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In this paper, we give examples of elliptic curves for which a positive proportion
of the quadratic twists satisfy a weak form of the Birch and Swinnerton�Dyer con-
jecture modulo 3. � 1999 Academic Press

1. INTRODUCTION

We will consider the following weak form of the Birch and Swinnerton�
Dyer conjecture.

Conjecture 1.1. Let E be a rank zero elliptic curve over Q. Then

L(E, 1)
0E

*E(Q)2
tor#*III(E�Q) `

p

cp(E�Q) (mod 3), (1)

where L(E, s), 0E , III(E�Q) and cp(E�Q) denote the L-series, real period,
Tate-Shafarevic group and local Tamagawa factors of E, respectively.

Combining a theorem of Frey (see [2]) with the results of [3] (see
Proposition 2.1 in the next section), we are able to prove:

Theorem 1.2. Let E : y2=x3+x2+72x&368. Then there is a set
S/N having lower density at least 7�128 in the square-free natural numbers
such that for all d # S,

ord3 \L(E&d , 1)
0E&d

+=0 � ord3 \*III(E&d �Q) >p cp(E&d �Q)
*E&d(Q)2

tor +=0. (2)
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Similarly, one can prove for the three other elliptic curves E in the table
below of conductor NE that there exists a subset SE of the square-free
natural numbers having lower density at least $E such that for all d # SE ,
(2) holds.

E NE $E

y2=x3+1 36 1�8
y2=x3+4x2&144x&944 19 19�640

y2=x3+x2&72x&496 26 13�224

2. RESULTS

For the sake of completeness we recall the following notation along with
the next proposition which was proved in [3]. Suppose that Q is a positive
definite ternary quadratic form. Then we will denote by d sf

Q the square-free
part of the discriminant of Q and by AQ the number of automorphs of Q.
We will let %Q denote the weight 3�2 modular form whose q-expansion
is given by %Q({)=�x, y, z # Z qQ(x, y, z) (q=e2?i{) (see [8]). Also, if f #
S3�2(N, /t) is a Hecke-eigenform which lifts through the Shimura corre-
spondence to a cusp form F # S2(N�2), then we will let S( f ) denote the
unique normalized weight 2 newform of trivial character having *p(F )=
*p(S( f )) for all but finitely many of the primes p. If G is any modular form
we will let NG denote the level of G and if N is an integer we will define

R(G, N)=[a # (Z�4NZ)*: there is a square-free n#a (mod 4N)

(3)with 3 |% an(G)],

$(G, N)=
*R(G, N)

8N >p | N (1&1�p2)
.

Then the statement of Proposition 3.1 of [3] becomes:

Proposition 2.1. Suppose that Q1 and Q2 are the only even-integral
primitive positive definite ternary quadratic forms in a genus of forms.
Assume that 3 |% AQ1

AQ2
but 3 | AQ1

+AQ2
. Suppose also that f =

(%Q1
&%Q2

) # S3�2(N, /t) is a Hecke-eigenform which lifts through the
Shimura correspondence to a cusp form. Then, the set of square-free natural
numbers n such that L(S( f ) } /&tn , 1){0 has lower density at least $( f, d sf

Q1
)

in the square-free natural numbers.

Before stating the main results, we need the following definition and
notation.
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Definition 2.1. Let E be an elliptic curve over Q and let v be an odd
prime not dividing NE . If ordv( jE)<0, then we define #v(E)=(&c4c&1

6 �v),
where c4 and c6 denote the usual Weierstrass coefficients for E and c&1

6

denotes the inverse of c6 modulo v.

Suppose that E is a modular elliptic curve over Q. Then we will denote
by FE the weight 2 newform with the property that L(E, s)=L(FE , s). For
any modular form f and any integer N, we will let R(E, f, N ) denote the
set of all a # (Z�24NZ)* satisfying the following rather technical conditions.
We must impose condition 1 in order to use Corollary 2 of [10]. Condi-
tions 2 and 3 are rather mild and can be easily checked using Tate's algo-
rithm. Conditions 4�6 are necessary to ensure that we may use Frey's
results [2].

1. There exists a square-free natural number n#a modulo 24N such
that ord3(an( f ))=ord3(L(E&n)�0E&n

)=0.

2. For all square-free natural numbers d#a modulo 24N, 3 |% >p

cp(E&d �Q)

3. There exists an integer ma depending only on a and E such that
for all square-free natural numbers d#a modulo 24N, 0E&d

- d�0E&1
=ma .

4. If 2 | NE then a#1 modulo 4.

5. If l{2, 3 is prime and l | NE , then

&1, if ord l ( jE)�0

\&a
l +={&1, if ordl ( jE)<0 and #l (E )=1 (4)

1, otherwise.

6. If ord3( jE)<0 then a#1 modulo 3.
Finally, for M, N # Z put

W(M, N)=lcm _ `

p{2, 3
p | M

p, `

p{2, 3
p | N

p& . (5)

Now, we are ready to state our main result.

Proposition 2.2. Suppose that f # S3�2(N) is as in Proposition 2.1. Let
E�Q be the elliptic curve with FE=S( f ). Suppose that E has a rational point
P of order 3. Assume that either E is given by y2=x3+1 or that P is not
in the kernel of the reduction modulo 3 map. Further, suppose that for all odd
primes v | NE with v#2 modulo 3, we have that 3 | ord3(2E). Put

$=
*R(E, f, W(Nf , NS( f )))

32W(Nf , NS( f )) >p | W(Nf , NS( f ))(1&1�p2)
. (6)
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Then there exists a subset S of the square-free natural numbers having lower
density at least $ such that for all d # S we have

ord3 \L(Ed , 1)
0Ed

+=0 � ord3 \*III(Ed �Q) >p cp(Ed �Q)
*Ed (Q)2

tor +=0. (7)

Proof. Suppose that a # R(E, f, W(Nf , NS( f ))). Then, by condition 1,
there exists n#a modulo 24W(Nf , NS( f )

) such that 3 |% an( f ), and hence
an( f ){0. By the main theorem of [10], we know that L(S( f ) } /&n , 1){0.
Thus, putting

;a=
L(S( f ) } /&n , 1) - n

an( f )2 , (8)

Corollary 2 in [10] gives us for all square-free d#a modulo 24W(Nf , NS( f )
),

L(S( f ) } /&d , 1)=
ad ( f )2

- d
;a . (9)

Dividing through (9) by 0E&1
and using condition 3 above we have for all

square-free natural numbers d#a modulo 24W(Nf , NS( f )):

L(E&d , 1)
0E&d

=ad ( f )2 :a , (10)

where

:a=
L(E&n , 1)

0E&n
an( f )2 . (11)

We note that :a # Q and, from condition 1, we have that ord3(:a)=0.
Thus, ord3(L(E&d , 1)�0E&d

)=0 if and only if ord3(ad ( f ))=0.
Arguing as in the proof of Proposition 2.1 (see [3]), we can show that

for all square-free d#a modulo 24W(Nf , NS( f )), 3 | ad ( f ) if and only if
3 | h(2&d ), where 2&d denotes the discriminant of Q(- &d ) and h(2&d)
denotes the class number of this field. Thus, for all square-free natural
numbers d#a modulo 24W(Nf , NS( f )),

ord3 \L(E&d

0E&d
+=0 � ord3(h(2&d ))=0. (12)

Let S be the set of all square-free natural numbers d such that
d#a modulo 24W(Nf , NS( f )) for some a # R(E, f, W(Nf , NS( f ))) and such
that ad ( f ){0. We note that by the Davenport�Heilbronn theorem (see
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[4]), we know that for any a # R(E, f, W(Nf , NS( f ))), at least half of the
square free natural numbers d#a modulo 24W(Nf , NS( f )) have the
property that 3 |% h(2&d). For such d it follows that 3 |% ad ( f ). Thus for each
a # R(E, f, W(Nf , NS( f ))) at least half of the square-free natural numbers
d#a modulo 24W(Nf , NS( f )) are in S. So, an argument analogous to the
one given in the proof of Proposition 2.1 (see [3] in particular the proof
Proposition 3.1) will yield that S has lower density at least $ in the set of
all square-free natural numbers. We note also that only a finite number of
the quadratic twists of E have 3-torsion. Thus, we can remove from S any
d for which E&d (Q) has points or order 3 without affecting the lower
density of S. Hence, we will assume for the remainder of the proof that S
contains no such d.

Now, we note that for any d # S, we have that ad ( f ){0 and therefore
by (9) it follows that L(E&d , 1){0. Thus, by the work of Kolyvagin, we
know that E&d has rank 0. Therefore, for all d # S we have that E&d has
rank 0 and that 3 |% E&d (Q)tor . Hence, it follows from our construction of
S that III(E&d �Q)3$S(E&d �Q) for all d # S. Now, it follows from Frey's
theorem [2] that for all d # S,

h(2&d )3 | *III(E&d �Q)3 | (h(2&d )3)2, (13)

Thus for all d # S we have

3 | III(E&d�Q) � 3 | h(2&d ). (14)

Now, the proposition follows from (12), (14), condition 2 and our assumption
that for all d # S, 3 |% E&d (Q)tor .

Example 2.1. Let E : y2=x3+x2+72x&368 be the modular curve of
conductor 14. Let

f= :
x, y, z # Z

qx2+7y2+7z2
& :

x, y, z # Z

q2x2+4y2+7z2&2xy.

In [3, Example 3.1] it was shown that f and satisfies the hypotheses of
Proposition 2.1 and that S( f )=FE . Also, P=(2, 2) # E(Q) has order 3 and
is not in the kernel of the reduction modulo 3 map. Further, we note that
the only odd prime dividing NE is 7 which is 1 modulo 3. Thus, E satisfies
the hypotheses of Proposition 2.2.

In this case, we have W(Nf , NS( f ))=7 (and therefore 24W(Nf , NS( f ))
=168). We will let R0/(Z�168Z)* be the set R0=[1, 25, 29, 37, 53, 65,
85, 109, 121, 137, 149]. Next, we will check that R0/R(E, f, 7).

By calculating the first 500 coefficients of f and using the APECS pack-
age with MAPLE to calculate L(E&n , 1)�0E&n

, we were able to verify
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condition 1 for each a # R0 . We can use Tate's Algorithm to calculate that for
d#1 modulo 4, c2(E&d �Q) is either 2 or 4. Similarly, we can check that for
d#1, 2, or 4 modulo 7, c7(E&d �Q)=1. For any other prime p not dividing
d, we have cp=1. For primes p | d ( p{2, 7), Tate's Algorithm yields that
cp(E&d �Q) is 1, 2 or 4. Thus, all of the a # R0 satisfy condition 2 of the
definition of R(E, f, 7). Also, using Tate's Algorithm, we can verify that for
all square-free natural numbers d#1 modulo 4 with (d, 42)=1, we have
0E&d

- d�0E&1
=1. Thus, condition 3 is satisfied by each a # R0 . Since for

all a # R0 , we have a#1 modulo 4, condition 4 is satisfied. Now, we note
that ord7( jE)=&3 and that #7(E)=1. Since for all a # R0 , a#1, 2 or 4
modulo 7 we have that (&a�7)=&1, and therefore condition 5 is also
satisfied. Since, ord3( jE)=0, condition 6 is vacuous. Thus we have that
R(E, f, 7)#R0 and we calculate $�7�128. The main result (Theorem 1.2)
now follows from Proposition 2.2.

The proofs of the results listed in the table following the statement of
Theorem 1.2 are straightforward. One simply applies Proposition 2.2. The
computations needed to verify all of the conditions of this proposition are
almost exactly the same as the ones outlined above and we will omit them
for the sake of brevity.
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