single
sorted varieties of algebras there exists an essentially unique free algebra for any
positive integer.

The existence of free algebras for varieties is a consequence of the left adjoint theorem
(Mac Lane, 1971), which implies the existence of a left adjoint for the forgetful functor
Alg→ Set in the case of a variety of single-sorted algebra; this left adjoint produces the
free algebra in Alg on the carrier set X.

Since algebraic varieties have such nice properties, we use them to model the “ideal
case”. However, we do not restrict ourselves to working with categories belonging to

242 W. Bosma et al.

varieties. It usually turns out that the ideas developed for varietal categories can be
suitably reinterpreted in the case of other structures.

We first use the varietal condition to provide us with a compact representation of
algebras.

Existence of Generators: Let A be a member of a class of algebras C that forms an
algebraic variety V . Then A possesses a generating set X. Moreover, A can be
obtained as a quotient of a free algebra in C.

Since we are interested in morphisms between algebras, the fact that an algebra is defined
in terms of generating sets allows us to use the Homomorphism Representation Theorem.

Homomorphism Representation Theorem: Let A be an algebra belonging to a va-
riety. Then any homomorphism f of A is uniquely determined by the set {f(x) :
x ∈ X}, where X is any generating set for A.

3.3. the magma model

The ideas developed in the previous sections provide the basis for developing a compu-
tational model of algebraic structures. We begin by formalizing the notion of an algebraic
structure as a Σ-algebra. In order to avoid confusion with other notions of algebra, the
term magma will be used when referring to a Σ-algebra. (This name was introduced by
Bourbaki (Bourbaki, 1970), who defines a magma to be a set with a law of composition.†
However, we will use it more generally to refer to a Σ-algebra.) We introduce a two-level
classification of magmas in Magma:

(i) A class of magmas satisfying a set of identical relations P will be called a variety,
written Var(Σ, P).

(ii) A class of magmas belonging to the variety V and sharing a common “representa-
tion” R will be called a category, written Cat(V,R).

The notion of variety permits the specification of generic functions, functions that are
independent of the representation of a magma and which, consequently, may be applied
to magmas belonging to any category in the variety. For example, the standard method
of constructing the normal closure of a subgroup of a group requires only arithmetic with
group elements and the ability to determine whether an element lies in a subgroup. Some
varieties in Magma are groups (Grp), commutative rings (Rng), and modules (Mod).

At the level of category, a magma is realized in concrete form. Thus, the category
to which a magma belongs determines the representation of its carrier sets. Associated
with a category C belonging to the variety V = Var(Σ, P) are functions implementing
the operations given by Σ. Non-defining operations that depend upon a knowledge of the
representation R are also attached to C. Most categories in Magma have names consisting
of (usually) three letters indicating the variety to which it belongs and usually three more
to distinguish the category; for example, RngMPol is the name in Magma for the category
of multivariate polynomial rings. (Technically, RngMPol is a family of categories indexed

† “Un ensemble muni d’une loi de composition est appelé un magma.” (Bourbaki, 1970), ch. 1, p. 1.

The Magma Algebra System I: The User Language 243

by the coefficient ring, but we will abuse terminology and refer to RngMPol and similar
indexed families of categories as though they were single categories.)

Recall that a magma is said to be finitely generated if it possesses a finite generating set.
Since the vast majority of commonly occurring algebraic structures are finitely generated,
we do not sacrifice much by restricting our model to describe finitely generated magmas.
The occasional infinitely generated magma can be handled by other means within the
language. Exceptions to the finitely generated paradigm are such notorious structures as
the field of real numbers, rings of Laurent series, etc.

We further note that structure algorithms for algebraic structures typically work with
generating sets. Hence, wherever possible we will choose to represent magmas in terms
of finite generating sets. The property of being freely finitely generated is in many cases
preserved under taking substructures and forming direct products, whereas taking quo-
tients or homomorphic images yields (finite) presentations. Since the word problem is
unsolvable for many interesting varieties, computation in a finitely presented category is
often limited.

As we saw, free magmas exist within any class of magmas that form a variety; it will
be convenient to extend the notion of a free magma somewhat, to include “the largest
possible magma with the given parameters” in certain categories in which free objects
strictly speaking do not exist. For example, within the category of matrix groups over a
field F , the generalized free algebras are the general linear groups GL(n, F), for positive
integers n. We will then be able to create most magmas from a “free” magma in this
sense using constructions such as substructure, quotient, homomorphic image and direct
product formation.

Many of the functions that create new (free) magmas will take existing magmas as
parameters. Thus, for example, the creation of polynomial rings or of matrix groups
uses some form of recursion since they must be defined over a coefficient ring (magma).
Indeed, these creation functions may be viewed as functors from certain categories of
ring to other categories of group or ring.

The category to which a magma belongs determines:

• The representation of elements of the carrier sets.
• The representation of carrier sets.
• The operations that are allowed on elements of the magma.
• The operations that are allowed on the magma.

The implementation of a category involves installing functions which perform the follow-
ing tasks:

• Creation and deletion of magmas, their elements and their morphisms.
• Creation and deletion of mappings and coercion operations involving the magmas.
• The Σ-operations.
• The representation-dependent operations associated with the magma.

The fundamental action in our language will be the application of an operator to some
list of objects. Let A be an S-sorted Σ-algebra and let

σA : As1 × . . .×Asn → As

be an operation belonging to ΣA. Suppose we attempt to apply σA to the arguments
b1, . . . , bn. This will involve four distinct steps:

244 W. Bosma et al.

(i) Test compatibility of sorts: That is, we must check that the sort corresponding to bi
is si for i = 1, . . . , n. If any of these tests fail, the operation is illegal.

(ii) Test compatibility of values: In the case of n-ary operations for n ≥ 2, it is necessary
to check that bi ∈ Asi for i = 1, . . . , n.

(iii) Locate the function that performs the operation σA. This is obtained from the
category of A.

(iv) Invoke the function to evaluate σA(b1, . . . , bn).

Testing compatibility of sorts is what is usually referred to as type checking. A simple
instance in which testing compatibility of values arises is in the evaluation of the ex-
pression x ∗ y, where x and y are ring elements. The magma semantics insists that ring
products may only be evaluated when both arguments belong to a common ring. In order
to determine compatibility of values efficiently, we need to know if x and y belong to a
common set.

We shall use the term type to mean a set of values. Any set constructible in the
Magma language is ultimately defined in terms of one or more magmas. For simplicity,
we restrict discussion to sets defined in terms of a single magma. As noted above, a
narrow definition of a particular type of algebraic structure involves typically one or two
carrier sets. However, actual computation introduces many further carrier sets, such as
the set of integers, the power set of the magma, etc. The carrier sets that appear in the
axiomatic definition of an algebraic structure will be referred to as fundamental carrier
sets, while the expanded list required for computation will be referred to as ancillary
carrier sets. The ancillary carrier sets for a magma are the same for every category.
Roughly speaking, the types to which a magma A gives rise are as follows:

• The carrier sets of A.
• The set of all subalgebras of A.
• The set of all ideals of A.
• An n-order iterated power set of each of the above sets.

The situation is slightly more complicated than this since, as we shall subsequently see,
Magma distinguishes between ordered and unordered sets, simple sets and multisets.

Thus, each possible set of values definable in the Magma language must arise as a
carrier set associated with some magma. Hence, the types correspond precisely to the
collection of all possible carrier sets. In Magma the carrier sets associated with a given
magma form a related set of types. Compatibility of sorts and compatibility of values
may be quickly determined if the pair 〈s,As〉 is associated with each object, i.e., its sort
and the carrier set to which it belongs.

3.4. the constructors for magmas, elements, and mappings

In this section we discuss the language constructs for defining magmas and their ele-
ments. The first issue concerns the form of representation adopted. Since our objective
is to work with specific magmas we require a concrete realization of the carrier sets of
the magma. Rather than try to design in the abstract, we look at the way in which the
fundamental varieties of algebraic structures are realized. What do the actual elements
of carrier sets look like? While there are endless possibilities, it turns out that most of
the computationally interesting categories of magmas arise as follows:

The Magma Algebra System I: The User Language 245

• As one of a small number of primitive magmas (e.g., the ring of integers).
• As a set of mappings from one magma to another.
• By means of generators and relations.
• As substructures, quotient structures, extensions and direct products of magmas.

For example, the finite field GF(p3) can be specified by a single generator and a single
relation over the prime field GF(p), which itself is a quotient of the integers. The bimodule
of m × n integral matrices is the set of linear transformations from the module Zm to
the module Zn. The latter modules are direct products of copies of Z.

We are now in a position where we can present a general mechanism for specifying a
magma M . This involves two conceptual steps:

(i) The definition of an appropriate free magma F .
(ii) The construction of the desired magma M from F by forming a succession of

substructures, quotient structures and extensions until M is obtained.

For each category, the implementer must install a function that creates the appropriate
free magma. The system provides standard constructors which, given any magma M
and a set X of elements belonging to M , construct either the substructure or quotient
structure defined by the submagma generated by X.

The above ideas lead to the following generic constructions for creating magmas:

• A free magma constructor.
• A submagma constructor, which takes an existing magma M together with a set X

of elements of M and creates the submagma of M generated by X.
• A quotient magma constructor, which takes an existing magma M together with a

set X of elements of M and creates the quotient of M by the ideal generated by X.
• An extension constructor, which forms an extension of one magma by some other

magma (the form of this is rather dependent upon the variety to which the magmas
belong).

In addition to the above constructors we will need:

• An element constructor, for elements in a given magma.
• A map constructor, to construct morphisms between given magmas.

Mappings play many roles in Magma and are an important programming tool. Just
as in mathematics, they are used to represent the following kinds of associations between
sets and magmas:

• A natural relationship holding between two magmas (e.g., an embedding).
• A general homomorphism between two magmas (possibly an endomorphism).
• An action of magma A on magma B.
• An association between two sets.

For example, if some structural invariant of a magma A is to be computed using a
divide-and-conquer algorithm which replaces the computation in A by computations in
(smaller) submagmas and quotient magmas of A then the natural morphisms relating the

246 W. Bosma et al.

submagmas and quotient magmas to A are used to pull back solutions of the subproblems
into A.

We need to consider the problem of representing mappings. For a small set or magma A
it may be possible to represent a map f :A → B by listing all pairs (a, f(a)). In some
situations, it is possible to define a mapping by giving a rule for calculating the image of
a general element of the domain. However, both of these cases are the exception. Since
we are mainly interested in morphisms between magmas, the fact that our magmas are
defined in terms of finite generating sets allows us to use the Homomorphism Represen-
tation Theorem. Hence the constructor will require only the images of the generators of
the domain.

3.5. coercion

In a strongly typed algebra system such as Magma, a particular magma M may be
embeddable in one or more other magmas. This embedding may be essentially unique
(e.g. Z in Q) or there may be a number of distinct possibilities (e.g. Q(α) in C). Since
for most binary operations Magma requires both arguments to belong to a common
magma, the user can soon become overwhelmed with the detail of continually having
to cast objects into a different magma (i.e., to change types). The design of Magma
is organized so as to mitigate this by providing both automatic and forced coercion.
Coercion is an operation that, given an element x of a magma M and some magma N
such that there is an interpretation of x in N , returns this “image” of x in N . Automatic
coercion will only be performed when there is a canonical relationship between M and N .
Knowledge of the existence of such a relationship will be available to Magma in two sets
of circumstances.

Firstly, as a submagma or quotient magma is created, Magma automatically notes
the relationship between the magmas and stores the associated morphism (that is, the
inclusion homomorphism or the natural homomorphism onto a quotient) in its internal
tables. When an attempt is made, say, to multiply two elements that are not already in the
same magma, the Magma processor will use this relationship information in attempting
to locate a common overstructure O which contains both elements. If one is found then
both elements will be automatically cast as elements of O and the operation performed.
Secondly, in certain situations where from convention or for mathematical reasons an
unambiguous canonical map between M and N exists, this knowledge has been built
into the Magma processor and automatic coercion will occur.

Forced coercion refers to the situation in which M does not have a unique and canonical
relationship with N , but nevertheless an element x does have a natural image in N . In
this case the user will have to apply forced coercion via N ! x. This occurs, for example,
when only a subset of the elements of M have a natural interpretation in N .

4. The Magma Language

The Magma language is an imperative programming language having standard imper-
ative style statements and procedures. The language has a functional subset providing
functions as first class objects, higher order functions, partial evaluation, etc. We sum-
marize and comment on some of the more interesting language elements in this chapter.

An object is specified in the Magma language by means of an expression. Expressions
are constructed in the usual manner through the application of operators, functions and

The Magma Algebra System I: The User Language 247

Table 1. Expressions.

Identifier Map constructor Cartesian product constructor
Literal Magma constructor Co-product constructor
Function invocation Element constructor Tuple constructor
Function/procedure definition Sequence constructor Record format constructor
select, case expressions Set constructor Record constructor

constructors to less complex expressions. The major kinds of expressions in Magma
are shown in Table 1. In contrast to many algebraic languages, any identifier appearing
in a Magma expression must have a value. The type of an expression is inferred at
run-time from the types of its subexpressions. In general, Magma employs call-by-value
evaluation, in that it evaluates each subexpression before commencing the evaluation of
the outermost expression.

Much of the power of the language derives from its constructors. These are basically
functions with special syntax and semantics. Constructors are used to specify magmas,
elements of magmas, mappings and aggregates (sets, sequences, products and records).
They will receive particular attention in this survey, because of their novel nature and
their importance to the language.

Before proceeding to the constructors, we note briefly that there are three classes of
identifiers in Magma:

• variable identifiers: those identifiers which are declared as local, either implicitly by
the first use rule, or explicitly through a local declaration. They may be assigned
values.
• value identifiers: placeholders for values to be substituted during evaluation. They

are effectively constants, and may not be reassigned. The value identifiers are:

– the formal value arguments and parameters of a function or procedure.
– all loop identifiers.
– the pseudo-identifiers $ (“current” structure) and $$ (function/procedure being

defined by current expression).
– all identifiers whose first use in the statement body of a function or procedure

is as a value (i.e., not on the left-hand side of a := symbol, nor as an actual
reference argument to a procedure).

• reference identifiers: identifiers preceded by a tilde ∼ in a procedure definition
or invocation (page 260). A reference identifier in a procedure definition may be
assigned a new value in the procedure. This will have the effect of changing the
value of the corresponding reference identifier in the calling context.

4.1. magma constructors

4.1.1. free magma constructors

The standard model for many categories includes a constructor for free magmas. As
Table 2 below indicates, this is true not only for varietal categories (such as GrpFP) in
which true free objects exist, but also in some other magma categories in which it is
convenient to create a magma from a general “free-like” object.

248 W. Bosma et al.

Table 2. Free magma constructors.

Category Constructor Magma

SgpFP FreeSemigroup(n) Free semigroup of rank n
MonFP FreeMonoid(n) Free monoid of rank n
GrpFP FreeGroup(n) Free finitely-presented group of rank n
GrpAb FreeAbelianGroup(n) Free abelian group of rank n
RngMPol PolynomialRing(R, n) Polynomial ring in n indeterminates over the ring R
ModFP FreeRModule(R, n) Free R-module of rank n
AlgFP FreeAlgebra(R, M) Free associative algebra over the ring R and the monoid M

AlgMat MatrixAlgebra(R, n) Full matrix algebra of degree n over the ring R
GrpPerm Sym(X) Symmetric group acting on the set X
GrpMat GL(n, R) General linear group of degree n over the ring R
ModTup RModule(R, n) Free R-module of n-tuples

A free algebra is normally defined as a term algebra over some set of variables. The
notion of a (term algebra) variable causes semantic problems in many computer algebra
systems since such a variable has different properties to an ordinary variable identifier.
For this reason we avoid the notion of a (term algebra) variable or indeterminate in
Magma. Rather, we use the notion of a generator. If F is a free algebra, the expression
F.i denotes the ith generator of F . Semantically, this is simply a particular element of F .
(In cases where a free algebra has not been assigned to an identifier, the form $.i refers
to its ith generator in certain contexts.) The expression F.i is called the standard name
for the ith generator of F ; the generator assignment statement allows the user to choose
identifiers for the generators as well.

We consider two examples. In the first we construct the free group F of rank 3. We
will use an assignment statement to assign the group to the identifier F .

> F := FreeGroup(3);
> w := F.1^2*F.2*F.1*F.2^-1*F.3;
> w;
F.1^2 * F.2 * F.1 * F.2^-1 * F.3

It is usually desirable to be able to refer to generators by means of normal identifiers.
Further, when elements of a free algebra are printed, we would like to see them presented
as strings in generator names. This is handled by a special form of the Magma assign-
ment. Any constructor that defines a magma in terms of generators may have names
assigned to the generators by an assignment of the form

F<a1, . . . , an> := magma constructor;

This has the following effect. The magma F has stored, as part of its definition, the
(ordered) set X = {x1, . . . , xn} of generators on which it is defined. When the above
assignment is executed, two things happen. Firstly, the identifier ai is assigned the ith
generator of F as its value, for i = 1, . . . , n. Secondly, when a word of F is printed, it
will be printed as a string in the symbols a1, . . . , an and their inverses. Note that any of
these identifiers may be reassigned at any time. If ai is assigned a new value, this has no
effect on the generator that was its previous value. However, while ai will no longer refer

The Magma Algebra System I: The User Language 249

Table 3. The submagma, quotient and extension constructors.

sub< expr | expr1, ..., exprk > (semi)groups, fields, modules, codes, graphs
ncl< expr | expr1, ..., exprk > Groups
ideal< expr | expr1, ..., exprk > Semigroups, rings
lideal< expr | expr1, ..., exprk > Semigroups, algebras
rideal< expr | expr1, ..., exprk > Semigroups, algebras

quo< expr | expr1, ..., exprk > (semi)groups, rings, modules, graphs

ext< expr | expr1, ..., exprk > Fields
ExtensionField< expr, idfr | expr1, ..., exprk > Finite fields

to xi, the name ai will still appear in words involving the generator xi. We illustrate this
mechanism by continuing the previous example.

> F<a,b,c> := FreeGroup(3);
> v := a^2*b*a*b^-1*c;
> v;
a^2 * b * a * b^-1 * c
> w := F.1^2*F.2*F.1*F.2^-1*F.3;
> v eq w;
true

In our second example, we construct the full matrix ring of 2 × 2 matrices over the
integers. In the case of R-algebras, we may write down elements directly if we wish, since
we have some concrete representation of their elements. Thus, the matrix

(
1 2
3 4

)
is created

by the second statement below:

> M := MatrixRing(Integers(), 2);
> v := M ! [1, 2, 3, 4];
> v;
[1 2]
[3 4]

4.1.2. submagma, quotient and extension constructors

After a free magma is constructed, the desired magma will normally be obtained from F
by applying a sequence of submagma, quotient magma, and extension constructors.

The main form of the submagma constructor is sub< > as shown in Table 3. Given
a magma M defined by an expression and a set Y of elements mi ∈ M defined by
expressions on the right-hand side, it creates the submagma of M generated by Y . Thus,
a magma in the same category as that of M is constructed.

The ncl constructor applies to objects in the variety of groups, and constructs the
normal closure of the subgroup generated by the elements within the given group; again
the result lies in the same category as the original group.

The various (two-sided and one-sided) ideal constructors listed apply in certain semi-
group, ring and algebra categories. Although the effect is slightly dependent on the
particular category, the effect is usually similar to that of any other sub, in the sense
that an “ideal” generated by the given elements is created within the same category;
thus a sub-object closed under some action by the given magma is constructed, rather
than an object of some “ideal”-type.

250 W. Bosma et al.

The quotient magma constructor quo has similar syntactic structure. There is an im-
portant semantic difference: the quotient constructor may construct an object Q in a
category different from that of the original magma M .

The expressions on the right-hand side of both quo and sub are allowed to be more
general than simply defining elements of M : each expri may evaluate to an element
of M , a sequence defining an element of M , a submagma of M , an ideal of M , a set
of elements of M , or a sequence of elements of M . Each term of the list defines one or
more elements mi of M , and Y is the set of all the mi. In the case where an expression
evaluates to a submagma or ideal, it contributes its generators to Y .

The quo constructor allows us to create any finitely presented algebra in a natural
manner. For instance, the group G with presentation 〈c, d | c2, d3, (cd)4〉 can be created
as a quotient of the free group F of rank 2:

> F<a, b> := FreeGroup(2);
> G<x, y> := quo< F | a^2, b^3, (a*b)^4 >;
> G;
GrpFP: G on 2 generators
Relations

x^2 = Id(G)
y^3 = Id(G)
(x * y)^4 = Id(G)

> Generators(G);
{ x, y }

The ternary Golay code, constructed as a six-dimensional subspace of K(11) where K
equals GF(3), provides an example of the use of the sub constructor.

> K11 := RModule(FiniteField(3), 11);
> G3 := sub< K11 |
> [1,0,0,0,0,0,1,1,1,1,1], [0,1,0,0,0,0,0,1,2,2,1],
> [0,0,1,0,0,0,1,0,1,2,2], [0,0,0,1,0,0,2,1,0,1,2],
> [0,0,0,0,1,0,2,2,1,0,1], [0,0,0,0,0,1,1,2,2,1,0] >;
> G3;
KModule G3 of dimension 6 with base ring GF(3)

The third fundamental construction in algebra is the formation of extensions. Owing to
the lack of a general theory of extensions even in the case of a particular variety such as
groups, we have not been able to design a general extension constructor. The constructor
ext is supported only for certain categories, and its semantics are heavily dependent
upon the category. The ExtensionField constructor was devised to construct algebraic
extensions in a single statement via a transcendental extension followed by a quotient.

A critical issue in algebraic system design concerns the ability to transfer objects
between related structures. This, in turn, introduces questions concerning the represen-
tation of “derived magmas”, i.e., magmas produced through the operations of forming
submagmas, quotient magmas and extension magmas. In Magma, the following principle
has been adopted:

Principle of Magma Autonomy: If N is a magma constructed as a submagma, quo-
tient magma or extension magma of M , then N will be autonomous, in the sense
that any operation involving N alone can be performed without reference to M .

The Magma Algebra System I: The User Language 251

As a consequence of the principle of autonomy, the magma M may be deleted without
affecting the definition of N . This principle has some important consequences. In the
case when N is finitely presented, then the elements of N are given in terms of the
generators of N rather than in terms of the generators of M . If N is a magma belonging
to a category in which magmas are always given with respect to a standard basis, then N
will be given with respect to the appropriate standard basis. In both cases, it may not
be easy to relate elements of N to elements of M . In order to have this information
available, the sub and quo constructors return morphisms as a second return value. Thus
the constructor sub< M | ...> returns:

(i) the submagma S defined by the constructor.
(ii) the inclusion monomorphism φ : S →M .

and the constructor quo< M | ...> returns:

(i) the quotient magma Q defined by the constructor.
(ii) the natural homomorphism φ : M → Q.

4.1.3. direct product and direct sum constructors

For a category of magmas belonging to a single algebraic variety, direct products
may be formed using the intrinsic function DirectProduct (or DirectSum, in certain
categories). This function takes a sequence Q of n magmas belonging to a single category
and constructs their direct product (or sum). It returns the following objects:

(i) The product (or sum) magma A = Q[1]× · · · ×Q[n].
(ii) The sequence I of injections such that I[i] : Q[i]→ A.
(iii) The sequence P of projections such that P [i] : A→ Q[i].

This function should not be confused with the general Cartesian product constructor
car< >, which merely returns a set (of type SetCart) containing tuples of elements with
entries in the factor magmas. Its factors may be of any kind.

4.1.4. specific magma constructors

In addition to the generic magma constructors above, Magma also provides various
constructors for category-specific magmas. Table 4 lists most of them. Besides these
constructors (with arguments enclosed by < >) there are many functions (with arguments
in ()) for the creation of category-specific magmas.

Example:
We illustrate the iterated use of constructors with code that creates the Hecke algebra
of type E6. The algebra is obtained as the quotient of a finitely presented associative
algebra H by a certain right ideal I. A free associative algebra FA over a cyclotomic
field Q5 is defined on generators corresponding to those of a monoid M . Thus, the
multiplicative relations between the generators of FA are inherited from M . Additional
relations are now imposed on FA to give the required associative algebra H. The only
serious computation involved occurs when constructing the algebra quotient H/I, which
is performed using Linton’s vector enumerator.

252 W. Bosma et al.

Table 4. Specific magma constructors.

Monoid< generators | relations >
Semigroup< generators | relations >
AbelianGroup< generators | relations >
Group< generators | relations >
PolycyclicGroup< generators | relations >
MatrixGroup< degree, ring | generators >
PermutationGroup< degree or G-set | generators >
MatrixRing< ring, degree | generators >
MatrixAlgebra< ring, degree | generators >
LinearCode< field, length | generators >
IncidenceStructure< points | blocks >
Design< t, points | blocks >
ProjectivePlane< points | lines >
AffinePlane< points | lines >
Graph< vertex set | edge set >
Digraph< vertex set | edge set >

Table 5. Literals.

Description Remarks Examples Type

Boolean true false BoolElt
String "abc0 12" MonStgElt
Integer Optional sign -7, +5, 11 RngIntElt
Rational n/d for literal integers n and d 5/84, -1/3 FldRatElt
Real Optional sign, exponent, precision -7.123e-5p32 FldPrElt
Literal sequence Efficient enumerated sequence \[1,2] SeqEnum
Literal cycle Efficient permutation \(1,2) Cyc

> FM<x, y, z, t, u, v, q> := FreeMonoid(7);
> M := quo< FM |
> x*y*x = y*x*y, z*y*z = y*z*y, x*z = z*x,
> x*t = t*x, y*t = t*y, t*z*t = z*t*z,
> u*x = x*u, u*y = y*u, u*z*u = z*u*z,
> u*t = t*u, x*v = v*x, y*v = v*y,
> z*v = v*z, t*v = v*t, u*v*u = v*u*v >;
>
> Q5<w> := CyclotomicField(5);
> FA<x, y, z, t, u, v, q> := FreeAlgebra(Q5, M);
> H<x, y, z, t, u >, f := quo< FA | x^2 = (q-1)*x + q,
> y^2 = (q-1)*y + q, z^2 = (q-1)*z + q, t^2 = (q-1)*t + q,
> u^2 = (q-1)*u + q, v^2 = (q-1)*v + q, q = FA ! w >;
>
> I := rideal<H | x+1, y+1, z+1, t+1, u+1>;
> Q, im, f := QuotientModule(H, I);
> E6 := sub< Universe(Q) | Q >;
> E6;
Matrix Algebra of degree 27 with 7 generators
over Cyclotomic Field of order 5 and degree 4

The Magma Algebra System I: The User Language 253

Table 6. Element constructors.

elt< expr | expr1, ..., exprk >
expr ! [expr1, ..., exprk]

4.2. element constructors

When viewing elements in Magma it is important to recall that there are no au-
tonomous elements. An element may only be created in the context of a unique magma.
Thus, a polynomial cannot exist as an independent object: it can only exist as an element
of a polynomial ring. Consequently, prior to the construction of an element, its parent
magma must exist. As many standard algebraic structures have a single fundamental
carrier set, we will consider this situation first. There are three standard constructions
for elements of a magma M :

• In the case of the most elementary sets, such as the set of integers or the set
of boolean values, the elements are self-identifying; their parent magma can be
deduced from the syntax. See Table 5.
• If M is a finitely generated algebra defined over the generating set X, an element

of M may be specified in the form of an expression built up from the elements of X
through application of the fundamental operators of M .
• An element of M may be constructed from a list a1, . . . , an of more elementary

objects using the element constructor elt< >. This constructor has an abbreviated
form M ! Q, where Q is the sequence containing a1, . . . , an. See Table 6.

Example:
Consider the 4-dimensional vector space V over the finite field F = F33 . First, we create
this space by applying the function VectorSpace to the field F312 and its subfield F .
Note that we apply a functor from the category of finite fields to that of vector spaces.

> G<g> := FiniteField(3, 12);
> F<f> := FiniteField(3, 3);
> V, v := VectorSpace(G, F);
> V, v;
Full Vector space of degree 4 over GF(3^3)
Mapping from: FldFin: G to ModTupFld: V

Note also that a second value, the map v from G to V , is returned, The map v and its
inverse may be used to transfer elements between G and V . We may also create elements
of G as polynomials in f and g.

> elt< V | 1, f, f^2, f^3 >;
(1 f f^2 f^3)
> e := V ! [f, f^11, f^2+f+1, 7];
> e;
(f f^11 f^6 1)
> e @@ v;
g^86726
> f + f^11*g + (f^2+f+1)*g^2 + 7*g^3;
g^86726

254 W. Bosma et al.

Table 7. The map constructors.

map< expr1 -> expr2 | graph >
pmap< expr1 -> expr2 | graph >
hom< expr1 -> expr2 | graph >

In a general multi-sorted algebra A, the concept of an element of A is not well defined.
Instead, we have a number of sorts s, each with their associated carrier sets As. The
problem then arises of specifying an element of a particular carrier set As. In Magma,
such an object may be constructed by means of the third method above (elt constructor
or coercion of a sequence), where the element target is the appropriate carrier set, rather
than A itself.

Example:
In the category of undirected graphs, each magma has two fundamental carrier sets: the
vertex-set and the edge-set. We define the graph of the 4-dimensional cube, create two
adjacent vertices p and q and then form the edge e connecting them.

> G := KCubeGraph(4);
> V := VertexSet(G); E := EdgeSet(G);
> p := V ! 1; q := V ! 9;
> e := E ! { p, q };
> e;
{1, 9}
> Parent(p), Parent(e);
The vertex-set of graph G
The edge-set of graph G

4.3. map constructors

The Magma syntax distinguishes three main classes of mappings (see Table 7):

• A mapping f :A → B, i.e., a subgraph G of the graph A × B, such that every
element of A appears in exactly one pair of G.

• A partial mapping f :A → B, i.e., a subgraph G of the graph A × B, such that
every element of A appears in at most one pair of G.

• A homomorphism f :A→ B, where A and B are magmas.

The graph may be specified in various ways. In the case of partial maps and maps, the
pairs comprising the graph may be enumerated. However, a more useful method is to
give the image of a generic element as in the following example:

> R := RealField();
> t := map< R -> R | x :-> x - Sin(x) >;
> t(Pi(R)/2);
0.57079632679489661923132169162

If f is a mapping defined with the general mapping constructor, it is not possible, in
general, to compute pre-images with respect to f . However, many particular mappings
created by intrinsic functions do allow the computation of pre-images. The image of an

The Magma Algebra System I: The User Language 255

element x is represented syntactically either by x@f or f(x), while the pre-image of x
(when defined for the mapping f) is represented by x@@f .

When defining a homomorphism, it suffices to specify images for the defining gen-
erators of the domain, by virtue of the Homomorphism Representation Theorem. We
illustrate this form by defining isomorphisms between Sym(4) defined as a finitely pre-
sented group G and as a permutation group H. Notice that the homomorphism can be
applied to subgroups as well as to elements.

> G<a, b> := Group< a, b | a^2 = b^3 = (a*b)^4 = 1>;
> H<x, y> := PermutationGroup< 4 | (1, 2), (2, 3, 4) >;
> f := hom< G -> H | a->x, b->y >;
> g := hom< H -> G | x->a, y->b >;
> f(a^b);
(1, 3)
> // We construct the Klein 4-group in H and find its image in G
> K := sub< H | (1, 4)(3, 2), (1, 3)(2, 4) >;
> V4 := g(K);
> V4;
Finitely presented group V4 on 2 generators
Generators as words in group G

V4.1 = (a * b)^2
V4.2 = (a * b^-1)^2

4.4. sets and sequences

The data structures provided in the Magma language for aggregating objects to-
gether are based on the standard mathematical notions of unordered sets, ordered sets,
unordered multisets, ordered multisets (sequences), products and co-products (see Ta-
ble 8). There are conversion functions between the various kinds of aggregate structures.

Most aggregate data structures in Magma are required to satisfy a homogeneity prin-
ciple:

Homogeneity Principle: The members of any set or sequence must all belong to some
common magma U which is known as the universe of the set.

This principle allows sets to be stored in the form of a hash-addressed table. It also
simplifies the storage of elements of sets and sequences, since the parent of each element
does not have to be stored with it.

The most important aggregate structures are enumerated sets and sequences. An enu-
merated set is a finite unordered collection of objects of a common magma, stored as a
list of elements (usually in the form of a hash table). This allows random insertion and
deletion of elements, selection of elements and iteration over the set. An enumerated se-
quence is a finite ordered collection of objects (with possible duplicates), all belonging to
a common magma. Its implementation maximizes the speed of accessing the ith element.
Enumerated sets and sequences are specified in the same way, the only difference being
the type of delimiters used; the general constructor has the following form:

{ U | e : x in E | P } (or the appropriate delimiters)

where U is the common magma to which all elements of the set will belong, e is an

256 W. Bosma et al.

Table 8. Sets, sequences, and other aggregates.

Brackets Characteristics Description

{ } Homogeneous, finite, unordered, no duplicates, fast ∈ test Enumerated set
{* *} Homogeneous, finite, unordered, fast ∈ test Enumerated multiset
{@ @} Homogeneous, finite, ordered, no duplicates, fast ∈ test Indexed set
{! !} Homogeneous, unordered, no duplicates, ∈ test via predicates Formal set

[] Homogeneous, finite, ordered, fast indexed access Enumerated sequence
[* *] Inhomogeneous, finite, ordered List
< > Inhomogeneous, finite, ordered (element of Cartesian product) Tuple

car< > Iterable if components are iterable Cartesian product
cop< > Co-product

expression usually involving the (local) parameter x which ranges over the magma (or
set or sequence) E, which must be enumerable, and restricted by the predicate P usually
also involving x. Note that it is quite possible that the expression e defines objects not
belonging to the magma E. Often U and the following | may be omitted, when Magma
will be able to determine the common overstructure by itself. If all elements of E should
be incorporated, it is permissible to omit the | P section of the constructor.

An indexed set X is a finite collection of n distinct objects from a common magma,
with an associated bijection (the index map) between X and the set {1, . . . , n}. As in
enumerated sets duplicates are discarded, and as in sequences the elements are linearly
ordered and can be indexed. Operators are provided that allow the adjunction of further
elements to X in such a way that the index map for the larger set is an extension of the
index map for X. This data structure provides fast membership testing while associating
a unique index with each element. These two facilities are critical when writing efficient
code to form the closure of a set under some action.

A formal set is a possibly infinite subset of the element-set of a magma M ; it is stored
as M together with a predicate defining its elements. Membership testing is a simple
predicate evaluation, but iteration over formal sets is impossible.

A tuple is an element of a Cartesian product of finitely many magmas (or sets). The
factors may be chosen quite independently of one another.

We mention a few additional features of the constructors for enumerated sets and
sequences:

• Instead of enumerating over a single domain E, it is possible to enumerate over a
finite number of domains simultaneously.
• A small set may be created by simply listing the elements within the delimiters:
{t1, t2, ..., tn}.
• The arithmetic progression constructor {a .. b by k} makes it easy to enumerate

the integer-set {x : x = a+ kn, a ≤ x ≤ b}.
• Recursion on sequence constructors is also possible. Inside the sequence constructor,

the ith entry of the sequence under construction is Self(i), and the whole sequence
computed so far is Self().

It is possible to use existential and universal quantifiers on set constructors. Each of the
expressions below returns a Boolean value, with the obvious interpretation:

The Magma Algebra System I: The User Language 257

Table 9. Some set functions.

eq, ne Equality testing Random(S) Random element
in, notin Membership Representative(S) Representative element
subset, notsubset Subset? Include(S, s) Include s in S
join, meet Union, intersection Exclude(S, x) Remove element s
diff, sdiff (symmetric) difference exists Existential quantification
IsEmpty Empty? forall Universal quantification

Table 10. Some sequence functions.

eq, ne Equality testing Random(S) Random element
in, notin Membership Representative(S) Representative element
cat Concatenate Exclude(S, x) Remove element x
IsEmpty Empty? Include(S, x) Include x if not in S
IsSubsequence(S, T) S subsequence of T? Remove(S, i) Remove ith element
IsComplete(S) All entries defined? Insert(S, i, x) Put x in ith position
IsDefined(S, i) ith entry defined? Append(S, s) Append element s
Undefine(S, i) Undefine entry i Prune(S) Remove last element
Position(S, x) Find index of x in S Rotate(S, p) Cyclically permute p places
Sort(S) Sort (ordered magma) Reverse(S) S backwards
Explode(S) Terms of S &•S Reduce S using operator •

exists(idfr){ e : x in E | P }
forall(idfr){ e : x in E | P }

Moreover, if exists returns true, the idfr will be assigned the value obtained by eval-
uating e with x taking the value of an example, and similarly if forall returns false,
the idfr will be assigned the value obtained by evaluating e with x taking the value
of a counter-example. As soon as the return value is established, the evaluation of the
right-hand side is terminated.

Entries in sequences can be modified by certain procedures, or by accessing them
directly using indexing (on the left-hand side of an assignment):

> s := [];
> s[3] := 11;
> s;
[undef, undef, 11]

As the above example shows, sequences are not necessarily complete. That is, using
left-hand side indexing, it is possible to create sequences for which not all entries have
been assigned values (“sequences with holes”). Predicates are provided to test whether
sequences are complete and whether particular entries have been assigned.

The final important concept is that of reduction: it allows a (binary) symmetric op-
erator to be applied successively to all elements of a set or sequence. For example, the
value of &*s is equal to the product of all the terms of s.

We summarize the most important functions on enumerated sets and sequences in
Tables 9 and 10.

258 W. Bosma et al.

Example:
We give a concise definition of a function that returns all integer pairs (x, y) with −10 ≤
x ≤ 10 and 0 ≤ y ≤ 15 such that y2 = x3 + ax+ b, for a given pair (a, b).

> n := func< a, b |
[<x, y> : x in [-10..10], y in [0..15] | y^2 eq x^3+a*x+b] >;

We may look for pairs (a, b) in some finite interval such that there are at least six solutions
to the given equation:

> exists(p){ <a,b> : a, b in [-10..10] | #n(a,b) ge 6 };
true
> p;
<-7, 10>
> n(-7, 10);
[<-3, 2>, <1, 2>, <2, 2>, <-2, 4>, <-1, 4>, <3, 4>, <5, 10>]

The next construction uses recursion to obtain 50 elements of the Fibonacci sequence:

> F := [n in {1, 2} select 1 else Self(n-1)+Self(n-2) : n in [1..50]];

We now define a function that returns the degree-k elementary symmetric polynomial
in the polynomial ring R = Z[x1, . . . , xm]. This polynomial is simply obtained by sum-
ming the elements of the G-set consisting of the images of x1x2 · · ·xk under the action
of the symmetric group of degree m. This would be a one-line function, if we had not
insisted in the code below that the indeterminates of R print as the strings x[1], x[2]
etc.

> elSym := function(k, m)
> R<[x]> := PolynomialRing(Integers(), m);
> return &+(&*[R | R.i : i in [1..k]] ^ Sym(m));
> end function;
> elSym(2, 4);
x[1]*x[2] + x[1]*x[3] + x[1]*x[4] + x[2]*x[3] + x[2]*x[4] + x[3]*x[4]

Note that the universe R was explicitly included in the return statement to ensure that
the function works for k = 0: omitting the universe will lead to a null sequence for k = 0
(rather than an empty R-sequence) and the reduction &*[] is not defined generally.

Finally, we give an example of the use of Cartesian products and co-products, which are
created by means of the car and cop constructors. Let G be a permutation group with
two actions X and Y , represented as G-sets. We want to build the action on the disjoint
union of X and Y . Given the action of an element g on each of the components, the
function below uses UniversalMap to generate the action on the co-product of X and Y .
(The function could be applied in a situation where X and Y are two non-compatible
and unfaithful actions, and the user wishes to construct from them a faithful action of
fairly small degree.)

The Magma Algebra System I: The User Language 259

Table 11. Operators.

Arity Operators Remarks

1 + - not # Unary
1 &+ &* &and &or &meet &join &cat Reduction
2 + - * div mod / ^ Ordinary arithmetical
2 and or xor Logical
2 in notin subset notsubset Membership
2 meet join diff sdiff cat Set-theoretical
2 eq ne gt lt ge le Comparative
2 adj notadj Adjacency
2 = Relator
2 . ‘ ‘‘ Access
2 @ @@ :-> -> Map application
2 !! ! Coercion
3 select else Switch

> CompositeAction := function(G, X1, X2)
> f1 := Action(X1);
> f2 := Action(X2);
> XW, I := cop<X1, X2>;
> X := Set(XW);
> f := map<
> car<X, G> -> X | z :-> UniversalMap(XW, X, [h1, h2])(x)
> where h1 is map<X1 -> X | x :-> f1(x, g)>
> where h2 is map<X2 -> X | x :-> f2(x, g)>
> where x is z[1] where g is z[2] >;
> Y := GSet(G, X, f);
> return Y;
> end function;

4.5. functions and procedures

There are three kinds of functions and procedures in Magma: user-defined functions
and procedures, user intrinsics, and system intrinsics. All of these are first-class objects
in the Magma language. Thus, a function or procedure may be passed as an argument
to another function or procedure, returned as the result of a function, or assigned to
an identifier, and it can be invoked “on the fly” by means of any expression defining it.
All function arguments are passed by value, as a consequence of call-by-value semantics,
but procedure arguments may be passed by value or by reference. A function invoca-
tion is an expression, returning at least one value, whereas a procedure invocation is a
statement, designed to perform input/output or to change the calling context by assign-
ing or reassigning reference arguments. Parameters are available for both functions and
procedures.

4.5.1. operators

Operators (see Table 11) are treated by Magma as functions with special syntax.
If an operator is to be regarded as a normal function, it must be enclosed within ’
characters. The Boolean operators are exceptional in using call-by-name semantics; they
only evaluate their operands as required.

260 W. Bosma et al.

Table 12. User-defined functions and procedures.

function(arg1, ..., argk)
statements

end function

func< arg1, ..., argm | expr1, ..., exprk >

procedure(arg1, ..., argk)
statements

end procedure

proc< arg1, ..., argm | procedure call >

4.5.2. invocation of functions and procedures

The syntax for a function-invocation expression is f(arg1,..., argk) where f is an
expression returning the function, and arg1, . . . , argk are expressions whose values are
taken to be the actual value arguments of the function. If the function has parameters,
then the user may assign any non-default parameter values as follows:

f(arg1, ..., argk : param idfrα:= exprα, ..., param idfrλ := exprλ)

Every function invocation in Magma returns at least one value. If it appears on the right
side of a multiple-value assignment, as an element of a print statement or as the sole
item in a function return statement, then it returns all its values; otherwise, it returns
only the first or principal value. (For some intrinsic functions, only the principal value
will be printed from a simple print statement invoking the function.)

The syntax for a procedure-invocation statement is p(arg1,..., argk); where p is
an expression returning the procedure, and arg1, . . . , argk are the actual arguments, or,
if there are parameters being assigned non-default values:

p(arg1, ..., argk : param idfrα:= exprα, ..., param idfrλ := exprλ);

The arguments of a procedure may be passed either by value or by reference, according
to the way the procedure was defined. Value arguments behave in the same way as for
functions; i.e., if the ith argument is a value argument, then argi may be any expression,
and its value will be passed to the procedure. If the ith argument is a reference argument,
then arg i must have the form ∼idfr , where idfr is an identifier; idfr may have a (new)

value assigned to it as a result of the procedure invocation.

4.5.3. definition of functions and procedures

Table 12 lists the constructions for user-defined functions (on the left) and for user-
defined procedures (on the right), where arg1, . . . , argk denote (zero or more) formal
arguments. For a function, each argument is an identifier, acting as a value argument.
For a procedure, each argument is either an identifier, acting as a value argument, or a
tilde ∼ followed by an identifier, acting as a reference argument. These constructions are
expressions, whose value is a function or procedure; the values of these expressions are
usually assigned immediately to identifiers, but may be called directly or passed as an
argument to another function or procedure.

Functions must be created in such a way that when they are invoked they will return

The Magma Algebra System I: The User Language 261

one or more values. In the func form of a function expression, the return values are the
values of expr1, . . . , exprk when the actual arguments given in the function invocation are
substituted for the formal arguments. In the other form, the statements in the function
body must include one or more statements of the form

return expr1, . . ., exprk;

During the execution of a procedure invocation, any instances of a formal reference
argument in the statements of the procedure body are understood to refer to the cor-
responding actual reference argument. In particular, any changes to a formal reference
argument within the procedure body will change the actual reference argument in the
calling context. The statement return; may be used (zero or more times) within a pro-
cedure definition to cause an immediate end to the execution of the procedure and a
return to the calling context.

When a function/procedure with parameters is created, the list of arguments must be
followed by a colon and a list of parameter identifiers, each of which is followed by :=
and an expression, as follows:

arg1, ..., argk : param idfr1:= expr1, ..., param idfrn := exprn

The default values of the parameters are the values of the corresponding expressions.
The parameters will normally occur in the statement body of the function/procedure
definition (or the right-hand side of the func or proc constructor). They are classed
as value identifiers, so they may not be changed within the statement body. However,
the value used for the parameters depends on the function/procedure invocation. If the
invocation includes parameters and values then the parameters will have those values;
otherwise, they will have the default values.

Recursive functions and procedures pose a particular problem in Magma since func-
tions and procedures are first-class objects. Not every function or procedure is assigned
to an identifier. Even if it is, the identifier cannot be used within the function or pro-
cedure since, by the assignment rules, identifiers appearing on the left-hand side of an
assignment statement are not considered to have a value on the right-hand side, un-
less they were previously assigned a value. Magma solves this problem by using the
$$ pseudo-identifier as a placeholder for the function/procedure value denoted by the
function/procedure expression inside which the $$ occurs.

Lexical scoping of identifiers is employed. Formal value arguments, formal reference
arguments and parameters automatically have local scope. A “first-use” rule decides
which other identifiers have local scope: if the first textual use of an identifier inside a
function or procedure body is on the left-hand side of a := symbol, then the identifier is
considered to be local; otherwise, its value is imported from the environment (the value of
the identifier in the calling context when the function/procedure is defined, not when it
is invoked). The calling context cannot be changed from within the function/procedure,
except by the standard means of reference arguments. The problem of mutual recursion is
handled through the provision of a forward statement that allows reference to functions
or procedures prior to their lexical appearance.

262 W. Bosma et al.

4.5.4. user intrinsics and package files

A user intrinsic is a special kind of user-defined function/procedure that has a signature
attached to it, giving the categories of the arguments and return values. The syntax for
a user intrinsic is a modified form of the function/procedure expression, bounded by an
intrinsic statement. A file containing one or more intrinsics constitutes a package file;
also present may be some assigned values that are private to the package file. When the
package file is attached to Magma, the user intrinsics are incorporated into the system,
together with the kernel intrinsics. Identifiers private to a package file may be accessed
by other packages if they are explicitly imported using the import statement.

4.6. common subexpression evaluation

The where clause may be attached to the right end of a list of expressions expr1, . . .,
exprn, in order to perform common subexpression evaluation. The general form of an
expression-list ending with a where clause is

expr1, ..., exprn where idfr1, ..., idfrk is exprw

The expression exprw must have at least k return values; in most cases, it has one return
value, and there is only one identifier.

To evaluate the whole expression-list, Magma temporarily assigns to idfr1, . . . , idfrk
the first k return values of exprw. It then evaluates the expressions expr1, . . . , exprn,
substituting the values for idfr1, . . . , idfrk whenever they occur in the expressions. The
scope of idfr1, . . . , idfrk is limited to the expression-list.

Within the predicate of a set/sequence constructor, the where clause has an additional
property: idfr1, . . . , idfrk may also be used in the expression used to calculate the set or
sequence elements. In this case, the scope of idfr1, . . . , idfrk is limited to the constructor.

4.7. statements

The principal kinds of statements in Magma are assignment statements, input and
output statements, iterative statements, conditional statements, and procedure invoca-
tions. The last of these has already been discussed; the others will be summarized below.

4.7.1. assignment statements

There is no assignment expression in Magma, and it is not possible to print values at
the same time as they are assigned. Variable identifiers and reference identifiers may be
the targets of an assignment, but not value identifiers.

Functions may return m ≥ 1 values; the first k (where 1 ≤ k ≤ m) can be assigned to
identifiers by the multiple-value assignment. It is possible to ignore some of the first k
return values by using the special throwaway identifier , i.e., the underscore character.

The mutation assignment statement idfr •:= idfr; is equivalent to idfr := idfr • expr;
in its overall effect. However, the mutation version may sometimes result in faster ex-
ecution since it allows the obvious optimization. Mutation of certain objects (such as
sequences) is also possible.

It is often desirable for the user to provide names for the generators, and so the

The Magma Algebra System I: The User Language 263

Table 13. Assignment statements.

Statement Description Remarks

idfr := expr; Simple assignment
idfr1, ..., idfrk := expr; Multiple-value assignment Use for throwaway
idfr •:= expr; Mutation assignment • is a binary operator
idfr<idfr1, ..., idfrk> := expr; Generator name assignment

Table 14. Input and output statements.

print expr1, ..., exprk; Print values of expressions
expr1, ..., exprk; As above [not in function/procedure definition]
print expr1, ..., exprk: level; level is one of Minimal, Default, Maximal, Magma
expr1, ..., exprk: level; As above [not in function/procedure definition]
printf expr, expr1, ..., exprk; Print values of expressions in expr format
read idfr Assign the next input line to idfr as a string
read idfr, expr As above, giving value of expr as prompt
readi idfr Assign the (legal) next input line to idfr as an integer
readi idfr, expr As above, giving value of expr as prompt

generator assignment statement provides a mechanism for the user to assign a magma
to an identifier, and simultaneously to specify particular identifiers (and printnames, for
free magmas and their quotients) for the generators of a magma. See page 248.

4.7.2. input and output statements

The word print is optional, except within the definition of a function or procedure.
Therefore, the user can obtain the evaluation of a list of expressions at the command-
line simply by typing the comma-separated expressions and following the list with a
semicolon.

The optional qualifier level may be used to control the amount and format of informa-
tion printed for the designated objects. For example, the qualifier value Magma causes the
values to be printed in Magma-readable format, so that they may be used as Magma
input.

There is also a printf statement for formatted output. The expr immediately following
printf must evaluate to a string. The statement prints this string, substituting the value
of expri at the ith occurrence of %o within the string.

A number of other string and file-handling facilities are provided for input and output.

4.7.3. iterative statements

The while and repeat statements have the usual interpretations. In the for state-
ment, the idfr is a local-scope value identifier that assumes successively the values of the
elements of the domain. The domain may be any iterable magma (i.e., a finite algebraic
structure or aggregate whose elements can be enumerated by Magma) and if it is an
ordered aggregate, such as a sequence, then iteration will occur in index order.

264 W. Bosma et al.

Table 15. Iterative statements.

while expr do
statements

end while;

repeat
statements

until expr;

for idfr in domain do
statements

end for;

Table 16. Conditionals.

Construction Remarks

if expr then statements conditional statement
elif expr then statements Optional, may be repeated
else statements Optional

end if;

case expr case-statement
when expr1, ..., exprk: statements Optional, may be repeated
else statements Optional

end case;

expr select expr1 else expr2 conditional expression

case<expr | expr1:expr′1, ..., case-expression
exprk:expr′k, default:exprd> default is compulsory

4.7.4. conditional statements and expressions

As shown in Table 16, the Magma language offers both conditional statements and
conditional expressions: a standard if statement, a case statement, a select expression,
and a case expression. The two conditional expressions use call-by-name semantics.

5. Closing Remarks

This paper has attempted to show how ideas from universal algebra and category
theory can provide the general foundations for an algebraic programming language. The
organization of algebraic structures, firstly into varieties, and then within varieties into
categories, has shown itself to be a natural hierarchy for algebraic computation. As more
exotic classes of structures are included, we find that the model holds up extremely well.
The use of algebraic data structures such as sets, sequences and mappings provides a
very concise and natural means of specifying algebraic computations.

An interpreter and run-time system for the Magma language have been developed
by Graham Matthews and Allan Steel. Magma V1 was released at the end of 1993
and V2 in 1996. The language will be extended in the near future to support user-defined
categories and varieties.

An elementary overview of the system is given in Cannon and Playoust (1996a). A
full description of the language and installed categories may be found in Cannon and
Playoust (1996b, c) and Bosma and Cannon (1996). Some aspects of the implementation
are touched on in Bosma et al. (1994). Applications of the system are described in the

The Magma Algebra System I: The User Language 265

proceedings of the first Magma conference (this issue), the proceedings of the second
Magma conference (to appear as a Special Issue of JSC) and in Bosma et al. (1995).

References

——Bosma, W., Cannon, J.J. (1996). Handbook of Magma Functions. Sydney: School of Mathematics and
Statistics, University of Sydney.

——Bosma, W., Cannon, J.J., Matthews, G. (1994). Programming with algebraic structures: design of the
Magma language. In Giesbrecht, M., ed., Proc. of the 1994 International Symposium on Symbolic
and Algebraic Computation, Oxford, 52–57. Association for Computing Machinery.

——Bosma, W., Cannon, J.J, Playoust, C., Steel, A. (1995). Solving Problems with Magma. Sydney: School
of Mathematics and Statistics, University of Sydney.

——Bourbaki, N. (Nouvelle Édition 1970). Algèbre I: Chapitres 1 à 3 (Éléments de Mathématique). Paris:
Hermann.

——Burstall, R.M., Gougen, J.A. (1981). An informal introduction to specifications using CLEAR. In Boyer,
R.S., Moore, J.S., eds, The Correctness Problem in Computer Science. London: Academic Press,
185–213.

——Butler, G., Cannon, J.J. (1989). Cayley version 4: The user language. [The early name for Magma was Cay-
ley V4.] In Gianni, P., ed., Proc. of the 1988 International Symposium on Symbolic and Algebraic
Computation, Rome, July 4–8, 1988, LNCS 358, 456–466. New York: Springer.

——Butler, G., Cannon, J.J. (1990). The design of Cayley, a language for modern algebra. In Miola, A., ed.,
Design and Implementation of Symbolic Computation Systems, LNCS 429, 10–19.

——Cannon, J.J., Playoust, C. (1996a). Magma: A New Computer Algebra System. Euromath Bulletin, 2, 1.
——Cannon, J.J., Playoust, C. (1996b). Algebraic Programming with Magma: The Language. Springer-Verlag,

To appear.
——Cannon, J.J., Playoust, C. (1996c). Algebraic Programming with Magma: The Categories. Springer-Verlag,

To appear.
——Gougen, J.A. (1989). Principles of Parameterized Programming. In Biggerstaff, T., Perlis, A., eds, Software

Reuseability, Vol 1: Concepts and Models. Reading, MA: ACM Press, Addison-Wesley, 159–225.
——Hearn, A.C, Schrüfer, E. (1995). A computer algebra system based on order-sorted algebra. J. Symbolic

Comput. 19, 65–77.
——Jenks, R.J, Sutor, R. (1992). AXIOM: The Scientific Computation System. New York: Springer-Verlag.
——Mac Lane, S. (1971). Categories for the working mathematician. New York: Springer-Verlag.
——Meinke, K., Tucker, J.V. (1992). Universal Algebra. In Abramsky, S., Gabbay, D.M., Maibaum, T.S.E.,

eds, Handbook of Logic in Computer Science 1. Oxford: Clarendon Press, 189–411.

Originally received 10 January 1996
Accepted 7 November 1996

