
J. Symbolic Computation (1997) 24, 233–234

Special Issue on Computational Algebra and Number
Theory: Proceedings of the First

MAGMA Conference

Foreword of the Guest Editors

This special issue of the Journal of Symbolic Computation is a collection of papers aris-
ing from the Magma conference that was held at Queen Mary and Westfield College,
London, 23–27 August, 1993, and organized by Charles Leedham-Green. The Magma
system, developed by John Cannon and associates at Sydney University, is a successor to
CAYLEY and, like its predecessor, is geared towards efficient computation within spe-
cific, and well-defined, mathematical structures, such as groups, rings, fields, modules,
algebras and incidence structures.

To quote from Geddes et al. (1992), there are three recognizable forces at work in
the development of symbolic mathematical computation, namely algorithms, systems,
and applications. All three themes are well-represented in the papers in this volume and
although several of the papers cover material from more than one of the themes, we have
attempted to order the contents according to this categorization.

The system papers include detailed descriptions by their authors of the design philos-
ophy, together with a summary of the syntax and scope, of the Magma language. The
algorithm and application papers cover computation in such diverse areas as group theory
(finite and infinite), number theory, polynomial algebra (including Gröbner bases), Galois
theory, lattices and modules. Attention is generally focused on efficient implementation
of algorithms (either as stand-alone programs or as part of systems) and performance
analysis, in addition to mathematically accurate theoretical descriptions.

With such a broad range of subject matter, the question arises as to just what are the
distinguishing features of the areas of mathematics or computer algebra that concern us
here. This question would have been easier to answer 10 or 15 years ago, so let us start
by casting our minds back to the early 1980s.

In 1982, a conference on “Computational Group Theory” was held in Durham, Eng-
land, and the proceedings were published in Atkinson (1984). At that time, the area
of computational group theory stood out clearly as something distinct from the rest of
symbolic computation. The most striking distinguishing feature was the emphasis on
manipulating complete structures (principally groups and their subgroups, and charac-
ter tables) rather than just the elements of these structures. The actual computations
that were carried out for nontrivial applications were more often than not exceedingly
cpu and memory intensive, and so efficiency of implementation was of paramount im-
portance, whereas generality and portability of software were considered secondary. In
fact, the whole field revolved around two or three central families of associated algo-
rithms, most notably Todd–Coxeter methods for handling finitely presented groups, and
Schreier–Sims and base/strong-generating set methods for finite permutation groups.

The most significant change since that time is that, even if one wanted to, it would
no longer be possible to treat a particular area of computational algebra, such as com-
putational group theory, as an isolated and self-sufficient branch of mathematics. As the

0747–7171/97/030233 + 02 $25.00/0 sy970124 c© 1997 Academic Press Limited

234 J. Cannon and D. Holt

various different branches of computational algebra mature they are seen to rely on a
common set of fundamental tools. To take a simple example, if we wish to compute chief
factors of a group G, we may perhaps quickly find elementary abelian sections M/N
of G (where M and N are normal in G). But we then need to refine the section, and
to do this, we need to consider M/N as a module for G over a finite field, and to find
a composite series of the module. Currently, the best method known of achieving this
involves factorizing polynomials over finite fields, which is drawing us much closer to
the realms of traditional symbolic computation. Another example concerns techniques
for the efficient computation of Hermite and Smith normal forms for integral matrices
(and the LLL algorithm) which are key tools in both computational group theory and
algebraic number theory.

This observation concerning the interconnected nature of the various branches of com-
putational algebra led to the conception of Magma as a system designed to support
computation across all branches of algebra and number theory and constructed around
a core consisting of highly efficient implementations of the fundamental algorithms of
computational algebra.

Certainly there is much more common functionality between Magma and a computer
algebra system such as Maple or Mathematica than there would have been 15 years
ago. They each include extensive facilities for computing with arbitrarily large integers,
primality testing, factorizing integers, manipulating and factorizing polynomials and so
on. Increased priority has also been given to using well-designed and portable code.
Indeed, perhaps in another 15 years it will be possible to have a single system for the
whole of symbolic mathematical computation; that is hard to predict.

For the time being, however, the emphasis on computation with complete and specific
structures, and the indispensability of perfectly tuned efficient implementations of the
fundamental algorithms for these computations remain distinguishing features of Magma
and the areas that it is representing. For any system to be usable for serious computations
in these areas, it needs to be equipped with an extensive and detailed knowledge of the
structures with which it is dealing, whether they be groups, rings, algebras, modules or
number fields.

The editors would like to apologize, particularly to those authors who submitted their
contributions immediately following the conference, for the length of time that it has
taken to bring this collection of papers to press. This has been due to an unfortunate
combination of delaying factors, at least some of which have been beyond the editors’
control!

We wish to thank the individuals who refereed the papers for this volume, and, par-
ticularly, Greg Butler, who acted as editor in the case of the two papers co-authored by
Cannon and Holt.

John Cannon
Derek Holt

References
——Geddes, K. O., Czapor, S. R., Labahn, G. (1992). Algorithms for Computer Algebra. Kluwer Academic

Publishers.
——Atkinson, M. D. (ed.) (1994). Computational Group Theory. Academic Press.

