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Abstract. Let N ≥ 23 be a prime number. In this paper, we prove a con-
jecture of Coleman, Kaskel, and Ribet about theQ-valued points of the
modular curveX0(N) which map to torsion points onJ0(N) via the cuspid-
al embedding. We give some generalizations to other modular curves, and
to noncuspidal embeddings ofX0(N) into J0(N).

1. Introduction

Let X be an algebraic curve of genusg≥ 1 defined over a number fieldK .
(For us, the wordcurveused without further qualifications will always mean
a complete, nonsingular, absolutely irreducible curve over a field.) Assume,
furthermore, thatX(K) is nonempty. Now choose an Albanese embedding
defined overK of X into its Jacobian variety. In other words, choose a
K -rational pointQ on X and define the mapi Q : X ↪→ J by sendingP to
the divisor class[(P)− (Q)].

Now define the setTQ(X) to be{P ∈ X(K̄) | i Q(X) ∈ Jtor}. In other
words,TQ(X) is the set ofK̄ -valued points ofX which map to torsion points
on J via i Q. Following [5], we callTQ(X) thetorsion packetcontainingQ.

If g = 1 (i.e., X is an elliptic curve), theni Q is an isomorphism, and
so of courseT is infinite. But if g ≥ 2, the situation is entirely different.
The Manin–Mumford conjecture (proven by M. Raynaud in 1983) says
that wheng ≥ 2, TQ(X) is a finite set of points. It also follows from
results of Raynaud that wheng ≥ 2, the cardinality ofTQ(X) is bounded
independently ofQ ∈ X(K̄). For a proof, see the appendix to [1].

There is a striking analogy between the Manin–Mumford conjecture, on
the one hand, and the Mordell conjecture on the other. For example, in [15],
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Lang conjectured thati(X) ∩ Γ′ is finite wheneveri is an embedding ofX
into J,Γ is a finitely generated subgroup ofJ(K̄ ), andΓ′ is its division group,
i.e., the set of pointsx in J(K̄) suchnx ∈ Γ for some positive integern.
This is now a theorem, as are various generalizations to higher-dimensional
varieties; see [23] for references and a summary of recent results in this
direction. Note that Lang’s conjecture implies both the Manin–Mumford
conjecture (takingΓ = 0) and the Mordell conjecture (takingΓ = J(K)
and consideringi(X) ∩ Γ ⊆ i(X) ∩ Γ′).

Determining the finite set ofK -rational points onX (“Explicit Mordell”)
for a “random” curveX is an extremely hard problem. Faltings’ proof of
the Mordell conjecture is ineffective, so even in principle this problem is
difficult. Some of the most celebrated cases whereX(Q) has been deter-
mined include the case whereX is a Fermat curve (A. Wiles) and where
X = X0(N) is a modular curve (B. Mazur). There are also small industries
devoted to solving this problem in the special case whereX has genus 1
or 2.

Explicitly determining the setT of torsion points onX (“Explicit Manin–
Mumford”) is also, in general, a difficult one. In this setting as well, the
appropriate test cases seem to be curves which either have small genus
(see [2] for some examples wheng = 2) or unusually rich arithmetic
structure. For an example of the latter, see [7], in which the authors determine
T whenX is a Fermat curve embedded inJ using a “cusp”.

In their joint paper [6], Coleman, Kaskel, and Ribet study the set of
points on the modular curveX0(N) (hereN ≥ 23 is a prime number) which
map to torsion points ofJ0(N) under the embeddingi∞ : P 7→ [(P)−(∞)].
(Here∞ denotes one of the cusps onX0(N).) We call the embeddingi∞
thecuspidal embeddingof X0(N) into J0(N).

For the reader’s convenience, we recall a few definitions.X0(N) is the
(compactified) coarse moduli space for the set of (cyclic) isogeniesE→ E′
of degreeN between elliptic curves. The algebraic curveX0(N) is defined
overQ, and the assumption thatN ≥ 23 simply means that the genus of
this curve is at least two. As a Riemann surface,X0(N) can be thought of as
the quotient of the complex upper half planeH by the action of the group
Γ0(N), at least once this quotient is suitably compactified by adding two
cusps, which areQ-rational points that we call 0 and∞. For additional
background material onX0(N) and its JacobianJ0(N), as well as a number
of important results we will use in what follows, see B. Mazur’s paper
“Modular Curves and the Eisenstein Ideal” ([18]).

The curveX0(N) has a natural involutionwN, the Atkin–Lehner invo-
lution, whose moduli interpretation is that it takes anN-isogenyE → E′
to the dual isogenyE′ → E. The quotient ofX0(N) by wN is denoted by
X+0 (N), which is also an algebraic curve defined overQ. We letg+0 (N) (or
simply g+) be the genus ofX+0 (N).

Wheng+ happens to be zero (which happens, forN ≥ 23, if and only
if N ∈ {23,29,31,41,47,59,71}), X0(N) is forced to be a hyperelliptic
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curve (double cover ofP1). It is a theorem of Ogg [21] that the converse
is almost true as well:X0(N) is hyperelliptic if and only ifg+ = 0 or
N = 37. The curveX0(37) is unusual in that the hyperelliptic involution
and Atkin–Lehner involution do not coincide.

We call the setT∞(X0(N)) of points Q on X0(N) such thati∞(Q) has
finite order thecuspidal torsion packeton X0(N). Certainly the two cusps
∞ and 0 are in this torsion packet; the image underi∞ of latter point has
ordern = NumN−1

12 in J0(N) by a well-known theorem of Ogg.
Furthermore, there can sometimes be other points inT∞ (X0(N)). A proof

of the following proposition can be found in [6, Proposition 1.1].

Proposition 1.1. Wheng+ = 0, the hyperelliptic branch points onX0(N)
(the points which ramify in the degree 2 coveringX0(N) → P1) are in
the cuspidal torsion packetT∞(X0(N)). WhenN = 37, the hyperelliptic
branch points are not inT∞(X0(N)).

The authors of [6] make the following guess about the cuspidal torsion
packet onX0(N), which we refer to as the Coleman–Kaskel–Ribet (CKR)
conjecture:

Conjecture 1.2. For all prime numbersN ≥ 23,

T∞(X0(N)) =
{ {0,∞} if g+ > 0
{0,∞} ∪ {hyperelliptic branch points} if g+ = 0 .

They prove this result in the special case whereN = 37 using results
aboutJ0(37) found in B. Kaskel’s thesis.

In this paper we give two proofs of Conjecture 1.2. In Sect. 2, we
summarize the work previously done on this problem, in particular the
results of [6] and [26]. We also discuss a few technical results needed later
on. In Sect. 3, we give our proofs of the CKR conjecture.

We now give a brief summary of the two proofs of the CKR conjecture.
In both arguments, a key fact is the theorem of Mazur which says that
the intersection (via the cuspidal embedding) ofX0(N) and the cuspidal
groupC of J0(N) consists precisely of the cusps ofX0(N). (The cuspidal
group is the cyclic subgroup ofJ0(N)(Q) generated by the difference of
cuspsi∞(0) = [(0) − (∞)]). Following [6], the idea of the first proof is
to take a torsion pointP on X0(N) and to decompose it into its primary
componentsPl ; if one can show that allPl are in C, then so isP and
we are done. We first analyze the cases where one ofP2, P3 is not in C.
This can happen only whenX0(N) is hyperelliptic or trigonal, and results
of [1] and [6] prove the conjecture for all such values ofN. Then, assuming
that N is large enough so thatP2, P3 are inC, we prove that there is an
elementσ ∈ Gal(Q/Q) which acts on the projectionP+ of P to J+0 (N) as
multiplication by−1, which is impossible unless the genus ofX+0 (N) is at
most 2. The cases whereg+ ≤ 2 are dealt with using the results of [6] and
calculations found in [32]. A slight complication arises in this method when
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N ramifies in the Hecke algebraT, but we find a way around this based on
bounds for the gonality ofX0(N) obtained in [1].

Our second proof of the CKR conjecture, which came into being shortly
after the first (due to insights of Ken Ribet), seems more ripe for generaliza-
tion. It is conceptually simper than the first proof; in particular, the trigonal
modular curves no longer play an exceptional role in this approach, and
Coleman’s theory ofp-adic integration as developed in [5] and [6] is not
needed. The idea here is to first deal with the case where the torsion point
P is annihilated by the Eisenstein ideal ofT, which can be done by using
results from [6] or by exploiting the Galois-module structure ofJ0(N)[I]
determined in [18] and [26]. In other cases, we use a result of Ribet which
says that a point not inJ0(N)[I] must be ramified atN. We then find an
elementσ in an inertia group atN which acts nontrivially onP, but such
that (σ − 1)2P = 0. For example, when the order ofP is prime toN, the
existence ofσ follows from Grothendieck’s Galois criterion for semistable
reduction (see [10, Proposition 3.5]). We then have(σ2P) + (P) = 2(σP)
as divisors onX0(N), which forcesX0(N) to be hyperelliptic andσP (and
henceP) to be a hyperelliptic branch point.

We have recently learned that A. Tamagawa has independently proved
Conjecture 1.2 by methods somewhat similar to those used in our second
proof.

Finally, we give proofs in Sect. 4 of some generalizations of the Coleman–
Kaskel–Ribet conjecture. For example, we determine the set of torsion
points on the modular curveX+0 (N) for all primesN, where the embedding
is via the unique cusp. We also study non-cuspidal embeddings of these
curves, and determine the complete set of torsion packets onX0(N) and
X+0 (N) whenN is sufficiently large.

AcknowledgementsI would like to thank my thesis adviser Robert Coleman for his continual
support and encouragement. Special acknowledgements are due to Ken Ribet — the second
proof I give of the CKR conjecture is based on emails from and discussions with him, and
Remarks 3.11 and 3.16 are derived from his ideas. Ribet also introduced the idea of utilizing
the interplay between torsion points onX0(N) andX+0 (N) while thinking about the specific
caseN = 389. In addition, he pointed out the elementary but very useful Lemma 3.5, and
taught me a number of things about modular curves and Galois representations. I would also
like to thank William Stein for helping me with a number of computations, Barry Mazur for
suggesting the application of my results to Mordell–Weil ranks, and the referee for many
helpful comments on my original manuscript. Typesetting in this paper was done in LATEX.

2. Torsion points onX0(N)

We begin with a summary of the paper [6] by Coleman, Kaskel, and Ribet.
The basic approach in [6] is to use the Chinese remainder theorem to

decompose the imageP in J0(N) of a torsion pointQ on the modular curve
X0(N) (N prime) as a sum of itsl-primary components,P := i∞(Q) =∑

Pl (wherePl ∈ J0(N)), and to try to show thatPl is in the cuspidal group
for as many primesl as possible. The cuspidal group is the cyclic groupC
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of ordern = Num( N−1
12 ) generated byi∞(0), which Mazur proves in [18,

Theorem (1)] is the full group of rational torsion points onJ0(N).
The following proposition follows from the main result of [19]; see [6,

Proof of Proposition 1.2] for a proof.

Proposition 2.1. The set of points onX0(N)mapping underi∞ to C is just
the set{0,∞} of cusps.

Let T = T0(N) denote the full Hecke algebra forX0(N); it is precisely
the ring of endomorphisms ofJ0(N) (see [18, II, Proposition 9.5]). The
main general result in [6] is the following theorem ([6, Theorem 1.3]),
which handles “most”l-primary components:

Theorem 2.2. Let Q be an element ofT∞(X0(N)), and let l 6= 2,3 be
a prime for whichPl does not belong to the cuspidal groupC. Then at least
one of the following holds: (i)l = N; (ii) l satisfies5 ≤ l < 2g, X0(N)
does not have ordinary reduction atl , and l is ramified inT (in the sense
that T/lT is not a product of fields).

The proof is based on Coleman’s theory ofp-adic integration (see [6]
and [5]) plus the following theorem [6, Theorem 2.2] proved using the
techniques of [18]:

Theorem 2.3. Supposel 6= 2, and thatP is a torsion point onJ0(N). If P
is unramified atl , thenPl ∈ C.

Ken Ribet’s papers [26], [27] suggest additional techniques for tack-
ling the Coleman–Kaskel–Ribet conjecture. Many of Ribet’s results involve
a certain hypothesis (*), which we now explain. We recall that the Hecke
algebraT = T0(N) has the property thatT ⊗Q is a product of totally real
number fieldsKi , andT itself has finite index in its normalizatioñT, which
is the product of the maximal ordersOi of Ki . By the discriminant ofT, we
mean the product of the discriminants of theKi multiplied by the square
of the index ofT in T̃. By definition,T is unramified at a primel if l does
not divide the discriminant ofT; this is equivalent to saying thatT/lT is
a product of finite fields. Ribet’s auxiliary hypothesis is:

(*) The primeN is unramified in the Hecke algebraT.

William Stein has done computer-aided computations (see [32]) which
establish the following proposition:

Proposition 2.4. Condition (*) is satisfied by allN < 5000 except for
N = 389. The prime number389 is ramified inT0(389), but unramified in
T+0 (389) (which we will define shortly).

One result (Theorem 1.6 of [26]) which involves hypothesis (*) is:
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Theorem 2.5. Let N andl 6= N be prime numbers. SupposeP ∈ J0(N)tor

is such that itsl-primary componentPl is not contained in the cuspidal
group C (which is equivalent, by [18, Theorem (1)], to supposing that
Pl 6∈ J0(N)(Q)). Assume either thatN does not divide the order ofP or
that N satisfies hypothesis (*). Then there is an elementσ ∈ Gal(Q/Q)
such thatσP− P has orderl in J0(N).

It is useful to exploit the interplay between torsion points onX0(N) and
its quotient curveX+0 (N). The intuitive reason whyX+0 (N) is in many ways
simpler thanX0(N) is that it is “non-Eisenstein”; we will make this more
precise in a moment.

We discuss now some facts aboutX+0 (N) that we will use in what follows.
There is a unique cusp at infinity onX+0 (N), which we denote by∞+,

or simply∞ if no confusion is likely to arise, and the fiber of the map
π : X0(N) → X+0 (N) over∞+ is just {0,∞}. Let J+0 (N) be the Picard
(Jacobian) variety ofX+0 (N). The fact thatJ+0 (N) is also the Albanese
variety of X+0 (N) implies there is a commutative diagram

X0(N) //
i∞

��

π

J0(N)

��

π∗

X+0 (N) //
i∞ J+0 (N)

wherei∞ : X+0 (N)→ J+0 (N) is the map which on closed points takesQ to
[(Q)− (∞+)]. The mapπ∗ takes a point inJ0(N) represented by the degree
zero divisor

∑
Pi −∑Qi to the class of the divisor

∑
π(Pi )−∑π(Qi ),

thought of as a point ofJ+0 (N). Note that a point ofX0(N) mapping to
a torsion point ofJ0(N) is sent byπ to a point of X+0 (N) mapping to
a torsion point ofJ+0 (N).

The mapπ∗ : J+0 (N) → J0(N) induced by Picard functoriality is
a closed immersion (sincewN is a degree 2 automorphism with fixed points),
soπ∗ identifiesJ+0 (N) with an abelian subvariety ofJ0(N). The composite
mapπ∗ ◦ π∗ : J0(N)→ J0(N) is easily seen to be the map 1+ w, so that
J+0 (N) is naturally identified with the subvarietyJ+ := (1+ w)J0(N) of
J0(N) (see [18, II, Sect. 10] for another discussion of this).

We also note thatJ− := (1− w)J0(N) is naturally identified with the
kernel of multiplication by 1+w on J0(N). Indeed,J− is certainly contained
in this kernel; in fact, for dimension reasonsJ− is the connected component
of the identity in this kernel. But ker(1+w) is connected (this is equivalent
to the fact that the mapπ∗ is injective).

For future reference, we define the Hecke algebraT+ to be the image
of T in the endomorphism ring ofJ+0 (N) (thought of as the subvariety
(1+w)J0(N) of J0(N)).
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Recall thatC is the cuspidal subgroup ofJ0(N), which is the cyclic
subgroup generated by the pointc := i∞(0) ∈ J0(N), i.e., by the divisor
(0)− (∞). Sincew(c) = −c, 1+w (and henceπ∗) annihilatesC.

Furthermore, letI be the Eisenstein ideal ofT (see [18, II, Sect. 9]). It is
the ideal generated byp+1−Tp for pnot dividingN and by 1+w. The kernel
J0(N)[I] of the Eisenstein ideal is a finite Galois module containingC. It,
too, is annihilated byπ∗, since 1+w ∈ I. It follows that ifm is any maximal
ideal ofT containingI (i.e.,m is Eisenstein),π∗(J0(N)[m]) = 0.

A stronger way of expressing the fact thatX+0 (N) is “non-Eisenstein”
is to say thatJ+0 (N)[m]=0 wheneverm is an Eisenstein prime. When the
residue characteristicp of m is different from 2, this is clear, sincew acts
as+1 on J+0 (N) and as−1 on J0(N)[m]. When p = 2 this is more subtle
and is established in the proof of [18, II, Proposition 17.10].

Along similar lines, we have the following proposition.

Proposition 2.6. Let p be an odd prime. The Jordan–Hölder factors (as
a module forT+[Gal(Q/Q)]) of J+0 (N)[p] are all two-dimensional, and
are isomorphic to the representationsJ0(N)[m] for m a (non-Eisenstein)
maximal ideal ofT containing1−w.

Proof. Let V be such a Jordan–Hölder factor – its annihilatorm′ is a max-
imal ideal ofT+ of characteristicp. Clearly 1− w ∈ m′, and sincep 6= 2,
1+w 6∈ m′. The inverse image ofm′ in T is a maximal idealm containing
1− w but not 1+ w. We claim thatJ0(N)[m] = J+0 (N)[m] = V. Indeed,
V is a subquotient ofJ+0 (N)[m], and hence ofJ0(N)[m], and it is stable
under the action ofT[Gal(Q/Q)]. Sincem is not Eisenstein,J0(N)[m] is
irreducible and two-dimensional by [18, II, Proposition 14.2]. We must then
haveV = J+0 (N)[m] = J0(N)[m] as claimed. ut

For each maximal idealm of T+, we can form them-divisible group
J+0 (N)m := ∪J+0 (N)[mi ]. If the residue characteristicp of m is different
from 2, then them-adic Tate moduleHom(Qp/Zp, J0(N)+m) is free of rank 2
overT+

m
. This follows on replacingX0(N) andJ0(N) by X+0 (N) andJ+0 (N)

in the proof of [18, II, Lemma 15.1].
We also have the following result aboutJ+0 (N) (compare with Theo-

rem 2.5).

Theorem 2.7. Let N andl 6= N be prime numbers. SupposeP ∈ J+0 (N)
tor

is such that itsl-primary componentPl is nonzero. Assume either thatN
does not divide the order ofP or that N is unramified inT+. Then there is
an elementσ ∈ Gal(Q/Q) such thatσP− P has orderl in J+0 (N).

Proof. If N is unramified inT, this follows immediately from Theorem 2.5
from the fact thatJ+0 (N) can be thought of as a subvariety ofJ0(N) whose
intersection withJ0(N)[I] is trivial. Otherwise, we note that Ribet’s proof
of Theorem 2.5 followsmutatis mutandisfor J+0 (N). In fact, Theorem 2.7
is actually easier to prove than Theorem 2.5: in view of Theorem 3.12 of
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this paper, the case in Ribet’s proof in whichPl is unramified atN does not
occur. ut

3. Proof of the Coleman–Kaskel–Ribet conjecture

In this section we prove the Coleman–Kaskel–Ribet conjecture. In fact,
we give two proofs of this conjecture, with the hope that the ideas used
in both proofs will be useful in other contexts. In the following section
we apply similar arguments to determine torsion points onX+0 (N) in the
cuspidal embedding, and also to study arbitrary torsion packets onX0(N)
andX+0 (N).

The key idea in the first proof of the CKR conjecture is to useπ to
project torsion points onX0(N) to torsion points onX+0 (N), and then to use
the fact thatGal(Q/Q) acts in a particularly simple way on torsion points
of J+0 (N).

Before beginning the proof, we collect here some facts which we will
need. The first result concerns maps of low degree fromX0(N) andX+0 (N)
to P1.

Theorem 3.1. Let N ≥ 23 be a prime number.
1. X0(N)C is hyperelliptic (admits a degree 2 map toP1

C
)

iff N ∈ {23,29,31,37,41,47,59,71}.
2. X+0 (N)C is hyperelliptic iffg+0 (N) = 2

iff N ∈ {67,73,103,107,167,191}.
3. X0(N)C is trigonal (admits a degree 3 map toP1

C
)

iff N ∈ {23,29,31,37,43,53, 61}.
4. If X+0 (N)C is trigonal, thenN ≤ 311.
5. If X0(N)C admits a map of degree at most 4 toP1

C
thenN ≤ 191.

6. If X+0 (N)C admits a map of degree at most 4 toP1
C

thenN ≤ 479.
7. If X0(N)C admits a map of degree at most 6 toP1

C
thenN ≤ 311.

8. If X+0 (N)C admits a map of degree at most 6 toP1
C

thenN ≤ 911.

Proof. Part (1) follows from the main result of [21], and part (2) from the
main result of [11]. The rest of the assertions are proved in Chap. 3 of [1].
We note that similar assertions have recently been proved by Hasegawa–
Shimura (see [12], [13]) and by Nguyen–Saito (see [20]). ut

The following theorem is proved in Chap. 5 of [1] by a potpourri of
techniques. For the reader’s benefit, we remark that it is also a consequence
of the second proof we give of the Coleman–Kaskel–Ribet conjecture, which
unlike our first proof does not treat the trigonal modular curvesX0(N) as
exceptional cases.

Theorem 3.2. The CKR conjecture is true for the trigonal modular curves
X0(N), i.e., the curvesX0(N) with N ∈ {23,29,31,37,43,53,61}.
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From now on,N will always denote a prime number such thatg0(N)
(the genus ofX0(N)) is at least 1. Often in our applicationsg0(N) will in
fact be at least 2.

If p is a prime, we denote byTp(J0(N)) thep-adic Tate module ofJ0(N).
If p > 2, the results of [18, II, Sects. 14–15] show thatTp(J0(N)) is free
of rank 2 overT p := T ⊗ Zp, whereT is the Hecke algebra associated to
J0(N). Choosing a basis forTp(J0(N)) overT p, we can view the action of
Gal(Q/Q) on Tp(J0(N)) as providing a continous representation

ρ =
∏

ρmi : Gal(Q/Q)→ GL(2,T p) ∼=
∏

GL(2,Tmi ),

where themi are the maximal ideals ofT lying over p. We also have
a continuous representation

ρ =
∏

ρ
mi
: Gal(Q/Q)→

∏
GL(2,T/mi ) ∼= GL(2,

∏
T/mi).

For J+0 (N), we obtain analogous representations

ρ+ =
∏

ρ+
mi
: Gal(Q/Q)→ GL(2,T+p ) ∼=

∏
GL(2,T+

mi
),

and

ρ+ =
∏

ρ+
mi
: Gal(Q/Q)→

∏
GL(2,T+/mi ) ∼= GL(2,

∏
T+/mi ).

Let F be the product of finite fields
∏

T/mi , and letF+ be
∏

T+/mi .
By an inertia group atp, we mean the inertia subgroup ofGal(Q/Q)

at some prime lying overp. By a wild inertia group atp, we mean the
p-Sylow subgroup of an inertia group atp of Gal(Q/Q); see [30, Sect. 1.4]
for a discussion ofp-Sylow subgroups of profinite groups. Ifp 6= N, let
Xp be the normal closure insideGal(Q/Q) of an inertia group atp, and if
p= N let Xp be the normal closure of a wild inertia group atN.

Also, if p 6= N, then setΓp = Z∗p, and setΓN = 1+ NZN ⊆ Z∗N. Let
Γp be the reduction ofΓ mod p; i.e.,Γp equals(Z/pZ)∗ whenp 6= N and
1 whenp= N.

We have the following results concerning the imagesρ(Xp) andρ(Xp):

Theorem 3.3. Supposep ≥ 5.
1. Assumep does not divideN − 1. Then the imageρ(Xp) of Xp is the

group of matrices inGL(2,F) having determinant inΓp (embedded
diagonally inF).

2. Assume, in addition top - N−1, that p is unramified inT. Thenρ(Xp)
is the group of matrices inGL(2,T p) having determinant inΓp.

3. The imageρ+(Xp) is the group of matrices inGL(2,F+) having deter-
minant inΓp.

4. Assume thatp is unramified inT. Thenρ+(Xp) is the group of matrices
in GL(2,T+p ) having determinant inΓp.
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Proof. When p 6= N, part (1) follows by combining Proposition 6.3 and
Theorem 3.4 of [27]. Whenp = N, the assertion of part (1) is estab-
lished during the proof of [26, Proposition 6.4]. Part (2) is proved in the
remark following [27, Theorem 6.4] whenp 6= N, and in the proof of [26,
Proposition 6.4] whenp= N.

The assertions in (3) and (4) are proved similarly. We provide the reader
with the following guide for translating the required results forJ0(N) to
results forJ+0 (N).

To prove part (3) whenp 6= N, we need to check that the hypotheses of
Proposition 6.3 and Theorem 3.4 of [27] are satisfied byρ+. It suffices to
note that allρ+

mi
are irreducible (since there are no Eisenstein primes inT+),

and thatF+ = ∏T+/mi is generated by the traces of elementsρ+(σ) for
σ ∈ Gal(Q/Q) (since the analogous statement is true forT). Whenp= N,
part (3) also follows from Proposition 6.3 and Theorem 3.4 of [27] (with
the hypotheses verified as above), together with the argument in the proof
of Proposition 6.4 of [26]. Finally, part (4) follows from part (3) together
with Proposition 4.2 of [27]. ut
Remark 3.4. It is a consequence of the results of [16] that the assertions of
parts (2) and (4) of Theorem 3.3 are true even without the hypothesis that
p is unramified inT or T+, respectively. We will not use the results of [16]
in any essential way in this paper, though appealing to them makes some of
our arguments shorter.

The proof of the following lifting lemma is reminiscent of the techniques
of [28, IV-23, Lemma 3].

Lemma 3.5. Let p be an odd prime, letA be a commutative ring with
identity, and letRbe a nilpotent ideal inA containingp. If H is a subgroup
of GL(n, A) whose imageH in GL(n, A/R) contains the homothety−1,
thenH contains−1.

Proof. We are given thatH contains−1. This means thath ≡ −1 modR,
i.e., there existh ∈ H andr ∈ M(n, R) such thath = −1+r . Since−1 and
r commute, one can use the binomial theorem to see thathp ≡ −1 modR2,
and more generallyhpi ≡ −1 mod Ri+1. SinceRi = 0 for i sufficiently
large, it follows that the groupH contains−1. ut

Though we originally conceived of the next result as an application of
the results of [16], it follows from the much easier Theorem 3.3(1), together
with the elementary Lemma 3.5.

Proposition 3.6. Let p ≥ 5 be prime, and suppose thatp does not divide
N−1. Then the imageρ(Xp) ⊆ GL(2,T⊗Zp) contains the homothety−1.

Proof. Let T = T ⊗ Zp, and forn ≥ 1, let A be the Artinian ringT/pnT.
If H denotes the image ofρ(Xp) in GL(2, A), then it suffices to prove that
−1 ∈ H for all n. Let Rbe the radical ofA, i.e., the set of nilpotent elements
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in A. Then p ∈ R, and A/R is isomorphic toF := ∏T/mi , a product of
finite fields of characteristicp. By Lemma 3.5, it suffices to prove that the
imageH of H insideGL(2, A/R) contains−1. In fact, H contains all of
SL(2, A/R), as follows from Theorem 3.3(1). ut

Similarly, we have the following:

Proposition 3.7. Let p ≥ 5 and N be primes such thatg+0 (N) > 0.
(We allow the case wherep divides N − 1). Then the imageρ(Xp) ⊆
GL(2,T+ ⊗ Zp) contains the homothety−1.

Proof. This is proved in the same way as the previous Proposition, replacing
the reference to Theorem 3.3(1) by a reference to Theorem 3.3(3).ut
Corollary 3.8. If p ≥ 5 and N are prime numbers withg+0 (N) > 0, then
there exists aσ ∈ Gal(Q/Q) which acts as−1 on all torsion points of
J+0 (N) of p-power order and as+1 on torsion points of order prime top.

Proof. For p 6= N, this follows from Proposition 3.7, together with the
criterion of Ńeron–Ogg–Shafarevich. AtN this follows from the fact that
elements of inertia groups atN act unipotently on prime-to-N torsion,
so that the imageρl(IN) of any wild inertia group atN under anl-adic
representation withl 6= N is both pro-l and pro-N, hence trivial. ut

We also need the following easy lemma.

Lemma 3.9. Let X be a curve of genus at least 2 mapping to its Jacobian
via φ : P 7→ [(P) − (P0)] for some fixedP0 ∈ X. If there exists a point
P 6= P0 on X such that−φ(P) is in the image ofX, thenX is hyperelliptic
and P0 is a hyperelliptic branch point.

Proof. We are given that(P0)− (P) is linearly equivalent to(Q)− (P0) for
some pointQ. Therefore there is a rational function onX with divisor equal
to (P)+ (Q)−2(P0), and sinceP 6= P0 this forcesX to be hyperelliptic.ut

We now give our first proof of the Coleman–Kaskel–Ribet conjecture.

Theorem 3.10. Conjecture 1.2 is true for allN.

Proof. We first prove the conjecture under the hypothesis (*), which says
that N does not divide the discriminant of the Hecke algebraT.

Suppose we have a pointQ ∈ X0(N)(Q) such thati∞(Q) is a torsion
point of J0(N). Write

P := i∞(Q) = P2 + P3+ PN +
∑

l 6=2,3,N

Pl ,

wherePl hasl-power order inJ0(N) for all primesl .
If all Pl ∈ C, then P ∈ C, which by Proposition 2.1 implies that

Q ∈ {0,∞}. If P2 6∈ C, then by Theorem 2.5 [since we are assuming (*)]
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there exists aσ ∈ Gal(Q/Q) such thatσP − P has order 2 inJ0(N).
SinceσP − P = [(σQ) − (Q)], it follows that X0(N) is hyperelliptic
andQ is a hyperelliptic branch point. This possibility is already accounted
for in the statement of the Coleman–Kaskel–Ribet conjecture. (Recall from
Proposition 1.1 that the hyperelliptic branch points onX0(37) are not torsion
points.)

If P3 6∈ C, then there exists aσ ∈ Gal(Q/Q) such thatσP − P
has order 3. This means thatX0(N) is trigonal, i.e., admits a degree
three morphism toP1. According to Theorem 3.1(3), this implies that
N ∈ {23,29,31,37,43,53, 61}. But Theorem 3.2 asserts that the CKR
conjecture is true for these values ofN.

So assume, then, thatP2, P3 ∈ C. Let Q+ = π(Q) ∈ X+0 (N). Since the
groupC is annihilated byπ∗, we see that

P+ = i∞(Q+) =
∑

l 6=2,3,N

P+l + P+N ,

where P+l = π∗(Pl). By Corollary 3.8, we can find an elementσ ∈
Gal(Q/Q) such thatσP+ = −P+, so that−i∞(Q+) lies on the image
of X+0 (N). By Lemma 3.9, this implies thatX+0 (N) is sub-hyperelliptic,
i.e., has genus 0 or 1 or is hyperelliptic. Wheng+ ≥ 2, it also implies that
infinity is a hyperelliptic branch point onX+0 (N), which it is not (see the
proof of Lemma 4.3 below).

So we can assume thatg+ ≤ 1. One can then explicitly check that the
CKR conjecture is true wheneverg+ ≤ 1 (the largestN for which X+0 (N)
has genus 0 or 1 isN = 131). For according to the tables in [32], for each
N such thatg+ ≤ 1 there are no primesp between 5 and 2g (g=genus
of X0(N)) which divide the discriminant of the Hecke algebraT and are
simultaneously non-ordinary. By Theorem 2.2, this shows thatP = PC+PN
with PC ∈ C. We then havePN = 0 by [6, Theorem 3.15], which shows
that P ∈ C and henceQ is a cusp.

This proves the CKR conjecture for allN satisfying hypothesis (*). We
recall from Proposition 2.4 that this hypothesis is satisfied for all primes
N < 5000 except forN = 389, and that 389 does not divide the discriminant
of T+0 (389).

Projecting a potential torsion pointQ on X0(389) right away toX+0 (389),
we see from the above arguments thatQ is a cusp unlessX+0 (389) (which
has genus 11) admits a map of degree 2 or 3 toP1. But according to
Theorem 3.1(2,4), this is not the case.

The key thing to notice in general when (*) is not necessarily satisfied
is that we can still apply Theorem 2.7 to a torsion point when the order of
that point is not divisible byN.

Take a torsion point

P = i∞(Q) = P2+ P3 + PN +
∑

l 6=2,3,N

Pl



Torsion points on modular curves 499

on the image ofX0(N) as before. We now project right away toX+0 (N), so
that we haveP+ = i∞(Q+) = P+2 + P+3 + P+N + R+, where

R+ =
∑

l 6=2,3,N

P+l

with the variousP+l defined in the obvious way. By Corollary 3.8, there is a
σ ∈ Gal(Q/Q) such thatσP+ = P+2 + P+3 − P+N −R. SoP′ := P++σP+
is equal to 2P+2 + 2P+3 .

Now this torsion point onJ+0 (N) has order prime toN, and so Theo-
rem 2.7 applies to it.

If 2 P+2 6= 0, we find that there exists aτ ∈ Gal(Q/Q) such thatP′′ :=
τP′ − P′ has order 2 inJ+0 (N). We haveP′′ = [(τQ+)+ (τσQ+)− (Q+)−
(σQ+)], so the divisor 2(τQ+)+2(τσQ+)−2(Q+)−2(σQ+) is principal.
This divisor is either identically zero, or elseX+0 (N) admits a map toP1

of degree at most four. The first case is impossible, because it implies that
eitherQ+ = τQ+ andσQ+ = τσQ+, or Q+ = τσQ+ andσQ+ = τQ+,
but either way we would haveP′′ = 0 whereas we assumedP′′ had order 2.
So X+0 (N) admits a map of degree at most four toP1.

Similarly, if 2P+3 6= 0, we find thatX+0 (N) admits a map of degree at
most six toP1. This implies thatN ≤ 911 by Theorem 3.1(8). Since we
have already established the CKR conjecture for primes less than 5000, we
reduce to the case whereP′ = 0. But thenP+ = −σP+, hence−i∞(Q+) is
in the image ofX+0 (N) and by Lemma 3.9,X+0 (N) is sub-hyperelliptic. But
we have already dispensed of this case, so our first proof of the Coleman–
Kaskel–Ribet conjecture is complete. ut
Remark 3.11. Since the proof of [6, Theorem 3.15] is rather complicated,
the reader may prefer the following argument to see thatPN = 0 when
g+ ≤ 1. According to [27, Theorem 3.2] (or the proof of [26, Proposi-
tion 6.4]), if ρ : Gal(Q/Q)→ GL(2,TN) is the representation giving the
action of Galois on the Tate moduleTN(J0(N)) and ρ : Gal(Q/Q) →
GL(2,T/NT) is its reduction modN, then the image ofρ is precisely
{M ∈ GL(2,T/NT)|det(M) ∈ (Z/NZ)∗}. So if PN 6= 0, then it is easy to
see thatPN (and henceP) has at leastN2 − 1 Galois conjugates (see [1,
Lemma 5.1] for the argument). On the other hand, sinceN is unrami-
fied in T, we know from [26, Proposition 6.4] that the image ofρ equals
{M ∈ GL(2,TN)|det(M) ∈ Z∗N}. In particular, for each integerd such that
(d, N) = 1, there is an elementσ ∈ Gal(Q/Q) such thatσ acts onPN as the
homothetyd. We taked = (1−n); in this case, sincePC is killed byn andσ
acts trivially onPC, it follows thatσ acts as the homothety 1−n on P itself.
An intersection theory argument (see [6, Proposition 4.2]) shows thatP can
have at mostgd2 = g(n− 1)2 Galois conjugates, whereg is the genus of
X0(N). Therefore ifPN 6= 0, the inequalityN2−1≤ g(n−1)2 holds. Using
the easy estimatesg ≤ n−1 andn < N

12, we find thatN2−1< N3

123−1, and
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so N ≥ 1728. Since we are assuming thatN ≤ 131, it follows thatPN = 0
as claimed.

Before discussing the second proof, we consider the special case
i∞(X0(N)) ∩ J0(N)[I].

We begin with a review of some well-known facts aboutJ0(N)[I], the
kernel of the Eisenstein ideal; for proofs see [18, Chap. II] and [26, Sect. 3].
As a group,J0(N)[I] has ordern2, wheren = NumN−1

12 , and as a Hecke
module, J0(N)[I] is free of rank 2 overT/I ∼= Z/nZ. Also, J0(N)[I]
contains both the cuspidal subgroupC and the Shimura subgroupΣ. When
n is odd, J0(N)[I] is in fact equal to the direct sum ofC andΣ. Whenn
is even, however, the sumC + Σ is no longer direct and has index 2 in
J0(N)[I]. The Galois action ofGal(Q/Q) on C is trivial and onΣ is given
by the cyclotomic characterχ : Gal(Q/Q)� Gal(Q(µn)/Q)

∼→(Z/nZ)∗.
We have the following very useful result:

Theorem 3.12. J0(N)[I] is exactly the set of torsion points ofJ0(N)which
are unramified atN. On J+0 (N), there are no nonzero torsion points unram-
ified at N.

Proof. The first statement is proved in [26, Proposition 3.1, Proposi-
tion 3.3]. The second statement follows from the same proof; it is in fact
easier to prove than the first statement, so for the reader’s convenience we
give a proof here. Suppose thatP is a nonzero torsion point inJ+0 (N)(Q),
and letM be theT+[Gal(Q/Q)]-submodule ofJ+0 (N)(Q) generated byP.
Let V be a Jordan–Hölder constituent ofM, and letm be its annihilator,
which is a maximal ideal inT+. By Proposition 2.6,V is isomorphic to
J0(N)[m] for some non-Eisenstein maximal idealm of T having character-
istic p. Furthermore, [26, Proposition 2.2] and the discussion preceding it
show that all suchJ0(N)[m] are ramified atN (since if p 6= N, then this is
equivalent to the statement thatJ0(N)[m] is not finite atp, and if p = N,
the determinant ofJ0(N)[m] is the modN cyclotomic character, which is
ramified atN). It follows that P is ramified atN. ut
Lemma 3.13. SupposeX0(N) is hyperelliptic and thatQ is a hyperelliptic
branch point. Theni∞(Q) = [(Q)− (∞)] 6∈ J0(N)[I].
Proof. WhenN = 37, the hyperelliptic branch points do not map to torsion
points of J0(N) at all by Proposition 1.1. So we can assume thatN 6= 37.
In this case, the hyperelliptic involution coincides with the Atkin–Lehner
involutionw.

One way to conclude is to note that a hyperelliptic branch point corres-
ponds to anN-isogenyE→ E, whereE is an elliptic curve with complex
multiplication by an order in the ring of integers ofQ(

√−N). The field of
definition of this point containsQ(

√−N), which is ramified atN. Hence
i∞(Q) cannot be inJ0(N)[I], which is unramified atN.
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Here is an alternative argument. LetP = i∞(Q) ∈ J0(N)tor. If P ∈ C
then we are done, since by Proposition 2.1,i−1∞ (C) consists only of the cusps,
which are not hyperelliptic branch points. (In fact, the cusps onX0(N) are
never Weierstrass points, see [22]). OtherwiseQ is not rational, so there
is someσ ∈ Gal(Q/Q) such thatQ′ = σQ 6= Q is another hyperelliptic
branch point. Then the divisor(Q)−(Q′) has order 2 inJ0(N). On the other
hand,i∞(Q) = [(Q)−(Q′)]+i∞(Q′), so at least one ofP = i∞(Q), Pσ =
i∞(Q′) has even order; since these points are conjugate, both have even
order. Sincew is the hyperelliptic involution onX0(N), which acts onJ0(N)
as−1, we have[(Q)− (∞)] = [(w∞)− (wQ)] = [(0)− (Q)] as elements
of J0(N). Adding [(Q) − (∞)] to both sides, we get 2P = [(0) − (∞)],
which is a generator of the cyclic groupC of ordern. If P ∈ J0(N)[I], then
the order ofP dividesn. But we have just shown that 2P has ordern, which
is a contradiction: since the order ofP is even, the order ofP is twice the
order of 2P. ut
Lemma 3.14. If m is a positive integer not dividing 6, then there exist
elementsa,b ∈ (Z/mZ)∗ with a+ b= 2 anda 6= 1,b 6= 1.

Proof. By the Chinese remainder theorem, the result is true form if it is
true for at least one prime powerpt exactly dividingm. By assumption we
can choose such apt > 3. If p 6= 3, then−1 and 3 satisfy the requirements
of the lemma. Otherwise, ifp= 3, we can takea andb to be−2 and 4. ut
Proposition 3.15. Let N ≥ 23 be prime. The only pointsQ ∈ X0(N)(Q)
such thatP = [(Q)− (∞)] lies in J0(N)[I] are 0 and∞.

Proof. We provide two proofs of this result. First, we note that ifP ∈
J0(N)[I], then under the projectionπ∗, P is sent to zero. Therefore, when
the genus ofX+0 (N) is positive (so that the mapX+0 (N) → J+0 (N) is
an embedding), we haveQ = 0 or Q = ∞ as desired. The genus of
X+0 (N) is zero exactly whenX0(N) is hyperelliptic andN 6= 37, i.e., when
N = 23,29,31,41,47,59, or 71.

Suppose, then, thatP ∈ J0(N)[I] (so its order dividesn = NumN−1
12 )

and thatg+0 (N) = 0. Letg be the genus ofX0(N). For each primeN in the
above list, one can check, using [32], thatn is prime to 3, and that there are
no primes between 5 and 2g which are simultaneously non-ordinary and
ramified in the Hecke algebra. By Theorem 2.2 (which is based onp-adic
integration techniques of [5]), it follows thatP = P2 + PC, with P2 of
2-power order andPC ∈ C.

If P2 6∈ C, then by Theorem 2.5 there exists aσ in an inertia group
for 2 in Gal(Q/Q) such thatσP − P has order 2. This means that the
divisor 2(σQ) − 2(Q) is principal, soQ is a hyperelliptic branch point.
But the hyperelliptic branch points ofX0(N) do not map toJ0(N)[I] by
Lemma 3.13.

So we must haveP2 ∈ C and thereforeP ∈ C. But as we know from
Proposition 2.1, the set of points onX0(N) mapping toC is always equal to
{0,∞}. This proves the result.
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Here is another proof, which does not rely on any facts about ramified
torsion points on curves derived from [5].

We again may assume, after projecting toX+0 (N), that X0(N) is hyper-
elliptic with N 6= 37. And proceeding as above we see thatP2 ∈ C, or else
X0(N) would be hyperelliptic andQ would be a hyperelliptic branch point
of X0(N), which is impossible. It follows thatP ∈ C+Σ.

Sincei−1∞ (C) = {0,∞}, we may assume thatP2 ∈ C but P 6∈ C, and
therefore we may writeP = PC + PΣ, where PC ∈ C and PΣ ∈ Σ is
nonzero and of odd orderm.

In fact, we may assume thatm > 3, becausen is prime to 3 for allN
such thatg+ = 0, a fact we have already noticed above.

SinceC has a trivial Galois action, it is easy to see that(σ − 1)P =
(σ − 1)PΣ for all σ ∈ Gal(Q/Q). Also, sinceGal(Q/Q) acts onΣ via the
mod n cyclotomic character, it follows that for anyµ ∈ (Z/mZ)∗ we can
find σ ∈ Gal(Q/Q) such thatσPΣ = µPΣ.

We conclude from Lemma 3.14 that there existσ, τ ∈ Gal(Q/Q) such
that(σ −1)PΣ+ (τ −1)PΣ = 0 but(σ −1)PΣ and(τ −1)PΣ are nonzero.
It follows that (σQ) + (τQ) − 2(Q) is a nonzero principal divisor on
X0(N), and hence thatQ is a hyperelliptic branch point. But this contradicts
Lemma 3.13. ut

With this proposition in hand, we give the second proof of the Coleman–
Kaskel–Ribet conjecture.

Proof. SupposeQ ∈ X0(N)(Q) maps to a torsion pointP of J0(N). If
P ∈ J0(N)[I], then Q ∈ {0,∞} by Proposition 3.15. So we can assume
that P 6∈ J0(N)[I], which by Theorem 3.12 implies thatP is ramified atN.
We claim that there is an elementσ ∈ Gal(Q/Q) such thatσP 6= P but
(σ − 1)2P = 0. Given this, it is straightforward to conclude: in terms of
divisors this means that(σ2Q)+(Q)−2(σQ) is linearly equivalent to zero.
ThereforeX0(N) is hyperelliptic andσQ (and henceQ) is a hyperelliptic
branch point.

To prove the claim, we first assume thatN is prime to the order ofP. In
this case, we use the fact thatP is ramified atN to find an inertia groupI
at N and an elementσ ∈ I such thatσP 6= P. By Grothendieck’s Galois
criterion for semistable reduction (see [10, Proposition 3.5], and also [26,
(2.4)]), (σ − 1)2P = 0 as desired.

If N divides the order ofP, write P = PN + PN with PN of N-
power order andPN of order prime toN. We claim that there exists a
σ ∈ Gal(Q/Q) which fixes PN but not PN such that(σ − 1)2PN = 0.
It then follows thatσP 6= P and(σ−1)2P = 0. We can find such aσ in XN,
the normal closure of a wild inertia group atN in Gal(Q/Q). Elements of
XN fix prime-to-N torsion, and moreover it follows from [16] (or from
Theorem 3.3(2) whenN satisfies hypothesis (*)) that the image ofXN in
Aut(TN(J0(N))) ∼= GL(2,T ⊗ ZN) containsSL(2,T ⊗ ZN). In particular,
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there existσ1, σ2 ∈ XN acting on anN-adic Tate module ofJ0(N) as

σ1 =
(

1 0
1 1

)
, σ2 =

(
1 1
0 1

)
.

It is easy to see that sincePN 6= 0, one ofσ1, σ2 must act nontrivially
on PN. This elementσ of XN also satisfies(σ − 1)2PN = 0, so we’re done.

ut
Remark 3.16. We can modify this proof so that results of [16], and even
those of Theorem 3.3, are not needed. As we just saw, it is enough (by
Grothendieck’s Galois criterion for semistable reduction) to prove that there
is an elementσ in some inertia group forN such thatσPN 6= PN but
(σ − 1)2PN = 0.

Fix an algebraic closureQN of QN and an embeddingQ ↪→ QN.
We view DN = Gal(QN/QN) as a decomposition group forN inside
Gal(Q/Q), and letI N = Gal(QN/Qunr

N ) be its inertia subgroup, We also set
I ′N = Gal(QN/Qunr

N (µN∞)), whereµN∞ denotes the set of allN-power roots
of unity inQN. Denote bym = Nr the order ofPN. Finally, let M be the
T[Gal(Q/Q)]-submodule ofJ0(N)[m] generated byPN. SinceJ0(N) has
toric reduction atN, there is an exact sequence ofDN-modules (compatible
with the Hecke action, but we don’t need this)

0→ M′ → M → M′′ → 0,

whereIN acts trivially onM′′ and as the modmcyclotomic character onM′.
(For a more detailed discussion of this exact sequence, see [26, (2.4)] and
the references cited there). Suppose that someσ ∈ I ′N acts nontrivially
on PN. Sinceσ acts trivially on bothM′ andM′′, the above exact sequence
shows that(σ − 1)2PN = 0, and we are done.

So I ′N must act trivially onM. Therefore the action ofI N on M is
abelian, since it factors through the abelian groupI N/I ′N. We would like
to show that this is impossible. Toward this end, letV be a Jordan–Hölder
constituent ofM, regarded as aT[Gal(Q/Q)]-module. It is enough to show
that the action ofIN on V is non-abelian. Letm be the annihilator in
T of V, which is a maximal ideal ofT. Since the characteristic ofm
is N, which does not divideN − 1, m is not an Eisenstein prime ofT,
and the results of [18, Chap. II] (see [26, Sect. 2] for a more succinct
discussion) show thatV is irreducible and isomorphic to the standard two-
dimensional representationρm : Gal(Q/Q)→ GL(2,T/m) attached tom.
Now according to [26, Proposition 2.2],ρm is not finite atN (in the sense
of Serre’s article [29]). Hence the action ofI N on ρm is très ramifíee(and
in particular non-diagonalizable) and is given matricially in the form(

χ ∗
0 1

)
,
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whereχ is the cyclotomic character. (For a proof see, for example, [8,
Proposition 8.2] and the last paragraph in the proof of [27, Proposition 5.1]).
It is then easy to see that the action ofI N onV is non-abelian, a contradiction.

Remark 3.17. A nearly identical argument shows that ifP ∈ J+0 (N) is
ramified atN, then there existsσ ∈ Gal(Q/Q) such thatσPN 6= PN but
(σ − 1)2PN = 0.

4. Generalizations

We now present some generalizations and applications of the Coleman–
Kaskel–Ribet conjecture.

Proposition 4.1. Let X be a modular curve covering someX0(N) with
g+0 (N) > 0; for example,X could beX0(NM) or X1(NM) for any positive
integerM. Then the set of cusps onX forms a complete torsion packet.

Proof. It follows from the work of Manin–Drinfeld [17] and Kubert–
Lang [14] that the cusps ofX lie in a common torsion packet. Further-
more, the fiber ofX → X0(N) over a cusp ofX0(N) consists entirely of
cusps. Suppose, now, thatQ ∈ X(Q) and that some multiple of the divisor
(Q)−(∞)on X is principal. LetJ be the Jacobian ofX, and leti∞ : X ↪→ J
(resp.X0(N) ↪→ J0(N)) be the Albanese embedding associated to the base
point∞. There is a commutative diagram

X //
i∞

��

J

��

X0(N) //
i∞ J0(N)

which shows that the imageQ′ of Q in X0(N) is a torsion point onJ0(N)
via the mappingi∞. Sinceg+0 (N) > 0, we know thatQ′ is a cusp. Therefore
its preimageQ on X is also a cusp. ut

The following corollary follows directly by combining Proposition 4.1
with a theorem of Mazur proved in [31, Theorem 0.4].

Corollary 4.2. Let X = X0(NM) or X1(NM) with g+0 (N) > 0, let J be
the Jacobian ofX, and let i∞ : X → J be the embedding defined by
Q 7→ [(Q) − (∞)]. Fix a noncuspidal pointx ∈ X whose associated
elliptic curve does not have CM. LetZTp(x) be theZ-linear span inJ of the
p-Hecke points associated tox, i.e., if Tp(x) = ∑(yj ), thenZTp(x) is the
subgroup ofJ generated by thep+1 pointsi∞(yj ). Then for all sufficiently
large primesp, ZTp(x) has maximal rankp+ 1.

Our next generalization concerns torsion points onX+0 (N). Let N be
a prime number. Wheng+0 (N) ≥ 1, let i∞ be the embedding ofX+0 (N) into
J+0 (N) defined byQ 7→ [(Q)− (∞)]. We will need the following lemma:
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Lemma 4.3. If X+0 (N) is hyperelliptic andQ is a hyperelliptic branch
point, theni∞(Q) is not a torsion point onJ+0 (N).

Proof. The hyperelliptic involutionh operates onJ+0 (N) as−1, so that as
elements ofJ+0 (N) we have

[(Q)− (∞)] = [(h∞)− (hQ)] = [(h∞)− (Q)]
and adding[(Q)− (∞)] to both sides of this equation,

2[(Q)− (∞)] = [(h∞)− (∞)].
Thereforei∞(Q) is a torsion point if and only ifi∞(h∞) is a torsion point.

By Theorem 3.1(2),X+0 (N) is hyperelliptic exactly when it has genus 2.
For thoseN for which this is the case (namelyN=67,73,103,107,
167,191), the image of the cusp∞ under the hyperelliptic involutionh
is a noncuspidal rational point; in other words, we haveh∞ 6= ∞. This can
be seen by looking at q-expansions of weight-two cusp forms forΓ+0 (N),
sinceh∞ =∞ if and only if∞ is a Weierstrass point onX+0 (N), if and only
if there is a formf = a1q+a2q2+a3q3+ . . . in the two-dimensional space
S2(Γ

+
0 (N),Q) such thata1 = a2 = 0. The result follows from scrutinizing

the tables of [32]. (For somewhat larger prime values ofN, however, it seems
that∞ usuallyis a Weierstrass point onX+0 (N). See [9] for a discussion of
this.)

It is a theorem of Mazur [18, III, Corollary 1.5] that the torsion subgroup
of J+0 (N)(Q) is zero. So[(h∞) − (∞)], and therefore[(Q) − (∞)], has
infinite order. ut
Theorem 4.4. Wheng+0 (N) ≥ 2, ∞ is the only pointQ ∈ X+0 (N)(Q)
such thati∞(Q) ∈ J+0 (N)

tor. In other words, the torsion packet onX+0 (N)
containing the cusp∞ is trivial.

Proof. We emulate the second proof of the CKR conjecture. We know by
Theorem 3.12 that onJ+0 (N), every nonzero torsion point is ramified atN,
and therefore ifQ 6= ∞maps to a torsion pointP on J+0 (N), P is ramified
at N. Thinking of J+0 (N) as a subvariety ofJ0(N) (or using the remark at
the end of Sect. 3), it follows from our second proof of the CKR conjecture
that there exists aσ in an inertia group atN such thatσP− P is nontrivial
and(σ − 1)2P = 0. HenceX+0 (N) is hyperelliptic andQ is a hyperelliptic
branch point. But this is impossible by Lemma 4.3. ut

Our techniques extend in a rather straightforward manner to arbitrary
torsion packets onX0(N) andX+0 (N).

Theorem 4.5. If X+0 (N) has a nontrivial torsion packet, thenX+0 (N) ad-
mits a map of degree at most 4 toP1. In particular, if N > 479 then every
torsion packet onX+0 (N) is trivial.
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Proof. By Theorem 3.1(6), the first assertion implies the second. So we
assume thatP = [(Q1) − (Q2)] ∈ J+0 (N)

tor with Q1 6= Q2 and hope to
deduce thatX+0 (N) admits a map of degree at most 4 toP1.

The proof proceeds like our previous arguments. SinceP is a nonzero
torsion point onJ+0 (N) it is ramified atN, and reasoning as above we can
find a σ ∈ Gal(Q/Q) such thatσP 6= P and(σ − 1)2P = 0. Therefore
(σ2Q1) + (Q1) + 2(σQ2) − (σ2Q2) − (Q2) − 2(σQ1) is principal. This
implies that there is a rational function onX+0 (N) of degree at most 4. For
if not, we would have total cancellation in the above expression. But it is
easy to see that this would contradict the fact thatσP 6= P. ut

For X0(N), we have the following result.

Theorem 4.6. If X0(N) has a nontrivial torsion packet other than the
cuspidal packet{0,∞}, thenX0(N) admits a map of degree at most 6 toP1.
In particular, if N > 311 then every noncuspidal torsion packet onX0(N)
is trivial.

Proof. It follows from Theorem 3.1(7) that the first assertion implies the
second. So we assume thatP = [(Q1) − (Q2)] ∈ J0(N)tor with Q1 6= Q2
and hope to deduce thatX0(N) admits a map of degree at most 6 toP1.

The proof proceeds like our previous arguments. IfP 6∈ J0(N)[I] then
it is ramified atN, and as in the proof of Theorem 4.5 there exists a rational
function onX0(N) of degree at most 4.

It remains to consider the case whereP ∈ J0(N)[I]. We may assume
that P ∈ C+Σ; otherwise, as in the proof of Proposition 3.15, there exists
σ ∈ Gal(Q/Q) such thatσP − P has order 2, which implies thatX0(N)
admits a rational function of degree at most 4. WriteP = PC + PΣ with
PC ∈ C and PΣ ∈ Σ. Let m be the order ofPΣ. If 3 dividesm then there
exists aσ ∈ Gal(Q/Q) such thatσP− P has order 3. It follows thatX0(N)
admits a rational function of order at most 6. So we can assume that 3 does
not dividem.

Notice that for allσ ∈ Gal(Q/Q), (σ − 1)P = (σ − 1)PΣ. If m> 2,
then Lemma 3.14 implies that there existσ, τ ∈ Gal(Q/Q) such that
(σ − 1)P+ (τ − 1)P = 0 but (σ − 1)P and(τ − 1)P are nonzero. This
easily implies thatX0(N) admits a rational function of degree at most 4.

So finally, without loss of generality we assume thatm divides 2, i.e.,
that P ∈ C. Then(σ − 1)P = 0 for all σ ∈ Gal(Q/Q), so eitherX0(N)
is hyperelliptic orQ1 = σQ1 for all σ , i.e., Q1 is defined over the rational
numbers. By the main result of [19], in the latter caseQ1 (and similarlyQ2)
is a cusp, unlessN = 37,43,67, or 163. In each of these cases, there is
a single noncuspidal rational point onX0(N), which by uniqueness is fixed
by the Atkin–Lehner involutionw. But it is easy to see thatQ1 = wQ2
wheneverg+ > 0 using the fact thatw acts onJ0(N)[I] as−1. So in fact
Q1 = Q2, and henceP = 0, in each of these cases. ut
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Corollary 4.7. For all prime numbersN > 311, there is no regular differ-
ential onX0(N) vanishing to order2g−2 at a single point, whereg denotes
the genus ofX0(N).

Proof. Suppose, on the contrary, that some differentialω has divisor
(2g− 2)(Q) for some pointQ ∈ X0(N)(Q). This certainly implies that
Q is a Weierstrass point onX0(N). If Q is defined overQ, then results
of Mazur show thatQ must be a cusp, but according to [22] the cusps on
X0(N) are not Weierstrass points. Therefore there is someσ ∈ Gal(Q/Q)
such that(σω) = (2g− 2)(σQ) 6= (2g− 2)(Q). The ratio ofω andσw is
a rational function onX0(N) with divisor (2g− 2)(Q)− (2g− 2)(σQ), so
Q andσQ are in the same torsion packet onX0(N). This is impossible by
Theorem 4.6.

ut
We also mention the following result, whose proof is nearly the same as

the proofs of Theorems 4.5 and 4.6.

Theorem 4.8. Let X0(N)(d) (resp.X+0 (N)
(d)) map toJ0(N) (resp.J+0 (N))

by the mapi sending
∑

Qi to [∑(Qi )− Q′], whereQ′ =∑(Q′i ) is aQ-
rational point. Then ifQ 6= Q′ in X0(N)(d)(Q) (resp.X+0 (N)

(d)(Q)) maps
to a torsion point viai , thenX0(N) (resp.X+0 (N)) admits a map of degree
at most3d (resp.2d) to P1.

Finally, we show how Theorems 4.5 and 4.6 can be used to obtain lower
bounds for certain Mordell–Weil ranks.

Given a positive integerm, let η(m) be the smallest positive integer
n such thatGL(n,Z) has a finite subgroup of order divisible bym. For
example,η(1) = η(2) = 1, andη(3) = η(4) = 2. The following lemma
gives an explicit lower bound forη(m):

Lemma 4.9. For n a positive integer, letβn(2) = n+2[n2]+
∑∞

i=1[ n
2i ], and

for p an odd prime, letβn(p) = ∑∞i=0[ n
pi (p−1)]. Letβn = ∏ pβn(p), where

the product is taken over all primesp. Finally, if m is a positive integer, let
δ(m) be the smallest positive integern such thatm | βn. Thenη(m) ≥ δ(m).
Proof. See [3, Chap. IV, Theorem 2.1] for a proof, which is based upon
embeddingGL(n, Z) into GL(n,Zp) for each primep, and looking at the
valuations of matrix coefficients. ut

As a special case of the lemma, we have the inequalityη(p) ≥ p− 1
wheneverp is a prime number.

Proposition 4.10. Let X be a curve of genusg ≥ 2 defined over a number
field K . Assume thatX has aK -rational point P0. Let L be a finite Galois
extension ofK , and suppose thatP1, . . . , Pm ∈ X(L) is a complete set of
Galois conjugates, no two of which lie in a common torsion packet onX.
Let J be the Jacobian ofX. Then the Mordell–Weil rank ofJ(L) is at least
η(m).
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Proof. We think of the pointsPi as elements ofJ(L) via the Albanese
map sending a pointP ∈ X(K̄) to the class of the divisor(P) − (P0).
Suppose that the Mordell–Weil rank ofJ(L) is n. Let Λ be the rankn free
Z-module J(L)/J(L)tor. The Galois groupG of L/K acts onΛ, giving
rise to an injective homomorphismH ↪→ Aut(Zn) ∼= GL(n,Z), whereH
is G modulo the kernel of the action. Leth be the order ofH. Since no
two of the Pi are in the same torsion packet, the pointsP1, . . . , Pm are
distinct elements ofΛ, and by assumptionP1, . . . , Pm form a complete
orbit underH. Thereforem dividesh. SinceH is a subgroup ofGL(n,Z),
it follows from the definition of our functionη thatη(m) ≤ n. ut

Combining Proposition 4.10 and Theorem 4.6, for example, we obtain:

Corollary 4.11. Let N > 311be a prime number, letL be a Galois number
field, and letP ∈ X0(N)(L) be a noncuspidal point having exactlymGalois
conjugates. Then the Mordell–Weil rank ofJ0(N)(L) is at leastη(m).
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