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Abstract. Let N > 23 be a prime number. In this paper, we prove a con-
jecture of Coleman, Kaskel, and Ribet about evalued points of the
modular curveXo(N) which map to torsion points ody(N) via the cuspid-

al embedding. We give some generalizations to other modular curves, and
to noncuspidal embeddings Bf(N) into Jo(N).

1. Introduction

Let X be an algebraic curve of gengs> 1 defined over a number field.
(For us, the wor@urveused without further qualifications will always mean
a complete, nonsingular, absolutely irreducible curve over a field.) Assume,
furthermore, thaX(K) is nonempty. Now choose an Albanese embedding
defined overK of X into its Jacobian variety. In other words, choose a
K-rational pointQ on X and define the maiy, : X — J by sendingP to
the divisor clas$(P) — (Q)].

Now define the seTo(X) to be{P € X(K) | ig(X) € J7}. In other

words,To(X) is the set oK -valued points ofX which map to torsion points
on Jviaigq. Following [5], we callTg (X) thetorsion packetontainingQ.

If g =1 (i.e., X is an elliptic curve), themg is an isomorphism, and
so of courseT is infinite. But if g > 2, the situation is entirely different.
The Manin—Mumford conjecture (proven by M. Raynaud in 1983) says
that wheng > 2, To(X) is a finite set of points. It also follows from
results of Raynaud that when> 2, the cardinality ofT(X) is bounded

independently of) € X(K). For a proof, see the appendix to [1].
There is a striking analogy between the Manin—Mumford conjecture, on
the one hand, and the Mordell conjecture on the other. For example, in [15],
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Lang conjectured that X) N I" is finite whenever is an embedding oK

into J, T is a finitely generated subgroupdK ), andI™ is its division group,

i.e., the set of points in J(K) suchnx e I" for some positive integen.

This is now a theorem, as are various generalizations to higher-dimensional
varieties; see [23] for references and a summary of recent results in this
direction. Note that Lang’s conjecture implies both the Manin—-Mumford
conjecture (taking® = 0) and the Mordell conjecture (taking = J(K)

and considering(X) NT" C i(X) N TY).

Determining the finite set df -rational points orX (“Explicit Mordell”)
for a “random” curveX is an extremely hard problem. Faltings’ proof of
the Mordell conjecture is ineffective, so even in principle this problem is
difficult. Some of the most celebrated cases whé(@) has been deter-
mined include the case wheb€is a Fermat curve (A. Wiles) and where
X = Xo(N) is a modular curve (B. Mazur). There are also small industries
devoted to solving this problem in the special case wheigas genus 1
or 2.

Explicitly determining the s€ef of torsion points orX (“Explicit Manin—
Mumford”) is also, in general, a difficult one. In this setting as well, the
appropriate test cases seem to be curves which either have small genus
(see [2] for some examples when= 2) or unusually rich arithmetic
structure. For an example of the latter, see [7], inwhich the authors determine
T whenX is a Fermat curve embeddedJdrusing a “cusp”.

In their joint paper [6], Coleman, Kaskel, and Ribet study the set of
points on the modular curv€y(N) (hereN > 23 is a prime number) which
map to torsion points ady(N) under the embeddirig, : P — [(P) —(c0)].
(Here oo denotes one of the cusps of3(N).) We call the embedding,,
the cuspidal embeddingf Xo(N) into Jo(N).

For the reader’s convenience, we recall a few definitioggN) is the
(compactified) coarse moduli space for the set of (cyclic) isogdhies E’
of degreeN between elliptic curves. The algebraic cuxg(N) is defined
over Q, and the assumption th&t > 23 simply means that the genus of
this curve is at least two. As a Riemann surfaXg;N) can be thought of as
the quotient of the complex upper half plasiéby the action of the group
I'o(N), at least once this quotient is suitably compactified by adding two
cusps, which ard)-rational points that we call 0 ansb. For additional
background material oKy(N) and its Jacobiady(N), as well as a number
of important results we will use in what follows, see B. Mazur's paper
“Modular Curves and the Eisenstein Ideal” ([18]).

The curveXg(N) has a natural involutiomwy, the Atkin—Lehner invo-
lution, whose moduli interpretation is that it takes l[dAisogenyE — E’
to the dual isogenf’ — E. The quotient ofXq(N) by wy is denoted by
X3 (N), which is also an algebraic curve defined oeWe letgd (N) (or
simply g*) be the genus oX{ (N).

Wheng" happens to be zero (which happens, for= 23, if and only
if N e {23 29, 31,41, 47,59, 71}), Xo(N) is forced to be a hyperelliptic
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curve (double cover oPY). It is a theorem of Ogg [21] that the converse
is almost true as wellXy(N) is hyperelliptic if and only ifgt = 0 or

N = 37. The curveXy(37) is unusual in that the hyperelliptic involution
and Atkin—Lehner involution do not coincide.

We call the sefl,,(Xo(N)) of points Q on Xy(N) such thai ..(Q) has
finite order thecuspidal torsion packetn Xqo(N). Certainly the two cusps
oo and 0 are in this torsion packet; the image undeof latter point has
ordern = Num% in Jo(N) by a well-known theorem of Ogg.

Furthermore, there can sometimes be other poirfg itXo(N)). A proof
of the following proposition can be found in [6, Proposition 1.1].

Proposition 1.1. Wheng* = 0, the hyperelliptic branch points oKg(N)

(the points which ramify in the degree 2 coveriXg(N) — P?!) are in
the cuspidal torsion packek,,(Xo(N)). WhenN = 37, the hyperelliptic
branch points are not iff,, (Xg(N)).

The authors of [6] make the following guess about the cuspidal torsion
packet onXy(N), which we refer to as the Coleman—Kaskel-Ribet (CKR)
conjecture:

Conjecture 1.2. For all prime numberdN > 23,

_[10.00) it g >0
Too (Xo(N)) = { {0, 0o} U {hyperelliptic branch poinis if g =0.

They prove this result in the special case whiere= 37 using results
aboutJy(37) found in B. Kaskel's thesis.

In this paper we give two proofs of Conjecture 1.2. In Sect. 2, we
summarize the work previously done on this problem, in particular the
results of [6] and [26]. We also discuss a few technical results needed later
on. In Sect. 3, we give our proofs of the CKR conjecture.

We now give a brief summary of the two proofs of the CKR conjecture.
In both arguments, a key fact is the theorem of Mazur which says that
the intersection (via the cuspidal embedding)X@f(N) and the cuspidal
groupC of Jy(N) consists precisely of the cusps ¥§(N). (The cuspidal
group is the cyclic subgroup afp(N)(Q) generated by the difference of
CUSPSi(0) = [(0) — (o0)]). Following [6], the idea of the first proof is
to take a torsion poinP on Xy(N) and to decompose it into its primary
componentsk; if one can show that alR are inC, then so isP and
we are done. We first analyze the cases where or,dP; is not in C.

This can happen only wheXy(N) is hyperelliptic or trigonal, and results
of [1] and [6] prove the conjecture for all such value\ofThen, assuming
that N is large enough so thd®,, P; are inC, we prove that there is an
elements € Gal(Q/Q) which acts on the projectioR" of P to J;"(N) as
multiplication by —1, which is impossible unless the genusXf(N) is at
most 2. The cases whegg < 2 are dealt with using the results of [6] and
calculations found in [32]. A slight complication arises in this method when
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N ramifies in the Hecke algebii, but we find a way around this based on
bounds for the gonality 0Kq(N) obtained in [1].

Our second proof of the CKR conjecture, which came into being shortly
after the first (due to insights of Ken Ribet), seems more ripe for generaliza-
tion. It is conceptually simper than the first proof; in particular, the trigonal
modular curves no longer play an exceptional role in this approach, and
Coleman’s theory of-adic integration as developed in [5] and [6] is not
needed. The idea here is to first deal with the case where the torsion point
P is annihilated by the Eisenstein ideal bf which can be done by using
results from [6] or by exploiting the Galois-module structureJefN)[J]
determined in [18] and [26]. In other cases, we use a result of Ribet which
says that a point not idy(N)[J] must be ramified aN. We then find an
elemento in an inertia group alN which acts nontrivially onP, but such
that (0 — 1)°P = 0. For example, when the order Bfis prime toN, the
existence oty follows from Grothendieck’s Galois criterion for semistable
reduction (see [10, Proposition 3.5]). We then h&avéP) + (P) = 2(cP)
as divisors orXg(N), which forcesXy(N) to be hyperelliptic andP (and
henceP) to be a hyperelliptic branch point.

We have recently learned that A. Tamagawa has independently proved
Conjecture 1.2 by methods somewhat similar to those used in our second
proof.

Finally, we give proofs in Sect. 4 of some generalizations of the Coleman—
Kaskel-Ribet conjecture. For example, we determine the set of torsion
points on the modular curvi/ (N) for all primesN, where the embedding
is via the unique cusp. We also study non-cuspidal embeddings of these
curves, and determine the complete set of torsion packefs,0N) and
X$ (N) whenN is sufficiently large.

Acknowledgement$would like to thank my thesis adviser Robert Coleman for his continual
support and encouragement. Special acknowledgements are due to Ken Ribet — the second
proof | give of the CKR conjecture is based on emails from and discussions with him, and
Remarks 3.11 and 3.16 are derived from his ideas. Ribet also introduced the idea of utilizing
the interplay between torsion points ¥g(N) and Xg(N) while thinking about the specific

caseN = 389. In addition, he pointed out the elementary but very useful Lemma 3.5, and
taught me a number of things about modular curves and Galois representations. | would also
like to thank William Stein for helping me with a number of computations, Barry Mazur for
suggesting the application of my results to Mordell-Weil ranks, and the referee for many
helpful comments on my original manuscript. Typesetting in this paper was dofigsi L

2. Torsion points on Xg(N)

We begin with a summary of the paper [6] by Coleman, Kaskel, and Ribet.
The basic approach in [6] is to use the Chinese remainder theorem to

decompose the imadein Jy(N) of a torsion pointQ on the modular curve

Xo(N) (N prime) as a sum of itb-primary componentsP := i,,(Q) =

> B (whereR € Jy(N)), and to try to show tha® is in the cuspidal group

for as many primet as possible. The cuspidal group is the cyclic gr@up
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of ordern = Num(%) generated by,,(0), which Mazur proves in [18,
Theorem (1)] is the full group of rational torsion points d4{N).

The following proposition follows from the main result of [19]; see [6,
Proof of Proposition 1.2] for a proof.

Proposition 2.1. The set of points oXy(N) mapping under, to C is just
the set{0, oo} of cusps.

Let T = To(N) denote the full Hecke algebra fof(N); it is precisely
the ring of endomorphisms af(N) (see [18, II, Proposition 9.5]). The
main general result in [6] is the following theorem ([6, Theorem 1.3]),
which handles “mostf-primary components:

Theorem 2.2. Let Q be an element o, (Xo(N)), and letl # 2, 3 be
a prime for whichR, does not belong to the cuspidal groGpThen at least
one of the following holds: (i) = N; (ii) | satisfiess < | < 2g, Xo(N)
does not have ordinary reduction gtand| is ramified inT (in the sense
thatT/IT is not a product of fields).

The proof is based on Coleman’s theorymhadic integration (see [6]
and [5]) plus the following theorem [6, Theorem 2.2] proved using the
techniques of [18]:

Theorem 2.3. Supposé # 2, and thatP is a torsion point onJo(N). If P
is unramified at, thenB, € C.

Ken Ribet's papers [26], [27] suggest additional techniques for tack-
ling the Coleman—Kaskel-Ribet conjecture. Many of Ribet’s results involve
a certain hypothesis (*), which we now explain. We recall that the Hecke
algebral = To(N) has the property that ® Q is a product of totally real
number fieldK;, andT itself has finite index in its normalizatioh, which
is the product of the maximal ordefs of K;. By the discriminant off, we
mean the product of the discriminants of tke multiplied by the square
of the index ofT in T. By definition, T is unramified at a primeif | does
not divide the discriminant of ; this is equivalent to saying that/IT is
a product of finite fields. Ribet’s auxiliary hypothesis is:

(*) The primeN is unramified in the Hecke algebfa

William Stein has done computer-aided computations (see [32]) which
establish the following proposition:

Proposition 2.4. Condition (*) is satisfied by alN < 5000 except for
N = 389 The prime numbeB89is ramified inT(389), but unramified in
T4 (389 (which we will define shortly).

One result (Theorem 1.6 of [26]) which involves hypothesis (*) is:
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Theorem 2.5. LetN andl # N be prime numbers. SuppoBec Jo(N)*"

is such that itd-primary componen®, is not contained in the cuspidal
group C (which is equivalent, by [18, Theorem (1)], to supposing that
P ¢ J(N)(Q)). Assume either thall does not divide the order d® or
that N satisfies hypothesis (*). Then there is an elemert Gal(Q/Q)
such thatoP — P has orded in Jo(N).

Itis useful to exploit the interplay between torsion pointsXyiN) and
its quotient curveXy (N). The intuitive reason whx{ (N) is in many ways
simpler thanXq(N) is that it is “non-Eisenstein”; we will make this more
precise in a moment.

We discuss now some facts aboigt (N) that we will use in what follows.
There is a unique cusp at infinity kg (N), which we denote byo™,
or simply oo if no confusion is likely to arise, and the fiber of the map
7 Xo(N) — X{(N) overoco™ is just {0, co}. Let JJ (N) be the Picard
(Jacobian) variety oX{ (N). The fact that; (N) is also the Albanese
variety of X§ (N) implies there is a commutative diagram

Xo(N) —== Jo(N)

X4 (N) == JF(N)

wherei ., : X (N) — J;5 (N) is the map which on closed points takggo
[(Q) — (c0™)]. The mapr, takes a point inly(N) represented by the degree
zero divisor) _ P — )" Q; to the class of the divisoy_ 7(P) — > 7(Q)),
thought of as a point oflf (N). Note that a point 0fXo(N) mapping to
a torsion point ofJp(N) is sent byx to a point of X{ (N) mapping to
a torsion point ofJ;" (N).

The mapz* : Jy (N) — Jo(N) induced by Picard functoriality is
a closed immersion (sinaey is a degree 2 automorphism with fixed points),
sox* identifies J;"(N) with an abelian subvariety ak(N). The composite
mapr* o, : Jo(N) — Jo(N) is easily seen to be the map+lw, so that
Jo (N) is naturally identified with the subvariety;, := (1 + w)Jo(N) of
Jo(N) (see [18, II, Sect. 10] for another discussion of this).

We also note thad_ := (1 — w)Jo(N) is naturally identified with the
kernel of multiplication by % w on Jo(N). Indeed,J_ is certainly contained
in this kernel; in fact, for dimension reasodsis the connected component
of the identity in this kernel. But ker(® w) is connected (this is equivalent
to the fact that the map* is injective).

For future reference, we define the Hecke algebtato be the image
of T in the endomorphism ring of; (N) (thought of as the subvariety
(14 w) Jo(N) of Jp(N)).
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Recall thatC is the cuspidal subgroup a(N), which is the cyclic
subgroup generated by the pomt= i,,(0) € Jo(N), i.e., by the divisor
(0) — (00). Sincew(c) = —c¢, 1+ w (and hencer,,) annihilatesC.

Furthermore, lef be the Eisenstein ideal df(see [18, Il, Sect. 9)). Itis
the ideal generated lp#-1—T,, for pnotdividingN and by J-w. The kernel
Jo(N)[T] of the Eisenstein ideal is a finite Galois module contairhdt,
too, is annihilated byt,., since Hw € 7. It follows that ifm is any maximal
ideal of T containingJ (i.e.,m is Eisenstein)y,(Jo(N)[m]) = O.

A stronger way of expressing the fact thég (N) is “non-Eisenstein”
is to say that]y (N)[m]=0 whenevem is an Eisenstein prime. When the
residue characteristip of m is different from 2, this is clear, sinage acts
as+1on JJ(N) and as—1 on Jo(N)[m]. When p = 2 this is more subtle
and is established in the proof of [18, I, Proposition 17.10].

Along similar lines, we have the following proposition.

Proposition 2.6. Let p be an odd prime. The Jordan—Hdlder factors (as
a module forT*[GalQ/Q)]) of J5 (N)[p] are all two-dimensional, and
are isomorphic to the representatiordg(N)[m] for m a (non-Eisenstein)
maximal ideal of T containingl — w.

Proof. LetV be such a Jordan—Hoélder factor — its annihilatdis a max-
imal ideal of T* of characteristiqp. Clearly 1— w € m’, and sincep # 2,

1+ w ¢ w'. The inverse image aft’ in T is a maximal ideat containing
1 — w but not 14 w. We claim thatJp(N)[m] = J;"(N)[m] = V. Indeed,
V is a subquotient ofl”(N)[m], and hence oflo(N)[m], and it is stable

under the action of [Gal(Q/Q)]. Sincem is not EisensteinJo(N)[m] is
irreducible and two-dimensional by [18, II, Proposition 14.2]. We must then
haveV = J (N)[m] = J(N)[m] as claimed. O

For each maximal ideah of T*, we can form them-divisible group
Jy (N)m := UJy (N)[m']. If the residue characteristip of m is different
from 2, then then-adic Tate modulélom(Qp/Z, Jo(N);}) is free of rank 2
overT,:. This follows on replacingo(N) and Jo(N) by Xg (N) and J5 (N)
in the proof of [18, II, Lemma 15.1].

We also have the following result abody (N) (compare with Theo-
rem 2.5).

Theorem 2.7. LetN andl # N be prime numbers. SuppoBes J;"(N)*"

is such that itd-primary componen®, is nonzero. Assume either thist

does not divide the order ¢ or that N is unramified inT ™. Then there is
an element € Gal(Q/Q) such thatsP — P has order in Ji (N).

Proof. If N is unramified inT, this follows immediately from Theorem 2.5
from the fact thatd;"(N) can be thought of as a subvariety Bf N) whose
intersection withJo(N)[J] is trivial. Otherwise, we note that Ribet's proof
of Theorem 2.5 followsnutatis mutandisor J;"(N). In fact, Theorem 2.7

is actually easier to prove than Theorem 2.5: in view of Theorem 3.12 of
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this paper, the case in Ribet’s proof in whiBhis unramified alN does not
occur. o

3. Proof of the Coleman—Kaskel-Ribet conjecture

In this section we prove the Coleman—Kaskel-Ribet conjecture. In fact,
we give two proofs of this conjecture, with the hope that the ideas used
in both proofs will be useful in other contexts. In the following section
we apply similar arguments to determine torsion pointsXgi(N) in the
cuspidal embedding, and also to study arbitrary torsion packe$,aN)

and X (N).

The key idea in the first proof of the CKR conjecture is to msé
project torsion points oXy(N) to torsion points or)(ar(N), and then to use
the Eract thatGal(Q/Q) acts in a particularly simple way on torsion points
of Jy (N).

Before beginning the proof, we collect here some facts which we will
need. The first result concerns maps of low degree #@N) and X (N)
to PL.

Theorem 3.1. LetN > 23 be a prime number.
1. Xo(N)c is hyperelliptic (admits a degree 2 mapFPé)
iff N € {23, 29, 31, 37,41, 47,59, 71}.
2. XJ$(N)c is hyperelliptic iffgg (N) = 2
iff N € {67,73,103 107, 167, 191}.
Xo(N)¢ is trigonal (admits a degree 3 map Ré)
iff N e {23, 29, 31, 37,43, 53, 61}.
If X§' (N)c is trigonal, thenN < 311
If Xo(N)c admits a map of degree at most 4Ft@ thenN < 191
If X§' (N)c admits a map of degree at most 4Ft@ thenN < 479
If Xo(N)c admits a map of degree at most GR@ thenN < 311
8. If X¢(N)¢ admits a map of degree at most GR@ thenN < 911

w

No ok

Proof. Part (1) follows from the main result of [21], and part (2) from the
main result of [11]. The rest of the assertions are proved in Chap. 3 of [1].
We note that similar assertions have recently been proved by Hasegawa—
Shimura (see [12], [13]) and by Nguyen-Saito (see [20]). O

The following theorem is proved in Chap. 5 of [1] by a potpourri of
techniques. For the reader’s benefit, we remark that it is also a consequence
ofthe second proof we give of the Coleman—Kaskel-Ribet conjecture, which
unlike our first proof does not treat the trigonal modular cur¥géN) as
exceptional cases.

Theorem 3.2. The CKR conjecture is true for the trigonal modular curves
Xo(N), i.e., the curves{o(N) with N € {23, 29, 31, 37, 43,53, 61}.
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From now on,N will always denote a prime number such tlggtN)
(the genus ofXp(N)) is at least 1. Often in our applicatiomg(N) will in
fact be at least 2.

If pisaprime, we denote b, (Jo(N)) the p-adic Tate module ofy(N).

If p> 2, the results of [18, I, Sects. 14-15] show tAgtJo(N)) is free
of rank 2 overT, := T ® Z,, whereT is the Hecke algebra associated to
Jo(N). Choosing a basis fof,(Jo(N)) overT,, we can view the action of

Gal@Q/Q) on Tp(Jo(N)) as providing a continous representation

p=]]pm :GaQ/Q) — GLR Tp) =[[GCL2 Tw),

where them; are the maximal ideals of lying over p. We also have
a continuous representation

p=[]Pw : Ga@Q — [[GL@ T/m) = GL@ []T/m).
For J; (N), we obtain analogous representations

pt=T]rs : Ga@/Q) - GLE2 T)) = [[GLER T}).
and
ot =[]ph : Gal@/Q) — [[GLQ@ T*/m) = GLE, [[T/my).

Let F be the product of finite fieldg] T /m;, and letF™ be[[ T+ /m;.

By an inertia group ap, we mean the inertia subgroup Gl(Q/Q)
at some prime lying ovep. By a wild inertia group atp, we mean the
p-Sylow subgroup of an inertia group piof Gal(Q/Q); see [30, Sect. 1.4]
for a discussion ofp-Sylow subgroups of profinite groups. jif # N, let
Xp be the normal closure insidgal(Q/Q) of an inertia group ap, and if
p = N let X, be the normal closure of a wild inertia groupat

Also, if p # N, then sef", = Z3, and sef"y = 1+ NZy C Zj,. Let

T be the reduction of mod p; i.e.,T'p equals(Z/ pZ)* whenp # N and
1 whenp = N.
We have the following results concerning the imagex,) andp(X):

Theorem 3.3. Suppose > 5.

1. Assumep does not divideN — 1. Then the imag@(X,) of X, is the
group of matrices inGL(2, F) having determinant i, (embedded
diagonally inF).

2. Assume, in addition tp { N — 1, that p is unramified iriT. Thenp(X)
is the group of matrices iGL(2, T ) having determinant i,

3. Theimag&™(Xp) is the group of matrices iGL(2, F™) having deter-
minant inT .

4. Assume thap is unramified inT. Thenp™ (X,) is the group of matrices
in GL(2, T‘g) having determinant i,
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Proof. Whenp # N, part (1) follows by combining Proposition 6.3 and
Theorem 3.4 of [27]. Wherp = N, the assertion of part (1) is estab-
lished during the proof of [26, Proposition 6.4]. Part (2) is proved in the
remark following [27, Theorem 6.4] whem # N, and in the proof of [26,
Proposition 6.4] whemp = N.

The assertions in (3) and (4) are proved similarly. We provide the reader
with the following guide for translating the required results flg(N) to
results forJ; (N).

To prove part (3) whemp # N, we need to check that the hypotheses of
Proposition 6.3 and Theorem 3.4 of [27] are satisfiegpbyIt suffices to
note that alk‘);qi are irreducible (since there are no Eisenstein prima@sin
and thatF* = []T*/m; is generated by the traces of elemeptso) for
o € Gal(Q/Q) (since the analogous statement is trueffprWhenp = N,
part (3) also follows from Proposition 6.3 and Theorem 3.4 of [27] (with
the hypotheses verified as above), together with the argument in the proof
of Proposition 6.4 of [26]. Finally, part (4) follows from part (3) together
with Proposition 4.2 of [27]. ]

Remark 3.4. It is a consequence of the results of [16] that the assertions of
parts (2) and (4) of Theorem 3.3 are true even without the hypothesis that
p is unramified inT or T, respectively. We will not use the results of [16]

in any essential way in this paper, though appealing to them makes some of
our arguments shorter.

The proof of the following lifting lemma is reminiscent of the techniques
of [28, IV-23, Lemma 3].

Lemma 3.5. Let p be an odd prime, leiA be a commutative ring with
identity, and letR be a nilpotent ideal inPA containingp. If H is a subgroup
of GL(n, A) whose imageH in GL(n, A/R) contains the homothety1,
thenH contains—1.

Proof. We are given thaH contains—1. This means thdt = —1 modR,
i.e., there exish € H andr € M(n, R) suchthah = —1+r. Since—1 and
r commute, one can use the binomial theorem to seéthat —1 mod R?,
and more generallp® = —1 mod R+, SinceR' = 0 fori sufficiently
large, it follows that the group! contains—1. O

Though we originally conceived of the next result as an application of
the results of [16], it follows from the much easier Theorem 3.3(1), together
with the elementary Lemma 3.5.

Proposition 3.6. Let p > 5 be prime, and suppose thaptdoes not divide
N —1. Then the imagp(X,) € GL(2, T ® Z) contains the homothetyl.

Proof. LetT =T ® Z,, and forn > 1, let A be the Artinian ringT/p"T.
If H denotes the image @f(X,) in GL(2, A), then it suffices to prove that
—1 ¢ Hforalln. LetRbe the radical oA, i.e., the set of nilpotent elements



Torsion points on modular curves 497

in A. Thenp € R, and A/R is isomorphic toF := [[ T/m;, a product of
finite fields of characteristip. By Lemma 3.5, it suffices to prove that the
imageH of H insideGL(2, A/R) contains—1. In fact, H contains all of
SL(2, A/R), as follows from Theorem 3.3(1). O

Similarly, we have the following:

Proposition 3.7. Let p > 5 and N be primes such thagj (N) > O.
(We allow the case wherp divides N — 1). Then the imagep(Xp) <
GL(2, Tt ® Zp) contains the homothety1.

Proof. Thisis proved inthe same way as the previous Proposition, replacing
the reference to Theorem 3.3(1) by a reference to Theorem 3.3(3).0

Corollary 3.8. If p > 5andN are prime numbers witgg (N) > 0, then

there exists a € Gal(Q/Q) which acts as—1 on all torsion points of
Jo& (N) of p-power order and as-1 on torsion points of order prime tp.

Proof. For p # N, this follows from Proposition 3.7, together with the
criterion of Neron—Ogg—Shafarevich. M this follows from the fact that
elements of inertia groups & act unipotently on prime-tdd torsion,
so that the imagey (1) of any wild inertia group afN under anl-adic
representation with# N is both prol and proN, hence trivial. O

We also need the following easy lemma.

Lemma 3.9. Let X be a curve of genus at least 2 mapping to its Jacobian
viag : P+ [(P) — (Py)] for some fixed?, € X. If there exists a point

P # Py on X such that—¢(P) is in the image oK, thenX is hyperelliptic
and Py is a hyperelliptic branch point.

Proof. We are given thatPy) — (P) is linearly equivalent tgQ) — (Py) for
some poiniQ. Therefore there is a rational function &nwith divisor equal
to (P) 4+ (Q) — 2(Py), and sinceP # P, this forcesX to be hyperelliptico

We now give our first proof of the Coleman—Kaskel-Ribet conjecture.
Theorem 3.10. Conjecture 1.2 is true for alN.

Proof. We first prove the conjecture under the hypothesis (*), which says
that N does not divide the discriminant of the Hecke algebra

Suppose we have a poifl € Xo(N)(Q) such thai .. (Q) is a torsion
point of Jo(N). Write

Pi=i(Q=P+Ps+Py+ Y R,
1£2,3,N

where B hasl-power order inJo(N) for all primesl.
If al B € C, thenP e C, which by Proposition 2.1 implies that
Q € {0, 00}. If P, ¢ C, then by Theorem 2.5 [since we are assuming (*)]
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there exists & € Gal(@Q/Q) such thatoP — P has order 2 inJy(N).
SinceoP — P = [(0Q) — (Q)], it follows that Xo(N) is hyperelliptic
andQ is a hyperelliptic branch point. This possibility is already accounted
for in the statement of the Coleman—Kaskel-Ribet conjecture. (Recall from
Proposition 1.1 that the hyperelliptic branch point9@i37) are not torsion
points.)

If P; ¢ C, then there exists @ € GallQ/Q) such thatoP — P
has order 3. This means tha{,(N) is trigonal, i.e., admits a degree
three morphism tdP!. According to Theorem 3.1(3), this implies that
N € {23, 29, 31, 37,43, 53, 61}. But Theorem 3.2 asserts that the CKR
conjecture is true for these valuesiof

So assume, then, th&, P; € C. Let QT = n(Q) € X (N). Since the
groupC is annihilated byr,, we see that

P*=ix(QN= ) R +P.

1£2,3,N

where Pt = 7,(P). By Corollary 3.8, we can find an elemeat

Gal(Q/Q) such thato P* = —P*, so that—i,(Q™) lies on the image
of X{(N). By Lemma 3.9, this implies thaX{ (N) is sub-hyperelliptic,
i.e., has genus 0 or 1 or is hyperelliptic. Whgh > 2, it also implies that
infinity is a hyperelliptic branch point oXg (N), which it is not (see the
proof of Lemma 4.3 below).

So we can assume thgt < 1. One can then explicitly check that the
CKR conjecture is true whenevgr < 1 (the largesN for which X§ (N)
has genus 0 or 1 isl = 131). For according to the tables in [32], for each
N such thatgt < 1 there are no primep between 5 and @ (g=genus
of Xo(N)) which divide the discriminant of the Hecke algeldraand are
simultaneously non-ordinary. By Theorem 2.2, this showsRkhat Pc+ Py
with Pc € C. We then havePy = 0 by [6, Theorem 3.15], which shows
that P € C and hence) is a cusp.

This proves the CKR conjecture for &l satisfying hypothesis (*). We
recall from Proposition 2.4 that this hypothesis is satisfied for all primes
N < 5000 except foN = 389, and that 389 does not divide the discriminant
of T$(389.

Projecting a potential torsion poi@ton X, (389) right away toX¢ (389),
we see from the above arguments t@ais a cusp unlesX¢ (389 (which
has genus 11) admits a map of degree 2 or P*¥oBut according to
Theorem 3.1(2,4), this is not the case.

The key thing to notice in general when (*) is not necessarily satisfied
is that we can still apply Theorem 2.7 to a torsion point when the order of
that point is not divisible byN.

Take a torsion point

P=in(Q=P+P;+Py+ Y AR
1#£2,3,N
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on the image oKo(N) as before. We now project right away X (N), so
that we haveP™ =i, (Q") = P} + Py + Py + R", where

RT — Z PI-‘r

1£2,3,N

with the variousP* defined in the obvious way. By Corollary 3.8, there is a
o € Gal(Q/Q) suchthab P™ = P, + Py — Py — R SoP’ := P" +oP™"
is equal to 2 + 2P5".

Now this torsion point on]J(N) has order prime tdN, and so Theo-
rem 2.7 applies to it.

If 2P," # 0, we find that there existsae Gal(Q/Q) such thatP” :=
TP’ — P’ has order 2inJ;"(N). We haveP” = [(tQ") + (toc Q") — (QT) —
(cQ™)], sothe divisor 2rQ*) +2(zc Q1) —2(Q™") —2(c Q") is principal.
This divisor is either identically zero, or els&} (N) admits a map td*
of degree at most four. The first case is impossible, because it implies that
eitherQ™ =1QT ando Q" =10 Q™, or QT = 1o Q" ando Q" = tQ™,
but either way we would have” = 0 whereas we assum&d had order 2.
So XJ (N) admits a map of degree at most fourtb

Similarly, if 2P # 0, we find thatX$ (N) admits a map of degree at
most six toP!. This implies thatN < 911 by Theorem 3.1(8). Since we
have already established the CKR conjecture for primes less than 5000, we
reduce to the case whelRé = 0. ButthenP™ = —o P™, hence-io(Q™") is
in the image ofXg (N) and by Lemma 3.9X{ (N) is sub-hyperelliptic. But
we have already dispensed of this case, so our first proof of the Coleman—
Kaskel-Ribet conjecture is complete. 0

Remark 3.11. Since the proof of [6, Theorem 3.15] is rather complicated,
the reader may prefer the following argument to see #hat= 0 when
g™ < 1. According to [27, Theorem 3.2] (or the proof of [26, Proposi-
tion 6.4]), if p : GallQ/Q) — GL(2, Ty) is the representation giving the
action of Galois on the Tate modul(J(N)) andp : GallQ/Q) —
GL(2, T/NT) is its reduction modN, then the image op is precisely
{M e GL(2, T/NT)|det(tM) € (Z/NZ)*}. So if Py # 0, then it is easy to
see thatPy (and henceP) has at leasiN? — 1 Galois conjugates (see [1,
Lemma 5.1] for the argument). On the other hand, sihcés unrami-
fied in T, we know from [26, Proposition 6.4] that the imageg&quals
{M e GL(2, Ty)|det(M) € Z},}. In particular, for each integet such that

(d, N) = 1, there is an element € Gal(Q/Q) such that acts onPy as the
homothetyd. We taked = (1—n); in this case, sinc€. is killed byn ando
acts trivially onPc, it follows thato acts as the homothety-1n on P itself.
An intersection theory argument (see [6, Proposition 4.2]) showdtlean
have at mosgyd® = g(n — 1)? Galois conjugates, wheggis the genus of
Xo(N). Therefore ifPy # 0, the inequalityN? — 1 < g(n—1)? holds. Using

the easy estimates< n—1andn < 1ﬂ2 we find thatN? — 1 < % —1,and
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soN > 1728. Since we are assuming tizit< 131, it follows thatPy = 0
as claimed.

Before discussing the second proof, we consider the special case
Ioo (Xo(N)) N Jo(N)[T].

We begin with a review of some well-known facts abdwtN)[J], the
kernel of the Eisenstein ideal; for proofs see [18, Chap. Il] and [26, Sect. 3].
As a group,Jo(N)[J] has ordem?, wheren = Num%, and as a Hecke
module, Jo(N)[J] is free of rank 2 ovell /J = Z/nZ. Also, Jo(N)[J]
contains both the cuspidal subgroG@mnd the Shimura subgrodp. When
n is odd, Jo(N)[J] is in fact equal to the direct sum & and . Whenn
is even, however, the sud@ + X is no longer direct and has index 2 in
Jo(N)[T]. The Galois action oGal(Q/Q) onC is trivial and onX is given

by the cyclotomic character : GalQ/Q) — GalQ(un)/Q)— (Z/nZ)*.
We have the following very useful result:

Theorem 3.12. Jo(N)[J] is exactly the set of torsion points @ N) which
are unramified aN. On J; (N), there are no nonzero torsion points unram-
ified at N.

Proof. The first statement is proved in [26, Proposition 3.1, Proposi-
tion 3.3]. The second statement follows from the same proof; it is in fact
easier to prove than the first statement, so for the reader’s convenience we
give a proof here. Suppose thatis a nonzero torsion point id; (N)(Q),

and letM be theT *[Gal(Q/Q)]-submodule oﬂJ(N)(Q) generated byP.

Let V be a Jordan—Hoélder constituent f, and letm be its annihilator,
which is a maximal ideal iT ™. By Proposition 2.6\ is isomorphic to
Jo(N)[m] for some non-Eisenstein maximal ideabf T having character-
istic p. Furthermore, [26, Proposition 2.2] and the discussion preceding it
show that all suctip(N)[m] are ramified alN (since if p # N, then this is
equivalent to the statement th&(N)[m] is not finite atp, and if p = N,

the determinant ofly(N)[m] is the modN cyclotomic character, which is
ramified atN). It follows that P is ramified atN. O

Lemma 3.13. SupposeXq(N) is hyperelliptic and thaf is a hyperelliptic
branch point. Themn,,(Q) = [(Q) — (c0)] € Jo(N)[T].

Proof. WhenN = 37, the hyperelliptic branch points do not map to torsion
points of Jo(N) at all by Proposition 1.1. So we can assume thag 37.

In this case, the hyperelliptic involution coincides with the Atkin—Lehner
involution w.

One way to conclude is to note that a hyperelliptic branch point corres-
ponds to arN-isogenyE — E, whereE is an elliptic curve with complex
multiplication by an order in the ring of integers ©@{+/—N). The field of
definition of this point contain§)(+/—N), which is ramified atN. Hence
i (Q) cannot be inJo(N)[J], which is unramified aN.
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Here is an alternative argument. LRt= i,,(Q) € Jo(N)!**". If P e C
then we are done, since by Proposition 2.1(C) consists only of the cusps,
which are not hyperelliptic branch points. (In fact, the cuspXe(N) are
never Weierstrass points, see [22]). Otherw@és not rational, so there
is someo € Gal(Q/Q) such thatQ" = oQ # Q is another hyperelliptic
branch point. Then the divisoRQ) — (Q’) has order 2 inJy(N). On the other
hand,,(Q) = [(Q)—(Q)]+iw(Q"),soatleastone ® = i,,(Q), P* =
i(Q’) has even order; since these points are conjugate, both have even
order. Sincew is the hyperelliptic involution oXq(N), which acts only(N)
as—1, we havg (Q) — (00)] = [(woo) — (wQ)] = [(0) — (Q)] as elements
of Jo(N). Adding [(Q) — (o0)] to both sides, we getR = [(0) — (c0)],
which is a generator of the cyclic gro@pof ordern. If P € Jo(N)[J], then
the order ofP dividesn. But we have just shown thaP2has orden, which
is a contradiction: since the order Bfis even, the order oP is twice the
order of 2P. O

Lemma 3.14. If m is a positive integer not dividing 6, then there exist
elements, b € (Z/mZ)* witha+b=2anda # 1,b # 1.

Proof. By the Chinese remainder theorem, the result is truarfafrit is
true for at least one prime powet exactly dividingm. By assumption we
can choose suchpt > 3. If p # 3, then—1 and 3 satisfy the requirements
of the lemma. Otherwise, i = 3, we can take andbto be—2 and 4. 0

Proposition 3.15. Let N > 23 be prime. The only point® € Xo(N)(Q)
such thatP = [(Q) — (00)] lies in Jo(N)[J] are 0 and co.

Proof. We provide two proofs of this result. First, we note thatFife
Jo(N)[T], then under the projectiom,, P is sent to zero. Therefore, when
the genus ofX{ (N) is positive (so that the ma(N) — J(N) is
an embedding), we hav® = 0 or Q = oo as desired. The genus of
Xg (N) is zero exactly wheiXo(N) is hyperelliptic andN # 37, i.e., when
N = 23, 29, 31, 41, 47,59, or 71.

Suppose, then, thd& € Jy(N)[J] (so its order divides = Num%
and thatgj (N) = 0. Letg be the genus oXo(N). For each primeN in the
above list, one can check, using [32], thds prime to 3, and that there are
no primes between 5 andy2vhich are simultaneously non-ordinary and
ramified in the Hecke algebra. By Theorem 2.2 (which is baseg-adic
integration techniques of [5]), it follows th& = P, + P, with P, of
2-power order andPc € C.

If P, ¢ C, then by Theorem 2.5 there existsrain an inertia group
for 2 in Gal(@Q/Q) such thatoP — P has order 2. This means that the
divisor 20Q) — 2(Q) is principal, soQ is a hyperelliptic branch point.
But the hyperelliptic branch points 0fy(N) do not map toJy(N)[J] by
Lemma 3.13.

So we must havé®, € C and therefore® € C. But as we know from
Proposition 2.1, the set of points o (N) mapping toC is always equal to
{0, oo}. This proves the result.
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Here is another proof, which does not rely on any facts about ramified
torsion points on curves derived from [5].

We again may assume, after projectingd9(N), that Xo(N) is hyper-
elliptic with N # 37. And proceeding as above we see that C, or else
Xo(N) would be hyperelliptic an®@ would be a hyperelliptic branch point
of Xo(N), which is impossible. It follows thaP € C + X.

Sincei 1(C) = {0, oo}, we may assume th&® € C but P ¢ C, and
therefore we may writd® = Pc + Py, wherePc € Cand Py € T is
nonzero and of odd orden.

In fact, we may assume that > 3, because is prime to 3 for allN
such thagt = 0, a fact we have already noticed above.

SinceC has a trivial Galois action, it is easy to see that— 1)P =
(o0 — 1)Pg for all o € Gal(Q/Q). Also, sinceGal(Q/Q) acts onX via the
mod n cyclotomic character, it follows that for any € (Z/mZ)* we can
find o € GallQ/Q) such thab Py = uPs.

We conclude from Lemma 3.14 that there exist € Gal(QQ/Q) such
that(oc — 1)Ps + (t — 1) Ps = 0 but(o — 1) Ps and(z — 1) Px are nonzero.

It follows that (cQ) + (tQ) — 2(Q) is a nonzero principal divisor on
Xo(N), and hence thaD is a hyperelliptic branch point. But this contradicts
Lemma 3.13. O

With this proposition in hand, we give the second proof of the Coleman—
Kaskel-Ribet conjecture.

Proof. SupposeQ € Xo(N)(Q) maps to a torsion poinP of Jo(N). If

P e J(N)[J], thenQ € {0, oo} by Proposition 3.15. So we can assume
thatP ¢ Jo(N)[J], which by Theorem 3.12 implies th&tis ramified atN.
We claim that there is an elemetite Gal(Q/Q) such thatoP # P but

(0 — 1)?P = 0. Given this, it is straightforward to conclude: in terms of
divisors this means th&>Q) + (Q) — 2(cQ) is linearly equivalent to zero.
ThereforeXy(N) is hyperelliptic andyQ (and henceQ) is a hyperelliptic
branch point.

To prove the claim, we first assume thxiis prime to the order oP. In
this case, we use the fact thatis ramified atN to find an inertia group
at N and an element € | such thaivP # P. By Grothendieck’s Galois
criterion for semistable reduction (see [10, Proposition 3.5], and also [26,
(2.4)]), (6 — 1)?P = 0 as desired.

If N divides the order ofP, write P = Py + PN with Py of N-
power order andPN of order prime toN. We claim that there exists a
o € Gal(Q/Q) which fixes PN but not Py such that(c — 1)?Py = 0.

It then follows thatP # P and(o —1)?P = 0. We can find suchain Xy,
the normal closure of a wild inertia group dtin Gal(Q/Q). Elements of
Xn fix prime-to-N torsion, and moreover it follows from [16] (or from
Theorem 3.3(2) wheilN satisfies hypothesis (*)) that the image Xf; in
Aut(Tn(Jo(N))) = GL(2, T ® Zy) containsSL(2, T ® Zy). In particular,
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there exisby, 0, € Xy acting on arN-adic Tate module 08y(N) as

(10 (11
o1=1\1 1) %2=\0 1)

It is easy to see that sind®y # 0, one ofoq, o, must act nontrivially
on Py. This element of Xy also satisfieso — 1)°Py = 0, so we're done.
o

Remark 3.16. We can modify this proof so that results of [16], and even
those of Theorem 3.3, are not needed. As we just saw, it is enough (by
Grothendieck’s Galois criterion for semistable reduction) to prove that there
is an element in some inertia group folN such thatoPy # Py but
(0 —1)2Py =0. B B B

Fix an algebraic closur€)y of Qn and an embedding) — Q.
We view Dy = Gal(@Qy/Qn) as a decomposition group fad inside
Gal(Q/Q), and letly = Gal(Qy/QY™) be its inertia subgroup, We also set
Iy = Gal(Qy /O (une)), wherepy~ denotes the set of all-power roots
of unity in Qy. Denote bym = N’ the order ofPy. Finally, let M be the
T[GalQ/Q)]-submodule ofJy(N)[m] generated byPy. Since Jo(N) has
toric reduction alN, there is an exact sequencel§-modules (compatible
with the Hecke action, but we don't need this)

O M—->M-=>M =0,

wherel y acts trivially onM” and as the morh cyclotomic character oW’.
(For a more detailed discussion of this exact sequence, see [26, (2.4)] and
the references cited there). Suppose that some ||, acts nontrivially
on Py. Sinceo acts trivially on bothM’” andM”, the above exact sequence
shows thato — 1)°Py = 0, and we are done.

So I, must act trivially onM. Therefore the action ofy on M is
abelian, since it factors through the abelian grangl,. We would like
to show that this is impossible. Toward this end,\febe a Jordan—Holder
constituent oM, regarded as a[Gal(Q/Q)]-module. It is enough to show
that the action ofly on V is non-abelian. Lein be the annihilator in
T of V, which is a maximal ideal off. Since the characteristic oft
is N, which does not divideN — 1, m is not an Eisenstein prime df,
and the results of [18, Chap. Il] (see [26, Sect. 2] for a more succinct
discussion) show that is irreducible and isomorphic to the standard two-
dimensional representatign, : GallQ/Q) — GL(2, T/m) attached tam.
Now according to [26, Proposition 2.2y, is not finite atN (in the sense
of Serre’s article [29]). Hence the action kaf on p,, is trés ramifee (and
in particular non-diagonalizable) and is given matricially in the form

(63)



504 M. Baker

where x is the cyclotomic character. (For a proof see, for example, [8,
Proposition 8.2] and the last paragraph in the proof of [27, Proposition 5.1]).
Itisthen easy to see that the actior gfonV is non-abelian, a contradiction.

Remark 3.17. A nearly identical argument shows thatRf € JS (N) is

ramified atN, then there exists € Gal(Q/Q) such thatzPy # Py but
(0 —1)?Py = 0.

4. Generalizations

We now present some generalizations and applications of the Coleman—
Kaskel-Ribet conjecture.

Proposition 4.1. Let X be a modular curve covering som&(N) with
dg (N) > 0; for example, X could beXo(NM) or X;(NM) for any positive
integer M. Then the set of cusps ohforms a complete torsion packet.

Proof. It follows from the work of Manin—Drinfeld [17] and Kubert—
Lang [14] that the cusps oX lie in a common torsion packet. Further-
more, the fiber ofX — Xg(N) over a cusp ofXo(N) consists entirely of
cusps. Suppose, now, th@te X(Q) and that some multiple of the divisor
(Q)—(oc0) on Xis principal. Letd be the Jacobian of, and leti,, : X — J
(resp.Xo(N) — Jo(N)) be the Albanese embedding associated to the base
point co. There is a commutative diagram

XLJ

-

Xo(N) —== Jo(N)

which shows that the imag®’ of Q in Xg(N) is a torsion point onJy(N)
via the mapping... Sincegg (N) > 0, we know thaQ’ is a cusp. Therefore
its preimageQ on X is also a cusp. ]

The following corollary follows directly by combining Proposition 4.1
with a theorem of Mazur proved in [31, Theorem 0.4].

Corollary 4.2. Let X = Xo(NM) or X;(NM) with g3 (N) > 0, let J be
the Jacobian ofX, and leti,, : X — J be the embedding defined by
Q — [(Q) — (c0)]. Fix a noncuspidal poink € X whose associated
elliptic curve does not have CM. L&T ,(x) be theZ-linear span inJ of the
p-Hecke points associated 10 i.e., if To(X) = > _(y;), thenZT,(x) is the
subgroup of] generated by th@+ 1 pointsi (y;). Then for all sufficiently
large primesp, ZT,(X) has maximal rankp + 1.

Our next generalization concerns torsion pointsX(N). Let N be
a prime number. Whegd (N) > 1, leti,, be the embedding of$ (N) into
Jy (N) defined byQ ~ [(Q) — (c0)]. We will need the following lemma:
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Lemma 4.3. If XJ(N) is hyperelliptic andQ is a hyperelliptic branch
point, theni,.(Q) is not a torsion point onJ;"(N).

Proof. The hyperelliptic involutiorh operates oy (N) as—1, so that as
elements of]; (N) we have

[(Q) — (00)] = [(hoo) — (hQ)] = [(hoo) — (Q)]
and addind (Q) — (oc0)] to both sides of this equation,

2[(Q) — (09)] = [(hoo) — (c0)].

Thereforei . (Q) is a torsion point if and only i, (hoo) is a torsion point.
By Theorem 3.1(2)X¢ (N) is hyperelliptic exactly when it has genus 2.
For thoseN for which this is the case (hamelj{ =67, 73, 103 107,
167,191), the image of the cusg under the hyperelliptic involutiorn
is a noncuspidal rational point; in other words, we hlawe # oco. This can
be seen by looking at g-expansions of weight-two cusp formg faiN),
sincehoo = oo if and only if oo is a Weierstrass point 06§ (N), if and only
if there is a formf = a;q+a,q?+asg®+. .. in the two-dimensional space
ST (N), Q) such thatyy = a, = 0. The result follows from scrutinizing
the tables of [32]. (For somewhat larger prime valuel dfiowever, it seems
thatoo usuallyis a Weierstrass point o¥ (N). See [9] for a discussion of
this.)
Itis atheorem of Mazur [18, Ill, Corollary 1.5] that the torsion subgroup
of J (N)(Q) is zero. S (hoo) — (c0)], and thereford(Q) — (c0)], has
infinite order. O

Theorem 4.4. Wheng/ (N) > 2, co is the only pointQ € X{ (N)(Q)
such thati ,(Q) € J5 (N)'". In other words, the torsion packet off (N)
containing the cuspo is trivial.

Proof. We emulate the second proof of the CKR conjecture. We know by
Theorem 3.12 that od0+(N), every nonzero torsion point is ramifieddt

and therefore ifQ # oo maps to a torsion poirf® on J;"(N), P is ramified

at N. Thinking of J5 (N) as a subvariety ofo(N) (or using the remark at
the end of Sect. 3), it follows from our second proof of the CKR conjecture
that there exists a in an inertia group aN such thabP — P is nontrivial
and(o — 1)?P = 0. HenceXJ (N) is hyperelliptic andQ is a hyperelliptic
branch point. But this is impossible by Lemma 4.3. O

Our techniques extend in a rather straightforward manner to arbitrary
torsion packets oXXo(N) and Xg (N).

Theorem 4.5. If X{ (N) has a nontrivial torsion packet, thex (N) ad-
mits a map of degree at most 4R0. In particular, if N > 479then every
torsion packet orXg (N) is trivial.
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Proof. By Theorem 3.1(6), the first assertion implies the second. So we
assume thaP = [(Q1) — (Q2)] € JJ (N)®" with Q1 # Q, and hope to
deduce thai{ (N) admits a map of degree at most 4~b

The proof proceeds like our previous arguments. SiAds a nonzero
torsion point onchr (N) it is ramified atN, and reasoning as above we can
find ac € Gal(Q/Q) such thatsP # P and(c — 1)2P = 0. Therefore
(02Q1) + (Q1) + 2(6Q2) — (62Q2) — (Q2) — 2(¢Qy) is principal. This
implies that there is a rational function o€ (N) of degree at most 4. For
if not, we would have total cancellation in the above expression. But it is
easy to see that this would contradict the fact tRat# P. O

For Xo(N), we have the following result.

Theorem 4.6. If Xo(N) has a nontrivial torsion packet other than the
cuspidal packet0, oo}, thenXq(N) admits a map of degree at most 6Rb

In particular, if N > 311then every noncuspidal torsion packet Xg(N)

is trivial.

Proof. It follows from Theorem 3.1(7) that the first assertion implies the
second. So we assume that= [(Q1) — (Q2)] € Jo(N)*°" with Q1 # Q,
and hope to deduce thXi(N) admits a map of degree at most 6t

The proof proceeds like our previous arguments? I& Jo(N)[J] then
it is ramified atN, and as in the proof of Theorem 4.5 there exists a rational
function onXg(N) of degree at most 4.

It remains to consider the case whdtec Jo(N)[J]. We may assume
thatP € C + X; otherwise, as in the proof of Proposition 3.15, there exists
o € Gal(@Q/Q) such thatoP — P has order 2, which implies tha{y(N)
admits a rational function of degree at most 4. Wite= Pc + Ps with
Pc € CandPs € . Letm be the order ofPs. If 3 dividesm then there
exists ao € Gal(Q/Q) such thabP — P has order 3. It follows thaXq(N)
admits a rational function of order at most 6. So we can assume that 3 does
not dividem.

Notice that for allo € Gal(Q/Q), (c — 1)P = (6 — 1)Ps. If m > 2,
then Lemma 3.14 implies that there existr € Gal(@Q/Q) such that
(c—DP+(t—1)P=0but(c —1)P and(z — 1)P are nonzero. This
easily implies thatXy(N) admits a rational function of degree at most 4.

So finally, without loss of generality we assume thativides 2, i.e.,
thatP € C. Then(oc — 1)P = 0 for all o € Gal(@Q/Q), so eitherXy(N)
is hyperelliptic orQ; = 0 Q4 for all o, i.e., Q1 is defined over the rational
numbers. By the main result of [19], in the latter c§se(and similarlyQ,)
is a cusp, unlesdl = 37,43, 67, or 163. In each of these cases, there is
a single noncuspidal rational point & (N), which by uniqueness is fixed
by the Atkin—Lehner involutionw. But it is easy to see thaD; = wQ;
wheneverg™ > 0 using the fact that acts onJy(N)[J] as—1. So in fact
Q1 = Q,, and hence® = 0, in each of these cases. O
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Corollary 4.7. For all prime numbersN > 311, there is no regular differ-
ential onXp(N) vanishing to ordeRg— 2 at a single point, wherg denotes
the genus oKg(N).

Proof. Suppose, on the contrary, that some differentiahas divisor
(29 — 2)(Q) for some pointQ € Xo(N)(Q). This certainly implies that
Q is a Weierstrass point oXo(N). If Q is defined overQ, then results
of Mazur show thaiQ must be a cusp, but according to [22] the cusps on
Xo(N) are not Weierstrass points. Therefore there is seneGal(Q/Q)
such thatlow) = (29 — 2)(cQ) # (29 — 2)(Q). The ratio ofw andow is
a rational function orXq(N) with divisor (2g — 2)(Q) — (29 — 2)(¢Q), so
Q andoQ are in the same torsion packet #g(N). This is impossible by
Theorem 4.6.

0

We also mention the following result, whose proof is nearly the same as
the proofs of Theorems 4.5 and 4.6.

Theorem 4.8. Let Xo(N)@ (resp. X (N)@) map toJo(N) (resp. J; (N))
by the map sending)_ Q; to [>_(Q;) — Q'], whereQ" = > (Q)) is aQ-
rational point. Then ifQ # Q' in Xo(N)@(Q) (resp. X (N)@(Q)) maps
to a torsion point vid, thenXo(N) (resp. X§ (N)) admits a map of degree
at most3d (resp.2d) to P*.

Finally, we show how Theorems 4.5 and 4.6 can be used to obtain lower
bounds for certain Mordell-Weil ranks.

Given a positive integem, let n(m) be the smallest positive integer
n such thatGL(n, Z) has a finite subgroup of order divisible loy. For
example,n(1) = n(2) = 1, andn(3) = n(4) = 2. The following lemma
gives an explicit lower bound for(m):

Lemma 4.9. For na positive integer, leg,(2) = n+2[g]+2i°il[2—r}], and
for p an odd prime, lep,(p) = Zio[m]- LetB, =[] p#®, where

the product is taken over all primgs Finally, if mis a positive integer, let
3(m) be the smallest positive integesuch tham | g,. Thenp(m) > §(m).

Proof. See [3, Chap. IV, Theorem 2.1] for a proof, which is based upon
embeddingGL(n, Z) into GL(n, Zp) for each primep, and looking at the
valuations of matrix coefficients. O

As a special case of the lemma, we have the inequalipy > p— 1
whenever is a prime number.

Proposition 4.10. Let X be a curve of genug > 2 defined over a number
field K. Assume thak has aK-rational point P,. Let L be a finite Galois
extension oK, and suppose thad®,, ..., P, € X(L) is a complete set of
Galois conjugates, no two of which lie in a common torsion packeXon
Let J be the Jacobian oK. Then the Mordell-Weil rank af(L) is at least

n(m).
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Proof. We think of the pointsP, as elements ofi(L) via the Albanese

map sending a poinP e X(K) to the class of the divisofP) — (Py).
Suppose that the Mordell-Weil rank dfL) is n. Let A be the rankn free
Z-module J(L)/J(L)!". The Galois grougs of L/K acts onA, giving
rise to an injective homomorphistd < Aut(Z") = GL(n, Z), whereH
is G modulo the kernel of the action. Létbe the order ofH. Since no
two of the B are in the same torsion packet, the poils. .. , P, are
distinct elements ofA, and by assumptiorr, ... , Py, form a complete
orbit underH. Thereforem dividesh. SinceH is a subgroup oGL(n, Z),
it follows from the definition of our functiom thatn(m) < n. O

Combining Proposition 4.10 and Theorem 4.6, for example, we obtain:

Corollary 4.11. LetN > 311be a prime number, ldt be a Galois number
field, and letP € Xo(N)(L) be a noncuspidal point having exactiyGalois
conjugates. Then the Mordell-Weil rank&{N)(L) is at leastn(m).
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