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EMPIRICAL EVIDENCE FOR THE BIRCH AND

SWINNERTON-DYER CONJECTURES FOR MODULAR

JACOBIANS OF GENUS 2 CURVES

E. VICTOR FLYNN, FRANCK LEPRÉVOST, EDWARD F. SCHAEFER, WILLIAM A.

STEIN, MICHAEL STOLL, AND JOSEPH L. WETHERELL

Abstract. This paper provides empirical evidence for the Birch and Swinnerton-

Dyer conjectures for modular Jacobians of genus 2 curves. The second of these

conjectures relates six quantities associated to a Jacobian over the rational
numbers. One of these six quantities is the size of the Shafarevich-Tate group.

Unable to compute that, we computed the five other quantities and solved for

the last one. In all 32 cases, the result is very close to an integer that is a

power of 2. In addition, this power of 2 agrees with the size of the 2-torsion

of the Shafarevich-Tate group, which we could compute.

1. Introduction

The conjectures of Birch and Swinnerton-Dyer, originally stated for elliptic
curves over Q, have been a constant source of motivation for the study of ellip-
tic curves, with the ultimate goal being to find a proof. This has resulted not only
in a better theoretical understanding, but also in the development of better algo-
rithms for computing the analytic and arithmetic invariants that are so intriguingly
related by them. We now know that the first and, up to a non-zero rational fac-
tor, the second conjecture hold for modular elliptic curves over Q 1 in the analytic
rank 0 and 1 cases (see [GZ, Ko, Wal1, Wal2]). Furthermore, a number of people
have provided numerical evidence for the conjectures for a large number of elliptic
curves; see for example [BGZ, BSD, Ca, Cr2].
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2 FLYNN, LEPRÉVOST, SCHAEFER, STEIN, STOLL, AND WETHERELL

By now, our theoretical and algorithmic knowledge of curves of genus 2 and
their Jacobians has reached a state that makes it possible to conduct similar in-
vestigations. The Birch and Swinnerton-Dyer conjectures have been generalized to
arbitrary abelian varieties over number fields by Tate [Ta]. If J is the Jacobian of a
genus 2 curve over Q, then the first conjecture states that the order of vanishing of
the L-series of the Jacobian at s = 1 (the analytic rank) is equal to the Mordell-Weil
rank of the Jacobian. The second conjecture is that

(1.1) lim
s→1

(s − 1)−rL(J, s) = Ω · Reg ·
∏

p

cp · #X(J,Q) · (#J(Q)tors)
−2 .

In this equation, L(J, s) is the L-series of the Jacobian J , and r is its analytic rank.
We use Ω to denote the integral over J(R) of a particular differential 2-form; the
precise choice of this differential is described in Section 3.5. Reg is the regulator of
J(Q). For primes p, we use cp to denote the size of J(Qp)/J

0(Qp), where J0(Qp)
is defined in Section 3.4. We let X(J,Q) be the Shafarevich-Tate group of J over
Q, and we let J(Q)tors denote the torsion subgroup of J(Q).

As in the case of elliptic curves, the first conjecture assumes that the L-series can
be analytically continued to s = 1, and the second conjecture additionally assumes
that the Shafarevich-Tate group is finite. Neither of these assumptions is known
to hold for arbitrary genus 2 curves. The analytic continuation of the L-series,
however, is known to exist for modular abelian varieties over Q, where an abelian
variety is called modular if it is a quotient of the Jacobian J0(N) of the modular
curve X0(N) for some level N . For simplicity, we will also call a genus 2 curve
modular when its Jacobian is modular in this sense. So it is certainly a good idea
to look at modular genus 2 curves over Q, since we then at least know that the
statement of the first conjecture makes sense. Moreover, for many modular abelian
varieties it is also known that the Shafarevich-Tate group is finite, therefore the
statement of the second conjecture also makes sense. As it turns out, all of our
examples belong to this class. An additional benefit of choosing modular genus 2
curves is that one can find lists of such curves in the literature.

In this article, we provide empirical evidence for the Birch and Swinnerton-Dyer
conjectures for such modular genus 2 curves. Since there is no known effective way
of computing the size of the Shafarevich-Tate group, we computed the other five
terms in equation (1.1) (in two different ways, if possible). This required several
different algorithms, some of which were developed or improved while we were
working on this paper. If one of these algorithms is already well described in the
literature, then we simply cite it. Otherwise, we describe it here in some detail (in
particular, algorithms for computing Ω and cp).

For modular abelian varieties associated to newforms whose L-series have ana-
lytic rank 0 or 1, the first Birch and Swinnerton-Dyer conjecture has been proven.
In such cases, the Shafarevich-Tate group is also known to be finite and the second
conjecture has been proven, up to a non-zero rational factor. This all follows from
results in [GZ, KL, Wal1, Wal2]. In our examples, all of the analytic ranks are
either 0 or 1. Thus we already know that the first conjecture holds. Since the
Jacobians we consider are associated to a quadratic conjugate pair of newforms,
the analytic rank of the Jacobian is twice the analytic rank of either newform (see
[GZ]).

The second Birch and Swinnerton-Dyer conjecture has not been proven for the
cases we consider. In order to verify equation (1.1), we computed the five terms
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other than #X(J,Q) and solved for #X(J,Q). In each case, the value is an
integer to within the accuracy of our calculations. This number is a power of 2,
which coincides with the independently computed size of the 2-torsion subgroup
of X(J,Q). Hence, we have verified the second Birch and Swinnerton-Dyer con-
jecture for our curves at least numerically, if we assume that the Shafarevich-Tate
group consists of 2-torsion only. (This is an ad hoc assumption based only on the
fact that we do not know better.) See Section 6 for circumstances under which the
verification is exact.

The curves are listed in Table 1, and the numerical results can be found in
Table 2.

2. The Curves

Each of the genus 2 curves we consider is related to the Jacobian J0(N) of the
modular curve X0(N) for some level N . When only one of these genus 2 curves
arises from a given level N , then we denote this curve by CN ; when there are two
curves coming from level N we use the notation CN,A, CN,B . The relationship
of, say, CN to J0(N) depends on the source. Briefly, from Hasegawa [Hs] we
obtain quotients of X0(N) and from Wang [Wan] we obtain curves whose Jacobians
are quotients of J0(N). In both cases the Jacobian JN of CN is isogenous to a
2-dimensional factor of J0(N). (When not referring to a specific curve, we will
typically drop the subscript N from J .) In this way we can also associate CN with
a 2-dimensional subspace of S2(N), the space of cusp forms of weight 2 for Γ0(N).

We now discuss the precise source of the genus 2 curves we will consider. Hasegawa
[Hs] has provided exact equations for all genus 2 curves which are quotients of
X0(N) by a subgroup of the Atkin-Lehner involutions. There are 142 such curves.
We are particularly interested in those where the Jacobian corresponds to a sub-
space of S2(N) spanned by a quadratic conjugate pair of newforms. There are 21
of these with level N ≤ 200. For these curves we will provide evidence for the
second conjecture. There are seven more such curves with N > 200. We can clas-
sify the other 2-dimensional subspaces into four types. There are 2-dimensional
subspaces of oldforms that are irreducible under the action of the Hecke algebra.
There are also 2-dimensional subspaces that are reducible under the action of the
Hecke algebra and are spanned by two oldforms, two newforms or one of each.
The Jacobians corresponding to the latter three kinds are always isogenous, over
Q, to the product of two elliptic curves. Given the small levels, these are elliptic
curves for which Cremona [Cr2] has already provided evidence for the Birch and
Swinnerton-Dyer conjectures. In Table 5, we describe the kind of cusp forms span-
ning the 2-dimensional subspace and the signs of their functional equations from
the level at which they are newforms. The analytic and Mordell-Weil ranks were
always the smallest possible given those signs.

The second set of curves was created by Wang [Wan] and is further discussed
in [FM]. This set consists of 28 curves that were constructed by considering the
spaces S2(N) with N ≤ 200. Whenever a subspace spanned by a pair of quadratic
conjugate newforms was found, these newforms were integrated to produce a quo-
tient abelian variety A of J0(N). These quotients are optimal in the sense of [Ma],
in that the kernel of the quotient map is connected.

The period matrix for A was created using certain intersection numbers. When
all of the intersection numbers have the same value, then the polarization on A
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induced from the canonical polarization of J0(N) is equivalent to a principal po-
larization. (Two polarizations are equivalent if they differ by an integer multiple.)
Conversely, every 2-dimensional optimal quotient of J0(N) in which the induced
polarization is equivalent to a principal polarization is found in this way.

Using theta functions, numerical approximations were found for the Igusa in-
variants of the abelian surfaces. These numbers coincide with rational numbers
of fairly small height within the limits of the precision used for the computations.
Wang then constructed curves defined over Q whose Igusa invariants are the ra-
tional numbers found. (There is one abelian surface at level N = 177 for which
Wang was not able to find a curve.) If we assume that these rational numbers are
the true Igusa invariants of the abelian surfaces, then it follows that Wang’s curves
have Jacobians isomorphic, over Q, to the principally polarized abelian surfaces in
his list. Since the classification given by these invariants is only up to isomorphism
over Q, the Jacobians of Wang’s curves are not necessarily isomorphic to, but can
be twists of, the optimal quotients of J0(N) over Q (see below).

There are four curves in Hasegawa’s list which do not show up in Wang’s list (they
are listed in Table 1 with an H in the last column). Their Jacobians are quotients
of J0(N), but are not optimal quotients. It is likely that there are modular genus 2
curves which neither are Atkin-Lehner quotients of X0(N) (in Hasegawa’s sense)
nor have Jacobians that are optimal quotients. These curves could be found by
looking at the optimal quotient abelian surfaces and checking whether they are
isogenous to a principally polarized abelian surface over Q.

For 17 of the curves in Wang’s list, the 2-dimensional subspace spanned by the
newforms is the same as that giving one of Hasegawa’s curves. In all of those
cases, the curve given by Wang’s equation is isomorphic, over Q, to that given by
Hasegawa. This verifies Wang’s equations for these 17 curves. They are listed in
Table 1 with HW in the last column.

The remaining eleven curves (listed in Table 1 with a W in the last column)
derive from the other eleven optimal quotients in Wang’s list. These are described
in more detail in Section 2.1 below.

With the exception of curves C63, C117,A and C189, the Jacobians of all of our
curves are absolutely simple, and the canonically polarized Jacobians have auto-
morphism groups of size two. We showed that these Jacobians are absolutely simple
using an argument like those in [Le, Sto1]. The automorphism group of the canoni-
cally polarized Jacobian of a hyperelliptic curve is isomorphic to the automorphism
group of the curve (see [Mi2, Thm. 12.1]). Each automorphism of a hyperelliptic
curve induces a linear fractional transformation on x-coordinates (see [CF, p. 1]).
Each automorphism also permutes the six Weierstrass points. Once we believed we
had found all of the automorphisms, we were able to show that there are no more
by considering all linear fractional transformations sending three fixed Weierstrass
points to any three Weierstrass points. In each case, we worked with sufficient
accuracy to show that other linear fractional transformations did not permute the
Weierstrass points.

Let ζ3 denote a primitive third root of unity. The Jacobians of curves C63, C117,A

and C189 are each isogenous to the product of two elliptic curves over Q(ζ3), though
not over Q, where they are simple. These genus 2 curves have automorphism groups
of size 12. In the following table we list the curve at the left. On the right we give
one of the elliptic curves which is a factor of its Jacobian. The second factor is the
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conjugate.

C63 : y2 = x(x2 + (9 − 12ζ3)x − 48ζ3)
C117,A : y2 = x(x2 − (12 + 27ζ3)x − (48 + 48ζ3))
C189 : y2 = x3 + (66 − 3ζ3)x

2 + (342 + 81ζ3)x + 105 + 21ζ3

Note that these three Jacobians are examples of abelian varieties ‘with extra twist’
as discussed in [Cr1], where they can be found in the tables on page 409.

2.1. Models for the Wang-only curves. As we have already noted, a modular
genus 2 curve may be found by either, both, or neither of Wang’s and Hasegawa’s
techniques. Hasegawa’s method allows for the exact determination, over Q, of
the equation of any modular genus 2 curve it has found. On the other hand, if
Wang’s technique detects a modular genus 2 curve CN , his method produces real
approximations to a curve C ′

N which is defined over Q and is isomorphic to CN

over Q. We will call C ′
N a twisted modular genus 2 curve.

In this section we attempt to determine equations for the eleven modular genus 2
curves detected by Wang but not by Hasegawa. If we assume that Wang’s equations
for the twisted modular genus 2 curves are correct, we find that we are able to
determine the twists. In turn, this gives us strong evidence that Wang’s equations
for the twisted curves were correct. Undoing the twist, we determine probable
equations for the modular genus 2 curves. We end by providing further evidence
for the correctness of these equations.

In what follows, we will use the notation of [Cr2] and recommend it as a reference
on the general results that we assume here and in Section 4 and the appendix. Fix
a level N and let f(z) ∈ S2(N). Then f has a Fourier expansion

f(z) =

∞∑

n=1

ane2πinz .

For a newform f , we have a1 6= 0; so we can normalize it by setting a1 = 1. In our
cases, the an’s are integers in a real quadratic field. For each prime p not dividing N ,
the corresponding Euler factor of the L-series L(f, s) is 1−app

−s+p1−2s. Let N(ap)
and Tr(ap) denote the norm and trace of ap. The product of this Euler factor
and its conjugate is 1 − Tr(ap) p−s + (N(ap) + 2p) p−2s − p Tr(ap) p−3s + p2 p−4s.
Therefore, the characteristic polynomial of the p-Frobenius on the corresponding
abelian variety over Fp is x4 − Tr(ap)x3 + (N(ap) + 2p)x2 − p Tr(ap)x + p2. Let
C be a curve, over Q, whose Jacobian, over Q, comes from the space spanned by f
and its conjugate. Then we know that p+1−#C(Fp) = Tr(ap) and 1

2 (#C(Fp)
2 +

#C(Fp2)) − (p + 1)#C(Fp) − p = N(ap) (see [MS, Lemma 3]). For the odd primes
less than 200, not dividing N , we computed #C(Fp) and #C(Fp2) for each curve
given by one of Wang’s equations. From these we could compute the characteristic
polynomials of Frobenius and see if they agreed with those predicted by the ap’s of
the newforms.

Of the eleven curves, the characteristic polynomials agreed for only four. In each
of the remaining seven cases we found a twist of Wang’s curve whose characteristic
polynomials agreed with those predicted by the newform for all odd primes less
than 200 not dividing N . Four of these twists were quadratic and three were of
higher degree. It is these twists that appear in Table 1.

We can provide further evidence that these equations are correct. For each
curve given in Table 1, it is easy to determine the primes of singular reduction. In



6 FLYNN, LEPRÉVOST, SCHAEFER, STEIN, STOLL, AND WETHERELL

Section 3.4 we will provide techniques for determining which of those primes divides
the conductor of its Jacobian. In each case, the primes dividing the conductor of the
Jacobian of the curve are exactly the primes dividing the level N ; this is necessary.
With the exception of curve C188, all the curves come from odd levels. We used
Liu’s genus2reduction program (ftp://megrez.math.u-bordeaux.fr/pub/liu)
to compute the conductor of the curve. In each case (other than curve C188), the
conductor is the square of the level; this is also necessary. For curve C188, the odd
part of the conductor of the curve is the square of the odd part of the level.

In addition, since the Jacobians of the Wang curves are optimal quotients, we
can compute k · Ω (where k is the Manin constant, conjectured to be 1) using the
newforms. In each case, these agree (to within the accuracy of our computations)
with the Ω’s computed using the equations for the curves. We can also compute the
value of cp for optimal quotients from the newforms, when p exactly divides N and
the eigenvalue of the pth Atkin-Lehner involution is −1. When p exactly divides N
and the eigenvalue of the pth Atkin-Lehner involution is +1, the component group
is either 0, Z/2Z, or (Z/2Z)2. These results are always in agreement with the
values computed using the equations for the curves. The algorithms based on the
newforms are described in Section 4, those based on the equations of the curves are
described in Section 3.

Lastly, we were able to compute the Mordell-Weil ranks of the Jacobians of
the curves given by ten of these eleven equations. In each case it agrees with the
analytic rank of the Jacobian, as deduced from the newforms.

It should be noted that curve C125,B is the
√

5-twist of curve C125,A; the cor-
responding statement holds for the associated 2-dimensional subspaces of S2(125).
Since curve C125,A is a Hasegawa curve, this proves that the equation given in
Table 1 for curve C125,B is correct.

The ap’s and other information concerning Wang’s curves are currently kept in a
database at the Institut für experimentelle Mathematik in Essen, Germany. Most
recently, this database was under the care of Michael Müller. William Stein also
keeps a database of ap’s for newforms.

Remark 2.1. For the remainder of this paper we will assume that the equations
for the curves given in Table 1 are correct; that is, that they are equations for the
curves whose Jacobians are isogenous to a factor of J0(N) in the way described
above. Some of the quantities can be computed either from the newform or from
the equation for the curve. We performed both computations whenever possible,
and view this duplicate effort as an attempt to verify our implementation of the
algorithms rather than an attempt to verify the equations in Table 1. For most
quantities, one method or the other is not guaranteed to produce a value; in this
case, we simply quote the value from whichever method did succeed. The reader
who is disturbed by this philosophy should ignore the Wang-only curves, since the
equations for the Hasegawa curves can be proven to be correct.

3. Algorithms for genus 2 curves

In this section, we describe the algorithms that are based on the given models
for the curves. We give algorithms that compute all terms on the right hand side
of equation (1.1), with the exception of the size of the Shafarevich-Tate group. We
describe, however, how to find the size of its 2-torsion subgroup. Note that these
algorithms are for general genus 2 curves and do not depend on modularity.
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3.1. Torsion Subgroup. The computation of the torsion subgroup of J(Q) is
straightforward. We used the technique described in [CF, pp. 78–82]. This tech-
nique is not always effective, however. For an algorithm working in all cases
see [Sto3].

3.2. Mordell-Weil rank and X(J,Q)[2]. The group J(Q) is a finitely generated
abelian group and so is isomorphic to Zr ⊕ J(Q)tors for some r called the Mordell-
Weil rank. As noted above (see Section 1), we justifiably use r to denote both the
analytic and Mordell-Weil ranks since they agree for all curves in Table 1.

We used the algorithm described in [FPS] to compute Sel2fake(J,Q) (notation
from [PSc]), which is a quotient of the 2-Selmer group Sel2(J,Q). More details
on this algorithm can be found in [Sto2]. Theorem 13.2 of [PSc] explains how
to get Sel2(J,Q) from Sel2fake(J,Q). Let M [2] denote the 2-torsion of an abelian
group M and let dimV denote the dimension of an F2 vector space V . We have
dim Sel2(J,Q) = r + dim J(Q)[2] + dimX(J,Q)[2]. In other words,

dim X(J,Q)[2] = dim Sel2(J,Q) − r − dim J(Q)[2].

It is interesting to note that in all 30 cases where dimX(J,Q)[2] ≤ 1, we were
able to compute the Mordell-Weil rank independently from the analytic rank. The
cases where dimX(J,Q)[2] = 1 are discussed in more detail in Section 6. For both
of the remaining cases we have dimX(J,Q)[2] = 2. One of these cases is C125,B .

For this curve we computed Sel
√

5(J125,B ,Q) using the technique described in [Sc].
From this, we were able to determine that the Mordell-Weil rank is 0 independently
from the analytic rank. For the other case, C133,A, we could show that r had to be
either 0 or 2 from the equation, but we needed the analytic computation to show
that r = 0.

3.3. Regulator. When the Mordell-Weil rank is 0, then the regulator is 1. When
the Mordell-Weil rank is positive, then to compute the regulator, we first need to
find generators for J(Q)/J(Q)tors. The regulator is the determinant of the canon-
ical height pairing matrix on this set of generators. An algorithm for computing
the generators and canonical heights is given in [FS]; it was used to find generators
for J(Q)/J(Q)tors and to compute the regulators. In that article, the algorithm
for computing height constants at the infinite prime is not clearly explained and
there are some errors in the examples. A clear algorithm for computing infinite
height constants is given in [Sto3]. In [Sto4], some improvements of the results and
algorithms in [FS] and [Sto3] are discussed. The regulators in Table 2 have been
double-checked using these improved algorithms.

3.4. Tamagawa Numbers. Let O be the integer ring in K which will be Qp

or Qunr
p (the maximal unramified extension of Qp). Let J be the Néron model

of J over O. Define J 0 to be the open subgroup scheme of J whose generic fiber
is isomorphic to J over K and whose special fiber is the identity component of
the closed fiber of J . The group J 0(O) is isomorphic to a subgroup of J(K)
which we denote J0(K). The group J(Qunr

p )/J0(Qunr
p ) is the component group

of J over OQunr
p

. We are interested in computing cp = #J(Qp)/J
0(Qp), which

is sometimes called the Tamagawa number. Since Néron models are stable un-
der unramified base extension, the Gal(Qunr

p /Qp)-invariant subgroup of J0(Qunr
p )
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is J0(Qp). Since H1(Gal(Qunr
p /Qp), J

0(Qunr
p )) is trivial (see [Mi1, p. 58]) we see

that the Gal(Qunr
p /Qp)-invariant subgroup of J(Qunr

p )/J0(Qunr
p ) is J(Qp)/J

0(Qp).

There exist several discussions in the literature on constructing the group J(Qunr
p )/J0(Qunr

p )
starting with an integral model of the underlying curve. For our purposes, we espe-
cially recommend Silverman’s book [Si], Chapter IV, Sections 4 and 7. For a more
detailed treatment, see [BLR, chap. 9] and [Ed2, §2]. One can find justifications
for what we will do in these sources. While constructing such groups, we ran into
a number of difficulties that we did not find described anywhere. For that reason,
we will present examples of such difficulties that arose, as well as our methods of
resolution. We do not claim that we will describe all situations that could arise.

When computing cp we need a proper, regular model C for C over Zp. Let Zunr
p

denote the ring of integers of Qunr
p and note that Zunr

p is a pro-étale Galois extension
of Zp with Galois group Gal(Zunr

p /Zp) = Gal(Qunr
p /Qp). It follows that giving a

model for C over Zp is equivalent to giving a model for C over Zunr
p that is equipped

with a Galois action. We have found it convenient to always work with the latter
description. Thus for us, giving a model over Zp will always mean giving a model
over Zunr

p together with a Galois action.
In order to find a proper, regular model for C over Zp, we start with the models in

Table 1. Technically, we consider the curves to be the two affine pieces y2 +g(x)y =
f(x) and v2 + u3g(1/u)v = u6f(1/u), glued together by ux = 1, v = u3y. We blow
them up at all points that are not regular until we have a regular model. (A point
is regular if the cotangent space there has two generators.) These curves are all
proper, and this is not affected by blowing up.

Let Cp denote the special fiber of C over Zunr
p . The group J(Qunr

p )/J0(Qunr
p ) is

isomorphic to a quotient of the degree 0 part of the free group on the irreducible
components of Cp. Let the irreducible components be denoted Di for 1 ≤ i ≤ n,
and let the multiplicity of Di in Cp be di. Then the degree 0 part of the free group
has the form

L = {
n∑

i=1

αiDi |
n∑

i=1

diαi = 0} .

In order to describe the group that we quotient out by, we must discuss the
intersection pairing. For components Di and Dj of the special fiber, let Di·Dj denote
their intersection pairing. In all of the special fibers that arise in our examples,
distinct components intersect transversally. Thus, if i 6= j, then Di · Dj equals the
number of points at which Di and Dj intersect. The case of self-intersection (i = j)
is discussed below.

The kernel of the map from L to J(Qunr
p )/J0(Qunr

p ) is generated by divisors of
the form

[Dj ] =
n∑

i=1

(Dj · Di)Di

for each component Dj . We can deduce Dj · Dj by noting that [Dj ] must be
contained in the group L. This follows from the fact that the intersection pairing
of Cp =

∑
diDi with any irreducible component is 0.

Example 1. Curve C65,B over Z2.
The Jacobian of C65,B is a quotient of the Jacobian of X0(65). Since 65 is odd,

J0(65) has good reducation at 2; however, C65,B has singular reduction at 2. Since
the equation for this curve is conjectural (it is a Wang-only curve), it will be nice
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to verify that 2 does not divide the conductor of its Jacobian, i.e. that the Jacobian
has good reduction at 2. In addition, we will need a proper, regular model for this
curve in order to find Ω.

We start with the arithmetic surface over Zunr
2 given by the two pieces y2 =

f(x) = −x6 + 10x5 − 32x4 + 20x3 + 40x2 + 6x − 1 and v2 = u6f(1/u). (Here and
in the following we will not specify the gluing maps.) This arithmetic surface is
regular at u = 0 so we focus our attention on the first affine piece. The special fiber
of y2 = f(x) over Zunr

2 is given by (y+x3 +1)2 = 0 (mod 2); this is a genus 0 curve
of multiplicity 2 that we denote A. This model is not regular at the two points
(x−α, y, 2), where α is a root of x2 −3x−1. The current special fiber is in Figure 1
and is labelled Fiber 1.

We fix α and move (x − α, y, 2) to the origin using the substitution x0 = x − α.
We get

y2 = −x6
0+(−6α+10)x5

0+(5α−47)x4
0+(−28α+60)x3

0+(−11α−2)x2
0+(−24α−16)x0

which we rewrite as the pair of equations

g1(x0, y, p) = −x6
0 + (−3α + 5)px5

0 + (5α − 47)x4
0 + (−7α + 15)p2x3

0

+ (−11α − 2)x2
0 + (−3α − 2)p3x0 − y2

= 0,

p = 2.

To blow up at (x0, y, p), we introduce projective coordinates (x1, y1, p1) with x0y1 =
x1y, x0p1 = x1p, and yp1 = y1p. We look in three affine pieces that cover the blow-
up of g1(x0, y, p) = 0, p = 2 and check for regularity.

x1 = 1: We have y = x0y1, p = x0p1. We get g2(x0, y1, p1) = 0, x0p1 = 2,
where

g2(x0, y1, p1) = x−2
0 g1(x0, x0y1, x0p1)

= −x4
0 + (−3α + 5)p1x

4
0 + (5α − 47)x2

0 + (−7α + 15)p2
1x

3
0

+ (−11α − 2) + (−3α − 2)p3
1x

2
0 − y2

1 .

In the reduction we have either x0 = 0 or p1 = 0.
x0 = 0: (y1 + α + 1)2 = 0. This is a new component which we denote

B. It has genus 0 and multiplicity 2. We check regularity along B at
(x0, y1 + α + 1, p1 − t, 2), with t in Zunr

2 , and find that B is nowhere
regular.

p1 = 0: (y1 + x2
0 + αx0 + (α + 1))2 = 0. Using the gluing maps, we see

that this is A.
y1 = 1: We get no new information from this affine piece.
p1 = 1: We have x0 = x1p, y = y1p. We get g3(x1, y1, p) = p−2g1(x1p, y1p, p) =

0, p = 2. In the reduction we have
p = 0: (y1 + (α + 1)x1)

2 = 0. Using the gluing maps, we see that this
is B. It is nowhere regular.

The current special fiber is in Figure 1 and is labelled Fiber 2. It is not regular
along B and at the other point on A which we have not yet blown up. The com-
ponent B does not lie entirely in any one affine piece so we will blow up the affine
pieces x1 = 1 and p1 = 1 along B.
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Figure 1. Special fibers of curve C65,B over Z2; points not regular
are thick

A
2t t

Fiber 1 Fiber 2

A
2t

B

2

A
2

B D

Fiber 3

To blow up x1 = 1 along B we make the substitution y2 = y1 + α + 1 and
replace each factor of 2 in a coefficient by x0p1. We have g4(x0, y2, p1) = 0 and
x0p1 = 2, and we want to blow up along the line (x0, y2, 2). Blowing up along a line
is similar to blowing up at a point: since we are blowing up at (x0, y2, 2) = (x0, y2),
we introduce projective coordinates x3, y3 together with the relation x0y3 = x3y2.
We consider two affine pieces that cover the blow-up of x1 = 1.

x3 = 1: We have y2 = y3x0. We get g5(x0, y3, p1) = x−2
0 g4(x0, y3x0, p1) = 0

and x0p1 = 2. In the reduction we have
x0 = 0: y2

3 + (α + 1)y3p1 + αp3
1 + p2

1 + α + 1 = 0. This is B. It is now a
non-singular genus 1 curve.

p1 = 0: (x0 + y3 + α)2 = 0. This is A. The point where B meets A
transversally is regular.

y3 = 1: We get no new information from this affine piece.

When we blow up p1 = 1 along B we get essentially the same thing and all points
are again regular.

The other non-regular point on A is the conjugate of the one we blew up. There-
fore, after performing the conjugate blow ups, it too will be a genus 1 component
crossing A transversally. We denote this component D; it is conjugate to B.

We now have a proper, regular model C of C over Z2. Let C2 be the special fiber
of this model; a diagram of C2 is in Figure 1 and is labelled Fiber 3. We can use
C to show that the Néron model J of the Jacobian J = J65,B has good reduction
at 2.

We know that the reduction of J 0 is the extension of an abelian variety by a
connected linear group. Since C is regular and proper, the abelian variety part of the
reduction is the product of the Jacobians of the normalizations of the components
of C2 (see [BLR, 9.3/11 and 9.5/4]). Thus, the abelian variety part is the product
of the Jacobians of B and D. Since this is 2-dimensional, the reduction of J 0 is an
abelian variety. In other words, since the sum of the genera of the components of
the special fiber is equal to the dimension of J , the reduction is an abelian variety.
It follows that J has good reduction at 2, that the conductor of J is odd, and
that c2 = 1. As noted above, this gives further evidence that the equation given in
Table 1 is correct.

Example 2. Curve C63 over Z3.
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Figure 2. Special fiber of curve C63 over Z3

G H I

E

F

A

B

D

2 2 2

4

2

2

The Tamagawa number is often found using the intersection matrix and sub-
determinants. This is not entirely satisfactory for cases where the special fiber has
several components and a non-trivial Galois action. Here is an example of how to
resolve this (see also [BL]).

When we blow up curve C63 over Zunr
3 , we get the special fiber shown in Figure 2.

Elements of Gal(Qunr
3 /Q3) that do not fix the quadratic unramified extension of Q3

switch H and I. The other components are defined over Q3. All components have
genus 0. The group J(Qunr

3 )/J0(Qunr
3 ) is isomorphic to a quotient of

L = {αA+βB+δD+εE+φF +γG+ηH+ιI | α+β+2δ+2ε+4φ+2γ+2η+2ι = 0} .

The kernel is generated by the following divisors.

[A] = −2A + E [B] = −2B + E
[D] = −D + E [E] = A + B + D − 4E + F
[F ] = E − 2F + G + H + I [G] = F − 2G
[H] = F − 2H [ I ] = F − 2I

When we project away from A, we find that J(Qunr
3 )/J0(Qunr

3 ) is isomorphic to

〈B,D,E, F,G,H, I | E = 0, E = 2B,D = E, 4E = B + D + F,

2F = E + G + H + I, F = 2G = 2H = 2I〉.
At this point, it is straightforward to simplify the representation by elimination.
Note that we projected away from A, which is Galois-invariant. It is best to continue
eliminating Galois-invariant elements first. We find that this group is isomorphic to
〈H, I | 2H = 2I = 0〉 and elements of Gal(Qunr

3 /Q3) that do not fix the quadratic
unramified extension of Q3 switch H and I. Therefore J(Qunr

3 )/J0(Qunr
3 ) ∼= Z/2Z⊕

Z/2Z and c3 = #J(Q3)/J
0(Q3) = 2.

3.5. Computing Ω. By an integral differential (or integral form) on J we mean
the pullback to J of a global relative differential form on the Néron model of J
over Z. The set of integral n-forms on J is a full-rank lattice in the Q-vector space
of global holomorphic n-forms on J . Since J is an abelian variety of dimension 2,
the integral 1-forms are a free Z-module of rank 2 and the integral 2-forms are a
free Z-module of rank 1. Moreover, the wedge of a basis for the integral 1-forms is
a generator for the integral 2-forms. The quantity Ω is the integral, over the real
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points of J , of a generator for the integral 2-forms. (We choose the generator that
leads to a positive integral.)

We now translate this into a computation on the curve C. Let {ω1, ω2} be a Q-
basis for the holomorphic differentials on C and let {γ1, γ2, γ3, γ4} be a Z-basis for
the homology of C(C). Create a 2×4 complex matrix MC = [

∫
γj

ωi] by integrating

the differentials over the homology and let MR = TrC/R(MC) be the 2 × 4 real
matrix whose entries are traces from the complex matrix. The columns of MR

generate a lattice Λ in R2. If we make the standard identification between the
holomorphic 1-forms on J and the holomorphic differentials on C (see [Mi2]), then
the notation

∫
J(R)

|ω1 ∧ ω2| makes sense and its value can be computed as the area

of a fundamental domain for Λ.
If {ω1, ω2} is a basis for the integral 1-forms on J , then

∫
J(R)

|ω1 ∧ ω2| = Ω.

On the other hand, the computation of MC is simplest if we choose ω1 = dX/Y ,
and ω2 = X dX/Y with respect to a model for C of the form Y 2 = F (X); in this
case we obtain Ω by a simple change-of-basis calculation. This assumes, of course,
that we know how to express a basis for the integral 1-forms in terms of the basis
{ω1, ω2}; this is addressed in more detail below.

It is worth mentioning an alternate strategy. Instead of finding a Z-basis for the
homology of C(C) one could find a Z-basis {γ ′

1, γ
′
2} for the subgroup of the homol-

ogy that is fixed by complex conjugation (call this the real homology). Integrating
would give us a 2 × 2 real matrix M ′

R and the determinant of M ′
R would equal

the integral of ω1 ∧ ω2 over the connected component of J(R). In other words, the
number of real connected components of J is equal to the index of the C/R-traces
in the real homology.

We now come to the question of determining the differentials on C which corre-
spond to the integral 1-forms on J . Call these the integral differentials on C. This
computation can be done one prime at a time. At each prime p this is equivalent to
determining a Zunr

p -basis for the global relative differentials on any proper, regular
model for C over Zunr

p . In fact a more general class of models can be used; see the
discussion of models with rational singularities in [BLR, §6.7] and [Li, §4.1].

We start with the model y2 + g(x)y = f(x) given in Table 1. Note that the
substitution X = x and Y = 2y + g(x) gives us a model of the form Y 2 = F (X).
For integration purposes, our preferred differentials are dX/Y = dx/(2y + g(x))
and X dX/Y = x dx/(2y + g(x)). It is not hard to show that at primes of non-
singular reduction for the y2 + g(x)y = f(x) model, these differentials will generate
the integral 1-forms. For each prime p of singular reduction we give the following
algorithm. All steps take place over Zunr

p .

Step 1: Compute explicit equations for a proper, regular model C.
Step 2: Diagram the configuration of the special fiber of C.
Step 3: (Optional) Identify exceptional components and blow them down in

the configuration diagram. Repeat step 3 as necessary.
Step 4: (Optional) Remove components with genus 0 and self-intersection

−2. Since C has genus greater than 1, there will be a component that is
not of this kind.

(This step corresponds to contracting the given components. The model
obtained would no longer be regular; it would, however, be a proper model
with rational singularities. We will not need a diagram of the resulting
configuration.)
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Step 5: Determine a Zunr
p -basis for the integral differentials. It suffices to

check this on a dense open subset of each surviving component. Note
that we have explicit equations for a dense open subset of each of these
components from the model C in step 1. A pair of differentials {η1, η2}
will be a basis for the integral differentials (at p) if the following three
statements are true.

a: The pair {η1, η2} is a basis for the holomorphic differentials on C.
b: The reductions of η1 and η2 produce well-defined differentials mod p

on an open subset of each surviving component.
c: If a1η1 + a2η2 = 0 (mod p) on all surviving components, then p|a1

and p|a2.

Techniques for explicitly computing a proper, regular model are discussed in
Section 3.4. A configuration diagram should include the genus, multiplicity and self-
intersection number of each component and the number and type of intersections
between components. Note that when an exceptional component is blown down,
all of the self-intersection numbers of the components intersecting it will go up
(towards 0). In particular, components which were not exceptional before may
become exceptional in the new configuration.

Steps 3 and 4 are intended to make this algorithm more efficient for a human.
They are entirely optional. For a computer implementation it may be easier to
simply check every component than to worry about manipulating configurations.

The curves in Table 1 are given as y2 + g(x)y = f(x). We assumed, at first,
that dx/(2y + g(x)) and x dx/(2y + g(x)) generate the integral differentials. We
integrated these differentials around each of the four paths generating the complex
homology and found a provisional Ω. Then we checked the proper, regular models
to determine if these differentials really do generate the integral differentials and
adjusted Ω when necessary. There were three curves where we needed to adjust Ω.
We describe the adjustment for curve C65,B in the following example. For curve
C63, we used the differentials 3 dx/(2y + g(x)) and x dx/(2y + g(x)). For curve
C65,A, we used the differentials 3 dx/(2y + g(x)) and 3x dx/(2y + g(x)).

Example 3. Curve C65,B .
The primes of singular reduction for curve C65,B are 2, 5 and 13. In Example 1 of

Section 3.4, we found a proper, regular model C for C over Zunr
2 . The configuration

for the special fiber of C is sketched in Figure 1 under the label Fiber 3. Component
A is exceptional and can be blown down to produce a model in which B and D
cross transversally. Since B and D both have genus 1, we cannot eliminate either
of these components. Furthermore, it suffices to check B, since D is its Galois
conjugate.

To get from the equation of the curve listed in Table 1 to an affine containing
an open subset of B we need to make the substitutions x = x0 − α and y =
x0(y3x0 − α − 1). We also have x0p1 = 2. Using the substitutions and the relation
dx0/x0 = −dp1/p1, we get

dx

2y
=

−dp1

2p1(y3x0 − α − 1)
and

x dx

2y
=

−(x0 + α) dp1

2p1(y3x0 − α − 1)
.

Note that p1 − t is a uniformizer at p1 = t almost everywhere on B. When we
multiply each differential by 2, then the denominator of each is almost everywhere
non-zero; thus, dx/y and x dx/y are integral at 2. Moreover, although the linear
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combination (x − α) dx/y is identically zero on B, it is not identically zero on D
(its Galois conjugate is not identically zero on B). Thus, our new basis is correct
at 2. We multiply the provisional Ω by 4 to get a new provisional Ω which is correct
at 2.

Similar (but somewhat simpler) computations at the primes 5 and 13 show that
no adjustment is needed at these primes. Thus, dx/y and x dx/y form a basis for
the integral differentials of curve C65,B , and the correct value of Ω is 4 times our
original guess.

4. Modular algorithms

In this section, we describe the algorithms that were used to compute some of
the data from the newforms. This includes the analytic rank and leading coefficient
of the L-series. For optimal quotients, the value of k · Ω can also be found (k is the
Manin constant), as well as partial information on the Tamagawa numbers cp and
the size of the torsion subgroup.

4.1. Analytic rank of L(J, s) and leading coefficient at s = 1. Fix a Jaco-
bian J corresponding to the 2-dimensional subspace of S2(N) spanned by quadratic
conjugate, normalized newforms f and f . Let WN be the Fricke involution. The
newforms f and f have the same eigenvalue εN with respect to WN , namely +1
or −1. In the notation of Section 2, let

L(f, s) =

∞∑

n=1

an

ns

be the L-series of f ; then L(f, s) is the Dirichlet series whose coefficients are the
conjugates of the coefficients of L(f, s). (Recall that the an are integers in some
real quadratic field.) The order of L(f, s) at s = 1 is even when εN = −1 and odd
when εN = +1. We have L(J, s) = L(f, s)L(f, s). Thus the analytic rank of J
is 0 modulo 4 when εN = −1 and 2 modulo 4 when εN = +1. We found that the
ranks were all 0 or 2. To prove that the analytic rank of J is 0, we need to show
L(f, 1) 6= 0 and L(f, 1) 6= 0. In the case that εN = +1, to prove that the analytic
rank is 2, we need to show that L′(f, 1) 6= 0 and L′(f, 1) 6= 0. When εN = −1, we
can evaluate L(f, 1) as in [Cr2, §2.11]. When εN = +1, we can evaluate L′(f, 1)
as in [Cr2, §2.13]. Each appropriate L(f, 1) or L′(f, 1) was at least 0.1 and the
errors in our approximations were all less than 10−67. In this way we determined
the analytic ranks, which we denote r. As noted in the introduction, the analytic
rank equals the Mordell-Weil rank if r = 0 or r = 2. Thus, we can simply call r
the rank, without fear of ambiguity.

To compute the leading coefficient of L(J, s) at s = 1, we note that lims→1 L(J, s)/(s−
1)r = L(r)(J, 1)/r!. In the r = 0 case, we simply have L(J, 1) = L(f, 1)L(f, 1). In
the r = 2 case, we have L′′(J, s) = L′′(f, s)L(f, s)+2L′(f, s)L′(f, s)+L(f, s)L′′(f, s).
Evaluating both sides at s = 1 we get 1

2L′′(J, 1) = L′(f, 1)L′(f, 1).

4.2. Computing k · Ω. Let J , f and f be as in Section 4.1 and assume J is an
optimal quotient. Let V be the 2-dimensional space spanned by f and f . Choose
a basis {ω1, ω2} for the subgroup of V consisting of forms whose q-expansion coef-
ficients lie in Z. Let k · Ω be the volume of the real points of the quotient of C×C
by the lattice of period integrals (

∫
γ

ω1,
∫

γ
ω2) with γ in the integral homology
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H1(X0(N),Z). The rational number k is called the Manin constant. In practice
we compute k · Ω using modular symbols and a generalization to dimension 2 of
the algorithm for computing periods described in [Cr2, §2.10]. When L(J, 1) 6= 0
the method of [Cr2, §2.11] coupled with Sections 4.1 and 4.3 can also be used to
compute k · Ω.

A slight generalization of the argument of Proposition 2 of [Ed1] proves that k is,
in fact, an integer. This generalization can be found in [AS2], where one also finds
a conjecture that k must equal 1 for all optimal quotients of Jacobians of modular
curves, which generalizes the longstanding conjecture of Manin that k equals 1 for
all optimal elliptic curves. In unpublished work, Edixhoven has partially proven
Manin’s conjecture.

The computations of the present paper verify that k equals 1 for the optimal
quotients that we are considering. Specifically, we computed k · Ω as above and Ω
as described in Section 3.5. The quotient of the two values was always well within
0.5 of 1.

4.3. Computing L(J, 1)/(k ·Ω). We compute the rational number L(J, 1)/(k ·Ω),
for optimal quotients, using the algorithm in [AS1]. This algorithm generalizes the
algorithm described in [Cr2, §2.8] to dimension greater than 1.

4.4. Tamagawa numbers. In this section we assume that p is a prime which
exactly divides the conductor N of J . Under these conditions, Grothendieck [Gr]
gave a description of the component group of J in terms of a monodromy pairing on
certain character groups. (For more details, see Ribet [Ri, §2].) If, in addition, J is
a new optimal quotient of J0(N), one deduces the following. When the eigenvalue
for f of the Atkin-Lehner involution Wp is +1, then the rational component group
of J is a subgroup of (Z/2Z)2. Furthermore, when the eigenvalue of Wp is −1, the
algorithm described in [Ste] can be used to compute the value of cp.

4.5. Torsion subgroup. To compute an integer divisible by the order of the tor-
sion subgroup of J we make use of the following two observations. First, it is
a consequence of the Eichler-Shimura relation [Sh, §7.9] that if p is a prime not
dividing the conductor N of J and f(T ) is the characteristic polynomial of the
endomorphism Tp of J , then #J(Fp) = f(p + 1) (see [Cr2, §2.4] for an algorithm
to compute f(T )). Second, if p is an odd prime at which J has good reduction,
then the natural map J(Q)tors → J(Fp) is injective (see [CF, p. 70]). This does
not depend on whether J is an optimal quotient. To obtain a lower bound on
the torsion subgroup for optimal quotients, we use modular symbols and the Abel-
Jacobi theorem [La, IV.2] to compute the order of the image of the rational point
(0) − (∞) ∈ J0(N).

5. Tables

In Table 1, we list the 32 curves described in Section 2. We give the level N
from which each curve arose, an integral model for the curve, and list the source(s)
from which it came (H for Hasegawa [Ha], W for Wang [Wan]). Throughout the
paper, the curves are denoted CN (or CN,A, CN,B).

In Table 2, we list the curve CN simply by N , the level from which it arose.
Let r denote the rank. We list lims→1(s − 1)−rL(J, s) where L(J, s) is the L-series
for the Jacobian J of CN and round off the results to five digits. The symbol Ω
was defined in Section 3.5 and is also rounded to five digits. Let Reg denote the
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N Equation Source

23 y2 + (x3 + x + 1)y = −2x5 − 3x2 + 2x − 2 HW
29 y2 + (x3 + 1)y = −x5 − 3x4 + 2x2 + 2x − 2 HW
31 y2 + (x3 + x2 + 1)y = −x5 − 5x4 − 5x3 + 3x2 + 2x − 3 HW
35 y2 + (x3 + x)y = −x5 − 8x3 − 7x2 − 16x − 19 H
39 y2 + (x3 + 1)y = −5x4 − 2x3 + 16x2 − 12x + 2 H
63 y2 + (x3 − 1)y = 14x3 − 7 W
65,A y2 + (x3 + 1)y = −4x6 + 9x4 + 7x3 + 18x2 − 10 W
65,B y2 = −x6 + 10x5 − 32x4 + 20x3 + 40x2 + 6x − 1 W
67 y2 + (x3 + x + 1)y = x5 − x HW
73 y2 + (x3 + x2 + 1)y = −x5 − 2x3 + x HW
85 y2 + (x3 + x2 + x)y = x4 + x3 + 3x2 − 2x + 1 H
87 y2 + (x3 + x + 1)y = −x4 + x3 − 3x2 + x − 1 HW
93 y2 + (x3 + x2 + 1)y = −2x5 + x4 + x3 HW
103 y2 + (x3 + x2 + 1)y = x5 + x4 HW
107 y2 + (x3 + x2 + 1)y = x4 − x2 − x − 1 HW
115 y2 + (x3 + x + 1)y = 2x3 + x2 + x HW
117,A y2 + (x3 − 1)y = 3x3 − 7 W
117,B y2 + (x3 + 1)y = −x6 − 3x4 − 5x3 − 12x2 − 9x − 7 W
125,A y2 + (x3 + x + 1)y = x5 + 2x4 + 2x3 + x2 − x − 1 HW
125,B y2 + (x3 + x + 1)y = x6 + 5x5 + 12x4 + 12x3 + 6x2 − 3x − 4 W
133,A y2 + (x3 + x + 1)y = −2x6 + 7x5 − 2x4 − 19x3 + 2x2 + 18x + 7 W
133,B y2 + (x3 + x2 + 1)y = −x5 + x4 − 2x3 + 2x2 − 2x HW
135 y2 + (x3 + x + 1)y = x4 − 3x3 + 2x2 − 8x − 3 W
147 y2 + (x3 + x2 + x)y = x5 + 2x4 + x3 + x2 + 1 HW
161 y2 + (x3 + x + 1)y = x3 + 4x2 + 4x + 1 HW
165 y2 + (x3 + x2 + x)y = x5 + 2x4 + 3x3 + x2 − 3x H
167 y2 + (x3 + x + 1)y = −x5 − x3 − x2 − 1 HW
175 y2 + (x3 + x2 + 1)y = −x5 − x4 − 2x3 − 4x2 − 2x − 1 W
177 y2 + (x3 + x2 + 1)y = x5 + x4 + x3 HW
188 y2 = x5 − x4 + x3 + x2 − 2x + 1 W
189 y2 + (x3 − 1)y = x3 − 7 W
191 y2 + (x3 + x + 1)y = −x3 + x2 + x HW

Table 1. Levels, integral models and sources for curves

regulator, also rounded to five digits. We list the cp’s by primes of increasing order
dividing the level N . We denote J(Q)tors = Φ and list its size. We use X? to
denote the size of (lims→1(s − 1)−rL(J, s)) · (#J(Q)tors)

2/(Ω · Reg · ∏ cp), rounded
to the nearest integer. We will refer to this as the conjectured size of X(J,Q).
For rank 0 optimal quotients this integer equals the (a priori) rational number
(L(J, 1)/(k · Ω)) · ((#J(Q)tors)

2/
∏

cp); of course there is no rounding error in this
computation. For all other cases the last column gives a bound on the accuracy of
the computations; all values of X? were at least this close to the nearest integer
before rounding.



GENUS 2 BIRCH AND SWINNERTON-DYER CONJECTURE 17

N r lim
s→1

L(J,s)
(s−1)r Ω Reg cp’s Φ X? error

23 0 0.24843 2.7328 1 11 11 1
29 0 0.29152 2.0407 1 7 7 1
31 0 0.44929 2.2464 1 5 5 1
35 0 0.37275 2.9820 1 16,2 16 1 < 10−25

39 0 0.38204 10.697 1 28,1 28 1 < 10−25

63 0 0.75328 4.5197 1 2,3 6 1
65,A 0 0.45207 6.3289 1 7,1 14 2
65,B 0 0.91225 5.4735 1 1,3 6 2
67 2 0.23410 20.465 0.011439 1 1 1 < 10−50

73 2 0.25812 24.093 0.010713 1 1 1 < 10−49

85 2 0.34334 9.1728 0.018715 4,2 2 1 < 10−26

87 0 1.4323 7.1617 1 5,1 5 1
93 2 0.33996 18.142 0.0046847 4,1 1 1 < 10−49

103 2 0.37585 16.855 0.022299 1 1 1 < 10−49

107 2 0.53438 11.883 0.044970 1 1 1 < 10−49

115 2 0.41693 10.678 0.0097618 4,1 1 1 < 10−50

117,A 0 1.0985 3.2954 1 4,3 6 1
117,B 0 1.9510 1.9510 1 4,1 2 1
125,A 2 0.62996 13.026 0.048361 1 1 1 < 10−50

125,B 0 2.0842 2.6052 1 5 5 4
133,A 0 2.2265 2.7832 1 5,1 5 4
133,B 2 0.43884 15.318 0.028648 1,1 1 1 < 10−49

135 0 1.5110 4.5331 1 3,1 3 1
147 2 0.61816 13.616 0.045400 2,2 2 1 < 10−50

161 2 0.82364 11.871 0.017345 4,1 1 1 < 10−47

165 2 0.68650 9.5431 0.071936 4,2,2 4 1 < 10−26

167 2 0.91530 7.3327 0.12482 1 1 1 < 10−47

175 0 0.97209 4.8605 1 1,5 5 1
177 2 0.90451 13.742 0.065821 1,1 1 1 < 10−45

188 2 1.1708 11.519 0.011293 9,1 1 1 < 10−44

189 0 1.2982 3.8946 1 1,3 3 1
191 2 0.95958 17.357 0.055286 1 1 1 < 10−44

Table 2. Conjectured sizes of X(J,Q)

In Table 3 are generators of J(Q)/J(Q)tors for the curves whose Jacobians have
Mordell-Weil rank 2. The generators are given as divisor classes. Whenever pos-
sible, we have chosen generators of the form [P − Q] where P and Q are rational
points on the curve. Curve 167 is the only example where this is not the case, since
the degree zero divisors supported on the (known) rational points on C167 generate
a subgroup of index two in the full Mordell-Weil group. Affine points are given
by their x and y coordinates in the model given in Table 1. There are two points
at infinity in the normalization of the curves described by our equations, with the
exception of curve C188. These are denoted by ∞a, where a is the value of the
function y/x3 on the point in question. The (only) point at infinity on curve C188

is simply denoted ∞.
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N Generators of J(Q)/J(Q)tors

67 [(0, 0) − ∞−1] [(0, 0) − (0,−1)]
73 [(0,−1) − ∞−1] [(0, 0) − ∞−1]
85 [(1, 1) − ∞−1] [(−1, 3) − ∞0]
93 [(−1, 1) − ∞0] [(1,−3) − (−1,−2)]
103 [(0, 0) − ∞−1] [(0,−1) − (0, 0)]
107 [∞−1 − ∞0] [(−1,−1) − ∞−1]
115 [(1,−4) − ∞0] [(1, 1) − (−2, 2)]
125,A [∞−1 − ∞0] [(−1, 0) − ∞−1]
133,B [∞−1 − ∞0] [(0,−1) − ∞−1]
147 [∞−1 − ∞0] [(−1,−1) − ∞0]
161 [(1, 2) − (−1, 1)] [( 1

2 ,−3) − (1, 2)]
165 [(1, 1) − ∞−1] [(0, 0) − ∞0]
167 [(−1, 1) − ∞0] [(i, 0) + (−i, 0) − ∞0 − ∞−1]
177 [(0,−1) − ∞0] [(0, 0) − (0,−1)]
188 [(0,−1) − ∞] [(0, 1) − (1,−2)]
191 [∞−1 − ∞0] [(0,−1) − ∞0]

Table 3. Generators of J(Q)/J(Q)tors in rank 2 cases

N Prime Type Prime Type N Prime Type Prime Type

23 23 I3−2−1 117,A 3 III − III∗ − 0 13 I1−1−1

29 29 I3−1−1 117,B 3 I∗3−1−1 13 I1−1−0

31 31 I2−1−1 125,A 5 VIII − 1
35 5 I3−2−2 7 I2−1−0 125,B 5 IX − 3
39 3 I6−2−2 13 I1−1−0 133,A 7 I2−1−1 19 I1−1−0

63 3 2I∗0 − 0 7 I1−1−1 133,B 7 I1−1−0 19 I1−1−0

65,A 3 I0 − I0 − 1 5 I3−1−1 135 3 III 5 I3−1−0

65,A 13 I1−1−0 147 3 I2−1−0 7 VII
65,B 2 I0 − I0 − 1 5 I3−1−0 161 7 I2−2−0 23 I1−1−0

65,B 13 I1−1−1 165 3 I2−2−0 5 I2−1−0

67 67 I1−1−0 165 11 I2−1−0

73 73 I1−1−0 167 167 I1−1−0

85 5 I2−2−0 17 I2−1−0 175 5 II − II − 0 7 I2−1−1

87 3 I2−1−1 29 I1−1−0 177 3 I1−1−0 59 I1−1−0

93 3 I2−2−0 31 I1−1−0 188 2 IV − IV − 0 47 I1−1−0

103 103 I1−1−0 189 3 II − IV∗ − 0 7 I1−1−1

107 107 I1−1−0 191 191 I1−1−0

115 5 I2−2−0 23 I1−1−0

Table 4. Namikawa and Ueno classification of special fibers

In Table 4 are the reduction types, from the classification of [NU], of the special
fibers of the minimal, proper, regular models of the curves for each of the primes
of singular reduction for the curve. They are the same as the primes dividing the
level except that curve C65,A has singular reduction at the prime 3 and curve C65,B

has singular reduction at the prime 2.
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6. Discussion of Shafarevich-Tate groups and evidence for the

second conjecture

From Section 3.2 we have dimX(J,Q)[2] = dim Sel2(J,Q) − r − dim J(Q)[2].
With the exception of curves C65,A, C65,B , C125,B , and C133,A we have dimX(J,Q)[2] =
0. Thus we expect #X(J,Q) to be an odd square. In each case, the conjec-
tured size of X(J,Q) is 1. For curves C65,A, C65,B , C125,B and C133,A we have
dimX(J,Q)[2] = 1, 1, 2 and 2 and the conjectured size of X(J,Q) = 2, 2, 4 and 4,
respectively. We see that in each case, the (conjectured) size of the odd part of
X(J,Q) is 1 and the 2-part is accounted for by its 2-torsion.

Recall that for rank 0 optimal quotients we are able to exactly determine the
value which the second Birch and Swinnerton-Dyer conjecture predicts for X(J,Q).
From the previous paragraph, we then see that equation (1.1) holds if and only if
X(J,Q) is killed by 2.

It is also interesting to consider deficient primes. A prime p is deficient with
respect to a curve C of genus 2, if C has no degree 1 rational divisor over Qp.
From [PSt], the number of deficient primes has the same parity as dimX(J,Q)[2].
Curve C65,A has one deficient prime 3. Curve C65,B has one deficient prime 2.
Curve C117,B has two deficient primes 3 and ∞. The rest of the curves have no
deficient primes.

Since we have found r (analytic rank) independent points on each Jacobian, we
have a direct proof that the Mordell-Weil rank must equal the analytic rank if
dimX(J,Q)[2] = 0. For curves C65,A and C65,B , the presence of an odd number

of deficient primes gives us a similar result. For C125,B we used a
√

5-Selmer group
to get a similar result. Thus, we have an independent proof of equality between
analytic and Mordell-Weil ranks for all curves except C133,A.

The 2-Selmer groups have the same dimensions for the pairs C125,A, C125,B and
C133,A, C133,B . For each pair, the Mordell-Weil rank is 2 for one curve and the 2-
torsion of the Shafarevich-Tate group has dimension 2 for the other. In addition, the
two Jacobians, when canonically embedded into J0(N), intersect in their 2-torsion
subgroups, and one can check that their 2-Selmer groups become equal under the
identification of H1(Q, JN,A[2]) with H1(Q, JN,B [2]) induced by the identification
of the 2-torsion subgroups. Thus these are examples of the principle of a ‘visible
part of a Shafarevich-Tate group’ as discussed in [CM].

Appendix: Other Hasegawa curves

In Table 5 is data concerning all 142 of Hasegawa’s curves in the order presented
in his paper. Let us explain the entries. The first column in each set of three
columns gives the level, N . The second column gives a classification of the cusp
forms spanning the 2-dimensional subspace of S2(N) corresponding to the Jacobian.
When that subspace is irreducible with respect to the action of the Hecke algebra
and is spanned by two newforms or two oldforms, we write 2n or 2o, respectively.
When that subspace is reducible and is spanned by two oldforms, two newforms or
one of each, we write oo, nn and on, respectively. The third column contains the
sign of the functional equation at the level M at which the cusp form is a newform.
This is the negative of εM (described in Section 4.1). The order of the two signs
in the third column agrees with that of the forms listed in the second column. We
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22 oo ++ 58 nn +− 87 2o ++ 129 on −− 198 2o +−
23 2n ++ 60 oo ++ 88 on +− 130 on −+ 204 2o +−
26 nn ++ 60 2o ++ 90 on ++ 132 oo ++ 205 2n −−
28 oo ++ 60 2o ++ 90 oo ++ 133 2n −− 206 2o −−
29 2n ++ 62 2o ++ 90 oo ++ 134 2o −− 209 2n −−
30 on ++ 66 nn ++ 90 oo ++ 135 on +− 210 on +−
30 oo ++ 66 2o ++ 91 nn −− 138 nn +− 213 2n −−
30 on ++ 66 2o ++ 93 2n −− 138 on +− 215 on −−
31 2n ++ 66 on ++ 98 oo ++ 140 oo ++ 221 2n −−
33 on ++ 67 2n −− 100 oo ++ 142 nn +− 230 2o −−
35 2n ++ 68 oo ++ 102 on +− 143 on +− 255 2o −−
37 nn +− 69 2o ++ 102 on +− 146 2o −− 266 2o −−
38 on ++ 70 on ++ 103 2n −− 147 2n −− 276 2o +−
39 2n ++ 70 2o ++ 104 2o ++ 150 on ++ 284 2o +−
40 on ++ 70 2o ++ 106 on −− 153 on +− 285 on −−
40 oo ++ 70 2o ++ 107 2n −− 154 on −− 286 on −−
42 on ++ 72 on ++ 110 on ++ 156 oo ++ 287 2n −−
42 oo ++ 72 oo ++ 111 oo +− 158 on −− 299 2n −−
42 on ++ 73 2n −− 112 on +− 161 2n −− 330 2o −−
42 oo ++ 74 oo +− 114 oo +− 165 2n −− 357 2n −−
44 2o ++ 77 on +− 115 2n −− 166 on −− 380 2o +−
46 2o ++ 78 oo ++ 116 2o +− 167 2n −− 390 on −−
48 on ++ 78 2o ++ 117 2o ++ 168 2o ++
48 oo ++ 80 oo ++ 120 oo ++ 170 2o −−
50 nn ++ 84 oo ++ 120 on ++ 177 2n −−
52 oo ++ 84 oo ++ 121 on +− 180 2o ++
52 oo ++ 84 oo ++ 122 on −− 184 on +−
54 on ++ 84 oo ++ 125 2n −− 186 2o −−
57 on +− 85 2n −− 126 oo ++ 190 on +−
57 on +− 87 2n ++ 126 on ++ 191 2n −−

Table 5. Spaces of cusp forms associated to Hasegawa’s curves

include this information for those who would like to further study these curves.
The curves with N < 200 classified as 2n appeared already in Table 1.

The smallest possible Mordell-Weil ranks corresponding to ++, +−, −+ and
−−, predicted by the first Birch and Swinnerton-Dyer conjecture, are 0, 1, 1 and 2
respectively. In all cases, those were, in fact, the Mordell-Weil ranks. This was de-
termined by computing 2-Selmer groups with a computer program based on [Sto2].
Of course, these are cases where the first Birch and Swinnerton-Dyer conjecture is
already known to hold. In the cases where the Mordell-Weil rank is positive, the
Mordell-Weil group has a subgroup of finite index generated by degree zero divisors
supported on rational points with x-coordinates with numerators bounded by 7 (in
absolute value) and denominators by 12 with one exception. On the second curve

with N = 138, the divisor class [(3+2
√

2, 80+56
√

2)+(3−2
√

2, 80−56
√

2)−2∞]
generates a subgroup of finite index in the Mordell-Weil group.
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[Ed2] B. Edixhoven, L’action de l’algèbre de Hecke sur les groupes de composantes des jacobi-

ennes des courbes modulaires est “Eisenstein”, Astérisque, No. 196–197 (1992), 159–170. MR
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Abstract. Let f be a newform of weight 2 on Γ0(N), and let Af be the
corresponding optimal abelian variety quotient of J0(N). We describe an
algorithm to compute the order of the component group of Af at primes p
that exactly divide N . We give a table of orders of component groups for
all f of level N ≤ 127 and five examples in which the component group
is very large, as predicted by the Birch and Swinnerton-Dyer conjecture.

1 Introduction

Let X0(N) be the Riemann surface obtained by compactifying the quo-
tient of the upper half-plane by the action of Γ0(N). Then X0(N) has
a canonical structure of algebraic curve over Q; denote its Jacobian
by J0(N). It is equipped with an action of a commutative ring T =
Z[. . . Tn . . .] of Hecke operators. For more details on modular curves,
Hecke operators, and modular forms see, e.g., [8].

Now suppose that f =
∑

∞

n=1
anqn is a modular newform of weight 2

for the congruence subgroup Γ0(N). The Hecke operators also act on f
by Tn(f) = anf . The eigenvalues an generate an order Rf = Z[. . . an . . .]
in a number field Kf . The kernel If of the map T → Rf sending Tn to an

is a prime ideal. Following Shimura [15], we associate to f the quotient
Af = J0(N)/IfJ0(N) of J0(N). Then Af is an abelian variety over Q of
dimension [Kf : Q], with bad reduction exactly at the primes dividing N .

One-dimensional quotients of J0(N) have been intensely studied in
recent years, both computationally and theoretically. The original con-
jectures of Birch and Swinnerton-Dyer [1, 2], for elliptic curves over Q,
were greatly influenced by computations. The scale of these computations
was extended and systematized by Cremona in [6].

In another direction, Wiles [20] and Taylor-Wiles [18] proved a special
case of the conjecture of Shimura-Taniyama, which asserts that every



elliptic curve over Q is a quotient of some J0(N); this allowed them to
establish Fermat’s Last Theorem. The full Shimura-Taniyama conjecture
was later proved by Breuil, Conrad, Diamond, and Taylor in [4]. This
illustrates the central role played by quotients of J0(N).

2 Component Groups of Af

The Néron model A/Z of an abelian variety A/Q is by definition a smooth
commutative group scheme over Z with generic fiber A such that for any
smooth scheme S over Z, the restriction map

HomZ(S,A) → HomQ(SQ, A)

is a bijection. For more details, including a proof of existence, see, e.g., [5].
Suppose that Af is a quotient of J0(N) corresponding to a newform f

on Γ0(N), and let Af be the Néron model of Af . For any prime divisor p
of N , the closed fiber Af /Fp

is a group scheme over Fp, which need not

be connected. Denote the connected component of the identity by A◦

f /Fp
.

There is an exact sequence

0 → A◦

f /Fp
→ Af /Fp

→ ΦAf ,p → 0

with ΦAf ,p a finite étale group scheme over Fp called the component group

of Af at p.
The category of finite étale group schemes over Fp is equivalent to

the category of finite groups equipped with an action of Gal(Fp/Fp) (see,
e.g., [19, §6.4]). The order of an étale group scheme G/Fp is defined to
be the order of the group G(Fp). In this paper we describe an algorithm
for computing the order of ΦAf ,p, when p exactly divides N .

3 The Algorithm

Let J = J0(N), fix a newform f of weight-two for Γ0(N), and let Af be
the corresponding quotient of J . Because J is the Jacobian of a curve, it
is canonically isomorphic to its dual, so the projection J → Af induces a
polarization A∨

f → Af , where A∨

f denotes the abelian variety dual of Af .
We define the modular degree δAf

of Af to be the positive square root
of the degree of this polarization. This agrees with the usual notion of
modular degree when Af is an elliptic curve.

A torus T over a field k is a group scheme whose base extension to the
separable closure ks of k is a finite product of copies of Gm. Every commu-
tative algebraic group over k admits a unique maximal subtorus, defined



over k, whose formation commutes with base extension (see IX §2.1 of [9]).
The character group of a torus T is the group X = Homks

(T,Gm) which
is a free abelian group of finite rank together with an action of Gal(ks/k)
(see, e.g., [19, §7.3]).

We apply this construction to our setting as follows. The closed fiber
of the Néron model of J at p is a group scheme over Fp, whose maximal
torus we denote by TJ,p. We define XJ,p to be the character group of
TJ,p. Then XJ,p is a free abelian group equipped with an action of both
Gal(Fp/Fp) and the Hecke algebra T (see, e.g., [14]). Moreover, there
exists a bilinear pairing

〈 , 〉 : XJ,p ×XJ,p → Z

called the monodromy pairing such that

ΦJ,p
∼= coker(XJ,p → Hom(XJ,p,Z)).

Let XJ,p[If ] be the intersection of all kernels ker(t) for t in If , and let

αf : XJ,p → Hom(XJ,p[If ],Z)

be the map induced by the monodromy pairing. The following theorem of
the second author [16], provides the basis for the computation of orders
of component groups.

Theorem 1. With the notation as above, we have the equality

#ΦAf ,p =
#coker(αf ) · δAf

#(αf (XJ,p)/αf (XJ,p[If ]))
.

3.1 Computing the modular degree δA,f

Using modular symbols (see, e.g., [6]), we first compute the homology
group H1(X0(N),Q; cusps). Using lattice reduction, we compute the Z-
submodule H1(X0(N),Z; cusps) generated by all Manin symbols (c, d).
Then H1(X0(N),Z) is the integer kernel of the boundary map.

The Hecke ring T acts on H1(X0(N),Z) and also on the linear dual
Hom(H1(X0(N),Z),Z), where t ∈ T acts on ϕ ∈ Hom(H1(X0(N),Z),Z)
by (t.ϕ)(x) = ϕ(tx). We have a natural restriction map

rf : Hom(H1(X0(N),Z),Z)[If ] → Hom(H1(X0(N),Z)[If ],Z).

Proposition 1. The cokernel of rf is isomorphic to the kernel of the

polarization A∨

f → Af induced by the map J0(N) → Af .



Thus the order of the cokernel of rf is the square of the modular
degree δf . We pause to note that the degree of any polarization is a
square; see, e.g., [13, Thm. 13.3].

Proof. Let S = S2(Γ0(N),C) be the complex vector space of weight-two
modular forms of level N , and set H = H1(X0(N), Z). The integration
pairing S × H → C induces a natural map

Φf : H → Hom(S[If ],C).

Using the classical Abel-Jacobi theorem, we deduce the following commu-
tative diagram, which has exact columns, but whose rows are not exact.

0

²²

0

²²

0

²²
H[If ]

²²

// H

²²

// Φf (H)

²²
Hom(S,C)[If ]

²²

// Hom(S,C)

²²

// Hom(S[If ],C)

²²
A∨

f (C)

²²

//
>>

J0(N)(C)

²²

// Af (C)

²²
0 0 0

By the snake lemma, the kernel of A∨

f (C) → Af (C) is isomorphic to the
cokernel of the map H[If ] → Φf (H). Since

Hom(H/ ker(Φf ),Z) ∼= Hom(H,Z)[If ],

the Hom(−,Z) dual of the map H[If ] → Φf (H) = H/ ker(Φf ) is rf , which
proves the proposition.

3.2 Computing the character group XJ,p

Let N = Mp, where M and p are coprime. If M is small, then the algo-
rithm of Mestre and Oesterlé [12] can be used to compute XJ,p. This algo-
rithm constructs the graph of isogenies between Fp-isomorphism classes
of pairs consisting of a supersingular elliptic curve and a cyclic M -torsion
subgroup. In particular, the method is elementary to apply when X0(M)
has genus 0.

In general, the above category of “enhanced” supersingular elliptic
curves can be replaced by one of left (or right) ideals of a quaternion or-
der O of level M in the quaternion algebra over Q ramified at p. This gives



an equivalent category, in which the computation of homomorphisms is
efficient. The character group XJ,p is known by Deligne-Rapoport [7] to
be canonically isomorphic to the degree zero subgroup X (O) of the free
abelian “divisor group” on the isomorphism classes of enhanced supersin-
gular elliptic curves and of quaternion ideals. Moreover, this isomorphism
is compatible with the operation of Hecke operators, which are effectively
computable in X (O) in terms of ideal homomorphisms.

The inner product of two classes in this setting is defined to be the
number of isomorphisms between any two representatives. The linear ex-
tension to X (O) gives an inner product which agrees, under the isomor-
phism, with the monodromy pairing on XJ,p. This gives, in particular,
an isomorphism ΦJ,p

∼= coker(X (O) → Hom(X (O),Z)), and an effective
means of computing #coker(αf ) and #(αf (XJ,p)/αf (XJ,p[If ])).

The arithmetic of quaternions has been implemented in Magma [11]
by the first author. Additional details and the application to Shimura
curves, generalizing X0(N), can be found in Kohel [10].

3.3 The Galois action on ΦAf ,p

To determine the Galois action on ΦAf ,p, we need only know the action of
the Frobenius automorphism Frobp. However, Frobp acts on ΦAf ,p in the
same way as −Wp, where Wp is the pth Atkin-Lehner involution, which
can be computed using modular symbols. Since f is an eigenform, the
involution Wp acts as either +1 or −1 on ΦAf ,p. Moreover, the operator
Wp is determined by an involution on the set of quaternion ideals, so it
can be determined explicitly on the character group.

4 Tables

The main computational results of this work are presented below in two
tables. The relevant algorithms have been implemented in Magma and
will be made part of a future release. They can also be obtained from the
second author.

4.1 Component groups at low level

The first table gives the component groups of the quotients Af of J0(N)
for N ≤ 127. The column labeled d contains the dimensions of the Af , and
the column labeled #ΦAf ,p contains a list of the orders of the component
groups of Af , one for each divisor p of N , ordered by increasing p. An



entry of “?” indicates that p2 | N , so our algorithm does not apply. A
component group order is starred if the Gal(Fp/Fp)-action is nontrivial.
More data along these lines can be obtained from the second author.

4.2 Examples of large component groups

Let ΩAf
be the real period of Af , as defined by J. Tate in [17]. The

second author computed the rational numbers L(Af , 1)/ΩAf
for every

newform f of level N ≤ 1500. The five largest prime divisors occur in
the ratios given in the second table. The Birch and Swinnerton-Dyer
conjecture predicts that the large prime divisor of the numerator of each
special value must divide the order either of some component group ΦAf ,p

or of the Shafarevich-Tate group of Af . In each instance ΦAf ,2 is divisible
by the large prime divisor, as predicted.

5 Further directions

Further considerations are needed to compute the group structure of
ΦAf ,p. However, since the action of Frobenius is known, computing the
group structure of ΦAf ,p suffices to determine its structure as a group
scheme.

Our methods say nothing about the component group at primes whose
square divides the level. The free abelian group on classes of nonmaxi-
mal orders of index p at a ramified prime gives a well-defined divisor
group. Do the resulting Hecke modules determine the component groups
for quotients of level p2M?

Is it possible to define quantities as in Theorem 1 even when the weight
of f is greater than 2? If so, how are the resulting quantities related to
the Bloch-Kato Tamagawa numbers (see [3]) of the higher weight motive
attached to f?



Component groups at low level

N d #ΦAf ,p

11 1 5
14 1 6∗, 3
15 1 4∗, 4
17 1 4
19 1 3
20 1 ?, 2∗

21 1 4, 2∗

23 2 11
24 1 ?, 2∗

26 1 3∗, 3
1 7, 1∗

27 1 ?
29 2 7
30 1 4∗, 3, 1∗

31 2 5
32 1 ?
33 1 6∗, 2
34 1 6, 1∗

35 1 3∗, 3
2 8, 4∗

36 1 ?, ?
37 1 1∗

1 3
38 1 9∗, 3

1 5, 1∗

39 1 2∗, 2
2 14, 2∗

40 1 ?, 2
41 3 10
42 1 8, 2∗, 1∗

43 1 1∗

2 7
44 1 ?, 1∗

45 1 ?, 1∗

46 1 10∗, 1
47 4 23
48 1 ?, 2
49 1 ?
50 1 1∗, ?

1 5, ?
51 1 3, 1∗

2 16∗, 4
52 1 ?, 2∗

53 1 1∗

N d #ΦAf ,p

3 13
54 1 3∗, ?

1 3, ?
55 1 2, 2∗

2 14∗, 2
56 1 ?, 1

1 ?, 1∗

57 1 2∗, 1∗

1 2, 2∗

1 10, 1∗

58 1 2∗, 1∗

1 10, 1∗

59 5 29
61 1 1∗

3 5
62 1 4, 1∗

2 66∗, 3
63 1 ?, 1∗

2 ?, 3
64 1 ?
65 1 1∗, 1∗

2 3∗, 3
2 7, 1∗

66 1 2∗, 3, 1∗

1 4, 1∗, 1∗

1 10, 5, 1
67 1 1

2 1∗

2 11
68 2 ?, 2∗

69 1 2, 1∗

2 22∗, 2
70 1 4, 2∗, 1∗

71 3 5
3 7

72 1 ?, ?
73 1 2

2 1∗

2 3
74 2 9∗, 3

2 95, 1∗

75 1 1∗, ?
1 1, ?
1 5, ?

N d #ΦAf ,p

76 1 ?, 1∗

77 1 2∗, 1∗

1 3∗, 2
1 6, 3∗

2 2, 2∗

78 1 16∗, 5∗, 1
79 1 1∗

5 13
80 1 ?, 2

1 ?, 2∗

81 2 ?
82 1 2∗, 1∗

2 28, 1∗

83 1 1∗

6 41
84 1 ?, 1∗, 2∗

1 ?, 3, 2
85 1 2∗, 1

2 2∗, 1∗

2 6, 1∗

86 2 21∗, 3
2 55, 1∗

87 2 5, 1∗

3 92∗, 4
88 1 ?, 1∗

2 ?, 2∗

89 1 1∗

1 2
5 11

90 1 2∗, ?, 3
1 6, ?, 1∗

1 4, ?, 1
91 1 1∗, 1∗

1 1, 1
2 7, 1∗

3 4∗, 8
92 1 ?, 1∗

1 ?, 1
93 2 4∗, 1∗

3 64, 2∗

94 1 2, 1∗

2 94∗, 1
95 3 10, 2∗

4 54∗, 6

N d #ΦAf ,p

96 1 ?, 2
1 ?, 2∗

97 3 1∗

4 8
98 1 2∗, ?

2 14, ?
99 1 ?, 1∗

1 ?, 1
1 ?, 1∗

1 ?, 1∗

100 1 ?, ?
101 1 1∗

7 25
102 1 2∗, 2∗, 1∗

1 6∗, 6, 1∗

1 8, 4, 1
103 2 1∗

6 17
104 1 ?, 1∗

2 ?, 2
105 1 1, 1, 1

2 10∗, 2∗, 2
106 1 4∗, 1∗

1 5∗, 1
1 24, 1∗

1 3, 1∗

107 2 1∗

7 53
108 1 ?, ?
109 1 1

3 1∗

4 9
110 1 7∗, 1∗, 3

1 3, 1∗, 1∗

1 5, 5, 1
2 16∗, 3, 1∗

111 3 10∗, 2
4 266, 2∗

112 1 ?, 1∗

1 ?, 1
1 ?, 1∗

113 1 2
2 2
3 1∗

N d #ΦAf ,p

3 7
114 1 2∗, 5∗, 1

1 20, 3∗, 1∗

1 6, 3, 1
115 1 5∗, 1

2 4∗, 1∗

4 32, 4∗

116 1 ?, 1∗

1 ?, 2∗

1 ?, 1∗

117 1 ?, 1
2 ?, 3
2 ?, 1∗

118 1 2∗, 1∗

1 19∗, 1
1 10, 1∗

1 1, 1∗

119 4 9, 3∗

5 48∗, 8
120 1 ?, 1, 1∗

1 ?, 2, 1
121 1 ?

1 ?
1 ?
1 ?

122 1 4∗, 1∗

2 39∗, 3
3 248, 1∗

123 1 1∗, 1∗

1 5, 1
2 7, 1∗

3 184∗, 4
124 1 ?, 1∗

1 ?, 1
125 2 ?

2 ?
4 ?

126 1 8∗, ?, 1∗

1 2, ?, 1
127 3 1∗

7 21



Large L(Af , 1)/ΩAf

N dim L(Af , 1)/ΩAf
#ΦAf ,p

1154 = 2·577 20 2?
·85495047371/172 2?

·172
·85495047371, 2?

1238 = 2·619 19 2?
·7553329019/5·31 2?

·5·31·7553329019, 2?

1322 = 2·661 21 2?
·57851840099/331 2?

·331·57851840099, 2?

1382 = 2·691 20 2?
·37·1864449649/173 2?

·37·173·1864449649, 2?

1478 = 2·739 20 2?
·7·29·1183045463/5·37 2?

·5·7·29·37·1183045463, 2?
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Abstract

Explicit approaches to modular abelian varieties
by

William Arthur Stein

Doctor of Philosophy in Mathematics

University of California at Berkeley

Professor Hendrik Lenstra, Chair

I investigate the Birch and Swinnerton-Dyer conjecture, which ties together the con-
stellation of invariants attached to an abelian variety. I attempt to verify this conjecture
for certain specific modular abelian varieties of dimension greater than one. The key idea
is to use Barry Mazur’s notion of visibility, coupled with explicit computations, to produce
lower bounds on the Shafarevich-Tate group. I have not finished the proof of the conjecture
in these examples; this would require computing explicit upper bounds on the order of this
group.

I next describe how to compute in spaces of modular forms of weight at least two. I give
an integrated package for computing, in many cases, the following invariants of a modular
abelian variety: the modular degree, the rational part of the special value of the L-function,
the order of the component group at primes of multiplicative reduction, the period lattice,
upper and lower bounds on the torsion subgroup, and the real volume. Taken together,
these algorithms are frequently sufficient to compute the odd part of the conjectural order
of the Shafarevich-Tate group of an analytic rank 0 optimal quotient of J0(N), with N
square-free. I have not determined the exact structure of the component group, the order
of the component group at primes whose square divides the level, or the exact order of the
torsion subgroup in all cases. However, I do provide generalizations of some of the above
algorithms to higher weight forms with nontrivial character.

Professor Hendrik Lenstra
Dissertation Committee Chair
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Preface

The object of numerical computation is theoretical advance.
–A.O. L. Atkin, see [5]

The definition of the spaces of modular forms as functions on the upper half plane
satisfying a certain equation is very abstract. The definition of the Hecke operators even
more so. Nevertheless, one wishes to carry out explicit investigations into these objects.

We are fortunate that we now have methods available that allow us to transform the
vector space of cusp forms of given weight and level into a concrete object, which can be
explicitly computed. We have the work of Atkin-Lehner, Birch, Swinnerton-Dyer, Manin,
Merel, and many others to thank for this (see [6, 16, 45]). For example, the Eichler-Selberg
trace formula, as extended in [30], can be used to compute characteristic polynomials of
Hecke operators. One can compute Hecke operators using Brandt matrices and quaternion
algebras [32, 52]; another closely related method involves the module of enhanced super-
singular elliptic curves [47]. In the course of computing large tables of invariants of elliptic
curves in [16], Cremona demonstrated the power of systematic computation using modular
symbols.

Various methods often must be used in concert to obtain information about the package
of invariants attached to a modular form. For example, computing orders of component
groups of optimal quotients of J0(N) involves computations on the module of supersingular
elliptic curves combined with modular symbols techniques (see Chapter 4).

Chapter 1 is an attempt to systematically prove the Birch and Swinnerton-Dyer con-
jecture for a certain finite list of rank-0 quotients of J0(N) that have nontrivial Shafarevich-
Tate groups. The key idea is to use Barry Mazur’s notion of visibility, coupled with explicit
computations, to produce lower bounds on the Shafarevich-Tate group. I have not finished
the proof of the conjecture in these examples; this would require computing explicit upper
bounds on the order of this group. However, I obtain explicit formulas and data that will
be helpful in further investigations.

The following three chapters describe the algorithms used in Chapter 1, along with
generalizations to eigenforms on Γ1(N) of integral weight greater than two. I have used
these algorithms to investigate the Artin Conjecture [12], Serre’s conjecture, and many
other problems not described in this thesis. I have implemented most of the algorithms
that are described in Chapters 2–4 in both Magma and C++; this implementation should
be available in the standard release of Magma in versions 2.7 and greater.

William A. Stein
University of California, Berkeley
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Chapter 1

The Birch and Swinnerton-Dyer
conjecture

Now that the Shimura-Taniyama conjecture has been proved, many experts consider the
Birch and Swinnerton-Dyer conjecture (BSD conjecture) to be one of the main outstanding
problems in the field (see [19, pg. 549] and [68, Intro.]). This conjecture ties together
many of the arithmetic and analytic invariants of an elliptic curve. At present, there is no
general class of elliptic curves for which the full BSD conjecture is known, though a slightly
weakened form is known for a fairly broad class of complex multiplication elliptic curves of
analytic rank 0 (see [55]), and several deep partial results have been obtained during the
last twenty years (see, e.g., [27] and [33]).

Approaches to the BSD conjecture that rely on congruences between modular forms
are likely to require a deeper understanding of the analogue of the BSD conjecture for
higher-dimensional abelian varieties. As a first step, this chapter presents theorems and
explicit computations of some of the arithmetic invariants of modular abelian varieties.

The reader is urged to also read A. Agashe’s 2000 Berkeley Ph.D. thesis which cover
similar themes. The paper of Cremona and Mazur’s [18] paints a detailed experimental
picture of the way in which congruences link Mordell-Weil and Shafarevich-Tate groups of
elliptic curves.

1.1 The BSD conjecture

By [10] we now know that every elliptic curve over Q is a quotient of the curve X0(N),
whose complex points are the isomorphism classes of pairs consisting of a (generalized)
elliptic curve and a cyclic subgroup of order N . Let J0(N) denote the Jacobian of X0(N);
this is an abelian variety of dimension equal to the genus of X0(N) whose points correspond
to the degree 0 divisor classes on X0(N). The survey article [21] is a good guide to the facts
and literature about the family of abelian varieties J0(N).

Following Mazur [41], we make the following definition.

Definition 1.1 (Optimal quotient). An optimal quotient of J0(N) is a quotient A of
J0(N) by an abelian subvariety.
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Consider an optimal quotient A such that L(A, 1) 6= 0. By [35], A(Q) and X(A) are
both finite. The BSD conjectureasserts that

L(A, 1)

ΩA
=

#X(A) · ∏
p|N cp

#A(Q) · #A∨(Q)
.

Here the Shafarevich-Tate group

X(A) := ker

(
H1(Q, A) →

∏

v

H1(Qv, A)

)

is a measure of the failure of the local-to-global principle; the Tamagawa numbers cp are
the orders of the groups of rational points of the component groups of A (see Chapter 4);
the real number ΩA is the measure of A(R) with respect to a basis of differentials having
everywhere nonzero good reduction (see Section 3.12.6); and A∨ is the abelian variety dual
to A (see [50, §9]). This chapter makes a small contribution to the long-term goal of verifying
the above conjecture for many specific abelian varieties on a case-by-case basis. In a large
list of examples, we compute the conjectured order of X(A), up to a power of 2, and then
show that X(A) is at least as big as conjectured. We also discuss methods to obtain upper
bounds on #X(A), but do not carry out any computations in this direction. This is the
first step in a program to verify the above conjecture for an infinite family of quotients
of J0(N).

1.1.1 The ratio L(A, 1)/ΩA

Extending classical work on elliptic curves, A. Agashe and the author proved the fol-
lowing theorem.

Theorem 1.2. Let m be the largest square dividing N . The ratio L(A, 1)/ΩA is a rational
number that can be explicitly computed, up to a unit (conjecturally 1) in Z[1/(2m)].

Proof. The proof uses modular symbols combined with an extension of the argument used
by Mazur in [41] to bound the Manin constant. The modular symbols part of the proof
for L-functions attached to newforms of weight k ≥ 2 is given in Section 3.10; it involves
expressing the ratio L(A, 1)/ΩA as the lattice index of two modules over the Hecke algebra.
The bound on the Manin constant is given in Section 3.11.

The author has computed L(A, 1)/ΩA for all simple optimal quotients of level N ≤
1500; this table can be obtained from the author’s web page.

Remark 1.3. The method of proof should also give similar results for special values of twists
of L(A, s), just as it does in the case dimA = 1 (see [16, Prop. 2.11.2]).

1.1.2 Torsion subgroup

We can compute upper and lower bounds on #A(Q)tor, see Section 3.8; these frequently
determine #A(Q)tor.



4 CHAPTER 1. THE BIRCH AND SWINNERTON-DYER CONJECTURE

These methods, combined with the method used to obtain Theorem 1.2, yield the
following corollary, which supports the expected cancellation between torsion and cp coming
from the reduction map sending rational points to their image in the component group of A.
The corollary also generalizes to higher weight forms, thus suggesting a geometric way to
think about reducibility of modular Galois representations.

Corollary 1.4. Let n be the order of the image of (0) − (∞) in A(Q), and let m be the
largest square dividing N . Then n · L(A, 1)/ΩA ∈ Z[1/(2m)].

For the proof, see Corollary 3.48 in Chapter 3.

1.1.3 Tamagawa numbers

We prove the following theorem in Chapter 4.

Theorem 1.5. When p2 - N , the number cp can be explicitly computed (up to a power
of 2).

We can compute the order cp of the group of rational points of the component group,
but not its structure as a group. When p2 | N it may be possible to compute cp using the
Drinfeld-Katz-Mazur model of X0(N), but we have not yet done this. There are also good
bounds on the primes that can divide cp when p2 | N .

Systematic computations (see Section 4.7.1) using this formula suggest the following
conjectural refinement of a result of Mazur [40].

Conjecture 1.6. Suppose N is prime and A is an optimal quotient of J0(N) corresponding
to a newform f . Then A(Q)tor is generated by the image of (0)− (∞) and cp = #A(Q)tor.
Furthermore, the product of the cp over all simple optimal quotients corresponding to new-
forms equals the numerator of (N − 1)/12.

I have checked this conjecture for all N ≤ 997 and, up to a power of 2, for all N ≤ 2113.
The first part is known when A is an elliptic curve (see [48]). Upon hearing of this conjecture,
Mazur reportedly proved it when all “q-Eisenstein quotients” are simple. There are three
promising approaches to finding a complete proof. One involves the explicit formula of
Theorem 1.5; another is based on Ribet’s level lowering theorem (see [53]), and a third
makes use of a simplicity result of Merel (see [46]).

The formula that lies behind Theorem 1.5 probably has a natural analogue in weight
greater than 2. One could then guess that it produces Tamagawa numbers of motifs at-
tached to eigenforms of higher weight; however, we have no idea if this is really the case.
These numbers appear in the conjectures of Bloch and Kato, which generalize the BSD
conjecture to motifs (see [7]). Anyone wishing to try to compute them should be aware of
Neil Dummigan’s paper [22], which gives some information about the Tamagawa numbers
of motifs attached by Scholl in [57] to modular eigenforms.

1.1.4 Upper bounds on #X(A)

V. Kolyvagin (see [34]) and K. Kato (see, e.g., [58]) constructed Euler systems that
were used to prove that X(A) is finite when L(A, 1) 6= 0. To verify the full BSD conjecture
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for certain abelian varieties, we must make the Kolyvagin-Kato finiteness bound explicit.
Kolyvagin’s bounds involve computations with Heegner points, and Kato’s involve a study
of the Galois representations associated to A.

Kolyvagin’s bounds

In [33], Kolyvagin obtains explicit upper bounds for #X(A) for a certain (finite) list
of elliptic curves A by computing the index in A(K) of the subgroup generated by the
Heegner point, where K is a suitable imaginary quadratic extension. In [35], Kolyvagin and
Logachev generalize Kolyvagin’s earlier results; in Section 1.6, “Unsolved problems”, they
say that: “If one were to compute the height of a Heegner point y [...] considered in the
present paper, then one would have succeeded in obtaining an upper bound for #X for this
curve.” (By “curve” they mean abelian variety.) This suggests that explicit computations
should yield upper bounds on the order of X(A), but that they had not yet figured out
how to carry out such computations.

Kato’s bounds

Kato has constructed Euler systems coming from K2-groups of modular curves. These
can be used to prove the following theorem (see, e.g., [56, Cor. 3.5.19]).

Theorem 1.7 (Kato). Suppose E is an elliptic curve over Q without complex multipli-
cation that E has conductor N , that E has good reduction at p, that p does not divide
2rE

∏
q|N Lq(q

−1)#E(Qq)tor, and the Galois representation ρE,p : GQ → Aut(E[p]) is sur-
jective. Then

#X(E)p∞ divides
L(E, 1)

ΩE
.

Here Lq(x) is the local Euler factor at q and the constant rE arises in the construction
of Kato’s Euler system. Rubin suggests that computing rE is not very difficult (private
communication). Appropriate variants of Kato’s arguments give similar results for quotients
of J0(N) of arbitrary dimension, though these have not been written down.

1.1.5 Lower bounds on #X(A)

One approach to showing that X(A) is as at least as large as predicted by the BSD
conjecture is suggested by Mazur’s notion of the visible part X(A)◦ of X(A) (see [18, 43]).
Let A∨ ⊂ J0(N) be the dual to A. The visible part of X(A∨) is the kernel of the natural
map X(A∨) → X(J0(N)). Mazur observed that if an element of order p in X(A∨) is
visible, then it is explained by a “jump in the rank of Mordell-Weil” in the sense that there
is another abelian subvariety B ⊂ J0(N) such that p | #(A∨ ∩ B) and the rank of B is
positive.

Mazur’s observation can be turned around: if there is another abelian variety B of
positive rank such that p | #(A∨ ∩ B), then, under mild hypotheses (see Theorem 1.8),
there is an element of X(A∨) of order p. From a computational point of view it is easy
to understand the intersections A∨ ∩ B; see Section 3.6. From a theoretical point of view,
nontrivial intersections “correspond” to congruences between modular forms. Thus the
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well-developed theory of congruences between modular forms can be used to obtain a lower
bound on #X(A∨).

Invisible elements of #X(A∨)

Numerical experiments suggest that as A∨ varies, X(A∨) is often not visible inside
of J0(N). For example (see Table 1.2), the BSD conjecture predicts the existence of invisible
elements of odd order in X(A∨) for almost half of the 37 optimal quotients of prime level
≤ 2113.

Visibility at higher level

For every integer M (Ribet [54] tells us which M to choose), we can ask whether
X(A∨) maps to 0 under one of the natural maps A∨ → J0(NM); that is, we can ask
whether X(A∨) “becomes visible at level NM .” We have been unable to prove in any
particular case that X(A∨) is not visible at level N , but becomes visible at some level
NM . See Section 1.4.1 for some computations which strongly indicate that such examples
exist.

Visibility in some Jacobian

Johan de Jong proved that if E is an elliptic curve over a number field K and c ∈
H1(K, E) then there is a Jacobian J and an imbedding E ↪→ J such that c maps to 0 under
the natural map H1(K, E) → H1(K, J) (see Remark 3 in [18]); de Jong’s proof appears to
generalize when E is replaced by an abelian variety, but time does not permit going into
the details here.

1.1.6 Motivation for considering abelian varieties

If A is an elliptic curve, then explaining X(A) using only congruences between elliptic
curves will probably fail. This is because pairs of non-isogenous elliptic curves with iso-
morphic p-torsion for large p are, according to E. Kani’s conjecture, extremely rare. It is
crucial to understand what happens in all dimensions.

Within the range accessible by computer, abelian varieties exhibit more richly textured
structure than elliptic curves. For example, there is a visible element of prime order 83341
in the Shafarevich-Tate group of an abelian variety of prime conductor 2333; in contrast,
over all optimal elliptic curves of conductor up to 5500, it appears that the largest order of
an element of a Shafarevich-Tate group is 7 (see the discussion in [18]).

1.2 Existence of nontrivial visible elements of X(A)

The reader who wants to see tables of Shafarevich-Tate groups can safely skip to the
next section.

Without relying on any unverified conjectures, we will use the following theorem to
exhibit abelian varieties A such that the visible part of X(A) is nonzero. In the following
theorem we do not assume that J is the Jacobian of a curve.
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Theorem 1.8. Let A and B be abelian subvarieties of an abelian variety J such that A∩B
is finite and A(Q) is finite. Assume that B has purely toric reduction at each prime at
which J has bad reduction. Let p be an odd prime at which J has good reduction, and
assume that p does not divide the orders of any of the (geometric) component groups of A
and B, or the orders of the torsion subgroups of (J/B)(Q) and B(Q). Suppose further that
B[p] ⊂ A ∩ B. Then there exists an injection

B(Q)/pB(Q) ↪→ X(A)◦

of B(Q)/pB(Q) into the visible part of X(A).

Proof. Let C = J/A. The long exact sequence of Galois cohomology associated to the short
exact sequence

0 → A → J → C → 0

begins

0 → A(Q) → J(Q) → C(Q)
δ−→ H1(Q, A) → · · · .

Because B[p] ⊂ A, the map B → C, obtained by composing the inclusion B ↪→ J with
J → C, factors through multiplication-by-p, giving the following commutative diagram:

B

²²

p
// B

²²

A // J // C.

Because B(Q)[p] = 0 and B(Q)∩A(Q) = 0, we deduce the following commutative diagram
with exact rows:

0

²²

K1

²²

K2

²²

0 // B(Q)
p

//

²²

B(Q)

π

&&NNNNNNNNNNN
//

²²

B(Q)/pB(Q) //

²²

0

0 // J(Q)/A(Q) //

²²

C(Q) // δ(C(Q)) // 0

K3,

where K1 and K2 are the indicated kernels and K3 is the cokernel. We have the snake
lemma exact sequence

0 → K1 → K2 → K3.

Because B(Q)[p] = 0 and K2 is a p-torsion group, we have K1 = 0. The quotient
J(Q)/B(Q) has no p-torsion because it is a subgroup of (J/B)(Q); also, A(Q) is a fi-
nite group of order coprime to p, so K3 = J(Q)/(A(Q) + B(Q)) has no p-torsion. Thus
K2 = 0.
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The above argument shows that B(Q)/pB(Q) is a subgroup of H1(Q, A). However,
H1(Q, A) contains infinitely many elements of order p (see [59]), whereas X(A)[p] is a
finite group, so we must work harder to deduce that B(Q)/pB(Q) lies in X(A)[p]. Fix
x ∈ B(Q). We must show that π(x) lies in X(A)[p]; equivalently, that resv(π(x)) = 0 for
all places v of Q.

At the archimedean place v = ∞, the restriction resv(π(x)) is killed by 2 and the odd
prime p, hence resv(π(x)) = 0.

Suppose that v is a place at which J has bad reduction. By hypothesis, B has purely
toric reduction, so over the maximal unramified extension Qur

v of Qv there is an isomorphism
B ∼= Gd

m/Γ of Gal(Qv/Q
ur
v )-modules, for some “lattice” Γ. For example, when dimB = 1,

this is the Tate curve representation of B. Let n be the order of the component group
of B at v; thus n equals the order of the cokernel of the valuation map Γ → Zd. Choose a
representative P = (x1, . . . , xd) ∈ Gd

m for the point x. Then nP can be adjusted by elements
of Γ so that each of its components xi ∈ Gm has valuation 0. By assumption, p is a prime
at which J has good reduction, so p 6= v; it follows that there is a point Q ∈ Gd

m(Qur
v )

such that pQ = nP . Thus the cohomology class resv(π(nx)) is unramified at v. By [51,
Prop. I.3.8],

H1(Qur
v /Qv, A(Qur

v )) = H1(Qur
v /Qv,ΦA,v(Fv)),

where ΦA,v is the component group of A at v. Since the component group ΦA,v(Fv) has
order n, it follows that

resv(π(nx)) = n resv(π(x)) = 0.

Since the order p of resv(π(x)) is coprime to n, we conclude that resv(π(x)) = 0.

Next suppose that J has good reduction at v and that v is odd, in the sense that the
residue characteristic of v is odd. To simplify notation in this paragraph, since v is a non-
archimedean place of Q, we will also let v denote the odd prime number which is the residue
characteristic of v. Let A, J , C, be the Néron models of A, J , and C, respectively (for more
on Néron models, see Chapter 4). Let A, J , C, also denote the sheaves on the étale-site
over Spec(Zv) determined by the group schemes A, J , and C, respectively. Since v is odd,
1 = e < v − 1, so we may apply [8, Thm. 7.5.4] to conclude that the sequence of group
schemes

0 → A → J → C → 0

is exact; in particular, it is exact as a sequence of sheaves on the étale site (see the proof
of [8, Thm. 7.5.4]). Thus it is exact on the stalks, so by [49, 2.9(d)] the sequence

0 → A(Zur
v ) → J (Zur

v ) → C(Zur
v ) → 0

is exact; by the Néron mapping property the sequence

0 → A(Qur
v ) → J(Qur

v ) → C(Qur
v ) → 0

is also exact. Thus resv(π(x)) in unramified, so it arises by inflation from an element of
H1(Qur

v /Qv, A). By [51, Prop. I.3.8],

H1(Qur
v /Qv, A) ∼= H1(Qur

v /Qv,ΦA,v),
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where ΦA,v is the component group of A at v. Since A has good reduction, ΦA,v = 0, hence
resv(π(x)) = 0.

If J has bad reduction at v = 2, then we already dealt with 2 above. Consider the case
when J has good reduction at 2. Because the absolute ramification index e of Z2 is 1, which
is not less than v − 1 = 1, we can not apply [8, Thm. 7.5.4]. However, we can modify our
situation by an isogeny of degree a power of 2, then apply a different theorem as follows.
The 2-primary subgroup Ψ of A ∩ B is rational as a subgroup over Q, in the sense that
the conjugates of any point in Ψ are also contained in Ψ. The abelian varieties J̃ = J/Ψ,
Ã = A/Ψ, and B̃ = B/Ψ also satisfy the hypothesis of the theorem we are proving. By [8,
Prop. 7.5.3(a)], the corresponding sequence of Néron models

0 → Ã → J̃ → C̃ → 0

is exact, so the sequence

0 → Ã(Qur
v ) → J̃(Qur

v ) → C̃(Qur
v ) → 0

is exact. Thus the image of resv(π(x)) in H1(Qv, Ã) is unramified. It equals 0, again by [51,
Prop. 3.8], since the component group of Ã at v has order a power of 2 (in fact it is trivial,
since Ã has good reduction at 2), whereas π(x) has odd prime order p. Thus resv(π(x)) = 0,
since the kernel of H1(Qv, A) → H1(Qv, Ã) is a finite group of 2-power order.

1.3 Description of tables

In this section we describe our tables of optimal quotients of J0(N), which have nontriv-
ial Shafarevich-Tate group. The tables, which can be found on pages 15–18, were computed
using a combination of Hecke [64], LiDIA, NTL, Pari, and most successfully Magma [9].
The component group computations at non-prime level rely on Kohel’s quaternion algebra
package, which was also written in Magma.

We compute the conjectural order of the Shafarevich-Tate group of an abelian variety A,
and then make assertions about the Shafarevich-Tate group of A∨. This is justified because
the order of X(A∨) equal the order of X(A), since both are finite and the Cassells-Tate
pairing sets up a nondegenerate duality between them.

1.3.1 Notation

Each optimal quotient A of J0(N) is denoted by a label, such as 389E, which consists
of a level N and a letter indicating the isogeny class. In the labeling, N is a positive integer
and the isogeny class is given by a letter: the first isogeny class is labeled A, the second is
labeled B, the third labeled C, and so on. Thus 389E is the fifth isogeny class of optimal
quotient of J0(389), corresponding to a Galois-conjugacy class of newforms. The isogeny
classes that we consider are in bijection with the Galois-conjugacy classes of newforms in
S2(Γ0(N)). The classes of newforms are ordered as described in Section 3.5.5.

WARNING: The odd part of a rational number x is x/2v, where v = ord2(x). In the
tables, only the odd parts of the arithmetic invariants of A are given.
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1.3.2 Table 1.2: Shafarevich-Tate groups at prime level

Table 1.2 was constructed as follows. Using the results of Section 3.10, we computed
the odd part of the conjectural order #Xan(A) of the Shafarevich-Tate group of every
optimal quotient of J0(p) that corresponds to a single Galois conjugacy-class of eigenforms
and has analytic rank 0, for p a prime with p ≤ 2161. We also computed a few sporadic
examples of prime level p with p > 2161. The sporadic examples appear at the bottom of
the table below a horizontal line.

Notation

The columns of the table contain the following information. The abelian varieties A
for which #Xan(A) is greater than 1 are laid out in the first column of Table 1.2. The
second column contains the dimensions of the abelian varieties in the first column. The
third column contains the odd part (i.e., largest odd divisor) of the order of the Shafarevich-
Tate group, as predicted by the BSD conjecture. Column four contains the odd parts of
the modular degrees of the abelian varieties in the first column.

The fifth column contains an optimal quotient B of J0(p) of positive analytic rank,
such that the `-torsion of B∨ is contained in A∨, when one exists, where ` is a divisor of
#Xan(A). We computed this intersection using the algorithm described in Section 3.6.
Such a B is called an explanatory factor. When no such abelian varieties exists, we write
“NONE” in the fifth column. The sixth column contains the dimensions of the abelian
varieties in the fifth column, and the seventh column contains the odd parts of the modular
degrees of the abelian varieties in the fifth column.

Ranks of the explanatory factors

That the explanatory factors have positive analytic rank follows from our modular
symbols computation of L(B, 1)/ΩB. This is supported by the table in [11], except in the
case 2333A, where there is a mistake in [11] (see below).

The explanatory factor 389A is the first elliptic curve of rank 2. The table in [11] sug-
gests that the explanatory factor 1061B is the first 2-dimensional abelian variety (attached
to a newform) whose Mordell-Weil group when tensored with the field of fractions F of the
corresponding ring of Fourier coefficients, is of dimension 2 over F . Similarly 1567B ap-
pears to be the first 3-dimensional one of rank 2, and 2333A is the first 4-dimensional one
of rank 2. It thus seems very likely that the ranks of each explanatory factor is exactly 2,
though we have not proved this.

Discussion of the data

There are 23 examples in which X(A) is visible and 18 in which X(A) is invisible.
The largest visible X(A) found occurs at level 2333 and has order at least 833412 (83341
is prime). The largest invisible X(A) occurs in a 112-dimensional abelian variety at level
2111 and has order at least 2112.

The example 1283C demonstrates that #Xan(A) can divide the modular degree, yet
be invisible. In this case 5 divides #Xan(A). Since 5 divides the modular degree, it follows
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that there must be other non-isogenous subvarieties of J0(1283) that intersect 1283C in a
subgroup of order divisible by 5. In this case, the only such subvariety is 1283A, which
has dimension 2 and whose 5-torsion is contained in 1283C. However 1283A has analytic
(hence algebraic) rank 0, so #Xan(A) cannot be visible.

The cases 1483D, 1567D, 2029C, and 2593B are interesting because all of X, even
though it has two nontrivial p-primary components in each of these cases, is made visible
in a single B. In the case 1913E only the 5-primary component of X is visible in 1913A,
but still both the 5-primary and 61-primary components of X are visible in 1913C.

Examples 1091C and 1429B were first found in [1] and 1913B in [18].

Errata to Brumer’s paper

Contrary to our computations, [11] suggests that 2333A has rank 0. However, the
author pointed the discrepancy out to Brumer who replied:

I looked in vain for information about θ-relations on 2333 and have concluded
that I never ran the interval from 2300 to 2500 or else had lost all info by the
time I wrote up the paper. The punchline: 4 relations for 2333 and 2 relations
for 2381 (also missing from the table).

1.3.3 Tables 1.3–1.6: New visible Shafarevich-Tate groups

Let n denote the largest odd square dividing the numerator of L(A, 1)/ΩA. Table 1.3
lists those A such that for some p | n there exists a quotient B of J0(N), corresponding
to a newform and having positive analytic rank, such that (A∨ ∩ B∨)[p] 6= 0. Our search
was systematic up to level 1001, but there might be omitted examples between levels 1001
and 1028. Table 1.4 contains further arithmetic information about each explanatory factor.
Table 1.6 gives the quantities involved in the formula of Chapter 4 for Tamagawa numbers,
for each of the abelian varieties A in Table 1.3.

Notation

Most of the notation is the same as in Table 1.2. However the additional columns
wq and cp contain the signs of the Atkin-Lehner involutions and the Tamagawa numbers,
respectively. These are given in order, from smallest to largest prime divisor of N .

In each case B has dimension 1. When 4 | N , we write “a” for c2 to remind us that
we did not compute c2 because the reduction at 2 is additive. Again only odd parts of the
invariants are given. Section 4.7.2 contains a discussion of the notation used in the headings
of Table 1.6.

Remarks on the data

The explanatory factors B of level ≤ 1028 are exactly the set of rank 2 elliptic curves
of level ≤ 1028.
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Table 1.1: Odd invisible |XE | > 1, all N ≤ 5500 (from Table 1 of [18])

E
√

|XE | mE F mF Remarks
2849A 3 25 · 5 · 61 NONE −
3364C 7 26 · 32 · 52 · 7 none −
4229A 3 23 · 3 · 7 · 13 none −
4343B 3 24 · 1583 NONE −
4914N 3 24 · 35 none − E has rational 3-torsion
5054C 3 23 · 33 · 11 none −
5073D 3 25 · 3 · 5 · 7 · 23 none −
5389A 3 22 · 2333 NONE −

1.4 Further visibility computations

1.4.1 Does X become visible at higher level?

This section is concerned with whether or not the examples of invisible elements of
Shafarevich-Tate groups of elliptic curves of level N that are given in [18] become visible
in abelian surfaces inside appropriate J0(Np). We analyze each of the cases in Table 1 of
[18]. For the reader’s convenience, the part of this table which concerns us is reproduced as
Table 1.1. The most interesting examples we give are 2849A and 5389A. As in [18], the
assertions below assume the truth of the BSD conjecture.

How we found the explanatory curves

We use a naive heuristic observation to find possible explanatory curves of higher level,
even though their conductors are out of the range of Cremona’s tables. Note that we have
not proved that these factors are actually explanatory in any cases, and expect that in some
cases they are not.

First we recall some of the notation from Table 1 of [18], which is partially reproduced
below. The “NONE” label in the row corresponding to an elliptic curve E indicates that
there are elements in X(E) whose order does not divide the modular degree of E, and
hence they must be invisible. The label “none” indicates only that no suitable explanatory
elliptic curves could be found, so X(E) is not visible in an abelian surface inside J0(N); it
could, however, be visible in the full abelian variety J0(N).

Studying the Weierstrass equations corresponding to the curves in [18] reveals that the
elliptic curves labeled “NONE” have unusually large height, as compared to their conduc-
tors. However, the explanatory factors often have unusually small height. Motivated by
this purely heuristic observation, we make a table of all elliptic curves of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

with a1, a2, a3 ∈ {−1, 0, 1}, |a4|, |a6| < 1000, and conductor bounded by 50000. The bound
on the conductor is required only so that the table will fit within computer storage. This
table took a few days to generate.
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2849A

Barry Mazur and Adam Logan found the first known example of an invisible Shafarevich-
Tate group. This was X(E), where E is the elliptic curve 2849A, which has minimal
Weierstrass equation

E : y2 + xy + y = x3 + x2 − 53484x − 4843180.

Consulting our table of curves of small height, we find an elliptic curve F of conductor
8547 = 2849 · 3 such that fE ≡ fF (mod 3), where fE and fF are the newforms attached
to E and F , respectively. This is a congruence for all eigenvalues ap attached to E and F .
The elliptic curve F is defined by the equation

F : y2 + xy + y = x3 + x2 − 154x − 478.

Cremona’s program mwrank reveals that the Mordell-Weil group of F has rank 2. Thus
maybe X(E) becomes visible at level 8547. Unfortunately, visibility of X(E) is not implied
by Theorem 1.8 because the geometric component group of F at 3 has order divisible by 3.

4343B

Consider the elliptic curve E labeled 4343B. According to Table 1 of [18], X(E) has
order 9, but the modular degree prevents X(E) from being visible in J0(4343). At level
21715 = 5 · 4343 there is an elliptic curve F of rank 1 that is congruent to E. Its equation
is

F : y2 − xy − y = x3 − x2 + 78x − 256.

5389A

The last curve labeled “NONE” in the table is curve 5389A, which has minimal Weier-
strass equation

y2 + xy + y = x3 − 35590x − 2587197.

The main theorem of [54] implies that there exists a newform that is congruent modulo 3
to the newform corresponding to 5389A and of level 3 · 5389. This is because (−2)2 =
(3 + 1)2 (mod 3). However, our table of curves of small height does not contain any curve
of conductor 3 · 5389. Next we observe that (−2)2 ≡ (7 + 1)2 (mod 3), so using Ribet’s
theorem we can instead augment the level by 7. Our table of small-height curves contains
just one (up to isogeny) elliptic curve of conductor 37723, and luckily the corresponding
newform is congruent modulo 3 to the newform corresponding to 5389A (away from primes
dividing the level)! The Weierstrass equation of this curve is

F : y2 − y = x3 + x2 + 34x − 248.

According to Cremona’s program mwrank, the rank of F is 2.
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3364C, 4229A, 5073D

Perhaps X(E) is already visible in some of the cases in which the curve is labeled
“none”, because the method fails in most of these cases. Each of the curves 3364C, 4229A,
and 5073D is labeled “none”. In none of these 3 cases are we able to find an explanatory
factor at higher level, within the range of our table of elliptic curves of small height.

4194N, 5054C

The curve 4914N is labeled “none” and we find the remark “E has rational 3-torsion”.
There is a congruent curve F of conductor 24570 given by the equation

F : y2 − xy = x3 − x2 − 15x − 75,

and F (Q) = {0}. The curve 5054C is labeled “none” and its Shafarevich-Tate group
contains invisible elements of order 3. We find a congruent curve of level 25270 and rank 1.
The equation of the congruent curve is

F : y2 − xy = x3 + x2 − 178x + 882.

1.4.2 Positive rank example

The abelian varieties with nontrivial X(A) that one finds in both ours and Cremona’s
tables all have rank 0. In this section we outline a computation which sugggests, but does
not prove, that there is a positive-rank abelian subvariety A of J0(5077) such that X(A)
possesses a nontrivial visible element of order 31.

According to [16], the smallest conductor elliptic curve E of rank 3 is found in J =
J0(5077). The number 5077 is prime, and the isogeny decomposition of J is1

J ∼ A × B × E,

where each of A, B, and E are abelian subvarieties of J associated to newforms, which
have dimensions 205, 216, and 1, respectively. Using Remark 3.38 or [69], we find that the
modular degree of E is 1984 = 26 · 31. The sign of the Atkin-Lehner involution on E is
the same as its sign on A, so E[31] ⊂ A. We have E(Q) ∼= Z × Z × Z, and the component
group of E is trivial. The numerator of (5077 − 1)/12 is 32 · 47, so [40] implies that none
of the abelian varieties above have 31-torsion. It might be possible to find an analogue of
Theorem 1.8 that applies when A has positive rank, and deduce in this case that X(A)
contains visible elements of order 31.

1This decomposition was found in about one minute using the Mestre-Oesterlé method of graphs (see [47]).
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Table 1.2: Shafarevich-Tate groups at prime level. (The entries in the columns “mod deg”
and “#Xan” are only really the odd parts of “mod deg” and “#Xan”.)

A dim #Xan(A) mod deg(A) B dim mod deg(B)
389E 20 52 5 389A 1 5
433D 16 72 3 · 7 · 37 433A 1 7
563E 31 132 13 563A 1 13
571D 2 32 32 · 127 571B 1 3
709C 30 112 11 709A 1 11
997H 42 34 32 997B 1 3
1061D 46 1512 61 · 151 · 179 1061B 2 151
1091C 62 72 1 NONE
1171D 53 112 34 · 11 1171A 1 11
1283C 62 52 5 · 41 · 59 NONE
1429B 64 52 1 NONE
1481C 71 132 52 · 2833 NONE
1483D 67 32 · 52 3 · 5 1483A 1 3 · 5
1531D 73 32 3 1531A 1 3
1559B 90 112 1 NONE
1567D 69 72 · 412 7 · 41 1567B 3 7 · 41
1613D 75 52 5 · 19 1613A 1 5
1621C 70 172 17 1621A 1 17
1627C 73 34 32 1627A 1 32

1693C 72 13012 1301 1693A 3 1301
1811D 98 312 1 NONE
1847B 98 36 1 NONE
1871C 98 192 14699 NONE
1877B 86 72 1 NONE
1907D 90 72 3 · 5 · 7 · 11 1907A 1 7
1913B 1 32 3 · 103 1913A 1 3 · 52

1913E 84 54 · 612 52 · 61 · 103 1913A,C 1, 2 3 · 52, 52 · 61
1933C 83 32 · 72 3 · 7 1933A 1 3 · 7
1997C 93 172 1 NONE
2027C 94 292 29 2027A 1 29
2029C 90 52 · 2692 5 · 269 2029A 2 5 · 269
2039F 99 34 · 52 19 · 29 · 7759 · 3214201 NONE
2063C 106 132 61 · 139 NONE
2089J 91 112 3 · 5 · 11 · 19 · 73 · 139 2089B 1 11
2099B 106 32 1 NONE
2111B 112 2112 1 NONE
2113B 91 72 1 NONE
2161C 98 232 1 NONE

2333C 101 833412 83341 2333A 4 83341
2339C 114 38 6791 NONE
2411B 123 112 1 NONE
2593B 109 672 · 22132 67 · 2213 2593A 4 67 · 2213
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Table 1.3: New visible Shafarevich-Tate groups

A dim #Xan wq cp #A(Q) #A(Q)·L(A,1)
ΩA

mod deg(A) B

389E 20 52 − 97 97 52 5 389A
433D 16 72 − 32 32 72 3 · 7 · 37 433A
446F 8 112 +− 1, 3 3 112 11 · 359353 446B
563E 31 132 − 281 281 132 13 563A
571D 2 32 − 1 1 32 32 · 127 571B
655D 13 34 +− 1, 1 1 34 32 · 19 · 515741 655A
664F 8 52 −+ a, 1 1 52 5 664A
681B 1 32 +− 1, 1 1 32 3 · 53 681C
707G 15 132 +− 1, 1 1 132 13 · 800077 707A
709C 30 112 − 59 59 112 11 709A
718F 7 72 +− 1, 1 1 72 7 · 151 · 35573 718B
794G 14 112 +− 3, 1 3 112 3 · 7 · 11 · 47 · 35447 794A
817E 15 72 +− 1, 5 5 72 7 · 79 817A
916G 9 112 −+ a, 1 1 112 39 · 11 · 17 · 239 916C
944O 6 72 +− a, 1 1 72 7 944E
997H 42 34 − 83 83 34 32 997BC
1001L 7 72 + − + 1, 1, 1 1 72 7 · 19 · 47 · 2273 1001C
1028E 14 112 −+ a, 1 3 34 · 112 313 · 11 1028A
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Table 1.4: Explanatory factors

B rank wq cp #A(Q) mod deg(A) Comments

389A 2 − 1 1 5 first curve of rank 2
433A 2 − 1 1 7
446B 2 +− 1, 1 1 11 called 446D in [16]
563A 2 − 1 1 13
571B 2 − 1 1 3
655A 2 +− 1, 1 1 32

664A 2 −+ 1, 1 1 5
681C 2 +− 1, 1 1 3
707A 2 +− 1, 1 1 13
709A 2 − 1 1 11
718B 2 +− 1, 1 1 7
794A 2 +− 1, 1 1 11
817A 2 +− 1, 1 1 7
916C 2 −+ 3, 1 1 3 · 11
944E 2 +− 1, 1 1 7
997B 2 − 1 1 3
997C 2 − 1 1 3
1001C 2 + − + 1, 3, 1 1 32 · 7
1028A 2 −+ 3, 1 1 3 · 11 intersects 1028E mod 11

Table 1.5: Factorizations

446 = 2 · 223 655 = 5 · 131 664 = 23 · 83 681 = 3 · 227
707 = 7 · 101 718 = 2 · 359 794 = 2 · 397 817 = 19 · 43
916 = 22 · 229 944 = 24 · 59 1001 = 7 · 11 · 13 1028 = 22 · 257
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Table 1.6: Component groups

A dim p wq #ΦX,p mX,p #ΦA,p(Fp)

389E 20 389 − 97 5 · 97 97
433D 16 433 − 32 33 · 7 · 37 32

446F 8 223 − 3 3 · 11 · 359353 3
2 + 3 3 · 11 3 · 359353

563E 31 563 − 281 13 · 281 281
571D 2 571 − 1 32 · 127 1
655D 13 131 − 1 32 · 19 · 515741 1

5 + 1 32 19 · 515741
664F 8 83 + 1 5 1
681B 1 227 − 1 3 · 53 1

3 + 1 3 · 52 5
707G 15 101 − 1 13 · 800077 1

7 + 1 13 800077
709C 30 709 − 59 11 · 59 59
718F 7 359 − 1 7 · 151 · 35573 1

2 + 1 7 151 · 35573
794G 14 397 − 3 32 · 7 · 11 · 47 · 35447 3

2 + 3 3 · 11 32 · 7 · 47 · 35447
817E 15 43 − 5 5 · 7 · 79 5

19 + 1 7 79
916G 9 229 + 1 39 · 11 · 17 · 239 1
944O 6 59 − 1 7 1
997H 42 997 − 83 32 · 83 83
1001L 7 13 + 1 7 · 19 · 47 · 2273 1

11 − 1 7 · 19 · 47 · 2273 1
7 + 1 7 · 19 · 47 2273

1028E 14 257 + 1 313 · 11 1
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Chapter 2

Modular symbols

Modular symbols permeate this thesis. In their simplest incarnation, modular symbols
provide a finite presentation for the homology group H1(X0(N),Z) of the Riemann surface
X0(N). This presentation is equipped with such a rich structure that from it we can deduce
the action of the Hecke operators; this is already sufficient information for us to compute a
basis for the space S2(Γ0(N),C) of cusp forms.

We recall the definition of spaces of modular symbols in Sections 2.1–2.2. Then in
Section 2.3, we review the duality between modular symbols and modular forms. In Sec-
tion 2.4, we see that modular symbols are furnished with analogues of each of the standard
operators that one finds on spaces of modular forms, and in Section 2.5 we see that the
same is true of the degeneracy maps. Section 2.6 describes Manin symbols, which supply a
convenient finite presentation for the space of modular symbols. Finally, Section 2.7 intro-
duces the complex torus attached to a newform, which appears in various guises throughout
this thesis.

Before continuing, we offer an apology. We will only consider modular symbols that are
already equipped with a fixed Dirichlet character. Though fixing a character complicates
the formulas, the resulting increase in efficiency is of extreme value in computational appli-
cations. Fixing a character allows us to compute in just the part of the space of modular
symbols for Γ1(N) that interests us. We apologize for any inconvenience this may cause the
less efficiency minded reader.

Acknowledgment. This chapter and the next were greatly influenced by the publi-
cations of Cremona [15, 16] and Merel [45], along with the foundational contributions of
Manin [38], Mazur [42, 39], and Shokurov [63]. Cremona’s book [16] provides a motivated
roadmap that guides the reader who wishes to compute with modular symbols in the fa-
miliar context of elliptic curves, and Merel’s article provides an accessible overview of the
action of Hecke operators on higher weight modular symbols, and the connection between
modular symbols and related cohomology theories.

2.1 The definition of modular symbols

Fix a positive integer N , an integer k ≥ 2, and a continuous homomorphism

ε : (Z/NZ)∗ → C∗
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such that ε(−1) = (−1)k. We call N the level, k the weight, and ε the Dirichlet character.

Consider the quotient of the abelian group generated by all formal symbols {α, β},
with α, β ∈ P1(Q) = Q ∪ {∞}, by the following relations:

{α, β} + {β, γ} + {γ, α} = 0,

for all α, β, γ ∈ P1(Q). Let M be the torsion-free quotient of this group by its torsion
subgroup. Because M is torsion free, {α, α} = 0 and {α, β} = −{β, α}.
Remark 2.1. One is motivated to consider these relations by viewing {α, β} as the homology
class of an appropriate path from α to β in the upper half plane.

Let Vk−2 be the Z-submodule of Z[X, Y ] made up of all homogeneous polynomials of
degree k − 2, and set Mk := Vk−2 ⊗ M. For g =

(
a b
c d

)
∈ GL2(Q) and P ∈ Vk−2, let

gP (X, Y ) = P

(
det(g)g−1

(
X
Y

))
= P

((
d −b

−c a

) (
X
Y

))

= P (dX − bY, −cX + aY ).

This defines a left action of GL2(Q) on Vk−2; it is a left action because

(gh)P (v) = P (det(gh)(gh)−1v) = P (det(h)h−1 det(g)g−1v)

= gP (det(h)h−1v) = g(hP (v)).

Combining this action with the action of GL2(Q) on P1(Q) by linear fractional transfor-
mations gives a left action of GL2(Q) on Mk:

g(P ⊗ {α, β}) = g(P ) ⊗ {g(α), g(β)}.

Finally, for g =
(

a b
c d

)
∈ Γ0(N), let ε(g) := ε(a), where a ∈ Z/NZ is the reduction modulo N

of a.

Let

Z[ε] := Z[ε(a) : a ∈ Z/NZ]

be the subring of C generated by the values of the character ε.

Definition 2.2 (Modular symbols). The space of modular symbols Mk(N, ε) of level N ,
weight k and character ε is the largest torsion-free quotient of Mk ⊗ Z[ε] by the Z[ε]-
submodule generated by the relations gx − ε(g)x for all x ∈ Mk and all g ∈ Γ0(N).

Denote by P{α, β} the image of P ⊗ {α, β} in Mk(N, ε). For any Z[ε]-algebra R, let

Mk(N, ε;R) := Mk(N, ε) ⊗Z[ε] R.

See Section 3.1 for an algorithm which can be used to compute Mk(N, ε;Q(ε)).
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2.2 Cuspidal modular symbols

Let B be the free abelian group generated by the symbols {α} for all α ∈ P1(Q).
There is a left action of GL2(Q) on B given by g{α} = {g(α)}. Let Bk := Vk−2 ⊗ B, and
let GL2(Q) act on Bk by g(P{α}) = (gP ){g(α)}.

Definition 2.3 (Boundary modular symbols). The space Bk(N, ε) of boundary mod-
ular symbols is the largest torsion-free quotient of Bk ⊗Z[ε] by the relations gx = ε(g)x for
all g ∈ Γ0(N) and x ∈ Bk.

Denote by P{α} the image of P ⊗ {α} in Bk(N, ε). The boundary map

δ : Mk(N, ε) → Bk(N, ε)

is defined by
δ(P{α, β}) = P{β} − P{α}.

Definition 2.4 (Cuspidal modular symbols). The space Sk(N, ε) of cuspidal modular
symbols is the kernel of δ.

The three spaces defined above fit together in the following exact sequence:

0 → Sk(N, ε) → Mk(N, ε)
δ−→ Bk(N, ε).

2.3 Duality between modular symbols and modular forms

For any positive integer k, any C-valued function f on the complex upper half plane

h := {z ∈ C : im(z) > 0},

and any matrix γ ∈ GL2(Q), define a function f |[γ]k on h by

(f |[γ]k)(z) = det(γ)k−1 f(γz)

(cz + d)k
.

Definition 2.5 (Cusp forms). Let Sk(N, ε) be the complex vector space of holomorphic
functions f(z) on h that satisfy the equation

f |[γ]k = ε(γ)f

for all γ ∈ Γ0(N), and such that f is holomorphic and vanishes at all cusps, in the sense of
[21, pg. 42].

Definition 2.6 (Antiholomorphic cusp forms). Let Sk(N, ε) be the space of antiholo-
morphic cusp forms; the definition is as above, except

f(γz)

(cz + d)k
= ε(γ)f(z)

for all γ ∈ Γ0(N).
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There is a canonical isomorphism of real vector spaces between Sk(N, ε) and Sk(N, ε)
that associates to f the antiholomorphic cusp form defined by the function z 7→ f(z).

Theorem 2.7 (Merel). There is a pairing

〈 , 〉 : (Sk(N, ε) ⊕ Sk(N, ε)) × Mk(N, ε;C) → C

given by

〈f ⊕ g, P{α, β}〉 =
∫ β

α
f(z)P (z, 1)dz +

∫ β

α
g(z)P (z, 1)dz,

where the path from α to β is, except for the endpoints, contained in h. The pairing is
perfect when restricted to Sk(N, ε;C).

Proof. Take the ε part of each side of [45, Thm. 3].

2.4 Linear operators

2.4.1 Hecke operators

For each positive integer n and each space V of modular symbols or modular forms,
there is a Hecke operator Tn, which acts as a linear endomorphism of V . For the definition
of Tn on modular symbols, see [45, §2]. Alternatively, because we consider only modular
symbols with character, the following recipe completely determines the Hecke operators.
First, when n = p is prime, we have

Tp(x) =




(
p 0
0 1

)
+

∑

r mod p

(
1 r
0 p

)
 x,

where the first matrix is omitted if p | N . If m and n are coprime, then Tmn = TmTn.
Finally, if p is a prime, r ≥ 2 is an integer, ε is the Dirichlet character of associated to V ,
and k is the weight of V , then

Tpr = TpTpr−1 − ε(p)pk−1Tpr−2 .

Definition 2.8. The Hecke algebra associated to V is the subring

T = TV = Z[. . . Tn . . . ]

of End(V ) generated by all Hecke operators Tn, with n = 1, 2, 3, . . . .

Proposition 2.9. The pairing of Theorem 2.7 respects the action of the Hecke operators, in
the sense that 〈fT, x〉 = 〈f, Tx〉 for all T ∈ T, x ∈ Mk(N, ε), and f ∈ Sk(N, ε)⊕Sk(N, ε).

Proof. See [45, Prop. 10].
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2.4.2 The ∗-involution

The matrix j =
( −1 0

0 1

)
defines an involution ∗ of Mk(N, ε) given by x 7→ x∗ = j(x).

Explicitly,

(P (X, Y ){α, β})∗ = P (X, −Y ){−α, −β}.

Because the space of modular symbols is constructed as a quotient, it is not obvious that
the ∗-involution is well defined.

Proposition 2.10. The ∗-involution is well defined.

Proof. Recall that Mk(N, ε) is the largest torsion-free quotient of the free Z[ε]-module
generated by symbols x = P{α, β} by the submodule generated by relations γx − ε(γ)x for
all γ ∈ Γ0(N). In order to check that the operator ∗ is well defined, it suffices to check, for
any x ∈ Mk, that ∗(γx− ε(γ)x) is of the form γ ′y − ε(γ′)y, for some y in Mk. Note that if
γ =

(
a b
c d

)
∈ Γ0(N), then jγj−1 =

(
a −b

−c d

)
is also in Γ0(N) and ε(jγj−1) = ε(γ). We have

j(γx − ε(γ)x) = jγx − jε(γ)x

= jγj−1jx − ε(γ)jx

= (jγj−1)(jx) − ε(jγj−1)(jx).

If f is a modular form, let f ∗ be the holomorphic function f(−z), where the bar denotes
complex conjugation. The Fourier coefficients of f ∗ are the complex conjugates of those
of f ; though f∗ is again a holomorphic modular form, its character is ε instead of ε. The
pairing of Theorem 2.7 is the restriction of a pairing on the full spaces without character,
and we have the following proposition.

Proposition 2.11. We have

〈f∗, x∗〉 = 〈f, x〉.

Definition 2.12 (Plus-one quotient). The plus-one quotient Mk(N, ε)+ is the largest
torsion-free quotient of Mk(N, ε) by the relations x∗ − x = 0 for all x ∈ Mk(N, ε).
Similarly, the minus-one quotient is the quotient of Mk(N, ε) by all relations x∗ + x = 0,
for x ∈ Mk(N, ε).

WARNING 2.13. We were forced to make a choice in our definition of the operator ∗.
Fortunately, it agrees with that of [16, §2.1.3], but not with the choice made in [45, §1.6].

2.4.3 The Atkin-Lehner involutions

In this section we assume that k is even and ε2 = 1. The assumption on ε is necessary
only so that the involution we are about to define preserves Mk(N, ε). More generally, it
is possible to define a map which sends Mk(N, ε) to Mk(N, ε).
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To each divisor d of N such that (d, N/d) = 1 there is an Atkin-Lehner involution Wd

of Mk(N, ε), which is defined as follows. Using the Euclidean algorithm, choose integers
x, y, z, w such that

dxw − (N/d)yz = 1.

Next let g =
(

dx y
Nz dw

)
and define

Wd(x) :=
1

d
k−2
2

· g(x).

For example, when d = N we have g =
(

0 −1
N 0

)
. The factor of d

k−2
2 is necessary to normalize

Wd so that it is an involution.
On modular forms there is an Atkin-Lehner involution, also denoted Wd, which acts

by Wd(f) = f |[Wd]k. These two like-named involutions are compatible with the integration
pairing:

〈Wd(f), x〉 = 〈f, Wd(x)〉.

2.5 Degeneracy maps

In this section, we describe natural maps between spaces of modular symbols of different
levels.

Fix a positive integer N and a Dirichlet character ε : (Z/NZ)∗ → C∗. Let M be
a positive divisor of N that is divisible by the conductor of ε, in the sense that ε factors
through (Z/MZ)∗ via the natural map (Z/NZ)∗ → (Z/MZ)∗ composed with some uniquely
defined character ε′ : (Z/MZ)∗ → C∗. For any positive divisor t of N/M , let T = ( 1 0

0 t )
and fix a choice Dt = {Tγi : i = 1, . . . , n} of coset representatives for Γ0(N)\TΓ0(M).

WARNING 2.14. There is a mistake in [45, §2.6]: The quotient “Γ1(N)\Γ1(M)T” should
be replaced by “Γ1(N)\TΓ1(M)”.

Proposition 2.15. For each divisor t of N/M there are well-defined linear maps

αt : Mk(N, ε) → Mk(M, ε′), αt(x) = (tT−1)x =

(
t 0
0 1

)
x

βt : Mk(M, ε′) → Mk(N, ε), βt(x) =
∑

Tγi∈Dt

ε′(γi)
−1Tγix.

Furthermore, αt ◦ βt is multiplication by tk−2 · [Γ0(M) : Γ0(N)].

Proof. To show that αt is well defined, we must show that for each x ∈ Mk(N, ε) and
γ =

(
a b
c d

)
∈ Γ0(N), that we have

αt(γx − ε(γ)x) = 0 ∈ Mk(M, ε′).

We have

αt(γx) =

(
t 0
0 1

)
γx =

(
a tb

c/t d

) (
t 0
0 1

)
x = ε′(a)

(
t 0
0 1

)
x,
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so
αt(γx − ε(γ)x) = ε′(a)αt(x) − ε(γ)αt(x) = 0.

We next verify that βt is well defined. Suppose that x ∈ Mk(M, ε′) and γ ∈ Γ0(M);
then ε′(γ)−1γx = x, so

βt(x) =
∑

Tγi∈Dt

ε′(γi)
−1Tγiε

′(γ)−1γx

=
∑

Tγiγ∈Dt

ε′(γiγ)
−1Tγiγx.

This computation shows that the definition of βt does not depend on the choice Dt of coset
representatives. To finish the proof that βt is well defined we must show that, for γ ∈ Γ0(M),
we have βt(γx) = ε′(γ)βt(x) so that βt respects the relations that define Mk(M, ε). Using
that βt does not depend on the choice of coset representative, we find that for γ ∈ Γ0(M),

βt(γx) =
∑

Tγi∈Dt

ε′(γi)
−1Tγiγx

=
∑

Tγiγ−1∈Dt

ε′(γiγ
−1)−1Tγiγ

−1γx

= ε′(γ)βt(x).

To compute αt ◦ βt, we use that #Dt = [Γ0(N) : Γ0(M)]:

αt(βt(x)) = αt


∑

Tγi

ε′(γi)
−1Tγix




=
∑

Tγi

ε′(γi)
−1(tT−1)Tγix

= tk−2
∑

Tγi

ε′(γi)
−1γix

= tk−2
∑

Tγi

x

= tk−2 · [Γ0(N) : Γ0(M)] · x.

The scalar factor of tk−2 appears instead of t, because t is acting on x as an element of
GL2(Q) not as an an element of Q.

Definition 2.16 (New and old modular symbols). The subspaceMk(N, ε)new of new
modular symbols is the intersection of the kernels of the αt as t runs through all positive di-
visors of N/M and M runs through positive divisors of M strictly less than N and divisible
by the conductor of ε. The subspace Mk(N, ε)old of old modular symbols is the subspace
generated by the images of the βt where t runs through all positive divisors of N/M and M
runs through positive divisors of M strictly less than N and divisible by the conductor of ε.
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WARNING: The new and old subspaces need not be disjoint, as the following example
illustrates! This is contrary to the statement on page 80 of [45].

Example 2.17. We justify the above warning. Consider, for example, the case N = 6,
k = 2, and trivial character. The spaces M2(2) and M2(3) are each of dimension 1, and
each is generated by the modular symbol {∞, 0}. The space M2(6) is of dimension 3,
and is generated by the 3 modular symbols {∞, 0}, {−1/4, 0}, and {−1/2, −1/3}. The
space generated by the 2 images of M2(2) under the 2 degeneracy maps has dimension 2,
and likewise for M2(3). Together these images generate M2(6), so M2(6) is equal to
its old subspace. However, the new subspace is nontrivial because the two degeneracy
maps M2(6) → M2(2) are equal, as are the two degeneracy maps M2(6) → M2(3). In
particular, the intersection of the kernels of the degeneracy maps has dimension at least 1
(in fact, it equals 1).

Computationally, it appears that something similar to this happens if and only if the
weight is 2, the character is trivial, and the level is composite. This behavior is probably
related to the nonexistence of a characteristic 0 Eisenstein series of weight 2 and level 1.

The following tempting argument is incorrect; the error lies in the fact that an element
of the old subspace is a linear combination of βt(y)’s for various y’s and t’s: “If x is in both
the new and old subspace, then x = βt(y) for some modular symbol y of lower level. This
implies x = 0 because

0 = αt(x) = αt(βt(y)) = tk−2 · [Γ0(N) : Γ0(M)] · y.”

Remark 2.18. The map βt◦αt cannot in general be multiplication by a scalar sinceMk(M, ε′)
usually has smaller dimension than Mk(N, ε).

2.5.1 Computing coset representatives

Definition 2.19 (Projective line mod N). Let N be a positive integer. Then the pro-
jective line P1(N) is the set of pairs (a, b), with a, b ∈ Z/NZ and gcd(a, b, N) = 1, modulo
the eqivalence relation which identifies (a, b) and (a′, b′) if and only if ab′ ≡ ba′ (mod N).

Let M be a positive divisor of N and t a divisor of N/M . The following random
algorithm computes a set Dt of representatives for the orbit space Γ0(M)\TΓ0(N). There
are deterministic algorithms for computing Dt, but all of the ones the author has found are
vastly less efficient than the following random algorithm.

Algorithm 2.20. Let Γ0(N/t, t) denote the subgroup of SL2(Z) consisting of matrices that
are upper triangular modulo N/t and lower triangular modulo t. Observe that two right
cosets of Γ0(N/t, t) in SL2(Z), represented by

(
a b
c d

)
and

(
a′ b′
c′ d′

)
, are equivalent if and only

if (a, b) = (a′, b′) as points of P1(t) and (c, d) = (c′, d′) as points of P1(N/t). Using the
following algorithm, we compute right coset representatives for Γ0(N/t, t) inside Γ0(M).

1. Compute the number [Γ0(M) : Γ0(N)] of cosets.

2. Compute a random element x ∈ Γ0(M).

3. If x is not equivalent to anything generated so far, add it to the list.
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4. Repeat steps (2) and (3) until the list is as long as the bound of step (1).

There is a natural bijection between Γ0(N)\TΓ0(M) and Γ0(N/t, t)\Γ0(M), under which Tγ
corresponds to γ. Thus we obtain coset representatives for Γ0(N)\TΓ0(M) by left multi-
plying each coset representative of Γ0(N/t, t)\Γ0(M) by T .

2.5.2 Compatibility with modular forms

The degeneracy maps defined above are compatible with the corresponding degeneracy
maps α̃t and β̃t on modular forms. This is because the degeneracy maps on modular forms
are defined by summing over the same coset representatives Dt. Thus we have the following
compatibilities.

〈α̃t(f), x〉 = 〈f, αt(x)〉,
〈β̃t(f), x〉 = 〈f, βt(x)〉.

If p is prime to N , then Tpαt = αtTp and Tpβt = βtTp.

2.6 Manin symbols

From the definition given in Section 2.1, it is not obvious that Mk(N, ε) is of finite
rank. The Manin symbols provide a finite presentation of Mk(N, ε) that is vastly more
useful from a computational point of view.

Definition 2.21 (Manin symbols). The Manin symbols are the set of pairs

[P (X, Y ), (u, v)]

where P (X, Y ) ∈ Vk−2 and 0 ≤ u, v < N with gcd(u, v, N) = 1.

Define a right action of GL2(Q) on the free Z[ε]-module M generated by the Manin
symbols as follows. The element g =

(
a b
c d

)
acts by

[P, (u, v)]g = [g−1P (X, Y ), (u, v)g] = [P (aX + bY, cX + dY ), (au + cv, bu + dv)].

Let σ =
(

0 −1
1 0

)
and τ =

(
0 −1
1 −1

)
. Let Mk(N, ε)′ be the largest torsion-free quotient of M

by the relations

x + xσ = 0,

x + xτ + xτ 2 = 0,

ε(λ)[P, (u, v)] − [P, (λu, λv)] = 0.

Theorem 2.22. There is a natural isomorphism ϕ : Mk(N, ε)′ −→ Mk(N, ε) given by

[XiY 2−k−i, (u, v)] 7→ g(X iY k−2−i{0, ∞})
where g =

(
a b
c d

)
∈ SL2(Z) is any matrix such that (u, v) ≡ (c, d) (mod N).

Proof. In [45, §1.2, §1.7] it is proved that ϕ ⊗Z[ε] C is an isomorphism, so ϕ is injective
and well defined. The discussion in Section 2.6.1 below (“Manin’s trick”) shows that every
element in Mk(N, ε) is a Z[ε]-linear combination of elements in the image, so ϕ is surjective
as well.
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2.6.1 Conversion between modular and Manin symbols

For some purposes it is better to work with modular symbols, and for others it is
better to work with Manin symbols. For example, there are descriptions of the Atkin-
Lehner involution in terms of both Manin and modular symbols; it appears more efficient
to compute this involution using modular symbols. On the other hand, practically Hecke
operators can be computed more efficiently using Manin symbols. It is thus essential to be
able to convert between these two representations. The conversion from Manin to modular
symbols is straightforward, and follows immediately from Theorem 2.22. The conversion
back is accomplished using the method used to prove Theorem 2.22; it is known as “Manin’s
trick”, and involves continued fractions.

Given a Manin symbol [X iY k−2−i, (u, v)], we write down a corresponding modular
symbol as follows. Choose

(
a b
c d

)
∈ SL2(Z) such that (c, d) ≡ (u, v) (mod N). This is

possible by Lemma 1.38 of [62, pg. 20]; in practice, finding
(

a b
c d

)
is not completely trivial,

but can be accomplished using the extended Euclidean algorithm. Then

[XiY k−2−i, (u, v)] ←→
(

a b
c d

)
(X iY k−2−i{0, ∞})

= (dX − bY )i(−cX + aY )2−k−i

{
b

d
,

a

c

}
.

In the other direction, suppose that we are given a modular symbol P (X, Y ){α, β} and
wish to represent it as a sum of Manin symbols. Because

P{a/b, c/d} = P{a/b, 0} + P{0, c/d},

it suffices to write P{0, a/b} in terms of Manin symbols. Let

0 =
p−2

q−2
=

0

1
,

p−1

q−1
=

1

0
,

p0

1
=

p0

q0
,

p1

q1
,

p2

q2
, . . . ,

pr

qr
=

a

b

denote the continued fraction convergents of the rational number a/b. Then

pjqj−1 − pj−1qj = (−1)j−1 for − 1 ≤ j ≤ r.

If we let gj =

(
(−1)j−1pj pj−1

(−1)j−1qj qj−1

)
, then gj ∈ SL2(Z) and

P (X, Y ){0, a/b} = P (X, Y )
r∑

j=−1

{
pj−1

qj−1
,
pj

qj

}

=
r∑

j=−1

gj((g
−1
j P (X, Y )){0, ∞})

=
r∑

j=−1

[g−1
j P (X, Y ), ((−1)j−1qj , qj−1)].
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Note that in the jth summand, g−1
j P (X, Y ), replaces P (X, Y ). Since gj ∈ SL2(Z) and

P (X, Y ) has integer coefficients, the polynomial g−1
j P (X, Y ) also has integer coefficients,

so no denominators are introduced.
The continued fraction expansion [c1, c2, . . . , cn] of the rational number a/b can be

computed using the Euclidean algorithm. The first term, c1, is the “quotient”: a = bc1 + r,
with 0 ≤ r < b. Let a′ = b, b′ = r and compute c2 as a′ = b′c2 + r′, etc., terminating when
the remainder is 0. For example, the expansion of 5/13 is [0, 2, 1, 1, 2]. The numbers

di = c1 +
1

c2 +
1

c3+···

will then be the (finite) convergents. For example if a/b = 5/13, then the convergents are

0/1, 1/0, d1 = 0, d2 =
1

2
, d3 =

1

3
, d4 =

2

5
, d5 =

5

13
.

2.6.2 Hecke operators on Manin symbols

Thoerem 2 of [45] gives a description of the Hecke operators Tn directly on the space of
Manin symbols. This avoids the expense of first converting a Manin symbol to a modular
symbol, computing Tn on the modular symbol, and then converting back. For the reader’s
convenience, we very briefly recall Merel’s theorem here, along with an enhancement due
to Cremona.

As in [16, §2.4], define Rp as follows. When p = 2,

R2 :=

{(
1 0
0 2

)
,

(
2 0
0 1

)
,

(
2 1
0 1

)
,

(
1 0
1 2

)}
.

When p is odd, Rp is the set of 2× 2 integer matrices
(

a b
c d

)
with determinant p, and either

1. a > |b| > 0, d > |c| > 0, and bc < 0; or

2. b = 0, and |c| < d/2; or

3. c = 0, and |b| < a/2.

Proposition 2.23. For [P (X, Y ), (u, v)] ∈ Mk(N, ε) and p a prime, we have

Tp([P (X, Y ), (u, v)]) =
∑

g∈Rp

[P (X, Y ), (u, v)].g

=
∑

(

a b
c d

)

∈Rp

[P (aX + bY, cX + dY ), (au + cv, bu + dv)],

where the sum is restricted to matrices
(

a b
c d

)
such that gcd(au + cv, bu + dv, N) = 1.

Proof. For the case k = 2 and an algorithm to compute Rp, see [16, §2.4]. The general case
follows from [45, Theorem 2] applied to the set S of [45, §3] by observing that when p is an
odd prime S ′

p is empty.
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2.6.3 The cuspidal and boundary spaces in terms of Manin symbols

This section is a review of Merel’s explicit description of the boundary map in terms
of Manin symbols for Γ = Γ1(N) (see [45, §1.4]). In the next section, we describe a very
efficient way to compute the boundary map.

Let R be the equivalence relation on Γ\Q2 which identifies the element [Γ
(

λu
λv

)
] with

sign(λ)k[Γ ( u
v )], for any λ ∈ Q∗. Denote by Bk(Γ) the finite dimensional Q-vector space

with basis the equivalence classes (Γ\Q2)/R. The dimension of this space is #(Γ\P1(Q)).

Proposition 2.24. The map

µ : Bk(Γ) → Bk(Γ), P
{u

v

}
7→ P (u, v)

[
Γ

(
u
v

)]

is well defined and injective. Here u and v are assumed coprime.

Thus the kernel of δ : Sk(Γ) → Bk(Γ) is the same as the kernel of µ ◦ δ.

Proposition 2.25. Let P ∈ Vk−2 and g =
(

a b
c d

)
∈ SL2(Z). We have

µ ◦ δ([P, (c, d)]) = P (1, 0)[Γ ( a
c )] − P (0, 1)[Γ

(
b
d

)
].

2.6.4 Computing the boundary map

In this section we describe how to compute the map δ : Mk(N, ε) → Bk(N, ε) given
in the previous section. The algorithm presented here generalizes the one in [16, §2.2]. To
compute the image of [P, (c, d)], with g =

(
a b
c d

)
∈ SL2(Z), we must compute the class of

[( a
c )] and of [

(
b
d

)
]. Instead of finding a canonical form for cusps, we use a quick test for

equivalence modulo scalars. In the following algorithm, by the ith standard cusp we mean
the ith basis vector for a basis of Bk(N, ε). The basis is constructed as the algorithm is
called successively. We first give the algorithm, then prove the facts used by the algorithm
in testing equivalence.

Algorithm 2.26. Given a cusp [( u
v )] this algorithm computes an integer i and a scalar α

such that [( u
v )] is equivalent to α times the ith standard cusp. First, using Proposition 2.27

and Algorithm 2.28, check whether or not [( u
v )] is equivalent, modulo scalars, to any cusp

found so far. If so, return the index of the representative and the scalar. If not, record ( u
v )

in the representative list. Then, using Proposition 2.30, check whether or not ( u
v ) is forced

to equal zero by the relations. If it does not equal zero, return its position in the list and
the scalar 1. If it equals zero, return the scalar 0 and the position 1; keep ( u

v ) in the list,
and record that it is zero.

In the case considered in Cremona’s book [16], the relations between cusps involve only
the trivial character, so they do not force any cusp classes to vanish. Cremona gives the
following two criteria for equivalence.

Proposition 2.27 (Cremona). Let ( ui
vi ), i = 1, 2 be written so that gcd(ui, vi) = 1.
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1. There exists g ∈ Γ0(N) such that g ( u1
v1 ) = ( u2

v2 ) if and only if

s1v2 ≡ s2v1 (mod gcd(v1v2, N)), where sj satisfies ujsj ≡ 1 (mod vj).

2. There exists g ∈ Γ1(N) such that g ( u1
v1 ) = ( u2

v2 ) if and only if

v2 ≡ v1 (mod N) and u2 ≡ u1 (mod gcd(v1, N)).

Proof. The first is Proposition 2.2.3 of [16], and the second is Lemma 3.2 of [15].

Algorithm 2.28. Suppose ( u1
v1 ) and ( u2

v2 ) are equivalent modulo Γ0(N). This algorithm
computes a matrix g ∈ Γ0(N) such that g ( u1

v1 ) = ( u2
v2 ). Let s1, s2, r1, r2 be solutions to

s1u1 − r1v1 = 1 and s2u2 − r2v2 = 1. Find integers x0 and y0 such that x0v1v2 + y0N = 1.

Let x = −x0(s1v2 − s2v1)/(v1v2, N) and s′
1 = s1 + xv1. Then g =

(
u2 r2

v2 s2

)
·
(

u1 r1

v1 s′
1

)−1

sends ( u1
v1 ) to ( u2

v2 ).

Proof. This follows from the proof of Proposition 2.27 in [16].

To see how the ε relations, for nontrivial ε, make the situation more complicated,
observe that it is possible that ε(α) 6= ε(β) but

ε(α)

[(
u
v

)]
=

[
γα

(
u
v

)]
=

[
γβ

(
u
v

)]
= ε(β)

[(
u
v

)]
;

One way out of this difficulty is to construct the cusp classes for Γ1(N), then quotient out by
the additional ε relations using Gaussian elimination. This is far too inefficient to be useful
in practice because the number of Γ1(N) cusp classes can be unreasonably large. Instead,
we give a quick test to determine whether or not a cusp vanishes modulo the ε-relations.

Lemma 2.29. Suppose α and α′ are integers such that gcd(α, α′, N) = 1. Then there exist
integers β and β′, congruent to α and α′ modulo N , respectively, such that gcd(β, β ′) = 1.

Proof. By [62, 1.38] the map SL2(Z) → SL2(Z/NZ) is surjective. By the Euclidean algo-
rithm, there exist integers x, y and z such that xα + yα′ + zN = 1. Consider the matrix( y −x

α α′
)

∈ SL2(Z/NZ) and take β, β′ to be the bottom row of a lift of this matrix to
SL2(Z).

Proposition 2.30. Let N be a positive integer and ε a Dirichlet character of modulus N .
Suppose ( u

v ) is a cusp with u and v coprime. Then ( u
v ) vanishes modulo the relations

[γ ( u
v )] = ε(γ) [( u

v )] , all γ ∈ Γ0(N)

if and only if there exists α ∈ (Z/NZ)∗, with ε(α) 6= 1, such that

v ≡ αv (mod N),

u ≡ αu (mod gcd(v, N)).
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Proof. First suppose such an α exists. By Lemma 2.29 there exists β, β ′ ∈ Z lifting α, α−1

such that gcd(β, β′) = 1. The cusp
(

βu
β′v

)
has coprime coordinates so, by Proposition 2.27

and our congruence conditions on α, the cusps
(

βu
β′v

)
and ( u

v ) are equivalent by an element

of Γ1(N). This implies that
[(

βu
β′v

)]
= [( u

v )]. Since
[(

βu
β′v

)]
= ε(α) [( u

v )], our assumption

that ε(α) 6= 1 forces [( u
v )] = 0.

Conversely, suppose [( u
v )] = 0. Because all relations are two-term relations, and the

Γ1(N)-relations identify Γ1(N)-orbits, there must exists α and β with

[
γα

(
u
v

)]
=

[
γβ

(
u
v

)]
and ε(α) 6= ε(β).

Indeed, if this did not occur, then we could mod out by the ε relations by writing each
[γα ( u

v )] in terms of [( u
v )], and there would be no further relations left to kill [( u

v )]. Next
observe that

[
γβ−1α

(
u
v

)]
=

[
γβ−1γα

(
u
v

)]
= ε(β−1)

[
γα

(
u
v

)]
= ε(β−1)

[
γβ

(
u
v

)]
=

[(
u
v

)]
.

Applying Proposition 2.27 and noting that ε(β−1α) 6= 1 shows that β−1α satisfies the
properties of the “α” in the statement of the proposition we are proving.

We enumerate the possible α appearing in Proposition 2.30 as follows. Let g = (v, N)
and list the α = v · N

g · a + 1, for a = 0, . . . , g − 1, such that ε(α) 6= 0.

Working in the plus one or minus one quotient. Let s be a sign, either +1 or −1. To
compute Sk(N, ε)s it is necessary to replace Bk(N, ε) by its quotient modulo the additional
relations [(−u

v )] = s [( u
v )] for all cusps ( u

v ). Algorithm 2.26 can be modified to deal with
this situation as follows. Given a cusp x = ( u

v ), proceed as in Algorithm 2.26 and check
if either ( u

v ) or (−u
v ) is equivalent (modulo scalars) to any cusp seen so far. If not, use

the following trick to determine whether the ε and s-relations kill the class of ( u
v ): use

the unmodified Algorithm 2.26 to compute the scalars α1, α2 and standard indices i1, i2
associated to ( u

v ) and (−u
v ), respectively. The s-relation kills the class of ( u

v ) if and only if
i1 = i2 but α1 6= sα2.

2.7 The complex torus attached to a modular form

Fix integers N ≥ 1, k ≥ 2, and let ε be a mod N Dirichlet character. For the rest of
this section assume that ε2 = 1.

We construct a lattice in Hom(Sk(N, ε),C) that is invariant under complex conjugation
and under the action of the Hecke operators. The quotient of Hom(Sk(N, ε),C) by this
lattice is a complex torus Jk(N, ε), which is equipped with an action of the Hecke operators
and of complex conjugation.

The reader may wish to compare our construction with a closely related construction
of Shimura [60]. Shimura observes that the Petersson pairing gives his torus the structure
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of an abelian variety over C. Note that his torus is, a priori, different than our torus. We
do not know if our torus has the structure of abelian variety over C.

When k = 2, the torus J2(N, ε) is the set of complex points of an abelian variety,
which is actually defined over Q; when k > 2, the study of these complex tori is of interest
in trying to understand the conjectures of Bloch and Kato (see [7]) on motifs attached to
modular forms.

Let S = Sk(N, ε) (respectively, S = Sk(N, ε)) be the space of cuspidal modular symbols
(respectively, cusp forms) of weight k, level N , and character ε. The Hecke algebra T acts
in a way compatible with the integration pairing 〈 , 〉 : S × S → C. This pairing induces a
T-module homomorphism Φ : S → S∗ = HomC(S,C), called the period mapping. Because
ε2 = 1, the ∗-involution preserves S.

Proposition 2.31. The period mapping Φ is injective and Φ(S) is a lattice in S∗.

Proof. By Theorem 2.7,
S ⊗R C ∼= HomC(S ⊕ S,C).

Because ε2 = 1, we have S = Sk(N, ε;R) ⊗R C. Set SR := Sk(N, ε;R) and likewise define
SR. We have

HomC(S ⊕ S,C) = HomR(SR ⊕ SR,R) ⊗R C.

Let SR = Sk(N, ε;R) and S+
R be the subspace fixed under ∗. By Proposition 2.11 we have

maps
S+

R → HomR(SR ⊕ SR,R) → HomR(SR,R)

and
S−

R → HomR(SR ⊕ SR, iR) → HomR(SR, iR).

The map S+
R → HomR(SR,R) is an isomorphism: the point is that if 〈•, x〉, for x ∈

S+
R, vanishes on SR then it vanishes on the whole of S ⊕ S. Likewise, the map S−

R →
HomR(SR, iR) is an isomorphism. Thus

S ⊗ R = SR
∼= HomR(SR,R) ⊕ HomR(SR, iR) ∼= HomC(S,C).

Finally, we observe that S is by definition torsion free, which completes the proof.

The torus Jk(N, ε) fits into an exact sequence

0 −→ S Φ−−−−→ HomC(S,C) −→ Jk(N, ε) −→ 0.

Let f ∈ S be a newform and Sf the complex vector space spanned by the Galois conjugates
of f . The period map Φf associated to f is the map S → HomC(Sf ,C) obtained by
composing Φ with restriction to Sf . Set

Af := HomC(Sf ,C)/Φf (S).

We associate to f a subtorus of J as follows. Let If = AnnT(f) be the annihilator of f
in the Hecke algebra, and set

A∨
f := HomC(S,C)[If ]/Φ(S[If ])
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where HomC(S,C)[If ] = ∩t∈If
ker(t).

The following diagram summarizes the tori just defined; its columns are exact but its
rows need not be.

0

²²

0

²²

0

²²

S[If ] //

²²

S //

²²

Φf (S)

²²

HomC(S,C)[If ] //

²²

HomC(S,C) //

²²

HomC(S[If ],C)

²²

A∨
f

//

²²

Jk(N, ε) //

²²

Af

²²

0 0 0

(2.1)

2.7.1 The case when the weight is 2

When k = 2 and ε = 1 the above is just Shimura’s classical association of an abelian
variety to a modular form; see [62, Thm. 7.14] and [61]. In this case Af and A∨

f are abelian
varieties that are defined over Q. Furthermore Af is an optimal quotient of J , in the sense
that the kernel of the map J → Af is connected. For a summary of the main results in this
situation, see Section 4.6.
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Chapter 3

Applications of modular symbols

In the previous chapter we introduced several spaces of modular symbols, and obser-
vations such as “Manin’s trick” suggested that we could compute with them. The duality
between modular symbols and modular forms hints that modular symbols might be useful
in computing information about modular forms. In the present chapter, we gather together
the fruits of our investigation into this connection.

Sections 3.1–3.5 of this chapter give a method to compute the irreducible components
of the spaces Mk(N, ε) of modular symbols. In Section 3.6 we observe that computing
intersections of certain abelian varieties can be reduced to linear algebra over Z by viewing
the abelian varieties as complex tori and considering the appropriate diagrams. In Sec-
tions 3.7, we continue this trend by pointing out that many invariants of the complex torus
attached to a modular form can be computed without computing any approximate period
lattices. In Section 3.8, we discuss well-known methods for computing both an upper and
lower bound on the order of the torsion subgroup of certain abelian varieties. Section 3.9
presents an algorithm for computing the modular degree of the complex torus associated to
a newform.

In Section 3.10 we aim squarely at the problem of gathering data related to the Birch
and Swinnerton-Dyer conjecture and its generalizations, where we give a formula for the
rational numbers |L(Af , j)/Ωj | attached to a newform. In Section 3.11 we compare the
ratio computed in the previous section to the one considered in the Birch and Swinnerton-
Dyer conjecture; the two numbers differ by a Manin constant, which we bound. Finally, in
Section 3.12 we give algorithms for approximating the period lattice and related numerical
quantities associated to a newform of arbitrary weight.

3.1 Computing the space of modular symbols

Definition 3.1. Let W be a subspace of a finite-dimensional vector space V . To compute
the quotient V/W means to give a matrix representing the projection V → V/W , with
respect to some basis for V and some basis B for V/W , along with a lift to V of each
element of B.

In other words, to compute V/W means to create a reduction function that assigns to
each element of V its canonical representative on the “free basis” B.
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Let N be a positive integer, fix a mod N Dirichlet character ε, let K := Q[ε] be the
smallest extension containing the values of ε, and let O := Z[ε].

Algorithm 3.2. Given a positive integer N , a Dirichlet character ε, and an integer k ≥ 2
this algorithm computes Mk(N, ε;K). We compute the quotient presentation given in
Theorem 2.22 in three steps.

1. Let V1 be the finite-dimensional K-vector space generated by the Manin symbols
[XiY k−2−i, (u, v)] for i = 0, . . . , k − 2 and 0 ≤ u, v < N with gcd(u, v, N) = 1.
Let W1 be the subspace of V1 generated by all differences

[XiY k−2−i, (λu, λv)] − ε(λ)[X iY k−2−i, (u, v)].

Because all relations are two-term, it is easy to compute V2 := V1/W1. In computing
this quotient, we do not have to explicitly compute the large matrix representing
the linear map V1 → V2, as it can be replaced by a suitable “reduction procedure”
involving arithmetic in Z/NZ.

2. Let σ act on the set of Manin symbols as in Section 2.6; thus

[XiY k−2−i, (u, v)]σ = (−1)i[Y iXk−2−i, (v, −u)].

Let W2 be the subspace of V2 generated by the sums x + xσ for x ∈ V2. Because all
relations are two-term relations, it is easy to compute V3 := V2/W2.

3. Let τ act on Manin symbols as in Section 2.6; thus

[XiY k−2−i, (u, v)]τ = [(−Y )i(X − Y )k−2−i, (v, −u − v)].

Note that the symbol on the right can be written as a sum of generating Manin
symbols. Let W3 be the subspace of V3 generated by the sums x + xτ + xτ 2 where x
varies over the images of a basis of V2 (not just a basis for V3!). Using some form of
Gaussian elimination, we compute V3/W3. Finally, Mk(N, ε;K) ≈ V3/W3.

Proof. For λ ∈ (Z/NZ)∗, denote by 〈λ〉 the right action of λ on Manin symbols; thus

[XiY k−2−i, (u, v)]〈λ〉 = [X iY k−2−i, (λu, λv)].

By Theorem 2.22 the space Mk(N, ε;K) is isomorphic to the quotient of the vector
spaces V1 of Step 1 modulo the relations x+ xσ = 0, x+ xτ + xτ 2 = 0, and x〈λ〉 = λx as x
varies over all Manin symbols and λ varies over (Z/NZ)∗.

As motivation, we note that a naive computation of V1 modulo the σ, τ , and 〈λ〉
relations using Gaussian elimination is far too inefficient. This is why we compute the
quotient in three steps. The complexity of Steps 1 and Steps 2 are negligible. The difficulty
occurs in Step 3; at least the relations of this step occur in a space of dimension much
smaller than that of V1.

To see that the algorithm is correct, it is necessary only to observe that σ and τ both
commute with all diamond-bracket operators 〈λ〉; this is an immediate consequence of the
above formulas. We remark that in Step 3 it is in general necessary to compute the quotient
by all relations x+xτ +xτ 2 with x the image of a basis vector for V2 instead of just x in V3

because σ and τ do not commute.
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Remark 3.3. In implementing the above algorithm, one should take special care in Steps 1
and 2 because the relations can together force certain of the Manin symbols to equal 0. For
example, there might be relations of the form x1 + x2 = 0 and x1 − x2 = 0 which together
force x1 = x2 = 0.

Remark 3.4. To compute the plus-one quotient Mk(N, ε;K)+, it is necessary to modify
Step 2 of Algorithm 3.2 by including in W2 the differences x − xI where I =

( −1 0
0 1

)
, and

[XiY k−2−i, (u, v)]I = (−1)i[XiY k−2−i, (−u, v)].

Likewise, to compute the minus-one quotient we include the sums x + xI. Note, as in the
remarks in the proof of Algorithm 3.2, we can not add in the I relations in Step 1 because I
and σ do not commute.

Algorithm 3.5. Given a positive integer N , a Dirichlet character ε, and an integer k ≥ 2,
this algorithm computes the O-modules Mk(N, ε) and Sk(N, ε). (We assume as given
algorithms for performing standard operations on O-modules.)

1. Using Algorithm 3.2 compute the K-vector space V := Mk(N, ε;K).

2. Compute the O-lattice L in V generated by the classes of the finitely many symbols
[XiY k−2−i, (u, v)] for i = 0, . . . , k − 2 and 0 ≤ u, v < N with gcd(u, v, N) = 1. It is
only necessary to take one symbol in each ε-equivalence class, so there are (k − 2 +
1) · #P1(Z/NZ) generating symbols. This computes Mk(N, ε).

3. To compute the submodule Sk(N, ε) of L, we use the algorithm of Section 2.6.4 to
compute the boundary map δ : Mk(N, ε;K) → Bk(N, ε;K). Then Sk(N, ε) is the
kernel of δ restricted to the lattice L.

As a check, using the formulas of Section 3.4, we compute the dimension of the space
Sk(N, ε) of cusp forms and compare with the dimension of Sk(N, ε;K) computed in Algo-
rithm 3.5. The latter dimension must equal twice the former one.

3.2 Computing the Hecke algebra

In this section we give an upper bound on the number of Hecke operators needed to
generate the Hecke algebra as a Z-module. The bound on Hecke operators is an application
of [66], which was described to the author by Ribet and Agashe when k = 2 and the level is
prime. There are much better bounds on the number of Hecke operators needed to generate
the Hecke algebra as a ring, but we do not investigate them here.

Let Γ be a subgroup of SL2(Z) that contains Γ1(N) for some N . Let Sk(Γ;C) be the
space of weight-k cuspforms for Γ, and let T ⊂ End(Sk(Γ;C)) be the corresponding Hecke
algebra. We now give a bound r such that the Hecke operators Tn, with n ≤ r, generate T
as a Z-module.

For any ring R ⊂ C, let Sk(Γ;R) denotes the space of cuspforms for Γ with Fourier
coefficients in R. Since Sk(Γ;C) = Sk(Γ;Z) ⊗Z C, it makes sense to define

Sk(Γ;R) := Sk(Γ;Z) ⊗Z R

for any ring R. The following proposition is well known.
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Proposition 3.6. For any ring R, the pairing

TR ⊗R Sk(N ;R) → R

that sends (T, f) to a1(Tf) is a perfect pairing, where TR = T⊗Z R. Furthermore, we have
(Tn, f) = an(f), where Tn is the nth Hecke operator.

Let

µ = [SL2(Z) : Γ],

and denote by dxe the smallest integer ≥ x.

Theorem 3.7 (Sturm). Let λ be a prime ideal in the ring O of integers in some number
field. If f ∈ Sk(Γ;O) satisfies an(f) ≡ 0 (mod λ) for n ≤ d k

12µe, then f ≡ 0 (mod λ).

Proof. Theorem 1 of [66].

Proposition 3.8. If f ∈ Sk(Γ) satisfies an(f) = 0 for n ≤ r =
⌈

k
12µ

⌉
, then f = 0.

Proof. We must show that the composite map Sk(Γ) ↪→ C[[q]] → C[[q]]/(qr+1) is injective.
Because C is a flat Z-module and Sk(Γ;Z) ⊗ C = Sk(Γ), it suffices to show that the map
F : Sk(Γ;Z) → Z[[q]]/(qr+1) is injective. Suppose F (f) = 0, and let p be a prime number.
Then an(f) = 0 for n ≤ r, hence plainly an(f) ≡ 0 (mod p) for any such n. Theorem 3.7
implies that f ≡ 0 (mod p). Duplicating this argument shows that the coefficients of f are
divisible by all primes p, so they are 0.

Theorem 3.9. As a Z-module, T is generated by T1, . . . , Tr, where r = d k
12µe.

Proof. Let Z be the submodule of T generated by T1, T2, . . . , Tr. Consider the exact se-

quence of additive abelian groups 0 → Z
i−→ T → T/Z → 0. Let p be a prime and tensor

this sequence with Fp to obtain the exact sequence

Z ⊗ Fp
i−→ T ⊗ Fp → (T/Z) ⊗ Fp → 0.

Put R = Fp in Proposition 3.6, and suppose that f ∈ Sk(N,Fp) pairs to 0 with each of
T1, . . . , Tr. Then by Proposition 3.6, am(f) = a1(Tmf) = 0 in Fp for each m, 1 ≤ m ≤ r.
Theorem 3.7 then asserts that f = 0. Thus the pairing, when restricted to the image of
Z ⊗Fp in T⊗Fp, is also perfect. Thus dimFp i(Z ⊗Fp) = dimFp Sk(N,Fp) = dimFp T⊗Fp,
so (T/Z) ⊗ Fp = 0; repeating this argument for all p shows that T/Z = 0.

3.3 Representing and enumerating Dirichlet characters

Recall that a Dirichlet character is a homomorphism ε : (Z/NZ)∗ → C∗.
The following lemma is well known.

Lemma 3.10. If p is an odd prime, then (Z/pnZ)∗ is a cyclic group. The group (Z/2nZ)∗

is generated by −1 and 5.
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We use the following representation of Dirichlet characters. Factor N as a prod-
uct of prime powers: N =

∏r
i=1 pei

i with pi < pi+1 and each ei > 0; then (Z/NZ)∗ ∼=∏r
i=1(Z/pei

i Z)∗. If pi is odd then the lemma implies that (Z/pei
i Z)∗ is cyclic. If p1 = 2, then

(Z/pe1
1 Z)∗ is a product 〈−1〉 × 〈5〉 of two cyclic groups, both possibly trivial. For each i,

we let ai ∈ (Z/pei
i Z)∗ be the smallest generator of the ith factor (Z/pei

i Z)∗. If p1 = 2, let
a1 and a2 correspond to the two factors 〈−1〉 and 〈5〉, respectively; then a3 corresponds to
p2, etc. Here ai is smallest in the sense that the minimal lift ãi ∈ Z>0 is smallest. Let n
be the exponent of (Z/NZ)∗, and let ζ = e2πi/n ∈ C∗. To give ε is the same as giving the
images of each generator of ai as a power of ζ. We thus represent ε as a vector of elements
of C∗ with respect to a canonically chosen, but unnatural, basis.

Alternatively, the vector representing a character ε can be equivalently viewed as a
vector in (Z/nZ)r, where again n is the exponent of (Z/NZ)∗. Such a vector represents
a character if and only if the ith component of the vector has additive order dividing
ϕ(pei

i ). If p1 = 2, then there are r + 1 entries instead of r entries, and the condition is
suitably modified. If a vector v = [d1, . . . , dr] represents a character ε, then each of the
Galois conjugate characters is represented by [md1, . . . , mdr] where m varies over elements
of (Z/nZ)∗.

When performing actual machine computations, we work in the smallest field that
contains all of the values of ε. Thus if d = gcd(d1, . . . , dr, n), then we work in the subfield
Q(ζd), which is cheaper than working in Q(ζ).

It is sometimes important to work in characteristic `. Then the notation is as above,
except ζ is replaced by a primitive mth root of unity, where m is the prime-to-` part of n.
Note that the primitive nth roots of unity in characteristic ` need not be conjugate; for
example, both 2 and 3 are square roots of −1 in F5, but they are not conjugate. Thus we
must specify ζ as part of the notation when giving a mod ` Dirichlet character.

Example 3.11. Suppose N = p is an odd prime. The group of mod p Dirichlet characters
(in characteristic 0) is isomorphic to Z/(p − 1)Z, and two characters a and b are Galois
conjugate if and only if there is an element x ∈ (Z/(p−1)Z)∗ such that xa = b. A character
is determined up to Galois conjugacy by its order, so the set of classes of mod p Dirichlet
characters are in bijection with the set of divisors d of p − 1 = #(Z/pZ)∗.

Let p be an odd prime. The quadratic mod p character is denoted [(p − 1)/2]. The
quadratic mod 2p character is denoted by [0, 0, (p − 1)/2]; the quadratic mod 4p character
is denoted [(p − 1)/2, 0, (p − 1)/2]. If n ≥ 3, then the exponent of (Z/2nZ)∗ is 2n−2, so the
nontrivial mod 2n character that factors through (Z/4Z)∗ is denoted [2n−3, 0].

Definition 3.12. The conductor of a character ε : (Z/NZ)∗ → C∗ is the smallest divisor M
of N such that ε factors through the natural reduction map (Z/NZ)∗ → (Z/MZ)∗.

For simplicity, we assume that N is odd. To compute the conductor of ε, let v be the
vector in (Z/nZ)r that represents ε, as above. Since both (Z/pei

i Z)∗ and (Z/pd
i Z)

∗ are cyclic
and the reduction map is surjective, we find that pd

i , with d ≤ ei, divides the conductor
of ε if and only if the ith component of v has additive order dividing ϕ(pd

i ). We can thus
compute the power of pi dividing the conductor of ε by computing the smallest d such that
pd

i ≡ pd−1
i modulo the order of the ith component of v.
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3.4 The dimension of Sk(N, ε)

An explicit formula for the dimension of Sk(N, ε) is given in [13], without proof. For
the reader’s convenience, we reproduce it here.

Theorem 3.13 (Cohen-Oesterlé). Let k ≥ 2 be an integer and ε : (Z/NZ)∗ → C∗ be a
Dirichlet character such that ε(−1) = (−1)k. Then

dimSk(N, ε) = δ +
k − 1

12
· N ·

∏

p|N

(
1 +

1

p

)
− 1

2
·
∏

p|N
λ(rp, sp, p)

+ γk

∑

{x∈(Z/NZ)∗ : x2+1=0}
ε(x) + µk

∑

{x∈(Z/NZ)∗ : x2+x+1=0}
ε(x).

Let f be the conductor of ε, i.e., the smallest M such that ε factors through (Z/MZ)∗. If
p | N , then rp (resp. sp) denotes the exponent of p in the prime factorization of N (resp. f).
Furthermore,

λ(rp, sp, p) :=





pr′
+ pr′−1 if 2sp ≤ rp = 2r′

2pr′
if 2sp ≤ rp = 2r′ + 1

2prp−sp if 2sp > rp

γk :=





0 if k is odd

−1
4 if k ≡ 2 (mod 4)

1
4 if k ≡ 0 (mod 4)

µk :=





0 if k ≡ 1 (mod 3)

−1
3 if k ≡ 2 (mod 3)

1
3 if k ≡ 0 (mod 3)

δ :=

{
1 if k = 2 and ε is trivial

0 otherwise

3.5 Decomposing the space of modular symbols

Consider the space Sk(N, ε) of cuspidal modular symbols of level N and character ε
over K = Q(ε). In this section we describe how to decompose the new part of Sk(N, ε) as
a direct sum of T-modules corresponding to the Galois conjugacy classes of newforms with
character ε. As an application, we can compute the q-expansions of the normalized cuspidal
newforms of level N and character ε. Using the theory of Atkin-Lehner [4] as extended by
Li [37], it is then possible to construct a basis for the space Sk(N, ε;C) of cusp forms.

The algorithm is, for the most part, a straightforward generalization of the method
used by Cremona [16] to enumerate the Q-rational weight-two newforms corresponding to
modular elliptic curves. Nevertheless, we present several tricks learned in the course of doing
computations, which speed up the algorithm. One useful trick that Cremona also made use
of is to work in the space dual to modular symbols as described in the next section.
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3.5.1 Duality

Let K = Q[ε], and let Sk(N, ε;K)⊥ denote HomK(Sk(N, ε;K), K) equipped with its
natural right T-action: for ϕ ∈ Sk(N, ε;K)⊥,

(ϕT )(x) = ϕ(Tx).

The natural pairing

〈 , 〉 : Sk(N, ε;K)⊥ × Sk(N, ε;K) → K (3.1)

given by 〈ϕ, x〉 = ϕ(x) satisfies 〈ϕT, x〉 = 〈ϕ, Tx〉.
Viewing the elements T ∈ T as sitting inside End(Sk(N, ε;K)), the transpose map

T 7→ T t allows us to view Sk(N, ε;K)⊥ as a left T-module.

Proposition 3.14. Let V ⊂ Sk(N, ε;K)new be an irreducible new T-submodule and set
I = AnnT V . Then the characteristic polynomial of each Tp on Sk(N, ε;K)⊥[I] is the same
as the characteristic polynomial of Tp on V .

Proof. We may assume for the purposes of proving the proposition that K = Q. There is a
basis of simultaneous T-eigenvectors for Sk(N, ε;K)new. With respect to this basis, T acts
via diagonal matrices. The systems of eigenvalues coming from the old subspace are distinct
from the systems of eigenvalues on the new space. Thus the dimension of Sk(N, ε;K)⊥[I]
is the same as the dimension of V , instead of being too large. The proposition now follows
by noting that the characteristic polynomial of a matrix is the same as the characteristic
polynomial of its transpose.

The degeneracy maps αt and βt of Section 2.5 give rise to maps α⊥
t and β⊥

t between
the dual spaces and having the dual properties to those of αt and βt. In particular, they
commute with the Hecke operators Tp for p prime to N . The new and old subspace of
Sk(N, ε;K)⊥ are defined as in Definition 2.16.

Algorithm 3.15. This algorithm computes a decomposition of Sk(N, ε;K)⊥ new into irre-
ducible submodules V .

Using Algorithm 3.2 compute Sk(N, ε;K). Then compute the maps βt using Algo-
rithm 2.20 and intersect the transposes of their kernels in order to obtain Sk(N, ε)⊥ new.
Compute the boundary map δ : Sk(N, ε;K) → Bk(N, ε;K) using Algorithm 2.26. We cut
out the cuspidal submodule Sk(N, ε;K)⊥ new using the Hecke operators, Algorithm 3.17,
and Proposition 3.14. Set p = 2 and perform the following steps.

1. Using Algorithm 3.17, compute a matrix A representing the Hecke operator Tp on
Sk(N, ε;K)⊥ new.

2. Compute and factor the characteristic polynomial F of A.

3. For each irreducible factor f of F compute Vf = ker(f(A)). Then, compute the +1
and −1 eigen-subspaces V +

f and V −
f for the star involution. Let W denote one of these

two eigen-subspaces, and use the following criteria to determine whether or not W is
irreducible:



42 CHAPTER 3. APPLICATIONS OF MODULAR SYMBOLS

(a) If p is greater than the Sturm bound (see Theorem 3.9) then W must be irre-
ducible.

(b) If the characteristic polynomial of some element T ∈ T acting on W is irreducible,
then W is irreducible.

4. If W is irreducible, record W and consider the next factor of the characteristic poly-
nomial in step 3. Otherwise, replace p by the next prime larger than p and replace
Sk(N, ε;K)⊥ new by W , then repeat the above sequence of steps, beginning with step 1.

3.5.2 Efficient computation of Hecke operators on the dual space

In this section we give a method for computing the action of the Hecke operators
Tp ∈ T on an invariant subspace V ⊂ Sk(N, ε;K)⊥. A naive way to compute the right
action of Tp on V is to compute a matrix representing Tp on Sk(N, ε;K), transpose to
obtain Tp on Sk(N, ε;K)⊥, and then restrict to V using Gaussian elimination. To compute
Tp on Sk(N, ε;K), observe that Sk(N, ε;K) has a basis e1,. . . , en, where each ei is a Manin
symbol [P, (c, d)], and that the action of Tp on [P, (c, d)] can be computed using Section 2.6.2.

In practice, d = dimV will often be much less than n; we now describe how to compute
Tp on V in d/n of the time it takes using the above naive method. This is a substantial sav-
ings when d is small. Transposing the injection V ↪→ Sk(N, ε;K)⊥, we obtain a surjection
Sk(N, ε;K) → V ⊥. There exists a subset ei1 ,. . . , eid of the ei whose image forms a basis
for V ⊥. With some care, it is then possible to compute Tp on V ⊥ by computing Tp on each
of ei1 ,. . . , eid .

In the rest of this section, we describe in terms of matrices a definite way to carry
out this computation. Let V be an n × m matrix whose rows generate an n-dimensional
subspace of an m-dimensional space of row vectors. Let T be an m×m-matrix and suppose
that V has rank n and that V T is contained in the row space of V . Let E be an m × n
matrix with the property that the n × n matrix V E is invertible, with inverse D.

Proposition 3.16. V T = V TEDV.

Proof. Observe that
V (EDV ) = (V ED)V = IV = V.

Thus right multiplication by EDV
v 7→ vEDV

induces the identity map on the row space of V . Since V T is contained in the row space of
V , we have

(V T )EDV = V T,

as claimed.

We have not computed T , but we can compute T on each basis element e1, . . . , ed of
the ambient space–unfortunately, d is extremely large. Our problem: quickly compute the
action of T t on the invariant subspace spanned by the rows of V . Can this be done without
having to compute T on all ei? Yes, the following algorithm shows how using a subset of
only n = dimV of the ei.
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Algorithm 3.17. Let T be any linear transformation which leaves V invariant and for
which we can compute T (ei) for i = 1, . . . , d. This algorithm computes the matrix repre-
senting the action of T on V while computing T (ei) for only dimV of the i.

Choose any m × n matrix E whose columns are sparse linear combinations of the ei

and such that V E is invertible. For this we find a set of positions so that elements of the
space spanned by the columns of V are determined by the entries in these spots. This is
accomplished by row reducing, and setting E equal to the pivot columns. Using Gaussian
elimination, compute the inverse D of the n × n matrix V E. The matrix representing the
action of T with respect to V is then

V (TE)D = V (TE)(V E)−1.

Proof. Let A be any matrix so that V A is the n × n identity matrix. By the proposition
we have

V TA = (V TEDV )A = V TED(V A) = V TED = V (TE)D.

To see that V TA represents T , observe that by the proposition,

V TAV = (V TEDV )AV = (V TEDVA)V

= (V TED)(VA)V = (V TED)V = V T

so that V TA gives the correct linear combination of the rows of V .

3.5.3 Eigenvectors

Once a T-simple subspace of S∗ has been identified, the following algorithm, which was
suggested to the author by H. Lenstra, produces an eigenvector defined over an extension
of the base field.

Algorithm 3.18. Let A be an n × n matrix over an arbitrary field K and suppose that
the characteristic polynomial f(x) = xn + · · · + a1x + a0 of A is irreducible. Let α be a
root of f(x) in an algebraic closure K of K. Factor f(x) over K(α) as f(x) = (x − α)g(x).
Then for any element v ∈ Kn the vector g(A)v is either 0 or it is an eigenvector of A with
eigenvalue α. The vector g(A)v can be computed by finding Av, A(Av), A(A(Av)), and
then using that

g(x) = xn−1 + cn−2x
n−2 + · · · + c1x + c0,

where the coefficients ci are determined by the recurrence

c0 = −a0/α, ci = (ci−1 − ai)/α.

We will prove below that g(A)v 6= 0 for all vectors v not in a proper subspace of Kn.
Thus with high probability, a “randomly chosen” v will have the property that g(A)v 6= 0.
Alternatively, if v1, . . . vn form a basis for Kn, then g(A)vi must be nonzero for some i.

Proof. By the Cayley-Hamilton theorem [36, XIV.3] we have that f(A) = 0. Consequently,
for any v ∈ Kn, we have (A − α)g(A)v = 0 so that Ag(A)v = αv. Since f is irreducible it
is the polynomial of least degree satisfied by A and so g(A) 6= 0. Therefore g(A)v 6= 0 for
all v not in the proper closed subset ker(g(A)).
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3.5.4 Eigenvalues

In this section we give an algorithm for computing the q-expansion of one of the new-
forms corresponding to a factor of Sk(N, ε;K)new. This is a generalization of the algorithm
described in [16, §2.9].

Algorithm 3.19. Given a factor V ⊂ Sk(N, ε;K)⊥ new as computed by Algorithm 3.15 this
algorithm computes the q-expansion of one of the corresponding Galois conjugate newforms.

1. Using Algorithm 3.17 compute the action of the ∗-involution (Section 2.4) on V . Then
compute the +1 eigenspace V + ⊂ V .

2. Find an element T ∈ T such that the characteristic polynomial of the matrix A of T
acting on V + is irreducible. Such a T must exist by the primitive element theorem
[36, V.4]. (Note: It is not always the case that T can be taken to equal some Hecke
operator Tn. The first example with k = 2 and ε = 1 occurs at level N = 512.)

3. Using Algorithm 3.5.3 compute an eigenvector e for A over an extension of K.

4. Because e is an eigenvector and the pairing given in Equation 3.1 respects the Hecke
action, we have that for any Hecke operator Tn and element w ∈ Sk(N, ε;K), that

an〈e, w〉 = 〈eTn, w〉 = 〈e, Tnw〉.

Choose w so that 〈e, w〉 6= 0. Then

an =
〈e, Tnw〉
〈e, w〉 .

The an can now be computed by computing 〈e, w〉 once and for all, and then computing
〈e, Tnw〉 for each n. It is best to choose w in such a way that Tnw can be computed
quickly.

The beauty of this algorithm is that when w is a Manin symbol [P (X, Y ), (c, d)] the
computation of Tpw =

∑
x∈Rp

wx is very quick, requiring us to only sum over the Heilbronn
matrices of determinant p once.

In practice we compute only the eigenvalues ap using the above algorithm, then use
the following recurrences to obtain the an:

anm = anam if (n, m) = 1, and

apr = apr−1ap − ε(p)pk−2apr−2 .

3.5.5 Sorting and labeling eigenforms

Systematically ordering the factors is essential, so that we can later refer to them. In
Section 3.5.4 we saw how to associate to each new factor a sequence an of Hecke eigenvalues.
These can be used to sort the factors.
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Except in the case of weight 2 and trivial character, we use the following ordering. To
each eigenvector associate the following sequence of integers

tr(a1), tr(a2), tr(a3), tr(a4), tr(a5), tr(a6), . . .

where the trace is from Kf = Q(. . . an . . . ) down to Q. Sort the eigenforms by ordering
the sequences in dictionary order with minus coming before plus. Since we included tr(a1),
this ordering gathers together factors of the same dimension. Furthermore, the sequence
of traces determines the Galois conjugacy class of f , because the g =

∑
n≥1 tr(an)q

n is the
trace of f , hence g lies in the C-vector space spanned by the Galois conjugates of f .

When k = 2 and the character is trivial we use a different and somewhat complicated
ordering because it extends the notation for elliptic curves that was introduced in the second
edition of [16] and has since become standard. Sort the factors of Sk(N, ε)new as follows.
First by dimension, with smallest dimension first. Within each dimension, sort in binary
order, by the signs of the Atkin-Lehner involutions with − corresponding to 0 and + to 1.
For example, if there are three Atkin-Lehner involutions then the sign patterns are sorted
as follows:

+ + +, − ++,+ − +, − − +,++ −, − + −,+ − −, − − −.

Finally, let p be the smallest prime not dividing N . Within each of the Atkin-Lehner classes,
sort by the magnitudes of the Kf/Q-trace of ap breaking ties by letting the positive trace
be first. If there are still any ties, repeat the final step with the next smallest prime not
dividing N , etc. (Note: It’s not clear to the author that ties will always eventually be
broken, though in his computation they always have been.)

3.6 Intersections and congruences

Consider a complex torus J = V/Λ, and let A = VA/ΛA and B = VB/ΛB be subtori
whose intersection A ∩ B is finite.

Proposition 3.20. There is a natural isomorphism of groups

A ∩ B ∼=
(

Λ

ΛA + ΛB

)

tor .

Proof. There is an exact sequence

0 → A ∩ B → A ⊕ B → J.

Consider the diagram

ΛA ⊕ ΛB

²²

// Λ //

²²

Λ/(ΛA + ΛB)

²²

VA ⊕ VB

²²

// V //

²²

V/(VA + VB)

²²

A ∩ B // A ⊕ B // J // J/(A + B).
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Figure 3.1: T-shirt design

The snake lemma gives an exact sequence

0 → A ∩ B → Λ/(ΛA + ΛB) → V/(VA + VB).

Since V/(VA + VB) is a C-vector space, the torsion part of Λ/(ΛA + ΛB) must map to 0.
No non-torsion in Λ/(ΛA +ΛB) could map to 0, because if it did then A ∩ B would not be
finite. The lemma follows.

The following formula for the intersection of n subtori is obtained in a similar way.

Proposition 3.21. For i = 1, . . . , n let Ai = Vi/Λi be a subtorus of J = V/Λ, and assume
that each pairwise intersection Ai ∩ Aj is finite. Then

A1 ∩ · · · ∩ An
∼=

(
Λ ⊕ · · · ⊕ Λ

f(Λ1 ⊕ · · · ⊕ Λn)

)
,

where f(x1, . . . , xn) = (x1 − x2, x2 − x3, x3 − x4, . . . , xn−1 − xn).

Remark 3.22. Using this proposition the author constructed the T-shirt design in Figure 3.1.

Example 3.23. L. Kilford of London, England has recently discovered an example at prime
level 503 in which “multiplicity one” fails. One verification of his example uses the above
proposition. Let E1, E2, and E3 be the three elliptic curves of conductor 503, and for
each i = 1, 2, 3, let mi be the maximal ideal of T ⊂ End(J0(503)) generated by 2 and all
Tp − ap(Ei), with p prime. Each of the Galois representations Ei[2] is irreducible, and one
can check that m1 = m2 = m3. If multiplicity one holds, then E1[2] = E2[2] = E3[2] inside
of J0(503). However, this is not the case, as a modular symbols computation in the integral
homology H1(X0(N),Z) reveals that E1 ∩ E2 = {0}.
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3.6.1 A strategy for computing congruences

Let N be a positive integer, k ≥ 2 an integer, and ε a mod N Dirichlet character.
Suppose f and g are newforms in Sk(N, ε;Q). The following proposition gives rise to an
algorithm for computing most congruences between infinite Fourier expansions.

The advantage of the algorithm is that it only involves finite exact computations and
does not rely on the computation of q-expansions. A disadvantage is that congruences
between q-expansions need not be reflected by the corresponding modular symbols, so the
proposition need not give all congruences. This is illustrated in Example 3.23.

The author first learned about this strategy from the section entitled “First strategy:
Computing m-congruences of period lattices” in [18].

Proposition 3.24. Suppose f and g are newforms in Sk(N, ε;Q). Let If and Ig be the
corresponding annihilators in the Hecke algebra T. Let Λ = Sk(N, ε;O), and set Λf = Λ[If ]

and Λg = Λ[Ig]. If p | #
(

Λ
Λf+Λg

)
tor

then there is a prime ℘ of residue characteristic p such

that f ≡ g (mod ℘).

Proof. Consider the exact sequence

0 → Λf ⊕ Λg → Λ → Λ/(Λf + Λg) → 0

where the first map is (a, b) 7→ a − b. Upon tensoring this sequence with Fp we obtain:

Z → (Λf ⊗ Fp) ⊕ (Λg ⊗ Fp) → Λ ⊗ Fp → (Λ/(Λf + Λg)) ⊗ Fp → 0,

where Z = Tor1(Λ/(Λf +Λg),Fp). Denote by im(Λf ) the image of Λf ⊗ Fp in Λ ⊗ Fp and
likewise for Λg. Our assumption that p divides the torsion part of Λ/(Λf + Λg) implies
that Z is nonzero, so im(Λf ) and im(Λg) have nonzero intersection inside the Fp-vector
space Λ⊗Fp. The Hecke algebra T acts on im(Λf ) through its action on f , that is, through
the quotient T/If ; similarly, T acts on im(Λg) through T/Ig. Thus T acts on the nonzero
T ⊗ Fp-module im(Λf ) ∩ im(Λg) through T/(If + Ig + p). This implies that If + Ig + p is
not the unit ideal, which is equivalent to the assertion of the proposition.

3.7 The rational period mapping

Consider a triple (N, k, ε), and let K = Q[ε]. Let I be an ideal in the Hecke algebra T
associated to (N, k, ε). The rational period mapping associated to I is a map from the space
Mk(N, ε;K) of modular symbols to a finite dimensional K-vector space. It is a computable
analogue of the classical integration pairing, and is of great value in extracting the rational
parts of analytic invariants; e.g., of special values of L-functions. In the next section we use
it to compute the image of cuspidal points on J(N, k, ε).

Definition 3.25. Let D := HomK(Mk(N, ε;K), K)[I]; the rational period mapping is the
natural quotient map

ΘI : Mk(N, ε;K) → Mk(N, ε;K)⋂ {ker(ϕ) : ϕ ∈ D} .
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If f ∈ Sk(N, ε) is a newform, set Θf := ΘIf
where If is the annihilator of f in the Hecke

algebra.

Algorithm 3.26. This algorithm computes ΘI . Choose a basis for W = Mk(N, ε;K) and
use it to view W as a space of column vectors equipped with a left action of T. View W ∗ =
HomK(Mk(N, ε;K), K) as the space of row vectors of length equal to dimMk(N, ε;K);
thus W ∗ is dual to W via the natural pairing between row and column vectors. The Hecke
operators act on W ∗ on the right. Compute a basis ϕ1, . . . , ϕn for the K-vector space
W ∗[I]. Then the rational period mapping with respect to this basis is ϕ1 × · · · × ϕn; it is
given by the matrix whose rows are ϕ1, . . . , ϕn.

Proof. The kernels of ϕ1 × · · · × ϕn and ΘI are the same.

Example 3.27. Let I be the annihilator of the newform f = q − 2q2 + · · · ∈ M2(37, 1;Q)
corresponding to the elliptic curve 37k2A. There is a basis for W = M2(37, 1;Q) such
that

T2 =




−1 1 1 −1 0
1 −1 1 0 0
0 0 −2 1 0
0 0 0 0 0
0 0 0 1 3




The characteristic polynomial of T2 is x2(x+2)2(x−3). Thus W [I] = ker(T2+2) is spanned
by the column vectors (1, −1, 0, 1/2, 0)t and (0, 0, 1, −1/2, 0)t, and W ∗[I] = ker(T t

2 + 2) is
spanned by the row vectors (1, 0, −1, 0, 0) and (0, 1, −1, 0, 0). The rational period mapping
is ΘI((a, b, c, d, e)t) = (a − c, b − c).

Lemma 3.28.

dimMk(N, ε;K)[I] = dimHomK(Mk(N, ε;K), K)[I].

Proof. Let W = Mk(N, ε;K) and W ∗ be its dual. Let a1, . . . , an be a set of generators
for I. Choose a basis for W that is compatible with the following filtration:

0 ⊂ (ker(a1) ∩ · · · ∩ ker(an)) ⊂ (ker(a1) ∩ · · · ∩ ker(an−1)) ⊂ · · · ⊂ ker(a1) ⊂ W.

The rank of a matrix equals the rank of its transpose, so the dimension of ker(a1) is the
same as the dimension of ker(at

1), that is, dimW [(a1)] = dimW ∗[(a1)]. Since T is commu-
tative, a2 leaves ker(a1) invariant; because of how we chose our basis for W , the transpose
of a2|ker(a1) is at

2|ker(at
1). Thus again, dim(ker(a2|ker(a1))) equals dim(ker(at

2|ker(at
1))). Pro-

ceeding inductively, we prove the lemma.

Corollary 3.29. Suppose Mk(N, ε;K)[I] ⊂ Sk(N, ε;K), and let P : Mk(N, ε;K) →
HomC(Sk(N, ε;C)[I],C) be the classical period map induced by the integration pairing.
Then ker(P ) = ker(ΘI).

Proof. Since P (Mk(N, ε;O)) is known to be a finite-covolume O-lattice in the complex vec-
tor space HomC(Sk(N, ε;C)[I],C), the K-dimension of im(P ) equals 2·dimC Sk(N, ε;C)[I],
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which in turn equals dimK Mk(N, ε;K)[I]. Thus by Lemma 3.28 the images im(P ) and
im(ΘI) have the same dimension, hence ker(P ) and ker(ΘI) also have the same dimension.
It thus suffices to prove the inclusion ker(ΘI) ⊂ ker(P ). Suppose ΘI(x) = 0; then ϕ(x) = 0
for all x ∈ W ∗[I], where W = Mk(N, ε;K). Thus ϕ(x) = 0 for all ϕ ∈ (W ⊗ C)∗[I]. Since
the integration pairing that defines P respects the action of T, the composition of P with
any linear functional lies in (W ⊗ C)∗[I]. Thus P (x) = 0, as required.

3.8 The images of cuspidal points

Consider a triple (N, k, ε), and let K = Q[ε]. Recall that integration defines a period
mapping

P : Mk(N, ε;K) → HomC(Sk(N, ε;C),C).

A cuspidal point of

J = J(N, k, ε) :=
HomC(Sk(N, ε;C),C)

P (Sk(N, ε;O))

is a point that is in the image under P of Mk(N, ε;O). It is of great interest to compute
the structure of the cuspidal subgroup of J and of the quotients of J . For example, when
k = 2 and ε = 1, the torus J can be identified with J0(N)(C). In this case, Manin proved
(see [38]) that the cuspidal point {0, ∞} is a torsion point in J0(N)(Q), so its order gives
a lower bound on J0(N)(Q)tor.

Algorithm 3.30 (Cuspidal subgroup). Let I be an ideal in the Hecke algebra T. This
algorithm computes the cuspidal subgroup of the quotient AI of J . Using Algorithm 3.5
compute Mk(N, ε;O) and Sk(N, ε;O). Using Algorithm 3.26, compute the rational period
mapping ΘI . Then the cuspidal subgroup is the subgroup of ΘI(Sk(N, ε;O)) generated by
the elements ΘI(x) for x ∈ Mk(N, ε;O). In particular, the point of AI(C) corresponding
to X iY k−2−i{α, β} is the image of ΘI(X

iY k−2−i{α, β}) in the quotient of ΘI(Mk(N, ε;O))
by ΘI(Sk(N, ε;O)).

Example 3.31. This example continues Example 3.27. The basis chosen is also a basis for
M2(37, 1;Z), so by computing the boundary map, or the integer kernel of T2(T2 + 2), we
find that S2(37, 1;Z) is spanned by (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), and (0, 0, 0, 1, 0).
Thus ΘI(S2(37, 1;Z)) is generated by (1, 0) and (0, 1). The modular symbols {0, ∞} is
represented by (0, 0, 0, 0, −1), so the image of the cusp (0) − (∞) ∈ J0(37) is 0 in 37k2A.

The rational period mapping associated to 37k2B (with respect to some basis) is

ΘI((a, b, c, d, e)t) = (a − c − 2d +
2

3
e, b + c + 2d − 2

3
e).

Thus ΘI(S2(37, 1;Z)) is generated by (1, 0) and (0, 1). The image of {0, ∞} is is 2
3(1, −1),

so the image of (0) − (∞) in 37k2B has order 3.

3.8.1 Rational torsion

Let f be a newform of weight 2, and suppose ε = 1. Manin proved that (0) − (∞)
defines an element of J0(N)(Q)tor. Thus the order of the image of (0) − (∞) provides a
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lower bounds on #Af (Q)tor. In general, many other points in the cuspidal subgroup can
be rational. Determining which would give a better lower bound on the rational subgroup;
the author has not yet carried out such computations (see, however, [65]).

3.8.2 Upper bound on torsion: Counting points mod p

Let f be a newform of weight 2, and suppose ε = 1. The Hecke algebra T acts through
a quotient T on the subspace of S2(Γ0(N)) spanned by the Galois conjugates of f . Let
χp(X) be the characteristic polynomial of the image of Tp in T. Suppose p - N and let
Np = #Af (Fp) be the number of points on the mod p reduction of the abelian variety Af .

Proposition 3.32. For each prime p not dividing N ,

Np = χp(p + 1).

Proof. This is probably well-known, but we give a proof (which was suggested to the author
by Matt Baker). It follows from the Eichler-Shimura theorem that the following relation
holds in the endomorphism ring of Af/Fp:

Tp = Frob+Ver = Frob+p/Frob .

Let ` 6= p be a prime. If the characteristic polynomial of Frob on an `-adic Tate module
of Af/Fp is F (t), and the characteristic polynomial of Tp on differentials H0(Af/Fp,Ω) is
f(t), then we have f(t) = x−dF (x), where t = x + (p/x) and d = dimAf . In other words,
the relation above gives an easy conversion between f and F . Since it’s a general fact that
#Af (Fp) = F (1), we have #Af (Fp) = f(p + 1).

The following theorem is proved using formal groups.

Theorem 3.33. Let A be an abelian variety over Q, with good reduction outside N . Sup-
pose p - N . Then the kernel of the reduction map A(Q)tor → A(Fp) is killed by p. If p > 2
then the kernel is trivial.

By taking gcd’s we obtain an upper bound on #A(Q)tor. This upper bound is not in
general sharp; in fact, it is unchanged if A is replaced by any isogenous abelian variety. For
example, X0(11) and X1(11) are isogenous, but have different torsion subgroups.

3.9 The modular degree

Let f be a newform of level N , weight k ≥ 2 and character ε such that ε2 = 1. In
this section we define and give an algorithm to compute the modular degree of the torus
Af attached to f .

Definition 3.34. The modular map is the map θf : A∨
f → Af that is induced by the

bottom row of Diagram 2.1 on page 34. The modular degree mf of f (or of Af ) is the
degree of this map. If f has weight two, then θf is a polarization so by [50, Thm. 13.3] its
degree is a perfect square; in this case we instead define the modular degree mf to be the
positive square root of the degree of θf .
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Remark 3.35. When E/Q be a modular elliptic curve of conductor N that is an optimal
quotient of J0(N), then mf is the usual modular degree, which is the least degree of a map
X0(N) → E.

Remark 3.36. When k 6= 2, the degree of θf need not be a perfect square. For example,
there is a one-dimensional quotient Af associated to the unique rational newform

f = q + 2q2 − 8q3 + 4q4 + 5q5 − 16q6 − 4q7 + · · · ∈ S4(10)

such that the kernel of θf is isomorphic to Z/10Z.

Next, for a newform f let θ′
f be the part of #ker(θf ) that is coprime to the level. There

is a newform in f ∈ S4(Γ0(77)) such that θ′
f is not a perfect square at 2. For identification

purposes, we remark that the field generated by the Fourier coefficients of f has discriminant
23 · 33 · 2417.

Algorithm 3.37. Let If be the annihilator of f in the Hecke algebra. The modular kernel
ker(θf ) is isomorphic to the cokernel of the natural map S[If ] → Φf (S) of Diagram 2.1 on
page 34. This cokernel can be computed by replacing Φf by the rational period map ΘIf

.

Proof. For concreteness, we give the proof only in the case of weight-two and trivial charac-
ter. The proof in the general case is similar. Let S = S2(Γ0(N),C) be the complex vector
space of weight-two modular forms of level N , and set H = H1(X0(N), Z). The integration
pairing S × H → C induces a natural map

Φf : H → Hom(S[If ],C).

Using the classical Abel-Jacobi theorem, we deduce the following commutative diagram,
which has exact columns, but whose rows are not exact.

0

²²

0

²²

0

²²

H[If ]

²²

// H

²²

// Φf (H)

²²

Hom(S,C)[If ]

²²

// Hom(S,C)

²²

// Hom(S[If ],C)

²²

A∨
f (C)

²²

//

>>
J0(N)(C)

²²

// Af (C)

²²

0 0 0

By the snake lemma, the kernel of A∨
f (C) → Af (C) is isomorphic to the cokernel of the

map H[If ] → Φf (H), which proves the proposition.

Remark 3.38. Suppose E is an optimal quotient of J0(p), with p prime. The surjectivity
result in [48] implies that it is possible to efficiently compute the modular degree using only
the method of graphs. For more details, see Chapter 4.
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3.10 The rational part of L(Af , j)

Let k ≥ 2 be an integer, and let ε : (Z/NZ)∗ → C∗ be a Dirichlet character such
that ε2 = 1. This assumption on ε is made only for simplicity; there is no fundamental
obstruction to considering arbitrary characters. For the remainder of this section we fix a
newform f ∈ Sk(N, ε). We will compute certain rational numbers associated to f .

The author was motivated to prove the results of this section after seeing Agashe’s
results in the case k = 2 and ε = 1; see [2, Ch. 4].

3.10.1 L-functions

Definition 3.39. The L-series associated to f is the complex-analytic function

L(f, s) :=
∞∑

n=1

ann−s.

Hecke proved that L(f, s) has an analytic continuation to the whole complex plane.
In particular, it makes sense to consider the values L(f, j) where j ∈ {1, 2, . . . , k − 1} is
an integer in the “critical strip.” The general consesus is that these special values have
deep arithmetic significance, in the sense that the quotients L(f, j)/ωf,j should be algebraic
numbers, where ωf,j is an appropriate period of f , and that these algebraic numbers should
encode deep arithmetic properties of the motive attached to f .

For simplicity, especially when doing explicit computations, it is desirable to work
exclusively with ratios that are rational numbers instead of algebraic numbers. For this
purpose, we consider instead the complex torus Af attached to f , and introduce

L(Af , s) :=
d∏

i=1

L(fi, s),

where f1, . . . , fd are the distinct Galois-conjugates of f . As we will see, L(Af , j)/Ωj ∈ Q,
where Ωj will be defined below.

Though the notation L(Af , s) suggests that there might be a way to attach an L-
function to a general complex torus, this is definitely not what we have in mind. For our
present purposes, the notation L(Af , s) is nothing more than a convenient shorthand for
the product of the L-functions attached to the Galois conjugates of f . However, in the
case when k = 2 and ε = 1, the L-function L(Af , s) is known to be the canonical L-series
associated to the abelian variety Af/Q; see, e.g., the discussion in [20, Sec. 7].

3.10.2 Winding elements

Generalizing Mazur and Merel’s terminology when k = 2, we define winding elements
as follows.

Definition 3.40 (Winding element). For 1 ≤ i ≤ k − 1, the ith winding element is

ei := X i−1Y k−2−(i−1){0, ∞} ∈ Mk(N, ε;Z).

For example, when k = 2 there is one winding element e = e1 = {0, ∞}. See [44, §2.2]
for a topologically motivated discussion of the terminology “winding element.”
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3.10.3 Real and minus volumes

We briefly review the association of a complex torus to a Galois-conjugacy class of
newforms. Consider the space Sk(N, ε;Z) of cusp forms in Sk(N, ε) whose q-expansion at
infinity has Fourier coefficients which lie in Z. Let V be the C-vector space spanned by
the Galois conjugates f1, . . . , fd of f , and choose a Z-basis g1, . . . , gd for the intersection
V ∩Sk(N, ε;Z). Then integration via the pairing of Theorem 2.7 against g1, . . . , gd defines a
map Sk(N, ε;Z) → Cd whose cokernel is Af (C). Viewing Af (C) in this way, the standard
measure on Cd defines a measure on Af (C).

Because ε2 = 1, the complex torus A(C) is equipped with an action of complex con-
jugation. There are two distinguished additive subgroups of A(C): the subgroup A(R) of
elements fixed under complex conjugation, and the subgroup A(C)− of elements sent to
their additive inverse by complex conjugation. When j is odd, let Ωj be the measure of
the subgroup fixed under conjugation, and when j is even, let Ωj be the measure of the
subgroup sent to its inverse under conjugation, times id, where d is the dimension of A.
When j is odd, we call Ωj the real volume; otherwise, we call Ωj the minus volume (see
Definition 3.58).

3.10.4 The theorem

We are now prepared to state a theorem that gives a computable expression for the ratio
|L(Af , j)/Ωj |. This theorem grew out of joint work with Agashe. It generalizes Cremona’s
method for computation L(E, 1)/ΩE when E is an elliptic curve (see [16, §2.8]).

As an immediate corollary of the formula, we see that |L(Af , j)/Ωj | is a rational num-
ber. This was already known when f ∈ S2(Γ0(N)) (see [28, §2]). The author remains
ignorant as to whether or not the general corollary was known before, or even if the real
numbers Ωj , exactly as defined here, had been previously considered. However, rational-
ity of certain related period ratios has been known for some time, due to work of Manin,
Shimura, and Hatada. For a clear historical summary of these rationality results see Li’s
MathSciNet review of [29]. See also [42, 44].

We take the absolute value of L(Af , j)/Ωj for simplicity only because at present we do
not wish to worry about powers of the 4th root of unity i.

Theorem 3.41. Let f ∈ Sk(N, ε) be a newform, where k ≥ 2 and ε2 = 1, and let j ∈
{1, 2, . . . , k − 1} be an integer in the critical strip. Let σ = (−1)j−1, and let Θf be the
rational periopd mapping associated to f (see Definition 3.25). Then

∣∣∣∣
L(Af , j)

Ωj

∣∣∣∣ = [Θf (Sk(N, ε;Z)σ) : Θf (Tej)],

where Sk(N, ε;Z)σ denotes the submodule of Sk(N, ε;Z) on which the ∗-involution acts
as σ, and Ωj is the real or minus volume of Af , as in Section 3.10.3. The right hand
expression in the formula is a lattice index, whose definition is given below.

Remark 3.42. In the context of the BSD conjecture, ΩAf
= Ω1 ·c∞, where c∞ is the number

of connected components of Af (R).

The theorem involves lattice indexes, which we define as follows.
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Definition 3.43. Let V be a finite-dimensional vector space over R. A lattice L ⊂ V is a
free abelian group of rank equal to the dimension of V such that RL = V . If L, M ⊂ V
are lattices, the lattice index [L : M ] ∈ R is the absolute value of the determinant of an
automorphism of V taking L isomorphically onto M . For convenience we set [L : M ] = 0
for any lattice L and additive abelian group M contained in V and of rank strictly smaller
than dimV .

The following fact allows us to compute the lattice the index without using complex
numbers.

Lemma 3.44. Suppose τi : V → Wi, i = 1, 2, are surjective linear maps such that ker(τ1) =
ker(τ2). Let L and M be lattices in V such that τi(L) and τi(M) are both lattices for i = 1, 2.
Then

[τ1(L) : τ1(M)] = [τ2(L) : τ2(M)].

Proof. Surjectivity and equality of kernels insures that there is a unique isomorphism ι :
W1 → W2 such that ιτ1 = τ2. Let σ be an automorphism of W1 such that σ(τ1(L)) = τ1(M).
Then

ισι−1(τ2(L)) = ιστ1(L) = ιτ1(M) = τ2(M).

Since conjugation does not change the determinant,

[τ2(L) : τ2(M)] = | det(ισι−1)| = | det(σ)| = [τ1(L) : τ1(M)].

Proof of Theorem 3.41. Let Φ = Φf be the period map Mk(N, ε;Z) → Cd defined by
fixing a basis f1, f2, . . . , fd of the conjugates of the newform f ; thus

Φ(x) = (〈f1, x〉, 〈f2, x〉, . . . 〈fd, x〉) ∈ Cd.

We view Cd as an algebra with unit element 1 = (1, . . . , 1) equipped with an action of the

Hecke operators. The operator Tp acts as (a
(1)
p , . . . , a

(d)
p ), where the components a

(j)
p are

the Galois conjugates of ap. Let Zd ⊂ Rd ⊂ Cd be the standard submodules.
For brevity, set S = Sk(N, ε;Z). Let µ(Φ(Sσ)) be the measure of a fundamental

domain for the lattice Φ(Sσ); equivalently, µ(Φ(Sσ)) is the absolute value of the determinant
of a basis for Φ(Sσ). Observe that µ(Φ(Sσ)) = [Zd : Φ(Sσ)] and |L(Af , j)| = [Zd : Φ(ej)Z

d].
Let W ⊂ Cd be the Z-module spanned by the “columns” of a basis for Sk(N, ε;Z)[If ].

More precisely, if g1, . . . , gd is a basis, then the nth column is the vector (an(g1), . . . , an(gd)),
where an(gi) is the coefficient of qn in the q-expansion of gi at infinity. Because Ωj is
computed with respect to a basis for Sk(N, ε;Z)[If ],

µ(Φ(Sσ)) = [W : T1] · Ωj .
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Observe that Sk(N, ε;Z) is saturated, in the sense that there are no nontrivial linear
relations between the gi when reduced modulo any prime p. To see this, note that if∑

aigi ≡ 0 (mod p), then 1
p

∑
aigi ∈ Sk(N, ε;Z) which, if the ai are not all 0, is contrary

to our assumption that g1, . . . , gd are a Z-basis. Because “row rank = column rank”, the
same must be true for the “columns” defined in the previous paragraph, so [Zd : W ] = 1.
It follows that [Zd : T1] = [W : T1].

The following calculation combines together the above observations using properties of
the lattice index:

[Φ(Sσ) : Φ(Tej)] = [Φ(Sσ) : Zd] · [Zd : Φ(Tej)]

=
1

[Zd : Φ(Sσ)]
· [Zd : Φ(Tej)]

=
1

µ(Φ(Sσ))
· [Zd : Φ(ej)Z

d] · [Φ(ej)Z
d : Φ(Tej)]

=
|L(Af , j)|
µ(Φ(Sσ))

· [Φ(ej)Z
d : Φ(Tej)]

=
|L(Af , j)|
µ(Φ(Sσ))

· [Φ(ej)Z
d : Φ(ej)T1]

=
|L(Af , j)|

|Ωj | · [W : T1]
· [Zd : T1]

=
|L(Af , j)|

|Ωj |
.

Theorem 3.41 now follows by using Lemma 3.44, to replace Φ by Θf .

3.10.5 Bounding the denominator of the ratio

In this section we bound the denominators of the ratios appearing in the previous
section. We begin with the following lemma, which follows easily from the alternative
description of the boundary map given in Proposition 2.25.

Lemma 3.45. For j = 2, . . . , k − 2 the winding element ej lies in Sk(N, ε;Z).

Proof. Recall that ej = P (X, Y ){0, ∞} where P (X, Y ) = Xj−1Y k−2−(j−1). Since 2 ≤ j ≤
k − 2, it follows that P (1, 0) = P (0, 1) = 0, so Propositison 2.25 implies that ej maps to 0
under the boundary map.

Proposition 3.46. For j = 2, . . . , k − 2,

L(Af , j)

Ωj
∈ Z.

Proof. This follows from Theorem 3.41 because Θf (Tej) ⊂ Θf (Sk(N, ε;Z)σ), so the lattice
index is an integer.

For the rest of this section, we assume for simplicity that ε = 1.
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Lemma 3.47. For j = 1 and j = k − 1, we have for each p - N that

(Tp − (1 + pk−1))ej ∈ Sk(N, ε;Z).

Proof. This is a standard calculation; see, e.g., [16, §2.8] for the case when k = 2.

Proposition 3.48. Let j ∈ {1, . . . , k − 1}, and let n be the order of the image in Af (C)
of the modular symbol ej, so n = 1 if j 6∈ {1, k − 1}. Then

L(Af , j)

Ωj
∈ 1

n
Z.

Proof. Let x denote the image of ej ∈ Af (C), and set I = Ann(x) ⊂ T. Though we write
Af (C) here and below, we will always work within the subgroup of Af (C) generated by the
image of Mk(N, ε;Z) under the period map.

First we check that the Hecke operators all act as scalars on x. Since f is a newform, the
Hecke operators Tp, for p | N , act as 0 or ±pk/2−1 on f , and hence in the same way on Af (C)
(see, e.g., the end of section 6 of [21]). If p - N , Lemma 3.47 shows that Tp(x) = (1+pk−1)x.

Let C = Zx denote the cyclic subgroup of Af (C) generated by x, so n is the order
of C. Since the Hecke operators act as scalars on C, we are pleased to find that there is an
injection T/I ↪→ C which sends Tp to Tp(x).

Setting S = Sk(N, ε;Z) and applying Theorem 3.41 we find that

±L(Af , j)

Ωj
= [Θf (S+) : Θf (Te)]

= [Θf (S+) : Θf (Ie)] · [Θf (Ie) : Θf (Te)]

= [Θf (S+) : IΘf (e)] · [IΘf (e) : TΘf (e)]

=
[Θf (S+) : IΘf (e)]

[TΘf (e) : IΘf (e)]
.

To conclude that
[Θf (S+) : IΘf (e)]

[TΘf (e) : IΘf (e)]
∈ 1

n
Z

we make two observations. By the construction of Af (C), the ideal I consists of those
elements of T that send Θf (e) into Θf (S+), so [Θf (S+) : IΘf (e)] ∈ Z. Second, there is a
surjective map

T/I → TΘf (e)

IΘf (e)

sending t to tΘf (e), so [TΘf (e) : IΘf (e)] divides n = #C = #(T/I).

Remark 3.49 (Historical notes). In the special case when k = 2, the modular symbol e1

corresponds to (0)− (∞) ∈ J0(N). In this situation, Manin proves at the bottom of page 28
of [38] that (0)−(∞) ∈ J0(N)(Q), and asserts in the footnote to [38, Cor. 3.6] that (0)−(∞)
has finite order. Based on observations such as a special case of the above proposition, he
declares: “These explicit formulas have the structure predicted by the Birch-Swinnerton-
Dyer conjectures.”
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The main result of this section was inspired by a weaker result of Agashe, which can
be found in Chapter 4 of [2]. Agashe considers only the case k = 2 and replaces n by the
order of the subgroup of J0(N)(Q) generated by all cusps.

3.11 The Manin constant

In this section k = 2 and ε = 1; we sometimes omit k and ε from the notation. The
assumption that k = 2 will be essential, because we do not know how to define a Manin
constant in other weights, let alone bound it.

Consider the optimal quotient A of J0(N) corresponding to a newform f on Γ0(N) of
weight 2. Let IA be the kernel of the natural map from the Hecke algebra to End(A). The
Manin constant cA of A is the lattice index

cA := [S2(Γ0(N);Z)[IA] : H0(A,ΩA/Z)]

taken inside of S2(Γ0(N);Q). Though, a priori, cA is a rational number, the work of [31]
implies that cA ∈ Z (see, e.g., [3]).

Generalizing a theorem of Mazur, we prove that cA is a unit in Z[ 1
2m ], where m is the

largest square dividing N . Essentially no new ideas beyond what Mazur used are involved.
We then conjecture that cA = 1, and give supporting numerical evidence.

For related results involving modular “building blocks” for J1(N), we refer the reader
to [26, §4].

3.11.1 The primes that might divide cA

In the special case dimA = 1, the Manin constant is the classical Manin constant of A,
and in [41] Mazur proved that cA is a unit in Z[ 1

2m ]. We generalize his proof to obtain the
analogous result in dimension greater than 1.

Theorem 3.50. Let A be the new optimal quotient of J0(N) corresponding to a newform f .
Then the Manin constant cA is a unit in Z[ 1

2m ], where m is the largest square dividing N .

Proof. The reader is strongly recommended to keep the proof of Proposition 3.1 in [41] at
hand while reading the following argument.

Let π denote the map J0(N) → A; let A denote the Néron model of A over R := Z[ 1
2m ],

and J the Néron model of J0(N) over R. Let X be the minimal proper regular model for
X0(N) over R. As in Mazur’s proof in [41], consider the diagram

H0(A,ΩA)
π∗
−→ H0(J ,ΩJ ) ∼= H0(X ,Ωreg

X )
q-exp−−−−→ R[[q]]. (3.2)

(Note that “Ωreg
X ” is not defined to be the usual sheaf of differentials; see, e.g., the discussion

in [40, pg. 67].) The map π∗ must be an inclusion, by [41, Cor. 1.1]. To show that the
Manin constant is a unit in R, it suffices to check that the image of H0(A,ΩA) in R[[q]] is
saturated, in the sense that the cokernel is torsion free; indeed, the image of S2(Γ0(N);R)[I]
is saturated and S2(Γ0(N);R)[I] ⊗ Q = q-exp(π∗(H0(A,ΩA))) ⊗ Q.
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For the image of H0(A,ΩA) in R[[q]] to be saturated means that the quotient D is
torsion free. Let ` be a prime not dividing 2m; tensoring

0 → H0(A,ΩA)
q-exp−−−→ R[[q]] → D → 0

with F` we obtain

0 → D[`] → H0(A,ΩA) ⊗ F` → F`[[q]] → D ⊗ F` → 0.

Here we have used that Tor1(D,F`) is the `-torsion in D, and that Tor1(−,F`) vanishes on
the torsion-free group R[[q]]. (Alternatively, we could have used the snake lemma.) To show
that D[`] = 0, it suffices to prove that the map Ψ : H0(A,ΩA) ⊗ F` → F`[[q]] is injective.

Since ` 6= 2 and A is an optimal quotient, [41, Cor 1.1] gives an exact sequence

0 → H0(A/Z`,ΩA/Z`
) → H0(J /Z`,ΩJ /Z`

) → H0(B/Z`,ΩB/Z`
) → 0

where B is the Néron model of ker(J → A). In particular, H0(B/Z`,ΩB/Z`
) is torsion free,

so

H0(A/Z`,ΩA/Z`
) ⊗ F` → H0(J /Z`,ΩJ /Z`

) ⊗ F`
∼= H0(X/Z`,Ω

reg
X/Z`

) ⊗ F`

∼= H0(X/F`,Ω
reg
X/F`

)

is injective. (The last isomorphism is by [40, Prop. 3.3, pg. 68].) We also remark that

H0(A,ΩA) ⊗ F`
∼= H0(A/Z`,ΩA/Z`

) ⊗ F`,

because Z` is torsion free, hence flat over R. Thus the map

H0(A,ΩA) ⊗ F` → H0(X/F`,Ω
reg
X/F`

)

is injective.
If ` - N , then injectivity of Ψ now follows from the q-expansion principle, which asserts

that the q-expansion map H0(X/F`,Ω
reg
X/F`

) → F`[[q]] is injective.

Suppose ` does divide N , and let ω ∈ ker(Ψ). Since ` | N and ` - 2m, we have that
` || N ; thus X/F` breaks up into a union of two irreducible components, and the q-expansion
principle implies only that ω vanishes on the irreducible component containing the cusp ∞.
However, since A is new and corresponds to a single eigenform, ω is an eigenvector for
the involution WN (since f and all of its conjugates are). Since WN permutes the two
components, ω must be 0 on all X/F`. Therefore ω = 0, and hence Ψ is injective.

3.11.2 Numerical evidence for the cA = 1 conjecture

In the paper [24], the authors show that cA = 1 for 28 two-dimensional optimal quo-
tients of J0(N) (see Section 3.12.8). The non-square-free levels treated are:

N = 32 · 7, 32 · 13, 53, 33 · 5, 3 · 72, 52 · 7, 22 · 47, 33 · 7.

In every case, cA = 1.

Conjecture 3.51 (Agashe). Let A be an optimal quotient of J0(N), and let cA be the
corresponding Manin constant. Then cA = 1.
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3.12 Analytic invariants

Fix a newform
f =

∑

n≥1

anqn ∈ Sk(N, ε),

and assume that ε2 = 1.

Remark 3.52. Our assumption that ε2 = 1 does not imply that f has totally real Fourier
coefficients. There is an eigenform in S2(24, ε) whose Fourier coefficients are not totally
real, where ε is one of the characters of conductor 8.

Let Kf = Q(. . . an . . . ) and let f1, . . . , fd be the Galois conjugates of f , where d =
[Kf : Q]. As in Section 2.7, we consider the complex torus Af attached to f . In this section
we describe how to compute the torus Af and the special values at the critical integers
1, 2, . . . , k − 1 of the L function L(Af , s) associated to Af . (See 3.39 for the definition of
L(Af , s).)

Let
f =

∑

n≥1

anqn ∈ Mk(N, ε)

be a modular form (we do not assume that f is an eigenform). We recall the integration
pairing of Theorem 2.7:

〈 , 〉 : Mk(N, ε) × Mk(N, ε) −→ C

〈f, P{α, β}〉 = 2πi

∫ β

α
f(z)P (z, 1)dz.

Let If ⊂ T be the kernel of the map T → Kf sending Tn to an. The integration pairing
gives rise to the period mapping

Φf : Mk(N, ε) → HomC(Sk(N, ε)[If ],C),

and Af = HomC(Sk(N, ε)[If ],C)/Φf (Sk(N, ε)) is the cokernel.

3.12.1 Extended modular symbols

For the purposes of computing periods, it is advantageous to extend the notion of
modular symbols to allows symbols of the form P{z, w} where z and w are now arbitrary
elements of h∗ = h ∪ P1(Q). The free abelian group Mk of extended modular symbols is
spanned by such symbols, and is of uncountable rank over Z. However, it is still equipped
with an action of Γ0(N) and we can form the largest torsion-free quotient Mk(N, ε) of Mk

by the relations γx = ε(γ)x for γ ∈ Γ0(N).
The integration pairing extends to Mk(N, ε). There is a natural embedding ι :

Mk(N, ε) ↪→ Mk(N, ε) which respects the pairing in the sense that 〈f, ι(x)〉 = 〈f, x〉.
In many cases it is advantageous to replace x ∈ Mk(N, ε) first by ι(x), and then by an
equivalent sum

∑
yi of symbols yi ∈ Mk(N, ε). The period 〈f, x〉 is then replaced by the

equivalent sum of periods
∑〈f, yi〉. The latter is frequently much easier to approximate

numerically.
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3.12.2 Numerically computing period integrals

Consider a point α in the upper half plane and any one of the (extended) modular
symbols XmY k−2−m{α, ∞}. Given a cusp form g =

∑
n≥1 bnqn ∈ Sk(N, ε) and an integer

m ∈ {0, 1, . . . , k − 2}, we find that

〈g, XmY k−2−m{α, ∞}〉 = 2πi

∫ i∞

α
g(z)zmdz = 2πi

∞∑

n=1

bn

∫ i∞

α
e2πinzzmdz. (3.3)

The reversal of summation and integration is justified because the imaginary part of α is
positive so that the sum converges absolutely. This is made explicit in the following lemma,
which can be proved using repeated integration by parts.

Lemma 3.53.

∫ i∞

α
e2πinzzmdz = e2πinα

m∑

s=0


(−1)sαm−s

(2πin)s+1

m∏

j=(m+1)−s

j


 . (3.4)

The following proposition is the higher weight analogue of [16, Prop. 2.1.1(5)].

Proposition 3.54. For any γ ∈ Γ0(N), P ∈ Vk−2 and α ∈ h∗ the following holds:

P{∞, γ(∞)} = P{α, γ(α)} + (P − ε(γ)γ−1P ){∞, α} (3.5)

= ε(γ)(γ−1P ){α, ∞} − P{γ(α), ∞}. (3.6)

Proof. By definition, if x ∈ Mk(N, ε) is a modular symbol and γ ∈ Γ0(N) then γx = ε(γ)x;
in particular, ε(γ)γ−1x = x, so

P{∞, γ(∞)} = P{∞, α} + P{α, γ(α)} + P{γ(α), γ(∞)}
= P{∞, α} + P{α, γ(α)} + ε(γ)γ−1(P{γ(α), γ(∞)})
= P{∞, α} + P{α, γ(α)} + ε(γ)(γ−1P ){α, ∞}
= P{α, γ(α)} + P{∞, α} − ε(γ)(γ−1P ){∞, α}
= P{α, γ(α)} + (P − ε(γ)γ−1P ){∞, α}.

The second equality in the statement of the proposition now follows easily.

In the classical case of weight two and trivial character, the error term (P−ε(γ)γ−1P ){∞, α}
vanishes. In general this term does not vanish, instead perturbing the analogues of the
formulas found in [16, 2.10].

Algorithm 3.55. Given a triple γ ∈ Γ0(N), P ∈ Vk−2 and g ∈ Sk(N, ε) (as a q-expansion
to some precision) this algorithm computes the period integral 〈g, P{∞, γ(∞)}〉. Express γ
as

(
a b

cN d

)
∈ Γ0(N) and take α = −d+i

cN in Proposition 3.54. Replacing γ by −γ if necessary,
we find that the imaginary parts of α and γ(α) = a+i

cN are both equal to 1/(cN) which is
positive. Equation 3.3 and Lemma 3.53 can now be used to compute the period integrals
of Proposition 3.54.
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With the goal of computing period lattices in mind, it is reassuring to know that
every element of Sk(N, ε) can be written as a linear combination of symbols of the form
P{∞, γ(∞)}. The author asked Helena Verrill if this is the case and she was eventually
able to prove that it is; the proof is given below. In the special case of weight two and
trivial character, this is the assertion, which was proved by Manin [38], that the group
homomorphism Γ0(N) → H1(X0(N),Z) sending γ to {0, γ(0)} is surjective. When the
weight is greater than two, we have not found any similar group-theoretic statement.

Proposition 3.56. Any element of Sk(N, ε) can be written in the form

n∑

i=1

Pi{∞, γi(∞)}

with Pi ∈ Vk−2 and γi ∈ Γ0(N). Moreover, Pi and γi can be chosen so that
∑

ε(γi)Pi =∑
γ−1

i Pi.

Proof.1 First recall the definition of the spaces M, Mk = Vk−2 ⊗ M and Mk(N, ε) =
Mk/I (see Section 2.1). Let I = IN,ε be the ideal in the group ring of Γ0(N) generated by
all elements of the form ε(γ) − γ for γ ∈ Γ0(N).

Suppose v ∈ Sk(N, ε). Use the relation {α, β} = {∞, β} − {∞, α} ∈ M to see that
any v is the image of an element ṽ ∈ Mk of the form

ṽ =
∑

β∈Q

Pβ ⊗ {∞, β} ∈ Mk

with only finitely many Pβ nonzero. The boundary map δ lifts in a natural way to Vk−2⊗M,
as illustrated.

I(Vk−2 ⊗ M) //

²²

I(Vk−2 ⊗ B)

²²

Vk−2 ⊗ M δ̃ //

²²

Vk−2 ⊗ B

²²

Sk(N, ε) Â Ä // Mk(N, ε)
δ // Bk(N, ε)

Our assumption that δ(v) = 0 implies that δ̃(ṽ) ∈ I(Vk−2 ⊗ B). So there are Qγ,β ∈ Vk−2,
for γ ∈ Γ0(N) and β ∈ P1(Q), only finitely many nonzero, such that

δ̃(ṽ) =
∑

γ,β

(ε(γ) − γ)(Qγ,β ⊗ {β}).

1The author thanks Helena Verrill for permission to reproduce her proof here.
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We now use a summation trick.
∑

β∈Q

δ̃(ṽ) = Pβ ⊗ {β} − Pβ ⊗ {∞} =
∑

γ,β

ε(γ)Qγ,β ⊗ {β} − (γQγ,β) ⊗ {γβ}

=
∑

γ,β

ε(γ)Qγ,β ⊗ {β} − (γQγ,γ−1β) ⊗ {β}

=
∑

γ,β

(
ε(γ)Qγ,β − γQγ,γ−1β

)
⊗ {β}.

Equating terms we deduce that for β 6= ∞,

Pβ =
∑

γ

ε(γ)Qγ,β − γQγ,γ−1β .

Using this expression for Pβ and that ε(γ)γ−1 acts trivially on Mk(N, ε) we find that

v =
∑

β

Pβ{∞, β} =
∑

γ,β

(
ε(γ)Qγ,β − γQγ,γ−1β

)
{∞, β}

=
∑

γ,β

ε(γ)Qγ,β − ε(γ)γ−1
(
γQγ,γ−1β

)
{∞, β}

=
∑

γ,β

ε(γ)Qγ,β{∞, β} − ε(γ)Qγ,γ−1β{γ−1∞, γ−1β}

=
∑

γ,β

ε(γ)Qγ,β{∞, β} − ε(γ)Qγ,β{γ−1∞, β}

=
∑

γ,β

ε(γ)Qγ,β{∞, γ−1∞}.

This is of the desired form.

Unlike the case of weight two and trivial character, Proposition 3.56 does not give
generators for Sk(N, ε). This is because not every element of the form P{∞, γ(∞)} must
lie in Sk(N, ε). However, if γP = P then P{∞, γ(∞)} does lie in Sk(N, ε). It would be
interesting to know under what circumstances Sk(N, ε) is generated by symbols of the form
P{∞, γ(∞)} with γP = P . This sometimes fails for k odd; for example, when k = 3 the
condition γP = P implies that γ ∈ Γ0(N) has an eigenvector with eigenvalue 1, hence is
of finite order. When k is even the author can see no obstruction to generating Sk(N, ε)
using such symbols.

3.12.3 The WN -trick

In this section we assume that k is even. Consider the involution WN defined in
Section 2.4.3. This is an involution that acts on both modular symbols and modular forms.
The follow proposition shows how to compute 〈g, P{∞, γ(∞)}〉 under certain restrictive
assumptions. It generalizes the main result of [17] to higher weight. (Compare also [25].)



3.12. ANALYTIC INVARIANTS 63

Proposition 3.57. Let g ∈ Sk(N, ε) be a cusp form which is an eigenform for the Atkin-
Lehner involution W having eigenvalue w ∈ {±1}. Then for any γ ∈ Γ0(N) and any
P ∈ Vk−2, with the property that γP = ε(γ)P , we have for any α ∈ h the following formula:

〈g, P{∞, γ(∞)}〉 =

〈g, w
P (Y, −NX)

Nk/2−1
{W (α), ∞} + (P − w

P (Y, −NX)

Nk/2−1
){i/

√
N, ∞} − P{γ(α), ∞}〉.

Here W (α) = −1/(Nα).

Proof. By Proposition 3.54 our condition on P implies that P{∞, γ(∞)} = P{α, γ(α)}.
The steps of the following computation are described below.

〈g, P{α, γ(α)}〉

= 〈g, P{α, i/
√

N} + P{i/
√

N, W (α)} + P{W (α), γ(α)}〉

= 〈g, w
W (P )

Nk/2−1
{W (α), i/

√
N} + P{i/

√
N, W (α)} + P{W (α), γ(α)}〉

= 〈g, (w
W (P )

Nk/2−1
− P ){W (α), i/

√
N} + P{W (α), ∞} − P{γ(α), ∞}〉

= 〈g, w
W (P )

Nk/2−1
{W (α), ∞} + (P − w

W (P )

Nk/2−1
){i/

√
N, ∞} − P{γ(α), ∞}〉.

For the first step, we break the path into three paths. In the second step, we apply the
W -involution to the first term, and use that the action of W is compatible with the pairing
〈 , 〉. The third step involves combining the first two terms and breaking up the third. In
the final step, we replace {W (α), i/

√
N} by {W (α), ∞} + {∞, i/

√
N} and regroup.

A good choice for α is α = γ−1
(

b
d + i

d
√

N

)
, so that W (α) = c

d +
i

d
√

N
. This maximizes

the minimum of the imaginary parts of α and W (α).

Let γ =
(

a b
c d

)
∈ Γ0(N). A polynomial P for which γ(P ) = P is given by

P (X, Y ) = (cX2 + (d − a)XY − bY 2)
k−2
2 .

This formula was obtained by viewing Vk−2 as the (k − 2)th symmetric product of the
two-dimensional space on which Γ0(N) acts naturally. For example, observe that since
det(γ) = 1 the symmetric product of two eigenvectors for γ is an eigenvector in V2 having
eigenvalue 1. For the same reason, if ε(γ) 6= 1, there is often no polynomial P (X, Y ) such
that γ(P ) = ε(γ)P . When this is the case, first choose γ so that ε(γ) = 1.

Since the imaginary parts of the terms i/
√

N , α and W (α) in the proposition are all
relatively large, the sums appearing in Equation 3.3 converge quickly if d is small. Let us
emphasize, that it is extremely important to choose γ in Proposition 3.57 with d small,
otherwise the series will converge very slowly.
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3.12.4 Computing the period mapping

Let I ⊂ T be the kernel of the map T → Kf sending Tn to an. As in Section 3.7, let
Θf = ΘI be the rational period mapping associated to f . We have a commutative diagram

Mk(N, ε)

Θf %%KKKKKKKKKK

Φf
// HomC(Sk(N, ε)[I],C)

Mk(N, ε)

ker(Φf )

if

66nnnnnnnnnnnnnn

Using Algorithm 3.26, we can compute Θf so to compute Φf we need to compute if . Let
g1, . . . , gd be a basis for the Q-vector space Sk(N, ε;Q)[I]. We will compute the period
mapping with respect to the basis of HomQ(Sk(N, ε;Q)[I],C) dual to this basis. Choose
elements x1, . . . , xd ∈ Mk(N, ε) with the following properties:

1. Using Proposition 3.54 or Proposition 3.57 it is possible to compute the period inte-
grals 〈gi, xj〉, i, j ∈ {1, . . . d} efficiently.

2. The 2d elements v + ∗v and v − ∗v for v = Θf (x1), . . . ,Θf (xd) span a space of
dimension 2d.

Given this data, we can compute

if (v + ∗v) = 2Re(〈g1, xi〉, . . . , 〈gd, xi〉)

and
if (v − ∗v) = 2iIm(〈g1, xi〉, . . . , 〈gd, xi〉).

We break the integrals into real and imaginary parts because this increases the precision of
our answers. Since the vectors vn + ∗vn and vn − ∗vn, n = 1, . . . , d span Mk(N,ε)

ker(Φf ) we have

computed if .
It is advantageous when possible to find symbols xi satisfying the conditions of Proposi-

tion 3.57. This is usually possible when d is very small, but in practice we have had problems
doing this when d is large, for example with 131k2B, in which case the dimension is 10.

3.12.5 Computing special values

For s = 1, . . . , k − 1 we have

L(f, s) =
−2πs−1is−1

(s − 1)!
· 〈f, Xs−1Y k−1−s{0, ∞}〉, (3.7)

L(AI , s) =
d∏

i=1

L(fi, s). (3.8)

Let
ei := X i−1{0, ∞}
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denote the ith winding element. In section 3.12.4 we computed the period map Φf with
respect to a basis g1, . . . , gd for Sk(N, ε;Q)[I]. Upon writing f as a Kf -linear combination
α1g1 + · · · + αdgd we find that

〈f, ei〉 = 〈α1g1 + · · · + αdgd, ei〉
= α1〈g1, ei〉 + · · · + αd〈gd, ei〉
= α1Φf (ei)1 + · · · + αdΦf (ei)d

Here Φf (ei)j denotes the jth coordinate of Φf (ei). Finally using Equation 3.7 we compute
the special value.

3.12.6 The real and minus volume associated to Af

Fix a choice of basis g1, . . . , gd for the free Z-module Sk(N, ε;Z)[I], where I is the
annihilator in the Hecke algebra of our fixed newform f .

For any x ∈ Sk(N, ε) we have, by Proposition 2.11,

Φf (x) = (〈g1, x〉, . . . , 〈gd, x〉)
= (〈g∗

1, x
∗〉, . . . , 〈g∗

d, x
∗〉)

= (〈g1, x
∗〉, . . . , 〈gd, x

∗〉) ∈ Φf (Sk(N, ε)),

so complex conjugation leaves invariant the period lattice

Λf = Φf (Sk(N, ε)) ⊂ HomC(Sk(N, ε)[I],C).

Fix a Z-basis for Sk(N, ε;Z)[I], thus making an identification HomC(Sk(N, ε)[I],C) ∼= Cd.
The above observation implies that Af (C) ∼= Cd/Λf is equipped with an action of complex
conjugation. Our choice of basis defines a real-valued measure µ on Af (C), coming from
the standard measure on Cd. The measure does not depend on the choice of Z-basis.

Definition 3.58 (Real and minus volume). The real measure Ω+
f is the measure µ(Af (R)).

The minus measure Ω−
f is the measure µ(Af (C)−) times id, where Af (C)− is the set of

points in Af (C) on which complex conjugation acts as −1.

Thus, in connection with Section 3.10.3, |Ω+
f | = |Ω1| and |Ω−

f | = |Ω2|.

Algorithm 3.59. To compute Ω+
f and Ω−

f , proceed as follows. Using Algorithm 3.26,

compute Sk(N, ε)/Ker(Φf ). Next, compute a basis for the kernel (Sk(N, ε)/Ker(Φf ))
+ of

the map induced by the ∗-involution. Using Section 3.12.4 compute the image of this basis
under if ; this is a basis for Λ+

f . The determinant of this latter basis then gives the measure

(Ω+
f )

0 of the identity component Af (R)0 of Af (R). Finally Ω+
f = c+

∞ · (Ω+
f )

0, where the

number c+
∞ of real components can be computed using the algorithm in Section 3.12.7

Remark 3.60 (Alternative method). Suppose s is an integer in the set {1, . . . , k−1}, and let
σ = + or σ = −, depending on whether s is odd or even, respectively. Section 3.10 contains
a formula for the ratio L(Af , s)/Ωσ

f . When this ratio is nonzero, Ωσ
f can be determined by

computing L(Af , s)/Ωσ
f and L(Af , s), using Section 3.12.5.
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Remark 3.61. When k = 2 and ε is trivial, Af has the structure of abelian variety over Q.
The quantity Ω+

f above is related to the quantity ΩA appearing in the Birch and Swinnerton-
Dyer conjecture [67] for Af . The latter quantity is the measure of Af (R) with respect to a
basis of integral differentials on the Néron model of Af over Spec(Z). The two quantities are
related by the Manin constant, which the author conjectures is always 1 (see Section 3.11).

3.12.7 The component groups c+
∞ and c−

∞

Assume in this section that f has totally real Fourier coefficients and continue to assume
that ε2 = 1.

Definition 3.62. Let c+
∞ be the number of components of the topological space Af (R). Let

c−
∞ be the number of components of Af (C)−, where Af (C)− is the set of points z ∈ Af (C)
such that z = −z.

Proposition 3.63. Let C be the map induced by complex conjugation on Λf/2Λf = Λf ⊗
F2. Then

c+
∞ = c−

∞ = 2dim(ker(C−1))−d,

where d is the dimension of Af .

Proof. We must compute the order of the component group

Ψ =
Af (R)

Af (R)0
=

(Cd/Λf )
+

Rd/Λ+
f

,

where Rd/Λ+
f is the identity component because it is the continuous image of the connected

set Rd. For v ∈ Cd denote by v its complex conjugate and by [v] its image in Cd/Λf .
Suppose [v] ∈ (Cd/Λf )

+; this means that [v] = [v], so since v + v ∈ Rd we have

2[v] = [v] + [v] ∈ Rd/Λ+
f ,

so Ψ is annihilated by 2. Thus there is λ ∈ Λf so that 2v + λ ∈ Rd, and so v + 1
2λ ∈ Rd,

i.e., v can be written as an element of 1
2Λf plus an element of Rd. This means that Ψ is

generated by the image of ( 1
2Λf/Λf )

+. Thus

Ψ ∼=
(1
2Λf/Λf )

+

(1
2Λf ∩ Rd)/Λ+

f

∼= (Λf/2Λf )
+

Λ+
f /2Λ+

f

Consequently

dimF2 Ψ = dim(Λf/2Λf )
+ − dimΛ+

f /2Λ+
f = dim(ker(C − 1)) − d.

Here Λ+
f /2Λ+

f has dimension d because Λ+
f is a lattice in Rd, hence a free Z-module of

rank d.
The argument for c−

∞ proceeds in the same way, and results in the same answer because

dim(ker(C − 1)) = dim(ker(C + 1)).

To compute C on Λf , use Algorithm 3.26 to compute the action of ∗ on

Sk(N, ε)/Ker(Φf ) ∼= Λf .
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3.12.8 Examples

Jacobians of genus-two curves

The author is among the the six authors of [24], who gather empirical evidence for the
BSD conjecture for Jacobian of genus two curves. Of the 32 Jacobians considered, all but
four are optimal quotients of J0(N) for some N . The methods of this section can be used to
compute Ω+

f for the Jacobians of these 28 curves. Using explicit models for the genus two
curves, the authors of [24] computed the measure of A with respect to a basis for the Néron
differentials of A. In all 28 cases our answers agreed to the precision computed. Thus in
these cases we have numerically verified that the Manin constant equals 1.

The first example considered in [24] is the Jacobian A = J0(23) of the modular curve
X0(23). This curve has as a model

y2 + (x3 + x + 1)y = −2x5 − 3x2 + 2x − 2

from which one can compute the BSD ΩA = 2.7328.... The following is an integral basis of
cusp forms for S2(23).

g1 = q − q3 − q4 − 2q6 + 2q7 + · · ·
g2 = q2 − 2q3 − q4 + 2q5 + q6 + 2q7 + · · ·

The space M2(23;Q) of modular symbols has dimension five and is spanned by {−1/19, 0},
{−1/17, 0}, {−1/15, 0}, {−1/11, 0} and {∞, 0}. The submodule S2(23;Z) has rank four
and has as basis the first four of the above five symbols. Choose γ1 = ( 8 1

23 3 ) and γ2 = ( 6 1
23 4 )

and let xi = {∞, γi(∞)}. Using the WN -trick (see Section 3.12.3) we compute the period
integrals 〈gi, xj〉 using 97 terms of the q-expansions of g1 and g2, and obtain

〈g1, x1〉 ∼ −1.3543 + 1.0838i, 〈g1, x2〉 ∼ −0.5915 + 1.6875i
〈g2, x1〉 ∼ −0.5915 − 0.4801i, 〈g2, x2〉 ∼ −0.7628 + 0.6037i

Using 97 terms we already obtain about 14 decimal digits of accuracy, but we do not
reproduce them all here. We next find that

〈g1, x1 + x∗
1〉 ∼ 2Re(−1.3543 + 1.0838i) = 2.7086,

and so on. Upon writing each generator of S2(23) in terms of x1 + x∗
1, x1 − x∗

1, x2 + x∗
2 and

x2 − x∗
2 we discover that the period mapping with respect to the basis dual to g1 and g2 is

(approximately)

{−1/19, 0} 7→ ( 0.5915 − 1.6875i, 0.7628 − 0.6037i)
{−1/17, 0} 7→ (−0.5915 − 1.6875i, −0.7628 − 0.6037i)
{−1/15, 0} 7→ (−1.3543 − 1.0838i, −0.5915 + 0.4801i)
{−1/11, 0} 7→ (−1.5256, 0.3425)

Working in S2(23) we find S2(23)
+ is spanned by {−1/19, 0}−{−1/17, 0} and {−1/11, 0}.

Using the algorithm of Section 3.12.6, we find that there is only one real component so

Ω+
I ∼

∣∣∣∣
1.1831 1.5256

−1.5256 0.3425

∣∣∣∣ = 2.7327...

To greater precision we find that Ω+
f ∼ 2.7327505324965. This agrees with the value in [24];

since the Manin constant is an integer, it must equal 1.
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Table 3.1: Volumes associated to level one cusp forms.

k Ω+ Ω−

12 0.002281474899 0.000971088287i
16 0.003927981492 0.000566379403i
18 0.000286607497 0.023020042428i
20 0.008297636952 0.0005609325015i
22 0.002589288079 0.0020245743816i
24 0.000000002968 0.0000000054322i
26 0.003377464512 0.3910726132671i
28 0.000000015627 0.0000000029272i

Level one cusp forms

In the following two sections we consider several specific examples of tori attached to
modular forms of weight greater than two.

Let k ≥ 12 be an even integer. Associated to each Galois conjugacy class of normalized
eigenforms f , there is a torus Af over R. The real and minus volume of the first few of these
tori are displayed in Table 3.1. For weights 24 and 28 we give Ω−/i so that the columns
will line up nicely. In each case, 97 terms of the q-expansion were used.

The volumes appear to be much smaller than the volumes of weight two abelian va-
rieties. The dimension of each Af is 1, except for weights 24 and 28 when the dimension
is 2.

CM elliptic curves of weight greater than two

Let f be a rational newform with “complex multiplication”, in the sense that “half”
of the Fourier coefficients of f are zero. For our purposes, it is not necessary to define
complex multiplication any more precisely. Experimentally, it appears that the associated
elliptic Af has rational j-invariant. As evidence for this we present Table 3.2, which includes
the analytic data about every rational CM form of weight four and level ≤ 197. The
computations of Table 3.2 were done using at least 97 terms of the q-expansion of f . The
rationality of j could probably be proved by observing that the CM forces Af to have extra
automorphisms.

In these examples, the invariants c4 and c6 are unrecognizable to the author; in contrast,
in weight 2 these invariants are (expected to be) integers (see [16, 2.14]).

Some abelian varieties of large dimension

In Table 3.3, we give the volumes of five abelian varieties of dimension greater than 1.
In each case, at least 200 terms of the q-expansions were used.
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Table 3.2: CM elliptic curves of weight > 2.

E j Ω+ Ω− c4 c6

9k4A 0 0.2095 0.1210i 0.0000 −56626421686.2951
32k4A 1728 0.2283 0.2283i −3339814.8874 0.0000
64k4D 1728 0.1614 0.1614i 53437038.1988 0.0000
108k4A 0 0.0440 0.0762i −14699.2655 24463608892439.7456
108k4C 0 0.0554 0.0960i 1608.7743 6115643810955.1724
121k4A −215 0.0116 0.0385i 85659519816.8841 25723073306989527.1216
144k4E 0 0.0454 0.0262i 81.1130 −549788016394046.1396
27k6A 0 0.0110 0.0191i 0.0000 97856189971744203.7795
32k6A 1728 0.0199 0.0199i −58095643136.7658 8.0094

Table 3.3: Volumes of higher dimensional abelian varieties.

A dim Ω+ Ω−

79k2B 5 10 209i
83k2B 6 22 41

131k2B 10 51 615
11k4A 2 0.0815 0.0212
17k4B 3 0.0047 0.0007i
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Chapter 4

Component groups of optimal
quotients

Let A be an abelian variety over the rational numbers Q. The Birch and Swinnerton-
Dyer conjecture supplies a formula for the order of the Shafarevich-Tate group of A. A key
step in computing this order is to find each of the Tamagawa numbers cp of A. The Tama-
gawa numbers are defined as follows, where the definition of Néron model and component
group is given below.

Definition 4.1 (Tamagawa number). Let p be a prime, let A be a Néron model of A
over the p-adic integers Zp, and let ΦA,p be the component group of A at p. Then the
Tamagawa number cp of A is the order of the group ΦA,p(Fp) of Fp-rational points of
ΦA,p(Fp).

Remark 4.2. We warn the reader that the Tamagawa number is defined in a different way
in some other papers. The definitions are equivalent.

In this chapter we present a method for computing the Tamagawa numbers cp, up to
a power of 2, under the hypothesis that A has purely toric reduction at p. Such A are
plentiful among the modular abelian varieties; for example, if A is a new optimal quotient
of J0(N) and p exactly divides N , then A is purely toric at p.

In Sections 4.1–4.5 we state and prove an explicit formula involving component groups
of fairly general abelian varieties. Then in Section 4.6 we turn to quotients of modular
Jacobians J0(N). We give several tables and issue a conjecture and a question.

The results of this chapter were inspired by a letter that Ribet wrote to Mestre, in
which he treats the case when A is an elliptic curve.

4.1 Main results

4.1.1 Néron models and component groups

Let A be an abelian variety over a finite extension K of the p-adic numbers Qp. Let O
be the ring of integers of K, let m be its maximal ideal, and let k = O/m be the residue
class field.
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Definition 4.3 (Néron model). A Néron model of A is a smooth commutative group
scheme A over O such that A is its generic fiber and A satisfies the Néron mapping property:
the restriction map

HomO(S, A) −→ HomK(SK , A)

is bijective for all smooth schemes S over O.

The Néron mapping property implies that A is unique up to a unique isomorphism, so
we will refer without hesitation to “the” Néron model of A.

The closed fiber Ak of A is a group scheme over k, which need not be connected; denote
by A0

k the connected component containing the identity. There is an exact sequence

0 −→ A0
k −→ Ak −→ ΦA −→ 0,

where ΦA a finite étale group scheme over k. Equivalently, ΦA may be viewed as a finite
abelian group equipped with an action of Gal(k/k).

Definition 4.4 (Component group). The component group of an abelian variety A over
a local field K is the group scheme ΦA = Ak/A

0
k defined above.

4.1.2 Motivating problem

This chapter is motivated by the problem of computing the groups ΦA,p attached to
quotients A of Jacobians of modular curves X0(N). When A has semistable reduction,
Grothendieck and Mumford described the component group in terms of a monodromy pair-
ing on certain free abelian groups. When A = J = J0(N) is the Jacobian of X0(N), this
pairing can be explicitly computed, hence the component group ΦJ can also be computed;
this has been done in many cases in [40] and [23].

Suppose now that A = Af is an optimal quotient of J0(N) that is attached to a
newform f , so that the kernel of the map π : J → A is connected. There is a natural map
π∗ : ΦJ → ΦA. We wish to compute the image and the order of the cokernel of π∗.

4.1.3 The main result

We now state our main result more precisely, necessarily supressing some of the defi-
nitions of the terms used until later. Suppose π : J → A is an optimal quotient, with J a
Jacobian with semistable reduction and A having purely toric reduction. We express the
component group of A in terms of the monodromy pairing associated to J .

Let mA =
√

deg(θA), where θA : A∨ → A is induced by the canonical principal
polarization of J arising from the θ-divisor. Let XJ be the character group of the toric part
of the closed fiber of the Néron model of J . Let L be the saturation of the image of XA in
XJ . The monodromy pairing induces a map α : XJ → Hom(L,Z). Let ΦX be the cokernel
of α and mX = [α(XJ) : α(L)] be the order of the finite group α(XJ)/α(L). We obtain the
equality

#ΦA

mA
=

#ΦX

mX
.
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Using the snake lemma, one see that ΦX is isomorphic to the image of the natural map
ΦJ → ΦA, and the above formula implies that the cokernel of the map ΦJ → ΦA has order
mA/mX .

If the optimal quotient J → A arises from a modular form on Γ0(N), then the quantities
mA, mX and ΦX can be explicitly computed, hence we can compute #ΦA.

4.2 Optimal quotients of Jacobians

Let J be a Jacobian, and let θJ be the canonical principal polarization arising from the
θ-divisor. Recall that an optimal quotient of J is an abelian variety A and a surjective map
π : J → A whose kernel is an abelian subvariety B of J . Denote by J∨ and A∨ the abelian
varieties dual to J and A, respectively. Upon composing the dual of π with θ∨

J = θJ , we
obtain a map

A∨ π∨
−→ J∨ θJ−→ J.

Proposition 4.5. The map A∨ → J is injective.

Proof. Since θJ is an isomorphism it suffices to prove that π∨ is injective. Since the dual of
π∨ is (π∨)∨ = π and π is surjective, the map π∨ must have finite kernel. Thus A∨ → C =
im(π∨) is an isogeny. Let G denote the kernel of this isogeny, and dualize. By [50, §11] we
have the following two commutative diagrams:

G // A∨ // //

π∨
!!CC

CC
CC

CC
C

²²

J∨

dualize−−−−−→ A C∨oo G∨oo

J,

ϕ

OO

π

``AAAAAAAA

where G∨ is the Cartier dual of G. Since G∨ is finite, ker(ϕ) is of finite index in ker(π).
Since ker(π) is an abelian variety, as a group it is divisible. But a divisible group has
no nontrivial finite-index subgroups (divisibility is a property inherited by quotients, and
nonzero finite groups are not divisible). Thus ker(ϕ) = ker(π), so G∨ = 0. It follows that
G = 0.

Henceforth we will abuse notation and denote the injection A∨ → J by π∨. The kernel of
θA equals the intersection of A∨ and B = ker(π), as depicted in the following diagram:

A∨ ∩ B //

²²

B

²²

A∨ Â Ä π∨
//

θA $$HHHHHHHHH J

π

²²

A.

Since θA is a polarization, the degree #ker(θA) of θA is a perfect square (see [50,
Thm. 13.3]). Recall that the modular degree is the integer

mA =
√

#ker(θA).

For an algorithm to compute mA, see Section 3.9 and Corollary 4.23.
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4.3 The closed fiber of the Néron model

Let K be a finite extension of Qp with ring of integers O and residue class field k.
Let A be an abelian variety over K and denote its Néron model by A. Let ΦA be the group
of connected components of the closed fiber Ak. This group is a finite étale group scheme
over k; equivalently, it is a finite abelian group equipped with an action of Gal(k/k). There
is an exact sequence of group schemes

0 → A0
k → Ak → ΦA → 0.

The group scheme A0
k is an extension of an abelian variety B of some dimension a by a

group scheme C; we have a diagram

0
²²

T
²²

0 // C //

²²

A0
k

// B // 0

U
²²

0

with T a torus of dimension t and U a unipotent group of dimension u. The abelian
variety A is said to have purely toric reduction if t = dimA, and have semistable reduction
if u = 0.

Definition 4.6 (Character group of torus). The character group

XA = Homk(T/k,Gm/k)

is a free abelian group of rank t contravariantly associated to A.

As discussed in, e.g., [53], if A is semistable there is a monodromy pairing XA×XA∨ → Z
and an exact sequence

0 → XA∨ → Hom(XA,Z) → ΦA → 0.

4.4 Rigid uniformization

In this section we review the rigid analytic uniformization of a semistable abelian
variety over a finite extension K of the maximal unramified extension Qur

p of Qp. We use
this uniformization to prove that if A has purely toric reduction, and φ : A∨ → A is a
symmetric isogeny (as defined below), then

deg(φ) = (# coker(XA → XA∨))2.

We also prove some lemmas about character groups.
It is possible to prove the assertions we will need without recourse to rigid uniformiza-

tion, as Ahmed Abbes has pointed out to the author.
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4.4.1 Raynaud’s uniformization

Theorem 4.7 (Raynaud). If A is a semistable abelian variety, its universal covering (as
defined in [14]) is isomorphic to an extension G of an abelian variety B with good reduction
by a torus T . The covering map from G to A is a homomorphism, and its kernel is a twisted
free abelian group Γ of finite rank.

This may be summarized by the diagram

Γ

²²

T // G //

²²

B

A,

which we call the uniformization cross of A.

Remark 4.8. The group Γ can be identified with the character group XA∨ of the previous
and latter sections.

The uniformization cross of the dual abelian variety A∨ is

Γ∨

²²

T∨ // G∨ //

²²

B∨

A∨,

where Γ∨ = Hom(T,Gm), where T∨ = Hom(Γ,Gm), and the morphisms Γ∨ → G∨ and
T∨ → G∨ are the one-motif duals of the morphisms T → G and Γ → G, respectively. For
more details see, e.g., [14].

To avoid confusion when considering the uniformization of more than one abelian va-
riety, we will often denote the objects T , G, Γ, and B connected with A by TA, GA, ΓA,
and BA, respectively.

Example 4.9 (Tate curve). If E/Qp is an elliptic curve with split multiplicative reduction,
then the uniformization is E = Gm/qZ where q = q(j) is obtained by inverting the expres-
sion for j as a function of q(z) = e2πiz.

4.4.2 Some lemmas

Let π : J → A be an optimal quotient, assume that J has semistable reduction, and
that A has purely toric reduction.

Lemma 4.10. The map ΓJ → ΓA induced by π is surjective.
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Proof. Since GJ is simply connected, π induces a map GJ → TA and a map ΓJ → ΓA.
Because π is surjective and TA is a torus, the map GJ → TA is surjective. Upon applying
the snake lemma to the following diagram, we obtain a surjective map from B = ker(π) to
M = coker(ΓJ → ΓA):

ΓJ
//

²²

ΓA
//

²²

M //

²²

0

GJ
//

²²

TA

²²

// 0

B // J
π // A.

Since π : J → A is an optimal quotient, the kernel B is connected. Thus M must also be
connected. Since M is discrete it follows that M = 0.

Abelian varieties with purely toric reduction

Assume that A has purely toric reduction. Then B = 0, and the uniformization cross
is simply

Γ

²²

T

²²

A.

Definition 4.11 (Symmetric isogeny). A symmetric isogeny ϕ : A∨ → A is an isogeny
such that the map ϕ∨ : A∨ → (A∨)∨ = A is equal to ϕ.

Let ϕ : A∨ → A be a symmetric isogeny. Denote by ϕt : T∨ → T and ϕa : Γ∨ → Γ the
maps induced by ϕ.

Proposition 4.12. There is an exact sequence

0 → ker(ϕt) → ker(ϕ) → coker(ϕa) → 0,

and ker(ϕt) is the Cartier dual of coker(ϕa).

Proof. Since ϕ is an isogeny we obtain the following diagram:

0 //

²²

Γ∨ ϕa
//

²²

Γ //

²²

coker(ϕa)

²²

ker(ϕt) //

²²

T∨

²²

ϕt
// T //

²²

0

ker(ϕ) // A∨ ϕ
// A.
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The snake lemma then gives the claimed exact sequence.

For the second assertion, observe that if we take one-motif duals of every object in the
diagram

Γ∨ ϕa
//

²²

Γ

²²

// coker(ϕa)

ker(ϕt) // T∨ ϕt
// T

we obtain the following diagram:

T T∨ϕ∨
aoo coker(ϕa)

∨oo

ker(ϕt)
∨ Γoo

OO

Γ∨.
ϕ∨

t

oo

OO

Since ϕ is symmetric, ϕ∨
a = ϕt, so

ker(ϕt) = coker(ϕa)
∨.

Lemma 4.13. #ker(ϕ) = #coker(ϕa)
2

Proof. Use the exact sequence of Proposition 4.12 together with the observation that the
order of a finite group scheme equals the order of its Cartier dual.

4.5 The main theorem

Let π : J → A be an optimal quotient, with J a Jacobian having semistable reduction
and A an abelian variety having purely toric reduction. Let XA, XA∨ , and XJ denote the
character groups of the toric parts of the closed fibers of the abelian varieties A, A∨, and J ,
respectively.

4.5.1 Description of the component group in terms of the monodromy
pairing

Recall that there is a pairing XA × XA∨ → Z called the monodromy pairing. We have
an exact sequence

0 → XA∨ → Hom(XA,Z) → ΦA → 0.

If J is a Jacobian then J is canonically self-dual via the θ-polarization, so the monodromy
pairing on J can be viewed as a pairing XJ × XJ → Z, and there is an exact sequence

0 → XJ → Hom(XJ ,Z) → ΦJ → 0.
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Example 4.14 (Tate curve). Suppose E = Gm/qZ is a Tate curve over Qur
p . The mon-

odromy pairing on XE = qZ is

〈q, q〉 = ordp(q) = − ordp(j).

Thus ΦE is cyclic of order − ordp(j).

Proof of the main theorem

We now prove the main theorem. Let π : J → A be an optimal quotient, and let
θ : A∨ → A denote the induced polarization. Let π∗, π∗, θ∗, and θ∗ be the maps induced
on character groups by the various functorialities, as indicated in the following two key
diagrams:

A∨ Â Ä π∨
//

θ
ÃÃ

AA
AA

AA
AA

AA
A J

π

²²²²

A

XA
Â Ä π∗

//

θ∗

""EE
EE

EE
EE

EE
EE

XJ

π∗

²²²²

XA∨ .
θ∗

SS

The surjectivity of π∗ was proved in Lemma 4.10. The injectivity of π∗ follows because

θ∗π∗π∗ = θ∗θ∗ = deg(θ) 6= 0,

and multiplication by a nonzero integer on a free abelian group is injective.
Let

α : XJ → Hom(π∗XA,Z)

be the map defined by the monodromy pairing restricted to XJ × π∗XA.

Lemma 4.15. ker(π∗) = ker(α)

Proof. Suppose x ∈ ker(π∗), and let y = π∗z with z ∈ XA. Then

〈x, y〉 = 〈x, π∗z〉 = 〈π∗x, z〉 = 0,

so x ∈ ker(α). Next let x ∈ ker(α). Then for all z ∈ XA,

0 = 〈x, π∗z〉 = 〈π∗x, z〉,

so π∗x is in the kernel of the monodromy map

XA∨ → Hom(XA,Z).

Since XA∨ and Hom(XA,Z) are free of the same finite rank and the cokernel is torsion, the
monodromy map is injective. Thus π∗x = 0 and x ∈ ker(π∗).

Lemma 4.16. There is an exact sequence

XJ → Hom(π∗XA,Z) → ΦA → 0.
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Proof. Lemma 4.15 gives the following commutative diagram with exact rows

0 // XJ/ ker(α)

∼=
²²

// Hom(π∗XA,Z) //

∼=
²²

coker(α) //

²²

0

0 // XA∨ // Hom(XA,Z) // ΦA
// 0.

By Lemma 4.15, the first vertical map is an isomorphism. The second is an isomorphism
because it is induced by the isomorphism π∗ : XA → π∗XA. It follows that coker(α) ∼= ΦA,
as claimed.

Let L be the saturation of π∗XA in XJ ; thus π∗XA is a finite-index subgroup of L and
the quotient XJ/L is torsion free. For L of finite index in L, define the modular degree of L
to be

mL = [α(XJ) : α(L)],

and the component group of L to be

ΦL = coker(XJ → Hom(L,Z)).

When L = L and A is fixed, we often slightly abuse notation and write mX = mL and
ΦX = ΦL. We think of mX and ΦX as the character group “modular degree and component
group” of A.

Lemma 4.17. Choose a subgroup L of finite index in L. The rational number
#ΦL

mL
is

independent of the choice of L.

Proof. Suppose L′ is another finite index subgroup of L, and let n = [L : L′]. Here n is a
rational number, the lattice index of L′ in L. Since α is injective when restricted to L, it
follows that

mL′ = [α(XJ) : α(L′)] = [α(XJ) : α(L)] · [α(L) : α(L′)] = mL · n.

Similarly, #ΦL′ = #ΦL · n.

Recall that mA =
√

deg(θ) and

ΦA
∼= coker(XA∨ → Hom(XA,Z)),

where mA is the modular degree of A and ΦA is the component group of A.

Theorem 4.18. For any subgroup L of finite index in L, the following relation holds:

#ΦA

mA
=

#ΦL

mL
.
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Proof. By Lemma 4.17 we may assume that L = π∗XA. With this choice of L, Lemma 4.16
asserts that ΦL

∼= ΦA. By Lemma 4.15, properties of the index, and Lemma 4.13 we have

mL = [α(XJ) : α(L)]

= [π∗(XJ) : π∗(L)]

= [XA∨ : π∗(π∗XA)]

= [XA∨ : θ∗XA]

= #coker(θ∗)

=
√

deg(θ) = mA.

Proposition 4.19.
image(ΦJ → ΦA) ∼= ΦL.

Proof. Since π∗XA ⊂ L ⊂ XJ , an application of Lemma 4.16 gives the following commuta-
tive diagram with exact rows:

XJ
// Hom(XJ ,Z) //

²²

ΦJ
//

²²

0

XJ
// Hom(L,Z) //

²²

ΦL //

²²

0

XJ
// Hom(π∗XA,Z) // ΦA

// 0.

The map Hom(L,Z) → Hom(π∗XA,Z) is an isomorphism, so the map ΦL → ΦA is injective.
Thus

image(ΦJ → ΦA) ∼= image(ΦJ → ΦL).

The cokernel of Hom(XJ ,Z) → Hom(L,Z) surjects onto the cokernel of ΦJ → ΦL. Using
the exact sequence

0 → L → XJ → XJ/L → 0,

we find that
coker(Hom(XJ ,Z) → Hom(L,Z)) ⊂ Ext1(XJ/L,Z).

Because L is saturated, the quotient XJ/L is torsion free, so the indicated Ext1 group
vanishes. Thus the map ΦJ → ΦL is surjective, from which the proposition follows.

The following corollary follows from Theorem 4.18 and Proposition 4.19.

Corollary 4.20.

#coker(XJ → XA) =
mA

mL
.

Remark 4.21. A non-obvious consequence of this corollary is that

mL | mA.
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4.6 Optimal quotients of J0(N)

We now summarize some facts about J0(N) that will be used in our numerical compu-
tations. Some of these facts were discussed in greater generality in the previous chapters of
this thesis.

4.6.1 Modular curves and semistability

Let X0(N) be the modular curve associated to the subgroup Γ0(N) of SL2(Z) that con-
sists of those matrices which are upper triangular modulo N . Initially, X0(N) is constructed
as a Riemann surface as the quotient

Γ0(N)\({z : z ∈ C, Im(z) > 0} ∪ P1(Q)).

With some work, we find that X0(N) has a canonical structure of algebraic curve over Q.

Suppose that p is a prime divisor of N such that N/p is coprime to p. We write
p || N . In this situation, it is well-known that the Jacobian J0(N) of X0(N) has semistable
reduction at p.

4.6.2 Newforms and optimal quotients

The Hecke algebra

T = Z[. . . Tn . . . ] ⊂ End(J0(N))

is a commutative ring of endomorphisms of J0(N) of Z-rank equal to the dimension J0(N).
The character group XJ0(N) of J0(N) at p is equipped with a functorial action of T. The
Hecke algebra T also acts on the complex vector space S = S2(Γ0(N),C) of cusp forms.

A newform f is an eigenform normalized so that the coefficient of q in the Fourier
expansion of f at the cusp ∞ is 1, and such that f is not a modular form of any level
N ′ | N , with N ′ a proper divisor of N .

Let f be a newform, and associate to f the ideal If of the Hecke algebra T of elements
which annihilate f . Then Of = T/If is an order in the ring of integers of the totally real
number field Kf obtained by adjoining the Fourier coefficients of f to Q. The quotient

Af = J0(N)/IfJ0(N)

is an optimal quotient of J0(N) of dimension equal to [Kf : Q]. It is purely toric at p, since
p || N .

4.6.3 Homology and the modular degree

Let H = H1(X0(N),Z) be the integral homology of the complex algebraic curve X0(N).
Integration defines a T-equivariant nondegenerate pairing S×H → C. This pairing induces
a map α : H → HomC(S,C).
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Theorem 4.22. We have the following commutative diagram of T-modules:

H[If ]
Â Ä //

Ä _

²²

H // //
Ä _

²²

α(H)

²²

Ä _

²²

HomC(S,C)[If ]
Â Ä //

²²²²

HomC(S,C) // //

²²²²

HomC(S[If ],C)

²²²²

A∨
f (C) Â Ä //

θA

55
J(C) // // Af (C)

Proof. This can be deduced from [61]. See also Section 2.7.

Corollary 4.23. m2
A = [α(H) : α(H[If ])].

Proof. Recall that mA is by definition equal to
√

deg(θA). The kernel of an isogeny between
complex tori is isomorphic to the cokernel of the induced map on lattices. The corollary now
follows from the diagram of Theorem 4.22, which indicates that the index [α(H) : α(H[If ])]
is the cokernel of the map H[If ] → α(H).

For more details, see Section 3.9.

4.6.4 Rational points of the component group (Tamagawa numbers)

Let Frobp : XJ → XJ denote the map induced by the Frobenius automorphism. We
have Frobp = −Wp, where Wp is the map induced by the Atkin-Lehner involution on J0(p).
Let f be a newform, A = Af the corresponding optimal quotient, and wp the sign of the
eigenvalue of Wp on f .

Proposition 4.24.

ΦA(Fp) =

{
ΦA(Fp) if wp = −1,

ΦA(Fp)[2] if wp = 1.

Proof. If wp = −1, then Frobp = 1 and the Gal(Fp/Fp)-action of ΦA(Fp) is trivial. In this
case Φ(Fp) = Φ(Fp). Next suppose wp = 1. Recall that we have an exact sequence

0 → XA∨ → Hom(XA,Z) → ΦA → 0.

Since Wp acts as +1 on f , it also acts as +1 on each of the four modules A, XA, Hom(XA,Z),
and ΦA. Thus Frobp = −Wp acts as −1 on ΦA. Since the subgroup of 2-torsion elements
of a finite abelian group equals the subgroup of elements fixed under −1, it follows that
ΦA(Fp) = ΦA(Fp)[2].

WARNING: When we extend this result to the whole of J0(N), it is necessary to be
exceedingly careful! The action of Frobp = Tp need not be by ±1, even though it must be
by an involution of order 2. For example, the component group of J0(65) at 5 is cyclic of
order 42. The action of Frob5 is by multiplication by −13. Note that (−13)2 = 1 (mod 42).
The fixed points of multiplication by −13 is the order 14 subgroup of Z/42Z.
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4.7 Computations

Using the algorithms of Chapter 3, we can enumerate the optimal quotients Af of
J0(N) and compute the modular degree mA. The method of graphs (see [47]) and quater-
nion algebras (see [32]) can be used to compute X = XJ0(N) with its T-action and the
monodromy pairing. We can then compute the following three modules: the saturated
submodule L =

⋂
t∈If

ker(t) of X, the character group modular degree mX = mL, and
ΦX = ΦL. By Theorem 4.18 we obtain

#ΦA = #ΦX · mA

mX
.

Using this method, we have computed #ΦA in a number of cases. We give tables that
report on some of these computations in Secton 4.7.2. In the next section we discuss a
conjecture and a question, which were both suggested by our numerical computations.

4.7.1 Conjectures and questions

Suppose that N = pM with (p, M) = 1. Let

Hnew = ker
(
H1(X0(N),Z) −→ H1(X0(M),Z) ⊕ H1(X0(M),Z)

)
,

where the map is induced by the two natural degeneracy maps X0(N) → X0(M).

The Hecke algebra T acts on Hnew, and also on the submodule Hnew[If ] of those
elements that are annihilated by If . Integration defines a map α : Hnew → Hom(S[If ],C).
Define the p-new homology modular degree mH by

m2
H = [α(Hnew) : α(Hnew[If ])].

We expect that there is a very close relationship between mX and mH .

Question 4.25. Is mX equal to mH?

The following conjecture offers a refinement of some of the results of [40].

Conjecture 4.26 (Refined Eisenstein conjecture). Let p be a prime and let f1, . . . , fn

be a set of representatives for the Galois-conjugacy classes of newforms in S2(Γ0(p)). Let
A1, . . . , An be the optimal quotients associated to f1, . . . , fn, respectively. Then for each i,
i = 1, . . . , n, we have

#Ai(Q)tor = #ΦAi(Fp) = #ΦAi(Fp).

Furthermore,

#ΦJ0(p)(Fp) =
d∏

i=1

#ΦAi(Fp).

We have verified Conjecture 4.26 for all p ≤ 757, and, up to a power of 2, for all
p < 2000.
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Remark 4.27. It is tempting to guess that, e.g., the natural map

ΦJ0(113)(Fp) →
4∏

i=1

ΦAi(Fp)

is an isomorphism. Two of the ΦAi(Fp) have order 2, so the product
∏

ΦAi(Fp) can not be
a cyclic group. However, the groups ΦJ0(p)(Fp) are known to be cyclic for all primes p.

4.7.2 Tables

We have computed component groups of many optimal quotients Af of J0(N). In
this section we provide tables, which hint at the data we have gathered. Our notation for
optimal quotients is described in Section 1.3.1. See also Table 1.6.

Table 4.1: Component groups at low level

Table 4.1 gives the component groups of the quotients Af of J0(N) for N ≤ 106. The
column labeled d contains the dimensions of the Af , and the column labeled #ΦA,p contains
a list of the orders of the component groups of Af , one for each divisor p of N , ordered by
increasing p. An entry of “?” indicates that p2 | N , so our algorithm does not apply. A
component group order is starred if the Gal(Fp/Fp)-action is nontrivial.

Table 4.2–4.3: Big component groups

Using the algorithms described in Section 3.10, we computed the rational numbers
L(A, 1)/ΩA for every optimal quotient A that is attached to a newform of level ≤ 1500.
There are exactly 5 optimal quotients A such that the numerator of L(A, 1)/ΩA is nonzero
and divisible by a prime > 109. The Birch and Swinnerton-Dyer conjecture predicts that
these large prime divisors must divide either #ΦA or the Shafarevich-Tate group of A. This
is the case, as Table 4.3 shows.

Table 4.4: Quotients of J0(N)

Table 4.4 contains all of the invariants involved in the computation of component groups
for each of the newform optimal quotients of levels 65, 66, 68, and 69.

Table 4.5: Quotients of J0(p)
−

We computed the quantities mA, mX and ΦX for each abelian variety A = Af associ-
ated to a newform of prime level p with p ≤ 757. The results are as follows:

1. In all cases mA = mX , so the map ΦJ → ΦA is surjective.

2. ΦA = 1 whenever the sign of the Atkin-Lehner involution wp on A is 1.

3.
∏

#ΦA(Fp) = #ΦJ(Fp)

Table 4.5 lists those A of level ≤ 631 for which wp = −1, along with the order of the
corresponding component group.
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Table 4.1: Component groups at low level

A d #ΦA,p

11A 1 5
14A 1 6∗, 3
15A 1 4∗, 4
17A 1 4

19A 1 3
20A 1 ?, 2∗

21A 1 4, 2∗

23A 2 11

24A 1 ?, 2∗

26A 1 3∗, 3
26B 1 7, 1∗

27A 1 ?

29A 2 7
30A 1 4∗, 3, 1∗

31A 2 5
32A 1 ?

33A 1 6∗, 2
34A 1 6, 1∗

35A 1 3∗, 3
35B 2 8, 4∗

36A 1 ?, ?
37A 1 1∗

37B 1 3
38A 1 9∗, 3

38B 1 5, 1∗

39A 1 2∗, 2
39B 2 14, 2∗

40A 1 ?, 2

41A 3 10
42A 1 8, 2∗, 1∗

43A 1 1∗

43B 2 7

44A 1 ?, 1∗

45A 1 ?, 1∗

46A 1 10∗, 1
47A 4 23

48A 1 ?, 2
49A 1 ?
50A 1 1∗, ?
50B 1 5, ?

A d #ΦA,p

51A 1 3, 1∗

51B 2 16∗, 4
52A 1 ?, 2∗

53A 1 1∗

53A 1 1∗

53B 3 13
54A 1 3∗, ?
54B 1 3, ?

55A 1 2, 2∗

55B 2 14∗, 2
56A 1 ?, 1
56B 1 ?, 1∗

57A 1 2∗, 1∗

57B 1 2, 2∗

57C 1 10, 1∗

58A 1 2∗, 1∗

58B 1 10, 1∗

59A 5 29
61A 1 1∗

61B 3 5

62A 1 4, 1∗

62B 2 66∗, 3
63A 1 ?, 1∗

63B 2 ?, 3

64A 1 ?
65A 1 1∗, 1∗

65B 2 3∗, 3
65C 2 7, 1∗

66A 1 2∗, 3, 1∗

66B 1 4, 1∗, 1∗

66C 1 10, 5, 1
67A 1 1

67B 2 1∗

67C 2 11
68A 2 ?, 2∗

69A 1 2, 1∗

69B 2 22∗, 2
70A 1 4, 2∗, 1∗

71A 3 5
71B 3 7

A d #ΦA,p

72A 1 ?, ?
73A 1 2
73B 2 1∗

73C 2 3

74A 2 9∗, 3
74B 2 95, 1∗

75A 1 1∗, ?
75B 1 1, ?

75C 1 5, ?
76A 1 ?, 1∗

77A 1 2∗, 1∗

77B 1 3∗, 2

77C 1 6, 3∗

77D 2 2, 2∗

78A 1 16∗, 5∗, 1
79A 1 1∗

79B 5 13
80A 1 ?, 2
80B 1 ?, 2∗

81A 2 ?

82A 1 2∗, 1∗

82B 2 28, 1∗

83A 1 1∗

83B 6 41

84A 1 ?, 1∗, 2∗

84B 1 ?, 3, 2
85A 1 2∗, 1
85B 2 2∗, 1∗

85C 2 6, 1∗

86A 2 21∗, 3
86B 2 55, 1∗

87A 2 5, 1∗

87B 3 92∗, 4
88A 1 ?, 1∗

88B 2 ?, 2∗

89A 1 1∗

89B 1 2
89C 5 11
90A 1 2∗, ?, 3
90B 1 6, ?, 1∗

A d #ΦA,p

90C 1 4, ?, 1
91A 1 1∗, 1∗

91B 1 1, 1
91C 2 7, 1∗

91D 3 4∗, 8
92A 1 ?, 1∗

92B 1 ?, 1
93A 2 4∗, 1∗

93B 3 64, 2∗

94A 1 2, 1∗

94B 2 94∗, 1
95A 3 10, 2∗

95B 4 54∗, 6
96A 1 ?, 2
96B 1 ?, 2∗

97A 3 1∗

97B 4 8
98A 1 2∗, ?
98B 2 14, ?
99A 1 ?, 1∗

99B 1 ?, 1
99C 1 ?, 1∗

99D 1 ?, 1∗

100A 1 ?, ?

101A 1 1∗

101B 7 25
102A 1 2∗, 2∗, 1∗

102B 1 6∗, 6, 1∗

102C 1 8, 4, 1
103A 2 1∗

103B 6 17
104A 1 ?, 1∗

104B 2 ?, 2
105A 1 1, 1, 1
105B 2 10∗, 2∗, 2
106A 1 4∗, 1∗

106B 1 5∗, 1
106C 1 24, 1∗

106D 1 3, 1∗
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Table 4.2: Big L(A, 1)/ΩA

A dim N L(A, 1)/ΩA · Manin constant

1154E 20 2 · 577 2? · 85495047371/172

1238G 19 2 · 619 2? · 7553329019/5 · 31
1322E 21 2 · 661 2? · 57851840099/331
1382D 20 2 · 691 2? · 37 · 1864449649/173
1478J 20 2 · 739 2? · 7 · 29 · 1183045463/5 · 37

Table 4.3: Big component groups

A p w #ΦX mX #ΦA(Fp)

1154E 2 − 172 224 2? · 172 · 85495047371
577 + 1 226 · 85495047371 2?

1238G 2 − 5 · 31 226 2? · 5 · 31 · 7553329019
619 + 1 228 · 7553329019 2?

1322E 2 − 331 228 2? · 331 · 57851840099
661 + 1 232 · 57851840099 2?

1382D 2 − 173 229 2? · 37 · 173 · 1864449649
691 + 1 231 · 37 · 1864449649 2?

1478J 2 − 5 · 37 231 2? · 5 · 7 · 29 · 37 · 1183045463
739 + 1 233 · 7 · 29 · 1183045463 2?
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Table 4.4: Component groups of quotients of J0(N)

A dim p wp #ΦX mX mA #ΦA

65A 1 5 + 1 2 2 1
13 + 1 2 1

65B 2 5 + 3 22 22 3
13 − 3 22 3

65C 2 5 − 7 22 22 7
13 + 1 22 1

66A 1 2 + 1 2 22 2
3 − 3 22 3
11 + 1 22 1

66B 1 2 − 2 2 22 22

3 + 1 22 1
11 + 1 22 1

66C 1 2 − 1 2 22 · 5 2 · 5
3 − 1 22 5
11 − 1 22 · 5 1

68A 2 17 + 2 2 · 3 2 · 3 2

69A 1 3 − 2 2 2 2
23 + 1 2 1

69B 2 3 + 2 2 2 · 11 2 · 11
23 − 2 2 · 11 2
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Table 4.5: Component groups of quotients of J0(p)
−

A d #ΦA

11A 1 5
17A 1 22

19A 1 3
23A 2 11

29A 2 7
31A 2 5
37B 1 3
41A 3 2 · 5
43B 2 7
47A 4 23
53B 3 13
59A 5 29

61B 3 5
67A 1 1
67C 2 11
71A 3 5

71B 3 7
73A 1 2
73C 2 3
79B 5 13

83B 6 41
89B 1 2
89C 5 11
97B 4 23

101B 7 52

103B 6 17
107B 7 53
109A 1 1

109C 4 32

113A 1 2
113B 2 2
113D 3 7

127B 7 3 · 7
131B 10 5 · 13
137B 7 2 · 17
139A 1 1

139C 7 23
149B 9 37
151B 3 1
151C 6 52

A d #ΦA

157B 7 13
163C 7 33

167B 12 83
173B 10 43

179A 1 1
179C 11 89
181B 9 3 · 5
191B 14 5 · 19
193C 8 24

197C 10 72

199A 2 1
199C 10 3 · 11
211A 2 5
211D 9 7
223C 12 37
227B 2 1

227C 2 1
227E 10 113
229C 11 19
233A 1 2

233C 11 29
239B 17 7 · 17
241B 12 22 · 5
251B 17 53

257B 14 26

263B 17 131
269C 16 67
271B 16 32 · 5
277B 3 1
277D 9 23
281B 16 2 · 5 · 7
283B 14 47

293B 16 73
307A 1 1
307B 1 1
307C 1 1

307D 1 1
307E 2 3
307F 9 17
311B 22 5 · 31

A d #ΦA

313A 2 1
313C 12 2 · 13
317B 15 79
331D 16 5 · 11
337B 15 22 · 7
347D 19 173
349B 17 29
353A 1 2

353B 3 2
353D 14 2 · 11
359D 24 179
367B 19 61

373C 17 31
379B 18 32 · 7
383C 24 191
389A 1 1

389E 20 97
397B 2 1
397C 5 11
397D 10 3

401B 21 22 · 52

409B 20 2 · 17
419B 26 11 · 19
421B 19 5 · 7
431B 1 1
431D 3 1
431F 24 5 · 43
433A 1 1

433B 3 1
433D 16 22 · 32

439C 25 73
443C 1 1

443E 22 13 · 17
449B 23 24 · 7
457C 20 2 · 19
461D 26 5 · 23
463B 22 7 · 11
467C 26 233
479B 32 239
487A 2 1

A d #ΦA

487B 2 3
487C 3 1
487D 16 33

491C 29 5 · 72

499C 23 83
503B 1 1
503C 1 1
503D 3 1

503F 26 251
509B 28 127
521B 29 2 · 5 · 13
523C 26 3 · 29
541B 24 32 · 5
547C 25 7 · 13
557B 1 1
557D 26 139

563A 1 1
563E 31 281
569B 31 2 · 71
571A 1 1

571B 1 1
571C 2 1
571D 2 1
571F 4 1

571I 18 5 · 19
577A 2 3
577B 2 1
577C 3 1

577D 18 24

587C 31 293
593B 1 2
593C 2 1

593E 27 2 · 37
599C 37 13 · 23
601B 29 2 · 52

607D 31 101

613C 27 3 · 17
617B 28 2 · 7 · 11
619B 30 103
631B 32 3 · 5 · 7
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Complex torus, 32, 59

dual of, 33
in weight two, 34

Component group, 70, 71, 71
and character group, 78
archimedean, 66
geometric, 7
rational points of, 70
table of, 84–87

Conductor of Dirichlet character, 39
Congruences

and BSD conjecture, 2
and lower bounds on X, 6
between q-expansions, 47
between elliptic curves, 6



94 INDEX

computed using homology, 47
computing, 45

Conjecture
about modular degree, 82
Agashe and Stein, 58
Birch and Swinnerton-Dyer, see BSD

conjecture
Bloch and Kato, 4, 33
Kani, 6
refined Eisenstein, 82
Shimura and Taniyama, 2
that Manin constant equals 1, 58

Continued fractions, 28
Coset representatives, 26
Cremona, 19, 29, 30, 40, 53
Cusp forms, 21

antiholomorphic, 21
Cuspidal modular symbols, 21

and Manin symbols, 30
Cuspidal points, 49
Cusps

and boundary map, 30
criterion for vanishing, 31

Degeneracy maps, 24, 41
compatibility, 27

Dimension of Sk(N, ε), 40
Dirichlet character, 20, 24, 32, 36–38

and cusps, 31
conductor of, 39

Eichler-Shimura relation, 50
Eigenforms

computing, 44
sorting and labeling, 44

Euler system, 4, 5
Explanatory factor, 10
Extended modular symbols, 59, 60

Fourier coefficients, 23, 47

Genus-two curves, 67
Grothendieck, 71

Hecke, 52
Hecke algebra, 3, 22, 33, 51, 57, 65, 80, 82

and congruences, 47
and cuspidal subgroup, 49
and integration pairing, 33
and rational period mapping, 47
bounds torsion, 50
computation of, 37
generators as module, 37
generators as ring, 37

Hecke operators, 1, 22, 32, 37, 41, 44, 48,
54, 56

and degeneracy maps, 41
computation on subspace of dual, 42
on Manin symbols, 29
respect pairing, 22

Heegner points, 5
Heilbronn matrices, 44

Index of lattices, 54
Integration pairing, 21, 59, 80

and complex torus, 33
and extended modular symbols, 59

Invisible elements of X, 6, 10

Jacobian, 2, 6, 72
is principally polarized, 76
of X0(N), 70, 71, 80
of genus-two curve, 67
semistable, 71, 76
visibility in, 6

Kani, 6

Lattice, 54
Lattice index, 3, 54
Level of modular symbols, 20
Local-to-global principle, 3
Logan, 13

Manin, 35, 36, 49, 53, 61
comment on BSD, 56
trick of, 28

Manin constant, 3, 57, 58, 67
conjecture about, 58

Manin symbols, 27, 27, 28, 30, 36, 42, 44
and boundary space, 30
and cuspidal subspace, 30



INDEX 95

and Hecke operators, 29
and Manin’s trick, 27
conversion to modular symbols, 28

Manin’s trick, 27, 28
Mazur, 2–5, 13, 52, 57
Merel, 4, 19, 22, 29, 30, 52
Mestre, 14, 70
Method of graphs, 82
Minus volume, 53, 65, 68
Minus-one quotient, 23, 32
Modular curve, 80
Modular degree, 50, 72

and character group, 78
Modular forms, 23, 27, 33, 34, 62

and Atkin-Lehner involution, 24
and BSD, 2
associated complex torus, 32
associated subtorus, 33
congruences between, 6
duality with modular symbols, 21

Modular map, 50
Modular symbols, 3, 19, 20, 28, 40, 59, 62

computing, 35
conversion to Manin symbols, 28
duality with modular forms, 21
finite presentation of, 27
minus-one quotient of, 23
new and old subspace of, 25
plus-one quotient of, 23
relations satisfied by, 20

Monodromy pairing, 71, 76, 77, 82
Motifs, 4, 33
Mumford, 71
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We give eight new examples of icosahedral Galois represen-
tations that satisfy Artin’s conjecture on holomorphicity of
their L-function. We give in detail one example of an icosahe-
dral representation of conductor 1376 = 25 · 43 that satisfies
Artin’s conjecture. We briefly explain the computations be-
hind seven additional examples of conductors 2416 = 24 · 151,
3184 = 24 · 199, 3556 = 22 · 7 · 127, 3756 = 22 · 3 · 313,
4108 = 22 · 13 · 79, 4288 = 26 · 67, and 5373 = 33 · 199. We
also generalize a result of Sturm on computing congruences
between eigenforms.

Introduction.

Consider a continuous irreducible Galois representation

ρ : Gal(Q/Q)→ GLn(C)

with n > 1. Inspired by his reciprocity law, Artin conjectured in [1] that
L(ρ, s) has an analytic continuation to the whole complex plane. Many of
the known cases of this conjecture were obtained by proving the apparently
stronger assertion that ρ is automorphic, in the sense that the L-function of ρ
is equal to the L-function of a certain automorphic representation (whose
L-function is known to have analytic continuation). In the special case
where n = 2 and ρ is in addition assumed to be odd, the automorphic
representation in question should be the one associated to a classical weight 1
modular eigenform, and in fact there is conjectured to be a bijection between
such ρ and the set of all weight 1 cuspidal newforms, which should preserve
L-functions. It is this bijection that we are concerned with in this paper, so
assume for the rest of the paper that n = 2 and ρ is odd.
In this special case, the construction of [7] shows how to construct a

continuous irreducible odd 2-dimensional representation from a weight 1
newform, and the problem is to go the other way. Say that a representation
is modular if it arises in this way.
If the image of ρ is solvable, then ρ is known to be modular [11, 18];

if the image is not solvable, then Im(ρ) in PGL2(C) is isomorphic to the
alternating group A5, and the modularity of ρ is, in general, unknown. We

265



266 K. BUZZARD AND W.A. STEIN

call such a 2-dimensional representation an “icosahedral representation”.
The published literature contains only eight examples (up to twist) of odd
icosahedral Galois representations that are known to satisfy Artin’s conjec-
ture: One of conductor 800 = 25 · 52 (see [3]), and seven of conductors:
2083, 22 · 487, 22 · 751, 22 · 887, 22 · 919, 25 · 73, and 25 · 193 (see [8]).
After the first draft of this paper was written, the preprint [4] appeared,

which contains a general theorem that yields infinitely many (up to twist)
modular icosahedral representations. However, we feel that our work, al-
though much less powerful, is still of some worth, because it gives an effec-
tive computational approach to proving that certain mod 5 representations
are modular, without computing any spaces of weight 1 forms or using ef-
fective versions of the Chebotarëv density theorem. We also note that the
main theorem of [4] does not apply to any of the examples considered in the
present paper. Very recently, the preprint [17] appeared, which gives new
local conditions under which an icosahedral representation can be proved to
be modular. In particular, [17] also proves that the first three examples in
the present paper, of conductors 1376, 2416, 3184, are modular; these corre-
spond to the first, third, and fourth equations at the end of [17]. However,
[17] does not apply to our remaining five examples. Finally, we note that
this paper also contains a result (Corollary 1.7) generalizing the main results
of [16], which makes explicit computations with mod p modular forms much
more practical.
Let ρ be a continuous odd icosahedral representation. We briefly sum-

marise our approach for verifying modularity of ρ. As all the representations
we consider are unramified at 5, one can use the main theorem of [5] to re-
duce the problem to showing that the mod 5 reduction of ρ is modular. We
do this by using a computer to find a candidate mod 5 modular form at
weight 5 and then, using the table of icosahedral extensions of Q in [8] and
what we know about the 5-adic representation attached to our candidate
form, we deduce that the mod 5 representation attached to our candidate
form must be the reduction of ρ. In particular, this paper gives a computa-
tional method for checking the modularity of certain mod 5 representations
whose conductors are not too large.
We now explain something about a problematic point in this approach,

which is to verify that a given modular form which has been obtained by a
computation actually gives rise to an explicit mod 5 representation which
has been given by another computation. In each of our examples it is easy
to compute a few Hecke operators and be morally convinced that this is the
case; it is far more difficult to prove this. Effective variants of the Chebo-
tarëv density theorem require that we check vastly more traces of Frobenius
than is practical. Our approach was as follows. Let f be one of the forms
that we computed. We firstly used the compatibility of the Local and Global
Langlands correspondences for GL2 and some twisting tricks to deduce that
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the kernel of the projective mod 5 representation associated to f must cor-
respond to an A5-extension of Q. We then used the theory of companion
forms and a careful local analysis of the representations associated to the
forms to deduce strong local results about these A5-extensions. Finally we
used Table 2 of [8] to prove that in each case the A5-extension was precisely
the one we wanted it to be.
We carried out this program for icosahedral representations of the fol-

lowing conductors: 1376 = 25 · 43, 2416 = 24 · 151, 3184 = 24 · 199,
3556 = 22 · 7 · 127, 3756 = 22 · 3 · 313, 4108 = 22 · 13 · 79, 4288 = 26 · 67,
and 5373 = 33 · 199.
This paper is divided into three sections. In Section 1, we give in detail

our proof that the icosahedral representation of minimal conductor 1376
satisfies Artin’s conjecture. The subsections of Section 1 follow the plan
outlined above. Section 2 summarizes the data necessary to deduce Artin’s
conjecture for all eight of our examples. Finally, Section 3 contains a brief
review of modular symbols, and contains some tables of running times.

1. Modularity of an icosahedral representation of
conductor 1376 = 25 · 43.

In this section we prove the following theorem.

Theorem 1.1. The icosahedral representations whose corresponding icosa-
hedral extension is the splitting field of x5 + 2x4 + 6x3 + 8x2 + 10x+ 8 are
modular.

LetK be the splitting field of h = x5+2x4+6x3+8x2+10x+8. The Galois
group of K is A5, so we obtain a homomorphism GQ → A5 ⊂ PGL2(C);
let ρ : GQ → GL2(C) be a minimal lift, minimal in the sense that the
Artin conductor of ρ is minimal. By Table A5 of [3], the conductor of ρ is
N = 1376 = 25 · 43. Since h ≡ (x − 1)(x2 − x + 1)(x2 − x + 2) (mod 5),
and disc(h) is coprime to 5, any Frobenius element at 5 in Gal(K/Q) has
order 2.
We use the notation of Tables 3.1 and 3.2 of [3, p. 46], which gives a

complete classification of the way that ramified primes can behave in such
representations. In our case the ramified primes are 2 and 43. From Table
3.2 of [3] we see that the type of ρ at 2 is 17 and the type at 43 is 2. The
level N Dirichlet character ε̃ = det(ρ) factors as ε̃ = ε̃2 · ε̃43 where ε̃2 is a
character of conductor dividing 25 and ε̃43 is a character of conductor 43.
We can work out these characters explicitly as we know the type of ρ at 2
and 43—indeed, there is a character associated to each type in Buhler’s
table, which unfortunately is not tabulated. An easy local computation
shows that ε̃43 has order 3, and fortunately Buhler’s level 800 example also
was of type 17 at 2 (see the first line of [3, Table 3.2]), hence by [3, p. 80]
ε̃2 is the unique character of conductor 4 and order 2. We think of these
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characters now has having values in Q(ζ3) ⊆ Q, where ζ3 is a primitive cube
root of unity.
If ρ is modular, then there is a weight 1 newform f? ∈ S1(N, ε̃;Q) that

gives rise to ρ. Suppose for the moment that ρ is modular, so that f?

exists. The Eisenstein series E4 of level 1 and weight 4 is congruent to 1
modulo 5, so E4 · f? ∈ S5(N, ε̃;Q) reduces modulo a prime above 5 to a
form which is an eigenform for all Hecke operators Tq for q �= 5 prime,
with the same eigenvalues mod 5 as f?, and hence is a mod 5 weight 5
eigenform giving rise to the mod 5 reduction of ρ. Using a computer, we
can search for such a mod 5 eigenform. In practice one computes a Z[ζ3]-
lattice in S5(N, ε̃;Q(ζ3)) and then reduces the lattice modulo 5; we refer
to the resulting quotient space as S5(N, ε;F25), abusing notation slightly,
where ε denotes the reduction of ε̃. (Similarly we write ε2 and ε43 to be the
reductions of ε̃2 and ε̃43.) We search for an eigenform f in this mod 5 space
of modular forms, whose existence is assured if we believe Artin’s conjecture.
Instead of multiplying f? by E4, we could have multiplied it by an ap-

propriate Eisenstein series of weight 1 and level 5. We used E4 because the
dimension of S5(N, ε;F5) is 696 whereas the dimension of the relevant space
S2(5 · N, ε43) of weight 2 cusp forms is 1040.

1.1. Searching for the newform f . Using modular symbols we compute
the space S5(1376, ε;F25). By computing the kernels of various Hecke oper-
ators on this space, we find f . In the following computations, we represent
nonzero elements of F25 as powers of a generator α of F

∗
25, which satisfies

α2 + 4α+ 2 = 0.

If 2 is the least common multiple of the degrees of the factors of the
polynomial h modulo an unramified prime p, then Frobp ∈ Gal(K/Q) has
order 2, hence trace 0. The first three such p are 19, 31, 97. We computed the
mod 5 reduction S5(1376, ε;F25) = S5(1376, ε;F25)

+ of the Z5[ζ3]-lattice of
modular symbols of level 1376 and character ε, where complex conjugation
acts as +1. The intersection V of the kernels of T19, T31, and T97 inside
S5(1376, ε;F25)

+ has dimension 8, and no doubt all the eigenforms in this
space give rise to ρ or one of its twists. One of the eigenvalues of T3 on this
space is α16, and the kernel V1 of T3 − α16 is 2-dimensional over F25. The
Hecke operator T5 acted as a diagonalizable matrix on V1, with eigenvalues
α10 and α22, so the corresponding two systems of eigenvalues must corre-
spond to mod 5 modular eigenforms, and furthermore we must have found
all mod 5 modular eigenforms

∑
anq

n of this level, weight and character,
such that a19 = a31 = a97 = 0 and a3 = α16.

Remark 1.2. The careful reader might wonder how we know that the sys-
tems of mod 5 eigenvalues really do correspond to mod 5 modular forms, and
not to perhaps some strange mod 5 torsion in the space of modular symbols.
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Table 1. Eigenvalues of f .

2 0
3 α16

5 α22

7 α14

11 4
13 α14

17 α14

19 0
23 α16

29 α8

31 0
37 α10

41 1
43 α10

47 1
53 α22

59 4
61 α14

67 α4

71 α20

73 α2

79 α20

83 α4

89 α10

97 0
101 α8

103 α14

107 0
109 α10

113 2
127 0
131 2

137 0
139 α22

149 α4

151 1
157 α14

163 0
167 α22

173 4
179 α2

181 α14

191 α10

193 4
197 0
199 3
211 0
223 0

227 α10

229 0
233 α14

239 0
241 α2

251 α2

257 3
263 α16

269 2
271 α8

277 0
281 α16

283 0
293 3
307 α4

311 α22

313 0
317 0
331 α14

337 0
347 α16

349 α4

353 0
359 0
367 α22

373 0
379 3
383 3
389 1
397 α16

401 0
409 2

419 3
421 α20

431 4
433 α4

439 α20

443 0
449 0
457 0
461 0
463 α10

467 0
479 0
487 α8

491 α2

499 α20

503 α2

509 α8

521 α10

523 α14

541 α20

547 α22

557 3
563 1
569 α16

571 α22

577 α14

587 α20

593 0
599 α22

601 0
607 α16

613 2

However, we eliminated this possibility by computing the dimension of the
full space of mod 5 modular symbols where complex conjugation acts as +1,
and checking that it equals 696, the dimension of S5(1376, ε̃,C), which we
computed using the formula in [6].

Let f be the eigenform in V1 that satisfies a5 = α22; the q-expansion of f
begins

f = q + α16q3 + α22q5 + α14q7 + α14q9 + 4q11 + · · · .
Further eigenvalues are given in Table 1. The primes p in the table such
that ap = 0 are exactly those predicted by considering the splitting behavior
of h. This is strong evidence that ρ is modular, and also that our modular
symbols algorithms have been correctly implemented.

1.2. Twisting into GL(2,F5). Although there is a representation ρf :
GQ → GL(2,F25) attached to the weight 5 mod 5 eigenform f , it is dif-
ficult to say anything about its image without further work. We use a trick
to show that the image of ρf is small. Firstly, for a character χ : GQ → F5,

let χ̃ denote its Teichmüller lift to Q5. Consider the Z-algebra of Hecke
operators acting on S5(N, ε̃;Q5). By choosing a minimal prime under the
maximal ideal of this algebra corresponding to f , we see that there is a

characteristic 0 eigenform f̃ ∈ S5(N, ε̃;Q5) lifting f .
The component ε43 of ε at 43 is represented by the map sending (1, 3) ∈

(Z/25Z)∗ × (Z/43Z)∗ to 2α + 1 and sending the subgroup (Z/25Z)∗ × {1}
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Table 2. Eigenvalues of g = f ⊗ ε43.

2 ∗
3 1
5 ∗
7 2
11 4
13 2
17 2
19 0
23 1
29 1
31 0
37 3
41 1
43 ∗
47 1
53 2

59 4
61 2
67 4
71 4
73 3
79 4
83 4
89 3
97 0
101 1
103 2
107 0
109 3
113 2
127 0
131 2

137 0
139 2
149 4
151 1
157 2
163 0
167 2
173 4
179 3
181 2
191 3
193 4
197 0
199 3
211 0
223 0

227 3
229 0
233 2
239 0
241 3
251 3
257 3
263 1
269 2
271 1
277 0
281 1
283 0
293 3
307 4
311 2

313 0
317 0
331 2
337 0
347 1
349 4
353 0
359 0
367 2
373 0
379 3
383 3
389 1
397 1
401 0
409 2

419 3
421 4
431 4
433 4
439 4
443 0
449 0
457 0
461 0
463 3
467 0
479 0
487 1
491 3
499 4
503 3

509 1
521 3
523 2
541 4
547 2
557 3
563 1
569 1
571 2
577 2
587 4
593 0
599 2
601 0
607 1
613 2

617 0
619 4
631 4
641 4
643 1
647 4
653 1
659 2
661 2
673 1
677 4
683 0
691 1
701 2
709 4
719 4

to 1. Note that 3 is a primitive root mod 43, and that 2α+1 has order 3. The

complementary character ε2 is defined by ε = ε2 · ε43. The twist g̃ = f̃ ⊗ ε̃43

is, by [14, Prop. 3.64], an eigenform in S5(43N, ε̃2;Q5), and its reduction
is a form g ∈ S5(43N, ε2;F25). The eigenvalues ap(g) = ap(f)ε43(p), for the
first few p � 5N , are given in Table 2.

Proposition 1.3. Let g = f ⊗ ε43. Then ap(g) ∈ F5 for all p � 5N .

Proof. Consider an eigenform f̃ ∈ S5(N, ε̃;Q5) lifting f as above. Associ-

ated to f̃ there is an automorphic representation π = ⊗′
vπv of GL(2,A),

where A is the adèle ring of Q. Because 43 || N , and 43 divides the conduc-
tor of ε, we see that the local component π43 of π at 43 must be ramified
principal series. By the compatibility of the local and global Langlands
correspondence, proved by Deligne, Langlands and Carayol, we see that

ρ
f̃
|D43 ∼

(
Ψ1 0
0 Ψ2

)
with, without loss of generality, Ψ2 unramified. We have

(Ψ1 ·Ψ2)|I43 = ε̃|I43 = ε̃43, therefore, ρf̃
|I43 ∼

(
ε̃43 0
0 1

)
.

Now twist f̃ by ε̃−1
43 ; we find that ρf̃⊗ε̃−1

43
|I43 ∼

(
1 0
0 ε̃−1

43

)
. In particular,

there is an eigenform f̃ ′ ∈ S5(N, ε̃2ε̃
−1
43 ;Q5) whose associated Galois rep-

resentation is the twist by ε̃−1
43 of that of f̃ (recall that N = 1376 so 43

divides N exactly once). Let f ′ denote the mod 5 reduction of f̃ ′. Then one
checks easily that f ′ ∈ S5(N, ε2ε

−1
43 ;F25) = S5(N, ε5;F25).
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For all primes p � 5N we have ap(f
′) = ε43(p)

−1ap(f). In particular, we
have ap(f

′) = 0 for p = 19, 31. Also, ε43(3) = α8 and ε43(5) = α8, so

a3(f
′) = α16/α8 = α8 = (α16)5

a5(f
′) = α22/α8 = α14 = (α22)5.

Now if σ is the nontrivial automorphism of F25, then σ(f
′) and f both lie in

S5(1376, ε;F25) and have the same ap for p = 3, 5, 19, 31, so they are equal
because we found f by computing the unique eigenform with given ap for
p = 3, 5, 19, 31. So g = f ⊗ ε43 = σ(f) ⊗ ε2

43. Thus for all p � 5N , we see
that ap(g) = ap(f)

5ε2
43 has fifth power ap(g)

5 = ap(f)
25ε10

43 = ap(f)ε43 =
ap(g). �

1.3. Proof that ρg is unramified at 5.We begin with a generalization
of [16]. Let M > 4 be an integer, and let h =

∑
n≥1 cnq

n be a normalized
cuspidal eigenform of some weight k ≥ 1, level M and character χ, defined
over some field of characteristic not dividing M . Even though the base field
might not have characteristic zero, we may still define the conductor of χ to
be the smallest divisor f of M such that χ factors through (Z/fZ)×. Let I
be a set of primes, with the property that for all p in I, one of the following
conditions hold:
(i) p divides M but p does not divide M/ cond(χ), or
(ii) p divides M exactly once, and h is p-new, in the sense that there is

no eigenform h′ of level M/p such that the Tn-eigenvalues of h and h′ agree
for all n prime to p.
Let C denote the orbit of the cusp ∞ in X1(M) under the action of the

group generated by wp for p ∈ I, and the Diamond operators 〈d〉M . The
orbit of ∞ under the Diamond operators has size φ(M)/2, and each wp

increases the size of the orbit by a factor of 2. In this situation, we have:

Lemma 1.4. The first t terms of the q-expansion of h at any cusp in C are
determined by M , k, χ, cp for p in I, and cn for 1 ≤ n ≤ t.

Remark 1.5. Our proof is just a translation of Corollary 4.6.18 of [13] into
the language of moduli problems (Miyake’s argument technically is only valid
over the complex numbers).

Proof. If J ⊆ I is any subset, and wJ denotes the product of wp for p ∈ J ,
then h|wJ is an eigenform for all the Diamond operators, and this ob-
servation reduces the proof of the lemma to showing that for p ∈ I, if
h|wp =

∑
m dmqm, then dj for 1 ≤ j ≤ n and dq for all q ∈ I are determined

by M , k, χ, p, cj for 1 ≤ j ≤ n and cq for all q ∈ I.
We first deal with primes p of the form (i). Say M = pmR, where R

is prime to p. Thinking of h as a rule for attaching k-fold differentials to
elliptic curves equipped with points of order pm and R, we have by definition
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that

h(Gm/qZ, ζ, ζR) =
(∑

cnq
n
)
(dt/t)k,

where ζ = ζpm and ζR are fixed pmth and Rth roots of unity in Gm which
correspond to the cusp ∞, and dt/t is the canonical differential on the Tate
curve Gm/qZ. We normalize things such that

h(Gm/qpmZ, q, ζR) =
(∑

dnq
n
)
(dt/t)k,

and remark that because h is an eigenvector for the Diamond operators,
we do not have to worry too much about whether this corresponds to the
standard normalization of the wp-operator.
We recall that the operator pUp in this setting can be thought of as being

defined by the rule:

(pUph)(E,P,Q) =
∑

C

π∗h(E/C,P ,Q),

where C runs through the subgroups of E of order p which have trivial
intersection with 〈P 〉, and π denotes the canonical projection E → E/C.
We see that

(pcp)
m
(∑

dnq
n
)
(dt/t)k = (pmUpmh)(Gm/qpmZ, q, ζR)

=

pm−1∑

c=0

π∗h(Gm/〈qpm
, ζqc〉, q, ζR),

where π denotes the canonical projection fromGm/〈qpm〉 to the appropriate
quotient. This last sum can be written as a double sum

∑

c∈(Z/pmZ)×
π∗h(Gm/〈qpm

, ζqc〉, q, ζR) +

pm−1−1∑

a=0

π∗h(Gm/〈qpm
, ζqpa〉, q, ζR)

=
∑

b∈(Z/pmZ)×
π∗h(Gm/〈qpm

, ζ−bq〉, q, ζR)

+ pm−1π∗Upm−1h(Gm/〈qpm
, ζpm−1〉, q, ζR)

=
∑

b∈(Z/pmZ)×
π∗h(Gm/〈ζ−bq〉, ζb, ζR)

+ (pcp)
m−1π∗h(Gm/〈qpm

, ζpm−1〉, q, ζR)

=
∑

b

χp(b)
∑

n≥1

cn(ζ
−bq)n(dt/t)k + pk(pcp)

m−1π∗h(Gm/〈qpm+1〉, qp, ζp
R),
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where we have written χ = χRχp, for χR a character of level R and χp a
character of level pm. We deduce that

(pcp)
m
(∑

dnq
n
)
(dt/t)k − pk(pcp)

m−1χR(p)π
∗h(Gm/〈qpm+1〉, qp, ζR)

=

(∑

n

(∑

b

χp(b)ζ
−bn

)
cnq

n

)
(dt/t)k

=W (χp)


∑

p�n

χp(−n)−1cnq
n


 (dt/t)k

where W (χp) =
∑

b∈(Z/pmZ)× χp(b)ζ
b can be checked to be nonzero because

the conductor of χp is p
m. Hence

(pcp)
m
∑

n

dnq
n − pk(pcp)

m−1χR(p)
∑

n

dnq
np

=W (χp)χp(−1)
∑

p�n

χp(n)
−1cnq

n.

Equating coefficients of q we deduce that W (χp)χp(−1) = (pcp)md1, and
because h|wp is an eigenform for Tn for all n prime to p, with eigenvalues
determined by χ and cn, we deduce that we can determine dn for n prime
to p from cn. It remains to establish what dp is, and equating coefficients of

qp in the above equation gives us that (pcp)
mdp = pk(pcp)

m−1χR(p)d1 and
hence that dp is determined by χ and cp. Note that as a consequence we

see that dp/d1 = pk−1χR(p)/cp, a classical formula if the base field is the
complexes.
Now we deal with primes of the form (ii) (note that we never use this

case in the rest of the paper). We think of h as a rule associating k-fold
differentials to triples (E,C,Q) where C a cyclic subgroup of order p and Q
a point of order R = M/p. Because h is p-new, the trace of h down to
X1(M/p) must be zero, and hence we see that for any elliptic curve E
equipped with a point Q of order R,

∑

C

π∗h(E/C,E[p]/C,Q) = 0.

As before, normalize things so that

h(Gm/qZ, µp, ζR) =

(∑

n

cnq
n

)
(dt/t)k

and

h(Gm/qpZ, 〈q〉, ζR) =

(∑

n

dnq
n

)
(dt/t)k.
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The fact that the trace of h is zero implies that

(pUp)h(Gm/qpZ, 〈q〉, ζR) + π∗h(Gm/qZ, µp, ζR) = 0,

and hence that

cp
∑

dnq
n + pk−1

∑
cnq

n = 0

from which we deduce that the dn can be read off from cp and the cn. �

Remark 1.6. The size of C is φ(M)·2|I|−1, and the usefulness of this lemma
is that if h1 and h2 are two normalized eigenforms of the same level, weight
and character as above, both new at all primes in I, and the coefficients
of qn in the q-expansions of h1 and h2 agree for n ∈ I and n ≤ t, then
h1 − h2 has a zero of order at least t+1 at all cusps in C, and in particular
if φ(M) · 2|I|−1(t + 1) > k

24 [SL2(Z) : Γ1(M)] = deg(ωk) on X1(M) then
h1 = h2. Using the fact that [Γ0(M) : Γ1(M)] = φ(M), we deduce:

Corollary 1.7. Let h1 and h2 be two normalized eigenforms as above. If
the coefficients of qn in the q-expansions of h1 and h2 agree for all primes
in I and for all n ≤ k

12 [SL2(Z) : Γ0(M)]/2
|I| then h1 = h2.

Remark 1.8. One can certainly do better than this corollary in many cases.
For example, when n > 1 and pn exactly divides both the level of an
eigenform and the conductor of its character, then one can compute the
q-expansion of the eigenform at many “middle cusps” too, and hence in-
crease the size of C in the result above. The general result however is rather
messy to state and prove, and so for simplicity we have chosen to prove only
what we needed in the cases we were interested in.

We now go back to the explicit situation we are concerned with. Al-
though g is an eigenform of level 59168 = 25 · 432, we can still consider
the corresponding representation ρg : GQ → GL(2,F5), and then directly
analyze its ramification.

Proposition 1.9. The representation ρg is unramified at 5.

Proof. Continuing the modular symbols computations as above, we find
that V1 is spanned by the two eigenforms

f = q + α16q3 + α22q5 + α14q7 + α14q9 + 4q11 + · · ·
f1 = q + α16q3 + α10q5 + α14q7 + α14q9 + 4q11 + · · · .

For p �= 5 and p ≤ 997, we have ap(f1) = ap(f). To check that ap(f) =
ap(f1) for all p �= 5, it suffices to show that the difference f − f1 has
q-expansion involving only powers of q5; for this we use the θ-operator
q d

dq : S5(1376, ε;F25) → S11(1376, ε;F25). Since θ sends normalized eigen-

forms to normalized eigenforms, it suffices to check that the subspace of
S11(1376, ε;F25) generated by θ(f) and θ(f1) has dimension 1. Corollary 1.7
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implies that it suffices to verify that the coefficients ap(θ(f)) and ap(θ(f1))
are equal for all

p ≤ 11

12
· [SL2(Z) : Γ0(1376)] ·

1

2
= 968.

The eigenform f must be new because we computed it by finding the in-
tersections of the kernels of Hecke operators Tp with p � 1376; if f were an
oldform then the intersection of the kernels of these Hecke operators would
necessarily have dimension greater than 1. Because it takes less than a sec-
ond to compute each ap(θ(f)), we were easily able to verify that the space
generated by θ(f) and θ(f1) has dimension 1.

Remark 1.10. In this example (but not some of the other seven examples!)
it is possible to avoid appealing to Corollary 1.7 by using one of the following
two alternative methods:

1) Define θ directly on modular symbols and compute it. On modular
symbols, the analogue of the θ operator seems to be multiplication
by XpY − XY p; thus, if p = k = 5 then θ(X3{0,∞}) = (X8Y −
X4Y 5){0,∞}. The main point in the proof is that one can check easily
from the definitions that Tqθ = qθTq for q a good prime, and hence
this map theta must correspond with the “classical” theta up to a
constant; one should perhaps worry that this constant could be zero,
but in practice given an f one can check explicitly that θ(f) �= 0 by
direct computation.

2) Compute the intersection
⋂

p≥2

ker(Tp − pap(f)) ⊂ S11(1376, ε;F25).

Since θ(f) and θ(f1) both lie in the intersection, the moment the di-
mension of a partial intersection is 1, it follows that θ(f − f1) = 0.

We successfully carried out both alternatives. For the second, we find that
after intersecting kernels for p ≤ 11, the dimension is already 1. The first of
these two methods took much less time than the second.

Next we use that θ(f−f1) = 0 to show that ρg is unramified, thus finishing
the proof of the proposition. Since f is ordinary, Deligne’s theorem (see [9,
§12]) implies that

ρf |D5 ∼
(
γ ∗
0 δ

)
over F5

with γ and δ unramified characters, γ(Frob5) = ε(5)/a5 = α8/α22 = α10,
and δ(Frob5) = α22. Since ap(f1) = ap(f), for p �= 5, we have

ρf |D5 ∼ ρf1 |D5 ∼
(
γ′ ∗
0 δ′

)
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with γ′(Frob5) = α8/α10 = α22 and δ′(Frob5) = α10; in particular, γ′ = δ.
Thus ρf |D5 contains γ ⊕ δ, so ρf |D5 ∼ γ ⊕ δ and hence there is a choice of
basis so that ∗ = 0. �

1.4. The image of proj ρg.

Proposition 1.11. The image of proj ρg is A5.

Proof. The image H of proj ρg in PGL2(F5) is easily checked to lie in
PSL2(F5) ∼= A5 because of what we know about the determinant of ρg.
Hence H is a subgroup of A5 that contains an element of order 2 (complex
conjugation) and an element of order 3 (for example, ρg(Frob7) has char-
acteristic polynomial x2 − 2x − 1). This proves that H is isomorphic to
either S3, A4, or A5. Let L be the number field cut out by H. If L were
an S3-extension, then there would be a quadratic extension contained in it
which is unramified outside 2 · 5 · 43; it is furthermore unramified at 5 by
the previous section and unramified at 43 because I43 has order 3. Thus
it is one of the three quadratic fields unramified outside 2. In particular,
the trace of Frobp would be zero for all primes in a certain congruence class
modulo 8. However, there are primes p congruent to 3, 5, and 7 mod 8 such
that ap(g) �= 0, e.g., 3, 7, and 13.
If H were isomorphic to A4, then let M denote the cyclic extension of

degree 3 over Q contained in L. NowM is unramified at 2 and 5, and hence
is the subfield of Q(ζ43) of degree 3. Choose p � 1376 · 5 that is inert in M ,
i.e., so that p is not a cube mod 43. The order of ρg(Frobp) in GL2(F5) must
be divisible by 3. However, a quick check using Table 2 shows that this is
not the case for p = 3. �

1.5. Bounding the ramification at 2 and 43. Let L be the fixed field of
ker(proj(ρg)). We have just shown that Gal(L/Q) is isomorphic to A5. By
a root field for L, we mean a non-Galois extension of Q of degree 5 whose
Galois closure is L.

Proposition 1.12. The discriminant of a root field for L divides (43 ·8)2 =
3442, and in particular, L must be mentioned in Table 1 of [8, pg. 122].

Proof. The analysis of the local behavior of ρf at 43 given in Proposition 1.3
shows that the inertia group at 43 in Gal(L/Q) has order 3. Using Table 3.1
of [3], we see that if Gal(L/Q) ∼= A5 then it must be of type 2 at 43, and
hence the discriminant of a root field of L, that is, of a non-Galois extension
of Q of degree 5 whose Galois closure is L, must be 432 at 43.
At 2 the behavior of ρ is more subtle and we shall not analyze it fully. But

we can say that, because ρ has arisen from a form of level 1376 = 25 · 43, we
must be either of type 5 or one of types 14–17, in the notation of Table 3.2
of [3]. In particular, the discriminant at 2 of a root field for L will be at
most 26.
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Finally, L is unramified at all other primes, because ρ is. Hence the
discriminant of a root field for L, assuming that Gal(L/Q) ∼= A5, divides
(43.8)2 = 3442. �

We know that L is an icosahedral extension of Q with discriminant di-
viding 432 · 26. Table 1 of [8, p. 122] contains all icosahedral extensions,
such that the discriminant of a root field is bounded by 20832. The table
must contain L; there is only one icosahedral extension with discriminant
dividing 432 · 26, so L = K.

1.6. Obtaining a classical weight one form.We have shown that a
twist of the icosahedral representation ρ : GQ → GL(2,C), obtained by
lifting GQ → Gal(K/Q) ≈ A5, has a mod 5 reduction ρg : GQ → GL2(F5)
that is modular. Since ρ ramifies at only finitely many primes, and ρ is
unramified at 5 with distinct eigenvalues, [5] implies that ρ arises from a
classical weight 1 newform.

2. More examples.

The data necessary to deduce modularity of each of our eight icosahedral
examples is summarized in Tables 3–6.

Table 3. Data on icosahedral representations mod 5.

N h ord(Frob5) p with ap = 0 ε dimS5(N, ε)
1376 [2, 6, 8, 10, 8] 2 19, 31, 97 [2, 1, 3] 696
2416 [0,−2, 2, 5, 6] 2 53, 97, 127 [2, 1, 3] 1210
3184 [5, 8,−20,−21,−5] 2 31, 89, 97 [2, 1, 3] 1594
3556 [3, 9,−6,−4,−40] 3 19, 29, 89 [1, 2, 3] 2042
3756 [0,−3, 10, 30,−18] 3 17, 61, 67 [1, 2, 3] 2506
4108 [4, 3, 9, 4, 5] 3 17, 23, 31, 89 [1, 3, 2] 2234
4288 [4, 5, 8, 3, 2] 3 19, 23, 47 [1, 2, 3] 2164
5373 [2, 1, 7, 23,−11] 2 7, 23, 37, 79, 89 [2, 3] 2394

The notation in Table 3 is as follows. The first column contains the
conductor. The second column contains a 5-tuple [a4, a3, a2, a1, a0] such
that the A5-extension is the splitting field of the polynomial h = x5 +
a4x

4+ a3x
3+ a2x

2+ a1x+ a0. The column labeled ord(Frob5) contains the
order of the image of Frob5 in A5. The next column, which is labeled “p
with ap = 0”, contains the first few p such that ap is easily seen to equal 0 by
considering the splitting of h mod p. The ε column contains the character
of the representation, where the notation is as follows. Write (Z/NZ)∗

as a product of cyclic groups corresponding to the prime divisors of N in
ascending order, and then the tuples give the orders of the images of these
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Table 4. The newform f and the companion form bound.

N f bound
1376 q + α16q3 + α22q5 + α14q7 + α14q9 + 4q11 + α14q13 + · · · 968
2416 q + 3q3 + α22q5 + α16q7 + α4q11 + α2q13 + α16q15 + · · · 1672
3184 q + α16q3 + 3q5 + α22q7 + α14q9 + 3q11 + α22q13 + · · · 2200
3556 q + α16q3 + α14q5 + α10q7 + α14q9 + α2q11 + α22q13 + · · · 1408
3756 q + α14q3 + α14q5 + 3q7 + α4q9 + α16q11 + α10q13 + · · · 1727
4108 q + α16q3 + α11q5 + α20q7 + α14q9 + α10q11 + 4q13 + · · · 1540
4288 q + 3q3 + α14q5 + α20q7 + 3q9 + α20q11 + α16q13 + · · · 2992
5373 q + α16q2 + α14q4 + 4q5 + 3q8 + α4q10 + 2q11 + · · · 3300

cyclic factors; when 8 | N , there are two cyclic factors corresponding to the
prime 2. Finally, the last column records the dimension of S5(Γ1(N), ε).
The notation in Table 4 is as follows. The first column contains the con-

ductor. The second column contains an eigenform that was found by first
intersecting the kernels of the Hecke operators Tp with p as in Table 3, and
then locating an eigenform. In each case, a companion form was found,
by computing ap(f) for p ≤ bound, where bound is the bound from Corol-
lary 1.7.
Table 5 shows that the fixed field of the image of each proj(ρg) is icosa-

hedral. The first column contains the conductor N . The second column
contains a twist g of f such that ap(g) ∈ F5 for all p � 5N . The third col-
umn contains a Frobp such that proj(ρg(Frobp)) has order 3, along with the
characteristic polynomial of ρg(Frobp). As in the proof of Proposition 1.11,
the other two boxes give data that allows us to deduce that the fixed field
of the image of proj(ρg) is icosahedral. The case 5373 must be treated sep-
arately, because there are three possibilities M1, M2, and M3 for the cubic
field M of the analogue of Proposition 1.11. For M1 we find a prime p such
that

(p2 mod 9, p66 mod 199) �∈ {(1, 1), (4, 1), (7, 1)}
with ρg(Frobp) of order not divisible by 3; for this, p = 2 suffices, since the
characteristic polynomial of ρg(Frob2) is (x + 2)2 and (p2mod 9,
p66mod 199) = (4, 106). For M2 we find a prime p such that

(p2 mod 9, p66 mod 199) �∈ {(1, 1), (4, 92), (7, 106)}
with ρg(Frobp) of order not divisible by 3; again, p = 2 suffices. For M3 we
find a prime p such that

(p2 mod 9, p66 mod 199) �∈ {(1, 1), (4, 106), (7, 92)}
with ρg(Frobp) of order not divisible by 3; here, p = 13 suffices, as the char-
acteristic polynomial of ρg(Frobp) is (x+4)

2 and (p2mod 9, p66mod 199) =
(7, 106).
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Table 5. Verification that the image of proj(ρg) is A5.

Find a Frobenius element with projective order 3.

N g proj. order 3 charpoly
1376 f ⊗ ε43 Frob7 x2 − 2x − 1
2416 f ⊗ ε151 Frob19 x2 + 2x − 1
3184 f ⊗ ε199 Frob7 x2 + 3x+ 4
3556 f ⊗ ε127 Frob13 x2 + 3x+ 4
3756 f ⊗ ε313 Frob23 x2 + 2x+ 4
4108 f ⊗ ε13 Frob29 x2 + 3x+ 4
4288 f ⊗ ε67 Frob11 x2 + x+ 1
5373 f ⊗ ε199 Frob11 x2 + 3x+ 4

Not S3: For all t ∈ T , find unramified p s.t. t �≡ � mod p and ap(g) �= 0.
N T p

1376 {−1,−2} 3, 7
2416 {−1,−2} 3, 7
3184 {−1,−2} 3, 7
3556 {−1,−2,−7,−14} 3, 13, 3, 11
3756 {−1,−2,−3,−6} 7, 7, 11, 13
4108 {−1,−2,−79,−158} 3, 7, 3, 7
4288 {−1,−2} 3, 7
5373 {−3} 11

Not A4: Unramified p, not cube mod 7, order of ρg(Frobp) not divisible
by 3.

N 7 p charpoly(ρg(Frobp))
1376 43 3 (x+ 2)2

2416 151 7 (x+ 2)2

3184 199 3 (x+ 2)2

3556 127 3 (x+ 2)2

3756 313 11 (x+ 2)2

4108 13 3 (x+ 2)2

4288 67 7 (x+ 3)2

5373 — (see text)

Table 6 gives upper bounds on the ramification of the fixed field of the
image of proj(ρg). These bounds were deduced using Table 3.1 of [3] by
restricting the possible “types” using information about the character ε.
Note that though the bounds are not sharp, e.g., the discriminant of the
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Table 6. Bounding the discrimant of the fixed field of proj(ρg).

N Bound on discriminant
1376 26 · 432
2416 26 · 1512
3184 26 · 1992
3556 22 · 72 · 1272
3756 22 · 32 · 3132
4108 22 · 132 · 792
4288 26 · 672
5373 34 · 1992

representation of conductor 2416 is 24 · 1512, they are all less than 20832, so
the corresponding field must appear in Table 2 of [8].

3. Computing mod p modular forms.

3.1. Higher weight modular symbols. The second author developed
software that computes the space of weight k modular symbols Sk(N, ε),
for k ≥ 2 and arbitrary ε. See [12] for the standard facts about higher
weight modular symbols, and [15] for a description of how to compute with
them.
LetK = Q(ε) be the field generated by the values of ε. The cuspidal mod-

ular symbols Sk(N, ε) are a finite dimensional vector space over K, which
is generated by all linear combinations of higher weight modular symbols

XiY k−2−i{α, β}
that lie in the kernel of an appropriate boundary map. There is an involu-
tion ∗ that acts on Sk(N, ε), and Sk(N, ε)+⊗KC is isomorphic, as a module
over the Hecke algebra, to the space Sk(N, ε;C) of cusp forms.
Fix k = 5. In each case considered in this paper, there is a prime ideal λ

of the ring of integers O of K such that O/λ ∼= F25. Let L be the O-module
generated by all modular symbols of the form XiY 3−i{α, β}, and let

S5(N, ε;F25) = (L ∩ S5(N, ε))⊗O F25.

This is the space that we computed. The Hecke algebra acts on S5(N,ε;F25),
so when we find an eigenform we find a maximal ideal of the Hecke algebra.
As an extra check on our computation of S5(N, ε;F25), we computed the

dimension of S5(N, ε;C) using both the formula of [6] and the Hijikata trace
formula (see [10]) applied to the identity Hecke operator.

3.2. Complexity.We implemented the modular symbols algorithms men-
tioned above in Magma (see [2]) because of its robust support for linear
algebra over small finite fields.
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The following table gives a flavor of the complexity of the machine com-
putations appearing in this paper. The table indicates how much CPU time
on a Sun Ultra E450 was required to compute all data for the given level,
including the matrices Tp on the 2-dimensional spaces, for p < 2000. For
example, the total time for level N = 1376 was 6 minutes and 58 seconds.

N time (minutes)

1376 6:58
2416 10:42
3184 14:16
3556 19:55
3756 27:47
4108 23:11
4288 15:18
5376 24:49

Acknowledgment. Some of the computing equipment was purchased by
the second author using a UC Berkeley Vice Chancellor Research Grant.
Additional computer runs were made on the Sun Ultra E450 of the Compu-
tational Algebra Group at the University of Sydney. Allan Steel was very
helpful in optimizing our code.
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[1] E. Artin, Über eine neue Art von L-reihen, Abh. Math. Sem. in Univ. Hamburg, 3(1)
(1923/1924), 89-108.

[2] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user
language, J. Symb. Comp., 24(3-4) (1997), 235-265, CMP 1 484 478, Zbl 0898.68039,
http://www.maths.usyd.edu. au:8000/u/magma/.

[3] J.P. Buhler, Icosahedral Galois representations, Springer-Verlag, Berlin, 1978, Lecture
Notes in Mathematics, Vol. 654, MR 58 #22019, Zbl 0374.12002.

[4] K. Buzzard, M. Dickinson, N. Shepherd-Barron and R. Taylor, On icosahedral Artin
representations, Duke Math. J., 109(2) (2001), 283-318, CMP 1 845 181.

[5] K. Buzzard and R. Taylor, Companion forms and weight one forms, Ann. of Math.
(2), 149(3) (1999), 905-919, MR 2000j:11062, Zbl 0965.11019.
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There are genus one curves over Q of
every odd index

ByWilliam A. Stein*) at Harvard University

Abstract. The index of a genus one curve X over a field K is the smallest degree of
an extension L of K such that X ðLÞ is nonempty. Let K be a number field. We prove that
for every integer r not divisible by 8, there is a genus one curve X over K of index r. Our
proof involves an analysis of Kolyvagin’s Euler system of Heegner points combined with
explicit computations on the modular curve X0ð17Þ.

1. Introduction

How complicated are curves of genus one? One possible measure of the complexity
of a curve is the smallest degree of an extension of the base field in which the curve has a
point. Consider a curve X of positive genus g over a number field K. The canonical divisor
class on X contains a K-rational e¤ective divisor of degree 2g� 2, so the greatest common
divisor of the degrees of the extension fields in which X has a rational point divides 2g� 2.
When g ¼ 1 this is no condition at all!

In the 1950s, S. Lang and J. Tate asked in [11] whether, given a positive integer r,
there exists a genus one curve X such that r is the smallest of all degrees of extensions of K
over which X has a point. Using Kolyvagin’s Euler system of Heegner points, we answer
their question in the a‰rmative, under the hypothesis that r is odd. The curves we produce
are torsors for the elliptic curve X0ð17Þ, though our methods apply to a more general class
of genus one curves. The following theorem is proved in Section 5.4.

Theorem 1.1. Let K be a number field and let r be an integer not divisible by 8. Then
there are infinitely many genus one curves over K of index r.

In Section 2 we recall standard facts about indexes of genus one curves. Section 3
contains a brief discussion of Heegner points, and summarizes the relevant results about
Kolyvagin’s Euler system from [18]. In Section 4, which forms the heart of our paper, we
prove a nonvanishing result for Kolyvagin’s cohomology classes. Finally, in Section 5, we

*) Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.



prove Theorem 1.1 by combining a general result about Galois representations with explicit
computations on X0ð17Þ.

Acknowledgement. The author would like to thank H. Lenstra for introducing him
to this problem, K. Buzzard for teaching him about Kolyvagin’s Euler system, K. Rubin
and M. Flach for extensive comments, D. Y. Logachev, C. O’Neil, and K. Ribet for in-
spiring conversations, and N. Elkies and G. Grigorov for useful comments.

2. Indexes of genus one curves

Let E be an elliptic curve over an arbitrary field k. The Galois cohomology group
H 1ðk;EÞ ¼ H 1

�
Galðk sep=kÞ;Eðk sepÞ

�
classifies the isomorphism classes of torsors (princi-

pal homogeneous spaces) for E over k.

Definition 2.1 (Index of cohomology class). The index of c A H 1ðk;EÞ, denoted
indðcÞ, is the greatest common divisor of the degrees of the separable extensions K of k for
which resKðcÞ ¼ 0.

The torsor X corresponding to c is a genus one curve over k equipped with an action
of E. Furthermore, X ðKÞ3j exactly when resKðcÞ ¼ 0, so

indðcÞ ¼ gcdf½K : k�: XðKÞ3jg:

Thus indðcÞ generates the image of the degree map deg: DivkðXÞ ! Z. We now define
indðXÞ so that indðX Þ ¼ indðcÞ.

Definition 2.2 (Index of curve). The index of an algebraic curve over k is the cardi-
nality of the cokernel of the degree map.

Any canonical divisor is an element of DivkðX Þ of degree 2g� 2, where g is the genus
of X, so indðXÞ divides 2g� 2. As mentioned in the introduction, when g ¼ 1 this is no
condition; in fact, E. Artin conjectured, and Lang and Tate proved in [11], pg. 670, that for
every integer r there is some genus one curve X over some field L such that indðXÞ ¼ r. The
construction of [11] requires the existence of an L-rational point of order r on the elliptic
curve E ¼ JacðX Þ. The torsion subgroups of elliptic curves are ‘‘uniformly bounded’’, so
for K a fixed number field and for almost all r, the results of [11] do not imply the existence
of genus one curves over K of index r.

Let E be an elliptic curve over a number field K, and let r be a positive integer. Is
there an element of H 1ðK ;EÞ of index r? In [21], Shafarevich proved that H 1ðK ;EÞ con-
tains infinitely many elements of every order (see also [5], §27 where Cassels sketches an
alternative approach to proving Shafarevich’s theorem). However, this does not answer the
question of Artin, because the order need not equal the index as Cassels remarked in [4],
where he found an elliptic curve E and a class c A H 1ðQ;EÞ such that c has order 2 and
index 4.

2.1. Elementary facts about the index. We pause to state some basic facts about the
order and index, which we will use later. Fix an elliptic curve E over a number field K, and
let c and c 0 be elements of H 1ðK ;EÞ.
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Proposition 2.3. ordðcÞ j indðcÞ, and they have the same prime factors.

Proof. See [11], §2, Prop. 5. r

Lemma 2.4. There is an extension L of K such that ½L : K � ¼ indðcÞ and resLðcÞ ¼ 0.

Proof. See the paragraph before the corollary in [11], §2. r

Proposition 2.5. Suppose c 0 has order coprime to c. Then indðcþ c 0Þ ¼ indðcÞ � indðc 0Þ.

Proof. IfM is a field that splits cþ c 0, thenM also splits ordðc 0Þðcþ c 0Þ ¼ ordðc 0Þc,
so M splits c. Likewise, M splits c 0, so indðcÞ � indðc 0Þ j indðcþ c 0Þ. For the other divisi-
bility, note that by Lemma 2.4, there are extensions L and L 0 such that ½L : K � ¼ indðcÞ,
½L 0 : K � ¼ indðc 0Þ, and resLðcÞ ¼ resL 0 ðc 0Þ ¼ 0. Then the compositum L:L 0 splits cþ c 0 and
½L:L 0 : K � ¼ indðcÞ � indðc 0Þ. Thus indðcþ c 0Þ divides indðcÞ � indðc 0Þ. r

Remark 2.6. In [12], Lichtenbaum proved that indðcÞ j ordðcÞ2 for any c A H 1ðK ;EÞ,
and Cassels proved in [3] that if c A [ðE=KÞ, then ordðcÞ ¼ indðcÞ.

If E is an elliptic curve over Q such thatK[ðE=QÞ ¼ KEðQÞtor ¼ 1, then the results
mentioned above do not rule out the possibility that every element of H 1ðQ;EÞ has index a
perfect square. We prove, under the assumption that LðE; 1Þ3 0, that there is an integer B
such that H 1ðQ;EÞ contains infinitely many elements of index n, for every integer n that is
coprime to B (see Theorem 3.1). For example, in Section 5 we prove that one can take
B ¼ 2 for the elliptic curve X0ð17Þ.

3. Kolyvagin’s Euler system

In this section, we recall the definition of Heegner points and several basic results
about the system of cohomology classes Kolyvagin attaches to these points. We also state
the main theorem of this paper.

3.1. Kolyvagin classes. Let E be an elliptic curve over Q of conductor N, and denote
by X0ðNÞ the modular curve that classifies cyclic isogenies of degree N. By [1], there is a
surjective map p: X0ðNÞ ! E. (Note that for the proof of Theorem 1.1 we do not need any
modularity theorems, because we take E ¼ X0ð17Þ.) Let K be a quadratic imaginary exten-
sion of Q in which all primes dividing N split, and let DK be the discriminant and O the ring
of integers of K. Since all primes dividing N split, there is an ideal aHO such that O=a is
cyclic of order N. Let H be the Hilbert class field of K, and xH AX0ðNÞðHÞ be the Heegner
points corresponding to ðC=O; a�1=OÞ. Set yH ¼ pðxHÞ A EðHÞ, yK ¼ trH=KðyHÞ A EðKÞ,
and y ¼ yK � ytK A EðKÞ�, where t denotes complex conjugation. Assume that LðE; 1Þ3 0,
so by [2] and [15] there are infinitely many ways in which to choose K as above so that y
has infinite order. Under this nonvanishing hypothesis on LðE; 1Þ, Kolyvagin proves in [10]
that the groups EðQÞ and [ðE=QÞ are both finite.

In the course of his proof, Kolyvagin considers more general Heegner points
yl A Eð �QQÞ, for appropriate primes l, and from these constructs cohomology classes
cl;pn A H 1ðQ;EÞ½ pn� that are used to bound the orders of certain Selmer groups associated
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to E. We will study Kolyvagin’s classes further and prove that for each prime p not in an
explicit finite set and each positive integer n, there are infinitely many primes l such that

ordðcl;pnÞ ¼ indðcl;pnÞ ¼ pn:

We thus obtain the following theorem, which will be proved in Section 4.2.

Theorem 3.1. Let E be an elliptic curve over Q such that LðE; 1Þ3 0. Then there is an
integer B such that, for all integers r coprime to B, there are infinitely many c A H 1ðQ;EÞ
such that ordðcÞ ¼ indðcÞ ¼ r.

Remark 3.2. Cathy O’Neil [16] has investigated the obstruction to ordðcÞ ¼ indðcÞ.
We show that when E has analytic rank 0, this obstruction vanishes for infinitely many c.

3.2. Basic properties of Kolyvagin’s Euler system. In [18], Rubin gives a concise ac-
count of Kolyvagin’s proof of finiteness of[ðE=QÞ½ py�, under the simplifying assumption
that p is odd. Though Kolyvagin’s argument works even when p ¼ 2, for simplicity, we
rely exclusively on Rubin’s paper.

Let K be a quadratic imaginary field as above, chosen in such a way that the asso-
ciated Heegner point yK has infinite order. Fix embeddings of �QQ into C and into each p-
adic field �QQp. Let t denote complex conjugation, and for any Z½t�-module A, let Aþ and A�

denote the kernel of t� 1 and tþ 1, respectively. For the remainder of this section, we
assume that p is an odd prime, and if K ¼ Qð

ffiffiffiffiffiffiffi
�3

p
Þ that pf 5. If l is a prime that is inert

in K, let Kl denote the completion of K at the unique prime lying over l. If L is a finite
Galois extension of Q, let FroblðL=QÞ denote the conjugacy class of some Frobenius ele-
ment of a prime lying over l. For each prime laN, let al ¼ lþ 1�KEðFlÞ be the lth
Fourier coe‰cient of the newform attached to E.

Definition 3.3. For each place v of Q, let

mv ¼ KH 1
�
Qunrv =Qv;EðQunrv Þ

�
:

By [14], I.3.8, each mv is finite and mv ¼ 1 for all but finitely many v, so

mðpÞ ¼ supfordpðmvÞ: all places v of Qg

is well defined, and mðpÞ ¼ 0 for almost all p.

Let n be a positive integer.

Proposition 3.4. Let p be a prime that does not divide the class number of K and for

which mðpÞ ¼ 0. Suppose la pDKN and Frobl
�
KðE½ pn�Þ=Q

�
¼ ½t�. Then there is an ele-

ment cl;pn A H 1ðQ;EÞ½ pn� such that the order of reslðcl;pnÞ in H 1ðQl;EÞ½ pn� is equal to the
order of the image of y in EðKlÞ=pnEðKlÞ, and the index of cl;pn divides pn.

Proof. The existence of cl;pn and statement about its order is proved in [18], Prop. 5,
where cl;pn is constructed from Heegner points on X0ðNÞ. For the index bound, note that in
the proof of [18], Prop. 5, when pa ½H : K �, Rubin constructs a class
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c 0 A H 1
�
K 0=K ;EðK 0Þ

�
½ pr�þ;

where r ¼ nþmðpÞ and K 0 is the unique extension of K of degree pr in a certain class field
of K. Since p is odd, the restriction map res: H 1ðQ;EÞ½ pr� ! H 1ðK ;EÞ½ pr�þ is an iso-
morphism. Rubin takes cl;pn ¼ res�1ðc 0Þ. Since cl;pn splits over the degree 2pr extension
K 0 of Q, the index of cl;pn divides 2p

r. But cl;pn has odd order and, by Proposition 2.3,
indðcl;pnÞ has the same prime factors as ordðcl;pnÞ, so indðcl;pnÞ divides pr. r

Remark 3.5. The author does not know whether or not the proposition is true if p is
allowed to divide the class number of K.

4. Nonvanishing of cohomology classes

In this section, we prove a nonvanishing result about the cohomology classes cl;pn of
Proposition 3.4, then use it to deduce Theorem 3.1.

4.1. Local nonvanishing. Let E be as above. For any point x A EðKÞ, let Kð½ pn��1xÞ
denote the field obtained by adjoining the coordinates of all pnth roots of x to K. Without
imposing further hypothesis, this field need not be Galois over Q.

Lemma 4.1. If x A EðKÞþ WEðKÞ�, then Kð½ pn��1xÞ is Galois over Q.

Proof. Since GQ acts on x by G1, the subgroup Zx is GQ-invariant. Since
½ pn�: E ! E is a Q-rational isogeny the inverse image ½ pn��1Zx is also GQ-invariant, so
Kð½ pn��1xÞ ¼ Kð½ pn��1ZxÞ is Galois over Q. r

Definition 4.2. An odd prime p is firm for E if mðpÞ ¼ 0, there are no nontrivial Q-
rational cyclic subgroups of E½ py�, and H 1

�
KðE½ pn�Þ=K ;E½ pn�

�
¼ 0 for all nf 1.

Remark 4.3. The set of primes that are not firm is finite, by Serre’s theorem [19] and
the theory of complex multiplication.

Let p be an odd prime that is firm for E. The following proposition produces infinitely
many primes l such that we have control over the orders of the image in EðKlÞ=pnEðKlÞ of
a global point. It will be used as input to Proposition 3.4 to produce cohomology classes of
known index. The proof, which involves an application of the Chebotarëv density theorem,
follows a strategy similar to that used in the proof of Kolyvagin’s theorem on page 135 of
[18].

Proposition 4.4. Let p be a prime that is firm for E, and let x A EðKÞG. Then there is
a set of primes l of positive Dirichlet density such that Frobl

�
KðE½ pn�Þ=Q

�
¼ ½t� and the

orders of the images of x in EðKÞ=pnEðKÞ and in EðKlÞ=pnEðKlÞ are the same.

Proof. Let pa be the order of the image of x in EðKÞ=pnEðKÞ. If a ¼ 0, then there
is nothing to prove, so assume that a > 0. If l is a prime such that the orders of the images
of pa�1x in EðKÞ=pnEðKÞ and EðKlÞ=pnEðKlÞ both equal p, then the images of x in
EðKÞ=pnEðKÞ and EðKlÞ=pnEðKlÞ both have order pa. It thus su‰ces to prove the prop-
osition in the case when the order of the image of x in EðKÞ=pnEðKÞ is p.
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Let L ¼ KðE½ pn�Þ, suppose l is a prime such that FroblðL=QÞ ¼ ½t�, and let l be one
of the prime ideals of L that lies over l. We have a diagram

EðKÞ=pnEðKÞ H��! H 1ðK;E½ pn�Þ H��! HomðGL;E½ pn�Þ???y
???y

???y
EðKlÞ=pnEðKlÞ ���! H 1ðKl;E½ pn�Þ ���! HomðGLl

;E½ pn�Þ:

Let j: GL ! E½ pn� be the element of HomðGL;E½ pn�Þ that x maps to. The top row is in-
jective, because p is firm, so it su‰ces to show that the image jl of j in HomðGLl

;E½ pn�Þ is
nonzero.

Let M be the fixed field of the kernel of j. Since M is the compositum of the two
Galois extensions Kð½ pn��1xÞ and QðE½ pn�Þ of Q, it is also Galois (see Lemma 4.1). Be-
cause FroblðM=QÞjL ¼ ½t�, there is an element s A GalðM=LÞ such that

FroblðM=QÞ ¼ ½st�:

The order of st equals the degree ofMl 0 over Ql, where l
0 is a prime ofM lying over l. If

jl ¼ 0, thenMl 0 ¼ Ll ¼ Kl, so st would have order 2.

The image of j is a nonzero subgroup H of E½ pn�, which is defined over Q since
x A EðKÞG. If every s A GalðM=LÞ has the property that st has order 2, then HHE½ pn��.
This contradicts our assumption that p is firm, since H is a nontrivial cyclic subgroup of
E½ py�. Thus there exists s A GalðM=LÞ such that st has order di¤erent than 2. For this s
and for any prime l such that FroblðM=QÞ ¼ ½st�, we see that jl 3 0. The Chebotarëv
density theorem provides a positive density of such l. r

4.2. Proof of Theorem 3.1. Let E be an elliptic curve over Q such that LðE; 1Þ3 0.
Let K be one of the infinitely many imaginary quadratic fields such that the associated
Heegner point y has infinite order. Let BK be an integer that is divisible by 2 and

– the primes p such that y A pEðKÞ,

– the primes p that are not firm,

– the orderKEðKÞtor, and

– the class number of K.

If K ¼ Qð
ffiffiffiffiffiffiffi
�3

p
Þ, assume in addition that 3 divides BK .

Fix a prime paBK . Since EðKÞ has rank 1 (see, e.g., [9], Thm. 1.3) and paKEðKÞtor,
the image of y in EðKÞ=pnEðKÞ has order pn. By Proposition 4.4 there are infinitely many
primes l such that Frobl

�
KðE½ pn�Þ=Q

�
¼ ½t� and the image of y in EðKlÞ=pnEðKlÞ has

order pn. For these l, Proposition 4.4 produces infinitely many cohomology classes cl;pn

having order and index both equal to pn. (Note that if l3 l 0 then cl;pn 3 cl 0;pn .)
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Let B be the greatest common divisor of the set of integers BK , as K varies over
all quadratic imaginary extensions such that the associated Heegner point has infinite or-
der. For each prime power pn that does not divide B, we have produced infinitely many
c A H 1ðQ;EÞ having order and index both equal to pn. If the orders of c and c 0 are co-
prime, then ordðcþ c 0Þ ¼ ordðcÞ � ordðc 0Þ and, by Proposition 2.5,

indðcþ c 0Þ ¼ indðcÞ � indðc 0Þ:

This proves the theorem. r

5. Computing the bound BK

In this section we compute, in some cases, the the bound BK that appears in Section
4.2. First we prove a general theorem about semistable elliptic curves. Next we compute the
index of a Heegner point, and finally in Section 5.4 we prove Theorem 1.1.

5.1. Galois representations attached to isolated curves. The following proposition
sometimes permits us to compute the integer BK , which appears in Section 4.2.

Proposition 5.1. Let E be a semistable elliptic curve over Q of conductor N, let p be
an odd prime, and let K be a quadratic imaginary field such that gcdðDK ; pNÞ ¼ 1. Assume
that pa ordl

�
jðEÞ

�
, for each prime ljN, and that E admits no isogenies of degree p. Then

paKEðKÞtor and p is firm for E.

Before giving the proof, we summarize its main ingredients. First, we observe that the
assertion that mðpÞ ¼ 0 (see Definition 3.3) uses a standard result that relates unramified
Galois cohomology to component groups. Next, we use the semistability and isogeny hy-
potheses to deduce that rE;p is surjective. Then we use standard group cohomology to de-
duce that p is firm.

Proof. Let l be a prime. By [14], I.3.8,

H 1
�
Qunrl =Ql;EðQunrl Þ

�
GH 1

�
Fl=Fl;FE;lðFlÞ

�
;

where FE;l is the component group of E at l. If laN, there is nothing further to prove,
so assume ljN. Since E is semistable, KFE;lðFlÞ ¼ �ordlð jÞ. By hypothesis, pa ordlð jÞ.
Thus mðpÞ ¼ 0.

Since E admits no isogenies of degree p, the Galois representation

rE;p: GQ ! GLð2;E½p�Þ

is irreducible, and there are no nontrivial Q-rational cyclic subgroups of E½ py�. Since E is
semistable, work of Serre [19], Prop. 21 and [20], §3.1 implies that rE;p is surjective. Thus
paKEðKÞtor because a point in Eð �QQÞ of order p must generate an extension of Q of de-
gree at least p2 � 1f 3.

The field K and QðE½ p�Þ are linearly disjoint, since gcdðDK ; pNÞ ¼ 1, so
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H 1
�
KðE½p�Þ=K ;E½p�

�
GH 1

�
QðE½p�Þ=Q;E½p�

�
AH 1

�
GLð2; FpÞ; F2p

�
:

The group H ¼ H 1
�
KðE½ pn�Þ=K ;E½ pn�

�
has exponent a power of p. If an element

a in Gal
�
KðE½ pn�Þ=K

�
HGL2ðZ=pnZÞ is scalar, then every element of H has order di-

viding a� 1. This is because the scalar is central, so the morphism of pairs it induces
is both the identity and multiplication by a. It is necessary only to choose a such that
gcdða� 1; pÞ ¼ 1. Since p is odd, �1 is a nonidentity element of

AutðE½p�Þ ¼ Gal
�
KðE½p�Þ=K

�
:

Every automorphism lifts, so �1 lifts to some g in Gal
�
KðE½ pn�Þ=K

�
HAutðE½ pn�Þ. Then

gp
n�1 ¼ �1 in AutðE½ pn�Þ, so �1 A Gal

�
KðE½ pn�Þ=K

�
and every element of H has order

dividing 2. (To show that gp
n�1 ¼ �1, we use that ordp

pn

k

� �
¼ nþ ordp

1

k

� �
.) r

5.2. The number BK for X0(17). In this section, we show that for E ¼ X0ð17Þ and
K ¼ Qð

ffiffiffiffiffiffiffi
�2

p
Þ, we have BK ¼ 2. This is accomplished by showing that the index ½EðKÞ : Zy�

is a power of 2. The elliptic curve E ¼ X0ð17Þ given by the Weierstrass equation

y2 þ xyþ y ¼ x3 � x2 � x� 14

satisfies the hypothesis of Proposition 5.1 for each odd prime p. Since the j-invariant of E is
33 � 113=174, every odd prime p is firm for E and KEðKÞtor is a power of 2.

The conductor 17 of E splits in K, and the quadratic twist E 0 of E by K is the curve
y2 ¼ x3 � 44xþ 7120, which is labeled 1088K4 in [7]. Using MAGMA (or mwrank),
one finds that E 0ðQÞGZP� Z=2, where P ¼ ð�3; 85Þ A E 0ðQÞ has infinite order. Since
the rank of E 0 is 1, we set K ¼ Qð

ffiffiffiffiffiffiffi
�2

p
Þ in Section 4.2. Then BK is divisible only by 2

and the index ½EðKÞ : Zy�. This index can only change by a power of 2 if y is replaced
by yK , so we instead consider the index ½EðKÞ : ZyK �. The cokernel of the natural map
EðQÞlE 0ðQÞ ! EðKÞ is a 2-group and EðQÞGZ=4Z, so ½EðKÞ : ZyK � is a power of 2
times hðyKÞ=hðPÞ, where h is the Néron-Tate canonical height on EK . By the Gross-Zagier
formula (see [8], Thm. 6.3),

hðyKÞ ¼
u2jDj

1
2

kof k
L 0
E 0 ð1ÞLEð1Þ;

where D ¼ �8 is the discriminant of K, u ¼ 1 is half the number of units, and kof k is
the Peterson norm of the newform f corresponding to E. Generators for the period
lattice of E are o1@ 1:547079 and o2@ 0:773539þ 1:372869i; taking the determinant
gives kof k@ 2:123938. Furthermore, again from [7], we find that LEð1Þ@ 0:386769 and
L 0
E 0 ð1Þ@ 2:525026, so hðyKÞ@ 1:300533. Using a computer, we find that hðPÞ@ 1:300533
as well, so ½EðKÞ : ZyK � is a power of two.

5.3. Elements of index 2 and 4. The torsion subgroup of E ¼ X0ð17Þ is isomorphic
to Z=4Z, so [11], pg. 670 implies that there are infinitely many elements of H 1ðQ;EÞ having
order and index equal to 2, and also infinitely many having order and index equal to 4.

5.4. Proof of Theorem 1.1. To prove Theorem 1.1, we combine the above compu-
tations with Theorem 3.1, and an observation about the local properties of Kolyvagin’s
classes cl;pn .
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Proof of Theorem 1.1. Let E ¼ X0ð17Þ as above, and let K be an arbitrary number
field. Let pn be either an odd prime power, or 2, or 4. The computations of the previous
section combined with Theorem 3.1 prove that there are infinitely many elements cl;pn of
H 1ðQ;EÞ whose index and order both equal pn. Let A be the subgroup of H 1ðQ;EÞ gen-
erated by these classes. The kernel B of resK : A! H 1ðK;EÞ is finite, so the setS of primes
l such that reslðcÞ3 0 for some c A B is finite. By Proposition 3.4, we have resvðcl;pnÞ ¼ 0
for all places v3 l, so the subgroup A 0 of A generated by all cl;pn with l B S has trivial
intersection with B. Thus resKðA 0Þ consists of infinitely many classes in H 1ðK ;EÞ having
order and index both equal to pn, and the theorem now follows from Proposition 2.3. r
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CUSPIDAL MODULAR SYMBOLS ARE TRANSPORTABLE
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Abstract

Modular symbols of weight 2 for a congruence subgroup0 satisfy the
identity{α, γ (α)} = {β, γ (β)} for all α, β in the extended upper half
plane andγ ∈ 0. The analogue of this identity is false for modular
symbols of weight greater than 2. This paper provides a definition
of transportable modular symbols, which are symbols for which an
analogue of the above identity holds, and proves that every cuspidal
symbol can be written as a transportable symbol. As a corollary, an
algorithm is obtained for computing periods of cuspforms.

Introduction

It is well known that modular symbols of weight 2 for a congruence subgroup0 satisfy the
identity {α, γ (α)} = {β, γ (β)} for all α, β in the extended upper half plane andγ ∈ 0.
The analogue of this identity is, in general, false for modular symbols of weight greater
than 2. To investigate further, we define transportable modular symbols, which are symbols
that can be expressed in such a way that an analogue of the above identity holds. We then
prove that every cuspidal symbol is transportable. As a corollary, we obtain an algorithm
for computing periods of cuspforms.

In Section1 we review the definition of modular symbols. In Section2 we define trans-
portable modular symbols, and prove our main theorem. Section3 contains an application
of our transportability result to the computation of periods of modular forms. Finally, Sec-
tion 4 contains two examples in which we verify the assertion of Theorem2.4 and apply
the period computation algorithm.

1. Modular symbols

In Section1.1we recall the definition of modular symbols given in [5]; then in Section1.2
we introduce a slight generalization of the definition. LetN andk be positive integers with
k > 2, and letε : Z/NZ → C be a Dirichlet character moduloN .

1.1. Definition

Let M be the abelian group generated by all symbols{α, β} with α, β ∈ P1(Q), modulo
the relations{α, β} + {β, γ } + {γ, α} = 0, and modulo any torsion. LetVk−2 denote the
group of homogeneous polynomials inZ[X, Y ] of degreek − 2.
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Cuspidal modular symbols are transportable

Each elementγ = (
a b
c d

) ∈ SL(2, Z) acts on the left onVk−2 by

γ (P (X, Y )) = P(dX − bY, −cX + aY ),

and onMk = Vk−2 ⊗ M by

γ (P ⊗ {α, β}) = γ (P ) ⊗ {γ (α), γ (β)}.
Fix a Dirichlet characterε : Z/NZ → C, and denote byZ[ε] the ring generated by the
image ofε. We also viewε as a homomorphism00(N) → C∗ by settingε

(
a b
c d

) = ε(d).
The spaceMk(N, ε) of modular symbolsof level N and characterε is the quotient of

the Z[ε]-moduleMk ⊗ Z[ε] by theZ[ε]-submodule generated byγ (x) − ε(γ )x for all
x ∈ Mk, for all γ ∈ 00(N), and by any torsion. Denote byP {α, β} the image ofP ⊗{α, β}
in Mk(N, ε). TheQ[ε]-vector space

Mk(N, ε; Q) = Mk(N, ε) ⊗Z Q

containsMk(N, ε).
Let B be the free abelian group generated by all symbols{α}, for α ∈ P1(Q). Define

a left action of SL(2, Z) onBk = Vk−2 ⊗ B by

γ (P ⊗ {α}) = γ (P ) ⊗ {γα}.
The spaceBk(N, ε)of boundary symbolsis the quotient ofBk⊗Z[ε]by theZ[ε]-submodule
generated byγ (x) − ε(γ )x for all x ∈ Bk, for all γ ∈ 00(N), and by any torsion. The
subspaceSk(N, ε) of cuspidal symbolsis the kernel of the mapδ : Mk(N, ε) → Bk(N, ε)

given byδ(P {α, β}) = P {β} − P {α}.
Whenε = 1 is the trivial character, we shall also writeMk(00(N)) for Mk(N, 1), and

similarly for Sk andBk.

1.2. Extended modular symbols

It is useful to extend the notion of modular symbols to allow symbols of the formP {z, w}
wherez andw are arbitrary elements ofh∗ = h ∪ P1(Q).

Definition 1 (Extended modular symbols).The groupMk of extended modular symbols
is the free abelian group with basis the set of all symbolsP {z, w} with z, w ∈ h∗, subject
to the relationsP {u, v} + P {v, w} + P {w, u} = 0.

Note thatMk is of uncountable rank overZ. It is equipped with an action of00(N);
we letMk(N, ε) be the largest torsion-free quotient ofMk by the relationsγ x = ε(γ )x

for γ ∈ 00(N).

2. Transportable modular symbols

In Section2.1 we define transportable modular symbols, and we prove an elementary
proposition that motivates the definition. Section2.2, which is the heart of this paper,
contains a proof that every cuspidal modular symbol is transportable.

2.1. Definition

Definition 2 (Transportable). A modular symbol istransportableif it can be written in
the form

m∑
i=1

Pi{∞, γi(∞)},
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Cuspidal modular symbols are transportable

for γi ∈ 00(N) andPi ∈ Vk−2 with

m∑
i=1

Pi{∞, γi(∞)} =
m∑

i=1

Pi{α, γi(α)}

for all α ∈ h∗, where the equality takes place inMk(N, ε).

Whenk = 2, the identity{∞, γ (∞)} = {α, γ (α)} holds for anyα ∈ h∗, so in weight 2
there is a plentiful supply of transportable modular symbols.

Proposition 2.1. For anyγ ∈ 00(N), P ∈ Vk−2 andα ∈ h∗,

P {∞, γ (∞)} = P {α, γ (α)} + (
P − ε(γ )γ −1P

){∞, α}
= ε(γ )

(
γ −1P

){α, ∞} − P {γ (α), ∞}. (1)

In particular,

P {∞, γ (∞)} = P {α, γ (α)} ⇔ P = ε(γ )γ −1P. (2)

Proof. If x ∈ Mk(N, ε) is a modular symbol andγ ∈ 00(N), thenγ x = ε(γ )x, where, as
usual,ε is viewed as a homomorphism00(N) → C∗ via ε

( (
a b
c d

) ) = ε(d). In particular,
ε(γ )γ −1x = x, so

P {∞, γ (∞)} = P {∞, α} + P {α, γ (α)} + P {γ (α), γ (∞)}
= P {∞, α} + P {α, γ (α)} + ε(γ )γ −1(P {γ (α), γ (∞)})
= P {∞, α} + P {α, γ (α)} + ε(γ )

(
γ −1P

){α, ∞}
= P {α, γ (α)} + P {∞, α} − ε(γ )

(
γ −1P

){∞, α}
= P {α, γ (α)} + (

P − ε(γ )γ −1P
){∞, α}.

The remaining statements of the proposition now follow easily.

Example 2.2. In some cases it is easy to give a formula for symbols that are obviously
transportable. Suppose thatk > 2 is an even integer. IfP is a polynomial such thatγ (P ) = P

for someγ ∈ 00(N), thenP {∞, γ (∞)} is transportable. Givenγ ∈ 00(N), an example
of such aP is

P(X, Y ) = (
cX2 + (d − a)XY − bY 2)(k−2)/2

.

We found this polynomial by viewingVk−2 as the(k − 2)th symmetric product of the
2-dimensional space on which00(N) acts naturally. Ifγ , which has determinant 1, has
eigenvaluesα andα−1, then the eigenvalues of the(k − 2)-fold symmetric product ofγ
are given byαk−2−2j for 0 6 j 6 k − 2. Although we have not been able to find a
counterexample, the authors see no reason to believe that transportable symbols of the form
given in this example always spanSk(N; Q).

More generally, given any sequence of matricesγ1, . . . , γn in 00(N), it is a simple matter
of linear algebra to give transportable symbols of the form

∑n
i=1 Pi{∞, γi∞}. This follows

from Lemma2.3, which shows that this symbol is transportable exactly when(P1, . . . , Pn)

is in the kernel of the map
⊕n

i=1(1 − γ −1
i ) from

⊕n
i=1 Vk−2 to Vk−2.
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Cuspidal modular symbols are transportable

2.2. Characterization of transportable modular symbols

Lemma 2.3. A modular symbol inMk(N, ε; Q) is transportable if and only if it can be
written in the form

∑m
i=1 Pi{∞, γi(∞)} with∑

Pi =
∑

ε(γi)γ
−1
i Pi .

Proof. This follows from Proposition2.1.

Figure1 illustrates Lemma2.3with a trivial-character example.

r
∞

-P r
γ∞

-Q r
β∞

rα -P

r
γα

-Q rβα

C
C
C
CO

C
C
C
CO

The modular symbol

P {∞, γ∞} + Q{γ∞, β∞}
= P {∞, γ∞}+Q{∞, β∞}−Q{∞, γ∞}

can be ‘transported’ to

P {α, γ α} + Q{γα, βα},
provided that

P + Q − Q = γ −1P + β−1Q − γ −1Q.

Figure 1: ‘Transporting’ a transportable modular symbol.

Theorem 2.4. A modular symbol is transportable if and only if it is cuspidal.

Proof. By Lemma2.3, every transportable modular symbols is cuspidal, so we must prove
that every cuspidal symbol is transportable.

Let I = IN,ε be the ideal in the group ring of00(N) generated by all elements
of the form ε(γ ) − γ for γ ∈ 00(N). Suppose thatv ∈ Sk(N, ε). Use the relation
{α, β} = {∞, β} − {∞, α} ∈ M to see that anyv is the image of an elementṽ ∈ Mk

of the form

ṽ =
∑
β∈Q

Pβ ⊗ {∞, β} ∈ Mk

with only finitely manyPβ nonzero. For later convenience, we setP∞ = 0, and take sums
over allβ ∈ P 1(Q). The boundary mapδ lifts in a natural way toMk = Vk−2 ⊗ M, as
illustrated.

I (Vk−2 ⊗ M) //

��

I (Vk−2 ⊗ B)

��
Vk−2 ⊗ M

δ̃ //

��

Vk−2 ⊗ B

��
Sk(N, ε)

� � // Mk(N, ε)
δ // Bk(N, ε)
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Bearing in mind torsion, our assumption thatδ(v) = 0 implies that for some nonzero
M ∈ Z, we haveMδ̃(ṽ) ∈ I (Vk−2 ⊗ B). So there areQγ,β ∈ Vk−2, for γ ∈ 00(N) and
β ∈ P1(Q), only finitely β many nonzero, such that

Mδ̃(ṽ) =
∑
γ,β

(
ε(γ ) − γ

)(
Qγ,β ⊗ {β}).

We now use a summation trick.

Mδ̃(ṽ) = M
∑
β

(
Pβ ⊗ {β} − Pβ ⊗ {∞})

=
∑
γ,β

(
ε(γ )Qγ,β ⊗ {β} − (γQγ,β) ⊗ {γβ})

=
∑
γ,β

ε(γ )Qγ,β ⊗ {β} − (γQγ,γ −1β) ⊗ {β}

=
∑
γ,β

(
ε(γ )Qγ,β − γQγ,γ −1β

) ⊗ {β}.

This shows that

M
∑
β

(
Pβ ⊗ {β} − Pβ ⊗ {∞}) =

∑
γ,β

(
ε(γ )Qγ,β − γQγ,γ −1β

) ⊗ {β}. (3)

Equating terms, we deduce that forβ 6= ∞,

MPβ =
∑
γ

(
ε(γ )Qγ,β − γQγ,γ −1β

)
. (4)

Using this expression forPβ , as well as the fact thatε(γ )γ −1 acts trivially onMk(N, ε),
we find that

Mv = M
∑
β

Pβ{∞, β} =
∑
γ,β

(
ε(γ )Qγ,β − γQγ ,γ −1β

){∞, β}

=
∑
γ,β

ε(γ )Qγ,β − ε(γ )γ −1((γQγ ,γ −1β){∞, β})

=
∑
γ,β

ε(γ )Qγ,β{∞, β} − ε(γ )Qγ,γ −1β

{
γ −1∞, γ −1β

}

=
∑
γ,β

ε(γ )Qγ,β{∞, β} − ε(γ )Qγ,β

{
γ −1∞, β

}

=
∑
γ,β

ε(γ )Qγ,β

{∞, γ −1∞}
. (5)

Equating coefficients of{∞} in Equation3, we have

−M
∑
β

Pβ =
∑
γ

(
ε(γ )Qγ,∞ − γQγ,γ −1∞

)
,

which, combining with Equation4, and recalling thatP∞ = 0, means that

−
∑

γ,β 6=∞

(
ε(γ )Qγ,β − γQγ,γ −1β

) =
∑
γ

(
ε(γ )Qγ,∞ − γQγ,γ −1∞

)
,
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Cuspidal modular symbols are transportable

and hence ∑
γ,β

(
ε(γ )Qγ,β − γQγ,β

) = 0.

Using the expression

v = − 1
M

∑
β,γ

ε(γ )Qγ,β

{∞, γ −1∞}
obtained from Equation5, we see that this is the condition forv to be transportable.

Corollary 2.5. Fix α ∈ h∗. Every element ofSk(N, ε) is a sum of modular symbols of the
formP {α, γ (α)}.
Proof. Let x ∈ Sk(N, ε). Proposition2.1 implies thatx is transportable, so there existPi

andγi such that

x =
∑

Pi{∞, γi(∞)} =
∑

Pi{β, γi(β)}
for anyβ ∈ h∗. Takingβ = α proves the corollary.

Remark 2.6.
1. Whenk = 2, the corollary follows from [4, Section 1], which asserts that map

00(N) → S2(00(N)) = H1(X0(N), Z) sendingγ to {α, γ (α)} is a surjective group
homomorphism.

2. In Proposition2.7below, we shall prove more generally that every element ofMk(N, ε)

is a sum of modular symbols of the formP {α, γ (α)}, as long as we allowα to vary
overP1(Q).

2.3. What space do the symbolsP {∞, γ (∞)} span?

Suppose thatN andk are positive integers, withk even.

Definition 3. For anyα ∈ P1(Q), let Wα denote the subspace ofMk(00(N); Q) spanned
by symbols of the formP {α, γ (α)}, for P ∈ Vk−2 andγ ∈ 00(N).

Corollary2.5 draws our attention toW∞. SinceW∞ containsSk(00(N)), it is natural
to ask how much bigger it is. As mentioned in Remark2.6, whenk = 2, Manin proved that
for anyα ∈ P1(Q), we haveWα = W∞ = S2(00(N); Q). We now computeWα for any
weightk > 2.

Proposition 2.7. Suppose thatk > 2. Then the spaceWα is equal to the inverse image
under the boundary mapδ of the one-dimensional subspaceVk−2{α} ⊂ Bk(00(N); Q).

HencedimWα = dimSk(00(N); Q) + 1 andMk(00(N); Q) = ∑
α∈P1(Q) Wα.

Proof. In [5, Section 1.4], Merel shows thatVk−2{α} has dimension 1 (see the proof of
[5, Section 1.4, Proposition 4]), and thatP(X, Y ){u/v} is nonzero ifP(u, v) 6= 0.

Corollary 2.5 implies thatWα contains the kernelSk(00(N)) of the boundary mapδ.
It thus suffices to show thatδ(Wα) = Vk−2{α}. ForP ∈ Vk−2 andγ ∈ 00(N), we have

δ(P {α, γ (α)}) = P {γ (α)} − P {α} = (γ −1P − P){α} ∈ Vk−2{α},
soδ(Wα) ⊂ Vk−2{α}.
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Forγ = (
1 0
N 1

) ∈ 00(N), we have

δ
(
Xk−3Y {α, γ (α)}) = (

γ −1(Xk−3Y ) − Xk−3Y
){α}

= (
Xk−3(NX + Y ) − Xk−3Y

){α}
= NXk−2{α}.

If α 6= 0, then, as mentioned above,Xk−2{α} 6= 0. (If α = 0, useXYk−3 andγ = (
1 N
0 1

)
instead.) Because there is a nonzero element inδ(Wα) and Vk−2{α} has dimension 1,
it follows that δ(Wα) = Vk−2{α}. The final claim of the proposition is true because
Bk(00(N); Q) = ∑

α∈P1(Q) Vk−2{α}.

Corollary 2.8. Fix α ∈ P1(Q). ThenWα = Mk(00(N); Q) if and only ifN = 1.

Proof. WhenN = 1, γ can be any element of SL2(Z), so the assertion is clear. Next,
suppose thatWα = Mk(00(N); Q). If k = 2, then by [4, Section 1],Wα = Sk(00(N); Q),
soN = 1 since there is always a weight 2 Eisenstein series whenN > 1. Next, suppose that
k > 2. By [5, Section 1.4, Proposition 5],δ is surjective and by [5, Section1.4, Proposition 5]
the dimension of the image ofδ equals #00(N)\P1(Q). Combining Proposition2.7 with
our assumption thatWα = Mk(00(N); Q) implies that #00(N)\P1(Q) = 1, soN = 1,
as claimed.

3. Application to computing periods of newforms

The authors were led to introduce transportable modular symbols in order to study the
error term(P − ε(γ )γ −1P){∞, α} of equation1 of Proposition2.1 in the context of
computing periods of newforms. There are many ways to compute periods of newforms,
but we hope that the method given below will be of value in some contexts.

Section3.1 contains an algorithm for computing periods that relies on Theorem2.4.
We present a potentially more efficient method in Section3.2.

3.1. An algorithm for computing periods

Letf = ∑
anq

n ∈ Sk(N, ε) be a cuspform, and letx ∈ Mk(N, ε) be a modular symbol.
Then〈f, x〉 is a linear combination of integrals of the form

〈
f, XmY k−2−m{α, ∞}〉 = 2πi

∫ i∞

α

f (z)zmdz, (6)

(see [5, Section 1.5]), whereα ∈ h∗ and the integerm satisfies 06 m 6 k − 2. If α ∈ h,
then the imaginary part ofα is positive, so

2πi

∫ i∞

α

f (z)zmdz =
∑
n>1

ancn,

where

cn = 2πi

∫ i∞

α

zme2πinzdz.

The reversal of summation and integration is justified because the sum converges absolutely.
We compute thecn using the following formula, which we obtain using repeated integration
by parts.
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Lemma 3.1. ∫ i∞

α

e2πinzzmdz = e2πinα
m∑

s=0

{
(−1)sαm−s

(2πin)s+1
·

m∏
j=(m+1)−s

j

}
.

If α has large imaginary part, thecn will rapidly converge to 0 asn → ∞. However, the
reversal of summation and integration above need not be valid whenα is a real number, so for
computational purposes we are led to express periods in terms of integrals with end points
that are inh. Whenk = 2, this is easy because of the identity{∞, γ (∞)} = {α, γ (α)},
which is valid for anyα ∈ h∗. However, this identity can fail whenk > 2; the failure is
made precise in Proposition2.1.

Since we can take the real part ofα to be greater than 0, each of the terms on the right-hand
side of Equation1 can be computed using the sum given by Lemma3.1.

We showed in Section2 that every cuspidal modular symbol can be expressed as a sum
of symbols of the formP {∞, γ (∞)}. Periods of modular symbols of this form can then be
computed using the following algorithm.

Algorithm 3.2. Given a tripleγ ∈ 00(N), P ∈ Vk−2 andg ∈ Sk(N, ε), this algorithm
computes the period integral〈g, P {∞, γ (∞)}〉.

Expressγ as
(

a b
cN d

) ∈ 00(N), and setα = (−d + i)/cN in Proposition2.1.

Replacing γ by −γ if necessary, we find that the imaginary parts ofα and
γ (α) = (a + i)/cN are both equal to the positive number 1/cN .

Equation6 and Lemma3.1 can now be used to compute the period integrals provided
by Proposition2.1.

3.2. TheWN -trick

In this section, in order to obtain a potentially more efficient way of computing periods
than Algorithm3.2, we generalize the method of Cremona [3] to even integer weightk > 2.
In Algorithm 3.2, with γ = (

a b
cN d

)
, the endpoints of the corresponding integrals have

imaginary part 1/cN . However, using the following trick, one can increase the imaginary
part of all the endpoints involved to at least 1/d

√
N , which is sometimes a significant

improvement.

Recall that the Atkin–Lehner involutionW = WN is induced by the matrix
(

0 −1
N 0

)
;

it acts on modular forms by sending a cuspformf ∈ Sk(N, ε) to the form

f |W(z) = N−k/2z−kf (−1/(Nz)) ∈ Sk

(
N, ε−1).

If f is an eigenvector forW , then necessarilyε = ε−1. For the rest of this section, we
assume thatε2 = 1. ThenW acts onMk(N, ε) by

W
(
P(X, Y ){α, β}

)
= P(Y, −NX)

Nk/2−1

{
− 1

Nα
, − 1

Nβ

}
,

and this action is compatible with the integration pairing.
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Proposition 3.3. Let g ∈ Sk(N, ε) be a cuspform that is an eigenform for the Atkin–
Lehner involutionW having eigenvaluew. Then for any transportable modular symbol∑m

j=1 Pj {∞, γj (∞)} withγj ∈ 00(N) andPj ∈ Vk−2, we have for anyα ∈ h the following
formula: 〈

g,

m∑
j=1

Pj {∞, γj (∞)}
〉

=
〈
g,

m∑
j=1

w
Pj (Y, −NX)

Nk/2−1
{W(α), ∞}

+
m∑

j=1

(
Pj − w

Pj (Y, −NX)

Nk/2−1

) {
i√
N

, ∞
}

−
m∑

j=1

Pj

{
γj (α), ∞}〉

.

HereW(α) = −1/(Nα).

If γj =
(

aj bj

c d

)
, wherec andd are fixed integers that do not depend onj , then〈

g,

m∑
j=1

Pj {∞, γj (∞)}
〉

=
〈
g,

m∑
j=1

w
Pj (Y, −NX)

Nk/2−1

{
c

d
+ i

d
√

N
, ∞

}

+
m∑

j=1

(
Pj − w

Pj (Y, −NX)

Nk/2−1

) {
i√
N

, ∞
}

−
m∑

j=1

Pj

{
bj

d
+ i

d
√

N
, ∞

}〉
.

Proof. By Proposition2.1, our condition of transportability implies that we have
m∑

j=1

Pj {∞, γj (∞)} =
m∑

j=1

Pj {α, γj (α)}.

The steps of the following computation are described below.

〈g, Pj {α, γj (α)}〉
=

〈
g, Pj

{
α,

i√
N

}
+ Pj

{
i√
N

, W(α)

}
+ Pj {W(α), γj (α)}

〉

=
〈
g, w

W(Pj )

Nk/2−1

{
W(α),

i√
N

}
+ Pj

{
i√
N

, W(α)

}
+ Pj {W(α), γj (α)}

〉

=
〈
g,

(
w

W(Pj )

Nk/2−1
− Pj

) {
W(α),

i√
N

}
+ Pj {W(α), ∞} − Pj {γj (α), ∞}

〉

=
〈
g, w

W(Pj )

Nk/2−1
{W(α), ∞} +

(
Pj − w

W(Pj )

Nk/2−1

) {
i√
N

, ∞
}

− Pj {γj (α), ∞}
〉
.

In the first step, we break the path fromα toγj (α) into three paths. In the second step, we
apply theW -involution to the first term, and use the fact that the action ofW is compatible
with the pairing〈 , 〉. The third step involves combining the first two terms, and breaking
up the third. In the final step, we replace{W(α), i/

√
N} by {W(α), ∞} + {∞, i/

√
N},

and regroup. Taking the sum of both sides of the expression overj from 1 tom gives the
first result of the proposition.
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Now, following Cremona [2, Section 2.10.8], in order to simultaneously maximize the
imaginary parts ofγj (α) andW(α), we take

α = γ −1
1

(
b1

d
+ i

d
√

N

)
.

In this case we have

W(α) = c

d
+ i

d
√

N

and

γj (α) = bj

d
+ i

d
√

N
.

The second formula then follows.

Remark 3.4. Letγ = (
a b
c d

) ∈ 00(N). Since the imaginary parts of the termsi/
√

N , γj (α)

andW(α) in the second part of the proposition are all relatively large, the sums appearing
in Equation6 converge relatively quickly ifd is small. However, we emphasize thatit is
extremely important to chooseγj in Proposition3.3with d small; otherwise, the series will
converge very slowly.

4. Examples

The example of Section4.1illustrates some of the results of this paper for the weight-12
modular form1, and Section4.2 concerns a nonrational form of level 11 and weight 4.
The computations below were done using the first author’s implementation of the algorithms
of [6] in Magma [1].

4.1. The weight-12 form1

Let f = 1 = q · ∏(1− qn)24 be the unique normalized eignform inS12(1). The space
M12(1; Q) of modular symbols has dimension 3, and is spanned bya1 = X10{0, ∞},
a2 = X8Y 2{0, ∞}, and a3 = X9Y {0, ∞}, and the cuspidal subspaceS12(1; Q) has
dimension 2, and is spanned bya2 anda3.

As explained in Example2.2, there is a transportable modular symbol associated to each
nonidentity elementγ ∈ SL2(Z). The transportable symbol(

2X2 + 2XY − Y 2)5{∞, 1
2

} = −300X9Y {0, ∞}
is attached to

(
1 1
2 3

)
, and

−4665600X8Y 2{0, ∞} − 87300X9Y {0, ∞}
is attached to

( −8 5
19 −12

)
. Together, these two transportable symbols spanS12(1; Q).

The period map8f sendsXiY 10−i{0, ∞} to 2πi
∫ ∞

0 zif (z) dz. These integrals are, up
to scalars, special values ofL(f, s) at critical integers, so they could be computed using
any of the standard methods. In any case, we obtain an approximation for the period map:

8f (a1) ∼ 0.0374412812,

8f (a2) ∼ −0.0159703242,

8f (a3) ∼ −0.0232962319i.
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The period lattice3 of f is spanned by8f ((1/14)a2) and 8f ((1/48)a3). (The frac-
tions appear becauseS12(1; Z) has basis(1/14)a2 and (1/48)a3.) SinceC/3 is a one-
dimensional torus, it makes sense to consider the corresponding elliptic curve overC. This
is the elliptic curvey2 = x3 − 27c4x − 54c6, wherec4 ∼ 28091951348793344.58 and
c6 ∼ −4.70682548×1024. Thej -invariant of this curve is approximately 2592849.394270.
Is j a transcendental number?

4.2. Level11, weight4

The unique normalized eigenform inS4(00(11)) is

f = q + αq2 + (−4α + 3)q3 + (2α − 6)q4 + (8α − 7)q5 + · · · ,

whereα2 − 2α − 2 = 0. The spaceM4(00(11); Q) has basis

a1 = X2{0, ∞},
a2 = (

64X2 + 16XY + Y 2){ − 1
8, 0

}
,

a3 = (
49X2 + 14XY + Y 2){ − 1

7, 0
}
,

a4 = (
25X2 + 10XY + Y 2){ − 1

5, 0
}
,

a5 = (
100X2 + 20XY + Y 2){ − 1

10, 0
}
,

a6 = Y 2{∞, 0}.
The subspaceS4(00(11); Q) has basisb1 = a2 − a6, b2 = a3 − a6, b3 = a4 − a6,
b4 = a5 − a6.

As explained in Example2.2, there is a transportable modular symbol associated to each
nonidentity elementγ ∈ 00(11). For example the transportable symbol(

11X2 − 11XY + Y 2){∞, 10
11

} = 11(a5 − a6)

is associated toγ = ( 10 −1
11 −1

)
. The symbol

−5
4b1 + 5

4b2 − 1
4b3 + 1

4b4

is the transportable symbol associated to
( 5 −1

11 −2

)
. The symbol

−9
8b1 − 19

8 b2 + 19
8 b3 + 99

8 b4

is associated to
(

4 1
11 3

)
, and

−27
8 b1 + 11

8 b2 + 9
8b3 + 49

8 b4

is associated to
( 3 −2

11 −7

)
. Together, these four transportable symbols spanS4(00(11); Q).

In order to illustrate Section2.3, we remark that symbols of the formP {∞, γ (∞)}
do not span all ofM4(00(11); Q), but they do span a space bigger thanS4(00(11); Q).
Corollary 2.5 implies that their span containsS4(00(11); Q); however, the symbol
Y 2{∞, 1/11} does not lie inS4(00(11); Q).

Acknowledgements.The authors would like to thank L. Merel and J. Cremona for helpful
advice, I. Kiming for improving the proof of Theorem2.4, and the referee for several helpful
remarks.
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2 RIBET AND STEIN, SERRE’S CONJECTURES

Preface

We shall begin by discussing some examples of mod ` representations of Gal(Q/Q).
We’ll try to motivate Serre’s conjectures by referring first to the case of represen-
tations that are unramified outside `; these should come from cusp forms on the
full modular group SL(2,Z). In another direction, one might think about repre-
sentations coming from `-division points on elliptic curves, or more generally from
`-division points on abelian varieties of “GL2-type.” Amazingly, Serre’s conjectures
imply that all odd irreducible two-dimensional mod ` representations of Gal(Q/Q)
may be realized in spaces of `-division points on such abelian varieties. The weak
Serre conjecture states that all such representations come from modular forms, and
then it takes only a bit of technique to show that one can take the modular forms
to have weight two (if one allows powers of ` in the level).

Since little work has been done toward proving the weak Serre conjecture, these
notes will focus on the bridge between the weak and the strong conjectures. The
latter states that each ρ as above comes from the space of cusp forms of a specific
weight and level, with these invariants between determined by the local behavior of ρ
at ` and at primes other than ` (respectively). To motivate the strong conjecture,
and to begin constructing the bridge, we discuss the local behavior of those ρ that
do come from modular forms. For the most part, we look only at forms of weight
k ≥ 2 whose levels N are prime to `. For these forms, the behavior of ρ at ` is
described in detail in [32], where theorems of P. Deligne and Fontaine are recalled.
(In [32, §6], B. Edixhoven presents a proof of Fontaine’s theorem.) Further, the
behavior of ρ at primes p 6= ` may be deduced from H. Carayol’s theorems [11, 12],
which relate the behavior at p of the `-adic representations attached to f with the
p-adic component of the automorphic representation of GL(2) that one associates
with f . (The behavior of ρ at ` in the case where ` divides N is analyzed in [89].)

In [102], Serre associates to each ρ a level N(ρ) and a weight k(ρ). These
invariants are defined so that N(ρ) is prime to ` and so that k(ρ) is an integer greater
than 1. As Serre anticipated, if ρ arises from a modular form of weight k and level N ,
and if k is at least 2 and N is prime to `, then one has k(ρ) ≤ k and N(ρ) | N . To
find an f for which N = N(ρ) and k = k(ρ) is to “optimize” the level and weight of a
form giving ρ. As Edixhoven explains in his article [32], weight optimization follows
in a somewhat straightforward manner from the theorems of Deligne and Fontaine
alluded to above, Tate’s theory of θ-cycles, and Gross’s theorem on companion
forms [46] (see also [17]). Moreover, it is largely the case that weight and level
optimization can be performed independently.

In [12], Carayol analyzes the level optimization problem. He shows, in par-
ticular, that the problem breaks down into a series of sub-problems, all but one
of which he treats by appealing to a single lemma, the lemma of [12, §3]. The
remaining sub-problem is the one that intervenes in establishing the implication
“Shimura-Taniyama =⇒ Fermat.” This problem has been discussed repeatedly
[83, 84, 86, 87]. In Section 3.10, we will explain the principle of [86].

The case ` = 2 is the only remaining case for which the level optimization
problem has not been resolved. The proof in [26, 87] of level optimization for
` ≥ 3 does not fully exploit multiplicity one results, but appears to completely
break down when ` = 2. In the recent paper [9], Kevin Buzzard observed that
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many new cases of multiplicity one are known and that this can be used to obtain
new level optimization results when ` = 2.

In view of these remarks it might be appropriate for us to summarize in a few
sentence what is known about the implication “weak Serre conjecture =⇒ strong
Serre conjecture.” As explained in [26], for ` ≥ 5 the weak conjecture of Serre
implies the strong conjecture about the optimal weight, level, and character. For
` = 3, the weak conjecture implies the strong conjecture, except in a few well-
understood situations, where the order of the character must be divisible by ` when
the level is optimal. The difficulty disappears if one works instead with Katz’s
definition of a mod ` modular form, where the character is naturally defined only
mod `. The situation is less complete when ` = 2, but quite favorable. When ` = 2
the situation concerning the weight is explained by Edixhoven in [32]: the results
of [17] do not apply and those of [46] rely on unchecked compatibilities.

A certain amount of work has been done on the Hilbert modular case, i.e., the
case where Q is replaced by a totally real number field F . For this work, the reader
may consult articles of Frazer Jarvis [52, 53, 54], Kazuhiro Fujiwara [45], and Ali
Rajaei [79]. The authors are especially grateful to Fujiwara for sending them a
preliminary version of his manuscript, “Level optimization in the totally real case.”
However, these notes will treat only the classical case F = Q.

This paper emerged out of a series of lectures that were delivered by the first
author at the 1999 IAS/Park City Mathematics Institute. The second author cre-
ated the text based on the lectures and added examples, diagrams, an exercise
section, and the index. Brian Conrad contributed the appendix, which describes a
construction of Shimura.

For other expository accounts of Serre’s conjectures, the reader may consult
the articles of Edixhoven [33, 34, 35], H. Darmon [22], and R. Coleman [15].

The authors would like to thank K. Buzzard and Serre for many useful com-
ments on various drafts of this paper, B. Conrad for providing the appendix,
M. Emerton for his enlightening lecture on Katz’s definition of modular forms,
N. Jochnowitz for suggestions that improved the exposition in Section 2.2, and
L. Kilford for help in finding examples of mod 2 representations in Section 3.7.

Kenneth A. Ribet
William A. Stein
University of California, Berkeley





CHAPTER 1

Introduction to Serre’s conjecture

1.1. Introduction

Let’s start with an elliptic curve E/Q. Nowadays, it’s a familiar activity to consider
the Galois representations defined by groups of division points of E. Namely, let n
be a positive integer, and let E[n] be the kernel of multiplication by n on E(Q).
The group E[n] is free of rank two over Z/nZ. After a choice of basis, the action
of Gal(Q/Q) on E[n] is given by a homomorphism

ρn : Gal(Q/Q)→ Aut(E[n]) ≈ GL(2,Z/nZ).

This homomorphism is unramified at each prime p that is prime to the product of n
with the conductor of E (see Exercise 15). For each such p, the element ρn(Frobp)
is a 2×2 matrix that is well defined up to conjugation. Its determinant is p mod n;
its trace is ap mod n, where ap is the usual “trace of Frobenius” attached to E
and p, i.e., the quantity 1 + p − #E(Fp). In his 1966 article [107], G. Shimura
studied these representations and the number fields that they cut out for the curve
E = J0(11). (This curve was also studied by Serre [91, pg. 254].) He noticed
that for prime values n = `, the representations ρn tended to have large images.
In [93], J-P. Serre proved that for any fixed elliptic curve E, not having complex
multiplication, the indices

[GL(2,Z/nZ) : ρn(Gal(Q/Q))]

are bounded independently of n. In Shimura’s example, Serre proved that

[GL(2,Z/`Z) : ρ`(Gal(Q/Q))] = 1

for all ` 6= 5 (see [93, §5.5.1]).
In this article, we will be concerned mainly with two-dimensional representa-

tions over finite fields. To that end, we restrict attention to the case where n = ` is
prime. The representation ρ` is “modular” in the familiar sense that it’s a repre-
sentation of a group over a field in positive characteristic. The theme of this course
is that it’s modular in a different and deeper sense: it comes from a modular form!
Indeed, according to a recent preprint of Breuil, Conrad, Diamond and Taylor (see
[7, 19, 114, 117]), the Shimura-Taniyama conjecture is now a theorem—all elliptic
curves over Q are modular!! Thus if N is the conductor of E, there is a weight-two
newform f =

∑∞
n=1 cnqn (q = e2πiz) on Γ0(N) with the property that ap = cp

for all p prime to N . Accordingly, ρ` is connected up with modular forms via the
relation tr(ρ`(Frobp)) ≡ cp (mod `), valid for all but finitely many primes p.

The Shimura-Taniyama conjecture asserts that for each positive integer N there
is a bijection between isogeny classes of elliptic curves A over Q of conductor N
and rational newforms f on Γ0(N) of weight two. Given A, the Shimura-Taniyama

5
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conjecture produces a modular form f =
∑∞

n=1 cnqn whose Dirichlet series is equal
to the L-series of A:

∞∑

n=1

cn

ns
= L(f, s) L(A, s) =

∞∑

n=1

an

ns .

The integers an encode information about the number of points on A over various
finite fields Fp. If p is a prime not dividing N , then ap = p + 1−#A(Fp); if p | N ,

ap =





−1 if A has non-split multiplicative reduction at p

1 if A has split multiplicative reduction at p

0 if A has additive reduction at p.

The integers an are obtained recursively from the ap as follows:

• apr =

{
apr−1ap − papr−2 if p - N

ar
p if p | N

• anm = anam, if (n,m) = 1.

The conjectures made by Serre in [102], which are the subject of this paper,
concern representations ρ : Gal(Q/Q) → GL(2,F`). We always require (usually
tacitly) that our representations are continuous. The continuity condition just
means that the kernel of ρ is open, so that it corresponds to a finite Galois exten-
sion K of Q. The representation ρ then embeds Gal(K/Q) into GL(2,F`). Since K
is a finite extension of Q, the image of ρ is contained in GL(2,F) for some finite
subfield F of F`.

Q

GQK

Q

GQ

²²²²

ρ

&&MMMMMMMMMMMM

Gal(K/Q)
Â Ä // GL(2,F`)

For various technical reasons, the original conjectures of Serre insist that ρ be irre-
ducible. It is nevertheless fruitful to consider the reducible case as well (see [111]).

The conjectures state (in particular) that each continuous irreducible ρ that
satisfies a necessary parity condition “arises from” (or is associated with) a suitable
modular form mod `. To explain what’s going on, let’s start with

∆ :=
∞∑

n=1

τ(n)qn = q
∞∏

i=1

(1− qi)24,

the unique (normalized) cusp form of weight 12 on SL(2,Z). In [92], Serre con-
jectured the existence of a “strictly compatible” family of `-adic representations
of Gal(Q/Q) whose L-function is the L-function of ∆, namely

L(∆, s) =

∞∑

n=1

τ(n)n−s =
∏

p

(1− τ(p)p−s + p11−2s)−1,

where the product is taken over all prime numbers p. The conjectured `-adic
representations were constructed soon after by Deligne [24]. Specifically, Deligne
constructed, for each prime `, a representation

ρ`∞ : Gal(Q/Q)→ GL(2,Z`),
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unramified outside `, such that for all primes p 6= `,

tr(ρ`∞(Frobp)) = τ(p), det(ρ`∞(Frobp)) = p11.

On reducing ρ`∞ mod `, we obtain a representation

ρ` : Gal(Q/Q)→ GL(2,F`)

with analogous properties. (Equalities are replaced by congruences mod `.) In
other words, the ρ` for ∆ are just like the ρ` for an elliptic curve E, except that the
integers ap are replaced by the corresponding values of the τ -function. The determi-

nant of ρ` is the 11th power of the mod ` cyclotomic character χ : Gal(Q/Q)→ F∗
` ,

i.e., the character giving the action of Gal(Q/Q) on the group of `th roots of unity
in Q (see Section 1.5).

More generally, take a weight k ≥ 12 and suppose that f =
∑

n cnqn is a
nonzero weight-k cusp form for SL(2,Z) that satisfies f |Tn = cnf for all n ≥ 1, Tn

being the nth Hecke operator on the space of cusp forms of weight k for SL(2,Z)
(see Section 1.5). Then the complex numbers cn (n ≥ 1) are algebraic integers.
Moreover, the field E := Q(. . . cn . . .) generated by the cn is a totally real number
field (of finite degree over Q). Thus the cn all lie in the integer ring OE of E. For
each ring homomorphism ϕ : OE → F`, one finds a representation

ρ = ρϕ : Gal(Q/Q)→ GL(2,F`),

unramified outside `, such that

tr(ρ(Frobp)) = ϕ(cp), det(ρ(Frobp)) = pk−1

for all p 6= `. We have det ρ = χk−1. Of course, there is no guarantee that ρ is
irreducible. We can (and do) suppose that ρ is semisimple by replacing it by its
semisimplification. Then ρ is determined up to isomorphism by the displayed trace
and determinant conditions; this follows from the Cebotarev density theorem and
the Brauer-Nesbitt theorem [21], which states that semisimple representations are
determined by their characteristic polynomials.

It is important to note that k is necessarily an even integer; otherwise the space
Sk(SL(2,Z)) of weight-k cusp forms on SL(2,Z) is easily seen to be 0. Thus the
determinant χk−1 of ρ is an odd power of χ. In particular, det ρ : Gal(Q/Q)→ F∗

`

is unramified outside ` and takes the value −1 on complex conjugations c ∈
Gal(Q/Q). It’s a nice exercise to check that, conversely, all continuous homo-
morphisms with these properties are odd powers of χ (see Exercise 1).

In the early 1970s, Serre conjectured that all homomorphisms that are “like ρ”
come from cusp forms of some weight on SL(2,Z). Namely, let

ρ : Gal(Q/Q)→ GL(2,F`)

be a continuous, irreducible representation that is (1) unramified outside ` and (2)
of odd determinant, in the sense that det ρ(c) = −1 ∈ F` for complex conjugations
c ∈ Gal(Q/Q). In a May, 1973 letter to Tate, Serre conjectured that ρ is of the
form ρϕ. This means that there is a weight k ≥ 12, an eigenform f ∈ Sk(SL(2,Z)),

and a homomorphism ϕ : OE → F` (where OE is the ring of integers of the field
generated by the coefficients of f) so that ρϕ and ρ are isomorphic.

To investigate Serre’s conjecture, it is fruitful to consider the operation ρ 7→ ρ⊗
χ on representations. This “twisting” operation preserves the set of representations
that come from modular forms. Indeed, let θ = q d

dq be the classical differential
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operator
∑

anqn 7→ ∑
nanqn. According to Serre and Swinnerton-Dyer [61, 94,

112], if f is a mod ` form of weight k, then θf is a mod ` form of weight k + ` + 1.
Then if ρ is associated to f , ρ ⊗ χ is associated with θf . According to a result
of Atkin, Serre and Tate (see [97, Th. 3] and Section 2.1), if ρ comes from an
eigenform in some space Sk(SL(2,Z)), then a suitable twist ρ⊗χi of f comes from
a form of weight ≤ ` + 1.

Serre’s conjecture thus has the following consequence: each two-dimensional
irreducible odd representation of Gal(Q/Q) over F` that is unramified outside `
has a twist (by a power of χ) coming from an eigenform on SL(2,Z) of weight at
most ` + 1. In particular, suppose that ` < 11. Then the spaces Sk(SL(2,Z)) with
k ≤ `+1 are all 0; as a result, they contain no nonzero eigenforms! The conjecture
that all ρ are modular (of level 1) thus predicts that there are no representations
of the type contemplated if ` is 2, 3, 5 or 7. In support of the conjecture, the
non-existence statement was proved for ` = 2 by J. Tate in a July, 1973 letter
to Serre [113]. Soon after, Serre treated the case ` = 3 by methods similar to
those of Tate. (See [113, p. 155] for a discussion and a reference to a note in Serre’s
Œuvres.) Quite recently, Sharon Brueggeman considered the case ` = 5; she proved
that the conjectured result follows from the Generalized Riemann Hypothesis (see
[8]). In another direction, Hyunsuk Moon generalized Tate’s result and proved
that there are only finitely many isomorphism classes of continuous semisimple
Galois representations ρ : GQ → GL4(F2) unramified outside 2 such that field
K/Q corresponding to the kernel of ρ is totally real (see [76]). Similar work in this
direction has been carried out by Joshi [58], under additional local hypothesis.

Serre discussed his conjecture with Deligne, who pointed out a number of sur-
prising consequences. In particular, suppose that one takes a ρ coming from an
eigenform f ′ of some weight and of level N > 1. On general grounds, ρ has the
right to be ramified at primes p dividing N as well as at the prime `. Suppose that,
by accident as it were, ρ turned out to be unramified at all primes p | N . Then
the conjecture would predict the existence of a level-1 form f ′ (presumably of the
same weight as f) whose mod ` representation was isomorphic to ρ. For example,
if N = `α is a power of `, then the conjecture predicts that ρ arises from a form f ′

of level 1. How could one manufacture the f ′?
The passage f Ã f ′ comes under the rubric of “level optimization”. When you

take a representation ρ that comes from high level N , and it seems as though that
representation comes from a lower level N ′, then to “optimize the level” is to cough
up a form of level N ′ that gives ρ.

Deligne pointed out also that Serre’s conjecture implies that representations ρ
over F` are required to “lift” to λ-adic representations of Gal(Q/Q). In the recent
articles [80] and [81], R. Ramakrishna used purely Galois cohomological techniques
to prove results in this direction.

1.2. The weak conjecture of Serre

In the mid 1980s, Gerhard Frey began lecturing on a link between Fermat’s Last
Theorem and elliptic curves (see [42, 43]). (Earlier, Hellegouarch had also consid-
ered links between Fermat’s Last Theorem and elliptic curves; see the MathSciNet
review and Appendix of [48].) As is now well known, Frey proposed that if a` + b`

was a perfect `th power, then the elliptic curve y2 = x(x − a`)(x + b`) could be
proved to be non-modular. Soon after, Serre pointed out that the non-modularity
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contemplated by Frey would follow from suitable level-optimization results concern-
ing modular forms [101]. To formulate such optimization results, Serre went back
to the tentative conjecture that he had made 15 years earlier and decided to study
representations ρ : Gal(Q/Q)→ GL(2,F`) that are not necessarily unramified at `.
The results, of course, were the conjectures of [102].

An important consequence of these conjectures is the so-called “weak conjecture
of Serre.” As background, we recall that Hecke eigenforms on congruence subgroups
of SL(2,Z) give rise to two-dimensional representations of Gal(Q/Q). If we set
things up correctly, we get representations over F`. More specifically, take integers
k ≥ 2 and N ≥ 1; these are the weight and level, respectively. Let f =

∑
anqn be a

normalized Hecke eigenform in the space Sk(Γ1(N)) of complex weight-k cusp forms
on the subgroup Γ1(N) of SL(2,Z). Thus f is nonzero and it satisfies f |Tn = anf
for all n ≥ 1. Further, there is a character ε : (Z/NZ)∗ → C∗ so that f |〈d〉 =
ε(d)f for all d ∈ (Z/NZ)∗, where 〈d〉 is the diamond-bracket operator. Again,
let O be the ring of integers of the field Q(. . . an . . .) generated by the an; this
field is a number field that is either totally real or a CM field. Consider a ring
homomorphism ϕ : O → F` as before. Associated to this set-up is a representation
ρ : Gal(Q/Q)→ GL(2,F`) with properties that connect it up with f (and ϕ). First,
the representation is unramified at all p not dividing `N . Next, for all such p, we
have

tr(ρ(Frobp)) = ap, det(ρ(Frobp)) = pk−1ε(p);

the numbers ap and pk−1ε(p), literally in O, are mapped tacitly into F` by ϕ. The
representation ρ is determined up to isomorphism by the trace and determinant
identities that are displayed, plus the supplemental requirement that it be semisim-
ple. We are interested mainly in the (generic) case in which ρ is irreducible; in that
case, it is of course semisimple.

The construction of ρ from f , k and ϕ was described in [24]. In this article,
Deligne sketches a method that manufactures for each non-archimedean prime λ
of E a representation ρ̃λ : Gal(Q/Q)→ GL(2, Eλ), where Eλ denotes the comple-
tion of E at λ. Given ϕ, we let λ = ker ϕ and find a model of ρ̃λ over the ring
of integers Oλ of Eλ. Reducing ρ̃λ modulo λ, we obtain a representation over the
finite field Oλ/λOλ, and ϕ embeds this field into F`.

In fact, as Shimura has pointed out, the machinery of [24] can be avoided
if one seeks only the mod λ representation attached to f (as opposed to the full
λ-adic representation ρ̃λ). As the first author pointed out in [87], one can use
congruences among modular forms to find a form of weight two and level N`2 that
gives rise to ρ. Accordingly, one can find ρ concretely by looking within the group
of `-division points of a suitable abelian variety over Q: the variety J1(`

2N), which
is defined in Section 2.3 and in Conrad’s Appendix.

Which representations of Gal(Q/Q) arise in this way (as k, N , f and ϕ all
vary)? As in the case N = 1 (i.e., that where Γ1(N) = SL(2,Z)), any ρ that
comes from modular forms is an odd representation: we have det(ρ(c)) = −1 when
c ∈ Gal(Q/Q) is a complex conjugation. To see this, we begin with the fact that
ε(−1) = (−1)k, which generalizes (1.4); this follows from the functional equation
that relates f(az+b

cz+d ) to f(z) when
(

a b
c d

)
is an element of Γ0(N) (see Exercise 7). On

the other hand, using the Cebotarev density theorem, we find that det ρ = χk−1ε,
where χ is again the mod ` cyclotomic character and where ε is regarded now as a

map Gal(Q/Q)→ F
∗
` in the obvious way, namely by composing ε : (Z/NZ)∗ → F

∗
`
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with the mod N cyclotomic character. The value on c of the latter incarnation of ε
is the number ε(−1) = (−1)k. Since χ(c) = −1, we deduce that (det ρ)(c) = −1,
as was claimed.

Serre’s weak conjecture states that, conversely, every irreducible odd represen-
tation ρ : Gal(Q/Q)→ GL(2,F`) is modular in the sense that it arises from some f
and ϕ.

A concrete consequence of the conjecture is that all odd irreducible 2-dimensional
Galois representations ρ come from abelian varieties over Q. Given ρ, one should
be able to find a totally real or CM number field E, an abelian variety A over Q
of dimension [E : Q] that comes equipped with an action of the ring of integers O
of E, and a ring homomorphism ϕ : O → F` with the following property: Let
λ = kerϕ. Then the representation A[λ] ⊗O/λ F` is isomorphic to ρ. (In compar-

ing A[λ] and ρ, we use ϕ : O/λ ↪→ F` to promote the 2-dimensional A[λ] into a
representation over F`.)

Much of the evidence for the weak conjecture concerns representations taking
values in GL(2,Fq) where the finite field Fq has small cardinality. In his original
article [102, §5], Serre’s discusses a large number of examples of such representa-
tions. Serre uses theorems of Langlands [68] and Tunnell [115] to establish his
weak conjecture for odd irreducible representations with values in GL(2,F2) and
GL(2,F3). Further, he reports on numerical computations of J.-F. Mestre that
pertain to representations over F4 (and trivial determinant). Additionally, Serre
remarks [102, p. 219] that the weak conjecture is true for those representations
with values in GL(2,Fp) that are dihedral in the sense that their projective images

(in PGL(2,Fp)) are dihedral groups. (See also [29, §5] for a related argument.)
This section of Serre’s paper concludes with examples over F9 and F7.

More recently, representations over the fields F4 and F5 were treated, under
somewhat mild hypotheses, by Shepherd-Barron and Taylor [105]. For example,
Shepherd-Barron and Taylor show that ρ : Gal(Q/Q) → GL(2,F5) is isomorphic
to the 5-torsion representaton of an elliptic curve over Q provided that det ρ is the
mod 5 cyclotomic character. Because elliptic curves over Q are modular, it follows
that ρ is modular.

1.3. The strong conjecture

Fix an odd irreducible Galois representation

ρ : GQ → GL(2,F`).

As discussed above, the weak conjecture asserts that ρ is modular, in the sense that
there exists integers N and k such that ρ comes from some f ∈ Sk(Γ1(N)). The
strong conjecture goes further and gives a recipe for integers N(ρ) and k(ρ), then
asserts that ρ comes from Sk(ρ)(Γ1(N(ρ))). In any particular instance, the strong
conjecture is, a priori, easier to verify or disprove than the weak conjecture because
Sk(ρ)(Γ1(N(ρ))) is a finite-dimensional vector space that can be computed (using,
e.g., the algorithm in [73]). The relation between the weak and strong conjectures
is analogous to the relation between the assertion that an elliptic curve is modular
of some level and the assertion that an elliptic curve A is modular of a specific level,
the conductor of A.
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For each prime p, let Ip ⊂ GQ denote an inertia group at p. The optimal level
is a product

N(ρ) =
∏

p6=`

pn(p),

where n(p) depends only on ρ|Ip
. The optimal weight k(ρ) depends only on ρ|I`

.
The integer n(p) is a conductor in additive notation. In particular, n(p) = 0 if and
only if ρ is unramified at p.

View ρ as a homomorphism GQ → Aut(V ), where V is a two-dimensional

vector space over F`. It is natural to consider the subspace of inertia invariants:

V Ip := {v ∈ V : ρ(σ)v = v, all σ ∈ Ip}.
For example, V Ip = V if and only if ρ is unramified at p. Define

n(p) := dim(V/V Ip) + Swan(V ),

where the wild term Swan(V ) is the Swan conductor

Swan(V ) :=

∞∑

i=1

1

[G0 : Gi]
dim(V/V Gi) ≥ 0.

Here G0 = Ip and the Gi ⊂ G0 are the higher ramification groups.
Suppose that ρ arises from a newform f ∈ Sk(Γ1(N)). A theorem of Carayol

[12], which was proved independently by Livné [70, Prop. 0.1], implies that N(ρ) |
N . It is productive to study the quotient N/N(ρ). Let O be the ring of integers of
the field generated by the Fourier coefficients of f and let ϕ : O → F` be the map
such that ϕ(ap) = tr(ρ(Frobp)). Let λ be a prime of O lying over ` and Eλ be the
completion of Frac(O) at λ. Deligne [24] attached to the pair f, λ a representation

ρλ : GQ → GL(2, Eλ) = Aut(Ṽ )

where Ṽ is a two-dimensional vector space over Eλ. The representation ρλ can be
conjugated so that its images lies inside GL(2,Oλ); the reduction of ρλ modulo λ
is then ρ. The following diagram summarizes the set up:

GL(2, Eλ) = Aut(Ṽ )

GQ

ρλ
//

ρ

//

// GL(2,Oλ)

ϕ

((RRRRRRRRRRRRR

(
©

66lllllllllllll

GL(2,F`) = Aut(V )

Let m(p) be the power of p dividing the conductor of ρλ. In [12], Carayol

proves that m(p) = ordp N . As above, m(p) = dim(Ṽ /Ṽ Ip) + (wild term), and the

wild term is the same as for ρ. The power of p dividing N/N(ρ) is dim(Ṽ /Ṽ Ip)−
dim(V/V Ip) = dim V Ip−dim Ṽ Ip . Though Ṽ and V are vector spaces over different
fields, we can compare the dimensions of their inertia invariant subspaces. The
formula

(1.1) ordp(N) = n(p) + (dim V Ip − dim Ṽ Ip)

indicates how this difference is the deviation of N from the optimal level locally
at p. This is the description of n(p) that is used in proving that if ρ is modular at
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all, then it is possible to refine N and k to eventually discover that ρ arises from a
newform in Sk(ρ)(Γ1(N(ρ))). After much work (see [26, 87]) it has been shown that
for ` > 2 the weak and strong conjectures are equivalent. See [9] for equivalence in
many cases when ` = 2.

Rearranging (1.1) into

n(p) = ordp(N)− (dim V Ip − dim Ṽ Ip)

provides us with a way to read off N(ρ) from ordp(N), dim V Ip , and dim Ṽ Ip . If
f ∈ Sk(Γ1(N)) gives rise to ρ and ` - N , then k(ρ) ≤ k. In contrast, if we allow
powers of ` in the level then the weight k can always be made equal to 2.

1.4. Representations arising from an elliptic curve

Equations for elliptic curves can be found in the Antwerp tables [4] and the tables
of Cremona [20]. For example, consider the elliptic curve B given by the equation
y2+y = x3+x2−12x+2. This is the curve labeled 141A1 in [20]; it has conductor
N = 3 · 47 and discriminant ∆ = 37 · 47. There is a newform f ∈ S2(Γ0(141))
attached to B. Because N is square free, the elliptic curve B is semistable, in the
sense that B has multiplicative reduction at each prime.

The curve B is isolated in its isogeny class; equivalently, for every ` the repre-
sentation

ρ` : GQ → Aut(B[`]) ≈ GL(2,F`)

is irreducible (see Exercise 4 and Exercise 5). We will frequently consider the
representations ρ` attached to B. The following proposition shows that because B
is semistable, each ρ` is surjective [93].

Proposition 1.1. If A is a semistable elliptic curve over Q and ` is a prime such
that ρ` is irreducible, then ρ` is surjective.

Proof. Serre proved this when ` is odd; see [93, Prop. 21], [103, §3.1]. If ρ2 isn’t
surjective, then by [93, Prop. 21(b)] and Theorem 2.10 it’s unramified outside 2.
This contradicts [113]. ¤

To give a flavor of Serre’s invariants, we describe N(ρ`) and k(ρ`) for the
representations ρ` attached to B. (Note that we still have not defined k(ρ).) At
primes p of bad reduction, after a possible unramified quadratic extension of Qp,
the elliptic curve B is a Tate curve. This implies that for p 6= `, the representation
ρ` is unramified at p if and only if ordp(∆) ≡ 0 (mod `); for more details, see
Section 2.4.

The optimal level N(ρ`) is a divisor of 3 · 47; it is divisible only by primes for
which ρ` is ramified, and is not divisible by `. The representation ρ` is unramified
at 3 if and only if ` | ord3(∆) = 7, i.e., when ` = 7. Furthermore, ρ` is always
ramified at 47. First suppose ` 6∈ {3, 47}. If in addition ` 6= 7 then N(ρ`) = 3 · 47,
and k(ρ`) = 2 since ` - 3 · 47. If ` = 7 then N(ρ`) = 47, and again k(ρ`) = 2. The
remaining cases are ` = 3 and ` = 47. If ` = 47 then N(ρ`) = 3, and because `− 1
is the order of the cyclotomic character, k(ρ`) ≡ 2 (mod 47−1); Serre’s recipe then
gives k(ρ`) = 2 + (47 − 1) = 48. Similarly, when ` = 3, we have N(ρ`) = 47 and
k(ρ`) = 2 + (3− 1) = 4. The following table summarizes the Serre invariants:
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Table 1.4. The Serre invariants of ρ`

` N(ρ`) k(ρ`)
3 47 4
7 47 2
47 3 48

all other ` 141 2

To verify the strong conjecture of Serre for ` = 3, 47, we use a standard trade-
off of level and weight, which relates eigenforms in S2(Γ0(141);F`) to eigenforms
in S2+`−1(Γ0(141/`);F`) (see Section 3.1). The only exceptional prime is ` = 7,
for which the minimal weight k(ρ) is 2. The strong conjecture of Serre predicts the
existence of an eigenform g ∈ S2(Γ0(47)) that gives rise to ρ`. Our initial instinct is
to look for an elliptic curve A of conductor 47 such that A[`] ∼= B[`], as GQ-modules.
In fact, there are no elliptic curves of conductor 47. This is because S2(Γ0(47)) is
four dimensional, having basis the Galois conjugates of a single eigenform g =∑

cnqn. The Fourier coefficients cn of g generate the full ring of integers in the
field K obtained from Q by adjoining a root of h = x4 − x3 − 5x2 + 5x − 1. The
discriminant 1957 = 19 · 103 of K equals the discriminant of h, so a root of h
generates the full ring of integers. The eigenvalue c2 satisfies h(c2) = 0. Since
h ≡ (x + 2)(x3 + 4x2 + x + 3) (mod 7), there is a prime λ lying over 7 such that
O/λ ∼= F7; the isomorphism is given by c2 7→ −2 mod 7. As a check, note that
#B(F2) = 5 so a2 = 3 − 5 = −2 = ϕ(c2). More generally, for p - 7 · 141, we have
ϕ(cp) ≡ ap mod 7. This equality of traces implies that the representation ρg,λ is
isomorphic to ρ = ρA,7, so A is modular of level 47.

1.5. Background material

In this section, we review the cyclotomic character, Frobenius elements, modular
forms, and Tate curves. We frequently write GQ for Gal(Q/Q). Many of these
basics facts are also summarized in [23].

1.5.1. The cyclotomic character

The mod ` cyclotomic character is defined by considering the group µ` of `th roots
of unity in Q; the action of the Galois group GQ on the cyclic group µ` gives rise
to a continuous homomorphism

(1.2) χ` : GQ → Aut(µ`).

Since µ` is a cyclic group of order `, its group of automorphisms is canonically the
group (Z/`Z)∗ = F∗

` . We emerge with a map GQ → F∗
` , which is the character in

question.
Let A be an elliptic curve and ` be a prime number. The Weil pairing e` (see

[109, III.8]) sets up an isomorphism of GQ-modules

(1.3) e` :
2∧

A[`]
∼=−−−−−→ µ`.

The determinant of the representation ρA,` is the mod ` cyclotomic character χ`.
Suppose now that c ∈ GQ is the automorphism “complex conjugation.” Then

the determinant of ρA,`(c) is χ`(c). Now c operates on roots of unity by the map
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ζ 7→ ζ−1, since roots of unity have absolute value 1. Accordingly,

(1.4) det ρA,`(c) = −1;

one says that ρA,` is odd. If ` 6= 2, then ρA,`(c) is conjugate over F` to
(

1 0
0 −1

)

(Exercise 7). If ` = 2 then the characteristic polynomial of ρA,`(c) is (x + 1)2 so

ρA,`(c) is conjugate over F` to either the identity matrix or ( 1 1
0 1 ).

1.5.2. Frobenius elements

Let K be a number field. The Galois group Gal(K/Q) leaves the ring OK of
integers of K invariant, so that one obtains an induced action on the ideals of OK .
The set of prime ideals p of OK lying over p (i.e., that contain p) is permuted
under this action. For each p, the subgroup Dp of Gal(K/Q) fixing p is called the
decomposition group of p. Meanwhile, Fp := OK/p is a finite extension of Fp. The
extension Fp/Fp is necessarily Galois; its Galois group is cyclic, generated by the
Frobenius automorphism ϕp : x 7→ xp of Fp. There is a natural surjective map
Dp → Gal(Fp/Fp); its injectivity is equivalent to the assertion that p is unramified
in K/Q. Therefore, whenever this assertion is true, there is a unique σp ∈ Dp whose
image in Gal(Fp/Fp) is ϕp. The automorphism σp is then a well-defined element
of Gal(K/Q), the Frobenius automorphism for p. The various p are all conjugate
under Gal(K/Q) and that the Frobenius automorphism for the conjugate of p by g
is gσpg

−1. In particular, the various σp are all conjugate; this justifies the practice of
writing σp for any one of them and stating that σp is well defined up to conjugation.

We next introduce the concept of Frobenius elements in GQ = Gal(Q/Q).

Let p again be a prime and let p now be a prime of the ring of integers of Q lying
over p. To p we associate: (1) its residue field Fp, which is an algebraic closure
of Fp, and (2) a decomposition subgroup Dp of GQ. There is again a surjective
map Dp → Gal(Fp/Fp). The Frobenius automorphism ϕp topologically generates
the target group. We shall use the symbol Frobp to denote any preimage of ϕp in
any Dp corresponding to a prime lying over p, and refer to Frobp as a Frobenius
element for p in GQ. This element is doubly ill defined. The ambiguity in Frobp

results from the circumstance that p needs to be chosen and from the fact that
Dp → Gal(Fp/Fp) has a large kernel, the inertia subgroup Ip of Dp. The usefulness
of Frobp stems from the fact that the various p are all conjugate, so that likewise
the subgroups Dp and Ip are conjugate. Thus if ρ is a homomorphism mapping GQ

to some other group, the kernel of ρ contains one Ip if and only if it contains all
Ip. In this case, one says that ρ is unramified at p; the image of Frobp is then an
element of the target that is well defined up to conjugation.

Consider an elliptic curve A over Q and let ` be a prime number. The fixed
field of ρA,` is a finite Galois extension K`/Q whose Galois group G` is a subgroup
of GL(2,F`). A key piece of information about the extension K`/Q is that its
discriminant is divisible at most by ` and primes dividing the conductor of A. In
other words, if p 6= ` is a prime number at which A has good reduction, then
K`/Q is unramified at ` (see Exercise 15); one says that the representation ρA,` is
unramified at p. Whenever this occurs, the construction described above produces
a Frobenius element σp in G` that is well defined up to conjugation.

Fix again an elliptic curve A and a prime number `, and let ρA,` : GQ →
GL(2,F`) be the associated representation. For each prime p not dividing ` at
which A has good reduction the Frobenius σp = ρA,`(Frobp) is well defined only up
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to conjugation. Nevertheless, the trace and determinant of σp are well defined. The
determinant of ρA,` is the mod ` cyclotomic character χ, so σp = χ(Frobp) = p ∈ F`.
On the other hand, one has the striking congruence

tr(ρA,`(Frobp)) = p + 1−#Ã(Fp) (mod `).

1.5.3. Modular forms

We now summarize some background material concerning modular forms. Serre’s
book [96] is an excellent introduction (it treats only N = 1). One might also read
the survey article [27] or consult any of the standard references [65, 66, 75, 108].

The modular group SL(2,Z) is the group of 2 × 2 invertible integer matrices.
For each positive integer N , consider the subgroup

Γ1(N) :=

{(
a b
c d

)
∈ SL(2,Z) : N | c and a ≡ d ≡ 1 (mod N)

}
.

Let h be the complex upper half plane. A cusp form of integer weight k ≥ 1 and
level N is a holomorphic function f(z) on h such that

(1.5) f

(
az + b

cz + d

)
= (cz + d)kf(z) for all

(
a b
c d

)
∈ Γ1(N);

we also require that f(z) vanishes at the cusps (see [108, §2.1]). We denote by
Sk(Γ1(N)) the space of weight-k cusp forms of level N . It is a finite dimensional
complex vector space. When k ≥ 2 a formula for the dimension can be found in
[108, §2.6].

Modular forms are usually presented as convergent Fourier series

f(z) =

∞∑

n=1

anqn

where q := e2πiz. This is possible because the matrices ( 1 b
0 1 ) lie in Γ1(N) so that

f(z + b) = f(z) for all integers b. For the forms that most interest us, the complex
numbers an are algebraic integers.

The space Sk(Γ1(N)) is equipped with an action of (Z/NZ)∗; this action is
given by

f(z) 7→ f |〈d〉(z) := (cz + d)−kf

(
az + b

cz + d

)

where
(

a b
c d

)
∈ SL(2,Z) is any matrix such that d ≡ d (mod N). The operator

〈d〉 = 〈d〉 is referred to as a “diamond-bracket” operator.
For each integer n ≥ 1, the nth Hecke operator on Sk(Γ1(N)) is an endomor-

phism Tn of Sk(Γ1(N)). The action is generally written on the right: f 7→ f |Tn.
The various Tn commute with each other and are interrelated by identities that
express a given Tn in terms of the Hecke operators indexed by the prime factors
of n. If p - N is a prime define the operator Tp on Sk(Γ1(N)) by

f |Tp(z) =
∞∑

n=1

anpq
n + pk−1

∞∑

n=1

an(f |〈p〉)qnp.
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For p | N prime, define Tp by

f |Tp(z) =

∞∑

n=1

anpq
n.

The Hecke algebra associated to cusp forms of weight k on Γ1(N) is the subring

T := Z[. . . Tn . . . 〈d〉 . . .] ⊂ End(Sk(Γ1(N)))

generated by all of the Tn and 〈d〉. It is finite as a module over Z (see Exercise 20).
The diamond-bracket operators are really Hecke operators, in the sense that they
lie in the ring generated by the Tn; thus T = Z[. . . Tn . . .].

An eigenform is a nonzero element f ∈ Sk(Γ1(N)) that is a simultaneous
eigenvector for every element of the Hecke algebra T. Writing f =

∑
anqn we find

that an = a1cn where cn is the eigenvalue of Tn on f . Since f is nonzero, a1 is also
nonzero, so it is possible to multiply f by a−1

1 . The resulting normalized eigenform
wears its eigenvalues on its sleeve: f =

∑
cnqn. Because f is an eigenform, the

action of the diamond bracket operators defines a character ε : (Z/NZ)∗ → C∗; we
call ε the character of f .

Associated to an eigenform f ∈ Sk(Γ1(N)) we have a system (. . . ap . . .), p - N ,
of eigenvalues. We say that f is a newform if this system of eigenvalues is not
the system of eigenvalues associated to an eigenform g ∈ Sk(Γ1(M)) for some level
M | N with M 6= N . Newforms have been extensively studied (see [2, 13, 69,
75]); the idea is to understand where systems of eigenvalues first arise, and then
reconstruct the full space Sk(Γ1(N)) from newforms of various levels.

1.5.4. Tate curves

The Tate curve is a p-adic analogue of the exponentiation of the representation
C/Λ of the group of an elliptic curve over C. In this section we recall a few facts
about Tate curves; for further details, see [110, V.3].

Let K be a finite extension of Qp; consider an elliptic curve E/K with split
multiplicative reduction, and let j denote the j-invariant of E. By formally inverting
the well-known relation

j(q(z)) =
1

q(z)
+ 744 + 196884q(z) + · · ·

between the complex functions q(z) = e2πiz and j(z), we find an element q ∈
K∗ with j = j(q) and |q| < 1. There is a Gal(Qp/K)-equivariant isomorphism

E(Qp)
∼= Q

∗
p/q

Z. The Tate curve, which we suggestively denote by Gm/qZ, is a

scheme whose Qp points equal Q
∗
p/q

Z.
As a consequence, the group of n-torsion points on the Tate curve is identified

with the Gal(Qp/K)-module {ζa
n(q1/n)b : 0 ≤ a, b ≤ n − 1}; here ζn is a primitive

nth root of unity and q1/n is a fixed nth root of q in Qp. In particular, the subgroup

generated by ζn is invariant under Gal(Qp/K), so the local Galois representation
on E[n] is reducible. It is also known that the group of connected component of the
reduction of the Néron model of E over Fp is a cyclic group whose order is ordp(q).
The situation is summarized by the following table (taken from [88]):
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Complex case p-adic case

C/Λ

exponential map e2πiz
no exponential available

²²

no p-adic analogue

C∗/qZ K∗/qZ.

Remark 1.2. When E has non-split multiplicative reduction over K, there is an
unramified extension L over which E aquires split multiplicative reduction.

1.5.5. Mod ` modular forms

There are several excellent papers to consult when learning about mod ` modular
forms. The papers of Serre [95] and Swinnerton-Dyer [112] approach the subject
from the point of view of Galois representations. Katz’s paper [59] is very geometric.
Edixhoven’s paper [32] contains a clear description of the basic facts. See also
Jochnowitz’s paper [56].





CHAPTER 2

Optimizing the weight

In [102, §2] Serre associated to an odd irreducible Galois representation

ρ : GQ → GL(2,F`)

two integers N(ρ) and k(ρ), which are meant to be the minimal level and weight
of a form giving rise to ρ.

Conjecture 2.1 (Strong conjecture of Serre). Let ρ : GQ → GL(2,F`) be an odd
irreducible Galois representation arising from a modular form. Then ρ arises from
a modular form of level N(ρ) and weight k(ρ).

In this chapter, we are concerned with k(ρ). We consider a mod ` represen-
tation ρ that arises from an eigenform of level N not divisible by `. Using results
of Fontaine and Deligne, we motivate Serre’s recipe for k(ρ). In [32], Edixhoven
also defines an “optimal” weight, which sometimes differs from Serre’s k(ρ). Our
definition is an “average” of the two; for example, we introduce a tiny modification
of k(ρ) when ` = 2. We appologize for any confusion this may cause the reader.

Using various arguments involving the Eichler-Shimura correspondence and
Tate’s θ-cycles, Edixhoven showed in [31] that there must exist another form of
weight at most k(ρ), also of level N , which gives rise to ρ. Some of Edixhoven’s
result rely on unchecked compatibilities that are assumed in [46]; however, when
` 6= 2 these results were obtained unconditionally by Coleman and Voloch in [17].
We sketch some of Edixhoven’s arguments to convey the flavor of the subject.

Remark 2.2 (Notation). We pause to describe a notational shorthand which we
will employ extensively in this chapter. If ρ : G → Aut(V ) is a two-dimensional
representation over a field F, we will frequently write

ρ ∼
(

α β
γ δ

)

to mean that there is a basis for V with respect to which

ρ(x) =

(
α(x) β(x)
γ(x) δ(x)

)
∈ GL2(F)

for all x ∈ G. If we do not wish to specify one of the entries we will simply write ∗.
Thus “ρ ∼ ( ∗ ∗

0 1 )” means that ρ possesses a one-dimensional invariant subspace,
and the action on the quotient is trivial.

2.1. Representations arising from forms of low weight

We first consider irreducible Galois representations associated to newforms of low
weight. Fix a prime ` and suppose f =

∑
anqn is a newform of weight k and

19
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level N , such that ` - N and 2 ≤ k ≤ ` + 1. Let ε : (Z/NZ)∗ → C∗ denote the
character of f . Fix a homomorphism ϕ from the ring of integers O of Q(. . . an . . .)
to F`. To abbreviate, we often write an for ϕ(an); thereby thinking of an as an
element F`. Let ρ = ρf,ϕ : GQ → GL(2,F`) be the two-dimensional semisimple
odd Galois representation attached to f and ϕ, and assume that ρ is irreducible.

The recipe for N(ρ) depends on the local behavior of ρ at primes p other
than `; the recipe for k(ρ) depends on the restriction ρ|I`

of ρ to the inertia group
at `. Motivated by questions of Serre, Fontaine and Deligne described ρ|I`

in many
situations. We distinguish two cases: the ordinary case and the non-ordinary case,
which we call the “supersingular case.”

2.1.1. The ordinary case

Deligne (see [46, Prop. 12.1]) considered the ordinary case, in which ρ arises from a
weight-k newform f with a`(f) 6= 0 ∈ F`. He showed that ρ has a one-dimensional

unramified quotient β, so ρ|D`
∼

(
α ∗
0 β

)
with β(I`) = 1 and αβ = χk−1ε. The

mod N character ε is also unramified at ` because ` - N . Since the mod ` cyclotomic

character χ has order ` − 1 and ρ|I`
∼

(
χk−1 ∗
0 1

)
, the value of k modulo ` − 1 is

determined by ρ|I`
. In the case when k is not congruent to 2 modulo ` − 1, the

restriction ρ|I`
determines the minimal weight k(ρ). We will discuss the remaining

case in Section 2.2.

2.1.2. The supersingular case and fundamental characters

Fontaine (see [32, §6]) investigated the supersingular case, in which ρ arises from
a newform f with a`(f) = 0 ∈ F`. We call such a newform f supersingular.
To describe the restriction ρ|I`

of ρ to the inertia group at `, we introduce the
fundamental characters of the tame inertia group. Fix an algebraic closure Q`

of the field Q` of `-adic numbers; let Qnr
` ⊂ Q` denote the maximal unramified

extension of Q`, and Qtm
` ⊂ Q` the maximal tamely ramified extension of Qnr

` .

The extension Qtm
` is the compositum of all finite extensions of Qnr

` in Q` of degree
prime to `. Letting D` denote the decomposition group, I` the inertia group, It the
tame inertia group, and Iw the wild inertia group, we have the following diagram:

Q`

Iw

D`

I`Qtm
`

It

Qnr
`

bZ

Q`
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It is a standard fact (see, e.g., [44, §8]) that the extensions Qnr
` ( n
√

`), for all n
not divisible by `, generate Qtm

` . For n not divisible by `, the nth roots of unity
µn are contained in Qnr

` . Kummer theory (see [3]) gives, for each n, a canonical
isomorphism

Gal(Qnr
` (

n
√

`)/Qnr
` )

∼−−→ µn, σ 7→ σ( n
√

`)
n
√

`
.

Each isomorphism lifts to a map I` → µn that factors through the tame quotient
It of I`. The groups µn = µn(Q`) lie in the ring of integers Z` of Q`. Composing
any of the maps It → µn with reduction modulo the maximal ideal of Z` gives a

mod ` character It → F
∗
` , as illustrated:

It
//

!!CC
CC

CC
C F

∗
`

µn(Q`)
∼= // µn(F`).

-
°

;;wwwwww

Let n = `ν − 1 with ν > 0. The map It → µn defines a character ε : I` → F∗
`ν .

Composing with each of the ν field embeddings F`ν → F` gives the ν fundamental
characters of level ν:

It

##GG
GG

GG
GG

GG
F`.

F∗
`ν ⊂ F`ν

;;wwwwwwwwww

;;wwwwwwwwww ν maps

;;wwwwwwwwww

For example, the unique fundamental character of level 1 is the mod ` cyclotomic
character (see Exercise 16). When ν = 2, there are two fundamental characters,
denoted Ψ and Ψ′; these satisfy Ψ` = Ψ′ and (Ψ′)` = Ψ.

Let A be an elliptic curve over Q` with good supersingular reduction. In [93],
Serre proved that the representation

It → Aut(A[`]) ⊂ GL(2,F`)

is the direct sum of the two fundamental characters Ψ and Ψ′. One of the characters
is

It → F∗
`2 ⊂ GL(2,F`)

where F∗
`2 is contained in GL(2,F`) as a non-split Cartan subgroup of GL(2,F`).

More precisely, F∗
`2 is embedded in GL(2,F`) via the action of the multiplicative

group of a field on itself after a choice of basis. More generally, in unpublished joint
work, Fontaine and Serre proved in 1979 that if f is a supersingular eigenform of
weight k ≤ `, then ρ|I`

: I` → GL(2,F`) factors through It and is a direct sum of the
two character Ψk−1 and (Ψ′)k−1. Note that k is determined by this representation,
because it is determined modulo `2 − 1.

2.2. Representations of high weight

Let D` be a decomposition group at ` and consider a representation ρ : D` →
GL(2,F`) that arises from a newform f of possibly large weight k. Let ρss denote
the semisimplification of ρ; so ρss = ρ if ρ is irreducible, otherwise ρss is a direct



22 RIBET AND STEIN, SERRE’S CONJECTURES

sum of two characters α and β. The following lemma of Serre (see [93, Prop. 4])
asserts that ρss is tamely ramified.

Lemma 2.3. Any semisimple representation ρ is tame, in the sense that ρ(Iw) = 0.

Proof. Since the direct sum of tame representations is tame, we may assume that ρ
is simple.

The wild inertia group Iw is the profinite Sylow `-subgroup of I`: it is a Sylow
`-subgroup because each finite Galois extension of Qtm

` has degree a power of `, and

the order of It is prime to `; it is unique, because it is the kernel of Gal(Q`/Q`)→
Gal(Q`/Q

tm
` ), hence normal.

Because ρ is continuous, the image of D` is finite and we view ρ as a represen-
tation on a vector space W over a finite extension of F`. The subspace

W Iw = {w ∈W : σ(τ)w = w for all τ ∈ Iw}
is invariant under D`. It is nonzero, as can be seen by writing the finite set W as
a disjoint union of its orbits under Iw: since Iw is a pro-`-group, each orbit has
size either 1 or a positive power of `. The orbit {0} has size 1, and #W is a power
of `, so there must be at least ` − 1 other singleton orbits {w}; for each of these,
w ∈W Iw .

Since ρ is simple and W Iw is a nonzero D`-submodule, it follows that W Iw = W ,
as claimed. ¤

The restriction ρss|I`
is abelian and semisimple, so it is given by a pair of

characters α, β : I` → F
∗
` . Let n be an integer not divisible by `, and consider the

tower of fields

Qnr
` ( n
√

`)

µn

G Qnr
`

bZ=〈Frob`〉

Q`

in which G = Gal(Qnr
` ( n
√

`)/Q`), µn
∼= Gal(Qnr

` ( n
√

`)/Qnr
` ), and Gal(Qnr

` /Q`)
is topologically generated by a Frobenius element at `. Choose a lift g ∈ G
of Frob`, and consider an element h ∈ µn corresponding to an element σ ∈
Gal(Qnr

` ( n
√

`)/Qnr
` ). Then since g acts as the `th powering map on roots of unity,

gσg−1( n
√

`)
n
√

`
=

gσ(ζg−1
n
√

`)
n
√

`
=

g(ζg−1h n
√

`)
n
√

`
=

g(h) n
√

`
n
√

`
= h`.

Applying the conjugation formula ghg−1 = h` to ρss gives ρss(ghg−1) = ρss(h`) =
ρss(h)`. The two representations h 7→ ρss(h)` and h 7→ ρss(h) of It are thus equiva-
lent via conjugation by ρss(g); we have ρss(g)ρss(h)ρss(g−1) = ρss(ghg−1) = ρss(h)`.
Consequently, the pair of characters {α, β} is stable under the `th power map, so
as a set {α, β} = {α`, β`}. There are two possibilities:

— The ordinary case: α` = α and β` = β.

— The supersingular case: α` = β 6= α and β` = α 6= β.
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In the first case α and β take values in F∗
` and in the second case they take values

in F∗
`2 but not in F∗

` . By the results discussed in Section 2.1, this terminology is
consistent with the terminology introduced above.

We first consider the supersingular case. Let Ψ denote one of the fundamental
characters of level 2, and write α = Ψn, β = Ψn`, with n an integer modulo `2 − 1.
Next write the smallest non-negative representative for n in base `: n = a + `b
with 0 ≤ a, b ≤ ` − 1. Then `n ≡ b + `a (mod `2 − 1). Switching α and β
permutes a and b so, relabeling if necessary, we may assume that a ≤ b. If a = b,
then α = Ψa(Ψ′)a = χa, so α takes values in F∗

` , which is not the supersingular
case; thus we may assume that 0 ≤ a < b ≤ ` − 1. We now factor out by a power
of the cyclotomic character:

α = Ψn = Ψa(Ψ′)b = Ψa(Ψ′)a(Ψ′)b−a = χa(Ψ′)b−a

β = χaΨb−a.

Put another way,

ρss ∼ χa ⊗
(

Ψb−a 0
0 (Ψ′)b−a

)
.

The untwisted representation is
(

Ψk−1 0
0 (Ψ′)k−1

)
, where k = 1 + b − a. Since 2 ≤

1+b−a ≤ `−1, the weight of the untwisted representation is in the range considered
above. Thus we are in good shape to define k(ρ).

Before giving k(ρ) it is necessary to understand how the weight changes upon
twisting by a power of the cyclotomic character χ. This problem is addressed by the
theory of mod ` modular forms, first developed by Serre [95] and Swinnerton-Dyer
[112], then generalized by Katz [59]. A brief review of the geometric theory, which
gives an excellent definition of mod ` modular forms, can be found in [32, §2], [35,
§1], or [46, §2].

In [61], Katz defined spaces of mod ` modular forms, and a q-expansion map

α :
⊕

k≥0

Mk(Γ1(N);F`)→ F`[[q]].

This map is not injective, because both the Hasse invariant of weight `− 1 and the
constant 1 have the same q-expansion.

Definition 2.4. The minimal weight filtration w(f) ∈ Z of an element f of the
ring of mod ` modular forms is the smallest integer k such that the q-expansion
of f comes from a modular form of weight k; if no such k exists, do not define w(f).

Definition 2.5. Define the operator θ = q d
dq on q-expansions by θ(

∑
anqn) =∑

nanqn.

For example, if f is an eigenform of weight k, then there is a mod ` eigenform
θf of weight k + ` + 1, still of level N , whose q-expansion is θ(

∑
anqn).

Theorem 2.6. Let f be a mod ` modular form. Then w(θf) = w(f) + ` + 1 if and
only if ` - w(f). In addition, if ` | w(f) then w(θf) < w(f) + ` + 1.

2.2.1. The supersingular case

We now give Serre’s recipe for k(ρ) in the supersingular case. The minimal weight
before twisting is 1+b−a, which is a positive integer that is not divisible by `. Each



24 RIBET AND STEIN, SERRE’S CONJECTURES

twist by χ adds ` + 1 to the weight, so in the supersingular case we are motivated
to define

k(ρ) := (1 + b− a) + a(` + 1) = 1 + `a + b.

We have to check that at each step the weight is prime to `, so the minimal weight
does not drop during any of the a twists by χ. Since 1 < 1 + b− a < ` and

(1 + b− a) + a(` + 1) ≤ (`− 1) + (`− 2)(` + 1) < `2,

the weight can only drop if there exists c with 1 ≤ c < a such that

(1 + b− a) + c(` + 1) ≡ 0 (mod `).

If this occurred, then c ≡ a − b − 1 (mod `). But 1 ≤ c < a ≤ ` − 2, so either
c = a−b−1, which implies c ≤ 0 since a < b, or c = `+a−b−1 = a+`−1−b ≥ a,
which would be a contradiction.

Assume that ρ : GQ → GL(2,F`) arises from an eigenform f such that a`(f) =

0 ∈ F`. Now we sketch Edixhoven’s proof that ρ arises from a mod ` eigenform of
weight k(ρ).

Let ρss denote the semisimplification of the restriction of ρ to a decomposition
group at `. The restriction of ρss to the inertia group at ` is

ρss|I`
∼

(
Ψn 0
0 (Ψ′)n

)
,

where Ψ and Ψ′ = Ψ` are the two fundamental characters of level 2. If necessary,
reorder Ψ and Ψ′ so that n = a + b` with 0 ≤ a < b ≤ `− 1. Then

Ψn = Ψa+b` = Ψa(Ψ′)b = Ψa(Ψ′)a(Ψ′)b−a = χa(Ψ′)b−a,

and

ρss|I`
∼ χa ⊗

(
(Ψ′)b−a 0
0 Ψb−a

)
.

Recall that, motivated by Fontaine’s theorem on Galois representations arising from
supersingular eigenforms, we defined

k(ρ) = a(` + 1) + (b− a + 1) = 1 + `a + b.

The first step in showing that ρ arises from a form of weight k(ρ), is to recall
the well known result that, up to twist, all systems of mod ` eigenvalues occur in
weight at most ` + 1. This is the subject of the next section.

2.2.2. Systems of mod ` eigenvalues

Theorem 2.7. Suppose ρ is modular of level N and some weight k, and that ` - N .
Then some twist ρ⊗ χ−α is modular of weight ≤ ` + 1 and level N .

This is a general theorem, applying to both the ordinary and supersingular
cases. See Serre [97, Th. 3] when N = 1; significant further work was carried out
by Jochnowitz [55] and Ash-Stevens [1, Thm. 3.5] when ` ≥ 5. Two proofs are
given in [32, Thm. 3.4 and §7]. The original method of Serre, Tate, and Koike for
treating questions like this is to use the Eichler-Selberg trace formula. As Serre
has pointed out to us, the weight appears in that formula simply as an exponent;
this makes more or less clear that a congruence modulo `2− 1 gives information on
modular forms mod `.
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As a digression, we pause to single out some of the tools involved in one pos-
sible proof of Theorem 2.7. Note that by twisting we may assume without loss
of generality that k ≥ 2. The group Γ1(N) acts by matrix multiplication on the
real vector space R2. The Eichler-Shimura correspondence (see [108, §8.2]) is an
isomorphism of real vector spaces

Sk(Γ1(N))
∼=−−−−−→ H1

P (Γ1(N),Symk−2(R2)).

The parabolic (or cuspidal) cohomology group H1
P is the intersection, over all cusps

α ∈ P1(Q), of the kernels of the restriction maps

resα : H1(Γ1(N),Symk−2(R2))→ H1(Γα,Symk−2(R2)),

where Γα denotes the stabilizer of α. For fixed z0 in the upper half plane, the
Eichler-Shimura isomorphism sends a cusp form f to the class of the cocycle c :
Γ1(N)→ Symk−2(R2) induced by

γ 7→
∫ γ(z0)

z0

Re

(
f(z)

(
z
1

)k−2

dz

)
,

where

(
z
1

)k−2

denotes the image of

(
z
1

)
⊗· · ·⊗

(
z
1

)
∈ Symk−2(C2), and integration

is coordinate wise. There is an action of the Hecke algebra T on

H1
P (Γ1(N),Symk−2(R2)),

such that the Eichler-Shimura correspondence is an isomorphism of T-modules.
The forms whose periods are integral form a lattice H1

P (Γ1(N),Symk−2(Z2))

inside H1
P (Γ1(N),Symk−2(R2)). Reducing this lattice modulo ` suggests that there

is a relationship between mod ` modular forms and the cohomology group

H1
P (Γ̃1(N),Symk−2(F2

`)),

where Γ̃1(N) is the image of Γ1(N) in SL(2,F`). Serre and Hida observed that

for k − 2 ≥ ` the Γ̃1(N) representations Symk−2(F2
`) are sums of representations

arising in Symk′−2(F2
`) for k′ < k. This essential idea is used in proving that all

systems of eigenvalues occur in weight at most ` + 1.

2.2.3. The supersingular case revisited

Let ρ be a supersingular mod ` representation that arises from some modular form.
By Theorem 2.7 there is a form f of weight k ≤ ` + 1 such that χ−α ⊗ ρ ∼ ρf . In
fact, we may assume that 2 ≤ k ≤ `; when k = ` + 1 a theorem of Mazur (see [32,
Thm. 2.8]) implies that there is a form of weight 2 giving rise to ρf , and when k = 1
we multiply f by the weight ` − 1 Hasse invariant. To show that w(θαf) = k(ρ)
we investigate how application of the θ-operator changes the minimal weight. We

have (ρf ⊗ χα)|I`
∼

(
Ψn 0
0 (Ψ′)n

)
with n = a + b` and a < b. Fontaine’s theory (see

Section 2.1) identifies the characters corresponding to ρf |I`
as powers Ψk−1 and

(Ψ′)k−1 of the fundamental characters. This gives an equality of unordered sets

{Ψk−1χα, (Ψ′)k−1χα} = {Ψn, (Ψ′)n}.
It is now possible to compute w(θαf) by considering two cases, corresponding to
the ways in which equality of unordered pairs can occur.
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Case 1. Suppose that Ψk−1χα = (Ψ′)n. Since χ = Ψ`+1, we have

Ψk−1+α(`+1) = Ψk−1χα = (Ψ′)n = (Ψ′)a+b` = Ψb+a`.

Comparing exponents of Ψ gives

(2.1) k − 1 + α(` + 1) ≡ b + a` (mod `2 − 1),

which reduces modulo ` + 1 to k − 1 ≡ b − a (mod ` + 1); because 2 ≤ k ≤ `,
this implies that k = 1 + b − a. Reducing (2.1) modulo ` − 1 and substituting
k = 1 + b− a gives b− a + 2α ≡ b + a (mod `− 1); we find the possible solutions
α = a+m(`−1)/2 with m an integer. No solution α = a+m(`−1)/2, with m odd,
satisfies (2.1), so α = a as an integer mod ` − 1. Finally, we apply Theorem 2.6
and argue as in the end of Section 2.2, to show that

w(θaf) = w(f) + a(` + 1) = 1 + b− a + a` + a = 1 + b + a` = k(ρ).

Case 2. Suppose that Ψk−1χα = Ψn. Then

Ψk−1+α(`+1) = Ψk−1χα = Ψn = Ψa+b`.

Comparing powers of Ψ, we obtain

(2.2) k − 1 + α(` + 1) ≡ a + b` (mod `2 − 1),

which reduces modulo ` + 1 to k− 1 ≡ a− b (mod ` + 1); thus k = ` + 2− (b− a).
The difference b − a must be greater than 1; otherwise k = ` + 1, contrary to our
assumption that 2 ≤ k ≤ `. Reducing (2.2) modulo `− 1 gives

k − 1 + 2α ≡ a + b (mod `− 1);

substituting k = ` + 2 − (b − a) we find that α = b − 1 + m(` − 1)/2 with m an
integer. If m is odd, then α does not satisfy (2.2), so α = b − 1 as an integer
modulo ` − 1. It remains to verify the equality w(θb−1f) = w(ρ). Unfortunately,
k = ` + 2− (b− a) is not especially telling. The argument of Case 1 does not apply
to compute w(θαf); instead we use θ-cycles.

Because f is supersingular, Fermat’s Little Theorem implies that θ`−1f = f .
We use Tate’s theory of θ-cycles (see [32, §7] and [55]) to compute w(θb−1f). The
θ-cycle associated to f is the sequence of integers

w(f), w(θf), w(θ2f), . . . , w(θ`−2f), w(f).

The θ-cycle for any supersingular eigenform must behave as follows (see Theo-
rem 2.6):

•
drop

ÂÂ
??

??
??

??
??

•

drop

ºº
//

//
//

//
//

//
//

//
//

•
go up . . .

55jjjjjjjjjjjjjjjjjjjjjjjj

•

go up . . .

::vvvvvvvvvvvvvvvvvvvvvvvvvvvv •
go up . . . , drop once, go up . . . , drop to original weight
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Knowing this, we can deduce the exact θ-cycle. List ` numbers starting and ending
with k:

k, k + (` + 1), k + 2(` + 1), . . . , k + (`− k)(` + 1),
` + 3− k, (` + 3− k) + (` + 1), . . . , (` + 3− k) + (k − 3)(` + 1),
k

The first and second lines contain ` + 1 − k and k − 2 numbers, respectively. All
told, ` numbers are listed; this must be the θ-cycle.

It is now possible to compute w(θb−1f). If

b− 1 ≤ `− k = `− (` + 2− b + a) = −2 + b− a,

then a ≤ −1, a contradiction; thus b− 1 > `− k. It follows that

w(θb−1f) = ` + 3− k + (` + 1)(b− 2− (`− k)) = 1 + b + a` = k(ρ),

verifying Serre’s conjecture in this case.

2.2.4. The ordinary case

We next turn to the ordinary case, in which

ρ|I`
∼

(
α ∗
0 β

)

with α, β : I` → F∗
` powers of the cyclotomic character. View ρ|I`

as the twist of a
representation in which the lower right entry is 1:

(
α ∗
0 β

)
∼ β ⊗

(
αβ−1 ∗

0 1

)
.

To determine the minimal weight of a form giving rise to ρ|I`
, it is necessary to

develop an ordinary version of θ-cycles. In general this is complicated, so we make

the simplifying assumption that β = 1; then ρ|I`
∼

(
χi ∗
0 1

)
with 1 ≤ i ≤ ` − 1.

Deligne showed that if f is of weight k and β = 1, then the associated representation

is
(

χk−1 ∗
0 1

)
with 2 ≤ k ≤ ` + 1. Motivated by this, our first reaction is to define

k(ρ) to be i+1. This definition does not distinguish between the extreme weights 2
and `+1 because they are congruent modulo `−1. Given a representation ρ arising
from a form of weight either 2 or ` + 1, we cannot, in general, set k(ρ) = 2. For
example, suppose f = ∆ is the level 1 cusp form of weight 12 and ρ is the associated
mod 11 representation. It would be wrong to set k(ρ) = 2, because there is no cusp
form of weight 2 and level 1.

Warning: When ` = 2 and our k(ρ) is 3, Serre replaced k(ρ) by 4 because
there are no weight-3 modular forms whose character is of degree coprime to ` = 2.

2.3. Distinguishing between weights 2 and ` + 1

We continue to motivate the definition of k(ρ). Consider a representation ρ : GQ →
GL(2,F`) that arises from a newform f of the optimal level N = N(ρ) and weight k
satisfying 2 ≤ k ≤ `+1. Assume that f is ordinary in the sense that a`(f) 6= 0 ∈ F`.
Then, as discussed in Section 2.1,

ρ|I`
∼

(
χk−1 ∗
0 1

)
,
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so ρ|I`
determines k modulo ` − 1. This suggests a way to define k(ρ) purely in

terms of the Galois representation ρ, at least when k 6∈ {2, ` + 1}.
The key to defining k(ρ) when k = 2 or k = ` + 1 is good reduction. To

understand why this is so, we briefly summarize Shimura’s geometric construction
of Galois representations associated to newforms of weight 2.

2.3.1. Geometric construction of Galois representations

Shimura attached mod ` representations to a weight-2 newform f =
∑

anqn of
level N . Let E be the totally real or CM field Q(. . . an . . .). In [108, Thm. 7.14],
Shimura described how to associate to f an abelian variety A = Af over Q of
dimension [E : Q] furnished with an embedding E ↪→ EndQ A (see also Conrad’s
appendix). The mod ` representations attached to f are then found in the `-torsion
of A.

Over the complex numbers, the abelian variety A is found as a quotient of the
Jacobian of the Riemann surface

X1(N) := Γ1(N)\h = Γ1(N)\h ∪ {cusps}.
The Riemann surface X1(N) has a structure of algebraic curve over Q; it is called
the modular curve of level N . Its Jacobian J1(N) is an abelian variety over Q
which, by work of Igusa, has good reduction at all primes ` - N . The dimension
of J1(N) equals the genus of X1(N); for example, when N = 1, the curve X1(1) is
isomorphic over Q to the projective line and J1(1) = 0. There are (at least) two
functorial actions of the Hecke algebra T on J1(N), and (at least) two definitions of
J1(N). In the next section we will fix choices, and then construct A as the quotient
of J1(N) by the image of the annihilator in T of f .

2.3.1.1. Hecke operators on J1(N). We pause to formulate a careful definition of
X1(N) and of our preferred functorial action of the Hecke operators Tp on J1(N).
For simplicity, we assume that N > 4 and p - N . Following [46, Prop. 2.1] there
is a smooth, proper, geometrically connected algebraic curve X1(N) over Z[1/N ]
that represents the functor assigning to each Z[1/N ]-scheme S the set of isomor-
phism classes of pairs (E,α), where E is a generalized elliptic curve over S and
α : (µN )S ↪→ Esm[N ] an embedding of group schemes over S whose image meets ev-
ery irreducible component in each geometric fiber. Let X1(N, p) be the fine moduli
scheme over Z[1/N ] that represents the functor assigning to each Z[1/N ]-scheme S
the set of isomorphism classes of triples (E,α,C), where E is a generalized elliptic
curve over S, α : (µN )S ↪→ Esm[N ] an embedding of group schemes over S, and C
a locally free subgroup scheme of rank p in Esm[p], such that im(α)×C meets every
irreducible component in each geometric fiber of E. Let π1, π2 : X1(N, p)→ X1(N)
over Z[1/N ] be the two standard degeneracy maps, which are defined on genuine
elliptic curves by π1(E,α,C) = (E,α) and π2(E,α,C) = (E′, α′ = ϕα), where
E′ = E/C and ϕ : E → E′ is the associated p-isogeny. The Hecke operator
Tp = (Tp)

∗ acts on divisors D on X1(N)/Q by

Tp(D) = (π1)∗ ◦ π∗
2D.

For example, if (E,α) is a non-cuspidal Q-point, then

Tp(E,α) =
∑

(E′, ϕ ◦ α ◦ [p]−1),
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The Hecke operatorThe Hecke operator Tp = (Tp)
∗ acts on divisors D on X1(N)/Q

by

Tp(D) = (π1)∗ ◦ π∗
2D.

For example, if (E,α) is a non-cuspidal Q-point, then

Tp(E,α) =
∑

(E′, ϕ ◦ α ◦ [p]−1),

where the sum is over all isogenies ϕ : E → E ′ of degree p, and Tp = (Tp)
∗ acts on

divisors D on X1(N)/Q by

Tp(D) = (π1)∗ ◦ π∗
2D.

For example, if (E,α) is a non-cuspidal Q-point, then

Tp(E,α) =
∑

(E′, ϕ ◦ α ◦ [p]−1),

where the sum is over all isogenies ϕ : E → E ′ of degree p, and where the sum is
over all isogenies ϕ : E → E′ of degree p, and [p]−1 is the inverse of pth powering
on µN . This map on divisors defines an endomorphism Tp of the Jacobian J1(N)
associated to X1(N) via Picard functoriality.

For each prime p there is an involution 〈p〉 of X1(N) called a diamond bracket
operator, defined functorially by

〈p〉(E,α) = (E,α ◦ [p]).

The diamond bracket operator defines a correspondence, such that the induced map
(〈p〉)∗ on J1(N) is

(〈p〉)∗(E,α) = (E,α ◦ [p−1]).

If (Tp)∗ denotes the pth Hecke operator as defined in [46, §3], then

(Tp)∗ = Tp ◦ (〈p−1〉)∗,

Thus our Tp differs from Gross’s (Tp)∗. Furthermore, upon embedding X1(N) into
J1(N) and identifying weight-2 cusp forms with differentials on J1(N), Gross’s
(Tp)∗ induces, via Albanese functoriality, the usual Hecke action on cusp forms,
whereas ours does not. In addition, we could have defined X1(N) by replacing the
group scheme µN by (Z/NZ). In this connection, see the discussion at the end of
Section 5 of [26] and [35, §2.1].

2.3.1.2. The representations attached to a newform. Again let O be the ring of
integers of E = Q(. . . an . . .), where f =

∑
anqn is a weight-2 modular forms on

Γ1(N). Recall that A = Af is the quotient of J1(N) by the image of the annihilator
in T of f . In general, O need not be contained in End A. However, by replacing A
by an abelian variety Q-isogenous to A, we may assume that O is contained in
End A (see [108, pg. 199]). Let λ be a maximal ideal of O and set

A[λ] := {P ∈ A(Q) : xP = 0 all x ∈ λ}.

By [108, Prop. 7.20, pg 190], dimO/λ A[λ] = 2, so A[λ] affords a 2-dimensional
Galois representation, which is well-defined up to semisimplification. Let ρf,λ :
GQ → A[λ]ss be the semisimplification of A[λ].
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2.3.1.3. Good reduction.

Definition 2.8. A finite group scheme G over Qnr
` is said to have good reduction,

or to be finite flat, if it extends to a finite flat group scheme over the ring of integers
OQnr

`
of Qnr

` .

Proposition 2.9. The representation ρf,λ is finite flat at each prime p - N .

Proof. The finite flat group scheme extending A[λ] is the scheme theoretic closure
of A[λ] in a good model A/OQnr

`
of A. Such a model exists because A has good

reduction at p. ¤
Consider again a Galois representation ρ as in the beginning of Section 2.3 such

that ρ|I`
∼

(
χk−1 ∗
0 1

)
. If k 6≡ 2 (mod `− 1) then k(ρ) is defined to equal k. If k ≡ 2

(mod `− 1), then

k(ρ) :=

{
2 if ρ is finite flat,

` + 1 otherwise.

2.4. Representations arising from elliptic curves

Theorem 2.10. Suppose A/Q is a semistable elliptic curve and that ρA,` is irre-
ducible. Let ∆A denote the minimal discriminant of A. The representation ρA,` is
finite flat at ` if and only if ` | ord` ∆A. If p 6= `, then ρA,` is unramified at p if
and only if ` | ordp ∆A.

Proof. The first statement is Proposition 5 of [102].
When A has good reduction at p, the second statement holds (see Exercise 15).

Suppose A has multiplicative reduction at p. There is an unramified extension K
of Qp such that A has split multiplicative reduction at p. Consider the Tate curve

Gm/qZ over K associated to A. Thus Q
∗
p/q

Z ∼= A(Qp) as Gal(Qp/K)-modules.

The `-torsion points A[`] correspond to the points {ζa
` (q1/`)b : 0 ≤ a, b < `} in

the Tate curve. The extension K(ζ`, q
1/`) of K is unramified because ` 6= p and

ordp(q) = ordp(∆A) is divisible by `. Since an unramified extension of an unramified

extension is unramified, the extension K(ζ`, q
1/`) of Qp is unramified, which proves

the second part of the theorem. ¤

2.4.1. Frey curves

Using Theorem 2.10 we see that the Shimura-Taniyama conjecture together with
Serre’s conjecture implies Fermat’s Last Theorem. Suppose (a, b, c) is a solution
to the Fermat equation a` + b` = c` with ` ≥ 11 and abc 6= 0. Consider the
Frey curve A given by the equation y2 = x(x − a`)(x + b`); it is an elliptic curve

with discriminant ∆A = ((abc)2)`

28 . By [93, §4.1, Prop. 6] the representation A[`]
is irreducible. Theorem 2.10 implies that ρA,` is unramified, except possibly at 2
and `. Thus N(ρ) | 2, and k(ρ) = 2 since ` | ord`(∆A). But there are no cusp forms
of level 2 and weight 2. The modularity of A (proved in [114, 117]), together
with the weak conjecture of Serre (enough of which is proved in [84]), leads to a
contradiction.

2.4.2. Examples
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Using Theorem 2.10 we can frequently determine the Serre invariants N(ρ) and
k(ρ) of a representation ρ attached to an elliptic curve. When N(ρ) < N , it is
illustrative to verify directly that there is a newform of level N(ρ) that also gives
rise to ρ. For example, there is a unique weight-2 normalized newform

f = q + q2 − q3 − q4 − 2q5 − q6 + 4q7 − 3q8 + q9 + · · ·
on Γ0(33). One of the elliptic curves associated to f is the curve A given by the
equation

y2 + xy = x3 + x2 − 11x.

The discriminant of A is ∆ = 36 ·112 and the conductor is N = 3 ·11. Because A is
semistable and there are no elliptic curves 3-isogenous to A, the associated mod 3
representation ρ = ρA,3 : GQ → Aut(A[3]) is surjective (see Section 1.4). Since
3 | ord3 ∆A, the Serre weight and level are k(ρ) = 2 and N(ρ) = 11. As predicted
by Serre’s conjecture, there is a weight-2 newform on Γ0(11) such that if B is
one of the three elliptic curves of conductor 11 (it does not matter which), then
B[3] ≈ A[3] as representations of GQ. Placing the eigenforms corresponding to A
and B next to each other, we observe that their Fourier coefficients are congruent
modulo 3:

fA = q +q2 −q3 −q4 −2q5 −q6 +4q7 −3q8 +q9 + · · ·
fB = q −2q2 −q3 +2q4 +q5 +2q6 −2q7 −2q9 + · · · .

Next consider the elliptic curve A cut out by the equation

y2 + y = x3 + x2 − 12x + 2.

It has conductor N = 141 = 3 · 47 and discriminant ∆ = 37 · 47. Since ord3(∆) is
divisible by 7, the mod 7 representation ρA,7 has Serre invariants k(ρA,7) = 2 and
N(ρA,7) = 47. In confirmation of Serre’s conjecture, we find a form f ∈ S2(Γ0(47))
that gives rise to ρA,7. The Fourier coefficients of f generate a quartic field.

Next consider ρA,3, whose Serre invariants are N(ρA,3) = 47 and, since 3 does
not divide ord3(∆), k(ρA,3) = ` + 1 = 4. In S4(Γ0(47)) there are two conjugacy
classes of eigenforms, which are defined over fields of degree 3 and 8, respectively.
The one that gives rise to ρA,3 is

g = q + aq2 + (−1/2a2 − 5/2a− 1)q3 + (a2 − 8)q4 + (a2 + a− 10)q5 + · · · ,
where a3 + 5a2 − 2a− 12 = 0.

2.5. Companion forms

Suppose f is a newform of weight k with 2 ≤ k ≤ `+1. Let ` be an ordinary prime,
so a`(f) is not congruent to 0 modulo a prime λ lying over ` and

ρf,λ|I`
∼

(
χk−1 ∗
0 1

)
.

Is this representation split or not? Put another way, can ∗ be taken equal to 0, after
an appropriate choice of basis? For how many ` do these representations split? We
suspect that the ordinary split primes ` are in the minority, among all primes. How
can we quantify the number of split primes?

If ∗ = 0, then

ρ|I`
∼

(
1 0
0 χk−1

)
,
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so

ρ|I`
⊗ χ`−k ∼

(
χ`−k 0
0 1

)
.

Assume that 2 ≤ 1+ `−k ≤ `+1, so k(ρ⊗χ`−k) = 1+ `−k. Using the θ-operator
we see that ρ⊗χ`−k is modular, of some weight and level. To say that it is modular
of Serre’s conjectured weight k(ρ) is to make a much strong statement. If ρ⊗χ`−k

is indeed modular of weight 1+ `−k, then by definition there exists an eigenform g
of weight 1 + `− k with ρg ∼ ρf ⊗ χ`−k. Such an eigenform g, if it exists, is called
a companion of f . The existence of g is far from obvious.

We can extend the notion of companion form to the case when k(ρ) = `. In
this case the companion has weight 1. If ρ is unramified at `, then we expect ρ to
also arise from a weight-1 eigenform.

The existence of a companion form was proved (assuming unchecked compat-
ibilities) in most cases in which k < ` by Gross in [46] and in a few cases when
k = `. Using new methods, Coleman and Voloch [17] proved all cases except
k = ` = 2. The arguments of Coleman and Voloch do not require verification of
Gross’s unchecked compatibilities.



CHAPTER 3

Optimizing the level

Consider an irreducible Galois representation ρ : GQ → GL(2,F`) that arises from
a newform of weight k and level N . Serre defined integers k(ρ) and N(ρ), and
conjectured that ρ arises from a newform of weight k(ρ) and level N(ρ). In Chap-
ter 2 we sketched Edixhoven’s proof that if ` - N then ρ arises from an newform of
weight k(ρ) and level N . In this chapter, we introduce some of the techniques used
in proving that ρ arises from a newform level N(ρ). For more details, see [84, 87].

In [102, §1.2] Serre defined the optimal level N(ρ) as the prime-to-` part of the
Artin conductor of ρ. Recall that N(ρ) is a product

∏
pn(p) over prime numbers

p 6= `. The integer n(p) is defined by restricting ρ to a decomposition group Dp at p.
Consider the sequence of ramification groups G0 ⊃ G1 ⊃ · · · ⊃ Gi ⊃ · · · where G0

is the inertia subgroup Ip of Dp. Let V be a vector space over F` affording the
representation ρ, and for each i ≥ 0 let Vi be the subspace of V consisting of those
v ∈ V that are fixed by Gi. Then

n(p) :=
∞∑

i=0

1

(G0 : Gi)
dim V/Vi.

3.1. Reduction to weight 2

The optimal level N(ρ) is not divisible by `. The first step in level optimization
is to strip the power of ` from N . When ` is odd, this is done explicitly in [87,
§2]; for the case ` = 2 see [9, §1]. Many of the arguments and key ideas are due to
Serre [94]. This proof that ` can be stripped from the level uses concrete techniques
of Serre [95, §3], [98, Thm. 5.4], and Queen [78, §3]; it involves multiplying f by
suitable Eisenstein series and taking traces. Katz’s theory of `-adic modular forms
suggests an alternative method. A classical form of weight 2 and level M`m is an
`-adic form of level M ; the mod ` reduction of this form is classical of level M and
some weight, and is congruent to f . See the appendices of [60] and the discussions
in [49, §1] and [50, §1].

The next step is to replace f by a newform of weight between 2 and ` + 1
that gives rise to a twist of ρ. Twisting ρ by the mod ` cyclotomic character χ
preserves N ; this is because ρ ⊗ χ arises from θ(f) = q d

dq (f), which also has

level N . Theorem 2.7 asserts that some twist ρ ⊗ χi of ρ arises from a form g of
weight between 2 and ` + 1. If ρ⊗χi arises from a newform of level N , then ρ also
arises from a newform of the same level, so we can replace f by g and k by the
weight of g. By results discussed in Chapter 2, we may assume that k = k(ρ⊗ χi).
For the case ` = 2 see [9, Prop. 1.3(a)].

33
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We have reduced to considering a representation ρ that arises from a newform f
of weight k(ρ) and level N not divisible by `. The weight satisfies 2 ≤ k(ρ) ≤ `+1,
but N need not equal N(ρ). That N is a multiple of N(ρ) is a theorem proved by
both Carayol [12] and Livné [70, Prop. 0.1].

In order to lower N it is convenient to work systematically with form of weight 2.
Paradoxically, even though we have just taken all powers of ` out of N , we are now
going to allow one power of ` back into N . This allows us to reduce to weight 2 and
realize ρ as a group of torsion points on an abelian variety. An alternative approach
(see [41, 57]) is to avoid this crutch and work directly with representations coming
from arbitrary weights between 2 and ` + 1; these are realized in étale cohomology
groups. This later approach has the advantage that X0(N) has good reduction at `.

Reduction to weight 2 is accomplished using a general relationship that or-
iginates with ideas of Koike and Shimura. In characteristic `, eigenforms of level N
whose weights satisfy 2 < k ≤ ` + 1 correspond to eigenforms of weight 2 and
level `N (see [87, Thm. 2.2]):

{
2 < k ≤ ` + 1, level N

}
oo ///o/o/o/o/o

{
k = 2, level `N

}
.

Thus we can and do work with weight 2 and level

N∗ :=

{
N if k = 2,

N` if k > 2.

3.2. Geometric realization of Galois representations

To understand representations arising from modular forms, it is helpful to realize
these representations inside of geometric objects such as J := J1(N

∗). These
representations are constructed geometrically with the help of the Hecke algebra

T := Z[. . . Tn . . .],

which was defined in Section 2.3. Recall that T is a commutative subring of EndQ J
that is free as a module over Z, and that its rank is equal to the dimension of J .
When N is cube free, T is an order in a product of integer rings of number fields;
this is a result of Coleman and Edixhoven (see [16, Thm. 4.1]). In contrast, the
Hecke operators Tp, for p3 | N , are usually not semisimple (see Exercise 3).

It is fruitful to view a newform f as a homomorphism

T→ O = Z[. . . an . . .], Tn 7→ an.

Letting ϕ : O → F` be the map sending ap to tr(ρ(Frobp)) ∈ F`, we obtain an

exact sequence 0→ m→ T→ F` with m a maximal ideal.
Let ρ : GQ → GL(2,F`) be an irreducible Galois representation that arises from

a weight-2 newform f . The next step, after having attached a maximal ideal m to f
and ϕ, is to find a T/m-vector space affording ρ inside of the group of `-torsion
points of J . Following [71, §II.7], we consider the T/m-vector space

J [m] := {P ∈ J(Q) : tP = 0 all t ∈ m} ⊂ J(Q)[`] ≈ (Z/`Z)2g.

Since the endomorphisms in T are Q-rational, J [m] comes equipped with a linear
action of GQ.
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That tr(ρ(Frobp)) and det(ρ(Frobp)) both lie in the subfield T/m of F` suggests
that ρ has a model over T/m, in the sense that ρ is equivalent to a representation
taking values in GL(2,T/m) ⊂ GL(2,F`).

Lemma 3.1. The representation ρ has a model ρm over the finite field T/m.

Proof. This is a classical result of I. Schur. Brauer groups of finite fields are trivial
(see e.g., [100, X.7, Ex. a]), so the argument of [99, §12.2] proves the lemma.

Alternatively, when the residue characteristic ` of T/m is odd, the following
more direct proof can be used. Complex conjugation acts through ρ as a matrix with
distinct F`-rational eigenvalues; another well known theorem of Schur [90, IX a]
(cf. [116, Lemme I.1]) then implies that ρ can be conjugated into a representation
with values in GL(2,T/m). ¤

3.3. Multiplicity one

Let Vm be a vector space affording ρm. Under the assumption that ρm is absolutely
irreducible, Boston, Lenstra, and Ribet (see [6]) proved that J [m] is isomorphic as
a GQ-module to a sum of copies of Vm:

J [m] ≈
t⊕

i=1

Vm.

The number of copies of Vm is called the multiplicity of m. When ` is odd, the
hypothesis of irreducibility of ρm is equivalent to absolute irreducibility (see Exer-
cise 3).

Proposition 3.2. The multiplicity t is at least 1.

Proof. Let T ⊂ End(J) be the Hecke algebra associated to J . Because T⊗ Z` is
an algebra of finite rank over the local ring Z`, we have a decomposition

T⊗ Z` =
⊕

λ|`
Tλ,

where λ runs through the maximal ideals of T lying over `, and Tλ denotes the
completion of T at λ (see, e.g., [37, Cor. 7.6]). The Tate module

Tate` J := Hom(Q`/Z`,∪n≥1J [`n]) ∼= lim←− J [`n]

is a free Z`-module of rank equal to twice the dimension of J . For each maximal
ideal λ of T lying over `, let eλ ∈ T ⊗ Z` denote the corresponding idempotent;
thus e2

λ = eλ and
∑

λ|` eλ = 1. The map x 7→∑
λ eλx gives a decomposition

Tate` J
∼=−−−−−→

⊕

λ|`
eλ Tate` J.

The ring End(J)⊗Z` operates faithfully on Tate` J (see, e.g., [74, Lem. 12.2]),
so each summand eλ Tate` J is nonzero. Set

Tateλ J := Hom(Q`/Z`,∪n≥1J [λn]).

We claim that Tateλ J is identified with eλ Tate` J under the natural inclusion
Tateλ J ⊂ Tate` J . Denote by λ̃ the maximal ideal in T⊗Z` generated by λ. Let n
be a positive integer, and let I be the ideal in Tλ generated by `n. Because Tλ is
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a local ring with maximal ideal λ̃, there is an integer m such that λ̃m ⊂ I. Since I
is principal and generated by `n, and T acts on eλJ [`n] through Tλ, we have

eλJ [`n] = (eλJ [`n])[I] ⊂ (eλJ [`n])[λ̃m] ⊂ (eλJ [`n])[λm] ⊂ J [λm].

This shows that eλ Tate` J ⊂ Tateλ J . Next suppose λ′ 6= λ and let n be a positive
integer. Since Tλ acts on J [λn] through T/λn = Tλ/λ̃n, we have eλ′J [λn] = 0, so

J [λn] =
∑

all λ′

eλ′J [λn] = eλJ [λn].

The other inclusion Tateλ J = eλ Tateλ J ⊂ eλ Tate` J , which we need to prove
equality, then follows.

We apply the above conclusion with λ = m. Since Tatem J 6= 0, some J [mr]
is nonzero; let r be the smallest such integer. Following [71, p. 112], observe that
for each generating set of elements a1, . . . , at of the T/m-vector space mr−1/mr,
the map x 7→ a1x⊕ · · · ⊕ atx is an injection of the module J [mr]/J [mr−1] into the
direct sum of t copies of J [m]. Thus J [m] is nonzero. ¤

The special case t = 1, in which the multiplicity is one, plays a central role
in the development of the theory. A detailed summary of multiplicity one results
can be found in [32, §9], and some supplementary results are contained in [117,
Thm. 2.1]. In general, the multiplicity can be greater than one (see [72, §13] and
[63]).

3.3.1. Multiplicity one representations

Let ρ : GQ → GL(2,F`) be an irreducible modular Galois representation such that

2 ≤ k(ρ) ≤ ` + 1.

Consider pairs (N,α) where N ≥ 1 is an integer with the property that ` - N if
k(ρ) = 2 and ` || N if k(ρ) > 2, together with maps α : TN → F`, such that
α(Tp) = tr(ρ(Frobp)) and α(p〈p〉) = det(ρ(Frobp)) for almost all p. Here TN is
the Hecke algebra associated to S2(Γ1(N)). Note that if (N,α) is such a pair and
m = ker(α), then

ρ ≈ ρm ⊗T/m F`,

where α : T/m ↪→ F` and ρm is the unique (up to isomorphism) semisimple repre-
sentation over F` such that

tr(ρm(Frobp)) = α(Tp) det(ρm(Frobp)) = α(p〈p〉)
for almost all p.

Definition 3.3. ρ is a multiplicity one representation if J1(N)[ker α] has dimension
2 for all pairs (N,α) as above.

Remark 3.4. (1) If J1(N)[ker α] has dimension 2 then ρm = J1(N)[ker α] by
Eichler-Shimura, see [6].

(2) The definition extends to arbitrary modular Galois representations ρ as
follows. As explained in Section 2.2, every ρ has a twist ρ ⊗ χi by some
power of the cyclotomic character such that k(ρ ⊗ χi) ≤ ` + 1. We say
that ρ is a multiplicity one representation if ρ ⊗ χi is a multiplicity one
representation.
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3.3.2. Multiplicity one theorems

Techniques for proving multiplicity one results were pioneered by Mazur in [71]
who considered J0(p) with p prime. Let f be an eigenform and fix a nonzero prime λ
of the ring generated by the Fourier coefficients of f such that ρf,λ is absolutely
irreducible. View the Hecke algebra T as a subring of End(J0(p)), and let m be the
maximal ideal associated to f and λ. Let Vm again be a two-dimensional T/m-vector
space that affords ρm : GQ → GL(2,T/m). Mazur proved (see Prop. 14.2, ibid.)
that J [m] ≈ Vm, except perhaps when m is ordinary of residue characteristic ` = 2.
The missing ordinary case can be treated under suitable hypothesis. If ρm restricted
to a decomposition group at 2 is not contained in the scalar matrices, then J [m] ≈
Vm (see, e.g., [9, Prop. 2.4]). The results of Mazur are extended in [72] and [84,
§5].

Theorem 3.5. An irreducible modular Galois representation ρ : GQ → GL2(F`) is
a multiplicity one representation, except perhaps when all of the following hypothesis
on ρ are simultaneously satisfied:

— k(ρ) = `;
— ρ is unramified at `;
— ρ is ordinary at `;
— ρ|D`

∼ ( α ∗
0 β ) with α = β.

Proof. See [32, §9], [117, Thm. 2.1], and [9, Prop. 2.4] for the case ` = 2. ¤

In [46, §12] Gross proves multiplicity one when α 6= β, k(ρ) ≤ `, and ρ is
ordinary; he uses this result in his proof of the existence of companion forms. In
contrast, Coleman and Voloch [17] prove the existence of companion forms when
α = β and ` > 2 using a method that avoids the need for multiplicity one.

Remark 3.6. L. Kilford of London, England has recently discovered an example
at prime level 503 in which multiplicity one fails. Let E1, E2, and E3 be the three
elliptic curves of conductor 503, and for each i = 1, 2, 3, let mi be the maximal ideal
of T ⊂ End(J0(503)) generated by 2 and all Tp−ap(Ei), with p prime. Each of the
Galois representations Ei[2] is irreducible, and one can check that m1 = m2 = m3.
If multiplicity one holds, then E1[2] = E2[2] = E3[2] inside of J0(503). However,
this is not the case, as a modular symbols computation in the integral homology
H1(X0(N),Z) reveals that E1 ∩ E2 = {0}.

3.3.3. Multiplicity one for mod 2 representations

For future reference, we now wish to consider multiplicity one in the following rather
extreme situation. Suppose that ` = 2, and let ρ be a mod ` representation arising
from a form of weight either 2 or 3. If the weight is 3 then ρ is not finite at 2; this
can be used to deduce multiplicity one by adapting the arguments of [72] (see the
proof of [9, Prop. 2.4]). When the weight is 2, we have the following proposition.

Proposition 3.7. Let ρ : GQ → GL2(F2) be an irreducible Galois representation
that arises from a weight-2 form f =

∑
anqn on Γ = Γ1(N) ∩ Γ0(2) with N odd,

and let ε be the character of f . If a2
2 6≡ ε(2) ∈ F2, then ρ is a multiplicity one

representation.
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Proof. Let m be the maximal ideal associated to f in the Hecke algebra T at-
tached to Γ. Because the weight of f is 2, the representation ρ is finite at 2. If ρ
is supersingular then the inertia group I2 operates through the two fundamental
characters of level 2. These both have order `2 − 1 = 3 6= 1, so ρ is ramified and
this can be used to deduce multiplicity one. If ρ is ordinary then ρ|D2

∼ ( α ∗
0 β )

with β unramified and β(Frob2) ≡ T2 mod m. The determinant αβ of ρ|D2
is χ · ε

where χ is the mod 2 cyclotomic character and ε is unramified at 2. Since χ, ε,
and β are unramified, α is also unramified. Since χ(Frob2) = 1 and αβ = χε, we
have α(Frob2) = β−1(Frob2)ε(2) = a−1

2 ε(2) (mod m). The further condition, un-
der which we might not know multiplicity one, is α|D2

= β|D2
; expressed in terms

of the image of Frobenius, this becomes a−1
2 ε(2) ≡ a2 (mod m), or equivalently,

a2
2 ≡ ε(2) (mod m). By hypothesis, this latter condition does not hold. ¤

3.4. The key case

We have set our problem up so that level optimization pertains to weight-2 forms of
appropriate level, and takes place on Jacobians of modular curves. This level opti-
mization problem was described, and partially treated, in a paper of Carayol [12].
In this paper, Carayol reduced the problem to the following key case.

Key case: Let ρ : GQ → GL(2,F`) be a Galois representation that arises from a
weight-2 newform f of level pM , with p - `M , and character ε : (Z/pMZ)∗ → C∗.
Assume that ρ is unramified at p, and that ε factors through the natural map
(Z/pMZ)∗ → (Z/MZ)∗. Show that ρ arises from a form of level M .

In the key case, the character ε of f is unramified at p. Thus f , a priori on
Γ1(pM), is also on the bigger group Γ1(M) ∩ Γ0(p); that is, f lies in S2(Γ1(M) ∩
Γ0(p)).

Example 3.8. Consider the representation ρ arising from the 7-division points of
the modular elliptic curve A of conductor NA = 3 · 47 and minimal discriminant
∆A = 37 · 47. (The curve A is labeled 141A in Cremona’s notation [20].) The
newform f corresponding to A is on Γ0(3·47). As in Section 1.4, since ord3(∆A) = 7,
the representation ρ is unramified at 3 and N(ρ) = 47. To optimize the level means
to find a form g on Γ0(47) that gives rise to ρ.

Example 3.9 (Frey curves). The elliptic curves that Frey associated in [42] to
hypothetical solutions of the Fermat equation x` +y` = z` give rise to mod ` Galois
representations. According to Wiles’s theorem [117], there is a weight-2 form f
of level 2L, with L big and square free, that gives rise to ρ. At the same time,
N(ρ) = 2. Taking p to be any odd prime dividing L, we are put in the key case. If
we can optimize the level, then we eventually reach a contradiction and thus deduce
Fermat’s Last Theorem.

The key case divides into two subcases; the more difficult one occurs when the
following conditions are both satisfied:

— p ≡ 1 (mod `);
— ρ(Frobp) is a scalar matrix.

The second condition makes sense because p - N(ρ); since det(ρ(Frobp)) = χk−1ε,
we know the scalar up to ±1. The complementary case is easier; it can be treated
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using “Mazur’s principle” (see Section 3.9). Though Example 3.8 falls into the
easier case because 3 6≡ 1 (mod 7), the proof of Fermat’s Last Theorem requires
level optimization in both cases.

Consider a modular representation ρ : GQ → GL(2,F`) that arises from a
newform of level N and weight k = k(ρ), and assume that ` - N . The goal of level
optimization is to show that there is a newform of Serre’s optimal level N(ρ) that
gives rise to ρ.

As discussed in Section 3.1, ρ arises from a newform f =
∑

anqn on Γ1(N
∗)

of weight 2 and some character ε. Thus there is a homomorphism ϕ from O =
Z[. . . an . . .] to F` such that ϕ(ap) = tr(ρ(Frobp)) for all p - `N∗. Let T be the Hecke
algebra associated to S2(Γ1(N

∗)). The maximal ideal m of T associated to ρ is the
kernel of the map sending Tn to ϕ(an). As was discussed in the previous chapter,
the representation ρ is realized geometrically inside the subspace J [m] ⊂ J [`] of the
`-torsion of the Jacobian J of X1(N

∗).

Problem. Fix a divisor p of N∗/N(ρ). Find a newform whose level is a divisor of
N∗/p that also gives rise to ρ.

Lemma 3.10. Let ρ be as above, and suppose p is a prime such that p | N ∗ but
p - `N(ρ), so ρ is unramified at p. Let εp denote the p part of ε. Then either εp = 1
or p ≡ 1 (mod `).

Proof. The character ε is initially defined as a homomorphism (Z/N ∗Z)∗ → O∗;
the reduction ε is obtained by composing ε with ϕ : O → F`. Since ρ is unramified
at p, the determinant det(ρ) = χk−1

` ε = χ`ε is also unramified at p. Because χ`

is ramified only at `, the character ε is unramified at p. Let M = N ∗/pr where
r = ordp(N

∗), and write (Z/N∗Z)∗ ∼= (Z/prZ)∗ × (Z/MZ)∗. By restricting ε to

each factor, we write ε as a product of two characters: ε = εp · ε(p) where εp is

a character of (Z/prZ)∗ and ε(p) is a character of (Z/MZ)∗. The character ε(p)

has conductor dividing M , so it is unramified at p. By class field theory, εp is
totally ramified at p, so the reduction ε is unramified at p precisely when εp = 1;
equivalently, ε is unramified at p exactly when εp has order a power of `. If εp is
non-trivial, then, since the order of εp divides the order pr−1(p− 1) of a generator
of (Z/prZ)∗, a power of ` divides pr−1(p− 1), so p ≡ 1 (mod `) since ` 6= p. ¤

In addition to his conjectures about the optimal weight and level, Serre also
made a conjecture about the optimal character of a form giving rise to ρ. Let p be
a prime not dividing `N(ρ). Serre’s optimal character conjecture implies that ρ,
which we know to arise from a form on Γ1(M) ∩ Γ1(p

r), arises from a form on
Γ1(M) ∩ Γ0(p

r), and this has been proved in most cases.

3.5. Approaches to level optimization in the key case

As discussed in Section 3.4, results of Carayol and Livné (see [12, 70]) reduce the
level optimization problem to the following key case. The weight-2 newform f , a
priori on Γ1(N

∗), is in fact on the bigger group Γ1(M) ∩ Γ0(p), where Mp = N∗,
p - M , and ρ is unramified at p. The goal is to show that ρ arises from a newform
on Γ1(M). This has been achieved when ` is odd, and in many cases when ` = 2,
using several level optimization techniques.
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I. Mazur’s principle
If either ρ(Frobp) is not a scalar matrix or p 6≡ 1 (mod `), then an ar-
gument of Mazur, explained in Section 3.9, can be used to optimize the
level.

II. Multiplicity one
It is possible to optimize the level if ρ is a multiplicity one representation,
as explained in [84, 9] and Section 3.11. The cases in which multiplicity
one is known were reviewed in Section 3.3. In particular, we do not know
multiplicity one in some cases when k(ρ) = ` and the eigenvalues of Frobp

are not distinct.
III. Using a pivot

Suppose that M can be written as a product M = qK with q a prime not
dividing pK, that ρ arises from a form on Γ1(K) ∩ Γ0(pq), and that ρ is
ramified at q and unramified at p. Then q can be used as a “pivot” to
remove p from the level. This approach grew out of [83], and was intro-
duced in the short paper [86]. In Section 3.10 we describe the approach
and discuss the terminology.

IV. Without multiplicity one
When ` is odd and ε = 1, the level optimization theorem was proved
in [87] using an argument that does not require ρ to have multiplicity
one. The hypothesis ` 6= 2 is used in the proof of Proposition 7.8 of [87]
to force splitting of a short exact sequence. In [26], Diamond extended
the results of [87] to cover the case of arbitrary character, still under
the assumption that ` is odd. One encounters seemingly insurmountable
difficulties in trying to push this argument through when ` = 2.

3.6. Some commutative algebra

In this section we set up some of the commutative algebra that is required in order
to lower levels. There are two injective maps

S2(Γ1(M))
Â Ä //
Â Ä // S2(Γ1(M) ∩ Γ0(p)) .

One is the inclusion f(q) 7→ f(q) and the other is f(q) 7→ f(qp) (see Exercise 18).
The p-new subspace S2(Γ1(M) ∩ Γ0(p))p-new is the complement, with respect to
the Petersson inner product, of the subspace S generated by the two images of
S2(Γ1(M)). The p-new subspace can also be defined algebraically as the kernel
of the natural map from S2(Γ1(M) ∩ Γ0(p)) to the direct sum of two copies of
S2(Γ1(M)).

Let T denote the Hecke algebra acting on S2(Γ1(M)∩Γ0(p)). If p - M , then Tp

acts on S as a direct sum of two copies of its action on S2(Γ1(M)); otherwise, Tp

usually does not act diagonally (see Exercise 19). The image of T in End(S) is a
quotient T called the p-new quotient. A representation ρ associated to a maximal
ideal m of T arises from level M if and only if m arises by pullback from a maximal
ideal of T. Because the map T→ T is surjective, m arises from level M if and only
if the image of m inT is not the unit ideal (see Exercise 21).

3.7. Aside: Examples in characteristic two

Sections 3.7 and 3.8 can be safely skipped on a first reading.
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To orient the reader, we focus for the moment on mod 2 representations that
arise from elliptic curves. We give examples in which one of the level optimizations
methods applies but the others do not. We do not consider method IV because
it is not applicable to mod 2 representations. The hypothesis of the “multiplicity
one” method II when ` = 2 are discussed after the statement of Theorem 3.19
in Section 3.11. We were unable to find an example in which none of the level
optimization theorems applies.

We will repeatedly refer to the following theorem, which first appeared in [85].

Theorem 3.11. Suppose ρ arises from a newform in S2(Γ0(N)). Let p - `N be a
prime satisfying one or both of the identities

tr ρ(Frobp) = ±(p + 1) (mod `).

Then ρ arises from a newform of level pN .

3.7.1. III applies but I and II do not

In this section we give a mod 2 representations in which the pivot hypothesis of
III is satisfied, but the hypotheses of I and II are not. Our example is obtained
by applying Theorem 3.11 to the mod 2 representation attached to a well-chosen
elliptic curve.

We will find an elliptic curve E of conductor M = qR such that ρ = E[2]
is absolutely irreducible, ramified at q, unramified at 2, and ρ(Frob2) = ( 1 0

0 1 ).
Because of the last condition, [9, Prop. 2.4] does not imply that ρ is a multiplicity
one representation, so II does not apply. (In fact, following Remark 3.6, one sees
that ρ is not a multiplicity one representation.) Likewise, I does not apply because
ρ(Frob2) is a scalar and the p we will chose will satisfy p ≡ 1 (mod 2). Next we
choose a prime p - 2qR such that ρE,2(Frobp) = ( 1 0

0 1 ). Let f be the newform
associated to E. By Theorem 3.11 there is a newform g of level pqR such that

ρg,λ ≈ ρE,2.

In particular,
ρg,λ(Frobp) = ρE,2(Frobp) = ( 1 0

0 1 )

is scalar and p ≡ 1 (mod 2), so I does not apply. However, method III does apply
with q used as a pivot.

For example, consider the elliptic curve E defined by the equation

y2 + xy = x3 − x2 + 19x− 32.

The conductor of E is N = 19 · 109, and the discriminant of the field K = Q(E[2])
is −193 · 1093. We select q = 19 as our pivot. The prime p = 73 splits completely
in K, so

ρE,2(Frobp) =

(
1 0
0 1

)
.

By Theorem 3.11 there is a form g of level 109 · 19 · 73 that is congruent to the
newform f attached to E modulo a prime lying over 2. Method III can be used to
optimize the level, but neither method I nor II applies.

3.7.2. II applies but I and III do not

We exhibit a mod 2 representation for which method II can be used to optimize
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Figure 1. The spectrum of T ⊂ End(S2(Γ0(33))), with x = T3

the level, but neither method I nor III applies. Let K be the GL2(F2)-extension
of Q obtained by adjoining all cube roots of 2. Then K = Q(E[2]), where E is the
elliptic curve X0(27) given by the equation y2 + y = x3 − 7. The prime p = 31
splits completely in K, so by Theorem 3.11 there is a newform f of level 31 ·27 and
a maximal ideal λ of the appropriate Hecke algebra such that ρf,λ ≈ E[2]. Neither
method I nor III can be used to optimize the level of ρf,λ. Method I doesn’t apply
because 31 is odd and ρf,λ(Frob31) = ( 1 0

0 1 ); method III doesn’t apply because the
only odd prime that is ramified in K is 3, which does not exactly divide 31 · 27. If
D2 is a decomposition group at 2 then D2 has image in GL2(F2) of order 2, so it
is not contained in the scalar matrices and II can be used to optimize the level of
ρf,λ.

3.8. Aside: Sketching the spectrum of the Hecke algebra

It is helpful to understand the Hecke algebra geometrically using the language of
schemes (see, e.g., [38]). The topological space underlying the scheme Spec(T) is
the set of prime ideals of T endowed with the Zariski topology, in which the closed
sets are the set of prime ideals containing a fixed ideal.

We can draw Spec(T) by sketching a diagram whose irreducible components
correspond to the Galois conjugacy classes of eigenforms, and whose intersections
correspond to congruences between eigenforms. When the level is not cube free, T
can contain nilpotent elements, and then one might wish to include additional
information. If

∑
anqn is an eigenform, then the failure of Z[. . . an . . .] to be in-

tegrally closed can be illustrated by drawing singular points on the corresponding
irreducible component; however, we do not do this below.

Example 3.12. The spectrum of the Hecke algebra associated to Γ0(33) is illus-
trated in Figure 1. The Hecke algebra T ⊂ S2(Γ0(33)) has discriminant −99, as
does the characteristic polynomial of T3, so

T = Z[T3]/((T3 + 1)(T 2
3 + T3 + 3)) ∼= Z[x]/((x + 1)(x2 + x + 3)).

We sketch a curve corresponding to each of the two irreducible components. Some
of the closed points (maximal) ideals are represented as dots. One component
corresponds to the unique newform on Γ0(33), and the other corresponds to the
two images of the newform on Γ0(11).
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Example 3.13. Figure 2 is a diagram of the Hecke algebra associated to S2(Γ0(3 ·
47)). We have labeled fewer closed points than in Figure 1. The components are
labeled by their isogeny class and the level at which they are new (the notation
extends that of [20]). The component labeled 141F corresponds to an eigenform
whose Fourier coefficients generate a quadratic extension of Q.

The newform corresponding to the elliptic curve A from Example 3.8 is la-
beled 141A. Geometrically, the assertion that the level of ρA,7 can be optimized
is represented by the characteristic-7 intersection between the component labeled
141A and the old component 47A coming from the unique Galois conjugacy class
of newforms on Γ0(47).

3.9. Mazur’s principle

A principle due to Mazur can be used to optimize the level in the key case, provided
that a mild hypothesis is satisfied. The principle applies whenever p 6≡ 1 (mod `)
and also in the case when p ≡ 1 (mod `) but ρ(Frobp) is not a scalar. This principle
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first appeared in [84, §6], then in [26, §4], and most recently when ` = 2 in [9,
pg. 7].

Theorem 3.14 (Mazur’s Principle). Suppose that ρ : GQ → GL(2,F`) arises from
a newform f of weight 2 and level Mp, with p - M , and character ε of conductor
dividing M . Assume that ρ is unramified at p and that either ρ(Frobp) is not a
scalar matrix or p 6≡ 1 (mod `). Then ρ arises from a modular of level dividing M .

We will require the following basic fact later in the proof.

Lemma 3.15 (Li). Let f =
∑

anqn be a newform on Γ1(M) ∩ Γ0(p) of weight k.
Then a2

p = ε(p)pk−2.

Proof. Li’s proof is an easy application of her generalization to Γ1 of the Atkin-
Lehner theory of newforms [69, Thm. 3(iii)]. The newform f is an eigenvector for
the operator Wp which is defined on Sk(Γ1(M) ∩ Γ0(p)) by

Wp(f) = pk/2f

(
apz + b

Mpz + p

)
,

where a and b are integers such that ap2 − bMp = p. By [69, Lem. 3],

g := Tp(f) + pk/2−1Wp(f)

lies in Sk(Γ1(M)). For all primes q - Mp, the eigenvalue of Tq on the oldform g
is the same as the eigenvalue of Tq on the newform f , so g = 0. By [69, Lem. 2]

Wp
2(f) = ε(p)f , so a2

p = ε(p)pk−2. ¤

Remark 3.16. The case of Lemma 3.15 that we will need can also be understood
in terms of the local representation ρ|Gp

, which resembles the mod ` representation
attached to a Tate curve, in the sense that ρ|Gp

∼ ( αχ ∗
0 α ). Our hypothesis include

the assumption that ρ is unramified at p, so the two characters αχ and α are
unramified at p. Thus α(Frobp) makes sense; we have α(Frobp) = ap(f) and
αχ(Frobp) = ap(f)p. Since det(ρ|Gp

) = α2χ = εχ, we see that

a2
p = ε(p).

This local analysis of ρ was vastly generalized by Langlands in [67], which extends
the analysis to include many `-adic representations of possibly higher weight. See
also [13].

Let T be the Hecke algebra associated to Γ1(M) ∩ Γ0(p), and let m be the
kernel of the following map T→ F`:

0 −→ m −→ T
Tn 7→an, 〈d〉7→ε(d)−−−−−−−−−−−→ F`.

As in Lemma 3.1, the determinants and traces of elements in the image of ρ = ρm
lie in T/m ⊂ F`, so there is a vector space V ≈ (T/m)⊕2 that affords ρm.

Next we realize ρm as a group of division points in a Jacobian. The curve
X1(Mp) corresponding to Γ1(Mp) covers the curve X1(M,p) corresponding to
Γ1(M) ∩ Γ0(p). The induced map J = Jac(X1(M,p)) → J1(Mp) = Jac(X1(Mp))
has a finite kernel on which the Galois action is abelian.

Just as in Section 2.3.1.1, the Hecke algebra associated to Γ1(M) ∩ Γ0(p), can
be constructed as a ring of correspondences on X1(M,p), then viewed as a subring
T ⊂ EndQ(J). Inside of J we find the nonzero GQ-module J [m] ≈ ⊕t

i=1V . For
the purposes of this discussion, we do not need to know that J [m] is a direct sum
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X1(M)

X1(M)

Figure 3. The reduction mod p of the Deligne-Rapoport model of X1(M, p)

of copies of V . The following weaker assertion, known long ago to Mazur [71, §14,
pg. 112], will suffice: J [m] is a successive extension of copies of V . In particular,
V ⊂ J [m]. A weaker conclusion, true since ` ∈ m, is that V ⊂ J [`],

Our hypothesis that ρ is unramified at p translates into the inclusion V ⊂ J [`]Ip ,
where Ip is an inertia group at p. By [104, Lem. 2], if A is an abelian variety
over Q with good reduction at p, then A[`]Ip ∼= AFp

[`]. However, the modular
curve X1(M,p) has bad reduction at p, so J is likely to have bad reduction at p—
in this case it does. We are led to consider the Néron model J of J (see, e.g.,
[5]), which is a smooth commutative group scheme over Z satisfying the following
property: the restriction map HomZ(S,J ) −→ HomQ(SQ, J) is bijective for all
smooth schemes S over Z. Passing to the scheme-theoretic closure, we have, inside
of J , a two-dimensional T/m-vector space scheme V.

In Section 2.3.1.1 we only defined X1(M,p) as a scheme over Z[1/Mp]. Deligne
and Rapoport [25] extended X1(M,p) to a scheme over Z[1/M ] and computed
the reduction modulo p. The introduction to [62] contains a beautiful historical
discussion of the difficulties involved in extending modular curves over Z.

We know a great deal about the reduction of X1(M,p) at p, which is frequently
illustrated by the squiggly diagram in Figure 3. This reduction is the union of 2
copies of X1(M)Fp

intersecting transversely at the supersingular points.
The subspace S2(Γ1(M)) ⊕ S2(Γ1(M)) of S2(Γ1(M) ∩ Γ0(p)) is stable under

the Hecke algebra T, so there is a map T → End(S2(Γ1(M)) ⊕ S2(Γ1(M))). The
p-old quotient of T is the image T. Since the map T→ T is surjective, the image
of m in T is an ideal m. To optimize the level in the key case amounts to showing
that m is not the unit ideal.

As is well known (cf. [71, Appendix, Prop 1.4]), the results of M. Raynaud [82]
and Deligne-Rapoport [25] combine to produce an exact sequence

(3.1) 0 −→ T −→ J 0
Fp
−→ J1(M)Fp

× J1(M)Fp
−→ 0,

where T is a torus, i.e., TFp
≈ Gm × · · · ×Gm, and J 0

Fp
is the identity component

of JFp
. There is a concrete description of T and of the maps in the exact sequence.

Each object in the sequence is equipped with a functorial action of the Hecke
algebra T, and the sequence is T-invariant. The p-old quotient T can be viewed as
coming from the action of T on J1(M)Fp

× J1(M)Fp
.

By a generalization of [104, Lem. 2], the reduction map J(Qp)[`]
Ip → JFp

(Fp)

is injective. Thus V = VFp
(Fp) ⊂ JFp

(Fp). The component group Φ = JFp
/J 0

Fp
is

Eisenstein, in the sense that it does not contain irreducible representations arising
from eigenforms. Since V is irreducible, as a Galois module Φ does not contain an
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isomorphic copy of V , so VFp
⊂ J 0

Fp
and we have the following diagram:

0 // T // J 0
Fp

// J1(M)Fp
× J1(M)Fp

// 0.

VFp

__

?Â

OO 88ppppppppppppp

Since m acts as 0 on V , the image m of m acts as 0 on the image of V in J1(M)Fp
×

J1(M)Fp
. If m 6= (1) then we can optimize the level, so assume m = (1). Then the

image of V in J1(M)Fp
× J1(M)Fp

is 0, so VFp
↪→ T .

Let Xp(J) := Hom(T ,Gm) be the character group of T . The action of T
on T induces an action of T on Xp(J). Furthermore, Xp(J) supports an action

of Gal(Fp/Fp) which, because tori split over a quadratic extension, factors through
the Galois group of Fp2 . View the Galois action as an action of Frobp ∈ Dp =

Gal(Qp/Qp). With our conventions, the action of Frobenius on the torus is as
follows (cf. [26, pg. 31]).

Lemma 3.17. The Frobenius Frobp acts as pTp on T (Fp).

Make the identification T ∼= HomZ(Xp(J),Gm), so that

V ⊂ T (Fp)[`] = HomZ(Xp(J),µ`).

By Lemma 3.17, Frobp acts on V ⊂ T (Fp) as pap ∈ T/m, i.e., as a scalar. The
determinant of ρ is χε, so we have simulatenously

det(ρ(Frobp)) =

{
pε(p) and

(pap)
2.

By Lemma 3.15, a2
p = ε(p), so p2 ≡ p (mod `). Since p 6= `, this can only happen

if p ≡ 1 (mod `), which completes the proof.

3.10. Level optimization using a pivot

In this section we discuss an approach to level optimization that does not rely on
multiplicity one results. In this approach, we eliminate a prime p from the level by
making use of the rational quaternion algebra that is ramified precisely at p and at
a second prime q. The latter prime is, in the simplest case, an appropriate prime
number at which ρ ramifies; in more complicated cases, it is an “auxiliary” prime
at which ρ is unramified. The central role of q in the argument, and the fact that q
stays fixed in the level while p is removed, leads us to refer to q as a “pivot.”

The following theorem first appeared in [86].

Theorem 3.18. Let ρ : GQ → GL(2,F`) be an irreducible continuous represen-
tation that arises from an eigenform f on Γ1(K) ∩ Γ0(pq) with p and q distinct
primes that do not divide `K. Make the key assumption that the representation ρ
is ramified at q and unramified at p. Then ρ arises from a weight-2 eigenform on
Γ1(K) ∩ Γ0(q).

The case ` = 2 is not excluded from consideration.
Before sketching the proof, we describe a famous application. Edixhoven sug-

gested to the first author that such an approach might be possible in the context of
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Fermat’s Last Theorem. We associate to a (hypothetical) solution a`+b`+c` = 0 of
the Fermat equation with ` > 3 a Galois representation E[`] attached to an elliptic
curve E. A theorem of Mazur implies that this representation is irreducible; a the-
orem of Wiles implies that it arises from a modular form. Using Tate’s algorithm,

we finds that the discriminant of E is ∆E = (abc)2`

28 , which is a perfect `th power
away from 2, and that the conductor of E is NE = rad(abc) =

∏
p|abc p. Let q = 2;

then E[`] is ramified at q because ` - ord2(∆E) = −8 (see Theorem 2.10), but E[`]
is unramified at all other primes p, again by Theorem 2.10. To complete the proof
of Fermat Last Theorem, we use q = 2 as a pivot and inductively remove each odd
factor from N . One complication that may arise (the second case of Fermat Last
Theorem) is that ` | N . Upon removing ` from the level (using Section 3.1), the
weight may initially go up to ` + 1. If this occurs, since k(ρ) = 2 we can use [32]
to optimize the weight back to 2.

As demonstrated by the application to Fermat, in problems of genuine interest
the setup of Theorem 3.18 occurs. There are, however, situations in which it does
not apply such as the recent applications of level optimization as a key ingredient to
a proof of Artin’s conjecture for certain icosahedral Galois representations (see [10]).

3.10.1. Shimura curves

We cannot avoid considering Shimura curves. Denote by X(K, pq) the modular
curve associated to Γ1(K) ∩ Γ0(pq) and let J := Jac(X(K, pq)) be its Jacobian.
Likewise, denote by Xpq(K) the Shimura curve associated to the quaternion alge-
bra of discriminant pq. The curve Xpq(K) is constructed as follows. Let B be an
indefinite quaternion algebra over Q of discriminant pq. (Up to isomorphism, B
is unique.) Let O be an Eichler order (i.e., intersection of two maximal orders) of
level K (i.e., reduced discriminant Kpq) in B. Let Γ∞ be the group of elements of O
with (reduced) norm 1. After fixing an embedding B →M(2,R) (an embedding ex-
ists because B is indefinite), we obtain in particular an embedding Γ∞ ↪→ SL(2,R)
and therefore an action of Γ∞ on the upper half-plane h. Let Xpq(K) be the
standard canonical model, over Q, of the compact Riemann surface Γ∞\h, and let
J ′ = Jac(Xpq(K)) denote its Jacobian. The curve Xpq(K) is furnished with Hecke
correspondences Tn for n ≥ 1. We write Tn for the endomorphism of J induced by
the Tn on Xpq(K) via Pic functoriality.

Set J ′ := Jac(Xpq(K)) and J := Jac(X(K, pq)). Work of Eichler, Jacquet-
Langlands, and Shimura (see [36, 51, 106]) has uncovered a deep correspondence
between certain automorphic forms and certain cusp forms. Combining their work
with the isogeny theorem of Faltings [40], we find (noncanonically!) a map J ′ → J
with finite kernel.

The pq-new part of J is Jpq-new := ker(J(K, pq) −→ J(K, p)2⊕J(K, q)2) where
the map is induced by Albanese functoriality from the four maps

X(K, pq) //
// X(K, p) and X(K, pq) //

// X(K, q).

The image of J ′ → J is the pq-new part of J .

3.10.2. Character groups

Amazingly, there seems to be no canonical map J ′ → J between the Shimura
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and classical Jacobians described in the previous section. Surprisingly, there is a
canonical relationship between the character groups of J ′ and J . The Čerednik-
Drinfeld theory gives a description of Xpq(K) in characteristic p (see [14, 30]).
Using this we find a canonical T-equivariant exact sequence

(3.2) 0→ Xp(J
′)→ Xq(J)→ Xq(J

′′)→ 0

where J ′′ = Jac(X(K, q))2. This exact sequence relates a character group “in
characteristic p” to two character groups “in characteristic q”. We are now prepared
to prove the theorem.

3.10.3. Proof

Proof of Theorem 3.18. By our key assumption, the representation ρ is ramified
at q, so m ⊂ T is not q-old. We may as well suppose we are in a situation where
we can not optimize the level, so we assume that m is not p-old either and hope for
a contradiction.

Localization is an exact functor, so the localization

(3.3) 0 −→ Xp(J
′)m −→ Xq(J)m −→ Xq(J

′′)m −→ 0

of (3.2) is also exact. The Hecke algebra T acts on Xq(J
′′) through a quotient T.

Since m is not q-old, the image of m in T generates the unit ideal. Therefore
Xq(J

′′)m = 0 and we obtain an isomorphism Xp(J
′)m ≈ Xq(J)m. If R is a T-

module then R/mR = Rm/mRm so

(3.4) Xq(J)/mXq(J) ≈ Xp(J
′)/mXp(J

′).

Switching p and q and applying the same argument shows that

(3.5) Xp(J)/mXp(J) ≈ Xq(J
′)/mXq(J

′).

Both (3.4) and (3.5) are isomorphisms of T/m-vector spaces.

By [6] we have an isomorphism J [m] ≈ ⊕λ
i=1 V , with λ > 0 and J ′[m] ≈⊕ν

i=1 V . (It follows from [51] that ν > 0, but we will not use this here.) Our

hypothesis that V is unramified automatically propagates to all of J [m] ≈⊕λ
i=1 V .

Since V is irreducible and we are assuming that m is not p-old, the same argument
as in Section 3.9 shows that J [m] ⊂ T [m] where T is the toric part of JFp

. This
means that dim(Xp(J)/mXp(J)) ≥ 2λ. Using the same argument with J replaced
by J ′ gives that dim(Xp(J

′)/mXp(J
′)) ≥ 2µ.

As an Iq-module V is an extension of two copies of the trivial character. This
follows from results of Langlands [67], since ρ is a mod ` representation of GQ

associated to some newform f whose level divides pqK and is divisible by q. (The
admissible representation of GL(2,Qq) which is associated to f is a special rep-
resentation.) Because V is ramified at q and there is an unramified line, we see
that dim(V Iq ) = 1. Thus dim J [m]Iq = λ; since q 6= ` and the action of inertia on
character groups is trivial, we see that

Hom(Xq(J)/mXq(J),µ`) ⊂ J [m]Iq ,
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so dimXq(J)/mXq(J) ≤ λ. A similar argument bounds dimXq(J
′)/mXq(J

′). We
obtain the following quadruple of inequalities:

dimXq(J)/mXq(J) ≤ λ,

dimXq(J
′)/mXq(J

′) ≤ µ,

dimXp(J)/mXp(J) ≥ 2λ,

dimXp(J
′)/mXp(J

′) ≥ 2µ.

Combining these with (3.4, 3.5), we find that

2λ ≤ dimXp(J)/mXp(J)

= dimXq(J
′)/mXq(J

′)

≤ µ

and simulatenously that 2µ ≤ λ. Together these imply that 4λ ≤ λ so λ = 0. But
Proposition 3.2 implies that the multiplicity of ρ in J [m] is strictly positive. This
contradiction implies that our assumption that m is not p-old is false, hence m is
p-old and ρ arises from an eigenform on Γ1(K) ∩ Γ0(q). ¤

3.11. Level optimization with multiplicity one

Theorem 3.19. Suppose ρ : GQ → GL2(F`) is an irreducible multiplicity one
representation that arises from a weight-2 newform f on Γ1(M)∩Γ0(p) and that p
is unramified. Then there is a newform on Γ1(M) that also gives rise to ρ.

We sketch a proof, under the assumption that ` > 2. Buzzard [9] has given a
proof when ` = 2; his result has been combined with the results of [28] to prove
a Wiles-like lifting theorem valid for many representations when ` = 2, and hence
(thanks to Taylor) to establish new examples of Artin’s conjecture (see [10]).

The following diagram illustrates the multiplicity one argument:

Mpq
pivot

///o/o/o/o/o/o/o/o/o/o/o Mq
easy

!!
!a

!a
!a

!a
!a

Mp

level addition
<<

<|
<|

<|
<|

<|

M.

The pivot step is potentially the hardest; though it resembles the pivot step of
Section 3.10, but the symmetry is broken. In Section 3.10 we knew that q could
not be removed from the level, but here q can be.

We manufacture q as follows. Pick q to be one of the (infinitely many) primes
not dividing Mp` such that the following conditions both hold:

(1)

{
ρ(Frobq) is not a scalar, or

q 6≡ 1 (mod `).

(2)

{
the ratio of the eigenvalues of

ρ(Frobq) is either q or 1/q.

The second condition means that the characteristic polynomial of ρ(Frobq) is of the

form (x− a)(x− qa) for some a ∈ F
∗
` .
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Lemma 3.20. There are infinitely many primes q that simultaneously satisfy both
of the two conditions listed above.

Proof. First assume that ` > 2. Using the Cebotarev density theorem, find infin-
itely many primes q such ρ(Frobq) = ρ(c) where c denotes complex conjugation.
The eigenvalues of ρ(c) are 1 and −1 (Exercise 8), so their ratio is −1. This ratio
is equal to q because

−1 = χ(c) = det(ρ(Frobq)) = χ(Frobq) ≡ q (mod `),

and q 6≡ 1 (mod `) because ` is odd.
Next assume that ` = 2. Because ρ is irreducible, the image ρ(GQ) ⊂ GL(2,F2)

has even order. After a possible change of basis we find ( 1 1
0 1 ) ∈ ρ(GQ). Using

Cebotarev density, we find infinitely many q with ρ(Frobq) conjugate to ( 1 1
0 1 ). For

such q, condition (1) is satisfied. Condition (2) is also satisfied because the ratio
of the eigenvalues is 1 which, because q is an odd prime, is congruent to q modulo
` = 2. ¤
Sketch of proof of Theorem 3.19. Choose q as in Lemma 3.20. With q thus
chosen, we can raise the level. More precisely, there exists a pq-new form on Γ1(M)∩
Γ0(pq). We illustrate this as follows.

(M,pq)
ª goal

$$IIIIIIIII

(M,p)

5

raise
::uuuuuuuuu

(M, q) Â Mazur (condition 1)
// M

We underline pq to emphasize that the situation at level (M,pq) is symmetrical
in p and q.

Let J = J(M,pq); there is a maximal ideal m in T = Z[. . . Tn . . .] ⊂ End J
attached to the pq-newform f that gives rise to ρ. Applying the multiplicity one
hypothesis at level Mpq, we have J [m] = V where V is a T/m-vector space that
supports ρ. In everything so far, M can be divisible by 2; the distinction between
whether or not 2 divides M arises mainly in verifying the multiplicity one hypoth-
esis.

Let J ′ = Jpq(M) be the Shimura curve analogue of J1(M). As described in
Section 3.10, J ′ is constructed in a similar manner as J1(M), but with M2(Q)
replaced by a quaternion algebra. Of primary importance is that J ′[m] ≈⊕ν

i=1 V ,
for some ν ≥ 1. This follows morally because ρ arises from a pq-new form, though
the actual argument is quite involved.

Assume that we cannot optimize the level. We have an exact sequence of
character groups

0 −→ Xp(J
′) −→ Xq(J) −→ Xq(J(M, q)2) −→ 0.

After localizing at m as in (3.3), we discover that

(3.6) dimT/m Xp(J
′)/mXp(J

′) = dimT/m Xq(J)/mXq(J).

Furthermore, since the component group of J ′ at p is a quotient of Xq(J(M, q)2), we
find that V ↪→ (J ′[m]Ip)toric. Thus dimXp(J

′)/mXp(J
′) ≥ 2, so (3.6) implies that

dimXq(J)/mXq(J) ≥ 2. The endomorphism Frobq acts as a scalar (cf. Lemma 3.17)
on

J [m]toric = Hom(Xq(J)/mXq(J), µ`).
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Furthermore, J [m]toric ⊂ J [m] and both J [m]toric and J [m] have dimension 2, so
Frobq acts as a scalar on J [m]. If q 6≡ 1 (mod `) then we could use Mazur’s principle
to optimize the level, so by condition 1 we may assume that ρ(Frobq) is not a scalar.
This contradiction completes the sketch of the proof. ¤





CHAPTER 4

Exercises

The following exercises were used in the Park City problem sessions. D. Savitt,
K. Kedlaya, and B. Conrad contributed some of the problems. In Section 4.2, we
provide several solutions, many of which were suggested by students in the problem
sessions. The solution of some of the problems in this section requires facts beyond
those stated explicitly in this paper.

4.1. Exercises

Exercise 1. Suppose ρ : Gal(Q/Q) → F∗
` is a one-dimensional continuous odd

Galois representation.

(1) Give an example to show that ρ need not be a power of the mod ` cyclo-
tomic character.

(2) Assume that ρ is unramified outside `. Deduce that ρ is a power of the
mod ` cyclotomic character.

Exercise 2. The principal congruence subgroup Γ(N) of level N is the kernel of the
reduction map SL(2,Z)→ SL(2,Z/NZ). The subgroup Γ1(N) consists of matrices
of the form ( 1 ∗

0 1 ) modulo N . Let Γ ⊂ SL(2,Z) be a subgroup that contains Γ(N)
for some N . Show that there exists g ∈ GL(2,Q) such that the conjugate g−1Γg,
which is a subgroup of GL(2,Q), contains Γ1(N

2).

Exercise 3. Let k be a finite field of characteristic greater than 2, and consider an
odd representation ρ : GQ → GL(2, k). Prove that ρ is irreducible if and only if ρ
is absolutely irreducible. (A representation is absolutely irreducible if it remains
irreducible after composing with the embedding GL(2,F`) ↪→ GL(2,F`).) Give an
example to show that this assertion is false when k has characteristic 2.

Exercise 4. Let A/Q be an elliptic curve. Show that the group of Q-rational
endomorphisms End(A) of A is equal to Z; that is, integer multiplications are
the only Q-rational endomorphisms of A. Assume further that A is isolated in its
isogeny class, in the sense that if B is an elliptic curve that is isogenous to A over Q,
then A and B are isomorphic over Q. Show that, for every prime number `, the
representation

ρ` : Gal(Q/Q)→ Aut(A[`]) ≈ GL(2,F`)

is irreducible. Must ρ` be absolutely irreducible?

Exercise 5. Let A/Q be an elliptic curve and assume that for all ` the represen-
tation ρ : Gal(Q/Q) → Aut(A[`]) is irreducible. Deduce that A is isolated in its
isogeny class. This is the converse of Exercise 4.

53
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Exercise 6. Suppose ρ : Gal(Q/Q) → GL(2,F`) arises from the `-torsion of an
elliptic curve. Verify, using standard properties of the Weil pairing, that det(ρ) is
the mod ` cyclotomic character.

Exercise 7. Let f ∈ Sk(Γ1(N)) be a modular form that is an eigenform for all the
Hecke operators Tp and for the diamond bracket operators 〈d〉. Let

ε : (Z/NZ)∗ → C∗

be the character of f , so 〈d〉f = ε(d)f for all d ∈ (Z/NZ)∗.

(1) Show that f satisfies the following equation:
for any

(
a b
c d

)
∈ Γ0(N),

f(z) = ε(d)(cz + d)−kf
(az + b

cz + d

)
.

(2) Conclude that ε(−1) = (−1)k.
(3) Choose a prime ` and let ρ be one of the mod ` Galois representations

associated to f . We have det(ρ) = ε·χk−1 where χ is the mod ` cyclotomic
character. Deduce that ρ is odd, in the sense that det(ρ(c)) = −1 for c
complex conjugation.

Exercise 8. Let ρ : GQ → GL(2,F`) be an odd Galois representation, and let
c ∈ GQ denote complex conjugation.

(1) Prove that if ` 6= 2 then ρ(c) is conjugate over F` to the matrix
( −1 0

0 1

)
.

(2) Give an example to show that when ` = 2, the matrix ρ(c) need not be
conjugate to

( −1 0
0 1

)
.

Exercise 9. Show that there exists a non-continuous homomorphism

ρ : Gal(Q/Q)→ {±1}
where {±1} has the discrete topology; equivalently, that there is a non-closed sub-
group of index two in Gal(Q/Q). To accomplish this, you must produce a map
ρ : Gal(Q/Q)→ {±1} such that

(1) ρ is a homomorphism, and
(2) ρ does not factor through Gal(K/Q) for any finite Galois extension K/Q.

Exercise 10. A potential difficulty is that a representation ρ arising from a mod-
ular form sometimes takes values in a slightly smaller field than O/λ. For example,
let f be one of the two conjugate normalized eigenforms in S2(Γ0(23)). Then

f = q + αq2 + (−2α− 1)q3 + (−α− 1)q4 + 2αq5 + · · ·
with α2 + α − 1 = 0. The coefficients of f lie in O = Z[α] = Z[ 1+

√
5

2 ]. Take λ to
be the unique prime of O lying over 2; then O/λ ∼= F4, so ρf,λ is a homomorphism

into GL(2,F4). Show that if p 6= 2 then ap ∈ Z[
√

5], so that ρf,λ possesses a model
over GL(2,F2).

Exercise 11. Let A/Q be an elliptic curve and ` 6= 2 be a prime.

(1) Prove that the field Q(A[`]) generated by the coordinates of the points in
A[`] is strictly larger than Q.

(2) Given an example of an elliptic curve A such that Q(A[2]) = Q.

Exercise 12. Let A be an elliptic curve over Q defined by a Weierstrass equation
y2 = x3 + ax + b with a, b ∈ Q.
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(1) Describe the Galois representation

ρ = ρA,2 : GQ → GL(2,F2).

(2) Give necessary and sufficient conditions for ρ to be reducible.
(3) Choose a prime p, and give an example in which ρ is ramified only at p.

Exercise 13. Let ε and ρ be a pair of continuous homomorphisms from GQ to F∗
` .

Suppose that for all primes p at which both ε and ρ are unramified we have

ρ(Frobp) = ε(Frobp)p
i ∈ F`.

Deduce that ρ = ε · χi where χ is the mod ` cyclotomic character.

Exercise 14. Let A/Q be an elliptic curve of conductor N , and let p be a prime

number not dividing N . Denote by Ã the mod p reduction of A. The Frobenius
endomorphism Φ = Φp : Ã→ Ã sends an affine point (x, y) to (xp, yp) and fixes∞.
The characteristic polynomial of the endomorphism induced by Φ on the Tate
module of Ã at some (any) prime ` 6= p is X2 − tr(Φ)X + deg(Φ).

(1) Show that deg(Φ) = p.
(2) Show that tr(Φ) = p + 1−#A(Fp), that is, “tr(Φ) = ap.”

(3) Choose a prime ` - pN . Then Ã[`] is a vector space of dimension two

over F`, and Φ induces a map Ã[`]→ Ã[`]. Show that this is the same as
the map induced by some choice of Frobp ∈ Gal(Q/Q).

(4) Conclude that

tr(ρA,`(Frobp)) = p + 1−#A(Fp) (mod `).

Exercise 15. Let A/Q be an elliptic curve of conductor N , and let ` be a prime.
Show that any prime p not dividing `N is unramified in Q(A[`]). You may use
the following fact which is proved using formal groups (see, e.g., [109, Prop. 3.1]):

Fact: The map A[`]→ Ã(Fp) is injective, where Ã is the reduction of A modulo p.

Exercise 16. Show that the fundamental character of level 1 is the cyclotomic
character χ|It

. (Hint: This is trickier than it first appears, and requires Wilson’s
theorem from elementary number theory.)

Exercise 17. For each of the following semistable elliptic curves A, and each `
at which ρA,` is irreducible, use Theorem 2.10 to compute Serre’s minimal weight
k(ρA,`) and level N(ρA,`).

N |∆| reducible ` A
30 24 · 35 · 5 2, 3 y2 + xy + y = x3 + x + 2
210 212 · 33 · 5 · 7 2, 3 y2 + xy = x3 − 41x− 39
330 24 · 32 · 54 · 112 2 y2 + xy = x3 + x2 − 102x + 324
455 53 · 74 · 13 2 y2 + xy = x3 − x2 − 50x + 111
2926 28 · 73 · 114 · 192 2 y2 + xy + y = x3 − x2 + 1934x− 1935

Attempt to verify Serre’s conjecture directly in some of these cases.

Exercise 18. Let M be a positive integer and let p be a prime. Show that there
is an injective linear map

S2(Γ1(M)) ↪→ S2(Γ1(pM))

sending f(q) to f(qp).
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Exercise 19. Let M be an integer such that S2(Γ1(M)) has positive dimension,
and let p be a prime (thus M = 11 or M ≥ 13).

(1) Let f ∈ S2(Γ1(M)) be an eigenvector for Tp with eigenvalue λ. Show
that Tp acting on S2(Γ1(Mp)) preserves the two-dimensional subspace
generated by f and f(pz) (see Section 1.5 for the definition of Tp when p
divides the level). Show furthermore that if λ2 6= 4p then Tp is diagonal-
izable on this 2-dimensional space. What are the eigenvalues of Tp on this
space? In fact, one never has λ2 = 4p; see [16] for more details.

(2) Show that for any r > 2, the Hecke operator Tp on S2(Γ1(Mpr)) is not
diagonalizable.

(3) Deduce that for r > 2 the Hecke algebra T associated to S2(Γ1(Mpr)) has
nilpotent elements, so it is not an order in a product of rings of integers
of number fields.

Exercise 20. Let N be a positive integer. Show that the Hecke algebra T =
Z[. . . Tn . . .] ⊂ End(J1(N)) is of finite rank as a Z-module.

Exercise 21. Suppose N = pM with (p,M) = 1. There is an injection

S2(Γ1(M))⊕ S2(Γ1(M)) ↪→ S2(Γ1(M) ∩ Γ0(p))

given by (f, g) 7→ f(q) + g(qp). The Hecke algebra T = TN acts through a quo-
tient T on the image of S2(Γ1(M)) ⊕ S2(Γ1(M)). Suppose m ⊂ T is a maximal
ideal that arises by pullback from a maximal ideal in T. Show that ρm arises from
a modular form of level M .

4.2. Solutions

Solution 1. 1. Let p be a prime different from ` and let

ρ : Gal(Q/Q)→ Gal(Q(
√

p)/Q) ≈ {±1} ↪→ F∗
` .

2. Let K = Q
ker(ρ)

. Then K/Q is abelian and ramified only at `, so K ⊂ Q(ζ`∞).
But [K : Q] | `− 1 so K ⊂ Q(ζ`).

Solution 2. Conjugate using g = ( N 0
0 1 ).

Solution 3. If ρ is absolutely irreducible then it is irreducible, so assume that ρ is
irreducible. If ρ is reducible over the algebraic closure k of k, then there is a vector

v ∈ k
⊕2

that generates a one-dimensional subspace stable under ρ. In particular, v
is stable under complex conjugation, which has characteristic polynomial x2 − 1 =
(x − 1)(x + 1). Since −1 6= 1, this means that v must lie in one of the two 1-
dimensional eigenspaces of complex conjugation, so v is a scalar multiple of an
element w of k⊕2. Then ρ leaves the subspace of k⊕2 spanned by w invariant, so ρ
is reducible, which contradicts our assumption.

Let ρ : GQ → GL(2,F2) be any continuous representation whose image is
the subgroup generated by ( 0 1

1 1 ). Then ρ is irreducible because it has no one-
dimensional invariant subspaces over F2. However, the matrix ( 0 1

1 1 ) is diagonaliz-
able over F4.
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Solution 4. Suppose ϕ ∈ End(E) is a nonzero endomorphism. The induced
map dϕ on the differentials H0(A,Ω) ≈ Q is multiplication by an integer n, so
d(ϕ− n) = 0 which implies that ϕ = n.

Suppose that ρ` is reducible, so that there is a one-dimensional Galois stable
subspace V ⊂ A[`]. The quotient B = A/V is then an elliptic curve over Q and
there is an isogeny π : A → B of degree `. Because A is isolated in its isogeny
class we have that B = A, so there is an endomorphism of A of degree `. But all
Q-rational endomorphisms are multiplication by an integer, and multiplication by
an integer has degree a perfect square.

The elliptic curve E given by the equation y2 = x3 − 7x − 7 has the property
that E[2] is irreducible but not absolutely irreducible. To see this, note that the
splitting field of x3 − 7x− 7 has Galois group cyclic of order 3.

Solution 5. Suppose all ρA,` are irreducible, yet there exists an isogeny ϕ : A→ B
with B 6≈ A. Choose ϕ to have minimal possible degree and let d = deg(ϕ) > 1.
Let ` be the smallest prime divisor of d and choose a point x ∈ ker(ϕ) of exact
order `. If the order-` cyclic subgroup generated by x is Galois stable, then ρA,`

is reducible, which is contrary to our assumption. Thus ker(ϕ) contains the full
`-torsion subgroup A[`] of A. In particular, ϕ factors as illustrated below:

A
ϕ

//

`

""FF
FF

FF
FF

F B.

A/A[`]

;;xxxxxxxx

Since A/A[`] ∼= A, there is an isogeny from A to B of degree equal to d/`2, which
contradicts our assumption that d is minimal.

Solution 6. The Weil pairing ( , ) : A[`]×A[`]→ µ` can be viewed as a map

2∧
A[`]

∼=−→ µ`

sending P∧Q to (P,Q). For any σ ∈ Gal(Q/Q), we have (P σ, Qσ) = (P,Q)σ. With

the action (P ∧Q)σ = P σ ∧Qσ, the map
∧2

A[`]→ µ` is a map of Galois modules.
To compute det(ρ(σ)) observe that if e1, e2 is a basis for A[`], and ρ(σ) =

(
a b
c d

)
,

then

σ(e1 ∧ e2) = (ae1 + ce2) ∧ (be1 + de2)

= (ad− bc)e1 ∧ e2 = det(ρ(σ))e1 ∧ e2

Thus
∧2

A[`] gives the one-dimensional representation det(ρ). Since
∧2

A[`] is
isomorphic to µ` it follows that det(ρ) = χ.

Solution 7. The definition of 〈d〉 is as follows: choose any matrix σd ∈ Γ0(N) such
that σd ≡

(
d 0
0 d−1

)
(mod N); then 〈d〉f = f |σd

. Observe that Γ1(N) is a normal
subgroup of Γ0(N) and the matrices σd with (d,N) = 1 and d < N are a system
of coset representatives. Thus any

(
a b
c d

)
∈ Γ0(N) can be written in the form σd · g

for some g ∈ Γ1(N). We have

f = f |σdg = (f |σd
)|g = (ε(d)f)|g = ε(d)f |g = ε(d)(cz + d)−kf

(
az + b

cz + d

)
.
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Solution 8.

(1) Since c2 = 1, the minimal polynomial f of ρ(c) divides x2 − 1. Thus f is
either x + 1, x − 1, or x2 − 1. If f = x + 1 then ρ(c) = −1 =

( −1 0
0 −1

)
.

This implies that det(ρ(c)) = (−1)2 = 1, which is a contradiction since
det(ρ(c)) = −1 and the characteristic of the base field is odd. If f = x−1,
then ρ(c) = 1; again a contradiction. Thus the minimal polynomial of ρ(c)
is x2 − 1 = (x − 1)(x + 1). Since −1 6= 1 there is a basis of eigenvectors
for ρ(c) such that the matrix of ρ(c) with respect to this basis is

( −1 0
0 1

)
.

(2) The following example shows that when ` = 2 the matrix of ρA,` need
not be conjugate to

(
1 0
0 −1

)
. Let A be the elliptic curve over Q defined by

y2 = x(x2 − a) with a ∈ Q not square. Then

A[2] = {∞, (0, 0), (
√

a, 0), (−√a, 0)}.
The action of c on the basis (0, 0), (−√a, 0) is represented by the matrix
( 1 1

0 1 ), since c(−√a, 0) = (
√

a, 0) = (0, 0) + (−√a, 0).

Solution 9. The extension Q(
√

d, d ∈ Q∗/(Q∗)2) is an extension of Q with
Galois group X ≈ ∏

F2. The index-two open subgroups of X correspond to the
quadratic extensions of Q. However, Zorn’s lemma implies that X contains many
more index-two subgroups, which can be seen more precisely as follows.

(1) Choose a sequence p1, p2, p3, . . . of distinct prime numbers. Define ρ1 :
GQ →

∏
F2 by

ρ1(σ)i =

{
0 if σ acts trivially on Q(

√
pi),

1 otherwise

Thus ρ1 is just

GQ → Gal(Q(
√

p1,
√

p2, . . .)/Q) ≈
∏

F2.

(2) Let ⊕F2 ⊂
∏

F2 be the subgroup of elements having only finitely many
nonzero coordinates. Then

∏
F2/⊕F2 is a vector space over F2 of dimen-

sion > 0. By Zorn’s lemma, there is a basis B of
∏

F2/⊕F2. Let b ∈ B and
let W be the subspace spanned by B − {b}. Then V = (

∏
F2/⊕ F2)/W

is an F2-vector space of dimensional 1.
(3) Let ρ be the composite map

Gal(Q/Q)

²²

ρ

))RRRRRRRRRRRRRRR

∏
F2

// V ∼=
// {±1}

(4) Let H = ker(ρ) ⊂ Gal(Q/Q). If σ(
√

pi) = −√pi and σ(
√

pj) =
√

pj for
i 6= j, then σ ∈ H. Thus H does not fix any Q(

√
pi), so the fixed field

of H equals Q. The largest finite Galois group quotient through which ρ
factors is then Gal(Q/Q) = {1}. Since ρ 6= 1, we conclude that ρ does
not factor through any finite Galois group quotient, which proves that ρ
is not continuous.
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Solution 10. We have f = f1 + αf2 with f1, f2 ∈ S2(Γ0(23)) and

f1 = q − q3 − q4 + · · ·
f2 = q2 − 2q3 − q4 + 2q5 + · · · .

Because S2(Γ0(23)) has dimension 2, it is spanned by f1 and f2. Let η(q) =

q
1
24

∏
n≥1(1 − qn). Then g = (η(q)η(q23))2 ∈ S2(Γ0(23)). Expanding we find that

g = q2− 2q3 + · · · , so g = f2. Next observe that g is a power series in q2 modulo 2:

g = q2
∏

(1− qn)2(1− q23n)2

≡ q2
∏

(1− q2n)(1− q46n) (mod 2)

≡ q2
∏

(1 + q2n + q46n + q48n) (mod 2)

Thus the coefficient in f2 of qp with p 6= 2 prime is even, and the proposition follows.

Solution 11.

(1) Let ζ ∈ µ` be a primitive `th root of unity. Since
∧2

A[`] ∼= µ`, there
exists P,Q ∈ A[`] such that P ∧ Q = ζ. Since ` > 2 there exists σ such
that ζσ 6= ζ, hence P σ ∧Qσ 6= P ∧Q. This is impossible if all `-torsion is
rational, since then P σ = P and Qσ = Q.

(2) Consider the elliptic curve defined by y2 = (x − a)(x − b)(x − c) where
a, b, c are distinct rational numbers.

Solution 12.

(1) Let K be the splitting field of x3 + ax + b. Then ρ embeds Gal(K/Q) in
GL(2,F2):

Gal(Q/Q)
ρ

//

&&NNNNNNNNNNN
GL(2,F2)

Gal(K/Q)
+
®

88qqqqqqqqqqq

(2) The representation ρ is reducible exactly when the polynomial x3 +ax+ b
has a rational root.

(3) Examples: y2 = x(x2 − 23), y2 = x3 + x− 1.

Solution 13. Consider the character τ = εχ/ρ. By assumption, τ(Frobp) = 1 for
all unramified p. Let K be an extension of Q such that τ factors through Gal(K/Q).
For any σ ∈ Gal(K/Q), the Cebotarev density theorem implies that there are
infinitely many primes p such that Frobp = σ. Thus for any σ, τ(σ) = τ(Frobp) = 1,
so τ = 1 and hence ρ = εχ.

Solution 14.

(1) See, e.g., [109, 2.11].
(2) By [109, 5.5], Φ − 1 is separable, so #A(Fp) = deg(Φ − 1). Since Φ has

degree p, there exists an isogeny Φ (the dual isogeny, see [109, III.6]),
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such that ΦΦ = p. Letting bars denote the dual isogeny, we have

#A(Fp) = deg(Φ− 1) = (Φ− 1)(Φ− 1)

= ΦΦ− Φ− Φ + 1

= p− tr(Φ) + 1

(3) Both maps are pth powering on coordinates.

Solution 15. Since ` 6= p and A has good reduction at p, the natural map
A[`]→ Ã[`] is an isomorphism. We have the following commutative diagram

Gal(Qp(A[`])/Qp)
Â Ä //

²²

Aut(A[`])

∼=
²²

Gal((O/λ)Fp
) // Aut(Ã[`])

It follows that the first vertical map must be injective, which is the same as Qp(A[`])
being unramified over Qp.

Solution 16. The fundamental character Ψ of level one is the composition

Gal(Qnr
` (

`−1
√

`)/Qnr
` )→ µ`−1(Q`)→ µ`−1(F

∗
` ) = F∗

` .

Let π be such that π`−1 = `. Then Ψ(σ) = σ(π)
π (mod π). Let ζ ∈ Q` be a primitive

`th root of unity. Now
`−1∏

a=1

(ζa − 1) = `,

so

(ζ − 1)`−1
`−1∏

a=1

,
ζa − 1

ζ − 1
= `

and (this is where Wilson’s theorem is used),

`−1∏

a=1

ζa
` − 1

ζ − 1
≡ 1 (mod ζ − 1).

Since the polynomial x`−1− 1 has roots over F`, by Hensel’s lemma there is a unit
u ∈ Q`(π) such that

u`−1 =

`−1∏

a=1

ζa − 1

ζ − 1
.

We can take π = (ζ − 1)u. Then

σ(π)

π
=

(ζχ(σ) − 1)σ(u)

(ζ − 1)u

=
(ζ − 1)(ζχ(σ)−1 + · · ·+ 1)σ(u)

(ζ − 1)u

= (ζχ(σ)−1 + · · ·+ 1)σ(u)/u

≡ χ(σ) (mod ζ − 1).
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Solution 17. We write N = N(ρ) and k = k(ρ) to save space. The essential tool
is Theorem 2.10.

(1) ` = 5: N = 6, k = 6, ` > 5, N = 30, k = 2.
(2) ` = 5: N = 2 ·3 ·7, k = 6; ` = 7: N = 2 ·3 ·5, k = 8; ` > 7: N = 2 ·3 ·5 ·7,

k = 2.
(3) ` = 3: N = 2·5·11, k = 4; ` = 5: N = 2·3·11, k = 6; ` = 7: N = 2·3·5·11,

k = 2; ` = 11: N = 2 · 3 · 5, k = 12; ` > 11: N = 2 · 3 · 5 · 11, k = 2.
(4) ` = 3: N = 7 · 13, k = 2; ` = 5: N = 7 · 13, k = 6; ` = 7: N = 5 · 13,

k = 8; ` = 13: N = 5 · 7, k = 14; ` = 11, ` > 13: N = 5 · 7 · 13, k = 2.
(5) ` = 3: N = 2·11·19, k = 2; ` = 7: N = 2·11·19, k = 8; ` = 11: N = 2·7·19,

k = 12; ` = 19: N = 2 · 7 · 11, k = 20; ` other: N = 2 · 7 · 11 · 19, k = 2.

Solution 20. One approach is to view J1(N) as a complex torus, and note that
the endomorphism ring is the set of automorphism of a complex vector space that
fix a lattice. Another approach is to use the deeper finiteness theorems that are
valid in arbitrary characteristic, see, e.g., [74, Thm. 12.5].





CHAPTER 5

Appendix by Brian Conrad: The Shimura
construction in weight 2

The purpose of this appendix is to explain the ideas of Eichler-Shimura for con-
structing the two-dimensional `-adic representations attached to classical weight-2
Hecke eigenforms. We assume familiarity with the theory of schemes and the theory
of newforms, but the essential arithmetic ideas are due to Eichler and Shimura. We
warn the reader that a complete proof along the lines indicated below requires the
verification of a number of compatibilities between algebraic geometry, algebraic
topology, and the classical theory of modular forms. As the aim of this appendix
is to explain the key arithmetic ideas of the proof, we must pass over in silence the
verification of many such compatibilities. However, we at least make explicit what
compatibilities we need. To prove them all here would require a serious digression
from our expository goal; see [18, Ch. 3] for details. It is also worth noting that the
form of the arguments we present is exactly the weight-2 version of Deligne’s more
general proof of related results in weight > 1, up to the canonical isomorphism

Q` ⊗Z`
lim←−Pic0

X/k[`n](k) ∼= H1
ét(X,Q`(1)) ∼= H1

ét,c(Y,Q`(1))

for a proper smooth connected curve X over a separably closed field k of charac-
teristic prime to `, and Y a dense open in X. Using `-adic Tate modules allows us
to bypass the general theory of étale cohomology which arises in the case of higher
weight.

5.1. Analytic preparations

Fix i =
√
−1 ∈ C for all time. Fix an integer N ≥ 5 and let X1(N)an denote the

classical analytic modular curve, the “canonical” compactification of Y1(N)an =
Γ1(N)\h, where h = {z ∈ C : Im z > 0} and Γ1(N) ⊂ SL2(Z) acts on the left via
linear fractional transformations. The classical theory identifies the C-vector space
H0(X1(N)an,Ω1

X1(N)an) with S2(Γ1(N),C), the space of weight-2 cusp forms. Note

that the classical Riemann surface X1(N)an has genus 0 if we consider N < 5, while
S2(Γ1(N),C) = 0 if N < 5. Thus, assuming N ≥ 5 is harmless for what we will
do.

The Hodge decomposition for the compact Riemann surface X1(N)an supplies
us with an isomorphism of C-vector spaces

63
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S2(Γ1(N),C)⊕ S2(Γ1(N),C)

∼=H0(X1(N)an,Ω1
X1(N)an)⊕H0(X1(N)an,Ω

1

X1(N)an)
∼−→H1(X1(N)an,C)

∼=H1(X1(N)an,Z)⊗Z C

(where A denotes the constant sheaf attached to an abelian group A). This
will be called the (weight-2) Shimura isomorphism. We want to define “geomet-
ric” operations on H1(X1(N)an,Z) which recover the classical Hecke operators on
S2(Γ1(N),C) via the above isomorphism.

The “geometric” (or rather, cohomological) operations we wish to define can be
described in two ways. First, we can use explicit matrices and explicit “upper-half
plane” models of modular curves. This has the advantage of being concrete, but it
provides little conceptual insight and encourages messy matrix calculations. The
other point of view is to identify the classical modular curves as the base of certain
universal analytic families of (generalized) elliptic curves with level structure. A
proper discussion of this latter point of view would take us too far afield, so we will
have to settle for only some brief indications along these two lines (though this is
how to best verify compatibility with the algebraic theory via schemes).

Choose a matrix γn ∈ SL2(Z) with γn ≡
(

n−1 ∗
0 n

)
(mod N), for n ∈ (Z/NZ)∗.

The action of γn on h induces an action on Y1(N)an and even on X1(N)an. As-
sociating to each z ∈ h the data of the elliptic curve C/[1, z] = C/(Z + Zz) and
the point 1/N of exact order N , we may identify Y1(N)an as a set with the set of
isomorphism classes of pairs (E,P ) consisting of an elliptic curve E over C and
a point P ∈ E of exact order N . The map Y1(N)an → Y1(N)an induced by γn

can then described on the underlying set by (E,P ) 7→ (E, nP ), so it is “intrinsic”,
depending only on n ∈ (Z/NZ)∗. We denote by In : X1(N)an → X1(N)an the
induced map on X1(N)an. Once this data (E,P ) is formulated in a relative context
over an analytic base, we could define the analytic map In conceptually, without
using the matrix γn. We ignore this point here.

The map z 7→ −1
Nz on h induces a map Y1(N)an → Y1(N)an which extends to

wN : X1(N)an → X1(N)an. More conceptually and more generally, if ζ ∈ µN (C) is
a primitive Nth root of unity, consider the rule wζ that sends (E,P ) ∈ Y1(N)an to
(E/P, P ′ mod P ), where P ′ ∈ E has exact order N and 〈P, P ′〉N = ζ, with 〈 , 〉N
the Weil pairing on N -torsion points (following the sign conventions of [62, 77];
opposite the convention of [109]). More specifically, on C/[1, z] we have 〈 1

N , z
N 〉N =

e2πi/N . The map wζ extends to an analytic map X1(N)an → X1(N)an. When

ζ = e2πi/N , we have wζ = wN due to the above sign convention.
We have induced pullback maps

w∗
ζ , I∗

n : H1(X1(N)an,Z)→ H1(X1(N)an,Z).

We write 〈n〉∗ rather than I∗
n.

Finally, choose a prime p. Define Γ1(N, p) ⊂ SL2(Z) to be Γ1(N, p) = Γ1(N)∩
Γ0(p) when p - N and Γ1(N, p) = Γ1(N) ∩ Γ0(p)t when p | N , where the group
Γ0(p)t is the transpose of Γ0(p). Define Y1(N, p)an = Γ1(N, p)\h and let X1(N, p)an
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be its “canonical” compactification. Using the assignment

z 7→ (C/[1, z],
1

N
, 〈1

p
〉)

when p - N and

z 7→ (C/[1, z],
1

N
, 〈z

p
〉)

when p | N , we may identify the set Y1(N, p)an with the set of isomorphism classes
of triples (E,P,C) where P ∈ E has exact order N and C ⊂ E is a cyclic subgroup
of order p, meeting 〈P 〉 trivially (a constraint if p | N). Here and below, we denote
by 〈P 〉 the (cyclic) subgroup generated by P .

There are unique analytic maps

π
(p)
1 , π

(p)
2 : X1(N, p)an → X1(N)an

determined on Y1(N, p)an by

π
(p)
1 (E,P,C) = (E,P )

and

π
(p)
2 (E,P,C) = (E/C,P mod C).

For example, π
(p)
1 is induced by z 7→ z on h, in terms of the above upper half plane

uniformization of Y1(N)an and Y1(N, p)an.
We define

T ∗
p = (π

(p)
1 )∗ ◦ (π

(p)
2 )∗ : H1(X1(N)an,Z)→ H1(X1(N)an,Z)

where (π
(p)
1 )∗ : H1(X1(N, p)an,Z) → H1(X1(N)an,Z) is the canonical trace map

associated to the finite map π
(p)
1 of compact Riemann surfaces. More specifically,

we have a canonical isomorphism

H1(X1(N, p)an,Z) ∼= H1(X1(N)an, (π
(p)
1 )∗Z)

since (π
(p)
1 )∗ is exact on abelian sheaves, and there is a unique trace map of sheaves

(π
(p)
1 )∗Z→ Z determined on stalks at x ∈ X1(N)an by

∏

π
(p)
1 (y)=x

Z→ Z

(ay) 7→ Σyeyay

(5.1)

where ey is the ramification degree of y over x via π
(p)
1 .

A fundamental compatibility, whose proof we omit for reasons of space, is:

Theorem 5.1. The weight-2 Shimura isomorphism

ShΓ1(N) : S2(Γ1(N),C)⊕ S2(Γ1(N),C) ∼= H1(X1(N)an,Z)⊗Z C

from (5.1) identifies 〈n〉 ⊕ 〈n〉 with 〈n〉∗ ⊗ 1, Tp ⊕ T p with T ∗
p ⊗ 1, and wN ⊕ wN

with w∗
e2πi/N ⊗ 1.
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Let T1(N) ⊂ EndZ(H1(X1(N)an,Z)) be the subring generated by the T ∗
p ’s and

〈n〉∗’s. By Theorem 5.1, this is identified via the Shimura isomorphism with the
classical (weight-2) Hecke ring at level N . In particular, this ring is commutative
(which can be seen directly via cohomological considerations as well). It is clearly
a finite flat Z-algebra.

The natural map

(5.2) T1(N)⊗Z C ↪→ EndC(H1(X1(N)an,Z)⊗Z C)

induces an injection T1(N)⊗C ↪→ EndC(S2(Γ1(N),C)), by Theorem 5.1. This is
the classical realization of Hecke operators in weight 2.

Another compatibility we need is between the cup product on H1(X1(N)an,Z)
and the (non-normalized) Petersson product on S2(Γ1(N),C). To be precise, we
define an isomorphism H2(X1(N)an,Z) ∼= Z using the i-orientation of the complex
manifold X1(N)an (i.e., the “idz ∧ dz” orientation), so we get via cup product a
(perfect) pairing

( , )Γ1(N) : H1(X1(N)an,Z)⊗Z H1(X1(N)an,Z)→ H2(X1(N)an,Z) ∼= Z.

This induces an analogous pairing after applying ⊗ZC. For f, g ∈ S2(Γ1(N),C)
we define

〈f, g〉Γ1(N) =

∫

Γ1(N)\h
f(z)g(z)dxdy

where this integral is absolutely convergent since f and g have exponential decay
near the cusps. This is a perfect Hermitian pairing.

Theorem 5.2. Under the weight-2 Shimura isomorphism ShΓ1(N),
(
ShΓ1(N)(f1 + g1),ShΓ1(N)(f2 + g2)

)
Γ1(N)

= 4π · (〈f1, g2〉Γ1(N) − 〈f2, g1〉Γ1(N)).

Note that both sides are antilinear in g1, g2 and alternating with respect to
interchanging the pair (f1, g1) and (f2, g2). The extra factor of 4π is harmless for
our purposes since it does not affect formation of adjoints. What is important is
that in the classical theory, conjugation by the involution wN takes each T ∈ T1(N)
to its adjoint with respect to the Petersson product. The most subtle case of this
is T = T ∗

p for p | N . For p - N the adjoint of T ∗
p is 〈p−1〉∗T ∗

p and the adjoint of 〈n〉∗
is 〈n−1〉∗. These classical facts (especially for T ∗

p with p | N) yield the following
important corollary of Theorem 5.2.

Corollary 5.3. With respect to the pairing [x, y]Γ1(N) = (x,w∗
ζy)Γ1(N) with ζ =

e2πi/N , the action of T1(N) on H1(X1(N)an,Z) is equivariant. That is,

[x, Ty]Γ1(N) = [Tx, y]Γ1(N)

for all T ∈ T1(N). With respect to ( , )Γ1(N), the adjoint of T ∗
p for p - N is 〈p−1〉∗T ∗

p

and the adjoint of 〈n〉∗ is 〈n−1〉∗ for n ∈ (Z/NZ)∗.

Looking back at the “conceptual” definition of w∗
ζ for an arbitrary primitive

Nth root of unity ζ ∈ µN (C), which gives an analytic involution of X1(N)an, one
can check that w∗

ζj ◦w∗
ζ = 〈j〉∗ for j ∈ (Z/NZ)∗. Since 〈j〉∗ is a unit in T1(N) and

T1(N) is commutative, we conclude that Corollary 5.3 is true with ζ ∈ µN (C) any
primitive Nth root of unity (by reduction to the case ζ = e2πi/N ).
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Our final step on the analytic side is to reformulate everything above in terms
of Jacobians. For any compact Riemann surface X, there is an isomorphism of
complex Lie groups

(5.3) Pic0
X
∼= H1(X,OX)/H1(X,Z)

via the exponential sequence

0→ Z→ OX
e2πi(·)
−−−−→ O∗

X → 1

and the identification of the underlying group of Pic0
X with

H1(X,O∗
X) ∼= Ȟ1(X,O∗

X) ,

where the line bundle L with trivializations ϕi : OUi
∼= L|Ui corresponds to the

class of the Čech 1-cocycle

{ϕ−1
j ◦ ϕi : OUi∩Uj

∼= OUi∩Uj
} ∈

∏

i<j

H0(Ui ∩ Uj ,O∗
X)

for an ordered open cover {Ui}. Beware that the tangent space isomorphism

T0(Pic0
X) ∼= H1(X,OX)

coming from (5.3) is −2πi times the “algebraic” isomorphism arising from

0→ OX → O∗
X[ε] → O∗

X → 1,

where X[ε] = (X,OX [ε]/ε2) is the non-reduced space of “dual numbers over X”.
This extra factor of −2πi will not cause problems. We will use (5.3) to “compute”
with Jacobians.

Let f : X → Y be a finite map between compact Riemann surfaces. Since f
is finite flat, there is a natural trace map f∗OX → OY , and it is not difficult to
check that this is compatible with the trace map f∗Z → Z as defined in (5.1). In
particular, we have a trace map

f∗ : H1(X,OX) ∼= H1(Y, f∗OX)→ H1(Y,OY ).

Likewise, we have compatible pullback maps f ∗OY
∼= OX and f∗Z ∼= Z.

Thus, any such f gives rise to commutative diagrams

H1(Y,OY )
f∗

// H1(X,OX)

H1(Y,Z)

OO

f∗
// H1(X,Z)

OO
H1(X,OX)

f∗ // H1(Y,OY )

H1(X,Z)

OO

f∗ // H1(Y,Z) ,

OO

where the columns are induced by the canonical maps Z → OY and Z → OX .
Passing to quotients on the columns therefore gives rise to maps

f∗ : Pic0
Y → Pic0

X , f∗ : Pic0
X → Pic0

Y

of analytic Lie groups. These maps are “computed” by

Lemma 5.4. In the above situation, f ∗ = Pic0(f) is the map induced by Pic0

functoriality and f∗ = Alb(f) is the map induced by Albanese functoriality. These
are dual with respect to the canonical autodualities of Pic0

X , Pic0
Y .



68 CONRAD, THE SHIMURA CONSTRUCTION

The significance of the theory of Jacobians is that by (5.3) we have a canonical
isomorphism

T`(Pic0
X1(N)an)

∼= H1(X1(N)an,Z`)

∼= H1(X1(N)an,Z)⊗Z Z`,
(5.4)

connecting the `-adic Tate module of Pic0
X1(N) with the Z-module H1(X1(N)an,Z)

that “encodes” S2(Γ1(N),C) via the Shimura isomorphism. Note that this isomor-
phism is defined in terms of the analytic construction (5.3) which depends upon
the choice of i. The intrinsic isomorphism (compatible with étale cohomology) has
Z above replaced by 2πiZ = −2πiZ.

Definition 5.5. We define endomorphisms of Pic0
X1(N)an via

T ∗
p = Alb(π

(p)
1 ) ◦ Pic0(π

(p)
2 ), 〈n〉∗ = Pic0(In), w∗

ζ = Pic0(wζ).

By Lemma 5.4, it follows that the above isomorphism (5.4) carries the operators
on T`(Pic0

X1(N)an) over to the ones previously defined on H1(X1(N)an,Z) (which

are, in turn, compatible with the classical operations via the Shimura isomorphism).
By the faithfulness of the “Tate module” functor on complex tori, we conclude that
T1(N) acts on Pic0

X1(N)an in a unique manner compatible with the above definition,

and (5.4) is an isomorphism of T1(N)⊗Z Z`-modules. We call this the ( )∗-action
of T1(N) on Pic0

X1(N)an .
We must warn the reader that under the canonical isomorphism of C-vector

spaces

S2(Γ1(N),C) ∼= H0(X1(N)an,Ω1
X1(N)an)

∼= H0(Pic0
X1(N)an ,Ω

1
Pic0

X1(N)an
)

∼= Cot0(Pic0
X1(N)an),

the ( )∗-action of T ∈ T1(N) on Pic0
X1(N)an does not go over to the classical action

of T on S2(Γ1(N),C), but rather the adjoint of T with respect to the Petersson
pairing. To clear up this matter, we make the following definition:

Definition 5.6.

(Tp)∗ = Alb(π
(p)
2 ) ◦ Pic0(π

(p)
1 ), 〈n〉∗ = Alb(In), (wζ)∗ = Alb(wζ).

Since I−1
n = In−1 and w−1

ζ = wζ on X1(N)an, we have (wζ)∗ = w∗
ζ and 〈n〉∗ =

〈n−1〉∗. We claim that the above ( )∗ operators are the dual morphisms (with
respect to the canonical principal polarization of Pic0

X1(N)an) of the ( )∗ operators

and induce exactly the classical action of Tp and 〈n〉 on S2(Γ1(N),C), so we also

have a well-defined ( )∗-action of T1(N) on Pic0
X1(N)an , dual to the ( )∗-action. By

Theorem 5.2, Corollary 5.3, and Lemma 5.4, this follows from the following general
fact about compact Riemann surfaces. The proof is non-trivial.

Lemma 5.7. Let X be a compact Riemann surface, and use the i-orientation to
define H2(X,Z) ∼= Z. Use 1 7→ e2πi/`n

to define Z/`n ∼= µ`n(C) for all n. The
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diagram

H1(X,Z`)⊗Z`
H1(X,Z`)

∪ //

∼=
²²

Z`

∼=
²²

T`(Pic0
X)⊗Z`

T`(Pic0
X) // lim←−µ`n(C)

anticommutes (i.e., going around from upper left to lower right in the two possible
ways gives results that are negatives of each other), where the bottom row is the `-

adic Weil pairing (with respect to the canonical principal polarization Pic0
X
∼= P̂ic0

X

for the “second” Pic0
X in the lower left.)

Note that the sign doesn’t affect formation of adjoints. It ultimately comes
from the sign on the bottom of [77, pg. 237] since our Weil pairing sign convention
agrees with [77].

We now summarize our findings in terms of V`(N) = Q` ⊗Z`
T`(Pic0

X1(N)an),
which has a perfect alternating Weil pairing

( , )` : V`(N)⊗ V`(N)→ Q`(1)

and has two Q` ⊗ T1(N)-actions, via the ( )∗-actions and the ( )∗-actions. Since
(wζ)∗ = w∗

ζ , we simply write wζ for this operator on V`(N).

Theorem 5.8. Let T1(N) act on V`(N) with respect to the ( )∗-action or with
respect to the ( )∗-action. With respect to ( , )`, the adjoint of Tp for p - N is
〈p〉−1Tp and the adjoint of 〈n〉 is 〈n〉−1 for n ∈ (Z/NZ)∗. With respect to

[x, y]` = (x,wζ(y))`

for ζ ∈ µN (C) a primitive N th root of unity, the action of T1(N) on V`(N) is self-
adjoint. In general, adjointness with respect to ( , )` interchanges the ( )∗-action
and ( )∗-action.

It should be noted that when making the translation to étale cohomology, the
( )∗-action plays a more prominent role (since this is what makes (5.4) a T1(N)-
equivariant map). However, when working directly with Tate modules and arith-
metic Frobenius elements, it is the ( )∗-action which gives the cleaner formulation
of Shimura’s results.

An important consequence of Theorem 5.8 is

Corollary 5.9. The Q`⊗ZT1(N)-module V`(N) is free of rank 2 for either action,
and HomQ(Q⊗T1(N),Q) is free of rank 1 over Q⊗T1(N) (hence likewise with Q
replaced by any field of characteristic 0).

Remark 5.10. The assertion about HomQ(Q ⊗ T1(N),Q) is equivalent to the
intrinsic condition that Q⊗T1(N) is Gorenstein. Also, this freeness clearly makes
the two assertions about V`(N) for the ( )∗- and ( )∗-actions equivalent. For the
proof, the ( )∗-action is what we use. But in what follows, it is the case of the
( )∗-action that we need!

Proof. Using (5.4) and the choice of ( )∗-action on V`(N), it suffices to prove

• H1(X1(N)an,Q) is free of rank 2 over Q⊗T1(N),
• HomQ(Q⊗T1(N),Q) is free of rank 1 over Q⊗T1(N).
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Using [ , ]Γ1(N), we have

(5.5) H1(X1(N)an,Q) ∼= HomQ(H1(X1(N)an,Q),Q)

as Q⊗T1(N)-modules, so we may study this Q-dual instead. Since Q⊗T1(N) is
semilocal, a finite module over this ring is locally free of constant rank if and only
if it is free of that rank. But local freeness of constant rank can be checked after
faithfully flat base change. Applying this with the base change Q→ C, and noting
that C⊗T1(N) is semilocal, it suffices to replace Q by C above.

Note that if the right hand side of (5.5) is free of rank 2, so is the left side,
so choosing a basis of the left side and feeding it into the right hand side shows
that HomQ(Q⊗T1(N)⊕2,Q) is free of rank 2. In particular, the direct summand
HomQ(Q ⊗ T1(N),Q) is flat over Q ⊗ T1(N) with full support over Spec(Q ⊗
T1(N)), so it must be locally free with local rank at least 1 at all points of Spec(Q⊗
T1(N)). Consideration of Q-dimensions then forces HomQ(Q ⊗ T1(N),Q) to be
locally free of rank 1, hence free of rank 1. In other words, it suffices to show that
HomQ(H1(X1(N)an,Q),Q) is free of rank 2 over T1(N)⊗Q, or equivalently that

HomC(H1(X1(N)an,C),C) is free of rank 2 over T1(N)⊗C.
Via the Shimura isomorphism (in weight 2), which is compatible with the Hecke

actions, we are reduced to showing that Hom(S2(Γ1(N),C),C) is free of rank 1 over
C⊗T1(N). For this purpose, we will study the C⊗T1(N)-equivariant C-bilinear
pairing

S2(Γ1(N),C)⊗C (C⊗T1(N))→ C

(f, T ) 7→ a1(Tf)

were a1(·) is the “Fourier coefficient of q”. This is C ⊗ T1(N)-equivariant, since
T1(N) is commutative. It suffices to check that there’s no nonzero kernel on either
side of this pairing. Since

C⊗T1(N)→ EndC(S2(Γ1(N),C))

is injective (as noted in (5.2)) and a1(TTnf) = an(Tf) for T ∈ T1(N), the kernel on
the right is trivial. Since a1(Tnf) = an(f), the kernel on the left is also trivial. ¤

5.2. Algebraic preliminaries

Let S be a scheme. An elliptic curve E → S is a proper smooth group scheme with
geometrically connected fibers of dimension 1 (necessarily of genus 1). It follows
from [62, Ch.2] that the group structure is commutative and uniquely determined
by the identity section. Fix N ≥ 1 and assume N ∈ H0(S,O∗

S) (i.e., S is a Z[ 1
N ]-

scheme). Thus, the map N : E → E is finite étale of degree N 2 as can be checked
on geometric fibers. A point of exact order N on E is a section P : S → E which is
killed by N (i.e., factors through the finite étale group scheme E[N ]) and induces
a point of exact order N on geometric fibers.

It follows from the stack-theoretic methods in [25] or the more explicit descent
arguments in [62] that for N ≥ 5 there is a proper smooth Z[ 1

N ]-scheme X1(N)

equipped with a finite flat map to P1
Z[ 1

N ]
, such that the open subscheme Y1(N) lying

over P1
Z[ 1

N ]
− {∞} = A1

Z[ 1
N ]

is the base of a universal object (E1(N), P )→ Y1(N)

for elliptic curves with a point of exact order N over variable Z[ 1
N ]-schemes.

Moreover, the fibers of X1(N)→ SpecZ[ 1
N ] are geometrically connected, as this

can be checked on a single geometric fiber and by choosing the complex fiber we may
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appeal to the fact (whose proof requires some care) that there is an isomorphism
(X1(N) ×Z[ 1

N ] C)an ∼= X1(N)an identifying the “algebraic” data (C/[1, z], 1
N ) in

Y1(N)(C) ⊂ X1(N)(C) with the class of z ∈ h in Γ1(N)\h = Y1(N)an ⊂ X1(N)an

(and X1(N)an is connected, as h is). These kinds of compatibilities are somewhat
painful to check unless one develops a full-blown relative theory of elliptic curves
in the analytic world (in which case the verifications become quite mechanical and
natural).

Again fixing N ≥ 5, but now also a prime p, we want an algebraic analogue of
X1(N, p)an over Z[ 1

Np ]. Let (E,P ) → S be an elliptic curve with a point of exact

order N over a Z[ 1
Np ]-scheme S. We’re interested in studying triples (E,P,C)→ S

where C ⊂ E is an order-p finite locally free S-subgroup-scheme which is not
contained in the subgroup generated by P on geometric fibers (if p | N). Methods
in [25] and [62] ensure the existence of a universal such object (E1(N, p), P, C)→
Y1(N, p) for a smooth affine Z[ 1

Np ]-scheme which naturally sits as the complement

of a relative Cartier divisor in a proper smooth Z[ 1
Np ]-scheme X1(N, p) which is

finite flat over P1
Z[ 1

Np ]
(with Y1(N, p) the preimage of A1

Z[ 1
Np ]

). Base change to C

and analytification recovers X1(N, p)an as before, so X1(N, p) → SpecZ[ 1
Np ] has

geometrically connected fibers.
There are maps of Z[ 1

Np ]-schemes (respectively, Z[ 1
N ]-schemes)

Y1(N, p)

π
(p)
1

yyssssssssss
π

(p)
2

%%KKKKKKKKKK

Y1(N)[ 1p ] Y1(N)[ 1p ]

Y1(N)
In−→ Y1(N)

determined by (E,P,C)
π

(p)
1−−→ (E,P ) and (E,P,C)

π
(p)
2−−→ (E/C,P ) (which makes

sense in Y1(N) if p | N by the “disjointness” condition on C and P ) and In(E,P ) =

(E, nP ). Although π
(p)
2 is not a map over A1

Z[ 1
Np ]

, it can be shown that these

all uniquely extend to (necessarily finite flat) maps, again denoted π
(p)
1 , π

(p)
2 , In

between X1(N, p), X1(N)[ 1p ], X1(N). A proof of this fact requires the theory of

minimal regular proper models of curves over a Dedekind base; the analogous fact
over Q is an immediate consequence of basic facts about proper smooth curves over
a field, but in order to most easily do some later calculations in characteristic p - N
it is convenient to know that we have the map Ip defined on X1(N) over Z[1/N ]
(though this could be bypassed by using liftings to characteristic 0 in a manner
similar to our later calculations of Tp in characteristic p).

Likewise, over Z[ 1
N , ζN ] we can define, for any primitive Nth root of unity

ζ = ζi
N (i ∈ (Z/NZ)∗), an operator wζ : Y1(N)/Z[ 1

N ,ζN ] → Y1(N)/Z[ 1
N ,ζN ] via

wζ(E,P ) = (E/〈P 〉, P ′) where 〈P 〉 is the order-N étale subgroup-scheme generated
by P and P ′ ∈ (E[N ]/〈P 〉)(S) is uniquely determined by the relative Weil pairing
condition 〈P, P ′〉N = ζ (with P ′ ∈ E[N ](S) here). This really does extend to
X1(N)/Z[ 1

N ,ζN ], and one checks that wζj wζ = Ij for j ∈ (Z/NZ)∗. In particular,

w2
ζ = 1.

Since X1(N)→ SpecZ[ 1
N ] is a proper smooth scheme with geometrically con-

nected fibers of dimension 1, Pic0
X1(N)

/Z[ 1
N

]
is an abelian scheme over Z[ 1

N ] and
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hence is the Néron model of its generic fiber. We have scheme-theoretic Albanese
and Pic0 functoriality for finite (flat) maps between proper smooth curves (with
geometrically connected fibers) over any base at all, and analytification of such a
situation over C recovers the classical theory of Pic0 as used in Section 5.1.

For example, we have endomorphisms

〈n〉∗ = Pic0(In), 〈n〉∗ = Alb(In)

on Pic0
X1(N)

/Z[ 1
N

]
,

w∗
ζ = Pic0(wζ) = Alb(wζ) = (wζ)∗

on Pic0
X1(N)

/Z[ 1
N

,ζN ]
, and

T ∗
p = Alb(π

(p)
1 ) ◦ Pic0(π

(p)
2 )

(Tp)∗ = Alb(π
(p)
2 ) ◦ Pic0(π

(p)
1 )

on Pic0
X1(N)

/Z[ 1
Np

]
. A key point is that by the Néronian property, T ∗

p and (Tp)∗

uniquely extend to endomorphisms of Pic0
X1(N)

/Z[ 1
N

]
, even though the π

(p)
i do not

make sense over Z[ 1
N ] from what has gone before. In particular, it makes sense to

study T ∗
p and (Tp)∗ on the abelian variety Pic0

X1(N)/Fp
over Fp for p - N . This will

be rather crucial later, but note it requires the Néronian property in the definition.
Passing to the analytifications, the above constructions recover the operators

defined on Pic0
X1(N)an in Section 5.1. The resulting subring of

End(Pic0
X1(N)

/Z[ 1
N

]
) ⊂ End(Pic0

X1(N)an)

generated by T ∗
p , 〈n〉∗ (respectively, by (Tp)∗, 〈n〉∗) is identified with T1(N) via its

( )∗-action (respectively, via its ( )∗-action) and using

(5.6) lim←−Pic0
X1(N)

/Z[ 1
N

]
[`n](Q) ∼= T`(Pic0

X1(N)an)

(using Q ⊂ C) endows our “analytic” V`(N) with a canonical continuous action
of GQ = Gal(Q/Q) unramified at all p - N` (via Néron-Ogg-Shafarevich) and
commuting with the action of T1(N) (via either the ( )∗-action or the ( )∗-action).
We also have an endomorphism wζ = w∗

ζ = (wζ)∗ on Pic0
X1(N)

/Z[ 1
N

,ζN ]
and it is easy

to see that

(g−1)∗wg(ζ)g
∗ = wζ

on Q-points, where g ∈ Gal(Q/Q) and g∗ denotes the natural action of g on Q-
points (corresponding to base change of degree 0 line bundles on X1(N)/Q). Since

wζ = wζ−1 (as (E,P ) ∼= (E,−P ) via −1), we see that wζ is defined over the real

subfield Q(ζN )+. By étale descent, the operator wζ is defined over Z[ 1
N , ζN ]+.

In any case, wζ acts on V`(N), recovering the operator in Section 5.1, and so
this conjugates the ( )∗-action to the ( )∗-action, taking each T ∈ T1(N) (for either
action on V`(N)) to its Weil pairing adjoint, via the canonical principal polarization
of the abelian scheme Pic0

X1(N)
/Z[ 1

N
]
. Using Corollary 5.3 and (5.6) we obtain
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Lemma 5.11. Let T1(N) act on V`(N) through either the ( )∗-action or the ( )∗-
action. Then ρN,` : GQ → Aut(V`(N)) ∼= GL(2,Q` ⊗ T1(N)) is a continuous
representation, unramified at p - N`.

The main result we are after is

Theorem 5.12. Let T1(N) act on Pic0
X1(N)

/Z[ 1
N

]
via the ( )∗-action. For any

p - N`, the characteristic polynomial of ρN,`(Frobp) is

X2 − (Tp)∗X + p〈p〉∗
relative to the Q` ⊗ T1(N)-module structure on V`(N), where Frobp denotes an
arithmetic Frobenius element at p.

The proof of Theorem 5.12 will make essential use of the wζ operator. For the
remainder of this section, we admit Theorem 5.12 and deduce its consequences.
Let f ∈ S2(Γ1(N),C) be a newform of level N . Let Kf ⊂ C be the number field
generated by ap(f) for all p - N , where f =

∑
an(f)qn, so by weak multiplicity one

an(f) ∈ Kf for all n ≥ 1 and the Nebentypus character χf has values in Kf . Let
pf ⊂ T1(N) be the minimal prime corresponding to f (i.e., the kernel of the map
T1(N)→ Kf sending each T ∈ T1(N) to its eigenvalue on f).

We now require T1(N) to act on Pic0
X1(N)

/Z[ 1
N

]
via its ( )∗-action.

Definition 5.13. Af is the quotient of Pic0
X1(N)/Q

by pf ⊂ T1(N).

By construction, Af has good reduction over Z[ 1
N ] and the action of T1(N)

on Pic0
X1(N)/Q

induces an action of T1(N)/p on Af , hence an action of Kf
∼=

(T1(N)/p)⊗Z Q on Af in the “up-to-isogeny” category.

Theorem 5.14 (Shimura). We have dim Af = [Kf : Q] and V`(Af ) is free of
rank 2 over Q` ⊗Q Kf , with Frobp having characteristic polynomial

X2 − (1⊗ ap(f))X + 1⊗ pχf (p)

for all p - N`.

Proof. By Lemma 5.11 and Theorem 5.12, we just have to check that the Q` ⊗
T1(N)-linear map

V`(Pic0
X1(N)/Q

)→ V`(Af )

identifies the right hand side with the quotient of the left hand side by pf . More
generally, for any exact sequence

B′ → B → A→ 0

of abelian varieties over a field of characteristic prime to `, we claim

V`(B
′)→ V`(B)→ V`(A)→ 0

is exact. We may assume the base field is algebraically closed, and then may appeal
to Poincaré reducibility (see [77, pg. 173]). ¤

Choosing a place λ of Kf over ` and using the natural realization of Kf,λ as a
factor of Q` ⊗Kf , we deduce from Theorem 5.14:
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Corollary 5.15. Let f ∈ S2(Γ1(N),C) be a newform and λ a place of Kf over `.
There exists a continuous representation

ρf,λ : GQ → GL(2,Kf,λ)

unramified at all p - N`, with Frobp having characteristic polynomial

X2 − ap(f)X + pχf (p) ∈ Kf,λ[X].

5.3. Proof of Theorem 5.12

Fix p - N and let

Jp = Pic0
X1(N)/Fp

∼= Pic0
X1(N)

/Z[ 1
N

]
×Z[ 1

N ]Fp

with T1(N) acting through the ( )∗-action. Fix a choice of Frobp, or more specif-

ically fix a choice of place in Q over p. Note that this determines a preferred
algebraic closure Fp as a quotient of the ring of algebraic integers, and in particular

a map Z[1/N, ζN ] → Fp. Thus, we may view wζ as inducing an endomorphism

of the abelian variety Jp ×Fp
Fp over Fp (whereas the elements in T1(N) induce

endomorphisms of Jp over Fp). The canonical isomorphism

V`(Pic0
X1(N)/Q

) ∼= V`(Pic0
X1(N)

/Z[ 1
N

]
) ∼= V`(Jp)

identifies the Frobp-action on Q-points on the left hand side with the (arithmetic)

Frobenius action on Fp-points on the right hand side. Obviously V`(Jp) is a module
over the ring Q` ⊗T1(N) and is free of rank 2 as such. For any Fp-schemes Z, Z ′

and any Fp-map f : Z → Z ′ the diagram

(5.7) Z
f

//

FZ

²²

Z ′

FZ′

²²

Z
f

// Z ′

commutes, where columns are absolute Frobenius. Taking Z = SpecFp, Z ′ = Jp,

we see that the Frobp action of V`(Jp) through Fp-points is identical to the action
induced by the intrinsic absolute Frobenius morphism F : Jp → Jp over Fp. Here
is the essential input, to be proven later.

Theorem 5.16 (Eichler-Shimura). In EndFp
(Jp),

(Tp)∗ = F + 〈p〉∗F∨, w−1
ζ Fwζ = 〈p〉−1

∗ F

where F ∨ denotes the dual morphism.

The extra relation involving wζ is crucial. The interested reader should compare
this with [108, Cor. 7.10].

Let us admit Theorem 5.16 and use it to prove Theorem 5.12. We will then
prove Theorem 5.16. Using an Fp-rational base point P (e.g., the cusp 0), we get
a commutative diagram

X1(N)/Fp

Â Ä //

FX1(N)

²²

Jp

F

²²

X1(N)/Fp

Â Ä // Jp
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where FX1(N) denotes the absolute Frobenius morphism of X1(N)/Fp
, so by Al-

banese functoriality F = Alb(FX1(N)). Thus

FF∨ = Alb(FX1(N)) ◦ Pic0(FX1(N))

= deg(FX1(N)) = p

as X1(N)/Fp
is a smooth curve. We conclude from (Tp)∗ = F + 〈p〉∗F∨ that

F 2 − (Tp)∗F + p〈p〉∗ = 0

on Jp, hence in V`(Jp). Thus, ρN,`(Frobp) satisfies the expected quadratic polyno-
mial

X2 − (Tp)∗X + p〈p〉∗ = 0.

Let X2−aX +b be the true characteristic polynomial, which ρN,`(Frobp) must also
satisfy, by Cayley-Hamilton. We must prove that a = (Tp)∗, and then b = p〈p〉∗ is
forced. It is this matter which requires the second relation.

We want trQ`⊗T1(N)(ρN,`(Frobp)) = (Tp)∗ or equivalently

trQ`⊗T1(N)(V`(F )) = (Tp)∗.

Using the modified Weil pairing

[x, y]` = (x,wζy)`

and using the fact that V`(Jp) ∼= V`(Pic0
X1(N)/Q

) respects Weil pairings (by invoking

the relativization of this concept, here over Z[ 1
N ]) we may identify (via Theorem 5.8

and a choice Q`(1) ∼= Q` as Q`-vector spaces)

V`(Jp) ∼= HomQ`
(V`(Jp),Q`) := V`(Jp)

∗

as Q` ⊗T1(N)-modules, but taking the F -action over to the 〈p〉∗F∨-action, since
adjoints with respect to Weil pairings are dual morphisms and w−1

ζ F∨wζ is dual to

w−1
ζ Fwζ = 〈p〉−1

∗ F = F 〈p〉−1
∗ (absolute Frobenius commutes with all morphisms of

Fp-schemes!)
Since V`(Jp) is free of rank 2 over Q` ⊗ T1(N) and HomQ`

(Q` ⊗ T1(N),Q`)
is free of rank 1 over Q` ⊗T1(N), by Corollary 5.9, we conclude

trQ`⊗T1(N)(F |V`(Jp)) = trQ`⊗T1(N)(〈p〉∗F∨|V`(Jp)
∗).

We wish to invoke the following applied to the Q`-algebra Q` ⊗ T1(N) and the
Q` ⊗T1(N)-module V`(Jp):

Lemma 5.17. Let O be a commutative ring, A a finite locally free O-algebra with
HomO(A,O) a locally free A-module (necessarily of rank 1). Let M be a finite locally
free A-module, M∗ = HomO(M,O), so M∗ is finite and locally free over A with the
same rank as M . For any A-linear map f : M → M with O-dual f ∗ : M∗ → M∗,
automatically A-linear,

char(f) = char(f∗)

in A[T ] (these are the characteristic polynomials).

Proof. Without loss of generality O is local, so A is semilocal. Making faithfully
flat base change to the henselization of O (or the completion if O is noetherian or
if we first reduce to the noetherian case), we may assume that A is a product of
local rings. Without loss of generality, A is then local, so

M = ⊕Aei
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if free, and HomO(A,O) is free of rank 1 over A. Choose an isomorphism

h : A ∼= HomO(A,O)

as A-modules, so the projections

πi : M → Aei
∼= A

satisfy e∗
i = h(i) ◦ πi in M∗. These e∗

i are an A-basis of M∗ and we compute
matrices over A:

Mat{ei}(f) = Mat{e∗
i }(f

∗)t.

¤
We conclude that

trQ`⊗T1(N)(F |V`(Jp)) = trQ`⊗T1(N)(〈p〉∗f∨|V`(Jp)).

By Theorem 5.16, we have

2(Tp)∗ = tr((Tp)∗|V`(Jp))

= tr(F + 〈p〉∗F∨|V`(Jp))

= 2 tr(F |V`(Jp)).

This proves that tr(F |V`(Jp)) = (Tp)∗, so indeed X2 − (Tp)∗X + p〈p〉∗ is the char-
acteristic polynomial. Finally, there remains

Proof of Theorem 5.16. It suffices to check the maps coincide on a Zariski dense
subset of Jp(Fp) = Pic0(X1(N)/Fp

). If g is the genus of X1(N)/Z[ 1
N ] and we fix an

Fp-rational base point, we get an induced surjective map

X1(N)g

/Fp
→ Jp/Fp

,

so for any dense open U ⊂ X1(N)Fp
, Ug → (Jp)/Fp

hits a Zariski dense subset of

Fp-points. Taking U to be the ordinary locus of Y1(N)/Fp
, it suffices to study what

happens to a difference (x) − (x′) for x, x′ ∈ Y1(N)(Fp) corresponding to (E,P ),

(E′, P ′) over Fp with E and E′ ordinary elliptic curves.
By the commutative diagram (5.7), the map

Jp(Fp)→ Jp(Fp)

induced by F is the same as the map induced by the pth power map in Fp. By

definition of Pic0 functoriality, this corresponds to base change of an invertible
sheaf on X1(N)/Fp

by the absolute Frobenius on Fp. By definition of Y1(N)/Fp
as

a universal object, such base change induces on Y1(N)(Fp) exactly “base change by

absolute Frobenius” on elliptic curves with a point of exact order N over Fp. We
conclude

F ((x)− (x′)) = (E(p), P (p))− ((E′)(p), P (p))

where ( )(p) denotes base change by absolute Frobenius on Fp.

Since p = FF ∨ = F∨F and F is bijective on Fp-points, we have

F∨((x)− (x′)) = pF−1((x)− (x′))

= p((E(p−1), P (p−1))− ((E′)(p
−1), (P ′)(p

−1))).

Thus,

〈p〉∗F∨((x)− (x′)) = p(E(p−1), pP (p−1))− p((E′)(p
−1), p(P ′)(p

−1))
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so

(F + 〈p〉∗F∨)((x)− (x′)) = (E(p), P (p)) + p(E(p−1), pP (p−1))

− ((E′)(p), (P ′)(p)) + p((E′)(p
−1), p(P ′)(p

−1)).

Computing (Tp)∗ on Jp = Pic0
X1(N)

/Z[ 1
N

]
×Z[ 1

N ]Fp is more subtle because (Tp)∗

was defined over Z[ 1
Np ] (or over Q) as (π2)∗π∗

1 and was extended over Z[ 1
N ] by

the Néronian property. That is, we do not have a direct definition of (Tp)∗ in
characteristic p, so we will need to lift to characteristic 0 to compute. It is here
that the ordinariness assumption is crucial, for we shall see that, in some sense,

(Tp)∗((x)− (x′)) = (F + 〈p〉∗F∨)((x)− (x′))

as divisors for ordinary points x, x′. This is, of course, much stronger than the
mere linear equivalence that we need to prove.

Before we dive into the somewhat subtle calculation of (Tp)∗((x) − (x′)), let’s

quickly take care of the relation w−1
ζ Fwζ = 〈p〉−1

∗ F , or equivalently,

Fwζ = wζ〈p−1〉∗F.

All maps here are induced by maps on X1(N)/Fp
, with F = Alb(FX1(N)), wζ =

Alb(wζ|X1(N)
), 〈p−1〉∗ = Alb(Ip−1). Thus, it suffices to show

FX1(N) ◦ wζ = wζIp−1FX1(N)

on X1(N)/Fp
, and we can check by studying x = (E,P ) ∈ Y1(N)(Fp):

FX1(N)wζ(x) = FX1(N)(E/P, P ′) = (E(p)/P (p), (P ′)(p))

where 〈P, P ′〉N = ζ, so 〈P (p), (P ′)(p)〉N = ζp by compatibility of the (relative) Weil
pairing with respect to base change. Meanwhile,

wζIp−1FX1(N)(x) = wζ(E
(p), p−1P (p)) = (E(p)/(p−1P (p)), Q)

where 〈p−1P (p), Q〉N = ζ, or equivalently 〈P (p), Q〉 = ζp. Since Q = (P ′)(p) is such
a point, this second relation is established.

Now we turn to the problem of computing

(Tp)∗((x)− (x′))

for “ordinary points” x = (E,P ), x′ = (E′, P ′) as above. Let R = Zun
p , W (Fp), or

more generally any henselian (e.g., complete) discrete valuation ring with residue
field Fp and fraction field K of characteristic 0. Since p - N , R is a Z[ 1

N ]-algebra.

Since Y1(N) is smooth over Z[ 1
N ], we conclude from the (strict) henselian property

that Y1(N)(R)→ Y1(N)(Fp) is surjective. Of course, this can be seen “by hand”:

if (E,P ) is given over Fp, choose a Weierstrass model E ↪→ P2
R lifting E (this is

canonically an elliptic curve, by [62, Ch 2]). The finite étale group scheme E [N ] is
constant since R is strictly henselian. Thus there exists a unique closed immersion
of group schemes Z/NZ ↪→ E [N ] lifting P : Z/NZ ↪→ E[N ].

Let (E ,P), (E ′,P ′) over R lift x, x′ respectively. We view these sections to
X1(N)/R → SpecR as relative effective Cartier divisors of degree 1. Using the
reduction map

Pic0
X1(N)

/Z[ 1
N

]
(R)→ Jp(Fp)
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and the definition of (Tp)∗, we see that (Tp)∗((x)−(x′)) is the image of (Tp)∗((E ,P)−
(E ′,P ′)). Now R is NOT a Z[ 1

Np ]-algebra but K is, and we have an injection (even

bijection)

Pic0
X1(N)

/Z[ 1
N

]
(R) ↪→ Pic0

X1(N)
/Z[ 1

N
]
(K),

as Pic0
X1(N)

/Z[ 1
N

]
→ SpecZ[ 1

N ] is separated (even proper).

Thus, we will first compute (Tp)∗((x)− (x′)) by working with K-points, where

K is an algebraic closure of K. Since p - N , we have

(π2)∗π
∗
1((E ,P)/K) =

∑

C

(EK/C,PK mod C)

where C runs through all p + 1 order-p subgroups of E/K . Since E → SpecR has

ordinary reduction, and R is strictly henselian, the connected-étale sequence of E [p]
is the short exact sequence of finite flat R-group schemes

0→ µp → E [p]→ Z/pZ→ 0.

Enlarging R to a finite extension does not change the residue field Fp, so we
may assume that

E [p]/K
∼= Z/pZ× Z/pZ.

Taking the scheme-theoretic closure in E [p] of the p+1 distinct subgroups of E [p]/K

gives p + 1 distinct finite flat subgroup schemes C ⊂ E realizing the p + 1 distinct
C’s over K.

Exactly one of these C’s is killed by E [p]→ Z/pZ over R, as this can be checked

on the generic fiber, so it must be µp ↪→ E [p]. For the remaining C’s, the map
C → Z/pZ is an isomorphism on the generic fiber. We claim these maps

C → Z/pZ

over R are isomorphisms. Indeed, if C is étale this is clear, yet C ↪→ E [p] is a finite
flat closed subgroup-scheme of order p, so a consideration of the closed fiber shows
that if C is not étale then it is multiplicative. But E [p] has a unique multiplicative
subgroup-scheme since

E [p]∨ ∼= E [p]

by Cartier-Nishi duality and E [p] has a unique order-p étale quotient (as any such
quotient must kill the µp we have inside E [p].)

Thus,

(π2)∗π
∗
1((E ,P)/K) =

∑

C
(E/C,P mod C)−

∑

C′

(E ′/C′,P ′ mod C′)

∈ Pic0
X1(N)

/Z[ 1
N

]
(R)

coincides with (Tp)∗((E ,P) − (E ′,P ′)) as both induce the same K-point. Passing
to closed fibers,

(Tp)∗((x)− (x′)) = (E/µp, P mod µp) + p(E/Z/pZ
′
, P mod Z/pZ)

− (E′/µp, P
′ mod µp) + p(E′/Z/pZ, P ′ mod Z/pZ)

where E[p] ∼= µp ×Z/pZ and E′[p] ∼= µp ×Z/pZ are the canonical splittings of the

connected-étale sequence over the perfect field Fp.
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Now consider the relative Frobenius morphism

FE/Fp
: E → E(p),

which sends O to O (and P to P (p)) and so is a map of elliptic curves over Fp.
Recall that in characteristic p, for any map of schemes X → S we define the relative
Frobenius map FX/S : X → X(p) to be the unique S-map fitting into the diagram

X
FX/S

//

!!DD
DD

DD
DD

D

FX

((
X(p) //

²²

X

²²

S
FS

// S

where FS , FX are the absolute Frobenius maps. Since E → SpecFp is smooth of
pure relative dimension 1, FE/Fp

is finite flat of degree p1 = p. It is bijective on

points, so ker(FE/Fp
) must be connected of order p.

The only such subgroup-scheme of E is µp ↪→ E[p] by the ordinariness. Thus

E/µp
∼= E(p)

is easily seen to take P mod µp to P (p).
Similarly, we have

E
FE/Fp

//

p

((
E(p)

F ∨
E/Fp

// E

so F∨
E/Fp

is étale of degree p and base extension by Frob−1 : Fp → Fp gives

E(p−1) //

p

**

E // E(p−1)

P (p−1)
Â // P

Â // p · P (p−1).

As the second map in this composite is étale of degree p, we conclude

(E/Z/pZ, P mod Z/pZ) ∼= (E(p−1), pP (p−1)).

Thus, in Pic0
X1(N)(Fp),

(Tp)∗((x)− (x′)) = (E(p), P (p)) + p · (E(p−1), p · P (p−1))

− ((E′)(p), (P ′)(p))− p · ((E′)(p
−1), p · (P ′)(p

−1))

which we have seen is equal to (F + 〈p〉∗F∨)((x)− (x′)).
¤





CHAPTER 6

Appendix by Kevin Buzzard: A mod `
multiplicity one result

In this appendix, we explain how the ideas of [46] can be used to prove the following
mild strengthening of the multiplicity one results in §9 of [32].

The setup is as follows. Let f be a normalised cuspidal eigenform of level N ,
and weight k, defined over F`, with ` - N and 2 ≤ k ≤ ` + 1. Let N∗ denote N
if k = 2, and N` if k > 2. Let JQ be the Jacobian of the curve X1(N

∗)Q, and
let H denote the Hecke algebra in End(JQ) generated over Z by Tp for all primes
p, and all the Diamond operators of level N ∗. It is well-known (for example by
Proposition 9.3 of [46]) that there is a characteristic 0 normalised eigenform F
in S2(Γ1(N

∗)) lifting f . Let m denote the maximal ideal of H associated to F
(note that m depends only on f and not on the choice of F ), and let F = H/m,
which embeds naturally into F`. Suppose the representation ρf : GQ → GL2(F`)
associated to f is absolutely irreducible, and furthermore assume that if k = ` + 1
then ρf is not isomorphic to a representation coming from a form of weight 2 and
level N .

Theorem 6.1. If ρf is ramified at `, or if ρf is unramified at ` but ρf (Frob`) is

not a scalar matrix, then JQ(Q)[m] has H/m-dimension two, and hence is a model
for (precisely one copy of) ρf .

The motivation for putting ourselves in the setup above is that every absolutely
irreducible modular mod ` representation has a twist coming from a modular form
of level prime to ` and weight at most ` + 1. In particular, every modular mod `
representation has a twist coming from a form satisfying the conditions of our setup.
Furthermore, if f is as in our setup, then Theorems 2.5 and 2.6 of [32] tell us the
precise structure of the restriction of ρf to D`, a decomposition group at `. These
results are explained in Section 2.2. Using them, it is easy to deduce

Corollary 6.2. Let ρ be an absolutely irreducible modular mod ` representation,
such that ρf (D`) is not contained within the scalars. Then some twist of ρ comes
from a modular form satisfying the conditions of the theorem, and hence ρ is a
multiplicity one representation in the sense of Remark 3.4.2.

The theorem, commonly referred to as a “multiplicity one theorem”, is a mild
extension of results of Mazur, Ribet, Gross and Edixhoven. It was announced for
` = 2 as Proposition 2.4 of [9] but the proof given there is not quite complete—in
fact, the last line of the proof there is a little optimistic. I would hence like to thank
Ribet and Stein for the opportunity to correct this oversight in [9].

81
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Proof of Theorem. Firstly we observe that the only case not dealt with by The-
orem 9.2 of [32] is the case when k = ` and ρf is unramified at `, with ρf (Frob`)
a non-scalar matrix whose eigenvalues are equal. Moreover, using Theorems 2.5
and 2.6 of [32] we see that in this case f must be ordinary at `. We are hence
in a position to use the detailed construction of ρf given in §§11–12 of [46]. We
will follow the conventions set up in the present paper for normalisations of Hecke
operators, and so in particular the formulae below differ from the ones in [46] by a
twist.

The maximal ideal m of H associated to f gives rise as in (12.5) of [46] to an
idempotent e ∈ H` := H⊗ZZl, such that the completion Hm of H at m is just eH`.
Let G denote e(JQ`

[`∞]), the part of the `-divisible group of J which is associated
to m. Then Hm acts on G, and it is proved in Propositions 12.8 and 12.9 of [46]
that there is an exact sequence of `-divisible groups

0→ G0 → G→ Ge → 0

over Q`, which is Hm-stable. Let

0→ T 0 → T → T e → 0

be the exact sequence of Tate modules of these groups. We now explain explicitly,
following [46], how the group D` acts on these Tate modules.

If k > 2 then there is a Hecke operator U` in Hm, and we define u = U`. If
k = 2 then there is a Hecke operator T` in Hm and because we are in the ordinary
case we know that T` is a unit in Hm. We define u to be the unique root of the
polynomial X2 − T`X + `〈`〉 in Hm which is a unit (u exists by an appropriate
analogue of Hensel’s lemma).

The calculations of Propositions 12.8 and 12.9 of [46] show that, under our
conventions, the absolute Galois group D` of Q` acts on T e as λ(u), where λ(x)
denotes the unramified character taking Frob` to x. Moreover, these propositions
also tell us that D` acts on T 0 via the character χ`λ(u−1〈`〉N )χ`−2, where χ` is the
cyclotomic character and χ is the Teichmüller character. The key point is that this
character takes values in H×.

The next key observation is that a standard argument on differentials, again
contained in the proof of Propositions 12.8 and 12.9 of [46], shows that Ge[m] =
m−1`T e/`T e has Hm/m-dimension 1 and that G0[m] has dimension d0 ≥ 1. (Note
that the fact that Ge[m] has dimension 1 implies, via some simple linear algebra,
that the sequence 0 → G0[m] → G[m] → Ge[m] → 0 is exact, as asserted by
Gross.) Furthermore, because we can identify G0[m] with m−1`T 0/`T 0, we see that
the action of D` on G0[m] is via a character which takes values in (H/m)×. In
particular, D` acts as scalars on G0[m].

Let us now assume that ρf is unramified at `, and that ρf (Frob`) is a non-
diagonalisable matrix with eigenvalue α ∈ H/m. Choose a model ρ for ρf defined
over GL2(H/m). By the theorem of Boston, Lenstra and Ribet, we know that G[m]
is isomorphic to a direct sum of d copies of ρ, or more precisely, d copies of the
restriction of ρ to D`. Here d is an integer satisfying 2d = d0 + de. Hence, if G[m]α

denotes the subspace of G[m] where Frob` acts as α, then the H/m-dimension of
G[m]α is at most d. On the other hand, Frob` acts on G[m]0 as a scalar, and hence
this scalar must be α, and so we see G[m]0 ⊆ G[m]α. Hence d0 ≤ d = (d0 + 1)/2.
We deduce that d0 ≤ 1 and hence d0 = d = 1 and the theorem is proved. ¤
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We remark that L. Kilford has found examples of mod 2 forms f of weight 2,
such that ρf is unramified at 2 and ρf (Frob2) is the identity, and where JQ(Q)[m]
has H/m-dimension 4, and so one cannot hope to extend the theorem to this case.
See Remark 3.6 for more details, or [64]. A detailed analysis of what is happening
in this case, at least in the analogous setting of forms of weight 2 on J0(p), with
p prime, has been undertaken by Emerton in [39]. In particular, Emerton proves
that multiplicity one fails if and only if the analogue of the exact sequence 0 →
T 0 → T → T e → 0 fails to split as a sequence of Hm-modules.
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École Norm. Sup. (4) 19 (1986), no. 2, 231–273.
51. H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Springer-

Verlag, Berlin, 1970, Lecture Notes in Mathematics, Vol. 114.
52. F. Jarvis, On Galois representations associated to Hilbert modular forms, J.

Reine Angew. Math. 491 (1997), 199–216.
53. , Level lowering for modular mod ` representations over totally real

fields, Math. Ann. 313 (1999), no. 1, 141–160.
54. , Mazur’s principle for totally real fields of odd degree, Compositio

Math. 116 (1999), no. 1, 39–79.
55. N. Jochnowitz, A study of the local components of the Hecke algebra mod `,

Trans. Amer. Math. Soc. 270 (1982), no. 1, 253–267.
56. , The index of the Hecke ring, Tk, in the ring of integers of Tk ⊗Q,

Duke Math. J. 46 (1979), no. 4, 861–869.



88 RIBET AND STEIN, SERRE’S CONJECTURES
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An introduction to computing
modular forms using modular symbols

William A. Stein

Abstract

We explain how weight-two modular forms on Γ0(N) are related to modular
symbols, and how to use this to explicitly compute spaces of modular forms.

Introduction

The definition of the spaces of modular forms as functions on the upper half plane
satisfying a certain equation is very abstract. The definition of the Hecke operators
even more so. Nevertheless, one wishes to carry out explicit investigations involving
these objects.

We are fortunate that we now have methods available that allow us to transform
the vector space of cusp forms of given weight and level into a concrete object, which
can be explicitly computed. We have the work of Atkin-Lehner, Birch, Swinnerton-
Dyer, Manin, Mazur, Merel, and many others to thank for this (see, e.g., [3, 6, 15,
16]). For example, we can use the Eichler-Selberg trace formula, as extended in
[11], to compute characteristic polynomials of Hecke operators. Then the method
described in [25] gives a basis for certain spaces of modular forms. Alternatively,
we can compute Θ-series using Brandt matrices and quaternion algebras as in [12,
18], or we can use a closely related geometric method that involves the module of
enhanced supersingular elliptic curves [17]. Another related method of Birch [2] is
very fast, but gives only a piece of the full space of modular forms. The power of
the modular symbols approach was demonstrated by Cremona in his book [6] in
which he systematically computes a large table of invariants of all elliptic curves of
conductor up to 1000 (his online tables [7] go well beyond 100, 000).

Though the above methods are each beautiful and well suited to certain appli-
cations, we will only discuss the modular symbols method further, as it has many
advantages. We will primarily discuss the theory in this summary paper, leaving
an explicit description of the objects involved for other papers. Nonetheless, there
is a definite gap between the theory on the one hand, and an efficient running ma-
chine implementation on the other. To implement the algorithms hinted at below
requires making absolutely everything completely explicit, then finding intelligent
and efficient ways of performing the necessary manipulations. This is a nontrivial
and tedious task, with room for error at every step. Fortunately, Sage [24] has
extensive capabilities for computing with modular forms and includes Cremona’s
programs; we will give a few examples below. See also the author’s Magma [4]
package for computing with modular forms and modular symbols.

1



In this paper we will focus exclusively on the case of weight-2 modular forms
for Γ0(N). The methods explained here extend to modular forms of integer weight
greater than 2; for more details see the author’s book [23] and Merel’s paper [16].

Section 1 contains a brief summary of basic facts about modular forms, Hecke
operators, and integral homology. Section 2 introduces modular symbols, and de-
scribes how to compute with them. Section 3 outlines an algorithm for constructing
cusp forms using modular symbols in conjunction with Atkin-Lehner theory.

This paper assumes some familiarity with algebraic curves, Riemann surfaces,
and homology groups of compact surfaces. A few basic facts about modular forms
are recalled, but only briefly. In particular, only a roundabout attempt is made to
motivate why one might be interested in modular forms; for this, see many of the
references in the bibliography. No prior exposure to modular symbols is assumed.

1 Modular forms and Hecke operators

All of the objects we will consider arise from the modular group SL2(Z) of two-
by-two integer matrices with determinant equal to one. This group acts via linear
fractional transformations on the complex upper half plane h, and also on the ex-
tended upper half plane

h∗ = h ∪ P1(Q) = h ∪ Q ∪ {∞}.

See [21, §1.3–1.5] for a careful description of the topology on h∗. A basis of neigh-
borhoods for α ∈ Q is given by the sets {α} ∪ D, where D is a disc in h that is
tangent to the real line at α. Let N be a positive integer and consider the group
Γ0(N) of matrices

(
a b
c d

)
∈ SL2(Z) such that N | c. This group acts on h∗ by linear

fractional transformations, and the quotient Γ0(N)\h∗ is a Riemann surface, which
we denote by X0(N). Shimura showed in [21, §6.7] that X0(N) has a canonical
structure of algebraic curve over Q.

A cusp form is a function f on h such that f(z)dz is a holomorphic differential
on X0(N). Equivalently, a cusp form is a holomorphic function f on h such that

(a) the expression f(z)dz is invariant under replacing z by γ(z) for each γ ∈
Γ0(N), and

(b) f(z) is holomorphic at each element of P1(Q), and moreover f(z) tends to 0
as z tends to any element of P1(Q).

The space of cusp forms on Γ0(N) is a finite dimensional complex vector space, of
dimension equal to the genus g of X0(N). Viewed topologically, as a 2-dimensional
real manifold, X0(N)(C) is a g-holed torus.

Condition (b) in the definition of f(z) means that f(z) has a Fourier expansion
about each element of P1(Q). Thus, at ∞ we have

f(z) = a1e
2πiz + a2e

2πi2z + a3e
2πi3z + · · ·

= a1q + a2q
2 + a3q

3 + · · · ,

where, for brevity, we write q = q(z) = e2πiz.
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Example 1.1. Let E be the elliptic curve defined by the equation y2 + xy = x3 +
x2 − 4x − 5. For p 6= 3, 13, let ap = p + 1 − #Ẽ(Fp), where Ẽ is the reduction of E
mod p, and let a3 = −11, a13 = 1. For n composite, define an using the relations
at the end of Section 3. Then

f = q + a2q
2 + a3q

3 + a4q
4 + a5q

5 + · · · = q + q2 − 11q3 + 2q5 + · · ·

is the q-expansion of a modular form on Γ0(39). The Shimura-Taniyama conjecture,
which is now a theorem (see [5]) asserts that any q-expansion constructed as above
from an elliptic curve over Q is a modular form. We define the above elliptic curve
and compute the associated modular form f using Sage as follows:

sage: E = EllipticCurve([1,1,0,-4,-5]); E

Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 4*x - 5

over Rational Field

sage: E.q_eigenform(10)

q + q^2 - q^3 - q^4 + 2*q^5 - q^6 - 4*q^7 - 3*q^8 + q^9 + O(q^10)

The Hecke operators are a family of commuting endomorphisms of S2(N), which
are defined as follows. The complex points of the open subcurve Y0(N) = Γ0(N)\h
are in bijection with pairs (E, C), where E is an elliptic curve over C and C is a
cyclic subgroup of E(C) of order N . If p ∤ N then there are two natural maps
π1 and π2 from Y0(pN) to Y0(N); the first, π1, sends (E, C) to (E, C′), where C′

is the unique cyclic subgroup of C of order N , and the second, π2, sends a point
(E, C) ∈ Y0(N)(C) to (E/D, C/D), where D is the unique cyclic subgroup of C of
order p. These maps extend in a unique way to maps from X0(pN) to X0(N):

X0(pN)

π2

yyttttttttt
π1

%%
KKKKKKKKK

X0(N) X0(N).

The pth Hecke operator Tp is (π1)∗ ◦ (π2)
∗; it acts on most objects attached to

X0(N), such as divisors and cusp forms. There is a Hecke operator Tn for every
positive integer n, but we will not need to consider those with n composite.

Example 1.2. There is a basis of S2(39) so that

T2 =




0 2 −1
1 −2 1
0 −1 1


 and T5 =




1 −1 −1
−2 2 −2
−3 −1 −1


 .

Notice that these matrices commute, and that 1 is an eigenvalue of T2, and 2 is
an eigenvalue of T5. We compute each of the above matrices and verify that they
commute using Sage as follows:

sage: S = CuspForms(39)

sage: T2 = S.hecke_matrix(2); T2

3



H1(X0(39),Z) ∼= Z × Z × Z × Z × Z × Z

Figure 1: The homology of X0(39).

[ 0 2 -1]

[ 1 -2 1]

[ 0 -1 1]

sage: T5 = S.hecke_matrix(5); T5

[ 1 -1 -1]

[-2 2 -2]

[-3 -1 -1]

sage: T2*T5 == T5*T2

True

The first homology group H1(X0(N),Z) is the group of singular 1-cycles modulo
homology relations. Recall that topologically X0(N) is a g-holed torus, where g is
the genus of X0(N). The group H1(X0(N),Z) is thus a free abelian group of rank
2g (see, e.g., [10, Ex. 19.30]), with two generators corresponding to each hole, as
illustrated in the case N = 39 in Diagram 1.

The Hecke operators Tp act on H1(X0(N),Z), and integration defines a nonde-
generate Hecke-equivariant pairing

〈 , 〉 : S2(N) × H1(X0(N),Z) → C.

Explicitly, for a path x,

〈f, x〉 = 2πi

∫

x

f(z)dz,

where the integral may be viewed as a complex line integral along an appropriate
piece of the preimage of x in the upper half plane. The pairing is Hecke equivariant
in the sense that for every prime p, we have 〈fTp, x〉 = 〈f, Tpx〉. As we will see,
modular symbols allow us to make explicit the action of the Hecke operators on
H1(X0(N),Z); the above pairing then translates this into a wealth of information
about cusp forms.

For a more detailed survey of the basic facts about modular curves and modular
forms, we urge the reader to consult the book [9] by Diamond and Shurman along
with Diamond and Im’s survey paper [8]. For a discussion of how to draw a picture
of the ring generated by the Hecke operators, see [19, §3.8].
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∞

α β0 Q

Figure 2: The modular symbols {α, β} and {0, ∞}.

2 Modular symbols

The modular symbols formalism provides a presentation of H1(X0(N),Z) in terms
of paths between elements of P1(Q). Furthermore, a trick due to Manin gives an
explicit finite list of generators and relations for the space of modular symbols.

The modular symbol defined by a pair α, β ∈ P1(Q) is denoted {α, β}. As
illustrated in Figure 2, this modular symbol should be viewed as the homology
class, relative to the cusps, of a geodesic path from α to β in h∗. The homology
group relative to the cusps is a slight enlargement of the usual homology group, in
that we allow paths with endpoints in P1(Q) instead of restricting to closed loops.

Motivated by this picture, we declare that modular symbols satisfy the following
homology relations: if α, β, γ ∈ Q ∪ {∞}, then

{α, β} + {β, γ} + {γ, α} = 0.

Furthermore, we quotient out by any torsion, so, e.g., {α, α} = 0 and {α, β} =
−{β, α}.

Denote by MMM2 the free abelian group with basis the set of symbols {α, β} modulo
the three-term homology relations above and modulo any torsion. There is a left
action of GL2(Q) on MMM2, whereby a matrix g acts by

g{α, β} = {g(α), g(β)},

and g acts on α and β by a linear fractional transformation. The space MMM2(N) of
modular symbols for Γ0(N) is the quotient of MMM2 by the submodule generated by
the infinitely many elements of the form x− g(x), for x in MMM2 and g in Γ0(N), and
modulo any torsion. A modular symbol for Γ0(N) is an element of this space. We
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frequently denote the equivalence class that defines a modular symbol by giving a
representative element.

In [14], Manin proved that there is a natural injection H1(X0(N),Z) → MMM2(N).
The image of H1(X0(N),Z) in MMM2(N) can be identified as follows. Let BBB2(N)
denote the free abelian group whose basis is the finite set Γ0(N)\P1(Q). The
boundary map δ : MMM2(N) → BBB2(N) sends {α, β} to [β] − [α], where [β] denotes the
basis element of BBB2(N) corresponding to β ∈ P1(Q). The kernel SSS2(N) of δ is the
subspace of cuspidal modular symbols. An element of SSS2(N) can be thought of as
a linear combination of paths in h∗ whose endpoints are cusps, and whose images
in X0(N) are a linear combination of loops. We thus obtain a map ϕ : SSS2(N) →
H1(X0(N),Z).

Theorem 2.1. The map ϕ given above defines a canonical isomorphism

SSS2(N) ∼= H1(X0(N),Z).

2.1 Manin’s trick

In this section, we describe a trick of Manin that shows that the space of modular
symbols can be computed.

By reducing modulo N , one sees that the group Γ0(N) has finite index in SL2(Z).
Let r0, r1, . . . , rm be distinct right coset representatives for Γ0(N) in SL2(Z), so that

SL2(Z) = Γ0(N)ro ∪ Γ0(N)r1 ∪ · · · ∪ Γ0(N)rm,

where the union is disjoint. For example, when N is prime, a list of coset represen-
tatives is

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 0
2 1

)
,

(
1 0
3 1

)
, . . . ,

(
1 0

N − 1 1

)
,

(
0 −1
1 0

)
.

In general, the right cosets of Γ0(N) in SL2(Z) are in bijection with the elements of
P1(Z/NZ) (see [6, §2.2] for complete details).

The following trick of Manin (see [14, §1.5] and [6, §2.1.6]) allows us to write
every modular symbol as a Z-linear combination of symbols of the form ri{0, ∞}.
In particular, the finitely many symbols ri{0, ∞} generate MMM2(N).

Because of the relation {α, β} = {0, β} − {0, α}, it suffices to consider modular
symbols of the form {0, b/a}, where the rational number b/a is in lowest terms.
Expand b/a as a continued fraction and consider the successive convergents in lowest
terms:

b−2

a−2
=

0

1
,

b−1

a−1
=

1

0
,

b0

a0
=

b0

1
, . . . ,

bn−1

an−1
,

bn

an
=

b

a

where the first two are added formally. Then

bkak−1 − bk−1ak = (−1)k−1,

so that

gk =

(
bk (−1)k−1bk−1

ak (−1)k−1ak−1

)
∈ SL2(Z).
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Hence {
bk−1

ak−1
,
bk

ak

}
= gk{0, ∞} = ri{0, ∞},

for some i, is of the required special form.

Example 2.2. Let N = 11, and consider the modular symbol {0, 4/7}. We have

4

7
= 0 +

1

1 + 1
1+ 1

3

,

so the partial convergents are

b−2

a−2
=

0

1
,

b−1

a−1
=

1

0
,

b0

a0
=

0

1
,

b1

a1
=

1

1
,

b2

a2
=

1

2
,

b3

a3
=

4

7
.

Thus

{0, 4/7} = {0, ∞} + {∞, 0} + {0, 1} + {1, 1/2} + {1/2, 4/7}

=

(
1 −1
2 −1

)
{0, ∞} +

(
4 1
7 2

)
{0, ∞}

= 2 ·
[(

1 4
1 5

)
{0, ∞}

]

2.2 Manin symbols

As above, fix coset representatives r0, . . . , rm for Γ0(N) in SL2(Z). Denote the mod-
ular symbol ri{0, ∞} by [ri]. The symbols [r0], . . . , [rm] are called Manin symbols,
and they are equipped with a right action of SL2(Z), which is given by [ri]g = [rj ],
where Γ0(N)rj = Γ0(N)rig. Recall that SL2(Z) is generated by the two matrices
σ =

(
0 −1
1 0

)
and τ =

(
1 −1
1 0

)
(see Theorem 2 of [20, VII.1.2]).

Theorem 2.3 (Manin). The Manin symbols [r0], . . . , [rm] satisfy the following re-
lations:

[ri] + [ri]σ = 0

[ri] + [ri]τ + [ri]τ
2 = 0.

Furthermore, these relations generate all relations (modulo torsion relations).

This theorem, which is proved in [14, §1.7], provides a finite presentation for the
space of modular symbols.

2.3 Hecke operators on modular symbols

When p is a prime not dividing N , define

Tp{α, β} =

(
p 0
0 1

)
{α, β} +

∑

r mod p

(
1 r
0 p

)
{α, β}.
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As mentioned before, this definition is compatible with the integration pairing 〈 , 〉
of Section 1, in the sense that 〈fTp, x〉 = 〈f, Tpx〉. When p | N , the definition is the
same, except that the matrix

(
p 0
0 1

)
is dropped.

For example, when N = 11 we have

T2{0, 1/5} = {0, 2/5} + {0, 1/10} + {1/2, 3/5}
= −2{0, 1/5}.

In [16], L. Merel gives a description of the action of Tp directly on Manin symbols
[ri] (see also, [6, §2.4]). For example, when p = 2 and N is odd, we have

T2([ri]) = [ri]

(
1 0
0 2

)
+ [ri]

(
2 0
0 1

)
+ [ri]

(
2 1
0 1

)
+ [ri]

(
1 0
1 2

)
.

3 Computing the space of modular forms

In this section we describe how to use modular symbols to construct a basis of
S2(N) consisting of modular forms that are eigenvectors for every element of the
ring T′ generated by the Hecke operator Tp, with p ∤ N . Such eigenvectors are
called eigenforms.

Suppose M is a positive integer that divides N . As explained in [13, VIII.1–2],
for each divisor d of N/M there is a natural degeneracy map βM,d : S2(M) → S2(N)
given by βM,d(f(q)) = f(qd). The new subspace of S2(N), denoted S2(N)new, is the
orthogonal complement with respect to the Petersson inner product of the images
of all maps βM,d, with M and d as above.

The theory of Atkin and Lehner [1] asserts that, as a T′-module, S2(N) is built
up as follows:

S2(N) =
⊕

M|N, d|N/M

βM,d(S2(M)new).

To compute S2(N) it thus suffices to compute S2(M)new for each positive divisor M
of N .

We now turn to the problem of computing S2(N)new. Atkin and Lehner [1]
also proved that S2(N)new is spanned by eigenforms, each of which occurs with
multiplicity one in S2(N)new. Moreover, if f ∈ S2(N)new is an eigenform then the
coefficient of q in the q-expansion of f is nonzero, so it is possible to normalize f
so that coefficient of q is 1. With f so normalized, if Tp(f) = apf , then the pth
Fourier coefficient of f is ap. If f =

∑∞
n=1 anqn is a normalized eigenvector for

all Tp, then the an, with n composite, are determined by the ap, with p prime,
by the following formulas: anm = anam when n and m are relatively prime, and
apr = apr−1ap − papr−2 for p ∤ N prime. When p | N , apr = ar

p. We conclude
that in order to compute S2(N)new, it suffices to compute all systems of eigenvalues
{a2, a3, a5, . . .} of the Hecke operators T2, T3, T5, . . . acting on S2(N)new. Given a
system of eigenvalues, the corresponding eigenform is f =

∑∞
n=1 anqn, where the

an, for n composite, are determined by the recurrence given above.
In light of the pairing 〈 , 〉 introduced in Section 1, computing the above systems

of eigenvalues {a2, a3, a5, . . .} amounts to computing the systems of eigenvalues of
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the Hecke operators Tp on the subspace V of SSS2(N) that corresponds to the new
subspace of S2(N). For each proper divisor M of N and each divisors d of N/M , let
φM,d : SSS2(N) → SSS2(M) be the map sending x to ( t 0

0 1 )x. Then V is the intersection
of the kernels of all maps φM,d.

The computation of the systems of eigenvalues of a collection of commuting di-
agonalizable endomorphisms involves standard linear algebra techniques, such as
computation of characteristic polynomials and kernels of matrices. There are, how-
ever, several tricks that greatly speed up this process, some of which are described
in [22, §3.5.4].

Example 3.1. All forms in S2(39) are new. Up to Galois conjugacy, the eigenvalues of
the Hecke operators T2, T3, T5, and T7 on SSS2(39) are {1, −1, 2, −4} and {a, 1, −2a−
2, 2a+2}, where a2+2a−1 = 0. (Note that these eigenvalues occur with multiplicity
two.) Thus S2(39) has dimension 3, and is spanned by

f1 = q + q2 − q3 − q4 + 2q5 − q6 − 4q7 + · · · ,

f2 = q + aq2 + q3 + (−2a − 1)q4 + (−2a − 2)q5 + aq6 + (2a + 2)q7 + · · · ,

and the Galois conjugate of f2. We compute f1 and f2 using Sage as follows:

sage: CuspForms(39).newforms(’a’)

[q + q^2 - q^3 - q^4 + 2*q^5 + O(q^6),

q + a1*q^2 + q^3 + (-2*a1 - 1)*q^4 + (-2*a1 - 2)*q^5 + O(q^6)]

3.1 Summary

To compute the q-expansion, to some precision, of each eigenforms in S2(N), we use
the degeneracy maps so that we only have to solve the problem for S2(N)new. Here,
using modular symbols we compute the systems of eigenvalues {a2, a3, a5, . . .}, then
write down each of the corresponding eigenforms q + a2q

2 + a3q
3 + · · · .
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The field generated by the points of small
prime order on an elliptic curve

Löıc Merel and William A. Stein

Introduction

Let Q̄ be an algebraic closure of Q, and for any prime number p, denote by
Q(µp) the cyclotomic subfield of Q̄ generated by the pth roots of unity.

Theorem . — Let p be a prime. If there exists an elliptic curve E over Q(µp)
such that the points of order p of E(Q̄) are all Q(µp)-rational, then p = 2, 3, 5, 13
or p > 1000.

The case p = 7 was treated by Emmanuel Halberstadt. The part of the theorem
that concerns the case p ≡ 3 (mod 4) is given in [3]. In this paper, we give the
details that permit our treating the more difficult case in which p ≡ 1 (mod 4).
We treat this last case with the aid of Proposition 2 below, which is not present in
loc. cit.. The case p = 13 is currently under investigation by Marusia Rebolledo, as
part of her Ph.D. thesis.

1. Counterexamples define points on X0(p)(Q(
√

p))

First we recall some of the results and notation of [3]. Let S2(Γ0(p)) denote
the space of cusp forms of weight 2 for the congruence subgroup Γ0(p). Denote
by T the subring of EndS2(Γ0(p)) generated by the Hecke operators Tn for all
integers n. Let f ∈ S2(Γ0(p)) have q-expansion

∑∞
n=1 anqn. When χ is a Dirichlet

character, denote by L(f, χ, s) the entire function which extends the Dirichlet series∑∞
n=1 anχ(n)/ns.
Let S be the set of isomorphism classes of supersingular elliptic curves in charac-

teristic p. Denote by ∆S the group formed by the divisors of degree 0 with support
on S. It is equipped with a structure of T-module (induced, for example, from the
action of the Hecke correspondences on the fiber at p of the regular minimal model
of X0(p) over Z).

Let j ∈ F̄p − JS , where JS denotes the set of supersingular modular invari-
ants. We denote by ιj the homomorphism of groups ∆S −→ F̄p that associates
to

∑
E nE [E] the quantity

∑
E nE/(j − j(E)), where j(E) denotes the modular

invariant of E.
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One says that an element j ∈ Fp is anomalous if there exists an elliptic curve
over Fp with modular invariant j that possesses an Fp-rational point of order p
(then necessarily j /∈ JS).

Let p be a prime that is congruent to 1 modulo 4. In the following proposition
we prove, under a hypothesis on p, that if E is an elliptic curve over Q(µp) all of
whose torsion is Q(µp)-rational, then for each subgroup C ⊂ E(Q̄) of order p, the
point (E,C) on X0(p) is defined over Q(

√
p). As we will see in Proposition 2, this

Q(
√

p)-rationality conclusion is contrary to fact, from which we conclude that such
elliptic curves E do not exist when the hypothesis on p is satisfied. In Section 3 we
verify this hypothesis for p = 11 and 13 < p < 1000.

Proposition 1. — Suppose that p is congruent to 1 modulo 4. Suppose that for all
anomalous j ∈ Fp and all non-quadratic Dirichlet characters χ: (Z/pZ)∗ −→ C∗,
there exists tχ ∈ T and δ ∈ ∆S such that L(f, χ, 1) 6= 0 for every newform f ∈
tχS2(Γ0(p)) and ιj(tχδ) 6= 0.

Let E be an elliptic curve over Q(µp), such that the points of order p of E(Q̄)
are all Q(µp)-rational. Then for all subgroups C of order p of E(Q̄), there exists
an elliptic curve EC over Q(

√
p) equipped with a Q(

√
p)-rational subgroup DC of

order p, and the pairs (E,C) and (EC , DC) are Q̄-isomorphic.
Proof. — We prove the proposition using the results of [3]. The hypothesis ιj(tχδ) 6=
0 forces tχ /∈ pT and, a fortiori, tχ 6= 0; in addition, the non-vanishing hypothesis
on the L-series forces the hypothesis Hp(χ) of loc. cit., introduction.

By assumption, hypothesis Hp(χ) is satisfied for all non-quadratic Dirichlet char-
acters χ of conductor p. Thus Corollary 3 of Proposition 6 of loc. cit. implies that E
has potentially good reduction at the prime ideal P of Z[µp] that lies above p.

Denote by j the modular invariant of the fiber at P of the Néron model of E.
According to the corollary of Proposition 15 of loc. cit., j is anomalous.

Let C be a subgroup of E(Q̄) of order p. By assumption E is an elliptic curve
over Q(µp) whose points of order p are all Q(µp)-rational, so the pair (E,C) defines
a Q(µp)-rational point P of the modular curve X0(p).

Consider the morphism φχ = φtχ
: X0(p) → J0(p) obtained by composing the

standard embedding of X0(p) into J0(p) with tχ. As in section 1.3 of loc. cit., φχ

extends to a map from the minimal regular model of X0(p) to the Néron model
of J0(p). When ιj(tχδ) 6= 0, this map is a formal immersion at the point P/Fp

,
according to loc. cit., Proposition 4. The hypothesis that L(f, χ, 1) 6= 0 for every
newform f ∈ tχS2(Γ0(p)), translates into L(tχJ0(p), χ, 1) 6= 0, which in turn implies
that the χ-isotypical component of tχJ0(p)(Q(µp)) is finite (this is Kato’s theorem,
see the discussion in section 1.5 of loc. cit.). We can then apply Corollary 1 of
Proposition 6 of loc. cit.. This proves that P is Q(

√
p)-rational, which translates

into the conclusion of Proposition 1.

Remark 1: Proposition 1 is true even under the weaker hypothesis that tχ lies in
T ⊗ Z[χ], which acts Z[χ]-linearly on modular forms.

2. Elliptic curves and quadratic fields
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Proposition 2. — Let p be a prime number > 5 and congruent to 1 modulo 4.
Let E be an elliptic curve over Q̄. There exists a subgroup C ⊂ E(Q̄) of order p
such that (E,C) can not be defined over Q(

√
p).

Proof. — We procede by contradiction, i.e., we assume that for all cyclic sub-
groups C of order p of E(Q̄), the pair (E,C) can be defined over Q(

√
p). We

choose such a pair (E0, C0) over Q(
√

p).
Assume first that all twists of E are quadratic, i.e. that j(E) is neither 0 nor

1728. We show that the group Gal(Q̄/Q(
√

p)) acts by scalars on the Fp-vector space
E0(Q̄)[p]. For this it suffices to show that all subgroups of order p of E0(Q̄)[p] are
stable by Gal(Q̄/Q(

√
p)).

Suppose C1 is a cyclic subgroup of order p of E0(Q̄)[p]. By assumption, there
exists a quadratic twist E1 of E0 and a cyclic subgroup C ′

1 of E1(Q̄)[p] that is
defined over Q(

√
p), such that the image of C1 by the isomorphism E0 ' E1 is C ′

1.
Since Gal(Q̄/Q(

√
p)) leaves C ′

1 stable and the action of Gal(Q̄/Q(
√

p)) on E0(Q̄)[p]
is a quadratic twist of the action on E1(Q̄)[p], we see that Gal(Q̄/Q(

√
p)) leaves C1

stable. Thus Gal(Q̄/Q(
√

p)) fixes all lines in E0(Q̄)[p], and hence acts by scalars.
Denote by α the corresponding character of Gal(Q̄/Q(

√
p)).

Because of the Weil pairing, α2 coincides with the cyclotomic character modulo p,
and it factors through Gal(Q(µp)/Q(

√
p)). But, when p ≡ 1 (mod 4), the group

Gal(Q(µp)/Q(
√

p)) is of even order, and the characters modulo p form a group
generated by the reduction modulo p of the cyclotomic character, which, therefore,
can not be a square.

Next suppose that j(E) = 0 or j(E) = 1728. Indeed, in these two cases E has
complex multiplication by an order of K = Q[

√
−3] or Q[

√
−1]. Let dK = 3 or

dK = 2 in these two cases respectively. Let C be a subgroup of order p of E(Q̄).
Consider the map ρ0 : Gal(Q̄/Q(

√
p)) −→ Aut E0(Q̄)[p]. Since E has complex

multiplication, the image of ρ0 has no element of order p. Therefore, there are at
least two subgroups, including C0, of order p of E(Q̄) stable under the image of
ρ0. Call the other subgroup C1. Let C2 be a subgroup of order p of E(Q̄) which is
distinct from C0 and C1. The pair (E,C2) can be defined over Q(

√
p). Therefore,

there exists an extension field K2 of Q(
√

p), whose degree d2 divides 2dK , such
that the image of the restriction of ρ0 to Gal(Q̄/K2) leaves stable three distinct
subgroups of order p of E0(Q̄), and therefore consists only of scalars. If d2 ≤ 2, one
concludes as in the cases where j(E) 6= 0 and j(E) 6= 1728. We suppose now that
d2 > 2. The projective image of ρ0 has order dK .

Since E is an elliptic curve over Q̄ with complex multiplication by a field of
class number one, there is a model for E that is defined over Q. Consider the
map ρ : Gal(Q̄/Q) −→ Aut E(Q̄)[p]. By the theory of complex multiplication, the
projective image of ρ has order 2(p+1) or 2(p−1). There exists a field extension L of
degree dividing dK of Q(

√
p) such that the restrictions to Gal(Q̄/L) of the projective

images of ρ and ρ0 coincide. Therefore one has (p−1)|d2
K or (p+1)|d2

K . This imposes
p = 5 and dK = 2.

3. Verification of the hypothesis of Proposition 1 Let p be a prime number. In
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this section we explain how we used a computer to verify that the second hypothesis
of Proposition 1 are satisfied for p = 11 and 13 < p < 1000. (In the present paper,
this verification is only required for p that are congruent to 1 modulo 4.)

We first list the anomalous j-invariants j ∈ Fp. Since p is fairly small in the range
of our computations, we created this list by simply enumerating all of the elliptic
curves over Fp and counting the number of points on each curve. For example,
when p = 31 the anomalous j-invariants are j = 10, 14.

Let χ : Z/pZ −→ C be a non-quadratic Dirichlet character, and denote by Z[χ]
the subring of Q(ζp−1) generated by the image of χ. Denote by S2(Γ0(p);Z) the
set of modular forms f ∈ S2(Γ0(p)) whose Fourier expansion at the cusp ∞ lies in
Z[[q]].

We study the T-modules T, ∆S , and S2(Γ0(p);Z). After extension of scalars
to Q, these are T ⊗ Q-modules that are free of rank 1, of which the irreducible
sub-T ⊗ Q modules are the annihilators of the minimal prime ideals of T. We
compute a list of the minimal prime ideals of T by computing appropriate kernels
and characteristic polynomials of Hecke operators of small index on ∆S , which we
find using the graph method of Mestre and Oesterlé [4].

Having computed the minimal prime ideals of T, we verify that some nontrivial
ideal I of T (always a minimal prime ideal in the range of our computations)
simultaneously satisfies the following three conditions:

1) For each anomalous j-invariant, there exists x ∈ ∆S such that Ix = 0 and
ιj(x) 6= 0.

2) Each of the newforms f ∈ S2(Γ0(p)) with If = 0 satisfies L(f, χ, 1) 6= 0.

3) The image of I in the T-module T/pT is a direct factor.

Let I be an ideal of T. Here is how we verify these conditions for I.

Verification of condition 1.
We verified that I satisfies the first condition by finding a T-eigenvector v of

∆S ⊗Z̄ that is annihilated by I and satisfies ιj(v) 6= 0 for all anomalous j-invariants.
Because ιj is a homomorphism, this implies the existence of x as in condition 1.

Verification of condition 2.
We verified the second condition using modular symbols. Our method is purely

algebraic, so we do not perform any approximate computation of integrals. Using
the algorithm described in [2], we compute the action of the Hecke algebra T on the
space HomQ[χ](H1(X0(p);Q[χ]),Q[χ]). By intersecting the kernels of appropriate
elements of T, we find a basis ϕ1, . . . , ϕn for the subspace of HomQ[χ](H1(X0(p);Q[χ]),Q[χ])
that is annihilated by I. Let ΦI = ϕ1×· · ·×ϕn denote the linear map H1(X0(p);Q[χ]) −→
Q[χ]n defined by the ϕi.

Let TQ[χ] = T⊗Q[χ], where Q[χ] is the number field generated the image of χ.
The χ-twisted winding element (denoted θχ in [3])

eχ =
∑

a∈(Z/pZ)∗

χ̄(a)
{

∞,
a

p

}
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generates the χ-twisted winding submodule TQ[χ] · eχ. To compute this submodule,
we use that T is generated, even as a Z-module, by T1, T2, . . . , Tb, for any b ≥
(p + 1)/6 (see [1]).

Lemma 3. — Let I be a minimal prime ideal of T, and let χ : (Z/NZ)∗ −→ C∗

be a nontrivial Dirichlet character. Then the dimension of the Q[χ]-vector space
ΦI(TQ[χ] · eχ) is equal to the cardinality of the set of newforms f such that If = 0
and L(f, χ, 1) 6= 0.
Proof. — We have

dimQ[χ] ΦI(TQ[χ] · eχ) = dimC ΦI(TC · eχ).

This dimension is invariant upon changing the basis ϕ1, . . . , ϕn used to define ΦI . In
particular, over C there is a basis ϕ′

1, . . . , ϕ
′
n so that the resulting map Φ′

I satisfies

Φ′
I(x) =

(
Re(

∫

x

f (1)), Im(

∫

x

f (1)), . . . ,Re(

∫

x

f (d)), Im(

∫

x

f (d))
)
,

where f (1), . . . , f (d) are the Galois conjugates of a newform f (1) =
∑

a
(1)
n qn such

that If (1) = 0. Furthermore, Φ′
I is a TC-module homomorphism if we declare that

TC acts on R2d = Cd via

Tn(x1, y1, . . . , xd, yd) = Tn(z1, . . . , zd) = (a(1)
n z1, . . . , a

(d)
n zd),

where zj = xj + iyj and the a
(j)
n are Fourier coefficients of the f (j).

As explained in Section 2.2 of [3],
∫
eχ

f = ∗ · L(f, χ, 1), where ∗ is some nonzero

real or pure-imaginary complex number, according to whether χ(−1) equals 1 or −1,
respectively. Combining this observation with the equality

dimC ΦI(TC · eχ) = dimC(TC · ΦI(eχ)),

and that the image of TC in End(Cd) is equal to the diagonal matrices, proves the
asserted equality.

Remark 2: The dimension of ΦI(TQ[χ] · eχ) is unchanged if χ is replaced by a
Galois-conjugate character.

In practice, computations over the cyclotomic field Q[χ] are extremely expensive.
Fortunately, for our application it suffices to give a lower bound on the dimension
appearing in the lemma. Such a bound can be efficiently obtained by instead com-
puting the reductions of Φ, χ, and the χ-twisted winding submodule modulo a
suitable maximal ideal of the ring of integers of Q[χ] that splits completely; this
amounts to performing the above linear algebra over a relatively small finite field
F` where ` is congruent to 1 modulo p − 1.

Remark 3: For every newform f in S2(Γ0(p)), with p ≤ 1000, and every mod p
Dirichlet character χ, we found that L(f, χ, 1) 6= 0 if and only if L(fσ, χ, 1) 6= 0 for
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all conjugates fσ of f . More generally, for any f and χ, this equivalence holds if Q[χ]
is linearly disjoint from the field Kf = (T/I) ⊗ Q. The first few primes for which
there is a form f and a mod p character χ such that the linear disjointness hypothesis
fails are p = 31, 113, 127, and 191. The analogue of this nonvanishing observation
is false if we instead consider newforms on Γ1(p) and allow χ to be arbitrary. For
example, let f be one of the two Galois-conjugate newforms in S2(Γ1(13)). Then
there is a character χ : (Z/7Z)∗ −→ C∗ of order 3 such that L(f, χ, 1) = 0 and
L(fσ, χ, 1) 6= 0.

Verification of condition 3.
The third condition is satisfied for all p < 10000, except possibly p = 389,

because we have verified that the discriminant of T is prime to p for all such p 6= 389,
so the ring T/pT is semisimple. The discriminant computation was carried out by
the second author as follows. Using the method of [4], we computed discrimininants
of characteristic polynomials mod p of the Hecke operators T2, T3, T5, and T7. In the
few cases when all four of these characteristic polynomials had discriminant equal
to 0 mod p, we resorted to modular symbols to compute several more characteristic
polynomials until we found one having nonzero discriminant modulo p.

We consider the remaining case p = 389 in detail. There are exactly five minimal
prime ideals of T, which we denote P1, P2, P3, P6, and P20, where the quotient
field of T/Pi has dimension i. The discriminant of the characteristic polynomial of
T2 is exactly divisible by 389. Since the field of fractions of T/P20 has discriminant
divisible by 389, we see that 389 is not the residue characteristic of any congruence
prime. Let Oi = T/Pi. The natural map T → ∏ Oi has finite kernel and cokernel
each of order coprime to 389, so T/389T ∼=

∏ Oi/389Oi. The nonquadratic charac-
ters χ : (Z/pZ)∗ → C∗ have orders 1, 4, 97, 193, 388. We must verify that for each of
these degrees, one of the ideals Pi satisfies conditions 1–3. We check as above that
conditions 1–3 for χ of order 4 are satisfied by P2 and conditions 1–3 for χ of order
greater than 4 are satisfied by P1. When χ is the trivial character, conditions 1–3
are satisfied only by P20.

Summary.
For each prime p < 1000 different than 2, 3, 5, 7, 13, we verified the existence of

an ideal that satisfies the three conditions given above, as follows. We consider each
Galois conjugacy class of non-quadratic characters χ. We find a single newform f
such that L(f, χ, 1) 6= 0 for all conjugates of f and of χ. Then we let I be the
annihilator of f , and try to verify condition 1 for all of the anamolous j-invariants
in Fp. When the three conditions are satisfied for an ideal I of T, there exists
tχ ∈ T that is annihilated by I and is the inverse image of a projector of T/pT on
the complement of I + pT. Putting δ = x, one has ιj(tχδ) = ιj(δ) 6= 0 (because
ιj takes its values in characteristic p, it follows that δ is annihilated by I and
tχ ∈ 1 + pT + P). Every newform f ∈ tχS2(Γ0(p)) satisfies If = 0, and therefore,
by our second condition, L(f, χ, 1) 6= 0. The pair (tχ, δ) then satisfies the conditions
required by Proposition 1.

Acknowledgment: We would like to thank Barry Mazur for providing us several
useful comments.
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Appendix by A. Agashe and W. Stein.

In this appendix, we apply a result of J. Sturm* to obtain a bound on the number of
Hecke operators needed to generate the Hecke algebra as an abelian group. This bound
was suggested to the authors of this appendix by Löıc Merel and Ken Ribet.

Theorem. The ring T of Hecke operators acting on the space of cusp forms of weight k
and level N is generated as an abelian group by the Hecke operators Tn with

n ≤
kN

12
·
∏

p|N

(

1 +
1

p

)

.

Proof. For any ring R, let Sk(N ;R) = Sk(N ;Z) ⊗ R, where Sk(N ;Z) is the subgroup of
cusp forms with integer Fourier expansion at the cusp ∞, and let TR = T⊗Z R. There is
a perfect pairing Sk(N ;R) ⊗R TR → R given by 〈f, T 〉 7→ a1(T (f)).

Let M be the submodule of T generated by T1, T2, . . . , Tr, where r is the largest

integer ≤ kN
12

·
∏

p|N

(

1 + 1

p

)

. Consider the exact sequence of additive abelian groups

0 → M
i
→ T → T/M → 0.

Let p be a prime and use that tensor product is right exact to obtain an exact sequence

M ⊗ Fp
i
→ T ⊗ Fp → (T/M) ⊗ Fp → 0.

Suppose that f ∈ Sk(N ;Fp) pairs to 0 with each of T1, . . . , Tr. Then am(f) = a1(Tmf) =
〈f, Tm〉 = 0 in Fp for each m ≤ r. By Theorem 1 of Sturm’s paper, it follows that f = 0.
Thus the pairing restricted to the image of M ⊗ Fp in T ⊗ Fp is nondegenerate, so

dimFp
i(M ⊗ Fp) = dimFp

Sk(N,Fp) = dimFp
T ⊗ Fp.

It follows that (T/M) ⊗ Fp = 0; repeating the argument for all primes p shows that
T/M = 0, as claimed.

Remark. In general, the theorem is not true if one considers only Tn where n runs over
the primes less than the bound. Consider, for example, S2(11), where the bound is 2 and
T2 is the 1×1 matrix [2], which does not generate the full Hecke algebra as a Z-submodule
of End(S2(Γ0(N),Z)). One needs, in addition, the matrix [1].

* J. Sturm, On the Congruence of Modular Forms. Number theory (New York, 1984–
1985), 275–280, Lecture Notes in Math., 1240, Springer, Berlin-New York, 1987.
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Abstract

Suppose π : J → A is an optimal quotient of abelian varieties over a p-adic field,
optimal in the sense that ker(π) is connected. Assume that J is equipped with a sym-
metric principal polarization θ (e.g., any Jacobian of a curve has such a polarization),
that J has semistable reduction, and that A has purely toric reduction. In this pa-
per, we express the group of connected components of the Néron model of A in terms
of the monodromy pairing on the character group of the torus associated to J . We
apply our results in the case when A is an optimal quotient of the modular Jacobian
J0(N). For each prime p that exactly divides N , we obtain an algorithm to compute
the component group of A at p.

1 Introduction

Let A be an abelian variety over the rational numbers Q. Birch and Swinnerton-Dyer found
a conjectural formula for the order of the Shafarevich-Tate group of A. The Tamagawa
numbers cp of A are among the quantities that appear in this formula. We now recall the
definition of the Tamagawa numbers of an abelian variety (the definition of Néron model
and component groups is given in Section 2).

Definition 1.1 (Tamagawa number). Let p be a prime, let A be the Néron model of A
over the p-adic integers Zp, and let ΦA,p be the component group of A at p. Then the
Tamagawa number cp of A at p is the order of the subgroup ΦA,p(Fp) of Fp-rational points
in ΦA,p(Fp).

Remark 1.2. The Tamagawa number is defined in a different way in some other papers, but
the definitions are equivalent.

When A has dimension one, A is called an elliptic curve, and A can be defined by a
Weierstrass equation y2 = x3 + ax + b. Using that elliptic curves (and their related integral
models) can be described by simple equations, Tate found an efficient algorithm to compute
all of the Tamagawa numbers of A (see [18]). In the case when A is the Jacobian of a genus 2
curve, [7] discusses a method for computing the Tamagawa numbers of A. In this paper,
we consider the situation in which A has purely toric reduction at p, with no constraint on
the dimension of A. For such A we give an explicit description of the order of the group of
connected components of the closed fiber of the Néron model of A. In the case when A = Af

is a quotient of J0(N) attached to a newform f ∈ S2(Γ0(N)) and p || N , our method is
completely explicit, and yields an algorithm to compute the Tamagawa number cp of A (up
to a bounded power of 2).

This paper is structured as follows. In Sections 2–6 we state and prove an explicit
formula involving component groups of fairly general abelian varieties. Then in Section 7
we turn to quotients of modular Jacobians J0(N). We give some tables and discussed the
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arithmetic of quotients of J0(N) when N is prime. In Section 8 we prove a couple of facts
about toric reduction that are used in the proof of Theorem 6.1.

Acknowledgement: This paper was inspired by lectures of R. Coleman and K. Ribet,
and a letter from Ribet to Mestre (see [17]), which contains some of the results of the
present paper in the case when A has dimension 1. The second author would like to thank
A. Abbes, A. Agashe, D. Kohel, and D. Lorenzini, for helpful conversations. Both authors
were partially supported by the NSF and the Clay Mathematics Institute during work on
this paper.

2 The Main Results

In this section, we summarize the main contributions of this paper. First we recall the
precise definition of the component group of an abelian variety, then we state our main
theorem.

Let R be a discrete valuation ring with field of fractions K and maximal ideal m, and
let k = R/m be the residue class field. Let A be an abelian variety over K.

Definition 2.1 (Néron model). A Néron model of A is a smooth commutative group
scheme A over R such that A is its generic fiber and A satisfies the Néron mapping property:
the restriction map

HomR(S,A) −→ HomK(SK , A)

is bijective for all smooth schemes S over R.

The Néron mapping property implies that A is unique up to a unique isomorphism, so
we will refer without hesitation to “the” Néron model of A. Néron models are separated and
of finite type as opposed to just locally of finite type, even though their universal property
is on the category of arbitrary smooth R-schemes. For more about Néron models see [2].

The closed fiber Ak of A is a group scheme over k, which need not be connected. Denote
by A0

k the connected component of Ak that contains the identity. We have an exact sequence

0 −→ A0
k −→ Ak −→ ΦA −→ 0,

where ΦA is a finite étale group scheme over k. Equivalently, ΦA is a commutative finite
group equipped with a continuous action of Gal(k/k).

Definition 2.2 (Component group). The component group of an abelian variety A
over K is the group scheme ΦA = Ak/A0

k.

2.1 Statement of the Theorem

We now state our main result, supressing some of the definitions of the terms used until
later (see Section 6 below for a more complete statement and the proof). Let K be as
above, and suppose π : J → A is an optimal quotient. Assume that J is equipped with
a symmetric principal polarization λ, in the sense of Definition 5.1. For example, the θ
polarization of the Jacobian of a curve is a symmetric principal polarization. Also assume
that J has semistable reduction, and that A has purely toric reduction.

We express the component group of A in terms of the monodromy pairing associated
to J . Let mA =

√
deg(θA), where θA : A∨ → A is induced by the canonical principal

polarization of J arising from the θ-divisor. Let XJ be the character group of the toric part
of the closed fiber of the Néron model of J . Let L be the saturation of the image of XA in
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XJ . The monodromy pairing induces a map α : XJ → Hom(L,Z). Let ΦX be the cokernel
of α and mX = [α(XJ ) : α(L)] be the order of the finite group α(XJ )/α(L). The main
result of this paper is that

#ΦA

mA
=

#ΦX

mX
,

and this is recorded as Theorem 6.1 below.
Using the snake lemma, one sees that ΦX is isomorphic to the image of the natural map

ΦJ → ΦA, and the above formula implies that the cokernel of the map ΦJ → ΦA has order
mA/mX . A non-obvious consequence of this is that mX | mA.

In the context of modular forms, if the optimal quotient J → A arises from a newform
on Γ0(N), then the quantities mA, mX and ΦX can be explicitly computed, hence we can
compute #ΦA. Note that the authors have not computed the structure of ΦA as a group.

3 Optimal Quotients

Let K be as in Section 2, let J be an abelian variety equipped with a symmetric principal
polarization θJ (see Definition 5.1). For example, J could be the Jacobian of a curve
equipped with the canonical principal polarization arising from the θ-divisor.

Definition 3.1 (Optimal quotient). An optimal quotient of J is an abelian variety A
and a smooth surjective morphism π : J → A whose kernel is connected (i.e., an abelian
variety).

Remark 3.2. Any connected scheme of finite type over a field is geometrically connected if
it contains a rational point (e.g., if it is a group scheme). See [8, IV2, §4.5.13].

Let π : J → A be an optimal quotient. Denote by J∨ and A∨ the abelian varieties dual
to J and A, respectively. Upon composing the dual of π with θ∨

J = θJ , we obtain a map

A∨ π∨
−−→ J∨ θJ−→ J.

Proposition 3.3. The map θJ ◦ π∨ : A∨ → J is a closed immersion.

Proof. Since θJ is an isomorphism, we want to prove that π∨ is a closed immersion. It
is a general fact that duals to surjections of abelian varieties with abelian variety kernel
are closed immersions, but for lack of an adequate reference we recall the proof. Since
a monomorphism between smooth finite type group schemes over a field is necessarily a
closed immersion, it suffices to show that the commutative proper group scheme ker(π∨)
vanishes. Since a non-zero commutative proper group scheme G over a field F necessarily
has a non-zero finite subgroup scheme G[n] for some n (since either (G/F )0red is an abelian

variety or else G is finite and non-zero), it suffices to show that ker(π∨)[n] vanishes for all
positive integers n. In other words, it suffices to show that the induced map A∨[n] → J∨[n]
is a closed immersion for all n.

Since Cartier duality interchanges faithfully flat maps and closed immersions, and the
scheme-theoretic Weil pairing identifies the Cartier dual of the map induced by π∨ on n-
torsion with π : J [n] → A[n], we just have to show that these latter maps are faithfully flat
for all integers n. Using the short exact sequence

0 → ker(π) → J → A → 0

in the abelian category of fppf abelian sheaves over Spec(K), the snake lemma gives an
exact sequence

0 → ker(π)[n] → J [n] → A[n] → 0
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because n : ker(π) → ker(π) is a faithfully flat map (hence fppf surjective), as ker(π) is an
abelian variety. This gives an isomorphism of group schemes

J [n]/ ker(π)[n] ' A[n]

compatible with the maps from J [n], whence J [n] → A[n] is faithfully flat.

Henceforth we will abuse notation and denote the injection A∨ → J by π∨. We define
θA to be the composite π ◦ π∨, so the kernel of θA equals the scheme-theoretic intersection
of A∨ and B = ker(π), as depicted in the following diagram:

A∨ ∩ B //

²²

B

²²
A∨ Â

Ä π∨
//

θA ##H

H

H

H

H

H

H

H

H

J

π

²²
A.

Since θA is a polarization (due to how its definition uses the polarization θJ) the degree of
θA is a perfect square (see [16, §16, p. 150]).

Definition 3.4 (Degree). Define the degree of A as a quotient of J to be the integer

mA =
√

#ker(θA).

4 The Closed Fiber of the Néron Model

In this section we recall some terminology associated with closed fibers of Néron models.
Let K, R, and k be as in Section 2, and let ΦA = Ak/A0

k be the group scheme of connected
components of the closed fiber Ak. By Chevalley’s structure theorem (see [3], or [4] for a
modern account), if K is a perfect extension field of k (e.g., K = k) then there is a unique
short exact sequence

0 → C → A0
K → B → 0

with C a smooth affine algebraic K-group and B an abelian variety. Moreover, there is a
unique exact sequence

0 → T → C → U → 0

with T a torus and U unipotent.
Using the rigidity of tori, one can show that T is induced by a unique torus in A0

k. In
particular, the condition that B = U = 0 is equivalent to the condition that A0

k be a torus,
and the condition that U = 0 is equivalent to the condition that A0

k be the extension of an
abelian variety by a torus (i.e., be a semi-abelian variety). These conditions can be checked
on a geometric closed fiber.

Definition 4.1. The abelian variety A is said to have purely toric reduction if A0
k is torus,

and to have semistable reduction if A0
k is a semi-abelian variety (i.e., A0

k
has vanishing

unipotent part).
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4.1 The Monodromy Pairing on the Character Group

Definition 4.2 (Character group of torus). The character group

XA = Homk(Tk,Gmk)

is a free abelian group of rank t contravariantly associated to A.

As discussed in [9], if A is semistable there is a monodromy pairing XA × XA∨ → Z and
an exact sequence

0 → XA∨ → Hom(XA,Z) → ΦA → 0.

Also, the canonical isomorphism (A∨)∨ ∼= A induces an isomorphism

XA∨ × X(A∨)∨ ∼= XA × XA∨ ,

which identifies the monodromy pairing associated to A∨ with that associated to A.

Example 4.3 (Tate curve). Suppose E = Gm/qZ is a Tate curve over Qur
p . The monodromy

pairing on XE = qZ is
〈q, q〉 = ordp(q) = − ordp(j).

Thus ΦE is cyclic of order − ordp(j).

Suppose J is an abelian variety equipped with a symmetric principal polarization.
Since J is self dual via the given symmetric principal polarization, we can view the mon-
odromy pairing on J as a pairing XJ × XJ → Z. Because the principal polarization on J is
symmetric the resulting pairing XJ ×XJ → Z is symmetric, so there is no ambiguity about
left versus right definitions of XJ → Hom(XJ ,Z). The above exact sequence then becomes

0 → XJ → Hom(XJ ,Z) → ΦJ → 0.

5 The Degree of a Symmetric Isogeny

We next relate the degree of the isogeny A∨ → A defined at the end of Section 3 to the order
of the cokernel of the induced map on the character groups of tori defined in Section 4.1.
Let K be as in Section 2, and let A be an abelian variety over K.

Definition 5.1 (Symmetric isogeny). A symmetric isogeny ϕ : A∨ → A is an isogeny
such that the map

ϕ∨ : A∨ → (A∨)∨ = A

is equal to ϕ.

If J and A are as in Section 3 then the principal polarization θJ of J is symmetric, so
the natural map A∨ → A is a symmetric isogeny.

Lemma 5.2. Suppose that A is a purely toric abelian variety over K and that ϕ : A∨ → A
is a symmetric isogeny. Let ϕa : XA → XA∨ denote the induced map on character groups.
Then

deg(ϕ) = #coker(ϕa)2.

Proof. By Corollary 8.7 applied to our isogeny ϕ (so what we are presently calling A∨ and A
are respectively called A and B in the discussion surrounding Theorem 8.6), we deduce that

deg(ϕ) = #ker(ϕ) = #ker(ϕt) · #ker(ϕ∨
t )

where ϕt and ϕ∨
t are the maps induced by ϕ and ϕ∨ on closed fiber tori.

Since the character group XA is, by definition, Homk(Tk,Gmk), where T is the toric
part of the closed fiber of A, it follows that #ker(ϕt) = #coker(ϕa). Since ϕ = ϕ∨, this
proves the lemma.
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6 Statement and Proof of the Main Theorem

Let K be as in Section 2, and let π : J → A be an optimal quotient. Assume that J is
equipped with a symmetric principal polarization λ, that J has semistable reduction, and
that A has purely toric reduction. Let XA, XA∨ , and XJ denote the character groups of
the toric parts of the closed fibers of the abelian varieties A, A∨, and J , respectively.

Let π : J → A be an optimal quotient, and let θ : A∨ → A denote the induced
polarization. Let π∗, π∗, θ∗, and θ∗ be the maps induced on character groups by the various
functorialities, as indicated in the following two key diagrams:

A∨ Â

Ä π∨
//

θ

ÃÃA
A

A

A

A

A

A

A

A

A

A

J

π

²²²²
A

XA
Â

Ä π∗
//

θ∗

""E

E

E

E

E

E

E

E

E

E

E

E

XJ

π∗

²²²²
XA∨ .

θ∗

SS

The surjectivity of π∗ is proved in Theorem 8.2. The injectivity of π∗ follows because

θ∗π∗π
∗ = θ∗θ

∗ = deg(θ) 6= 0,

and multiplication by a nonzero integer on a free abelian group is injective.
Let L be the saturation of π∗XA in XJ ; thus π∗XA is a finite-index subgroup of L and

the quotient XJ/L is torsion free. Let

α : XJ → Hom(π∗XA,Z)

be the map defined by the monodromy pairing restricted to XJ × π∗XA. For L of finite
index in L, define the degree of L to be

mL = [α(XJ ) : α(L)],

and the component group of L to be

ΦL = coker(XJ → Hom(L,Z)).

When L = L and A is fixed, for simplicity we write mX = mL and ΦX = ΦL.
Recall that ΦA is the component group of A and mA is the square root of the degree of

the induced map A∨ → A.

Theorem 6.1. For any subgroup L of finite index in L, the following relation holds:

#ΦA

mA
=

#ΦL

mL
.

6.1 Proof of the Main Theorem

The notation in this section is as in previous section.

Lemma 6.2. Let π∗ : XJ → XA∨ and α : XJ → Hom(π∗XA,Z) be as in previous section.
Then

ker(π∗) = ker(α).
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Proof. Suppose x ∈ ker(π∗), and let y = π∗z with z ∈ XA. Then

〈x, y〉 = 〈x, π∗z〉 = 〈π∗x, z〉 = 0,

so x ∈ ker(α). Next let x ∈ ker(α). Then for all z ∈ XA,

0 = 〈x, π∗z〉 = 〈π∗x, z〉,

so π∗x is in the kernel of the monodromy map

XA∨ → Hom(XA,Z).

Since XA∨ and Hom(XA,Z) are free of the same finite rank and the cokernel is torsion, the
monodromy map is injective. Thus π∗x = 0 and x ∈ ker(π∗).

Let π∗ : XA → XJ be as in previous section.

Lemma 6.3. The monodromy-pairing map XJ → Hom(XJ ,Z) composed with restriction
Hom(XJ ,Z) → Hom(π∗XA,Z) gives rise to an exact sequence

XJ → Hom(π∗XA,Z) → ΦA → 0.

Proof. Lemma 6.2 gives the following commutative diagram with exact rows

0 // XJ/ ker(α)

∼=
²²

// Hom(π∗XA,Z) //

∼=
²²

coker(α) //

²²

0

0 // XA∨ // Hom(XA,Z) // ΦA
// 0.

By Lemma 6.2, the first vertical map is an isomorphism. The second is an isomorphism
because it is induced by the isomorphism π∗ : XA → π∗XA. It follows that coker(α) ∼= ΦA,
as claimed.

Recall that L denotes the saturation of π∗XA in XJ , and that L ⊂ L denotes a subgroup
of finite index.

Lemma 6.4. The rational number
#ΦL

mL
is independent of the choice of L.

Proof. Suppose L′ is another finite index subgroup of L, and let n = [L : L′]. Here n is a
rational number, the lattice index of L′ in L. Since α is injective when restricted to L, it
follows that

mL′ = [α(XJ ) : α(L′)] = [α(XJ ) : α(L)] · [α(L) : α(L′)] = mL · n.

Similarly, #ΦL′ = #ΦL · n.

Recall that mA =
√

deg(θ) and

ΦA
∼= coker(XA∨ → Hom(XA,Z)),

where mA is the degree of A and ΦA is the component group of A.
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Proof of Theorem 6.1. By Lemma 6.4 we may assume that L = π∗XA. With this choice
of L, Lemma 6.3 asserts that ΦL

∼= ΦA. By Lemma 6.2, properties of the index, and
Lemma 5.2 we have

mL = [α(XJ ) : α(L)]

= [π∗(XJ ) : π∗(L)]

= [XA∨ : π∗(π
∗XA)]

= [XA∨ : θ∗XA]

= #coker(θ∗)

=
√

deg(θ) = mA.

Recall that ΦL denotes the cokernel of the natural map XJ → Hom(L,Z) induced
by composing the monodromy map XJ → Hom(XJ ,Z) with the natural restriction map
Hom(XJ ,Z) → Hom(L,Z).

Proposition 6.5. The group ΦL is canonically isomorphic to the image of the map from
ΦJ to ΦA induced by π : J → A. Thus

image(ΦJ → ΦA) ∼= ΦL.

Proof. Since π∗XA ⊂ L ⊂ XJ , an application of Lemma 6.3 gives the following commutative
diagram with exact rows:

XJ
// Hom(XJ ,Z) //

²²

ΦJ
//

²²

0

XJ
// Hom(L,Z) //

²²

ΦL //

²²

0

XJ
// Hom(π∗XA,Z) // ΦA

// 0.

The map Hom(L,Z) → Hom(π∗XA,Z) is an isomorphism, so the map ΦL → ΦA is injective.
Thus

image(ΦJ → ΦA) ∼= image(ΦJ → ΦL).

The cokernel of Hom(XJ ,Z) → Hom(L,Z) surjects onto the cokernel of ΦJ → ΦL. Using
the exact sequence

0 → L → XJ → XJ/L → 0,

we find that
coker(Hom(XJ ,Z) → Hom(L,Z)) ⊂ Ext1(XJ/L,Z).

Because L is saturated, the quotient XJ/L is torsion free, so the indicated Ext1 group
vanishes. Thus the map ΦJ → ΦL is surjective, from which the proposition follows.

Corollary 6.6. The cokernel of the map from ΦJ to ΦA induced by π : J → A has order
mA/mL. Thus

#coker(ΦJ → ΦA) =
mA

mL
.

Proof. Combine Theorem 6.1 and Proposition 6.5.
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7 Optimal Quotients of J0(N)

In this section we specialize the general results of the rest of this paper to the concrete case
in which J = J0(N) is the Jacobian of a modular curve, and A = Af is an optimal quotient
of J attached to a modular forms. The paper [12] contains more computations like these.

7.1 Modular Curves and Semistable Reduction

Let X0(N) be the modular curve associated to the subgroup Γ0(N) of SL2(Z) that consists
of those matrices which are upper triangular modulo N . The algebraic curve X0(N)C can
be constructed as a Riemann surface as the quotient

Γ0(N)\
(
{z : z ∈ C, Im(z) > 0} ∪ P1(Q)

)
,

and X0(N) has a canonical structure of algebraic curve over Q.
It is well known that the p-new part of the Jacobian J0(N) of X0(N) has purely toric

reduction at p when p || N . Let us briefly recall the reason, writing N = Mp. Using the
description of closed fibers of modular curves [10, Ch. 13] and Raynaud’s result relating
Néron models and Picard functors (as summarized in [2, Ch. 9]), the standard finite flat
degeneracy maps X0(Mp) → X0(M) over Z(p) induce a “pushfoward” map on Néron model
connected components

Pic0
X0(Mp)/Z(p)

−→ Pic0
X0(M)/Z(p)

×Pic0
X0(M)/Z(p)

which on the closed fiber is the map induced by pullback to the two components X0(M)/Fp

in X0(Mp)/Fp
. The kernel of this latter map is a torus [2, Ex. 9.2.8], yet this kernel is

visibly isogenous to the semistable mod p fiber of the dual of J0(Mp)new, whence the purely
toric conclusion.

7.2 Newforms and Optimal Quotients

The Hecke algebra
T = Z[. . . Tn . . .] ⊂ End(J0(N))

is a commutative ring of endomorphisms of J0(N) of Z-rank equal to the dimension of
J0(N). The character group XJ,p of J0(N) at p is equipped with a functorial action of T.
The Hecke algebra T also acts on the complex vector space S = S2(Γ0(N),C) of cusp forms.

Let f be a newform, and associate to f the ideal If of the Hecke algebra T of elements
which annihilate f . Then Of = T/If is an order in the ring of integers of the totally real
number field Kf obtained by adjoining the Fourier coefficients of f to Q. The quotient

Af = J0(N)/IfJ0(N)

is an optimal quotient of J0(N) of dimension equal to [Kf : Q]. As discussed in the previous
section, Af is purely toric at p.

7.3 Tamagawa Numbers

Let Frobp : XJ → XJ denote the map induced by the Frobenius automorphism. We have
Frobp = −Wp, where Wp is the map induced by the Atkin-Lehner involution on J0(p).
Let f be a newform, A = Af the corresponding optimal quotient, and wp the sign of the
eigenvalue of Wp on f .
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Proposition 7.1.

ΦA(Fp) =

{
ΦA(Fp) if wp = −1,

ΦA(Fp)[2] if wp = 1.

Proof. If wp = −1, then Frobp = 1 and the Gal(Fp/Fp)-action of ΦA(Fp) is trivial. In this
case Φ(Fp) = Φ(Fp). Next suppose wp = 1. Recall that we have an exact sequence

0 → XA∨ → Hom(XA,Z) → ΦA → 0.

Since Wp acts as +1 on f , it also acts as +1 on each of the modules A, XA, Hom(XA,Z),
and ΦA. Thus Frobp = −Wp acts as −1 on ΦA. Since the subgroup of 2-torsion elements
of a finite abelian group equals the subgroup of elements fixed under −1, it follows that
ΦA(Fp) = ΦA(Fp)[2].

Warning: When extending this result to the whole of J0(N), be careful. The action of
Frobp = Tp need not be by ±1, even though it must be by an involution of order 2. For
example, the component group of J0(65) at 5 is cyclic of order 42. The action of Frob5 is by
multiplication by −13. Note that (−13)2 = 1 (mod 42). The fixed points of multiplication
by −13 is the order 14 subgroup of Z/42Z.

7.4 Computing Component Groups

Using modular symbols, we can enumerate the optimal quotients Af of J0(N) (see, e.g., [1])
and compute the degree mA (see [12, §3.1]). Suppose p is a prime that exactly divides N . As
explained in [12], the method of graphs (see [14]) or the ideal theory of quaternion algebras
(see [11]) can be used to compute X = XJ0(N),p with its T-action and the monodromy
pairing. We can then compute the following three modules:

1. the saturated submodule L =
⋂

t∈If
ker(t) of X,

2. the character group degree mX = mL, and

3. ΦX = ΦL.

By Theorem 6.1 we obtain

#ΦA,p = #ΦX · mA

mX
.

7.5 The Eisenstein Nature of Component Groups

The theorem below, which generalizes some of the results of [13] and [15], was conjectured
by the second author after computing many component groups of quotients of J0(p) using
the results of this paper. M. Emerton read an early version of this paper and subsequently
announced a proof of the theorem below (see [6]).

Theorem 7.2 (Emerton). Let p be a prime and let f1, . . . , fn be a set of representatives
for the Galois-conjugacy classes of newforms in S2(Γ0(p)). Let A1, . . . , An be the optimal
quotients associated to f1, . . . , fn, respectively. Then for each i, i = 1, . . . , n, we have

#Ai(Q)tor = #ΦAi
(Fp) = #ΦAi

(Fp).

Furthermore,

#ΦJ0(p)(Fp) =

n∏

i=1

#ΦAi
(Fp).
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Before Emerton proved the above assertion, the second author verified it using the
algorithm of this paper for all p ≤ 757, and, up to a power of 2, for all p < 2000.

Remark 7.3. It is tempting to guess that, e.g., the natural map

ΦJ0(113)(F113) →
4∏

i=1

ΦAi
(F113)

is an isomorphism, but this is incorrect. Two of the ΦAi
(F113) have order 2, so the product∏4

i=1 ΦAi
(F113) is not a cyclic group. However, Mazur proved that the groups ΦJ0(p)(Fp)

are cyclic for all primes p.

7.6 Examples

In this section we give some examples of the numbers involved in computing component
groups of quotients of J0(N). For more examples, see [12]. We use the notation for abelian
varieties that is described in [1]. For example 65A is the “first” abelian variety quotient of
J0(65) attached to a newform.

7.6.1 Quotients of J0(N)

Table 1 contains many of the quantities involved in the computation of component groups
for each of the newform optimal quotients for N ∈ {65, 66, 68, 69}.

7.6.2 Quotients of J0(p)−

We computed the quantities mA, mX , and ΦX for each abelian variety Af associated to a
newform of prime level p with p ≤ 631. Table 2 lists those Af for which wp = −1, along
with the order of the corresponding component group. The first column, which is labeled
“A” contains a description of Af , the second column, labeled “d”, contains the dimension of
Af , and the third column, labeled “#ΦA”, contains the order #ΦAf ,p(Fp) of the component
group.

Remark 7.4. Theorem 7.2 together with [13, Prop. II.17.10] imply that the component
groups of the Af for which wp = +1 are trivial, so we do not list them. An optimal
quotient Af of J0(p) with nonzero component group has nonzero rational torsion (by The-
orem 7.2), so it factors through the Eisenstein quotient of J0(p). Also wp acts as −1 on
the Eisenstein quotient of J0(p), which is [13, Prop. II.17.10], and which is a deep result
because of subtleties at the prime 2 (see the discussion in [13, III.1]).
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Table 1: Component groups of quotients of J0(N)

A dim p wp #ΦX mX mA #ΦA

65A 1 5 + 1 2 2 1
13 + 1 2 1

65B 2 5 + 3 22 22 3
13 − 3 22 3

65C 2 5 − 7 22 22 7
13 + 1 22 1

66A 1 2 + 1 2 22 2
3 − 3 22 3
11 + 1 22 1

66B 1 2 − 2 2 22 22

3 + 1 22 1
11 + 1 22 1

66C 1 2 − 1 2 22 · 5 2 · 5
3 − 1 22 5
11 − 1 22 · 5 1

68A 2 17 + 2 2 · 3 2 · 3 2

69A 1 3 − 2 2 2 2
23 + 1 2 1

69B 2 3 + 2 2 2 · 11 2 · 11
23 − 2 2 · 11 2
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Table 2: Component groups of quotients of J0(p)−

A d #ΦA

11A 1 5
17A 1 22

19A 1 3
23A 2 11

29A 2 7
31A 2 5
37B 1 3
41A 3 2 · 5

43B 2 7
47A 4 23
53B 3 13
59A 5 29

61B 3 5
67A 1 1
67C 2 11
71A 3 5

71B 3 7
73A 1 2
73C 2 3
79B 5 13

83B 6 41
89B 1 2
89C 5 11
97B 4 23

101B 7 52

103B 6 17
107B 7 53
109A 1 1

109C 4 32

113A 1 2
113B 2 2
113D 3 7

127B 7 3 · 7
131B 10 5 · 13
137B 7 2 · 17
139A 1 1

139C 7 23
149B 9 37
151B 3 1
151C 6 52

A d #ΦA

157B 7 13
163C 7 33

167B 12 83
173B 10 43

179A 1 1
179C 11 89
181B 9 3 · 5
191B 14 5 · 19
193C 8 24

197C 10 72

199A 2 1
199C 10 3 · 11
211A 2 5
211D 9 7
223C 12 37
227B 2 1

227C 2 1
227E 10 113
229C 11 19
233A 1 2

233C 11 29
239B 17 7 · 17
241B 12 22 · 5
251B 17 53

257B 14 26

263B 17 131
269C 16 67
271B 16 32 · 5
277B 3 1
277D 9 23
281B 16 2 · 5 · 7
283B 14 47

293B 16 73
307A 1 1
307B 1 1
307C 1 1

307D 1 1
307E 2 3
307F 9 17
311B 22 5 · 31

A d #ΦA

313A 2 1
313C 12 2 · 13
317B 15 79
331D 16 5 · 11
337B 15 22 · 7
347D 19 173
349B 17 29
353A 1 2

353B 3 2
353D 14 2 · 11
359D 24 179
367B 19 61

373C 17 31
379B 18 32 · 7
383C 24 191
389A 1 1

389E 20 97
397B 2 1
397C 5 11
397D 10 3

401B 21 22 · 52

409B 20 2 · 17
419B 26 11 · 19
421B 19 5 · 7

431B 1 1
431D 3 1
431F 24 5 · 43
433A 1 1

433B 3 1
433D 16 22 · 32

439C 25 73
443C 1 1

443E 22 13 · 17
449B 23 24 · 7
457C 20 2 · 19
461D 26 5 · 23
463B 22 7 · 11
467C 26 233
479B 32 239
487A 2 1

A d #ΦA

487B 2 3
487C 3 1
487D 16 33

491C 29 5 · 72

499C 23 83
503B 1 1
503C 1 1
503D 3 1

503F 26 251
509B 28 127
521B 29 2 · 5 · 13
523C 26 3 · 29

541B 24 32 · 5
547C 25 7 · 13
557B 1 1
557D 26 139

563A 1 1
563E 31 281
569B 31 2 · 71
571A 1 1

571B 1 1
571C 2 1
571D 2 1
571F 4 1

571I 18 5 · 19
577A 2 3
577B 2 1
577C 3 1

577D 18 24

587C 31 293
593B 1 2
593C 2 1

593E 27 2 · 37
599C 37 13 · 23
601B 29 2 · 52

607D 31 101

613C 27 3 · 17
617B 28 2 · 7 · 11
619B 30 103
631B 32 3 · 5 · 7
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8 Appendix: Some Facts Concerning Toric Reduction

Let R be a discrete valuation ring with fraction field K and residue field k. For any abelian
variety A over K, with Néron model A over R, we denote by XA the character group of
the toric part of A0

k (the connected component of the closed fiber of A). All group schemes
below are understood to be commutative.

Our aim in this appendix is to prove a couple of facts (Theorem 8.2 and Theorem 8.6)
which are no doubt well-known to experts but for which published proofs do not appear to
be readily available. We begin with a simple and basic lemma.

Lemma 8.1. Let f : G → G′ be a map between multiplicative (resp. étale) finite flat group
schemes over R. The map f is a closed immersion (resp. faithfully flat) if and only if the
generic fiber map fK is a closed immersion (resp. faithfully flat).

Proof. Cartier duality interchanges étaleness and multiplicativeness, as well as closed im-
mersions and faithfully flat maps (as the latter two properties may be checked on the closed
fiber, for which one is reduced to the standard case of finite commutative group schemes
over a field). Thus, it suffices to consider the étale case. By faithfully flat base change to
a strict henselization of R, we are reduced to the case where our finite étale group schemes
are constant. Since faithful flatness is equivalent to surjectivity (for maps between étale
schemes over a base), the lemma is now physically clear.

Now we turn to the first of the two main results we want to prove. Let π : J → A be an
optimal quotient of abelian varieties over K (i.e., we assume that kerπ is an abelian variety
over K), and assume that J has semistable reduction over R (so A does too). We do not
yet make any hypotheses of purely toric reduction. The dual abelian varieties A∨ and J∨

again have semistable reduction, as they are isogenous to A and J respectively.

Theorem 8.2. With notation as above, the map XJ∨ → XA∨ induced by π is surjective.

Proof. The underlying idea comes down to two facts: Lemma 8.1 and the fact that we can
lift tori on the level of `-divisible groups for any prime `. More precisely, we argue as follows.
By Proposition 3.3, the map π∨ : A∨ → J∨ is a closed immersion of abelian varieties. We
will use this to prove that the induced map π∨

t on closed fiber tori of Néron models is
a closed immersion. Since the “character group” functor sets up an anti-equivalence of
categories between tori over a field F and finite free Z-modules with continuous action
of Gal(Fs/F ), identifying closed immersions of tori with surjections of character groups
and surjections of tori with “saturated injections” of character groups (i.e., injections with
torsion-free cokernel), the closed immersion property for π∨

t on the closed fiber tori will
yield the desired surjection of character groups.

In general the “Néron model” functor doesn’t behave well for closed immersions. That
is, just because π∨ is a closed immersion, it does not follow purely formally that π∨ induces
a closed immersion on Néron models. Nevertheless, we claim quite generally that if B → B ′

is a closed immersion of abelian varieties over K with semistable Néron models, then the
induced map T → T ′ on closed fiber tori is a closed immersion. For this it is sufficient to
prove that the induced map on `-divisible groups T [`∞] → T ′[`∞] is a closed immersion
for all primes ` (i.e., all maps T [`n] → T ′[`n] are closed immersions). Indeed, suppose we
verify this closed immersion property on torsion, and let H be the kernel of T → T ′, so
H[`n] = 0 for all primes ` and positive integers n. The torus (H0

/k
)red must vanish (as it has

no non-trivial torsion) and hence H is finite. If N is the order of H, then H = H[N ] = 0.
The map T → T ′ is then a monomorphism between algebraic groups over a field and hence
is a closed immersion, as desired.

14



In order to verify that the `-divisible group maps T [`∞] → T ′[`∞] are closed immersions
for all `, we can make the faithfully flat base change to the henselization of R (which
commutes with formation of Néron models) to reduce to the case where R is henselian.
Now we recall the following basic result of Grothendieck:

Lemma 8.3. Let R be a henselian local ring, G a quasi-finite separated R-scheme of finite
presentation. There is a unique decomposition

G = Gf

∐
G′

into disjoint clopen pieces with Gf finite over R (called the “finite part”of G) and G′ having
empty closed fiber. The formation of Gf is functorial in G and is compatible with henselian
local base change and formation of fiber products over R.

If moreover G is a group scheme over R, then Gf is a clopen subgroup scheme and there
exists a unique multiplicative closed R-subgroup scheme Gµ inside of G whose closed fiber
is the multiplicative part of the closed fiber of G (Gµ is called the “multiplicative part” of
G). The formation of Gµ is functorial in G.

Proof. For the first part, see [8, IV4, 18.5.11(c)] (aside from the functorial properties, which
are obvious). The second part, concerning group schemes, is a mechanical consequence of
the first part (including the functoriality of the finite part). For example, the existence of
Gµ follows from considering the connected-étale sequence of the Cartier dual of Gf over the
henselian local base R, and the uniqueness and functoriality follows from the functoriality
of G Ã Gf and the functoriality of the connected-étale sequence.

Remark 8.4. Assuming R in Lemma 8.3 is a discrete valuation ring (with fraction field K
and residue field k), let us make some observations concerning the behavior of Lemma 8.3
with respect to primary components, as this will be useful later. Let’s suppose that N
and M are relatively prime integers with NM divisible by the order of GK , and hence
killing G. Thus, by functoriality we have G = G[N ] ×R G[M ] where G[N ] and G[M ] are
quasi-finite separated R-group schemes. We claim that G[N ] and G[M ] are also flat over R,
whence it follows that the formation of Gf and Gµ is compatible with passage to “primary
components”.

In other words, if ` is a prime and `n is divisible by the `-part of the order of GK , then
we claim that G[`n] is R-flat. From the clopen decomposition G = Gf

∐
G′, it is easy to

see that G[`n] = Gf [`n]
∐

Xn for some finite K-scheme Xn, so for the issue of R-flatness
we can replace G with Gf . We are thereby reduced to the finite flat case, so we can use the
proof of [10, 1.7.2].

The significance of Lemma 8.3 for our purposes is the following standard consequence.

Corollary 8.5. Let A be an abelian variety over the fraction field K of a henselian discrete
valuation ring R with residue field k. Let A be the Néron model of A, and assume that A
has semistable reduction. For every prime `, there exists a unique multiplicative `-divisible
group Γ` inside of A whose closed fiber is the `-divisible group of the torus T of A0

k. The
formation of Γ` is functorial in A.

Proof. Fix `. By the semistability hypothesis, the multiplication maps `n : A → A are
quasi-finite flat, so A[`n] is a quasi-finite flat separated R-group scheme. Let A[`n]µ de-
note its multiplicative part (as in Lemma 8.3), so the multiplicative T [`n] ↪→ A[`n]k lies
inside of (A[`n]µ)k. The “closed fiber” functor is an equivalence of categories between fi-
nite flat multiplicative group schemes over R and k (since Cartier duality reduces this to
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the étale case, and the “closed fiber” functor is an equivalence of categories between finite
étale R-schemes and finite étale k-schemes [8, IV4, 18.5.12]). Thus, there exists a unique
multiplicative closed R-subgroup scheme Γ(n) ↪→ A[`n]µ whose closed fiber is T [`n].

Moreover, using the equivalence of categories just mentioned, A[`n]µ lies inside of A[`n+1]µ
and Γ(n) lies inside of Γ(n+1). The resulting system Γ` = {Γ(n)} over R forms an `-divisible
group on the closed fiber and hence is an `-divisible group over R. This settles the desired
existence, as well as the desired uniqueness. The functoriality of Γ` in A follows from the
functoriality of toric parts on the closed fiber of Néron models.

Returning to the proof of Theorem 8.2, recall that we were studying the map of toric
parts jt : T → T ′ induced by a closed immersion j : B ↪→ B′ of semistable abelian varieties
over K, with R henselian. We wanted the map

jt[`
∞] : T [`∞] → T ′[`∞]

to be a closed immersion for all primes ` (as we have seen that this forces T → T ′ to
be a closed immersion, which is what we really want to show). Fix `. By Corollary 8.5
there exist unique multiplicative `-divisible groups Γ and Γ′ over R in the respective Néron
models B and B′ such that Γ and Γ′ respectively lift the `-divisible groups of the tori of
the closed fibers. Hence, it suffices to show that the R-map γ : Γ → Γ′ induced by the
Néron functoriality map N(j) is a closed immersion. The generic fiber map γK is a closed
immersion since it “sits inside” the generic fiber `-divisible groups of B and B ′, the map
between which is a closed immersion since j : B → B ′ is a closed immersion. Now we use
Lemma 8.1 (applied at all finite torsion levels) to conclude that γ is a closed immersion.
This completes the proof of Theorem 8.2.

We now turn to a result which requires a stronger hypothesis on the closed fiber. Note
that we retain the hypothesis that R is henselian (this hypothesis arose in the proof of
Theorem 8.2, even though it wasn’t needed for the statement). Let A and B be abelian
varieties over K with purely toric reduction (i.e., their Néron models have closed fiber
connected components which are tori). Let ϕ : A → B be an isogeny, and let ϕt : TA → TB

be the induced map on the closed fiber toric parts (i.e., connected components) of the Néron
models. We denote by ϕ∨

t : TB∨ → TA∨ the analogous map induced by the dual isogeny ϕ∨.
Since the map ϕt is an isogeny (by functoriality), the kernel ker(ϕt) is a finite multiplicative
k-group scheme.

For any finite multiplicative k-group scheme G, we let G̃ denote the (unique) multiplica-

tive finite flat R-group scheme with closed fiber G. For example, k̃er(ϕt) is a multiplicative
R-group scheme which lies inside of

ker(N(ϕ))µ

(where N(ϕ) is the map induced by Néron functoriality). Thus, we have a natural closed
immersion

˜(ker ϕt)K ↪→ kerϕ

and likewise we have a natural quotient map

ker(ϕ∨)∨ → ˜ker(ϕ∨
t )

∨
K

dual to the natural closed immersion using the isogeny ϕ∨.
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By the duality theory for abelian varieties (particularly the adjointness of ϕ and ϕ∨ with
respect to the scheme-theoretic Weil pairing over K), there is a canonical perfect duality
K-group scheme duality between ker(ϕ) and ker(ϕ∨) over K, whence there is a natural
quotient map of K-group schemes

ker(ϕ) ' ker(ϕ∨)∨ → ˜ker(ϕ∨
t )

∨
K .

Theorem 8.6. The diagram of K-group schemes

0 → k̃er(ϕt)K → ker(ϕ) → ˜ker(ϕ∨
t )

∨
K → 0

is exact.

The content of the proof is the Grothendieck Orthogonality Theorem. Moreover, Theo-
rem 8.6 is implicit in Grothendieck’s construction of the monodromy pairing for semiabelian
varieties.

Proof. The exact sequence of the theorem says that the finite flat K-group schemes p

ker(ϕ)/k̃er(ϕt)K and ˜ker(ϕ∨
t )K

are canonically Cartier dual to each other compatibly with the perfect duality between
ker(ϕ) and ker(ϕ∨). More precisely, let A and B denote the Néron models of A and B,
respectively, let

G = ker(A → B), G∨ = ker(B∨ → A∨),

so G and G∨ are both quasi-finite flat separated R-group schemes whose generic fibers are the
ker(ϕ) and ker(ϕ∨) in the theorem (the R-flatness of G and G∨ arises from the semiabelian
condition, since any quasi-finite morphism between semi-abelian schemes is necessarily flat,
as can be checked on geometric fibers). Being quasi-finite flat and separated, the R-group
schemes G and G∨ have canonical respective “finite parts” Gf and G∨

f and “multiplicative
parts” Gµ and G∨

µ (as in Lemma 8.3). Beware that we do not claim G∨
f (resp. G∨

µ) is the
Cartier dual to Gf (resp. Gµ); usually such duality does not hold.

Since Gµ and G∨
µ are finite flat R-group schemes, the quotients G/Gµ and G∨/G∨

µ make
sense as quasi-finite flat separated R-group schemes. The theorem almost says that there
is a canonical duality between (G/Gµ)K = GK/(Gµ)K and (G∨

µ)K , induced by the duality
between GK = ker(ϕ) and G∨

K = ker(ϕ∨), except for the mild problem that Gµ might be

larger than k̃er(ϕt) (i.e., possibly (Gµ)k is not entirely inside of A0
k) and likewise G∨

µ might

be larger than ˜ker(ϕ∨
t ).

We will work on `-primary components for each prime ` individually. In order to permit
this, we use Remark 8.4. We will first treat the more subtle case when ` is the residue
characteristic, and then we’ll handle the case when it isn’t. The advantage of working with
the case in which ` is the residue characteristic is that multiplicative finite k-group schemes

are automatically connected. Thus, in this case (Gµ)` = k̃er(ϕt)` and (G∨
µ)` = ˜ker(ϕ∨

t )`.
Since

0 → GK → A → B → 0

is an exact sequence of abelian sheaves on the fppf site over Spec(K), by the usual snake
lemma argument (and the fact that the `-part (GK)` of GK is killed by a big power of `)
we obtain an exact sequence

0 → (GK)` → A[`∞] → B[`∞] → 0.
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Arguing as in Corollary 8.5, there is an exact sequence over Spec(R)

0 → (Gµ)` → A[`∞]t → B[`∞]t → 0

which lifts the exact sequence involving `-divisible groups of tori on the closed fiber (as (Gµ)`

must be in the relative connected component of A). Passing to the generic fiber over K
gives us a commutative diagram with exact rows and closed immersions along columns

0 // ((Gµ)K)`
//

²²

A[`∞]t //

²²

B[`∞]t //

²²

0

0 // (GK)`
// A[`∞] // B[`∞] // 0

where A[`∞]t denotes the K-fiber of the `-divisible group {A[`n]t}, and likewise for B[`∞]t.
Using the snake lemma in the category of fppf abelian sheaves over Spec(K), we get a

short exact sequence of cokernels

0 → ((G/Gµ)K)` → A[`∞]/(toric) → B[`∞]/(toric) → 0

where all maps are the natural ones, and right two terms are `-divisible groups over K.
The Grothendieck Orthogonality Theorem (see [9, Exp. IX, Prop 5.6]) asserts that the

perfect scheme-theoretic Weil pairing between A[`n] and A∨[`n] makes A[`n]t and A∨[`n]f
exact annhilators, where A[`n]f denotes the K-fiber of the finite part of the A0[`n] and A[`n]t
denotes the K-fiber of the unique R-subgroup scheme in A0[`n] lifting the `n-torsion on the
closed fiber torus. By the purely toric condition applied to A∨, we see A∨[`n]f = A∨[`n]t.
Thus, the orthogonality theorem says that A[`n]/A[`n]t and A∨[`n]t are in perfect duality
via the scheme-theoretic Weil pairing over K.

Passing to the limit, we get a canonical isomorphism of `-divisible groups

A[`∞]/(toric) = (A∨[`∞]t)
∨.

But ϕ and ϕ∨ are adjoint with respect to Weil pairing, so we conclude that the diagram

A[`∞]/(toric)

ϕ

²²

(A∨[`∞]t)
∨

(ϕ∨
t )∨

²²
B[`∞]/(toric) (B∨[`∞]t)

∨

commutes. Thus, we get an isomorphism between the kernels of these vertical isogenies.
The kernel of the left column is ((G/Gµ)K)`, as we saw above. Meanwhile, the kernel of
the right is (by duality theory of `-divisible groups) exactly the dual of ker(ϕ∨

t ) = (G∨
µ)K .

This gives the desired perfect duality between (G/Gµ)K and (G∨
µ)K on `-primary parts for

` equal to the residue characteristic.
Now we consider the case when ` is not equal to the residue characteristic. There is

no loss of generality in passing to the case of a strictly henselian base R. Thus, the closed
fiber tori have constant `-divisible groups. Also, we can work with Z`-modules of geometric
points (over K) via Tate’s construction. The “toric” part of the `-adic Tate module T`(A)
is exactly the (saturated) maximal submodule with trivial Galois action, since a compatible
system of `-power torsion points in A(K) = A(R) must lie entirely inside of A0(R) (thanks
to the finiteness of the component group) and we can identify A0(R)[`n] with the (constant)
`n-torsion on the split torus A0

k over the separably closed k.
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Using inverse limits, we see that T`(A) → T`(B) is injective with cokernel (GK)` (=
geometric points of `-part), and this cokernel is exactly ker(ϕ)`. Likewise, the cokernel of
the map

T`(A)t → T`(B)t

on “toric” parts (i.e., `-adic Tate module generic fibers of the lifts of the `-divisible groups

of closed fiber tori) is (k̃er(ϕt)K)`.
Thus, we get a commutative diagram with horizontal exact sequences

0 // T`(A)t
//

²²

T`(B)t
//

²²

( ˜ker(ϕt)K)`
//

²²

0

0 // T`(A) // T`(B) // ker(ϕ)`
// 0

with columns given by the natural maps. These vertical maps are all injective, so by the
snake lemma we get a short exact sequence of cokernels. We can now use the exact same
Weil pairing arguments with the Grothendieck orthogonality theorem (now in the easier
“` 6= p” form of the orthogonality theorem [9, Exp IX, 2.4]), essentially just as we argued
in the previous case. One distinction is that the use of inverse limit Tate modules rather
than direct limits causes some maps to switch direction.

More specifically we have a commutative square with horizontal isomporphisms (thanks
to the orthogonality theorem)

T`(A)/T`(A)t

ϕ

²²

T`(A
∨)∨

t

T`(ϕ
∨
t )∨

²²
T`(B)/T`(B)t T`(B

∨)∨
t

This induces an isomorphism

((ker ϕ)/k̃er(ϕt)K)` ' ((k̃er ϕ∨
t )K)∨

`

between the vertical cokernels, and by construction this isomorphism is compatible with
Weil pairings, whence the desired perfect pairing has been shown.

Let R be an arbitrary dvr (not necessarily henselian), let ϕ : A → B be an isogeny, and
let ϕt : TA → TB be the induced map on the closed fiber toric parts, as above.

Corollary 8.7. The order of ker(ϕ) is the product of the orders of ker ϕt and kerϕ∨
t .

Proof. Pass to the henselization of R and use Theorem 8.6.
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We investigate Mazur’s notion of visibility of elements of Shafarevich–Tate groups

of abelian varieties. We give a proof that every cohomology class is visible in a

suitable abelian variety, discuss the visibility dimension, and describe a construction

of visible elements of certain Shafarevich–Tate groups. This construction can be used

to give some of the first evidence for the Birch and Swinnerton–Dyer conjecture for

abelian varieties of large dimension. We then give examples of visible and invisible

Shafarevich–Tate groups. # 2002 Elsevier Science (USA)

Key Words: visibility; Shafarevich–Tate group; Birch and Swinnerton–Dyer

conjecture; modular abelian variety.

INTRODUCTION

If a genus 0 curve X over Q has a point in every local field Qp and in R;
then it has a global point over Q: For genus 1 curves, this ‘‘local-to-global
principle’’ frequently fails. For example, the nonsingular projective curve
defined by the equation 3x3 þ 4y3 þ 5z3 ¼ 0 has a point over each local field
and R; but has no Q-point. The Shafarevich–Tate group of an elliptic curve
E; denoted VðEÞ; is a group that measures the extent to which a local-to-
global principle fails for the genus one curves with Jacobian E: More
generally, if A is an abelian variety over a number field K ; then the elements
of the Shafarevich–Tate group VðAÞ of A correspond to the torsors for A

that have a point everywhere locally, but not globally. In this paper, we
study a geometric way of realizing (or ‘‘visualizing’’) torsors corresponding
to elements of VðAÞ:
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Let A be an abelian variety over a field K : If i : A+J is a closed
immersion of abelian varieties, then the subgroup of H1ðK ;AÞ visible in J

(with respect to i) is kerðH1ðK ;AÞ ! H1ðK; JÞÞ: We prove that every
element of H1ðK;AÞ is visible in some abelian variety, and give bounds on
the smallest size of an abelian variety in which an element of H1ðK ;AÞ is
visible. Next assume that K is a number field. We give a construction of
visible elements of VðAÞ; which we demonstrate by giving evidence for the
Birch and Swinnerton–Dyer conjecture for a certain 20-dimensional abelian
variety. We also give an example of an elliptic curve E over Q of conductor
N whose Shafarevich–Tate group is not visible in J0ðNÞ but is visible in
J0ðNpÞ for some prime p:

This paper is organized as follows. Section 1 contains the definition of
visibility for cohomology classes and elements of Shafarevich–Tate groups.
Then in Section 1.3, we use a restriction of scalars construction to prove that
every cohomology class is visible in some abelian variety. Next, in Section 2,
we investigate the visibility dimension of cohomology classes. Section 3
contains a theorem that can be used to construct visible elements of
Shafarevich–Tate groups. Finally, Section 4, contains examples and
applications of our visibility results in the context of modular abelian
varieties.

1. VISIBILITY

In Section 1.1 we introduce visible cohomology classes, then in Section 1.2
we discuss visible elements of Shafarevich–Tate groups. In Section 1.3, we
use restriction of scalars to deduce that every cohomology class is visible
somewhere.

For a field K and a smooth commutative K-group scheme G; we write
HiðK ;GÞ to denote the group cohomology HiðGalðKs=KÞ;GðKsÞÞ where Ks

is a fixed separable closure of K ; equivalently, HiðK ;GÞ denotes the ith étale
cohomology of G viewed as an étale sheaf on SpecðKÞ!eet:

1.1. Visible elements of H1ðK;AÞ. In [Maz99], Mazur introduced
the following definition. Let A be an abelian variety over an arbitrary
field K :

Definition 1.1. Let i : A+J be an embedding, of A into an abelian
variety J over K : Then the visible subgroup of H1ðK ;AÞ with respect to the

embedding i is

VisJðH1ðK ;AÞÞ ¼ KerðH1ðK ;AÞ ! H1ðK; JÞÞ:

The visible subgroup VisJðH1ðK ;AÞÞ depends on the choice of embedding
i; but we do not include i in the notation, as it is usually clear from context.
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The Galois cohomology group H1ðK ;AÞ has a geometric interpretation
as the group of classes of torsors X for A (see [LT58]). To a cohomology
class c 2 H1ðK ;AÞ; there is a corresponding variety X over K and a
map A � X ! X that satisfies axioms similar to those for a simply
transitive group action. The set of equivalence classes of such X forms a
group, the Weil–Chatelet group of A; which is canonically isomorphic to
H1ðK ;AÞ:

There is a close relationship between visibility and the geometric
interpretation of Galois cohomology. Suppose i : A ! J is an embedding
and c 2 VisJðH1ðK;AÞÞ: We have an exact sequence of abelian varieties
0 ! A ! J ! C ! 0; where C ¼ J=A: A piece of the associated long exact
sequence of Galois cohomology is

0 ! AðKÞ ! JðKÞ ! CðKÞ ! H1ðK ;AÞ ! H1ðK ; JÞ ! � � � ;

so there is an exact sequence

0 ! JðKÞ=AðKÞ ! CðKÞ ! VisJðH1ðK ;AÞÞ ! 0: ð1:1Þ

Thus there is a point x 2 CðKÞ that maps to c: The fiber X over x is a
subvariety of J; which, when equipped with its natural action of A; lies in
the class of torsors corresponding to c: This is the origin of the terminology
‘‘visible’’. Also, we remark that when K is a number field, VisJðH1ðK ;AÞÞ is
finite because it is torsion and is the surjective image of the finitely generated
group CðKÞ:

1.2. Visible Elements of VðAÞ. Let A be an abelian variety over a
number field K : The Shafarevich–Tate group of A; which is defined below,
measures the failure of the local-to-global principle for certain torsors. The
Shafarevich–Tate group of A is

VðAÞ :¼ Ker H1ðK ;AÞ !
Y

v

H1ðKv;AÞ
 !

;

where the product is over all places of K :

Definition 1.2. If i : A+J is an embedding then the visible subgroup of

VðAÞ with respect to i is

VisJðVðAÞÞ :¼ VðAÞ \ VisJðH1ðK ;AÞÞ ¼ KerðVðAÞ ! VðJÞÞ:

1.3. Every Element is Visible Somewhere.
Proposition 1.3. Every element of H1ðK ;AÞ is visible in some abelian

variety J:
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Proof. Fix c 2 H1ðK ;AÞ: There is a finite separable extension L of K

such that resLðcÞ ¼ 0 2 H1ðK ;AÞ: Let J ¼ ResL=KðALÞ be the Weil
restriction of scalars from L to K of the abelian variety AL (see [BLR90,
Sect. 7.6]). Thus J is an abelian variety over K of dimension ½L : K � � dimðAÞ;
and for any scheme S over K ; we have a natural (functorial) group
isomorphism ALðSLÞ ffi JðSÞ: The functorial injection AðSÞ+ALðSLÞ ffi
JðSÞ corresponds via Yoneda’s Lemma to a natural K-group scheme map
i : A ! J; and by construction i; is a monomorphism. But i is proper and
thus is a closed immersion (see [Gro66, Sect. 8.11.5]). Using the Shapiro
lemma one finds, after a tedious computation, that there is a canonical
isomorphism H1ðK ; JÞ ffi H1ðL;AÞ which identifies inðcÞ with
resLðcÞ ¼ 0: ]

Remark 1.4. 1. In [CM00], de Jong gave a totally different proof of the
above proposition in the case when A is an elliptic curve over a number field.
His argument actually displays A as visible inside the Jacobian of a curve.

2. L. Clozel has remarked that the method of proof above is a standard
technique in the theory of algebraic groups.

2. THE VISIBILITY DIMENSION

Let A be an abelian variety over a field K and fix c 2 H1ðK ;AÞ:

Definition 2.1. The visibility dimension of c is the minimum of the
dimensions of the abelian varieties J such that c is visible in J:

In Section 2.1 we prove an elementary lemma which, when combined with
the proof of Proposition 1.3, gives an upper bound on the visibility
dimension of c in terms of the order of c and the dimension of A: Then, in
Section 2.2, we consider the visibility dimension in the case when A ¼ E is
an elliptic curve. After summarizing the results of Mazur and Klenke on the
visibility dimension, we apply a theorem of Cassels to deduce that the
visibility dimension of c 2 VðEÞ is at most the order of c:

2.1. A Simple Bound. The following elementary lemma, which the second
author learned from Hendrik Lenstra, will be used to give a bound on the
visibility dimension in terms of the order of c and the dimension of A:

Lemma 2.2. Let G be a group, M be a finite (discrete) G-module, and

c 2 H1ðG;MÞ: Then there is a subgroup H of G such that resHðcÞ ¼ 0 and

#ðG=HÞ4#M:
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Proof. Let f : G ! M be a cocycle corresponding to c; so f ðtsÞ ¼
f ðtÞ þ tf ðsÞ for all t; s 2 G: Let H ¼ kerðf Þ ¼ fs 2 G : f ðsÞ ¼ 0g: The map
tH/f ðtÞ is a well-defined injection from the coset space G=H to M: ]

The following is a general bound on the visibility dimension.

Proposition 2.3. The visibility dimension of any c 2 H1ðK ;AÞ is at most

d � n2d where n is the order of c and d is the dimension of A:

Proof. The map H1ðK ;A½n�Þ ! H1ðK ;AÞ½n� is surjective and A½n� has
order n2d ; so Lemma 2.2 implies that there is an extension L of K of degree
at most n2d such that resLðcÞ ¼ 0: The proof of Proposition 1.3 implies that c

is visible in an abelian variety of dimension ½L : K � � dim A4dn2d : ]

2.2. The Visibility Dimension for Elliptic Curves. We now consider the
case when A ¼ E is an elliptic curve over a number field K : Mazur proved in
[Maz99] that every nonzero c 2 VðEÞ½3� has visibility dimension 2 (note
that Proposition 2.3 only implies that the visibility dimension is 43).
Mazur’s result is particularly nice because it shows that c is visible in an
abelian variety that is isogenous to the product of two elliptic curves. Using
similar techniques, Klenke proved in [Kle0l] that every nonzero c 2 H1ðK ;
EÞ½2� has visibility dimension 2 (note that Proposition 2.3 only implies that
the visibility dimension of any c 2 H1ðK ;EÞ½2� is 44). It is unknown
whether the visibility dimension of every nonzero element of H1ðK ;EÞ½3� is
2, and it is not known whether elements of VðEÞ½5� must have visibility
dimension 2.

When c lies in VðEÞ we use a classical result of Cassels to strengthen the
conclusion of Proposition 2.3.

Proposition 2.4. Let E be an elliptic curve over a number field K and let

c 2 VðEÞ: Then the visibility dimension of c is at most the order of c:

Proof. Let n be the order of c: In view of the restriction of scalars
construction in the proof of Proposition 1.3, it suffices to show that there is
an extension L of K of degree n such that resLðcÞ ¼ 0: Without the
hypothesis that c lies in VðEÞ; such an extension L might not exist, as
Cassels observed in [Cas63]. However, in that same paper, Cassels proved
that such an L exists when c 2 VðEÞ (see also [O’N0l] for another proof). ]

Remark 2.5. In contrast to the case of dimension 1, it seems to be an
open problem to determine whether or not elements of VðAÞ½n� split over
an extension of degree n:
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3. CONSTRUCTION OF VISIBLE ELEMENTS

The goal of this section is to state and prove the main result of this paper,
which we use to construct visible elements of Shafarevich–Tate groups and
sometimes give a nontrivial lower bound for the order of the Shafarevich–
Tate group of an abelian variety thus providing new evidence for the
conjecture of Birch and Swinnerton–Dyer (see Section 4.1 and [AS02]). The
Tamagawa numbers cA;v and cB;v will be defined in Section 3.1.

Theorem 3.1. Let A and B be abelian subvarieties of an abelian variety J

over a number field K such that A \ B is finite. Let N be an integer divisible by

the residue characteristics of primes of bad reduction for B: Suppose n is an

integer such that for each prime pjn; we have epop � 1 where ep is the largest

ramification of any prime of K lying over p; and that

gcd n;N �#ðJ=BÞðKÞtor �#BðKÞtor �
Y

all places v

ðcA;v � cB;vÞ
 !

¼ 1;

where cA;v ¼ #FA;vðF‘Þ (resp., cB;‘) is the Tamagawa number of A (resp., B)
at v (see Section 3.1 for the definition of FA;v). Suppose furthermore that

B½n� � A as subgroup schemes of J: Then there is a natural map

j : BðKÞ=nBðKÞ ! VisJðVðAÞÞ;

such that kerðjÞ � JðKÞ=ðBðKÞ þ AðKÞÞ: If AðKÞ has rank 0, then kerðjÞ ¼
0 (more generally, kerðjÞ has order at most nr where r is the rank of AðKÞ).

Remark 3.2. Mazur has proved similar results for elliptic curves using
flat cohomology (unpublished), and discussions with him motivated this
theorem.

In Section 3.1 we recall a definition of the Tamagawa numbers of an
abelian variety. In Section 3.2 we prove a lemma, which gives a condition
under which there is an unramified nth root of an unramified point. In
Section 3.3, we use the snake lemma to produce a map

BðKÞ=nBðKÞ+VisJðH1ðK ;AÞÞ

with bounded kernel. Finally, in Section 3.4, we use a local analysis at each
place of K to show that the image of the above map lies in VðAÞ:

3.1. Tamagawa Numbers. Let A be an abelian variety over a local field K

with residue class field k; and let A be the Néron model of A over the ring of
integers of K : The closed fiber Ak of A need not be connected. Let A0

k

denote the geometric component of A that contains the identity. The group
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FA ¼ Ak=A
0
k of connected components is a finite group scheme over k:

This group scheme is called the component group of A; and the Tamagawa

number of A is cA ¼ #FAðkÞ:
Now suppose that A is an abelian variety over a global field K :

For every place v of K ; the Tamagawa number of A at v; denoted cA;v

or just cv; is the Tamagawa number of AKv
; where Kv is the completion

of K at v:

3.2. Smoothness and Surjectivity. In this section, we recall some well-
known lemmas that we will use in Section 3.4 to produce unramified
cohomology classes. The authors are grateful to B. Conrad for explaining
the proofs of these lemmas.

Lemma 3.3. If G is a finite-type smooth commutative group scheme over a

strictly henselian local ring R and the fibers of G over R are (geometrically)
connected, then the multiplication map

nG : GðRÞ ! GðRÞ

is surjective when n 2 R�:

Proof. Pick an element g 2 GðRÞ and form the cartesian diagram

We want to prove that c has a section. Since R is strictly
henselian, by [Gro67, 18.8.1] it suffices to show that Yg is étale over
R with nonempty closed fiber, or more generally that nG is étale and
surjective.

By Lemma 2(b) of [BLR90, Sect. 7.3], nG is étale. The image of the étale
nG must be an open subgroup scheme, and on fibers over SpecðRÞ we get
surjectivity since an open subgroup scheme of a smooth connected (hence
irreducible) group scheme over a field must fill up the whole space [Gro70,
VIA; 0.5]. ]

Lemma 3.4. Let A be an abelian variety over the fraction field K of a

strictly henselian dvr (e.g., K could be the maximal unramified extension a

local field). Let n be an integer not divisible by the residue characteristic of K :
Suppose that x is a point of AðKÞ whose reduction lands in the identity
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component of the closed fiber of the Néron model of A: Then there exists

z 2 AðKÞ such that nz ¼ x:

Proof. Let A denote the Néron model of A over the valuation ring R of
K ; and let A0 denote the ‘‘identity component’’ (i.e., the open subgroup
scheme obtained by removing the nonidentity components of the closed
fiber of A). The hypothesis on the reduction of x 2 AðKÞ ¼ A0ðRÞ says
exactly that x 2 A0ðRÞ: Since connected schemes over a field are
geometrically connected when there is a rational point [Gro65, Proposition
4.5.13], the fibers of A0 over SpecðRÞ are geometrically connected. The
lemma now follows from Lemma 3.3 with G ¼ A0: ]

Remark 3.5. M. Baker noted that this argument can also be formulated
in terms of formal groups when R is the strict henselization of a complete dvr.

Lemma 3.6. Let J!f C be a smooth surjective morphism of schemes over

a strictly Henselian local ring R: Then the induced map JðRÞ ! CðRÞ is

surjective.

Proof. The argument is similar to that of the proof of Lemma 3.3. Pick
an element g 2 CðRÞ and form the cartesian diagram

We want to prove that c has a section. Since f is smooth, c is also smooth.
By Grothendieck [Gro67, 18.5.17], to show that c has a section, we just need
to show that the closed fiber of c has a section (i.e., a rational point). But this
closed fiber is smooth and nonempty (since f is surjective); also its base field
is separably closed since R is strictly Henselian. Hence by Bosma et al.

[BLR90, Corollary 2.2.13], the closed fiber has an R-rational point. ]

3.3. Visible Elements of H1ðK ;AÞ. In this section, we produce a map
BðKÞ=nBðKÞ ! VisJðH1ðK ;AÞÞ with bounded kernel.

Lemma 3.7. Let A and B be abelian subvarieties of an abelian variety J

over a number field K such that A \ B is finite. Suppose n is a natural number

such that

gcdðn;#ðJ=BÞðKÞtor �#BðKÞtorÞ ¼ 1
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and B½n� � A as subgroup schemes of J: Then there is a natural map

j : BðKÞ=nBðKÞ ! VisJðH1ðK ;AÞÞ

such that kerðjÞ � JðKÞ=ðBðKÞ þ AðKÞÞ: If AðKÞ has rank 0, then kerðjÞ ¼
0 (more generally, kerðjÞ has order at most nr where r is the rank of AðKÞ).

Proof. First we produce a map j : BðKÞ=nBðKÞ ! VisðH1ðK ;AÞÞ by
using that B½n� � A hence a certain map factors through multiplication
by n: Then we use the snake lemma and our hypothesis that n does not
divide the orders of certain torsion groups to bound the dimension of the
kernel of j:

The quotient J=A is an abelian variety C over K : The long exact sequence
of Galois cohomology associated to the short exact sequence

0 ! A ! J ! C ! 0

begins

0 ! AðKÞ ! JðKÞ ! CðKÞ!d H1ðK;AÞ ! � � � : ð3:1Þ

Let c be map B ! C obtained by composing the inclusion B+J with the
quotient map J ! C: Since B½n� � A; we see that c factors through
multiplication by n; so the following diagram commutes:

Using that B½n�ðKÞ ¼ f0g; we obtain the following commutative diagram,
all of whose rows and columns are exact:

ð3:2Þ
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where K0; K1 and K2 are the indicated kernels and K3 is the indicated
cokernel. Exactness of the top row expresses the fact that B½n�ðKÞ ¼ f0g;
and the bottom exact row arises from the exact sequence (3.1) above. The
first vertical map BðKÞ ! JðKÞ=AðKÞ is induced by the inclusion BðKÞ+
JðKÞ composed with the quotient map JðKÞ ! JðKÞ=AðKÞ: The second
vertical map BðKÞ ! CðKÞ exists because the composition B+J ! C has
kernel B \ A; which contains B½n�; by assumption. The third vertical map
exists because p contains nBðKÞ in its kernel, so that p factors through
BðKÞ=nBðKÞ:

Sequence (1.1) implies that the image of j is contained in VisJðH1ðK ;AÞÞ:
The snake lemma gives an exact sequence

K0 ! K1 ! K2 ! K3:

Because B ! C has finite kernel, K1 � BðKÞtor: Since B½n�ðKÞ ¼ f0g and K2

is an n-torsion group, the map K1 ! K2 is the 0 map. Thus, K2 ¼ kerðjÞ is
isomorphic to a subgroup of K3 ¼ JðKÞ=ðAðKÞ þ BðKÞÞ; as claimed.

Any torsion in the quotient JðKÞ=BðKÞ is of order coprime to n because
JðKÞ=BðKÞ is a subgroup of ðJ=BÞðKÞ; and gcdðn;#ðJ=BÞðKÞtorÞ ¼ 1; by
assumption. Thus if AðKÞ is a torsion group, K3 ¼ ðJðKÞ=BðKÞÞ=AðKÞ has
no nontrivial torsion of order dividing n; so when AðKÞ has rank zero,
kerðjÞ ¼ 0:

Consider the map c : AðKÞ ! JðKÞ=BðKÞ: To show that kerðfÞ has order
at most nr; where r is the rank of AðKÞ; it suffices to show that cokerðcÞ½n�
has order at most nr: To prove the latter statement, by the structure theorem
for finite abelian groups, it suffices to prove it for the case when n is a power
of a prime. Moreover, we may assume that AðKÞ and JðKÞ=BðKÞ have no
prime-to-n torsion. Then JðKÞ=BðKÞ is in fact torsion-free, and so we may
also assume AðKÞ is torsion-free. With these assumptions, the statement we
want to prove follows easily by elementary group-theoretic arguments (in
particular, by considering of the Smith normal form of the matrix
representing c). ]

3.4. Proof of Theorem 3.1.
Proof of Theorem 3.1. The proof proceeds in two steps. The first step

is to use the hypothesis that B½n� � A to produce a map BðKÞ=nBðKÞ !
VisJðH1ðK ;AÞÞ½n�: This was done in Section 3.3. The second step is to
perform a local analysis at each place v of K in order to prove that the image
of this map consists of locally trivial cohomology classes. We divide this
local analysis into three cases:

1. When v is real archimedian, we use that gcdð2; nÞ ¼ 1: (We know that
for any pjn we have p > 2 because 14epop � 1; by assumption.)
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2. When gcdðcharðvÞ; nÞ ¼ 1; we use the result of Section 3.2 and a
relationship between unramified cohomology and the cohomology of a
component group.

3. When gcdðcharðvÞ; nÞa1; for each prime pjn; the reduction of J is
abelian and by hypothesis epop � 1; so we can apply an exactness theorem
from [BLR90].

We now deduce that the image of BðKÞ=nBðKÞ in H1ðK ;AÞ lies in VðAÞ:
Fix an element x 2 BðKÞ: To show that pðxÞ 2 VðAÞ; it suffices to show
that resvðpðxÞÞ ¼ 0 for all places v of K :

Case 1: v real archimedian. At a real archimedian place v; the restriction
resvðpðxÞÞ is killed by 2 and the odd n; hence resvðpðxÞÞ ¼ 0:

Case 2: gcdðcharðvÞ; nÞ ¼ 1: Suppose that gcdðcharðvÞ; nÞ ¼ 1: Let m ¼
cB;v ¼ FB;vðFvÞ be the Tamagawa number of B at v: The reduction of mx lies
in the identity component of the closed fiber BFv

of the Néron model of B at
v; so by Lemma 3.4, there exists z 2 BðKur

v Þ such that nz ¼ mx: Thus the
cohomology class resvðpðmxÞÞ is defined by a cocycle that sends s 2
GalðKv=KvÞ to sðzÞ � z 2 AðKur

v Þ (see diagram (3.2) for the definition of p).
In particular, resvðpðmxÞÞ is unramified at v: By Milne [Mil86, Proposition
3.8].

H1ðKur
v =Kv;AðKur

v ÞÞ ¼ H1ðKur
v =Kv;FA;vð %FFvÞÞ;

where FA;v is the component group of A at v: The Herbrand quotient of a
finite module is 1 (see, e.g., [Ser79, VIII.4.8]), so

#FA;vðFvÞ ¼ #H1ðKur
v =Kv;FA;vð %FFvÞÞ:

Thus, the order of resvðpðmxÞÞ divides both #FA;vðFvÞ and n: Since
by assumption gcdð#FA;vðFvÞ; nÞ ¼ 1; it follows that resvðpðmxÞÞ ¼ 0;
hence m resvðpðxÞÞ ¼ 0: Again, since the order of pðxÞ divides n; and
gcdðn;mÞ ¼ 1; we have resvðpðxÞÞ ¼ 0:

Case 3: gcdðcharðvÞ; nÞ ¼ pa1: Suppose that charðvÞ ¼ pjn: Let R be the
ring of integers of Kur

v ; and let A; J; and C be the Néron models of A; J;
and C; respectively. Since epop � 1 and J has abelian reduction at v (since
p[N), by Bosch et al. [BLR90, Theorem 7.5.4(iii)], the induced sequence
0 ! A ! J!f C ! 0 is exact, which means that f is faithfully flat and
surjective with scheme-theoretic kernel A: Since f is faithfully flat with
smooth kernel, f is smooth (see, e.g., [BLR90, 2.4.8]). By Lemma 3.6,
JðRÞ ! CðRÞ is a surjection; i.e., JðKur

v Þ ! CðKur
v Þ is a surjection.

So resvðpðxÞÞ is unramified, and again by Milne [Mil86, Proposition 3.8],

H1ðKur
v =Kv;AÞ ffi H1ðKur

v =Kv;FA;vð %FFvÞÞ:
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But H1ðKur
v =Kv;FA;vð %FFvÞÞ ¼ f0g; since FA;vð %FFvÞ is trivial, as A has good

reduction at v (because p[N). Thus resvðpðxÞÞ ¼ 0: ]

4. SOME EXAMPLES

This section contains some examples of visible and invisible elements of
Shafarevich–Tate groups. Section 4.1 uses Theorem 3.1 to produce
nontrivial visible elements of VðAÞ; where A is a 20-dimensional modular
abelian variety, thus giving evidence for the BSD conjecture. In Section 4.2
we show that an invisible Shafarevich–Tate group from [CM00] becomes
visible at a higher level.

In [AS02], we describe the notation used (which is standard) and the
algorithms that we used to carry out the computations described below. We
also report on a large number of similar computations, which were
performed using the second author’s modular symbols package, which is
part of Magma (see [BCP97]).

4.1. Visibility in an Abelian Variety of Dimension 20. Using the methods
described in [AS02], we find that S2ðG0ð389ÞÞ contains exactly five Galois-
conjugacy classes of newforms, and these are defined over extensions of Q of
degrees 1, 2, 3, 6, and 20. Thus, J ¼ J0ð389Þ decomposes, up to isogeny, as a
product A1 � A2 � A3 � A6 � A20 of abelian varieties, where d ¼ dim Ad

and Ad is the quotient corresponding to the appropriate Galois-conjugacy
class of newforms.

Next we consider the arithmetic of each Ad : Using [AS02], we find that

LðA1; 1Þ ¼ LðA2; 1Þ ¼ LðA3; 1Þ ¼ LðA6; 1Þ ¼ 0;

and

LðA20; 1Þ
OA20

¼ 52 � 2?

97
;

where 2? is a power of 2. Using [AS02], we find that #A20ðQÞ ¼ 97 and the
Tamagawa number of A20 at 389 is also 97. The BSD Conjecture then
predicts that #VðA20Þ ¼ 52 � 2?: The following proposition provides
support for this conjecture.

Proposition 4.1. There is an inclusion

ðZ=5ZÞ2 ffi A1ðQÞ=5A1ðQÞ+VisJðVðA_
20ÞÞ:

Proof. Let A ¼ A_
20;B ¼ A_

1 ¼ A1 and J ¼ A þ B � J0ð389Þ: Using
algorithms in [AS02], we find that A \ B ffi ðZ=4Þ2 � ðZ=5ZÞ2; so B½5� �
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A: Since 5 does not divide the numerator of ð389 � 1Þ=12; it does not divide
the Tamagawa numbers or the orders of the torsion subgroups of A; B; J;
and J=B (we also verified this using a modular symbols computations), so
Theorem 3.1 implies that there is an injective map

A1ðQÞ=5A1ðQÞ+VisJðVðA_
20ÞÞ:

To finish, note that Cremona [Cre97] has verified that A1ðQÞ � Z� Z: ]

4.2. Invisible Elements that Becomes Visible at Higher Level. Consider the
elliptic curve E of conductor 5389 ¼ 17 � 317 defined by the equation

y2 þ xy þ y ¼ x3 � 35 590x � 2 587 197:

In [CM00], Cremona and Mazur observe that the BSD conjecture implies
that #VðEÞ ¼ 9; but they find that VisJ0ð5389ÞðVðEÞ½3�Þ ¼ f0g: We will
now verify, without assuming any conjectures, that 9j#VðEÞ and that these
9 elements of VðEÞ are visible in J0ð5389 � 7Þ:

First note that the mod 3 representation rE;3 attached to E is irreducible
because E is semistable and admits no 3-isogeny (according to [Cre]). The
newform attached to E is

fE ¼ q þ q2 � 2q3 � q4 þ 2q5 � 2q6 � 2q7 þ � � � ;

and a2
7 ¼ ð�2Þ2 � ð7 þ 1Þ2 ðmod 3Þ; so Ribet’s level-raising theorem [Rib90]

implies that there is a newform g of level 7 � 5389 that is congruent modulo 3
to fE : This observation led us to the following proposition.

Proposition 4.2. Map E to J0ð7 � 5389Þ by the sum of the two

maps on Jacobians induced by the two degeneracy maps

X0ð7 � 5389Þ ! X0ð5389Þ: The image E0 of E in J0ð7 � 5389Þ is 2-isogenous

to E and

ðZ=3ZÞ2 � VisJ0ð7�5389ÞðVðE0ÞÞ:

Proof. It is easy to see from the discussion in [Rib90] that the kernel of
the sum of the two degeneracy maps J0ð5389Þ ! J0ð7 � 5389Þ is a group of 2-
power order, so E0 is isogenous to E via an isogeny of degree a power of 2.

Consider the elliptic curve F defined by y2 � y ¼ x3 þ x2 þ 34x � 248:
Using Cremona’s programs tate and mwrank we find that F has conductor
7 � 5389; and that FðQÞ ffi Z� Z: The Tamagawa numbers of F at 7, 17, and
317 are 1, 2, and 1, respectively. The newform attached to F is

fF ¼ q � 2q2 þ q3 þ 2q4 � q5 � 2q6 � q7 þ � � �
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and, by Sturm [Stu87], we prove that fEðqÞ þ fEðq7Þ � fF ðmod 3Þ by
checking this congruence for the first 7632 ¼ ½SL2ðZÞ : G0ð7 � 5389Þ�=6
terms. Since 24ko3 and 3[7 � 5389; the first part of the multiplicity one
theorem of [Edi92, Sect. 9] implies that F ½3� ¼ E0½3�:

Finally, we apply Theorem 3.1 with A ¼ E0;B ¼ F ; J ¼ A þ B � J0ð7 �
5389Þ;N ¼ 7 � 5389; and n ¼ 3: It is routine to check the hypothesis. For
example, the hypothesis that J=B has no Q-rational 3-torsion can be
checked as follows. Cremona’s online tables imply that E admits no 3-
isogeny, so E½3� is irreducible. Since J=B is isogenous to E; the
representation ðJ=BÞ½3� is also irreducible, so ðJ=BÞðQÞ½3� ¼ f0g: Thus, by
Theorem 3.1, we have ðZ=3ZÞ2 � VisJðVðE0ÞÞ: To finish the proof, note
that VisJðVðE0ÞÞ � VisJ0ð7�5389ÞðVðE0ÞÞ: ]

Since E0 is 2-isogenous to E and 9j#VðE0Þ; it follows that 9j#VðEÞ; as
predicted by the BSD conjecture.
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1. Introduction

Let N be a positive integer, and f be a newform of weight 2 on Γ0(N). A
construction due to Shimura associates to f an abelian variety quotient Af of J0(N).
We say that Af has analytic rank zero if its L-function L(Af , s) is nonzero at
s = 1. In this paper we give evidence for the Birch and Swinnerton-Dyer conjecture
for analytic rank 0 abelian varieties Af of arbitrary dimension. For such abelian
varieties, the conjecture asserts that Af (Q) is finite, and gives a formula for the
order of the Shafarevich-Tate group X(Af ).

Kolyvagin and Logachev proved in [KL89, KL92] that if L(Af , 1) 6= 0, then
Af (Q) and X(Af ) are both finite. To the best of our knowledge, Birch and
Swinnerton-Dyer’s formula for #X(Af ) has not been completely verified for a
single abelian variety Af of dimension greater than one. In [KL92, §1.6] Kolyva-
gin and Logachev remark that if one were able to compute the height of a certain
Heegner point, their methods could be used to find an upper bound on #X(Af ),
but we have not done this. Instead, in this paper we focus on computing nonzero
subgroups of X(Af ) when the conjecture predicts that X(Af ) is nonzero.

Inspired by work of Cremona and Mazur (see [CM]), we had the idea to reverse
their methods and prove, in some cases, that #X(Af ) is at least as big as predicted
by the Birch and Swinnerton-Dyer conjecture. Instead of assuming that X(Af ) is
as predicted by the conjecture and trying to understand whether or not it is visible
in J0(N), we prove a theorem (see [AS02]) that allows us to sometimes construct
the odd part of X(Af ) without assuming any conjectures. After developing algo-
rithms that allow us to compute the conjectural order of X(Af ) in most cases, we
analyzed the 19608 abelian varieties Af of level ≤ 2333, and constructed the tables
of Section 5. This resulted in the first systematic experimental evidence for the
Birch and Swinnerton-Dyer conjecture for modular abelian varieties of dimension
greater than 2 (see [FpS+01] for dimension 2).

This paper is organized as follows. In Section 2 we review background about
modular abelian varieties and state the Birch and Swinnerton-Dyer conjecture.
Section 3 explains the basic facts about quotients Af of J0(N) that one needs to
know in order to compute with them. In Section 4 we discuss a generalization
of the Manin constant, derive a formula for the ratio L(Af , 1)/ΩAf

, and bound
the denominator of this ratio, thus giving some theoretical evidence towards the
Birch and Swinnerton-Dyer conjecture. Section 5 reports on our construction of a
table of 168 rank 0 abelian varieties Af of level ≤ 2333 such that the Birch and
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Swinnerton-Dyer conjecture predicts that #X(Af ) is divisible by an odd prime,
and discusses what we computed to show that for 39 of the Af there are at least as
many elements of the odd part of #X(Af ) as predicted. The part of #X(Af ) that
is coprime to the modular degree of Af (which we define below) is a perfect square,
and in the several cases where we could compute the odd part of the conjectured
value of #X(Af ), we found the odd part to be a perfect square, which gives
computational evidence for the conjecture. The appendix, written by Cremona
and Mazur, fills in some gaps in the theoretical discussion in [CM].

Acknowledgment. It is a pleasure to thank Bryan Birch, Robert Coleman,
Benedict Gross, Hednrik Lenstra, Dino Lorenzini, Löıc Merel, Bjorn Poonen, Ken
Ribet, and John Tate for many helpful comments and discussions. Special thanks
go to Barry Mazur for guiding our ideas on visibility and purchasing the second
author a powerful computer, and to Allan Steel and David Kohel at Magma for
their crucial computational support.

2. Background and Definitions

2.1. Modular Forms. Fix a positive integer N . The group

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : N | c

}

acts by linear fractional transformations on the extended complex upper halfplane
h∗. As a Riemann surface, X0(N)(C) is the quotient Γ0(N)\h∗. There is a standard
model for X0(N) over Q (see [Shi94, Ch. 6]), and the Jacobian J0(N) of X0(N)
is an abelian variety over Q of dimension equal to the genus g of X0(N), which
is equipped with an action of the Hecke algebra T = Z[. . . Tn . . .]. The space
S2(Γ0(N)) of cuspforms of weight 2 on Γ0(N) is a module over T and S2(Γ0(N)) ∼=
H0(X0(N),ΩX0(N)) as T-modules.

2.2. Abelian Varieties Attached to Newforms. A newform

f =
∑

n≥1

anqn ∈ S2(Γ0(N))

is an eigenvector for T that is normalized so that a1 = 1 and which lies in the
orthogonal complement of the old subspace of S2(Γ0(N)). Let If denote the anni-
hilator AnnT(f) of f in T. Following Shimura [Shi73], attach to If the quotient

Af = J0(N)/IfJ0(N),

which is an abelian variety over Q of dimension [Q(. . . , an, . . .) : Q], which is
equipped with a faithful action of T/If . Moreover, Af is an optimal quotient of
J0(N), in the sense that A∨

f → J0(N) is a closed immersion, or equivalently that

the kernel of J0(N) → Af is connected (see [CS01, Prop. 3.3]).
Also, the complex torus Af (C) fits into the exact sequence

H1(X0(N),Z) → Hom(S2(Γ0(N))[If ],C) → Af (C) → 0.

2.3. The Birch and Swinnerton-Dyer Conjecture. The conjecture of Birch
and Swinnerton-Dyer makes sense for abelian varieties over fairly general global
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fields, but we only state a special case. This conjecture involves the L-function
attached to A = Af :

L(A, s) =
d∏

i=1

L(f (i), s) =
d∏

i=1


∑

n≥1

a
(i)
n

ns


 ,

where f (i) is the ith Galois conjugate of f and a
(i)
n is the ith Galois conjugate of an.

It follows from work of Hecke that L(A, s) has an analytic continuation to the whole
complex plane and satisfies a functional equation. Birch and Swinnerton-Dyer made
the following conjecture, which relates the rank of A to the order of vanishing of
L(A, s) at s = 1.

Conjecture 2.1 (Birch and Swinnerton-Dyer). The Mordell-Weil rank of A is
equal to the order of vanishing of L(A, s) at s = 1, i.e.,

dim(A(Q) ⊗ Q) = ords=1 L(A, s).

Birch and Swinnerton-Dyer also furnished a conjectural formula for the order of
the Shafarevich-Tate group

X(A) := ker


H1(Q, A) −→

∏

all places v

H1(Qv, A)


 .

(They only made their conjecture for elliptic curves, but Tate [Tat66] reformulated
it a functorial way which makes sense for abelian varieties. See also [Lan91, §III.5]
for another formulation.) We now state their conjecture in the special case when
L(A, 1) 6= 0, where [KL89, KL92] implies that X(A) is finite. The conjecture
involves the Tamagawa numbers cp of A (see Section 3.7), and the canonical volume
ΩA of A(R) (see Section 4.2).

Conjecture 2.2 (Birch and Swinnerton-Dyer). Suppose L(A, 1) 6= 0. Then

L(A, 1)

ΩA
=

#X(A) · ∏
p|N cp

#A(Q)tor · #A∨(Q)tor
,

where A∨ is the abelian variety dual of A.

Remark 2.3. Since L(A, 1) 6= 0, finiteness of X(A) and the existence of the Cassels-
Tate pairing implies that #X(A) = #X(A∨), so Conjecture 2.2 can also be viewed
as a formula for #X(A∨).

The algorithms outlined in this paper take advantage of the fact that A is at-
tached to a newform in order to compute the conjectural order of X(A) away from
certain bad primes.

3. Explicit Approaches to Modular Abelian Varieties

We use the algorithms of this section to enumerate the Af , compute informa-
tion about the invariants of Af that appear in Conjecture 2.2, and to verify the
hypothesis of Theorem 3.13 in order to construct nontrivial subgroups of X(Af ).
The second author has implemented the algorithms discussed in this paper, and
made many of them part of the Magma computer algebra system [BCP97].

In Section 3.1, we discuss modular symbols, which are the basic tool we use in
many of the computations, and in Section 3.2 we discuss how we systematically
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enumerate modular abelian varieties. There is an analogue for Af of the usual
elliptic-curve modular degree, which we discuss in Section 3.3, and which we use to
rule out the existence of visible elements of X(Af ) of a certain order. In Section 3.4
we describe how to compute the intersection of two abelian varieties, which will be
needed to verify the hypothesis of Theorem 3.13. In Sections 3.5 and 3.6, we
describe standard methods for bounding the torsion subgroup of an abelian variety
above and below. Section 3.7 reviews an algorithm for computing the odd part of
the Tamagawa number cp when p || N , and discusses the Lenstra-Oort bound in
the case when p2 | N .

Unless otherwise stated, f is a newform, If its annihilator, and A = Af is the
corresponding optimal quotient of J0(N).

3.1. Modular Symbols. Modular symbols are crucial to many algorithms for
computing with modular abelian varieties, because they can be used to construct a
finite presentation for H1(X0(N),Z) in terms of paths between elements of P1(Q) =
Q ∪ {∞}. They were introduced by Birch [Bir71] and studied by Manin, Mazur,
Merel, Cremona, and others.

Let M2 be the free abelian group with basis the set of all symbols {α, β}, with
α, β ∈ P1(Q), modulo the three-term relations

{α, β} + {β, γ} + {γ, α} = 0,

and modulo any torsion. The group GL2(Q) acts on the left on M2 by

g{α, β} = {g(α), g(β)},
where g acts on α and β by a linear fractional transformation. The space M2(Γ0(N))
of modular symbols for Γ0(N) is the quotient of M2 by the subgroup generated by
all elements of the form x−g(x), for x ∈ M2 and g in Γ0(N), modulo any torsion. A
modular symbol for Γ0(N) is an element of this space, and we frequently denote the
equivalence class that defines a modular symbol by giving a representative element.

Let B2(Γ0(N)) be the free abelian group with basis the finite set Γ0(N)\P1(Q).
The boundary map δ : M2(Γ0(N)) → B2(Γ0(N)) sends {α, β} to [β] − [α], where
[β] denotes the basis element of B2(Γ0(N)) corresponding to β ∈ P1(Q). The
cuspidal modular symbols are the kernel S2(Γ0(N)) of δ, and the integral homology
H1(X0(N),Z) is canonically isomorphic to S2(Γ0(N)).

Cremona’s book [Cre97, §2.2] contains a concrete description of how to compute
M2(Γ0(N)) ⊗ Q using Manin symbols, which are a finite set of generators for
M2(Γ0(N)). In general, the easiest way we have found to compute M2(Γ0(N)) is
to compute M2(Γ0(N)) ⊗ Q, then compute the Z-submodule of M2(Γ0(N)) ⊗ Q
generated by the Manin symbols.

3.2. Enumerating Newforms. Since X0(N) is defined over Q it is defined over R,
so complex conjugation acts on X0(N)(C) hence on the homology H1(X0(N),Z). In
terms of modular symbols, complex conjugation acts by sending {α, β} to {−α,−β}.
Let H1(X0(N),Z)+ denote the +1-eigenspace for the action of the involution in-
duced by complex conjugation, which we can compute using modular symbols.
We list all newforms of a given level N by decomposing the new subspace of
H1(X0(N),Q)+ under the action of the the Hecke operators and listing the corre-
sponding systems of Hecke eigenvalues (see [Ste02a]). First we compute the char-
acteristic polynomial of T2, and use it to break up the new space. We apply this
process recursively with T3, T5, . . . until either we have exceeded the bound coming
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from [Stu87] (see [LS02]), or we have found a Hecke operator Tn whose characteristic
polynomial is irreducible.

We order the newforms in a way that extends the ordering in [Cre97]: First sort
by dimension, with smallest dimension first; within each dimension, sort in binary
by the signs of the Atkin-Lehner involutions, e.g., + + +, + + −, + − +, + − −,
− + +, etc. When two forms have the same Atkin-Lehner sign sequence, order by
|Tr(ap)| with ties broken by taking the positive trace first. We denote a Galois-
conjugacy class of newforms by a bold symbol such as 389E, which consists of a
level and isogeny class, where A denotes the first class, B the second, E the fifth,
BB the 28th, etc. As discussed in [Cre97, pg. 5], for certain small levels the above
ordering, when restricted to elliptic curves, does not agree with the ordering used
in the tables of [Cre97]. For example, our 446B is Cremona’s 446D.

3.3. The Modular Degree. Since Af is an optimal quotient, the dual map A∨
f →

J0(N) is injective and the composite θf : A∨
f → Af has finite degree. The map θf

is a polarization, so deg(θf ) is a perfect square (see Lemma 3.14). The modular
degree of Af is the square root of the degree of θf :

moddeg(Af ) =
√

deg(θf ).

When dim Af = 1, moddeg(Af ) is the usual modular degree, i.e., the degree of
X0(N) → Af .

If M is an abelian group, let M∗ = HomZ(M,Z). The Hecke algebra acts in a
natural way on H1(X0(N),Z) and H1(X0(N),Z)∗, and we have a natural restriction
map

rf : H1(X0(N),Z)∗[If ] → (H1(X0(N),Z)[If ])∗.

The following proposition leads to an algorithm for computing the modular degree.

Proposition 3.1. coker(rf ) ∼= ker(θf ), so moddeg(Af ) =
√

#coker(rf ).

The proposition is proved in [KS00]. The proof makes use of the Abel-Jacobi
theorem, which realizes the Jacobian J0(N)(C) as a complex torus:

0 → H1(X0(N),Z) → Hom(S2(Γ0(N)),C) → J0(N)(C) → 0,

where H1(X0(N),Z) is embedded as a lattice of full rank in the complex vector
space Hom(S2(Γ0(N)),C) using the integration pairing, and this description of
J0(N)(C) is compatible with the action of Hecke operators.

3.4. Intersecting Complex Tori. Let V be a finite dimensional complex vector
space and let Λ be a lattice in V , so that T = V/Λ is a complex torus. Suppose
that VA and VB are subspaces of V such that ΛA = VA ∩ Λ and ΛB = VB ∩ Λ are
lattices in VA and VB , respectively.

Proposition 3.2. If A ∩ B is finite, then there is an isomorphism

A ∩ B ∼=
(

Λ

ΛA + ΛB

)

tor .

Proof. Extend the exact sequence

0 → A ∩ B → A ⊕ B
(x,y)7→x−y−−−−−−−→ T
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to the following diagram:

ΛA ⊕ ΛB

²²

// Λ //

²²

Λ/(ΛA + ΛB)

²²

0 //

²²

VA ⊕ VB

²²

// V //

²²

V/(VA + VB)

²²

A ∩ B // A ⊕ B // T // T/(A + B).

The middle row is exact because A ∩ B is finite so VA ∩ VB = 0.
Using the snake lemma, which connects the kernel A ∩ B of A ⊕ B → T to the

cokernel of ΛA ⊕ ΛB → Λ, we obtain an exact sequence

0 → A ∩ B → Λ/(ΛA + ΛB) → V/(VA + VB).

Since V/(VA +VB) is a C-vector space, the torsion part of Λ/(ΛA +ΛB) must map
to 0. No non-torsion in Λ/(ΛA + ΛB) could map to 0, because if it did then A ∩ B
would not be finite. The proposition follows. ¤

For abelian subvarieties of J0(N) attached to newforms, we use the proposition
above as follows. The complex vector space V = Hom(S2(Γ0(N)),C) is the tangent
space of J0(N)(C) at the identity. Setting Λ = H1(X0(N),Z) and considering Λ
as a lattice in V via the integration pairing, we have J0(N)(C) ∼= V/Λ. Suppose f
and g are non-conjugate newforms, and let If and Ig be their annihilators in the
Hecke algebra T, and let A = A∨

f and B = A∨
g . Then VA = V [If ] and VB = V [Ig]

are the tangent spaces to A and B at the identity, respectively. The above propo-
sition shows that the group A ∩ B is canonically isomorphic to (Λ/(ΛA + ΛB))tor.
Here ΛA = Λ[If ] and ΛB = Λ[Ig], because Af and Ag are optimal quotients.

The following formula for the intersection of n subtori is obtained in a similar
way to that of Proposition 3.2.

Proposition 3.3. For i = 1, . . . , n, with n ≥ 2, let Ai = Vi/Λi be a subtorus of
T = V/Λ, and assume that each pairwise intersection Ai ∩ Aj is finite. Define a
linear map

f : V1 × · · · × Vn −→ V ⊕(n−1).

by f(x1, . . . , xn) = (x1 − x2, x2 − x3, x3 − x4, . . . , xn−1 − xn). Then

A1 ∩ · · · ∩ An
∼=

(
Λ⊕(n−1)

f(Λ1 ⊕ · · · ⊕ Λn)

)

tor

.

3.5. Bounding the Torsion From Above. In this section we recall the standard
upper bound on the order of #A(Q)tor, and illustrate its usefulness.

Let f =
∑

anqn be a weight 2 newform on Γ1(N) with Nebentypus character
ε : (Z/NZ)∗ → C∗ (recall that f is a form on Γ0(N) if and only if ε = 1), and let
A = Af be the corresponding optimal quotient of J1(N), as in [Shi73]. Shimura
proved in [Shi94, Ch. 7] that the local Euler factor of Af at p is

Lp(Af , s) =
∏

σ:Kf ↪→Q

1

1 − σ(ap)p−s + σ(ε(p))p1−2s
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by showing that the characteristic polynomial Fp of Frobenius on any `-adic Tate
module of AFp

(for ` - pN) is

Fp(X) =
∏

σ:Kf ↪→Q

X2 − σ(ap)X + σ(ε(p))p,

where Kf = Q(. . . , an, . . .). Let Q(ε) be the field generated by the values of ε (note
that Q(ε) ⊂ Kf ), and for any p - N let Gp(X) ∈ Q(ε)[X] be the characteristic
polynomial of left multiplication by ap on the Q(ε)-vector space Kf , which is a
polynomial of degree d′ = [Kf : Q(ε)]. Then

Fp(X) = NormQ(ε)/Q

(
Xd′ · Gp

(
X +

ε(p)p

X

))
,

so

#AFp
(Fp) = deg(1 − Frobp) = |det(1 − Frobp)|

= |Fp(1)| = |NormQ(ε)/Q(Gp(1 + ε(p)p))|.
If p - N is odd, standard facts about formal groups imply that the reduction

map A(Q)tor → AFp
(Fp) is injective, so

#A(Q)tor | gcd
{
#AFp

(Fp) : primes p - 2N
}

.

Likewise, since A∨ is isogenous to A, the same bound applies to A∨(Q)tor, since
A∨ and A have the same L-series.

The upper bound is the same for every abelian variety isogenous to A, so it is
not surprising that it is not sharp in general. For example, let E (resp., F ) be the
elliptic curve labeled 30A1 (resp. 30A2) in Cremona’s tables [Cre97]. Then E
and F are isogenous, E(Q) ≈ Z/6Z, and F (Q) ≈ Z/12Z, so

12 | gcd
{
#EFp

(Fp) : primes p - 2N
}

.

(Incidentally, since #E(F5) = 12, the gcd is 12.) For answers to some related deep
questions about this gcd, see [Kat81].

Example 3.4. Let

f = q + (−1 +
√

2)q2 + q3 + (−2
√

2 + 1)q4 − 2
√

2q5 + · · · ∈ S2(Γ0(39))

be the form 39B. Then G5(X) = X2 − 8, so

#Af (Q)tor | G5(1 + 5) = 28.

We find in [FpS+01] that Af is isogenous to the Jacobian J of y2 + (x3 + 1)y =
−5x4 − 2x3 + 16x2 − 12x + 2 and that #J(Q) = 28. However Af is not isomorphic
to J since, as reported in Table 2 of [FpS+01], the Tamagawa numbers of J are
c3 = 28, c13 = 1, whereas the methods of Section 3.7 below show that the Tamagawa
numbers of Af are c3 = 14, c13 = 2. The authors do not know for sure whether
#Af (Q) = 28, but in Example 3.6 below we show that 14 | #Af (Q). (Also, using
the computational techniques of this paper one sees that the Birch and Swinnerton-
Dyer conjecture implies that #Af (Q) = 28.)

Example 3.5. Let

f = q + (−ζ6 − 1)q2 + (2ζ6 − 2)q3 + ζ6q
4 + (−2ζ6 + 1)q5 + · · ·
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be one of the two Galois-conjugate newforms in S2(Γ1(13)). This form has character
ε : (Z/13Z)∗ → C∗ of order 6, and Af = J1(13). We have G3(X) = X − 2ζ6 + 2
and ε(3) = −ζ6, so

#J1(13)(Q)tor | #J1(13)(F3) = |Norm(G3(1 − 3ζ6))|
= |Norm(−5ζ6 + 3)| = 19.

In fact Ogg proved that J1(13)(Q)tor ≈ Z/19Z (see [Ogg73] and [MT74]).

3.6. Bounding the Torsion From Below. A cusp α ∈ Γ0(N)\P1(Q) ⊂ X0(N)
defines a point (α) − (∞) ∈ J0(N)(Q)tor. The rational cuspidal subgroup C of
J0(N)(Q)tor generated by Q-rational cusps is of interest because the order of the
image of C in Af (Q)tor provides a lower bound on #Af (Q)tor. Stevens [Ste82,

§1.3] computed the action of Gal(Q/Q) on the subgroup of J0(N)(Q) generated
by all cusps (and for other congruence subgroups besides Γ0(N)). He found that
Gal(Q/Q) acts on the cusps through Gal(Q(ζN )/Q) ∼= (Z/NZ)∗, and that d ∈
(Z/NZ)∗ acts by x/y 7→ x/(d′y), where dd′ ≡ 1 (mod N). Thus, e.g., (0) − (∞) ∈
J0(N)(Q)tor, and if N is square-free then all cusps are rational.

To compute the image of C in Af (Q)tor, first make a list of inequivalent cusps
using, e.g., the method described in [Cre97, §2.2, pg. 17]. Keep only the Q-rational
cusps, which can be determined using the result of Stevens above and [Cre97,
Prop. 2.2.3] (when N is squarefree all cusps are rational). Next compute the
subgroup C of M2(Γ0(N)) generated by modular symbols {α,∞}, where α is a
Q-rational cusp. The image of C in Af (Q)tor is isomorphic to the image of C in

P = Φf (M2(Γ0(N)))/Φf (S2(Γ0(N))),

where Φf : M2(Γ0(N)) → Hom(S2(Γ0(N))[If ],C) is defined by the integration
pairing. To keep everything rational, note that P can be computed using any map
with the same kernel as Φf ; for example, such a map can be constructed by finding
a basis for Hom(M2(Γ0(N)),Q)[If ] as described at the end of Section 4.2).

Example 3.6. Let the notation be as in Example 3.4. The cusps on X0(39) are
represented by 0, ∞, −1/9, and −4/13, and since N = 39 is squarefree, these
cusps are all rational. Using Magma we find that the image of C in Af (Q)tor is
isomorphic to Z/14Z. Thus Af (Q)tor is isomorphic to one of Z/14Z, Z/28Z, or
Z/14Z × Z/2Z, but we do not know which.

Example 3.7. Let

f = q +
1 +

√
5

2
q2 +

1 −
√

5

2
q3 +

5 +
√

5

2
q4 + · · · ∈ S2(Γ0(175))

be the form 175D. The cusps of X0(175) are represented by

0, ∞,
1

25
,

1

28
,

1

30
,

1

35
,

1

45
,

1

60
,

1

65
,

1

70
,

1

105
,

1

140
.

The Q-rational cusps in this list are 0,∞, 1
25 , 1

28 , and these generate a subgroup of
Af (Q)tor of order 2. (Incidentally, the group generated by all cusps, both rational
and not, is isomorphic to Z/32Z.) Using ap for p ≤ 17 and the method of the
previous section, we see that #Af (Q)tor | 4. The authors do not know if the
cardinality is 2 or 4.
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Example 3.8. The form 209C is

f = q + αq2 + (1/2α4 − α3 − 5/2α2 + 4α + 1)q3 + (α2 − 2)q4 + · · · ,

where α5 − 2α4 − 6α3 + 10α2 + 5α − 4 = 0. As above, we find that #Af (Q)tor
divides 5. The image of the (rational) cuspidal subgroup in Af (Q)tor is isomorphic
to Z/5Z, so Af (Q)tor ≈ Z/5Z.

3.7. Tamagawa Numbers. Suppose p | N and let ΦA,p denote the component
group of A at p, which is defined by the following exact sequence:

0 → A0
Fp

→ AFp
→ ΦA,p → 0,

where AFp
is the closed fiber of the Néron model of A over Zp and A0

Fp
is the

component of AFp
that contains the identity.

Definition 3.9. The Tamagawa number of A at p is

cp = cA,p = #ΦA,p(Fp).

When p || N , the second author found a computable formula for #ΦA,p(Fp) and
(sometimes only up to a power of 2) for #ΦA,p(Fp). There is a discussion about
how to compute this number in [KS00] and [CS01] contains a proof of the formula.
Note also that in this case the Tamagawa number of A at p is the same as the
Tamagawa number of A∨ at p.

When p2 | N the authors do not know an algorithm to compute cp. However, in
this case Lenstra and Oort (see [LO85]) proved that

∑

`6=p

(` − 1) ord`(#ΦA,p(Fp)) ≤ 2 dim(Af ),

so if ` | #ΦA,p(Fp) then ` ≤ 2 · dim(Af ) + 1 or ` = p. (Here ord`(x) denotes the
exponent of the largest power of ` that divides x.)

Example 3.10. Let f be 39B as in Example 3.4. Running the algorithm of [KS00],
we find that c3 = 14 and c13 = 2.

Example 3.11. Let f be 175D as in Example 3.7. Running the algorithm of [KS00],
we find that c7 = 1, and the Lenstra-Oort bound implies that the only possible
prime divisors of c5 are 2, 3, and 5.

3.8. Visibility Theory. We briefly recall visibility theory, which we will use to
construct elements of Shafarevich-Tate groups. Section 6 contains another approach
to the results reported in this section, but in the special case of elliptic curves.

Definition 3.12. Let ι : A ↪→ J be an embedding of abelian varities over Q. The
visible subgroup of X(A) with respect to the embedding ι is

VisJ(X(A)) = Ker(X(A) → X(J)).

The following is a special case of Theorem 3.1 of [AS02].

Theorem 3.13. Let A and B be abelian subvarieties of an abelian variety J over Q
such that A(Q) ∩ B(Q) is finite. Let N be an integer divisible by the residue
characteristics of primes of bad reduction for J (e.g., the conductor of J). Suppose p
is a prime such that

p - 2 · N · #(J/B)(Q)tor · #B(Q)tor ·
∏

`

cA,` · cB,`,
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where cA,` = #ΦA,`(F`) (resp., cB,`) is the Tamagawa number of A (resp., B) at `.

Suppose furthermore that B[p](Q) ⊂ A(Q) as subgroups of J(Q). Then there is a
natural map

ϕ : B(Q)/pB(Q) → VisJ(X(A))

such that dimFp
ker(ϕ) ≤ dimQ A(Q) ⊗ Q.

We return to the situation where A = Af is an optimal quotient of J0(N)
attached to a newform. In Proposition 3.15 below we show that VisJ0(N)(X(A∨))
is annihilated by multiplication by moddeg(A) (see also [CM, p.19]). We first state
a lemma; the outline of the proof was indicated to us by B. Poonen.

Lemma 3.14. Let A be an abelian variety over k, where k is a field, and let
λ : A → A∨ be a polarization. Suppose either that k has characteristic 0 or that its
characteristic does not divide the degree of λ. Then there is a finite abelian group H
such that ker(λ) ≈ H × H as groups.

Proof. We work in the setting of Section 16 of [Mil86], using the notation used
there. Consider the pairing

eλ : Ker(λ) × Ker(λ) → µm ⊆ k
∗
,

as in [Mil86, p. 135], where m is an integer that kills Ker(λ). We will show that
this pairing is nondegenerate.

Suppose a ∈ Ker(λ) is such that eλ(a, a′) = 1 for all a′ ∈ Ker(λ). Let a′′ ∈
A∨[m]. There exists an isogeny λ′ : A∨ → A such that λ′ ◦λ is multiplication by m
on A and λ ◦ λ′ is multiplication by m on A∨ (to construct λ′, note that λ′ is the
quotient map A∨ → A∨/λ(A[m])). Pick an element b ∈ A(k) such that λb = a′′.
Then mb = λ′(λb) = λ′(a′′). So em(a, a′′) = em(a, λb) = eλ(a, λ′a′′) = 0 (note that
λ(λ′a′′) = ma′′ = 0, so that λ′a′′ ∈ Ker(λ)). This is true for all a′′ ∈ A∨[m], so the
non-degeneracy of em ([Mil86, p. 131]) implies that a = 0.

Similarly, suppose a′ ∈ Ker(λ) is such that eλ(a, a′) = 1 for all a ∈ Ker(λ).
Since eλ is skew-symmetric ([Mil86, p. 135]), this implies that eλ(a′, a) = 1 for all
a ∈ Ker(λ). Then by the previous paragraph, a′ = 0. This finishes the proof of
non-degeneracy.

As mentioned before, the pairing eλ is skew-symmetric. It is alternating because
it extends to pairings on Tate modules (denoted by eλ

` in [Mil86, p. 132]), and
the latter take values in a torsion-free group, so there is no distinction between
skew-symmetric and alternating.

Now the lemma follows from the fact that if G is a finite abelian group with an
alternating nondegenerate pairing, then there is a finite abelian group H such that
G ≈ H × H as groups (e.g., see [Del01, Prop. 2]). ¤

Proposition 3.15. Let mA = moddeg(A). We have

VisJ0(N)(X(A∨)) ⊂ X(A∨)[mA].

Proof. The polarization θf (from Section 3.3) is the composite map A∨ → J0(N) →
A. Let eA be the exponent of the finite group ker(θf ). By Lemma 3.14, multipli-
cation by mA kills ker(θf ), so eA | mA. Also θf factors through multiplication by
eA, so there is a map θ′

f : A → A∨ such that θ′
f ◦ θf is multiplication by eA. If

φ is a map of abelian varieties (over Q), let φ∗ denote the corresponding map on
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Shafarevich-Tate groups. Since VisJ0(N)(X(A∨)) is contained in ker((θf )∗), it is
also contained in

ker((δ′ ◦ δ)∗) = X(A∨)[eA] ⊂ X(A∨)[mA].

¤

Since X(A∨)[n] is finite for any n, we obtain the following corollary.

Corollary 3.16. VisJ0(N)(X(A∨)) is finite.

4. The Quotient L(A, 1)/ΩA

Fix a newform f ∈ S2(Γ0(N)), let If be the annihilator of f in T, and A =
Af = J0(N)/IfJ0(N) the corresponding optimal quotient. Suppose for the rest of
this section that L(A, 1) 6= 0.

4.1. The Manin Constant. When trying to compute the conjectural order of
X(A), we try to compute the quotient L(A, 1)/ΩA, but find that it is easier to
compute cA · L(A, 1)/ΩA where cA is the Manin constant of A, which is defined as
follows:

Definition 4.1 (Manin constant). The Manin constant of A is

cA = #

(
S2(Γ0(N),Z)[If ]

H0(A,ΩA/Z)

)
∈ Z,

where we consider H0(A,ΩA/Z) as a submodule of S2(Γ0(N),Q) using

H0(A,ΩA/Z) → H0(J ,ΩJ /Z)[If ] → H0(J,ΩJ/Q)[If ] → S2(Γ0(N),Q)[If ],

where A and J are the Néron models of A and J , respectively. (See [AS04] for a
discussion of why the image of H0(A,ΩA/Z) is contained in S2(Γ0(N),Z).)

Theorem 4.2. If ` | cA is a prime then `2 | 4N .

Proof. Mazur proved this when dim A = 1 in [Maz78, §4], and we generalized his
proof in [AS04]. ¤

When dim A = 1, Edixhoven [Edi91] obtained strong results towards the folklore
conjecture that cA = 1, and when A has arbitrary dimension the authors have made
the following conjecture (see [AS04] for evidence):

Conjecture 4.3. cA = 1.

4.2. A Formula for L(A, 1)/ΩA. If L and M are lattices in a real vector space V ,
then the lattice index [L : M ] is the absolute value of the determinant of a lin-
ear transformation of V taking L onto M . The lattice index satisfies the usual
properties suggested by the notation, e.g., [L : M ] · [M : N ] = [L : N ].

The real volume ΩA is defined as follows. If L∗ is a lattice in the cotangent space

T ∗ = H0(AR,ΩAR
) = S2(Γ0(N),R)[If ]

of AR, then L∗ determines a lattice L = Hom(L∗,Z) in the tangent space T =
Hom(T ∗,R), and hence a measure on T by declaring that the quotient T/L has
measure 1. Let A(R)0 denote the identity component of A(R). Then A(R)0 inherits
a measure by virtue of being viewed as T/H1(A(R)0,Z), and we have

µL(A(R)0) = [L : H1(A(R)0,Z)].
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We also set

µL(A(R)) = µL(A(R)0) · c∞,

where c∞ = #(A(R)/A(R)0). Let A be the Néron model of A (see [BLR90]). The
Néron differentials H0(A,ΩA/Z) define a lattice Λ∗ in T ∗, and we define ΩA =
µΛ(A(R)).

Lemma 4.4. H1(A(R)0,Z) ∼= H1(A(C),Z)+.

Proof. This lemma is well known, but we give a proof for the reader’s convenience
(which was suggested by H. Lenstra and B. Poonen). We have the commutative
diagram

0 // H1(A(R)0,Z) //

ψ
²²

H1(A(R)0,R) //

∼=
²²

A(R)0 //
Ä _

i
²²

0

0 // H1(A(C),Z)+ // H1(A(C),R)+
π

// A(C)+

where the upper horizontal sequences is exact (we view the real torus A(R)0 as the
quotient of the tangent space at the identity by the first integral homology), and
the lower horizontal sequence is exact because it is the beginning of the long exact
sequence of Gal(R/C)-cohomology that arises from

0 → H1(A(C),Z) → H1(A(C),R) → A(C) → 0.

The middle vertical map is an isomorphism because if it were not then its kernel
would be an uncountable set that maps to 0 in A(R)0. The snake lemma then
yields an exact sequence

0 → ker(ψ) → 0 → 0 → coker(ψ) → 0,

which implies that ψ is an isomorphism. ¤

Let

Φ : H1(X0(N),Q) → Hom(S2(Γ0(N))[If ],C)

be the map induced by integration, scaled so that

Φ({0,∞})(f) = L(f, 1)

(that {0,∞} ∈ H1(X0(N),Q) is the Manin-Drinfeld theorem, and that
∫ ∞
0

f is a
multiple of L(f, 1) follows from the definition of L(f, s) as a Mellin transform).

Theorem 4.5. Recall that A is an abelian variety attached to a newform f ∈
S2(Γ0(N)), that c∞ is the number of connected components of A(R), that cA is the
Manin constant of A, that ΩA is the Néron canonical volume of A(R), and that
Φ is the period mapping on homology induced by integrating homology classes on
X0(N) against the C-vector space spanned by the Gal(Q/Q)-conjugates of f . Then
we have the following equation:

c∞ · cA · L(A, 1)

ΩA
= [Φ(H1(X0(N),Z))+ : Φ(T{0,∞})] ∈ Q,

where the lattice index on the right hand side should be interpreted as 0 if Φ(T{0,∞})
has rank less than the dimension of A.
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Proof. It is easier to compute with Λ̃∗ = S2(Γ0(N),Z)[If ] than with Λ∗, so let

Ω̃A = µΛ̃(A(R)). Note that Ω̃A · cA = ΩA, where cA is the Manin constant. By
Lemma 4.4 and Section 2.2,

Ω̃A = c∞ · [Λ̃ : H1(A(R)0,Z)]

= c∞ · [Hom(S2(Γ0(N),Z)[If ],Z) : Φ(H1(X0(N),Z))+].

For any ring R the pairing

TR × S2(Γ0(N), R) → R

given by 〈Tn, f〉 = a1(Tnf) is perfect, so (T/If ) ⊗ R ∼= Hom(S2(Γ0(N), R)[If ], R).
Using this pairing, we may view Φ as a map

Φ : H1(X0(N),Q) → (T/If ) ⊗ C,

so that
Ω̃A = c∞ · [T/If : Φ(H1(X0(N),Z))+].

Note that (T/If ) ⊗ C is isomorphic as a ring to a product of copies of C, with

one copy corresponding to each Galois conjugate f (i) of f . Let πi ∈ (T/If ) ⊗ C

be the projector onto the subspace of (T/If ) ⊗ C corresponding to f (i). Then

Φ({0,∞}) · πi = L(f (i), 1) · πi. Since the πi form a basis for the complex vector
space (T/If ) ⊗ C, we see that

det(Φ({0,∞})) =
∏

i

L(f (i), 1) = L(A, 1).

Letting H = H1(X0(N),Z), we have

[Φ(H)+ : Φ(T{0,∞})] = [Φ(H)+ : (T/If ) · Φ({0,∞})]
= [Φ(H)+ : T/If ] · [T/If : T/If · Φ({0,∞})]
=

c∞
Ω̃A

· det(Φ({0,∞}))

=
c∞cA

ΩA
· L(A, 1),

which proves the theorem. ¤

Theorem 4.5 was inspired by the case when A is an elliptic curve (see [Cre97,
§II.2.8]) or the winding quotient of J0(p) (see [Aga99]), and it generalizes to forms
of weight > 2 (see [Ste00]).

Theorem 4.5 is true with Φ replaced by any linear map with the same kernel
as Φ. One way to find such a linear map with image in a Q-vector space is to
compute a basis ϕ1, . . . ϕd for Hom(H1(X0(N),Q),Q)[If ] and let Φ = ϕ1 × · · · ×
ϕd. Also, since H1(X0(N),Z)+ and T{0,∞} are contained in H1(X0(N),Q)+,
Theorem 4.5 implies that L(A, 1)/ΩA ∈ Q, a fact well known to the experts (see
[Gro94, Prop. 2.7] for the statement, but without proof).

4.3. The Denominator of L(A, 1)/ΩA. In this section, we prove a result about
the denominator of the rational number L(A, 1)/ΩA and compare it to what is
predicted by the Birch and Swinnerton-Dyer conjecture.

Proposition 4.6. Let z be the point in J0(N)(Q) defined by the degree 0 divisor
(0) − (∞) on X0(N), and let n = nf be the order of the image of z in A(Q). Then
the denominator of c∞ · cA · L(A, 1)/ΩA divides n.
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Proof. Let x be the image of z in A(Q), and let I = AnnT(x) be the ideal of
elements of T that annihilate x. Since f is a newform, the Hecke operators Tp, for
p | N , act as 0 or ±1 on A(Q) (see, e.g., [DI95, §6]). If p - N , then a standard
calculation (see, e.g., [Cre97, §2.8]) shows that Tp(x) = (p + 1)x.

Let C be the cyclic subgroup of A(Q) of order n generated by x. Consider the
map T → C given by Tp 7→ Tp(x). The kernel of this map is I, and the map
is surjective because its image is an additive group that contains x, and C is the

smallest such group. Thus the map induces an isomorphism T/I
∼=−→ C. ¤

Conjecture 2.2 predicts that

#A(Q) · #A∨(Q) · L(A, 1)

ΩA
= #X(A) ·

∏
cp ∈ Z,

and since n | #A(Q), Proposition 4.6 implies that

c∞ · cA · #A(Q) · L(A, 1)

ΩA
∈ Z.

Since c∞ is a power of 2, and cA is conjecturally 1 (if N is prime, then by Theo-
rem 4.2 it is a power of 2), Proposition 4.6 provides theoretical evidence for Con-
jecture 2.2, and also reflects a surprising amount of cancellation between

∏
cp and

#A∨(Q).

5. Results and Conclusions

We computed all 19608 abelian varieties A = Af attached to newforms of level
N ≤ 2333. Interesting data about some of these abelian varieties is summarized in
Tables 1–4, which use the notation described in this section.

Suppose that A is one of the 10360 of these for which L(A, 1) 6= 0, so Conjec-
ture 2.2 asserts that X(A) has order

#X? =
L(A, 1)

Ω̃A · cA

· #A(Q)tor · #A∨(Q)tor∏
p|N cp

.

(See Section 4.2 for the definition of Ω̃A and cA.)
For any rational number x, let xodd be the odd part of x. If a and b are rational

numbers with a 6= 0, we say that a | b if b/a is an integer.
Define integers Sl and Su such that

Sl | numer(#Xodd
? ) | Su

as follows:

Su The upper bound Su is the odd part of the numerator of

L(A, 1)

Ω̃A

· T 2

∏
p||N cp

,

where T is the upper bound on #A(Q) and #A∨(Q) computed using Sec-
tion 3.5 using ap for p ≤ 17. Since the Manin constant and the Tamagawa
numbers are integers, Su is an upper bound on the odd part of #X?.

Sl The lower bound Sl is defined as follows: Let Sl,1 be the odd part of the
rational number

L(A, 1)

Ω̃A

· #C · #D∏
p||N cp

,
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where C ⊂ A(Q)tor and D is the part of C coprime to the modular degree
of A. Usually C is the group generated by the image of (0)−(∞), and in all
cases it contains this subgroup. More precisely, when A is an elliptic curve,
we instead let C and D be the full torsion subgroup A(Q)tor, because it
is easy to calculate. When A is not an elliptic curve it would be better to
let C be the subgroup generated by all rational cusps, but the authors only
realized this after completing the calculations, so we did not do this.

If N is square free, we let Sl = Sl,1. Otherwise, let Sl,2 be the largest
part of Sl,1 coprime to all primes whose square divides N . This takes care
of the Manin constant, which only involves primes whose square divides N .
To take care of Tamagawa numbers, remove all primes p ≤ 2 dim(A) + 1
from Sl,2 to obtain Sl.

Remark 5.1. When N is square free we have

Sl | #Xodd
? | Su

since cA is a power of 2 and no Tamagawa numbers have been omitted from the
formulas for Sl and Su. For every N ≤ 2333 we found that Sl is an integer, so
when N ≤ 2333 is squarefree, #Xodd

? is an integer. Since Conjecture 2.2 asserts
that #X? is the order of a group, hence an integer, our data gives evidence for
Conjecture 2.2.

Tables 1–4 list every A of level N ≤ 2333 such that Sl > 1. The A column
contains the label of A (see Section 3.2), and the next column (labeled dim) contains
dim A. A star next to the label for A indicates that we have proved that the odd
part of #X(A) is at least as large as conjectured by the Birch and Swinnerton-
Dyer conjecture. This is the case for 39 of the 168 examples. The columns labeled
Sl contains the number Sl defined above. If Sl = Su then the column labeled
Su contains an = sign, and otherwise, it contains Su (there are only 13 cases in
which Su 6= Sl). The column labeled moddeg(A)odd contains the odd part m
of the modular degree of A, written as a product gcd(m,Su) · m/ gcd(Su, m), where
m/ gcd(Su, m) is shrunk to save space. The only non-square-free levels of Af for which
Sl > 1 are 1058, 1664, 2224, and 2264.

The column labeled B contains all B such that L(B, 1) = 0 and

gcd(Sl,#(A∨ ∩ B̃∨)) > 1.

(In retrospect, it would probably have been more interesting to list those B such

that gcd(Su,#(A∨ ∩ B̃∨)) > 1.) Here if B = Ag for some newform g of level

dividing N , and B̃∨ is the abelian subvariety of J0(N) generated by all images of

B∨ under the degeneracy maps. Thus, e.g., when B∨ is of level N , B̃∨ = B∨. The
next column, labeled dim, contains the dimension of B.

The final two columns contain information about the relationship between A
and B. The one labeled A∨ ∩ B̃∨ contains the abelian group structure of the
indicated abelian group, where e.g., [abcd] means the abelian group (Z/aZ)b ×
(Z/cZ)d. The column labeled Vis contains a divisor of the order of VisC(X(A∨)),

where C = A∨ + B̃∨ (note that VisC(X(A∨)) ⊂ VisJ0(N)(X(A∨))).
The table is divided into three vertical regions, where the columns in the first

region are about A only, the columns of the second region are about B only, and
the third column is about the relationship between A and B.
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5.1. Example: Level 389. We illustrate what is involved in computing the first
line of Table 1. Using the method sketched in Section 3.2, we find that S2(Γ0(389))
contains exactly five Galois-conjugacy classes of newforms, and these are defined
over extensions of Q of degrees 1, 2, 3, 6, and 20. Thus J = J0(389) decomposes,
up to isogeny, as a product A1 × A2 × A3 × A6 × A20 of abelian varieties, where
dim Ad = d and Ad is the optimal quotient corresponding to the appropriate Galois-
conjugacy class of newforms.

Next we consider the arithmetic of the Ad. Using Theorem 4.5 we find that

L(A1, 1) = L(A2, 1) = L(A3, 1) = L(A6, 1) = 0,

and
L(A20, 1)

ΩA20

=
52 · 211

97 · cA
,

where cA is the Manin constant attached to A20, which, by Theorem 4.2, is of the
form 2n with n ≥ 0. Using the algorithms of Sections 3.5, 3.6, 3.7, we find that
#A20(Q) = c389 = 97. Thus Conjecture 2.2 predicts that #X(A20) = 52 · 211/cA.
The following proposition provides support for this conjecture.

Proposition 5.2. There is a natural inclusion

(Z/5Z)2 ∼= A1(Q)/5A1(Q) ↪→ VisJ0(389)(X(A∨
20)).

Proof. Let A = A∨
20, B = A∨

1 and J = A + B ⊂ J0(389). Using Proposition 3.3,
we find that A ∩ B ∼= (Z/4)2 × (Z/5Z)2, so B[5] ⊂ A. Since 5 does not divide the
numerator of (389− 1)/12, it does not divide the Tamagawa numbers or the orders
of the torsion groups, so Theorem 3.13 yields the asserted injection. To see that
(Z/5Z)2 ∼= A1(Q)/5A1(Q) use the standard elliptic curves algorithms [Cre97]. ¤

5.2. Invisible Elements of X(A). Tables 1–4 suggest that much of X(A∨) is
invisible in J0(N). This is because Proposition 3.15 implies that if a prime divides
#X(A∨) but not moddeg(A∨) then X(A∨) contains an element of order p that
is invisible. We find many examples in the table where p divides the conjectural
order of X(A∨), but p - moddeg(A∨).

Invisible elements might become visible at higher level (see [AS02, §4.3] for a
discussion and example).

5.3. The Part of X(A) That Must be a Perfect Square. When dim A = 1,
properties of the Cassels-Tate pairing imply that if X(A) is finite then #X(A) is
a perfect square, and the fact that one finds in examples (see [Cre97]) that #X?

is a perfect square is computational evidence for Conjecture 2.2.
In contrast, when the dimension is greater than one, Poonen and Stoll [PS99]

discovered Jacobians J such that X(J) has order twice a square, and the second
author found for each prime p < 25000 an abelian variety A of dimension p−1 such
that #X(A) = pn2 for some integer n (see [Ste02b]).

Proposition 5.3. Let A = Af be a quotient of J0(N) and ` be a prime that
does not divide the modular degree of A. Suppose that X(A)[`∞] is finite. Then
#X(A)[`∞] is a perfect square.

Proof. The Cassels-Tate pairing (see [Tat63, §3]) induces a pairing

φ : X(A)[`∞] × X(A∨)[`∞] → Q/Z.



18 AMOD AGASHE AND WILLIAM STEIN

Since X(A)[`∞] is finite, it follows from [Tat63, Thm. 3.2] that X(A∨)[`∞] is also
finite and φ is non-degenerate. In particular, #X(A∨)[`∞] = #X(A)[`∞].

Since J0(N) is a Jacobian, it possesses a canonical polarization arising from the
theta divisor; this divisor is rational over Q, since X0(N) always has a point over Q
(the cusp ∞ is rational). This polarization induces a polarization θ : A∨ → A, which
also comes from a divisor that is rational over Q. Hence, by [Tat63, Thm. 3.3] (see
also [PS99, Thm. 5]), the pairing

φ′ : X(A∨)[`∞] × X(A∨)[`∞] → Q/Z

obtained by composing θ with the pairing φ above is alternating.
Since ` does not divide the modular degree of A, it does not divide the degree

of the isogeny θ. Hence θ induces an isomorphism X(A∨)[`∞]
∼=→ X(A)[`∞]. Thus

by the non-degeneracy of the pairing φ, the pairing φ′ is also non-degenerate. Since
φ′ is also alternating, it follows from arguments similar to those in [Cas62, p. 260]
that #X(A∨)[`∞] is a perfect square. Since #X(A)[`∞] = #X(A∨)[`∞], we see
that #X(A)[`∞] is also a perfect square.

¤
For the entries in Tables 1–4, X(A) is finite, so if ` - moddeg(A) then the `-power

part of #X(A) must be a perfect square. When Sl = Su and the level is square
free, then Sl is the odd part of the conjectural order of X(A). We found that Sl is
a perfect square whenever Sl = Su, which provides evidence for Conjecture 2.2.
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Table 1. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su moddeg(A)odd B dim A∨ ∩ B̃∨ Vis
389E∗ 20 52 = 5 389A 1 [202] 52

433D∗ 16 72 = 7·111 433A 1 [142] 72

446F∗ 8 112 = 11·359353 446B 1 [112] 112

551H 18 32 = 169 NONE
563E∗ 31 132 = 13 563A 1 [262] 132

571D∗ 2 32 = 32 ·127 571B 1 [32] 32

655D∗ 13 34 = 32 ·9799079 655A 1 [362] 34

681B 1 32 = 3·125 681C 1 [32] −
707G∗ 15 132 = 13·800077 707A 1 [132] 132

709C∗ 30 112 = 11 709A 1 [222] 112

718F∗ 7 72 = 7·5371523 718B 1 [72] 72

767F 23 32 = 1 NONE
794G∗ 12 112 = 11·34986189 794A 1 [112] −
817E∗ 15 72 = 7·79 817A 1 [72] −
959D 24 32 = 583673 NONE
997H∗ 42 34 = 32 997B 1 [122] 32

997C 1 [242] 32

1001F 3 32 = 32 ·1269 1001C 1 [32] −
91A 1 [32] −

1001L 7 72 = 7·2029789 1001C 1 [72] −
1041E 4 52 = 52 ·13589 1041B 2 [52] −
1041J 13 54 = 53 ·21120929983 1041B 2 [54] −
1058D 1 52 = 5·483 1058C 1 [52] −
1061D 46 1512 = 151·10919 1061B 2 [223022] −
1070M 7 3·52 32 ·52 3·5·1720261 1070A 1 [152] −
1077J 15 34 = 32 ·1227767047943 1077A 1 [92] −
1091C 62 72 = 1 NONE
1094F∗ 13 112 = 112 ·172446773 1094A 1 [112] 112

1102K 4 32 = 32 ·31009 1102A 1 [32] −
1126F∗ 11 112 = 11·13990352759 1126A 1 [112] 112

1137C 14 34 = 32 ·64082807 1137A 1 [92] −
1141I 22 72 = 7·528921 1141A 1 [142] −
1147H 23 52 = 5·729 1147A 1 [102] −
1171D∗ 53 112 = 11·81 1171A 1 [442] 112

1246B 1 52 = 5·81 1246C 1 [52] −
1247D 32 32 = 32 ·2399 43A 1 [362] −
1283C 62 52 = 5·2419 NONE
1337E 33 32 = 71 NONE
1339G 30 32 = 5776049 NONE
1355E 28 3 32 32 ·2224523985405 NONE
1363F 25 312 = 31·34889 1363B 2 [22622] −
1429B 64 52 = 1 NONE
1443G 5 72 = 72 ·18525 1443C 1 [71141] −
1446N 7 32 = 3·17459029 1446A 1 [122] −
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Table 2. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su moddeg(A)odd B dim A∨ ∩ B̃∨ Vis
1466H∗ 23 132 = 13·25631993723 1466B 1 [262] 132

1477C∗ 24 132 = 13·57037637 1477A 1 [132] 132

1481C 71 132 = 70825 NONE
1483D∗ 67 32 ·52 = 3·5 1483A 1 [602] 32 ·52

1513F 31 3 34 3·759709 NONE
1529D 36 52 = 535641763 NONE
1531D 73 3 32 3 1531A 1 [482] −
1534J 6 3 32 32 ·635931 1534B 1 [62] −
1551G 13 32 = 3·110659885 141A 1 [152] −
1559B 90 112 = 1 NONE
1567D 69 72 ·412 = 7·41 1567B 3 [4411482] −
1570J∗ 6 112 = 11·228651397 1570B 1 [112] 112

1577E 36 3 32 32 ·15 83A 1 [62] −
1589D 35 32 = 6005292627343 NONE
1591F∗ 35 312 = 31·2401 1591A 1 [312] 312

1594J 17 32 = 3·259338050025131 1594A 1 [122] −
1613D∗ 75 52 = 5·19 1613A 1 [202] 52

1615J 13 34 = 32 ·13317421 1615A 1 [91181] −
1621C∗ 70 172 = 17 1621A 1 [342] 172

1627C∗ 73 34 = 32 1627A 1 [362] 34

1631C 37 52 = 6354841131 NONE
1633D 27 36 ·72 = 35 ·7·31375 1633A 3 [64422] −
1634K 12 32 = 3·3311565989 817A 1 [32] −
1639G∗ 34 172 = 17·82355 1639B 1 [342] 172

1641J∗ 24 232 = 23·1491344147471 1641B 1 [232] 232

1642D∗ 14 72 = 7·123398360851 1642A 1 [72] 72

1662K 7 112 = 11·16610917393 1662A 1 [112] −
1664K 1 52 = 5·7 1664N 1 [52] −
1679C 45 112 = 6489 NONE
1689E 28 32 = 3·172707180029157365 563A 1 [32] −
1693C 72 13012 = 1301 1693A 3 [2426022] −
1717H∗ 34 132 = 13·345 1717B 1 [262] 132

1727E 39 32 = 118242943 NONE
1739F 43 6592 = 659·151291281 1739C 2 [2213182] −
1745K 33 52 = 5·1971380677489 1745D 1 [202] −
1751C 45 52 = 5·707 103A 2 [5052] −
1781D 44 32 = 61541 NONE
1793G∗ 36 232 = 23·8846589 1793B 1 [232] 232

1799D 44 52 = 201449 NONE
1811D 98 312 = 1 NONE
1829E 44 132 = 3595 NONE
1843F 40 32 = 8389 NONE
1847B 98 36 = 1 NONE
1871C 98 192 = 14699 NONE
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Table 3. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su moddeg(A)odd B dim A∨ ∩ B̃∨ Vis
1877B 86 72 = 1 NONE
1887J 12 52 = 5·10825598693 1887A 1 [202] −
1891H 40 74 = 72 ·44082137 1891C 2 [421962] −
1907D∗ 90 72 = 7·165 1907A 1 [562] 72

1909D∗ 38 34 = 32 ·9317 1909A 1 [182] 34

1913B∗ 1 32 = 3·103 1913A 1 [32] 32

1913E 84 54 ·612 = 52 ·61·103 1913A 1 [102] −
1913C 2 [226102] −

1919D 52 232 = 675 NONE
1927E 45 32 34

52667 NONE
1933C 83 32 ·7 32 ·72 3·7 1933A 1 [422] 32

1943E 46 132 = 62931125 NONE
1945E∗ 34 32 = 3·571255479184807 389A 1 [32] 32

1957E∗ 37 72 ·112 = 7·11·3481 1957A 1 [222] 112

1957B 1 [142] 72

1979C 104 192 = 55 NONE
1991C 49 72 = 1634403663 NONE
1994D 26 3 32 32 ·46197281414642501 997B 1 [32] −
1997C 93 172 = 1 NONE
2001L 11 32 = 32 ·44513447 NONE
2006E 1 32 = 3·805 2006D 1 [32] −
2014L 12 32 = 32 ·126381129003 106A 1 [92] −
2021E 50 56 = 52 ·729 2021A 1 [1002] 54

2027C∗ 94 292 = 29 2027A 1 [582] 292

2029C 90 52 ·2692 = 5·269 2029A 2 [2226902] −
2031H∗ 36 112 = 11·1014875952355 2031C 1 [442] 112

2035K 16 112 = 11·218702421 2035C 1 [111221] −
2038F 25 5 52 52 ·92198576587 2038A 1 [202] −

1019B 1 [52] −
2039F 99 34 ·52 = 13741381043009 NONE
2041C 43 34 = 61889617 NONE
2045I 39 34 = 33 ·3123399893 2045C 1 [182] −

409A 13 [93701996792] −
2049D 31 32 = 29174705448000469937 NONE
2051D 45 72 = 7·674652424406369 2051A 1 [562] −
2059E 45 5·72 52 ·72 52 ·7·167359757 2059A 1 [702] −
2063C 106 132 = 8479 NONE
2071F 48 132 = 36348745 NONE
2099B 106 32 = 1 NONE
2101F 46 52 = 5·11521429 191A 2 [1552] −
2103E 37 32 ·112 = 32 ·11·874412923071571792611 2103B 1 [332] 112

2111B 112 2112 = 1 NONE
2113B 91 72 = 1 NONE
2117E∗ 45 192 = 19·1078389 2117A 1 [382] 192
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Table 4. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su moddeg(A)odd B dim A∨ ∩ B̃∨ Vis
2119C 48 72 = 89746579 NONE
2127D 34 32 = 3·18740561792121901 709A 1 [32] −
2129B 102 32 = 1 NONE
2130Y 4 72 = 7·83927 2130B 1 [142] −
2131B 101 172 = 1 NONE
2134J 11 32 = 1710248025389 NONE
2146J 10 72 = 7·1672443 2146A 1 [72] −
2159E 57 132 = 31154538351 NONE
2159D 56 34 = 233801 NONE
2161C 98 232 = 1 NONE
2162H 14 3 32 3·6578391763 NONE
2171E 54 132 = 271 NONE
2173H 44 1992 = 199·3581 2173D 2 [3982] −
2173F 43 192 32 ·192 32 ·19·229341 2173A 1 [382] 192

2174F 31 52 = 5·21555702093188316107 NONE
2181E 27 72 = 7·7217996450474835 2181A 1 [282] −
2193K 17 32 = 3·15096035814223 129A 1 [212] −
2199C 36 72 = 72 ·13033437060276603 NONE
2213C 101 34 = 19 NONE
2215F 46 132 = 13·1182141633 2215A 1 [522] −
2224R 11 792 = 79 2224G 2 [792] −
2227E 51 112 = 259 NONE
2231D 60 472 = 91109 NONE
2239B 110 114 = 1 NONE
2251E∗ 99 372 = 37 2251A 1 [742] 372

2253C∗ 27 132 = 13·14987929400988647 2253A 1 [262] 132

2255J 23 72 = 15666366543129 NONE
2257H 46 36 ·292 = 33 ·29·175 2257A 1 [92] −

2257D 2 [221742] −
2264J 22 732 = 73 2264B 2 [1462] −
2265U 14 72 = 72 ·73023816368925 2265B 1 [72] −
2271I∗ 43 232 = 23·392918345997771783 2271C 1 [462] 232

2273C 105 72 = 72 NONE
2279D 61 132 = 96991 NONE
2279C 58 52 = 1777847 NONE
2285E 45 1512 = 151·138908751161 2285A 2 [223022] −
2287B 109 712 = 1 NONE
2291C 52 32 = 427943 NONE
2293C 96 4792 = 479 2293A 2 [229582] −
2294F 15 32 = 3·6289390462793 1147A 1 [32] −
2311B 110 52 = 1 NONE
2315I 51 32 = 3·4475437589723 463A 16 [134263127691692] −
2333C 101 833412 = 83341 2333A 4 [261666822] −
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6. Appendix by J. Cremona and B. Mazur:

“Explaining” Shafarevich-Tate via Mordell-Weil

Introduction. In our article [CM] we discussed the notion of visibility and offered
some tables of examples of that phenomenon. We gave, however, very little theo-
retical discussion in that article. Here we wish to take the opportunity to correct
some gaps in our commentary on our tables and to offer the details of the proof of
a general criterion that is sometimes useful to test visibility. Regarding Table 1 of
[CM] we said that for each pair (E, p) that occurs there and for which there is a
corresponding “F” on the table of the same conductor of E, the Shafarevich-Tate
group of E is explained by the Mordell-Weil group of F , in the technical sense that
we gave to the word explained in that article. Now this is indeed the case for all
entries of our table such that E has semistable reduction at p and it is also the case
for those entries where the conductor of F properly divides the conductor of E. We
will review why this is so, below. It is also true that for each of the remaining 7
entries (E = 2601H, 2718D, 2900D, 3555E, 3879E, 3933A, 5499E) a nontriv-
ial subgroup of the Shafarevich-Tate group of E is explained by the Mordell-Weil
group of the corresponding F , but we wish to notify our readers that we have not
yet checked whether or not all of the “X” of these 7 elliptic curves is so explained.
These 7 cases deserve to be looked at (the issue being local at the prime 3 for all
but 2900D, where it is local at the prime 5). Regarding Table 2 of [CM], although
our commentary in [CM] does not say this clearly, for all the entries E of that table
for which there is a corresponding F of the same conductor we only have checked
that E[2] = F [2] in J0(N) and nothing more, except, of course, for those entries
we particularly signal to have shown something less; namely, in the language of
our article, that they “seem to satisfy a 2-congruence.” In these latter cases where
we signal that we have shown something less, W. Stein has checked that in fact
E[2] 6= F [2] in J0(N).

Let p be an odd prime number. If E is an (optimal) elliptic curve over Q of
conductor N then E may be unambiguously identified (up to sign) with a sub-
abelian variety of the modular jacobian J0(N) (over Q). If (E,F, p) is an entry
of Table 1 of [CM] such that E and F are of the same conductor N we checked
that we have equality of the finite group schemes E[p]/Q = F [p]/Q in J0(N)/Q.
For the remaining three entries we checked that there is an isomorphism of finite
group schemes ι : E[p]/Q ∼= F [p]/Q. In both cases, identifying the two finite group
schemes let H denote the common cohomology group,

H := H1(GQ, E[p]/Q) = H1(GQ, F [p]/Q),

and SE ⊂ H, and SF ⊂ H the p-Selmer groups of, respectively, E and F . What
we will show is that

Proposition 6.1. For each of the entries (E, p) in Table 1 of [CM] such that p is
a prime of semistable reduction for E and for which there is a “corresponding” F ,
we have

SE = SF ⊂ H.

To discuss this, we need some notation.
Let X := Spec(Z), Y := Spec(Z[1/p]) = X − Spec(Fp), and η := Spec(Q).

Let Eη := E be our elliptic curve over Q of conductor N , E/X the Néron model
over X of Eη and Eo

/X ⊂ E/X the “connected component” of Néron (meaning
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the open subgroup scheme every fiber of which is connected). We have, of course,
similar notation for the corresponding elliptic curve F . Let E[p]/X denote the
closed subgroup scheme given as the kernel of multiplication by p in the Néron
model: E[p]/X ⊂ E/X . We have, in general, that the restriction E[p]/Y of E[p]/X

to the base Y is an étale quasi-finite flat group scheme; and if p2 doesn’t divide N
we have that the group scheme E[p]/X is a quasi-finite flat group scheme [Gro72,
Prop. 3.1(d), pg. 343]. The étale quasi-finite flat group scheme E[p]/Y can be
characterized by the following features:

(i) Its generic fiber is the group scheme E[p]/η ⊂ J0(N)/η,

and (one has a choice here) either:

(ii) E[p]/Y ⊂ J0(N)/Y is a closed étale quasi-finite flat) subgroup scheme,

or:

(ii’) E[p]/Y enjoys the Néronian property over the base Y .

Similar statements hold for F [p]/X .
Let Φ be the (punctual) sheaf of abelian groups for the flat topology over X

which fits into the exact sequence (of abelian sheaves over X)

(1) 0 → Eo → E → Φ → 0.

We will use the same notation to indicate the corresponding exact sequence of
sheaves for the étale topology over X. Since E0 and E are smooth group schemes,
the long exact sequences of cohomology derived from the short exact sequence (1),
viewed either as sheaves of abelian groups for the flat or étale topology, coincide; cf
Section 11 Appendice: Un théorème de comparaison de la cohomologie étale et de
la cohomologie fppf in [Gro68]. Thinking now of Φ as a sheaf for the étale topology,
denote by Φ` its stalk at the prime `. So Φ` is representable as a finite étale group
scheme over the field F`. We have that

Φ =
⊕

` | N

(i`)∗Φ`,

where i` : SpecF` ↪→ X is the natural closed immersion. We have an exact sequence

(2) 0 → Eo(X) → E(Q) → H0(X,Φ) → H1(X,Eo) → H1(X,E) → H1(X,Φ),

where cohomology is computed for the étale topology. We have, for either topology,

Hi(X,Φ) =
⊕

` | N

Hi(Spec(F`),Φ`).

Viewing (1) as an exact sequence of sheaves for the flat topology, and passing to the
associated cohomology sequence we see that (2) may be thought of, ambiguously
as computed for either the étale or the flat topology.

If p is an odd prime number, the p-primary component of the Shafarevich-Tate
group of E is the p-primary component of the image of H1(X,Eo) → H1(X,E)
(see the appendix to [Maz72]), or equivalently the intersection of the kernels of

H1(X,E) → H1(Spec(F`),Φ`).

Let p be an odd prime number. Let E ′ ⊂ E be the open subgroup scheme of E
which is the inverse image of pΦ ⊂ Φ, so that we have an exact sequence of sheaves
for the flat (or étale) topology:

(3) 0 → E′ → E → Φ/pΦ → 0,
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and if p is a prime of semistable reduction for E (equivalently: p2 doesn’t divide N)
we have an exact sequence of flat group schemes

(4) 0 → E[p] → E → E′ → 0.

Put
E[p]o/X := E[p]/X

⋂
Eo

/X .

Then E[p]o/X is an open (quasi-finite) subgroup scheme of E[p]/X . Let Ẽ[p]/X be

any “intermediate” open (quasi-finite) subgroup scheme

E[p]o/X ⊂ Ẽ[p]/X ⊂ E[p]/X

so that we have the exact sequence of sheaves for the finite flat topology

(5) 0 → Ẽ[p]/X → E[p]/X → Ψ → 0,

with Ψ a subquotient of Φ.
Consider the following hypothesis:

A(E, p, `): The Galois module Φ`/pΦ` is either trivial, or else is a non-
constant cyclic Galois module over F`.

Let A(E, p) denote the conjunction of Hypotheses A(E, p, `) for all prime num-
bers `, or equivalently, for all ` dividing N .

Lemma 6.2. These are equivalent formulations of Hypothesis A(E, p).

(a) Φ/pΦ is cohomologically trivial; that is, H0(X,Φ/pΦ) = H1(X,Φ/pΦ) = 0.
(b) If Ψ is any subquotient of Φ, Ψ is “p-cohomologically trivial” in the sense

that the p-primary components of H i(X,Ψ) vanish for all i.

Moreover, if p ≥ 5, or if p = 3 and E has no Néron fibers of type IV or IV*, the
above conditions are equivalent to:

(c) For every ` at which E has split multiplicative reduction, p does not divide
the order of the group of connected components of the Néron fiber of E at `.

Proof. The equivalence of Hypothesis A(E, p) with (a) and with (b) is straightfor-
ward using standard exact sequences plus the fact that the p-primary components
of the (underlying abelian group of) Φ` is cyclic since p > 2; and noting that a
(finite) G-module of prime order with nontrivial G-action has trivial cohomology.
For (c) we are using that if p > 2 the p-primary component of Φ` vanishes for all
primes ` of additive reduction for E except when p = 3 and the Néron fiber type
of E at ` is IV or IV*. ¤

A morphism G1 → G2 of flat (commutative, finite type) groups schemes over X
will be said to induce an isomorphism on p-cohomology if the induced mappings

Hi(X,G1) ⊗ Zp → Hi(X,G2) ⊗ Zp

are isomorphisms for all i ≥ 0, where cohomology is computed for the flat topology.

Lemma 6.3. Let p be an odd prime number for which A(E, p) holds. We have
that the natural morphisms

Eo
/X → E′

/X and E′
/X → E/X

induce isomorphisms on p-cohomology. If p is of semistable reduction for E, we
also have that

Ẽ[p]/X → E[p]/X
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induces isomorphisms on p-cohomology, for any of the open subgroup schemes
Ẽ[p]/X in E[p]/X described above.

Proof. These all sit in short exact sequences of sheaves of abelian groups for the
flat topology over X where the third sheaf is p-cohomologically trivial. ¤

Corollary 6.4. If p > 2 and A(E, p) holds we have natural isomorphisms

H0(X,Eo) ⊗ Zp
∼= H0(X,E′) ⊗ Zp

∼= E(Q) ⊗ Zp

and

X(E) ⊗ Zp
∼= H1(X,Eo) ⊗ Zp

∼= H1(X,E′) ⊗ Zp
∼= H1(X,E) ⊗ Zp.

Corollary 6.5. Let p be an odd prime number, semistable for E, and suppose that
A(E, p) holds.

(i) The image of the natural (injective) coboundary mapping

0 → E(Q)/pE(Q) ↪→ H1(GQ, E[p])

attached to the Kummer sequence is contained in the image of the natural
injection

H1(X,E[p]o) ↪→ H1(GQ, E[p]).

(ii) We have an exact sequence

0 → E(Q)/pE(Q) → H1(X, Ẽ[p]) → X(E)[p] → 0

for any of the open subgroup schemes Ẽ[p]/X ⊂ E[p]/X defined above.

(iii) The image of H1(X, Ẽ[p]) ↪→ H1(GQ, E[p]) is equal to the p-Selmer sub-
group,

Sp(E) ⊂ H1(GQ, E[p]).

Proof. All this follows from straightforward calculations using the cohomological
exact sequences associated to the exact sequences (1)–(5) in the light of the previous
discussion. ¤

To set things up for our application, let us record the following:

Corollary 6.6. Let E/Q and F/Q be elliptic curves over Q. Let p be an odd
prime number of semistable reduction for E and F , and for which A(E, p) and

A(F, p) both hold. Define Ẽ[p]/X ⊂ E[p]/X to be the open quasi-finite subgroup
scheme whose restriction to Y is equal to E[p]/Y and whose fiber at Fp is equal to

E[p]o/Fp
= (E[p]

⋂
Eo)/Fp

. Define F̃ [p]/X similarly. Suppose, finally, that we have

an isomorphism of GQ-modules ι : F [p]/Q ∼= E[p]/Q which extends to an injection
of quasi-finite flat group schemes

F̃ [p]/X ↪→ Ẽ[p]/X .

Letting

H := H1(GQ, E[p]) = H1(GQ, F [p])

(making the identification via ι) we have that the p-Selmer groups Sp(E) ⊂ H and
Sp(F ) ⊂ H are the same.



MODULAR ABELIAN VARIETIES 27

Proposition 6.7. Let (E,F, p) be a triple which is an entry of Table 1 of [CM].
Suppose further that p is of semistable reduction for E and for F . Then, with the
notation of the previous corollary, the p-Selmer groups Sp(E) ⊂ H and Sp(F ) ⊂
H are the same. In the terminology of [CM] the Shafarevich-Tate group of E is
explained by the Mordell-Weil group of F .

Proof. As mentioned above, we have checked that E[p]/Q = F [p]/Q ⊂ J0(N) when-
ever the pair E and F (appearing as entry of Table 1 of [CM]) have the same con-
ductor. We have checked that E[p]/Q ∼= F [p]/Q for the three entries where E and
F have different conductor (E = 2932A, 3306B, and 5136B). We have checked
that Hypothesis A(E, p, `) and A(F, p, `) hold for all quadruples (E,F, p, `) such
that (E,F, p) occurs as an entry in Table 1 of [CM] (even when p is not semistable
for E and F ) with the exception of the entry (E,F, p, `) = (2366D,2366E, 3, 13).

Sublemma 6.8. Under the hypotheses of our proposition, the isomorphism of
GQ-modules ι : E[p]/Q ∼= F [p]/Q extends to an injection of quasi-finite flat group
schemes

Ẽ[p]/X ↪→ F̃ [p]/X

which is an isomorphism except in two instances (E = 3306B, and 5136B).

Proof. First, since Ẽ[p]/Y = E[p]/Y , F̃ [p]/Y = F [p]/Y , and, as we mentioned at
the beginning, both of these quasi-finite, flat (étale) group schemes F [p]/Y and
E[p]/Y enjoy the Néronian property, the isomorphism ι extends to an isomorphism

Ẽ[p]/Y
∼= F̃ [p]/Y . The remaining question is then local about p. If p is of good

reduction for E, then Ẽ[p]/Xp
and F̃ [p]/Xp

are both finite flat group schemes of odd
order, so by Fontaine’s Theorem [Fon75], the isomorphism between their generic
fibers extends to an isomorphism over Xp. (Compare: Theorem I.1.4 in [Maz77].)
A standard result allows us to patch the isomorphism extending ι over Y with the
isomorphism (“extending ι”) over Xp to get the extension of ι to an isomorphism

of group schemes over X, Ẽ[p]/X
∼= F̃ [p]/X . Now consider the case where p is of

bad reduction. By the assumptions of our proposition, p is then of multiplicative
reduction for E, and hence the fiber of E over Fp is a finite multiplicative type

group scheme of order p. We therefore have that Ẽ[p]/Xp
sits in an exact sequence

(6) 0 → C/Xp
→ Ẽ[p]/Xp

→ E/Xp
→ 0

where C/Xp
is a finite flat group scheme of order p (and with fiber of multiplicative

type in characteristic p) and where E/Xp
is an étale quasi-finite group scheme, with

trivial fiber in characteristic p.
Let us take a moment to recall (see [Maz78, Lem. 1.1]) the construction of such an

exact sequence (6): working in the category of formal schemes, let X̂p := Spf(Zp),

and let Ĉ/X̂p
be the formal completion of the zero-section in Ẽ[p]/Xp

. One checks

that Ĉ/X̂p
may be identified with a finite flat formal group scheme over X̂p which

admits a closed immersion into the formal group scheme over X̂p associated to

Ẽ[p]/Xp
. A standard algebrization argument establishes that there is a (unique)

finite flat subgroup scheme C/Xp
⊂ Ẽ[p]/Xp

whose associated formal group scheme

over X̂p is Ĉ/X̂p
. The exact sequence (6) is then obtained by letting E/Xp

be the

evident quotient (quasi-finite flat) group scheme, and noting that, by construction,
its special fiber is trivial.
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Now let us return to the proof of the sublemma. Since the restriction of ι to
C/Xp

(a finite flat multiplicative type group scheme of order p) is injective over the
generic point, it follows (by elementary considerations, or by Fontaine’s Theorem
cited above) that ι restricted to C/Xp

is an injection over Xp. Since E/Xp
has trivial

fiber in characteristic p, ι is an injection as was to be proved. In all cases under
consideration, then,

ι : Ẽ[p]/X ↪→ F̃ [p]/X

is an injection. If E is of good reduction at p, or if F is of bad reduction at p, ι is
therefore an isomorphism. The cases remaining are when E is of bad reduction at
p and F is of good reduction (i.e., E = 3306B, and 5136B) in which case we can
only assert that ι is an injection. ¤

Returning to our proposition, suppose that F̃ [p]/Xp
is finite flat (which happens

in the two cases signalled above: E = 3306B, and 5136B). Then the isomorphism
induced by ι on generic fibers

Ẽ[p]/Qp
∼= F̃ [p]/Qp

restricted to the GQp
-stable subgroup C/Qp

⊂ Ẽ[p]/Qp
extends to a morphism of

the finite flat group scheme C/Xp
into F̃ [p]/Xp

. This extended morphism j : C/Xp
→

F̃ [p]Xp
is necessarily a closed immersion since C/Xp

is a multiplicative type finite
flat group scheme. Since E/Xp

has trivial fiber in characteristic p an application
of the standard patching argument (as used in the previous case) allows us to put
together the isomorphism of group schemes over Y extending ι with the closed
immersion j over Xp to get a closed immersion

Ẽ[p]/X ↪→ F̃ [p]/X .

Finally suppose that both E and F have multiplicative reduction at p. We then
have exact sequences (6) for each of our quasi-finite flat group schemes Ẽ[p]/Xp

and

F̃ [p]/Xp
. Let V denote their common generic fiber (identified via ι) considered as

two-dimensional Fp-vector space with GQp -action. Let C(E) ⊂ V and C(F ) ⊂ V
denote the one-dimensional subspaces given by the generic fibers of the finite flat
subgroup schemes C/Xp

corresponding to the exact sequence (6) for for E and for F
respectively. Suppose, first, that these one-dimensional Fp-subspaces C(E) and
C(F ) are different. It then follows that the GQp

-representation V splits as the direct
sum of C(E) and C(F ), both Fp-subspaces being isomorphic, as IQp -modules to µp,
where IQp ⊂ GQp is the inertia subgroup of GQp

. But this contradicts the fact
that V is self-Cartier dual (under the Weil pairing). Consequently, C(E) = C(F ) ⊂
V . From the above discussion it follows that we can extend ι to an isomorphism
Ẽ[p]/Xp

∼= F̃ [p]/Xp
.

Our proposition then follows (from Corollary 6.6) for all entries in Table 1 of
[CM] where p is of semistable reduction for E once we produce special arguments
to cover the three special cases E = 3306B, 5136B and 2366D. The first two of
these cases are “special” because we only have an injection Ẽ[p]/Xp

↪→ F̃ [p]/Xp
and

not an isomorphism. However, the cokernel of this morphism restricted to the fiber
in characteristic 3 is, in both of these cases, a cyclic group with nontrivial GQ3 -

action and hence is 3-cohomologically trivial. In particular, the injection Ẽ[p]/Xp
↪→

F̃ [p]/Xp
induces an isomorphism on flat cohomology over X, and the argument for

these two cases proceeds as before. This leaves (E,F, p) = (2366D,2366E, 3)
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which is the only example of an entry (E,F, p) in our table, where E has a Q-
rational point of order p, and (this is no accident) where Hypothesis A(E, p) and
Hypothesis A(F, p) fail. (Indeed there are no other failures of Hypothesis A(F, p)
for any of the (E,F, p)’s occurring in Table 1 of [CM] and only one other failure of
Hypothesis A(E, p), which is for (E, p, `) = (2932A, 3, 2).)

Let us now deal with the case (E,F, p) = (2366D,2366E, 3). The subgroup C
of Q-rational points of order 3 on E specialize in characteristic 13 to yield an
isomorphism

C ∼= Φ13

and the same for the subgroup of Q-rational points of order 3 on F . We make use of
this information to cut down the group schemes Ẽ[3]/X and F̃ [3]/X and define open

subgroup schemes: ˜̃E[3]/X ⊂ Ẽ[3]/X and ˜̃E[3]/X ⊂ Ẽ[3]/X by requiring that these
closed immersions of subgroup schemes be isomorphisms outside characteristic 13,
and that the “double-tilded” group schemes each have trivial fiber in characteristic

13. We get via the above argument an isomorphism of group schemes ˜̃E[3]/X
∼=

˜̃F [3]/X extending ι, and an identification of the 3-Selmer groups of E and F with

H1(X, ˜̃E[3]) and H1(X, ˜̃F [3]) respectively. Our proposition is proved. ¤
It remains to say a few words about why, in the 7 cases of entries (E,F, p) in our

Table 1 of [CM] for which p is a prime of additive reduction for E some nontrivial
elements of the Shafarevich-Tate group of E are explained by the Mordell-Weil
group of F . Briefly, the reason is as follows. By the inflated p-Selmer group of E
(and of F ) let us mean the subgroup of H obtained by insisting upon all the local
Selmer conditions at primes different from p, but putting no condition at p. The p-
Selmer group of E (and of F ) are, in all 7 instances, Fp-vector spaces of dimension 2
and therefore, the inflated p-Selmer groups are of dimensions either 2 or 3. Working
over Y rather than over X, the above argument applied to these 7 remaining cases
gives us an identification of the inflated p-Selmer groups of E and of F in H. But
the true p-Selmer groups (vector spaces of dimension 2) being subspaces in a vector
space of dimension ≤ 3 must have a nontrivial intersection.
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en géométrie algébrique. I, Springer-Verlag, Berlin, 1972, Séminaire de Géométrie
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1 Introduction

Let p be a prime and let X1(p)/Q be the projective smooth algebraic curve
over Q that classifies elliptic curves equipped with a point of exact order p.
Let J1(p)/Q be its Jacobian. One of the goals of this paper is to prove:

Theorem 1.1.1. For every prime p, the Néron model of J1(p)/Q over Z(p) has
closed fiber with trivial geometric component group.

This theorem is obvious when X1(p) has genus 0 (i.e., for p ≤ 7), and for
p = 11 it is equivalent to the well-known fact that the elliptic curve X1(11) has
j-invariant with a simple pole at 11 (the j-invariant is −212/11). The strategy
of the proof in the general case is to show that X1(p)/Q has a regular proper
model X1(p)/Z(p)

whose closed fiber is geometrically integral. Once we have
such a model, by using the well-known dictionary relating the Néron model of
a generic-fiber Jacobian with the relative Picard scheme of a regular proper
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model (see [9, Ch. 9], esp. [9, 9.5/4, 9.6/1], and the references therein), it
follows that the Néron model of J1(p) over Z(p) has (geometrically) connected
closed fiber, as desired. The main work is therefore to prove the following
theorem:

Theorem 1.1.2. Let p be a prime. There is a regular proper model X1(p) of
X1(p)/Q over Z(p) with geometrically integral closed fiber.

What we really prove is that if X1(p)
reg denotes the minimal regular reso-

lution of the normal (typically non-regular) coarse moduli scheme X1(p)/Z(p)
,

then a minimal regular contraction X1(p) of X1(p)
reg has geometrically integral

closed fiber; after all the contractions of −1-curves are done, the component
that remains corresponds to the component ofX1(p)/Fp

classifying étale order-p
subgroups. When p > 7, so the generic fiber has positive genus, such a minimal
regular contraction is the unique minimal regular proper model of X1(p)/Q.

Theorem 1.1.2 provides natural examples of a finite map π between curves
of arbitrarily large genus such that π does not extend to a morphism of the
minimal regular proper models. Indeed, consider the natural map

π : X1(p)/Q → X0(p)/Q.

When p = 11 or p > 13, the target has minimal regular proper model over
Z(p) with reducible geometric closed fiber [45, Appendix], while the source has
minimal regular proper model with (geometrically) integral closed fiber, by
Theorem 1.1.2. If the map extended, it would be proper and dominant (as
source and target have unique generic points), and hence surjective. On the
level of closed fibers, there cannot be a surjection from an irreducible scheme
onto a reducible scheme. By the valuative criterion for properness, π is defined
in codimension 1 on minimal regular proper models, so there are finitely many
points of X1(p) in codimension 2 where π cannot be defined.

Note that the fiber of J1(p) at infinity need not be connected. More specif-
ically, a modular-symbols computation shows that the component group of
J1(p)(R) has order 2 for p = 17 and p = 41. In contrast, A. Agashe has
observed that [47, §1.3] implies that J0(p)(R) is always connected.

Rather than prove Theorem 1.1.2 directly, we work out the minimal regular
model for XH(p) over Z(p) for any subgroup H ⊆ (Z/pZ)×/{±1} and use
this to study the mod p component group of the Jacobian JH(p); note that
JH(p) usually does not have semistable reduction. Our basic method is to
use a variant on the classical Jung–Hirzebruch method for complex surfaces,
adapted to the case of a proper curve over an arbitrary discrete valuation ring.
We refer the reader to Theorem 2.4.1 for the main result in this direction; this
is the main new theoretical contribution of the paper. This technique will be
applied to prove:

Theorem 1.1.3. For any prime p and any subgroup H of (Z/pZ)×/{±1}, the
natural surjective map JH(p) → J0(p) of Albanese functoriality induces an
injection on geometric component groups of mod-p fibers, with the component
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group Φ(JH(p)/Fp
) being cyclic of order |H|/gcd(|H|, 6). In particular, the

finite étale component-group scheme Φ(JH(p)/Fp
) is constant over Fp.

If we view the constant cyclic component group Φ(J0(p)/Fp
) as a quotient of

the cyclic (Z/p)×/{±1}, then the image of the subgroup Φ(JH(p)/Fp
) in this

quotient is the image of H ⊆ (Z/pZ)×/{±1} in this quotient.

Remark 1.1.4. The non-canonical nature of presenting one finite cyclic group
as a quotient of another is harmless when following images of subgroups under
maps, so the final part of Theorem 1.1.3 is well-posed.

The constancy in Theorem 1.1.3 follows from the injectivity claim and the
fact that Φ(J0(p)/Fp

) is constant. Such constancy was proved by Mazur-
Rapoport [45, Appendix], where it is also shown that this component group for
J0(p) is cyclic of the order indicated in Theorem 1.1.3 for H = (Z/pZ)×/{±1}.

Since the Albanese map is compatible with the natural map TH(p) → T0(p)
on Hecke rings and Mazur proved [45, §11] that Φ(J0(p)/Fp

) is Eisenstein as a

T0(p)-module, we obtain:

Corollary 1.1.5. The Hecke module Φ(JH(p)/Fp
) is Eisenstein as a TH(p)-

module (i.e., T` acts as 1 + ` for all ` 6= p and 〈d〉 acts trivially for all
d ∈ (Z/pZ)×).

In view of Eisenstein results for component groups due to Edixhoven [18]
and Ribet [54], [55] (where Ribet gives examples of non-Eisenstein component
groups), it would be of interest to explore the range of validity of Corollary
1.1.5 when auxiliary prime-to-p level structure of Γ0(N)-type is allowed. A
modification of the methods we use should be able to settle this more general
problem. In fact, a natural approach would be to aim to essentially reduce to
the Eisenstein results in [54] by establishing a variant of the above injectivity
result on component groups when additional Γ0(N) level structure is allowed
away from p. This would require a new idea in order to avoid the crutch of
cyclicity (the case of Γ1(N) seems much easier to treat using our methods
because the relevant groups tend to be cyclic, though we have not worked out
the details for N > 1), and preliminary calculations of divisibility among orders
of component groups are consistent with such injectivity.

In order to prove Theorem 1.1.3, we actually first prove a surjectivity result:

Theorem 1.1.6. The map of Picard functoriality J0(p) → JH(p) induces a
surjection on mod p component groups, with the mod p component group for
JH(p) having order |H|/ gcd(|H|, 6).

In particular, each connected component of JH(p)/Fp
contains a multiple of

the image of (0) − (∞) ∈ J0(p)(Z(p)) in JH(p)(Fp).

Let us explain how to deduce Theorem 1.1.3 from Theorem 1.1.6. Recall [28,
Exposé IX] that for a discrete valuation ring R with fraction field K and an
abelian variety A over K over R, Grothendieck’s biextension pairing sets up a
bilinear pairing between the component groups of the closed fibers of the Néron
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models of A and its dual A′. Moreover, under this pairing the component-group
map induced by a morphism f : A → B (to another abelian variety) has as an
adjoint the component-group map induced by the dual morphism f ′ : B′ → A′.
Since Albanese and Picard functoriality maps on Jacobians are dual to each
other, the surjectivity of the Picard map therefore implies the injectivity of the
Albanese map provided that the biextension pairings in question are perfect
pairings (and then the description of the image of the resulting Albanese in-
jection in terms of H as in Theorem 1.1.3 follows immediately from the order
calculation in Theorem 1.1.6).

In general the biextension pairing for an abelian variety and its dual need not
be perfect [8], but once it is known to be perfect for the JH(p)’s then surjectivity
of the Picard map in Theorem 1.1.6 implies the injectivity of the Albanese
map as required in Theorem 1.1.3. To establish the desired perfectness, one
can use either that the biextension pairing is always perfect in case of generic
characteristic 0 with a perfect residue field [6, Thm. 8.3.3], or that surjectivity
of the Picard map ensures that JH(p) has mod p component group of order
prime to p, and the biextension pairing is always perfect on primary components
prime to the residue characteristic [7, §3, Thm. 7].

It is probable that the results concerning the component groups Φ(JH(p)/Fp
)

and the maps between them that are proved in this article via models of XH(p)
over Z(p) can also be proved using [20, 5.4, Rem. 1], and the well-known stable
model of X1(p) over Z(p)[ζp] that one can find for example in [30]. (This
observation was prompted by questions of Robert Coleman.) However, such
an approach does not give information on regular models of XH(p) over Z(p).
Hence we prefer the method of this paper.
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1.2 Outline

Section 1.3 contains a few background notational remarks. In Section 2 we
develop the basic Jung–Hirzebruch resolution technique in the context of tame
cyclic quotient surface singularities. This includes mod-p singularities on many
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(coarse) modular curves when p > 3 and the p-power level structure is only
on p-torsion. In Section 3, we recall some general results on moduli problems
for elliptic curves and coarse moduli schemes for such problems. In Section 4,
we use the results of Sections 2 and 3 to locate all the non-regular points on
the coarse moduli scheme XH(p)/Z(p)

(e.g., when H is trivial this is the set
of Fp-rational points (E, 0) with j = 0, 1728). In Section 5, we use the Jung–
Hirzebruch formulas to compute the minimal regular resolution XH(p)reg of
XH(p)/Z(p)

, and we use use a series of intersection number computations to
obtain a regular proper model for XH(p)/Q; from this, the desired results
on component groups follow. We conclude in Section 6 with some computer
computations concerning the arithmetic of J1(p) for small p, where (among
other things) we propose a formula for the order of the torsion subgroup of
J1(p)(Q).

To avoid using Weierstrass equations in proofs, we have sometimes argued
more abstractly than is strictly necessary, but this has the merit of enabling us
to treat cusps by essentially the same methods as the other points. We would
prefer to avoid mentioning j-invariants, but it is more succinct to say “cases
with j = 0” than it is to say “cases such that Aut(E/k) has order 6.”

Because we generally use methods of abstract deformation theory, the same
approach should apply to Drinfeld modular curves, as well as to cases with
auxiliary level structure away from p (including mod p component groups of
suitable Shimura curves associated to indefinite quaternion algebras over Q,
with p not dividing the discriminant). However, since a few additional techni-
calities arise, we leave these examples to be treated at a future time.

1.3 Notation and terminology

Throughout this paper, p denotes an arbitrary prime unless otherwise indicated.
Although the cases p ≤ 3 are not very interesting from the point of view of our
main results, keeping these cases in mind has often led us to more conceptual
proofs. We write Φp(T ) = (T p−1)/(T−1) ∈ Z[T ] to denote the pth cyclotomic
polynomial (so Φp(T + 1) is p-Eisenstein).

We write V ∨ to denote the dual of a vector space V , and we write F∨ to
denote the dual of a locally free sheaf F .

If X and S′ are schemes over a scheme S then X/S′ and XS′ denote X×S S
′.

If S is an integral scheme with function field K and X is a K-scheme, by a
model of X (over S) we mean a flat S-scheme with generic fiber X.

By an S-curve over a scheme S we mean a flat separated finitely presented
map X → S with fibers of pure dimension 1 (the fibral dimension condition
need only be checked on generic fibers, thanks to [27, IV3, 13.2.3] and a re-
duction to the noetherian case). Of course, when a map of schemes X → S is
proper flat and finitely presented with geometrically connected generic fibers,
then the other fibers are automatically geometrically connected (via reduction
to the noetherian case and a Stein factorization argument). For purely techni-
cal reasons, we do not require S-curves to be proper or to have geometrically
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connected fibers. The main reason for this is that we want to use étale local-
ization arguments on X without having to violate running hypotheses. The
use of Corollary 2.2.4 in the proof of Theorem 2.4.1 illustrates this point.

2 Resolution of singularities

Our eventual aim is to determine the component groups of Jacobians of inter-
mediate curves between X1(p) and X0(p). Such curves are exactly the quotient
curves XH(p) = X1(p)/H for subgroups H ⊆ (Z/pZ)×/{±1}, where we iden-
tify the group AutQ(X1(p)/X0(p)) = AutQ(X1(p)/X0(p)) with (Z/pZ)×/{±1}
via the diamond operators (in terms of moduli, n ∈ (Z/pZ)× sends a pair (E,P )
to the pair (E, n · P )). The quotient XH(p)/Z(p)

is an arithmetic surface with
tame cyclic quotient singularities (at least when p > 3).

After some background review in Section 2.1 and some discussion of gener-
alities in Section 2.2, in Section 2.3 we will describe a class of curves that give
rise to (what we call) tame cyclic quotient singularities. Rather than work with
global quotient situations X/H, it is more convenient to require such quotient
descriptions only on the level of complete local rings. For example, this is what
one encounters when computing complete local rings on coarse modular curves:
the complete local ring is a subring of invariants of the universal deformation
ring under the action of a finite group, but this group-action might not be
induced by an action on the global modular curve. In Section 2.4 we estab-
lish the Jung–Hirzebruch continued-fraction algorithm that minimally resolves
tame cyclic quotient singularities on curves over an arbitrary discrete valuation
ring. The proof requires the Artin approximation theorem, and for this reason
we need to define the concept of a curve as in Section 1.3 without requiring
properness or geometric connectivity of fibers.

We should briefly indicate here why we need to use Artin approximation to
compute minimal resolutions. Although the end result of our resolution pro-
cess is intrinsic and of étale local nature on the curve, the mechanism by which
the proof gets there depends on coordinatization and is not intrinsic (e.g., we
do not blow-up at points, but rather along certain codimension-1 subschemes).
The only way we can relate the general case to a coordinate-dependent calcu-
lation in a special case is to use Artin approximation to find a common étale
neighborhood over the general case and a special case (coupled with the étale
local nature of the intrinsic minimal resolution that we are seeking to describe).

These resolution results are applied in subsequent sections to compute a
regular proper model of XH(p)/Q over Z(p) in such a way that we can compute
both the mod-p geometric component group of the Jacobian JH(p) and the
map induced by J0(p) → JH(p) on mod-p geometric component-groups. In
this way, we will prove Theorem 1.1.6 (as well as Theorem 1.1.2 in the case of
trivial H).
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2.1 Background review

Some basic references for intersection theory and resolution of singularities for
connected proper flat regular curves over Dedekind schemes are [29, Exposé X],
[13], and [41, Ch. 9].

If S is a connected Dedekind scheme with function field K and X is a normal
S-curve, when S is excellent we can construct a resolution of singularities as
follows: blow-up the finitely many non-regular points of X (all in codimension
2), normalize, and then repeat until the process stops. That this process always
stops is due to a general theorem of Lipman [40]. For more general (i.e., possibly
non-excellent) S, and X/S with smooth generic fiber, the same algorithm works
(including the fact that the non-regular locus consists of only finitely many
closed points in closed fibers). Indeed, when X/K is smooth then the non-
smooth locus of X → S is supported on finitely many closed fibers, so we may
assume S = Spec(R) is local. We can then use Lemma 2.1.1 below to bring

results down from X/ bR since R̂ is excellent.

See Theorem 2.2.2 for the existence and uniqueness of a canonical minimal
regular resolution Xreg → X for any connected Dedekind S when X/K smooth.
A general result of Lichtenbaum [39] and Shafarevich [61] ensures that when
X/S is also proper (with smooth generic fiber if S isn’t excellent), by beginning
with Xreg (or any regular proper model of X/K) we can successively blow down
−1-curves (see Definition 2.2.1) in closed fibers over S until there are no more
such −1-curves, at which point we have reached a relatively minimal model
among the regular proper models of X/K . Moreover, when X/K is in addition
geometrically integral with positive arithmetic genus (i.e., H1(X/K ,O) 6= 0),
this is the unique relatively minimal regular proper model, up to unique iso-
morphism.

In various calculations below with proper curves, it will be convenient to work
over a base that is complete with algebraically closed residue field. Since pas-
sage from Z(p) to W (Fp) involves base change to a strict henselization followed
by base change to a completion, in order to not lose touch with the situation
over Z(p) it is useful to keep in mind that formation of the minimal regular
proper model (when the generic fiber is smooth with positive genus) is com-
patible with base change to a completion, henselization, and strict henselization
on the base. We will not really require these results, but we do need to use
the key fact in their proof: certain base changes do not destroy regularity or
normality (and so in particular commute with formation of normalizations).
This is given by:

Lemma 2.1.1. Let R be a discrete valuation ring with fraction field K and
let X be a locally finite type flat R-scheme that has regular generic fiber. Let
R → R′ be an extension of discrete valuation rings for which mRR

′ = mR′ and
the residue field extension k → k′ is separable. Assume either that the fraction
field extension K → K ′ is separable or that X/K is smooth (so either way,
X/K′ is automatically regular).
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For any x′ ∈ X ′ = X×RR
′ lying over x ∈ X, the local ring OX′,x′ is regular

(resp. normal) if and only if the local ring OX,x is regular (resp. normal).

Proof. Since mRR
′ = mR′ , the map π : X ′ → X induces πk : X/k ×k k

′ → X/k

upon reduction modulo mR. The separability of k′ over k implies that πk is a
regular morphism. Thus, if x and x′ lie in the closed fibers then OX,x → OX′,x′

is faithfully flat with regular fiber ring OX′,x′/mx. Consequently, X is regular
at x if and only if X ′ is regular at x′ [44, 23.7]. Meanwhile, if x and x′ lie in
the generic fibers then they are both regular points since the generic fibers are
regular. This settles the regular case.

For the normal case, when X ′ is normal then the normality of X follows from
the faithful flatness of π [44, Cor. to 23.9]. Conversely, when X is normal then
to deduce normality of X ′ we use Serre’s “R1 +S2” criterion. The regularity of
X ′ in codimensions ≤ 1 is clear at points on the regular generic fiber. The only
other points of codimension ≤ 1 on X ′ are the generic points of the closed fiber,
and these lie over the (codimension 1) generic points of the closed fiber of X.
Such points on X are regular since X is now being assumed to be normal, so the
desired regularity on X ′ follows from the preceding argument. This takes care
of the R1 condition. It remains to check that points x′ ∈ X ′ in codimensions
≥ 2 contain a regular sequence of length 2 in their local rings. This is clear if
x′ lies on the regular generic fiber, and otherwise x′ is a point of codimension
≥ 1 on the closed fiber. Thus, x = π(x′) is either a generic point of X/k or is a
point of codimension ≥ 1 on X/k. In the latter case the normal local ring OX,x

has dimension at least 2 and hence contains a regular sequence of length 2; this
gives a regular sequence in the faithfully flat extension ring OX′,x′ . If instead
x is a generic point of X/k then OX,x is a regular ring. It follows that OX′,x′

is regular, so we again get the desired regular sequence (since dim OX′,x′ ≥ 2).

We wish to record an elementary result in intersection theory that we will
use several times later on. First, some notation needs to be clarified: if X is
a connected regular proper curve over a discrete valuation ring R with residue
field k, and D and D′ are two distinct irreducible and reduced divisors in the
closed fiber, then

D.D′ := dimk H0(D ∩D′,O) =
∑

d∈D∩D′

dimk OD∩D′,d.

This is generally larger than the length of the artin ring H0(D ∩ D′,O), and
is called the k-length of D ∩ D′. If F = H0(D,OD), then D ∩ D′ is also an
F -scheme, and so it makes sense to define

D.FD
′ = dimF H0(D ∩D′,O) = D.D′/[F : k].

We call this the F -length of D∩D′. We can likewise define D.F ′D′ for the field
F ′ = H0(D′,O). If D′ = D, we define the relative self-intersection D.FD to be
(D.D)/[F : k] where D.D is the usual self-intersection number on the k-fiber.
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Theorem 2.1.2. Let X be a connected regular proper curve over a discrete
valuation ring, and let P ∈ X be a closed point in the closed fiber. Let C1, C2

be two (possibly equal) effective divisors supported in the closed fiber of X, with
each Cj passing through P , and let C ′

j be the strict transform of Cj under the

blow-up π : X ′ = BlP (X) → X. We write E ' P1
k(P ) to denote the exceptional

divsor.
We have π−1(Cj) = C ′

j +mjE where mj = multP (Cj) is the multiplicity of
the curve Cj at P . Also, mj = (C ′

j).k(P )E and

C1.C2 = C ′
1.C

′
2 +m1m2[k(P ) : k].

Proof. Recall that for a regular local ring R of dimension 2 and any non-zero
non-unit g ∈ R, the 1-dimensional local ring R/g has multiplicity (i.e., leading
coefficient of its Hilbert-Samuel polynomial) equal to the unique integer µ ≥ 1
such that g ∈ mµ

R, g 6∈ mµ+1
R .

We have π−1(Cj) = C ′
j + mjE for some positive integer mj that we must

prove is equal to the multiplicity µj = multP (Cj) of Cj at P . We have
E.k(P )E = −1, so E.E = −[k(P ) : k], and we also have π−1(Cj).E = 0,
so mj = (C ′

j .E)/[k(P ) : k] = (C ′
j).k(P )E. The strict transform C ′

j is the blow-
up of Cj at P , equipped with its natural (closed immersion) map into X ′. The
number mj is the k(P )-length of the scheme-theoretic intersection C ′

j ∩E; this
is the fiber of BlP (Cj) → Cj over P . Intuitively, this latter fiber is the scheme
of tangent directions to Cj at P , but more precisely it is Proj(Sj), where

Sj =
⊕

n≥0

mn
j /m

n+1
j ,

and mj is the maximal ideal of OCj ,P = OX,P /(fj), with fj a local equation
for Cj at P . We have mj = m/(fj) with m the maximal ideal of OX,P . Since
fj ∈ mµj and fj 6∈ mµj+1,

Sj ' Symk(P )(m/m
2)/f j = k(P )[u, v]/(f j)

with f j denoting the nonzero image of fj in degree µj . We conclude that
Proj(Sj) has k(P )-length µj , so mj = µj . Thus, we may compute

C1.C2 = π−1(C1).π
−1(C2) = C ′

1.C
′
2 + 2m1m2[k(P ) : k] +m1m2E.E

= C ′
1.C

′
2 +m1m2[k(P ) : k].

2.2 Minimal resolutions

It is no doubt well-known to experts that the classical technique of resolution
for cyclic quotient singularities on complex surfaces [25, §2.6] can be adapted
to the case of tame cyclic quotient singularities on curves over a complete

Documenta Mathematica 8 (2003) 325–402



J1(p) Has Connected Fibers 335

equicharacteristic discrete valuation ring. We want the case of an arbitrary
discrete valuation ring, and this seems to be less widely known (it is not ad-
dressed in the literature, and was not known to an expert in log-geometry with
whom we consulted). Since there seems to be no adequate reference for this
more general result, we will give the proof after some preliminary work (e.g.,
we have to define what we mean by a tame cyclic quotient singularity, and we
must show that this definition is applicable in many situations. Our first step
is to establish the existence and uniqueness of a minimal regular resolution in
the case of relative curves over a Dedekind base (the case of interest to us);
this will eventually serve to make sense of the canonical resolution at a point.

Since we avoid properness assumptions, to avoid any confusion we should
explicitly recall a definition.

Definition 2.2.1. Let X → S be a regular S-curve, with S a connected
Dedekind scheme. We say that an integral divisor D ↪→ X in a closed fiber Xs

is a −1-curve if D is proper over k(s), H1(D,OD) = 0, and degkOD(D) = −1,
where k = H0(D,OD) is a finite extension of k(s).

By Castelnuovo’s theorem, a −1-curve D ↪→ X as in Definition 2.2.1 is k-
isomorphic to a projective line over k, where k = H0(D,OD).

The existence and uniqueness of minimal regular resolutions is given by:

Theorem 2.2.2. Let X → S be a normal S-curve over a connected Dedekind
scheme S. Assume either that S is excellent or that X/S has smooth generic
fiber.

There exists a birational proper morphism π : X reg → X such that Xreg

is a regular S-curve and there are no −1-curves in the fibers of π. Such an
X-scheme is unique up to unique isomorphism, and every birational proper
morphism X ′ → X with a regular S-curve X ′ admits a unique factorization
through π. Formation of Xreg is compatible with base change to SpecOS,s and

Spec ÔS,s for closed points s ∈ S. For local S, there is also compatibility with
ind-étale base change S ′ → S with local S′ whose closed point is residually
trivial over that of S.

We remind that reader that, for technical reasons in the proof of Theorem
2.4.1, we avoid requiring curves to be proper and we do not assume the generic
fiber to be geometrically connected. The reader is referred to [41, 9/3.32] for
an alternative discussion in the proper case.

Proof. We first assume S to be excellent, and then we shall use Lemma 2.1.1
and some descent considerations to reduce the general case to the excellent case
by passage to completions.

As a preliminary step, we wish to reduce to the proper case (to make the
proof of uniqueness easier). By Nagata’s compactification theorem [43] and the
finiteness of normalization for excellent schemes, we can find a schematically
dense open immersion X ↪→ X with X/S normal, proper, and flat over S (hence

a normal S-curve). By resolving singularities along X − X, we may assume
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the non-regular locus on X coincides with that on X. Thus, the existence and
uniqueness result for X will follow from that for X. The assertion on regular
resolutions (uniquely) factorizing through π goes the same way. Hence, we
now assume (for excellent S) that X/S is proper. We can also assume X to be
connected.

By Lemma 2.1.1 and resolution for excellent surfaces, there exists a birational
proper morphism X ′ → X with X ′ a regular proper S-curve. If there is a −1-
curve in the fiber of X ′ over some (necessarily closed) point of X, then by
Castelnuovo we can blow down the −1-curve and X ′ → X will factor through
the blow-down. This blow-down process cannot continue forever, so we get the
existence of π : Xreg → X with no −1-curves in its fibers.

Recall the Factorization Theorem for birational proper morphisms between
regular connected S-curves: such maps factor as a composite of blow-ups at
closed points in closed fibers. Using the Factorization Theorem, to prove
uniqueness of π and the (unique) factorization through π for any regular reso-
lution of X we just have to show that if X ′′ → X ′ → X is a tower of birational
proper morphisms with regular S-curves X ′ and X ′′ such that X ′ has no −1-
curves in its fibers over X, then any −1-curve C in a fiber of X ′′ → X is
necessarily contracted by X ′′ → X ′. Also, via Stein factorization we can as-
sume that the proper normal connected S-curves X, X ′, and X ′′ with common
generic fiber over S have geometrically connected fibers over S. We may as-
sume that S is local. Since the map q : X ′′ → X ′ is a composite of blow-ups,
we may assume that C meets the exceptional fiber E of the first blow-down
q1 : X ′′ → X ′′

1 of a factorization of q. If C = E we are done, so we may assume
C 6= E. In this case we will show that X is regular, so again uniqueness holds
(by the Factorization Theorem mentioned above).

The image q1(C) is an irreducible divisor on X ′′
1 with strict transform C,

so by Theorem 2.1.2 we conclude that q1(C) has non-negative self-intersection
number, so this self-intersection must be zero. Since X ′′

1 → S is its own Stein
factorization, and hence has geometrically connected closed fiber, q1(C) must
be the entire closed fiber of X ′′

1 . Thus, X ′′
1 has irreducible closed fiber, and

so the (surjective) proper birational map X ′′
1 → X is quasi-finite and hence

finite. Since X and X ′′
1 are normal and connected (hence integral), it follows

that X ′′
1 → X must be an isomorphism. Thus, X is regular, as desired.

With Xreg unique up to (obviously) unique isomorphism, for the base change
compatibility we note that the various base changes S ′ → S being considered
(to completions on S, or to local S ′ ind-étale surjective over local S and resid-
ually trivial at closed points), the base change X reg

/S′ is regular and proper

birational over the normal curve X/S′ (see Lemma 2.1.1). Thus, we just have
to check that the fibers of Xreg

/S′ → X/S′ do not contain −1-curves. The closed-

fiber situation is identical to that before base change, due to the residually
trivial condition at closed points, so we are done.

Now suppose we do not assume S to be excellent, but instead assume X/S

has smooth generic fiber. In this case all but finitely many fibers of X/S are
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smooth. Thus, we may reduce to the local case S = Spec(R) with a discrete

valuation ring R. Consider X/ bR, a normal R̂-curve by Lemma 2.1.1. Since R̂

is excellent, there is a minimal regular resolution

π : (X/ bR)reg → X/ bR.

By [40, Remark C, p. 155], the map π is a blow-up along a 0-dimensional closed

subscheme Ẑ physically supported in the non-regular locus of X/ bR. This Ẑ is

therefore physically supported in the closed fiber of X/ bR, yet Ẑ is artinian and

hence lies in some infinitesimal closed fiber of X/ bR. Since X×R R̂ → X induces

isomorphisms on the level of nth infinitesimal closed-fibers for all n, there is a
unique 0-dimensional closed subscheme Z in X with Z/ bR = Ẑ inside of X/ bR.

Since the blow-up BlZ(X) satisfies

BlZ(X)/ bR ' Bl bZ(X/ bR) = (X/ bR)reg,

by Lemma 2.1.1 we see that BlZ(X) is a regular S-curve. There are no −1-

curves in its fibers over X since Spec R̂ → SpecR is an isomorphism over
SpecR/m. This establishes the existence of π : X reg → X, as well as its
compatibility with base change to completions on S. To establish uniqueness
of π, or more generally its universal factorization property, we must prove that
certain birational maps from regular S-curves to X reg are morphisms. This
is handled by a standard graph argument that can be checked after faithfully
flat base change to R̂ (such base change preserves regularity, by Lemma 2.1.1).

Thus, the uniqueness results over the excellent base R̂ carry over to our original
R. The same technique of base change to R̂ shows compatibility with ind-étale
base change that is residually trivial over closed points.

One mild enhancement of the preceding theorem rests on a pointwise defini-
tion:

Definition 2.2.3. Let X/S be as in Theorem 2.2.2, and let Σ ⊆ X be a finite
set of closed points in closed fibers over S. Let U be an open in X containing Σ
such that U does not contain the finitely many non-regular points of X outside
of Σ. We define the minimal regular resolution along Σ to be the morphism
πΣ : XΣ → X obtained by gluing X − Σ with the part of X reg lying over U
(note: the choice of U does not matter, and XΣ is not regular if there are
non-regular points of X outside of Σ).

It is clear that the minimal regular resolution along Σ is compatible with
local residually-trivial ind-étale base change on a local S, as well as with base
change to a (non-generic) complete local ring on S. It is also uniquely charac-
terized among normal S-curves C equipped with a proper birational morphism
ϕ : C → X via the following conditions:
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• πΣ is an isomorphism over X − Σ,

• XΣ is regular at points over Σ,

• XΣ has no −1-curves in its fibers over Σ.

This yields the crucial consequence that (under some mild restrictions on
residue field extensions) formation of XΣ is étale-local on X. This fact is
ultimately the reason we did not require properness or geometrically connected
fibers in our definition of S-curve:

Corollary 2.2.4. Let X/S be a normal S-curve over a connected Dedekind
scheme S, and let Σ ⊆ X be a finite set of closed points in closed fibers over
S. Let X ′ → X be étale (so X ′ is an S-curve), and let Σ′ denote the preimage
of Σ. Assume that S is excellent or X/S has smooth generic fiber.

If XΣ → X denotes the minimal regular resolution along Σ, and X ′ → X is
residually trivial over Σ, then the base change XΣ ×X X ′ → X ′ is the minimal
regular resolution along Σ′.

Remark 2.2.5. The residual triviality condition over Σ is satisfied when S is
local with separably closed residue field, as then all points of Σ have separably
closed residue field (and so the étale X ′ → X must induce trivial residue field
extensions over such points).

Proof. Since XΣ ×X X ′ is étale over XΣ, we conclude that XΣ ×X X ′ is an
S-curve that is regular along the locus over Σ′ ⊆ X ′, and its projection to X ′

is proper, birational, and an isomorphism over X ′ − Σ′. It remains to check
that

(2.2.1) XΣ ×X X ′ → X ′

has no −1-curves in the proper fibers over Σ′. Since X ′ → X is residually
trivial over Σ (by hypothesis), so this is clear.

2.3 Nil-semistable curves

In order to compute minimal regular resolutions of the sort that arise on
XH(p)’s, it is convenient to study the following concept before we discuss res-
olution of singularities. Let S be a connected Dedekind scheme and let X be
an S-curve.

Definition 2.3.1. For a closed point s ∈ S, a closed point x ∈ Xs is nil-
semistable if the reduced fiber-curve Xred

s is semistable over k(s) at x and all
of the analytic branch multiplicities through x are not divisible by char(k(s)).
If Xred

s is semistable for all closed points s ∈ S and all irreducible components
of Xs have multiplicity not divisible by char(k(s)), X is a nil-semistable curve
over S.
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Considerations with excellence of the fiber Xs show that the number of an-
alytic branches in Definition 2.3.1 may be computed on the formal completion
at a point over x in Xs/k′ for any separably closed extension k′ of k(s). We will
use the phrase “analytic branch” to refer to such (formal) branches through a
point over x in such a geometric fiber over s.

As is well-known from [34], many fine moduli schemes for elliptic curves are
nil-semistable.

Fix a closed point s ∈ S. From the theory of semistable curves over fields [24,
III, §2], it follows that when x ∈ Xred

s is a semistable non-smooth point then
the finite extension k(x)/k(s) is separable. We have the following analogue of
the classification of semistable curve singularities:

Lemma 2.3.2. Let x ∈ Xs be a closed point and let πs ∈ OS,s be a uniformizer.
If x is a nil-semistable point at which X is regular, then the underlying re-

duced scheme of the geometric closed fiber over s has either one or two analytic
branches at a geometric point over x, with these branches smooth at x. When
moreover k(x)/k(s) is separable and there is exactly one analytic branch at
x ∈ Xs, with multiplicity m1 in Osh

Xs,x, then

(2.3.1) Ôsh
X,x ' Ôsh

S,s[[t1, t2]]/(t
m1
1 − πs).

If there are two analytic branches (so k(x)/k(s) is automatically separable),
say with multiplicities m1 and m2 in Osh

Xs,x, then

(2.3.2) Ôsh
X,x ' Ôsh

S,s[[t1, t2]]/(t
m1
1 tm2

2 − πs).

Conversely, if Ôsh
X,x admits one of these two explicit descriptions with the

exponents not divisible by char(k(s)), then x is a nil-semistable regular point
on X with k(x)/k(s) separable.

In view of this lemma, we call the exponents in the formal isomorphisms
(2.3.1) and (2.3.2) the analytic geometric multiplicities of Xs at x (this re-
quires k(x)/k(s) to be separable). We emphasize that these exponents can be
computed after base change to any separably closed extension of k(s) when x
is nil-semistable with k(x)/k(s) separable.

Proof. First assume x ∈ Xred
s is a non-smooth semistable point and X is reg-

ular at x. Since k(x) is therefore finite separable over k(s), we can make a
base change to the completion of a strict henselization of OS,s to reduce to
the case S = Spec(W ) with a complete discrete valuation ring W having sep-

arably closed residue field k such that x a k-rational point. Since ÔX,x is a
2-dimensional complete regular local W -algebra with residue field k, it is a
quotient of W [[t1, t2]] and hence has the form W [[t1, t2]]/(f) where f is a regular
parameter. The semistability condition and non-smoothness of X red

/k at x imply

k[[t1, t2]]/rad(f) = (k[[t1, t2]]/(f))red ' ÔXred
/k

,x ' k[[u1, u2]]/(u1u2)
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where f = f mod mW , so f has exactly two distinct irreducible factors and
these have distinct (non-zero) tangent directions in X red

/k through x. We can
choose t1 and t2 to lift these tangent directions, so upon replacing f with a
unit multiple we may assume f = tm1

1 tm2
2 mod mW for some m1,m2 ≥ 1 not

divisible by p = char(k) ≥ 0. Let π be a uniformizer of W , so f = tm1
1 tm2

2 − πg
for some g, and g must be a unit since f is a regular parameter. Since some mj

is not divisible by p, and hence the unit g admits anmjth root, by unit-rescaling
of the corresponding tj we get to the case g = 1.

In the case when Xred
s is smooth at x and k(x)/k(s) is separable, we may

again reduce to the case in which S = SpecW with complete discrete valuation
ring W having separably closed residue field k and k(x) = k. In this case, there
is just one analytic branch and we see by a variant of the preceding argument
that the completion of Osh

X,x has the desired form.
The converse part of the lemma is clear.

In Definition 2.3.6, we shall give a local definition of the class of curve-
singularities that we wish to resolve, but we will first work through some global
considerations that motivate the relevance of the local Definition 2.3.6.

Assume X is regular, and let H be a finite group and assume we are given an
action of H on X/S that is free on the scheme of generic points (i.e., no non-
identity element ofH acts trivially on a connected component ofX). A good ex-
ample to keep in mind is the (affine) fine moduli scheme over S = Spec(Z(p)) of
Γ1(p)-structures on elliptic curves equipped with auxiliary full level `-structure
for an odd prime ` 6= p, and H = GL2(F`) acting in the usual manner (see
Section 3 for a review of these basic level structures).

We wish to work with a quotient S-curve X ′ = X/H, so we now also assume
that X is quasi-projective Zariski-locally on S. Clearly X → X ′ is a finite H-
equivariant map with the expected universal property; in the above modular-
curve example, this quotient X ′ is the coarse moduli scheme Y1(p) over Z(p).
We also now assume that S is excellent or X/K is smooth, so that there are
only finitely many non-regular points (all in codimension 2) and various results
centering on resolution of singularities may be applied.

The S-curve X ′ has regular generic fiber (and even smooth generic fiber
when X/S has smooth generic fiber), and X ′ is regular away from finitely
many closed points in the closed fibers. Our aim is to understand the minimal
regular resolution X ′reg of X ′, or rather to describe the geometry of the fibers
of X ′reg → X ′ over non-regular points x′ satisfying a mild hypothesis on the
structure of X → X ′ over x′.

We want to compute the minimal regular resolution for X ′ = X/H at non-
regular points x′ that satisfy several conditions. Let s ∈ S be the image of x′,
and let p ≥ 0 denote the common characteristic of k(x′) and k(s). Pick x ∈ X
over x′.

• We assume that X is nil-semistable at x (by the above hypotheses, X is
also regular at x).
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• We assume that the inertia group Hx|x′ in H at x (i.e., the stablizer in
H of a geometric point over x) has order not divisible by p (so this group
acts semi-simply on the tangent space at a geometric point over x).

• When there are two analytic branches through x, we assume Hx|x′ does
not interchange them.

These conditions are independent of the choice of x over x′ and can be checked
at a geometric point over x, and when they hold then the number of analytic
branches through x coincides with the number of analytic branches through
x′ (again, we are really speaking about analytic branches on a geometric fiber
over s).

Since p does not divide |Hx|x′ |, it follows that k(x′) is the subring of invariants
under the action of Hx|x′ on k(x), so a classical theorem of Artin ensures
that k(x)/k(x′) is separable (and even Galois). Thus, k(x)/k(s) is separable
if and only if k(x′)/k(s) is separable, and such separability holds when the
point x ∈ Xred

s is semistable but not smooth. Happily for us, this separability
condition over k(s) is always satisfied (we are grateful to Lorenzini for pointing
this out):

Lemma 2.3.3. With notation and hypotheses as above, particularly with
x′ ∈ X ′ = X/H a non-regular point, the extension k(x′)/k(s) is separable.

Proof. Recall that, by hypothesis, x ∈ X red
s is either a smooth point or an

ordinary double point. If x is a non-smooth point on the curve X red
s , then the

desired separability follows from the theory of ordinary double point singular-
ities. Thus, we may (and do) assume that x is a smooth point on X red

s .
We may also assume S is local and strictly henselian, so k(s) is separably

closed and hence k(x) and k(x′) are separably closed. Thus, k(x) = k(x′)
and Hx|x′ is the physical stabilizer of the point x ∈ X. We need to show
that the common residue field k(x) = k(x′) is separable over k(s). If we let
X ′′ = X/Hx|x′ , then the image x′′ of x inX ′′ has complete local ring isomorphic
to that of x′ ∈ X ′, so we may replace X ′ with X ′′ to reduce to the case when
H has order not divisible by p and x is in the fixed-point locus of H. By [20,
Prop. 3.4], the fixed-point locus of H in X admits a closed-subscheme structure
in X that is smooth over S. On the closed fiber this smooth scheme is finite
and hence étale over k(s), so its residue fields are separable over k(s).

The following refinement of Lemma 2.3.2 is adapted to the Hx|x′-action, and
simultaneously handles the cases of one and two (geometric) analytic branches
through x′.

Lemma 2.3.4. With hypotheses as above, there is an Ôsh
S,s-isomorphism

Ôsh
X,x ' Ôsh

S,s[[t1, t2]]/(t
m1
1 tm2

2 − πs)
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(with m1 > 0, m2 ≥ 0) such that the Hx|x′-action looks like h(tj) = χj(h)tj for

characters χ1, χ2 : Hx|x′ → Ôsh
S,s

×
that are the Teichmüller lifts of characters

giving a decomposition of the semisimple Hx|x′-action on the 2-dimensional
cotangent space at a geometric point over x. Moreover, χm1

1 χm2
2 = 1.

The characters χj also describe the action of Hx|x′ on the tangent space at (a
geometric point over) x. There are two closed-fiber analytic branches through
x when m1 and m2 are positive, and then the branch with formal parameter
t2 has multiplicity m1 since

(k[[t1, t2]]/(t
m1
1 tm2

2 ))[1/t2] = k((t2))[t1]/(t
m1
1 )

has length m1. Likewise, when m2 > 0 it is the branch with formal parameter
t1 that has multiplicity m2.

Proof. We may assume S = SpecW with W a complete discrete valuation ring
having separably closed residue field k and uniformizer π, so x is k-rational. Let

R = Ôsh
X,x = ÔX,x. We have seen in Lemma 2.3.2 that there is an isomorphism

of the desired type as W -algebras, but we need to find better such tj ’s to
linearize the Hx|x′-action.

We first handle the easier case m2 = 0. In this case there is only one minimal
prime (t1) over (π), so h(t1) = uht1 for a unique unit uh ∈ R×. Since tm1

1 = π
is Hx|x′ invariant, we see that uh ∈ µm1

(R) is a Teichmüller lift from k (since
p - m1). Thus, h(t1) = χ1(h)t1 for a character χ1 : Hx|x′ → R× that is a
lift of a character for Hx|x′ on Cotx(X). Since Hx|x′ acts semisimply on the
2-dimensional cotangent space Cotx(X) and there is a stable line spanned by
t1 mod m2

x, we can choose t2 to lift an Hx|x′ -stable line complementary to the
one spanned by t1 mod m2

x. If χ2 denotes the Teichmüller lift of the character
for Hx|x′ on this complementary line, then

h(t2) = χ2(h)(t2 + δh)

with δh ∈ mi
x for some i ≥ 2. It is straightfoward to compute that

h 7→ δh mod mi+1
x

is a 1-cocycle with values in the twistedHx|x′ -module χ−1
2 ⊗(mi

x/m
i+1
x ). Chang-

ing this 1-cocycle by a 1-coboundary corresponds to adding an element of
mi

x/m
i+1
x to t2 mod mi+1

x . Since

H1(Hx|x′ , χ−1
2 ⊗ (mi

x/m
i+1
x )) = 0,

we can successively increase i ≥ 2 and pass to the limit to find a choice of t2
such that Hx|x′ acts on t2 through the character χ2. That is, h(t1) = χ1(h)t1
and h(t2) = χ2(h)t2 for all h ∈ Hx|x′ . This settles the case m2 = 0.

Now we turn to the more interesting case when also m2 > 0, so there are
two analytic branches through x. By hypothesis, the Hx|x′ -action preserves the
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two minimal primes (t1) and (t2) over (π) in R. We must have h(t1) = uht1,
h(t2) = vht2 for unique units uh, vh ∈ R×. Since tm1

1 tm2
2 = π, by applying h

we get um1

h vm2

h = 1.
Consider what happens if we replace t2 with a unit multiple t′2 = vt2,

and then replace t1 with the unit multiple t′1 = v−m2/m1t1 so as to en-
sure t′m1

1 t′m2

2 = π. Note that an m1th root v−m2/m1 of the unit v−m2

makes sense since k is separably closed and p - m1. The resulting map
W [[t′1, t

′
2]]/(t

′m1

1 t′m2

2 − π) → R is visibly surjective, and hence is an isomor-
phism for dimension reasons. Switching to these new coordinates on R has the
effect of changing the 1-cocycle {vh} by a 1-coboundary, and every 1-cocycle
cohomologous to {vh} is reached by making such a unit multiple change on t2.

By separately treating residue characteristic 0 and positive residue charac-
teristic, an inverse limit argument shows that H1(Hx|x′ , U) vanishes, where
U = ker(R× ³ k×). Thus, the natural map H1(Hx|x′ , R×) → H1(Hx|x′ , k×) is
injective. The Hx|x′ -action on k× is trivial since Hx|x′ acts trivially on W , so

H1(Hx|x′ , k×) = Hom(Hx|x′ , k×) = Hom(Hx|x′ , k×
tors),

with all elements in the torsion subgroup k×
tors of order not divisible by p and

hence uniquely multiplicatively lifting into R. Thus,

H1(Hx|x′ , R×) → H1(Hx|x′ , k×)

is bijective, and so replacing t1 and t2 with suitable unit multiples allows us
to assume h(t2) = χ2(h)t2, with χ2 : Hx|x′ → W×

tors some homomorphism of
order not divisible by p (since Hx|x′ acts trivially on k× and p - |Hx|x′ |).

Since

1 = um1

h vm2

h = um1

h χ2(h)
m2

and p - m1, we see that uh is a root of unity of order not divisible by p. Viewing
k×
tors ⊆ R× via the Teichmüller lifting, we conclude that uh ∈ k×

tors ⊆ R×.
Thus, we can write h(t1) = χ1(h)t1 for a homomorphism χ1 : Hx|x′ → W×

tors

also necessarily of order not divisible by p. The preceding calculation also
shows that χm1

1 χm2
2 = 1 since um1

h vm2

h = 1.

Although Lemma 2.3.4 provides good (geometric) coordinate systems for
describing the inertia action, one additional way to simplify matters is to reduce
to the case in which the tangent-space characters χ1 and χ2 are powers of each
other. We wish to explain how this special situation is essentially the general
case (in the presence of our running assumption that H acts freely on the
scheme of generic points of X).

First, observe that Hx|x′ acts faithfully on the tangent space Tx(X) at x.
Indeed, if an element in Hx|x′ acts trivially on the tangent space Tx(X), then

by Lemma 2.3.4 it acts trivially on the completion of Osh
X,x and hence acts

trivially on the corresponding connected component of the normal X. By
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hypothesis, H acts freely on the scheme of generic points of X, so we conclude
that the product homomorphism

(2.3.3) χ1 × χ2 : Hx|x′ ↪→ k(x)×
sep × k(x)×

sep,

is injective (where k(x)sep is the separable closure of k(x) used when construct-
ing Osh

X,x). In particular, Hx|x′ is a product of two cyclic groups (one of which
might be trivial).

Lemma 2.3.5. Let κj = | ker(χj)|. The characters χκ2
1 and χκ1

2 factor through
a common quotient of Hx|x′ as faithful characters. When Hx|x′ is cyclic, this
quotient is Hx|x′ .

In addition, κ2|m1 and κ1|m2.

The cyclicity condition on Hx|x′ will hold in our application to modular
curves, as then even H is cyclic.

Proof. The injectivity of (2.3.3) implies that χ1 is faithful on ker(χ2) and χ2

is faithful on ker(χ1). Since χm1
1 χm2

2 = 1, we get κ2|m1 and κ1|m2 (even if
m2 = 0).

For the proof that the indicated powers of the χj ’s factor as faithful char-
acters of a common quotient of Hx|x′ , it is enough to focus attention on `-
primary parts for a prime ` dividing |Hx|x′ | (so ` 6= p). More specifically, if
G is an finite `-group that is either cyclic or a product of two cyclic groups,
and ψ0, ψ1 : G → Z/`nZ are homomorphisms such that ψ0 × ψ1 is injective
(i.e., ker(ψ0)∩ker(ψ1) = {1}), then we claim that the ψ

κ1−j

j ’s factor as faithful
characters on a common quotient of G, where κj = | ker(ψj)|. If one of the
ψj ’s is faithful (or equivalently, if the `-group G is cyclic), this is clear. This
settles the case in which G is cyclic, so we may assume G is a product of two
non-trivial cyclic `-groups and that both ψj ’s have non-trivial kernel. Since
the `-torsion subgroups ker(ψj)[`] must be non-trivial with trivial intersection,
these must be distinct lines spanning G[`]. Passing to group G/G[`] and the
characters ψ`

j therefore permits us to induct on |G|.

By the lemma, we conclude that the characters χ′
1 = χκ2

1 and χ′
2 = χκ1

1 both
factor faithfully through a common (cyclic) quotient H ′

x|x′ of Hx|x′ . Define

t′1 = tκ2
1 and t′2 = tκ1

2 . Since formation of Hx|x′ -invariants commutes with

passage to quotients on Ôsh
S,s-modules, Lemma 2.3.4 shows that in order to

compute the Hx|x′-invariants of Ôsh
X′,x′ it suffices to compute invariants on the

level of Ôsh
S,s[[t1, t2]] and then pass to a quotient. The subalgebra of invariants in

Ôsh
S,s[[t1, t2]] under the subgroup generated by ker(χ1) and ker(χ2) is Ôsh

S,s[[t
′
1, t

′
2]],

and Hx|x′ acts on this subalgebra through the quotient H ′
x|x′ via the characters

χ′
1 and χ′

2. Letting m′
1 = m1/κ2 and m′

2 = m2/κ1 (so m′
2 = 0 in the case of
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one analytic branch), we obtain the description

(2.3.4) Ôsh
X′,x′ = (Ôsh

S,s[[t
′
1, t

′
2]]/(t

′
1
m′

1t′2
m′

2 − πs))
H′

x|x′

Obviously χ′
2 = χ′

1
rx|x′ for a unique rx|x′ ∈ (Z/|H ′

x|x′ |Z)×, as the characters

χ′
j are both faithful on H ′

x|x′ .

Since |H ′
x|x′ | and rx|x′ ∈ (Z/|H ′

x|x′ |Z)× are intrinsic to x′ ∈ X ′ = X/H

and do not depend on x (or on a choice of k(x)sep), we may denote these
two integers nx′ and rx′ respectively. We have m′

1 +m′
2r

′
x′ ≡ 0 mod nx′ since

1 = χ′
1
m′

1χ′
2
m′

2 = χ′
1
m′

1+m′
2rx′ with χ′

1 faithful. Theorem 2.3.9 below shows
that nx′ > 1, since x′ is the non-regular.

If S were a smooth curve over C, then the setup in (2.3.4) would be the clas-
sical cyclic surface quotient-singularity situation whose minimal regular resolu-
tion is most readily computed via toric varieties. That case motivates what to
expect for minimal regular resolutions with more general S in §2.4, but rather
than delve into a relative theory of toric varieties we can just use the classical
case as a guide.

To define the class of singularities we shall resolve, let X ′
/S now be a normal

(not necessarily connected) curve over a connected Dedekind scheme S. Assume
moreover that either S is excellent or that X ′

/S has smooth generic fiber, so

there are only finitely many non-regular points (all closed in closed fibers).
Consider a closed point s ∈ S with residue characteristic p ≥ 0, and pick a
closed point x′ ∈ X ′

s such that X ′
s has one or two (geometric) analytic branches

at x′.

Definition 2.3.6. We say that a closed point x′ in a closed fiber X ′
s is a

tame cyclic quotient singularity if there exists a positive integer n > 1 not
divisible by p = char(k(s)), a unit r ∈ (Z/nZ)×, and integers m′

1 > 0 and

m′
2 ≥ 0 satisfying m′

1 ≡ −rm′
2 mod n such that Ôsh

X′,x′ is isomorphic to the

subalgebra of µn(k(s)sep)-invariants in Ôsh
S,s[[t

′
1, t

′
2]]/(t

′
1
m′

1t′2
m′

2 − πs) under the
action t′1 7→ ζt′1, t

′
2 7→ ζrt′2.

Remark 2.3.7. Note that when X ′
/S has a tame cyclic quotient singularity at

x′ ∈ X ′
s, then k(x′)/k(s) is separable and x′ is non-regular (by Theorem 2.3.9

below). Also, it is easy to check that the exponents m′
1 and m′

2 are necessarily
the analytic branch multiplicities at x′. Note that the data of n and r is merely
part of a presentation of ÔX′,x′ as a ring of invariants, so it is not clear a priori
that n and r are intrinsic to x′ ∈ X ′. The fact that n and r are uniquely
determined by x′ follows from Theorem 2.4.1 below, where we show that n and
r arise from the structure of the minimal regular resolution of X ′ at x′.

Using notation as in the preceding global considerations, there is a very
simple criterion for a nil-semistable x′ ∈ X/H to be a non-regular point: there
should not be a line in Tx(X) on which the inertia group Hx|x′ acts trivially.
To prove this, we recall Serre’s pseudo-reflection theorem [57, Thm. 1′]. This
requires a definition:
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Definition 2.3.8. Let V be a finite-dimensional vector space over a field k.
An element σ of Autk(V ) is called a pseudo-reflection if rank(1 − σ) ≤ 1.

Theorem 2.3.9 (Serre). Let A be a noetherian regular local ring with maximal
ideal m and residue field k. Let G be a finite subgroup of Aut(A), and let AG

denote the local ring of G-invariants of A. Suppose that:

1. The characteristic of k does not divide the order of G,

2. G acts trivially on k, and

3. A is a finitely generated AG-module.

Then AG is regular if and only if the image of G in Autk(m/m2) is generated
by pseudo-reflections.

In fact, the “only if” implication is true without hypotheses on the order of
G, provided AG has residue field k (which is automatic when k is algebraically
closed).

Remark 2.3.10. By Theorem 3.7(i) of [44] with B = A and A = AG, hypoth-
esis 3 of Serre’s theorem forces AG to be noetherian. Serre’s theorem ensures
that x′ as in Definition 2.3.6 is necessarily non-regular.

Proof. Since this result is not included in Serre’s Collected Works, we
note that a proof of the “if and only if” assertion can be found in [68,
Cor. 2.13, Prop. 2.15]. The proof of the “only if” implication in [68] works
without any conditions on the order of G as long as one knows that AG has
the same residue field as A. Such equality is automatic when k is algebraically
closed. Indeed, the case of characteristic 0 is clear, and for positive character-
istic we note that k is a priori finite over the residue field of AG, so if equality
were to fail then the residue field of AG would be of positive characteristic
with algebraic closure a finite extension of degree > 1, an impossibility by
Artin-Schreier.

To see why everything still works without restriction on the order of G
when we assume AG is regular, note first that regularity of AG ensures that
AG → A must be finite free, so even without a Reynolds operator we still have
(A ⊗AG A)G = A, where G acts on the left tensor factor. Hence, the proof of
[68, Lemma 2.5] still works. Meanwhile, equality of residue fields for AG and
A makes the proof of [68, Prop. 2.6] still work, and then one easily checks that
the proofs of [68, Thm. 2.8, Prop. 2.15(i)⇒(ii)] go through unchanged.

The point of the preceding study is that in a global quotient situation
X ′ = X/H as considered above, one always has a tame cyclic quotient sin-
gularity at the image x′ of a nil-semistable point x ∈ Xs when x′ is not regular
(by Lemma 2.3.3, both k(x) and k(x′) are automatically separable over k(s)
when such non-regularity holds). Thus, when computing complete local rings
at geometric closed points on a coarse modular curve (in residue characteristic
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Figure 1: Minimal regular resolution of x′

> 3), we will naturally encounter a situation such as in Definition 2.3.6. The
ability to explicitly (minimally) resolve tame cyclic quotient singularities in
general will therefore have immediate applications to modular curves.

2.4 Jung–Hirzebruch resolution

As we noted in Remark 2.3.7, it is natural to ask whether the numerical data
of n and r ∈ (Z/nZ)× in Definition 2.3.6 are intrinsic to x′ ∈ X ′. We shall see
in the next theorem that this data is intrinsic, as it can be read off from the
minimal regular resolution over x′.

Theorem 2.4.1. Let X ′
/S be a normal curve over a local Dedekind base S

with closed point s. Assume either that S is excellent or that X ′
/S has smooth

generic fiber. Assume X ′ has a tame cyclic quotient singularity at a closed
point x′ ∈ X ′

s with parameters n and r (in the sense of Definition 2.3.6), where
we represent r ∈ (Z/nZ)× by the unique integer r satisfying 1 ≤ r < n and
gcd(r, n) = 1. Finally, assume either that k(s) is separably closed or that

all connected components of the regular compactification X
′
K of the regular

generic-fiber curve X ′
K have positive arithmetic genus.

Consider the Jung–Hirzebruch continued fraction expansion

(2.4.1)
n

r
= b1 − 1

b2 − 1

· · · − 1

bλ

with integers bj ≥ 2 for all j.
The minimal regular resolution of X ′ along x′ has fiber over k(x′)sep whose

underlying reduced scheme looks like the chain of Ej’s as shown in Figure 1,
where:

• all intersections are transverse, with Ej ' P1
k(x′)sep

;

• Ej .Ej = −bj < −1 for all j;

Documenta Mathematica 8 (2003) 325–402



348 Conrad, Edixhoven, Stein

• E1 is transverse to the strict transform X̃ ′
1 of the global algebraic irre-

ducible component X ′
1 through x′ with multiplicity m′

2 (along which t′1 is

a cotangent direction), and similarly for Eλ and the component X̃ ′
2 with

multiplicity m′
1 in the case of two analytic branches.

Remark 2.4.2. The case X ′
2 = X ′

1 can happen, and there is no X̃ ′
1 in case of

one analytic branch (i.e., in case m′
2 = 0).

We will also need to know the multiplicities µj of the components Ej in
Figure 1, but this will be easier to give after we have proved Theorem 2.4.1;
see Corollary 2.4.3.

The labelling of the Ej ’s indicates the order in which they arise in the reso-
lution process, with each “new” Ej linking the preceding ones to the rest of the
closed fiber in the case of one initial analytic branch. Keeping this picture in
mind, we see that it is always the strict transform X̃ ′

2 of the initial component
with formal parameter t′2 that occurs at the end of the chain, and this is the
component whose multiplicity is m′

1.

Proof. We may assume S is local, and if S is not already excellent then (by
hypothesis) X ′

K is smooth and all connected components of its regular com-
pactification have positive arithmetic genus. We claim that this positivity
assumption is preserved by extension of the fraction field K. That is, if C is a
connected regular proper curve over a field k with H1(C,OC) 6= 0 and C is a
dense open in C that is k-smooth, then for any extension k′/k we claim that
all connected components C ′

i of the regular k′-curve C ′ = C/k′ have compact-

ification C
′
i with H1(C

′
i,OC

′
i
) 6= 0. Since the field H0(C,OC) is clearly finite

separable over k, by using Stein factorization for C we may assume C is geo-

metrically connected over k. Thus, C
′
= C/k′ is a connected proper k′-curve

with H1(C
′
,OC

′) 6= 0 and there is a dense open C ′ that is k′-smooth, and

we want to show that the normalization of C
′
red has positive arithmetic genus.

Since C
′
is generically reduced, the map from OC

′ to the normalization sheaf
of OC

′
red

has kernel and cokernel supported in dimension 0, and so the map on

H1’s is an isomorphism. Thus, the normalization of C
′
red indeed has positive

arithmetic genus.
We conclude that Lemma 2.1.1 and the base-change compatibility of Defini-

tion 2.2.3 (via Theorem 2.2.2) permit us to base-change to ÔS,s without losing
any hypotheses. Thus, we may assume S = SpecW with W a complete (hence
excellent) discrete valuation ring. This brings us to the excellent case with all
connected components of the regular compactification of X ′

K having positive
arithmetic genus when the residue field is not separably closed. If in addition
k(s) is not separably closed, then we claim that base-change to SpecW sh pre-
serves all hypotheses, and so we can always get to the case of a separably closed
residue field (in particular, we get to the case with k(x′) separably closed); see
[24, p. 17] for a proof that strict henselization preserves excellence. We need
to show that base change to W sh commutes with the formation of the minimal
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regular resolution. This is a refinement on Theorem 2.2.2 because such base
change is generally not residually trivial.

From the proof of Theorem 2.2.2 in the excellent case, we see that if X ′ ↪→ X
′

is a Nagata compactification then the minimal resolution X → X ′ of X ′ is the

part of the minimal regular resolution of X
′
that lies over X ′. Hence, the base-

change problem for W → W sh is reduced to the proper case. We may assume
that X ′ is connected, so W̃ = H0(X ′,OX′) is a complete discrete valuation

ring finite over W . Hence, W̃ sh ' W̃ ⊗W W sh, so we may reduce to the case
when X ′ → SpecW is its own Stein factorization. In this proper case, the
positivity condition on the arithmetic genus of the generic fiber allows us to
use [41, 9/3.28] (which rests on a dualizing-sheaf criterion for minimality) to
conclude that formation of the minimal regular resolution of X ′ is compatible
with étale localization on W . A standard direct limit argument that chases
the property of having a −1-curve in a fiber over X ′ thereby shows that the
formation of the minimal regular resolution is compatible with ind-étale base
change (such as W → W sh). Thus, we may finally assume that W is excellent
and has a separably closed residue field, and so we no longer need to impose a
positivity condition on arithmetic genera of the connected components of the
generic-fiber regular compactification.

The intrinsic numerical data for the unique minimal resolution (that is, the
self-intersection numbers and multiplicities of components in the exceptional
divisor for this resolution) may be computed in an étale neighborhood of x′,
by Corollary 2.2.4 and Remark 2.2.5, and the Artin approximation theorem is
the ideal tool for finding a convenient étale neighborhood in which to do such a
calculation. We will use the Artin approximation theorem to construct a special
case that admits an étale neighborhood that is also an étale neighborhood of
our given x′, and so it will be enough to carry out the resolution in the special
case. The absence of a good theory of minimal regular resolutions for complete
2-dimensional local noetherian rings prevents us from carrying out a proof
entirely on ÔX′,x′ , and so forces us to use the Artin approximation theorem.
It is perhaps worth noting at the outset that the reason we have to use Artin
approximation is that the resolution process to be used in the special case will
not be intrinsic (we blow up certain codimension-1 subschemes that depend on
coordinates).

Here is the special case that we wish to analyze. Let n > 1 be a positive
integer that is a unit in W , and choose 1 ≤ r < n with gcd(r, n) = 1. Pick inte-
gers m1 ≥ 1 and m2 ≥ 0 satisfying m1 ≡ −rm2 mod n. For technical reasons,
we do not require either of the mj ’s to be units in W . To motivate things, let
us temporarily assume that the residue field k of W contains a full set of nth
roots of unity. Let µn(k) act on the regular domain A = W [t1, t2]/(t

m1
1 tm2

2 −π)
via

(2.4.2) [ζ](t1) = ζt1, [ζ](t2) = ζrt2.

Since the µn(k)-action in (2.4.2) is clearly free away from t1 = t2 = π = 0, the
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quotient
Z = (Spec(A))/µn(k) = Spec(B)

(with B = Aµn(k)) is normal and also is regular away from the image point
z ∈ Z of t1 = t2 = π = 0.

To connect up the special situation (Z, z) and the tame cyclic quotient sin-
gularity x′ ∈ X ′

/S , note that Lemma 2.3.4 shows that our situation is formally

isomorphic to the algebraic Z = Spec(B) for a suitable such B and n ∈ W×.
By the Artin approximation theorem, there is a common (residually trivial)
connected étale neighborhood (U, u) of (Z, z) and (X ′, x′). That is, there is
a pointed connected affine W -scheme U = Spec(A) that is a residually-trivial
étale neighborhood of x′ and of z. In particular, U is a connected normal W -
curve. We can assume that u is the only point of U over z, and also the only
point of U over x′. Keep in mind (e.g., if gcd(m1,m2) > 1) that the field K
might not be separably closed in the function fields of U or Z, so the generic
fibers of U and Z = Spec(B) over W might not be geometrically connected
and U is certainly not proper over W in general.

The étale-local nature of the minimal regular resolution, as provided by
Corollary 2.2.4 and Remark 2.2.5, implies that the minimal regular resolutions
of (X ′, x′) and (Z, z) have pullbacks to (U, u) that coincide with the minimal
regular resolution of U along {u}. The fibers over u, x′, z are all the same due
to residual-triviality, so the geometry of the resolution fiber at x′ is the same as
that over z. Hence, we shall compute the minimal regular resolution Z ′ → Z
at z, and will see that the fiber of Z ′ over z is as in Figure 1.

Let us now study (Z, z). Since n is a unit in W , the normal domain
B = Aµn(k) is a quotient of W [t1, t2]

µn(k) via the natural map. Since the
action of µn(k) as in (2.4.2) sends each monomial te1

1 t
e2
2 to a constant multiple

of itself, the ring of invariants W [t1, t2]
µn(k) is spanned over W by the invariant

monomials. Clearly te1
1 t

e2
2 is µn(k)-invariant if and only if e1 + re2 = nf for

some integer f (so e2 ≤ (n/r)f), in which case te1
1 t

e2
2 = ufve2 , where u = tn1

and v = t2/t
r
1 are µn(k)-invariant elements in the fraction field of W [t1, t2].

Note that even though v does not lie in W [t1, t2], for any pair of integers i, j
satisfying 0 ≤ j ≤ (n/r)i we have uivj ∈ W [t1, t2] and

W [t1, t2]
µn(k) =

⊕

0≤j≤(n/r)i

Wuivj .

We have tm1
1 tm2

2 = uµvm2 with m1 + rm2 = nµ (so m2 ≤ (n/r)µ). Thus,

(2.4.3) B =

⊕
0≤j≤(n/r)iWuivj

(uµvm2 − π)
.

Observe that (2.4.3) makes sense as a definition of finite-type W -algebra, with-
out requiring n to be a unit and without requiring that k contain any non-trivial
roots of unity. It is clear that (2.4.3) is W -flat, as it has a W -module basis
given by monomials uivj with 0 ≤ j ≤ (n/r)i and either i < µ or j < m2. It
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is less evident if (2.4.3) is normal for any n, but we do not need this fact. We
will inductively compute certain blow-ups on (2.4.3) without restriction on n
or on the residue field, and the process will end at a resolution of singularities
for SpecB.

Before we get to the blowing-up, we shall show that SpecB is a W -curve
and we will infer some properties of its closed fiber. Note that the map
K(u, v) → K(t1, t2) defined by u 7→ tn1 , v 7→ t2/t

r
1 induces a W -algebra in-

jection

(2.4.4)
⊕

0≤j≤(n/r)i

Wuivj → W [t1, t2]

that is finite because tn1 = u and tn2 = urvn. Thus, the left side of
(2.4.4) is a 3-dimensional noetherian domain and passing to the quotient by
uµvm2 − π = tm1

1 tm2
2 − π yields a finite surjection

(2.4.5) Spec(W [t1, t2]/(t
m1
1 tm2

2 − π)) → Spec(B).

Passing to the generic fiber and recalling that B isW -flat, we infer that Spec(B)
is a W -curve with irreducible generic fiber, so Spec(B) is 2-dimensional and
connected. We also have a finite surjection modulo π,

(2.4.6) Spec(k[t1, t2]/(t
m1
1 tm2

2 )) → Spec(B/π),

so the closed fiber of Spec(B) consists of at most two irreducible components
(or just one when m2 = 0), to be called the images of the t1-axis and t2-axis
(where we omit mention of the t1-axis when m2 = 0). Since the t2-axis is
the preimage of the zero-scheme of u = tn1 under (2.4.6), we conclude that
when m2 > 0 the closed fiber Spec(B/π) does have two distinct irreducible
components.

Inspired by the case of toric varieties, we will now compute the blow-up Z ′

of the W -flat Z = Spec(B) along the ideal (u, uv). Since

Spec(W [t1, t2]/(t
m1
1 tm2

2 − π, tn1 , t
n−r
1 t2)) → Spec(B/(u, uv))

is a finite surjection and the source is supported in the t2-axis of the closed fiber
over Spec(W ), it follows that Spec(B/(u, uv)) is supported in the image of the
t2-axis of the closed fiber of Spec(B) over Spec(W ). In particular, blowing up
Z along (u, uv) does not affect the generic fiber of Z over W . Since Z is W -flat,
it follows that the proper blow-up map Z ′ → Z is surjective.

There are two charts covering Z ′, D+(u) and D+(uv), where we adjoin the
ratios uv/u = v and u/uv = 1/v respectively. Thus,

D+(u) = Spec(B[v]) = Spec(W [u, v]/(uµvm2 − π))

is visibly regular and connected, and D+(uv) = Spec(B[1/v]) with

B[1/v] =

⊕
j≤(n/r)i, 0≤i Wuivj

(uµvm2 − π)
.
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We need to rewrite this latter expression in terms of a more useful set of vari-
ables. We begin by writing (as one does when computing the Jung–Hirzebruch
continued fraction for n/r)

n = b1r − r′

with b1 ≥ 2 and either r = 1 with r′ = 0 or else r′ > 0 with gcd(r, r′) = 1 (since
gcd(n, r) = 1). We will first treat the case r′ = 0 (proving that B[1/v] is also
regular) and then we will treat the case r′ > 0. Note that there is no reason to
expect that p cannot divide r or r′, even if p - n, and it is for this reason that
we had to recast the definition of B in a form that avoids the assumption that
n is a unit in W . For similar reasons, we must avoid assuming m1 or m2 is a
unit in W .

Assume r′ = 0, so r = 1, b1 = n, and b1µ − m2 = m1. Let i′ = b1i − j
and j′ = i, so i′ and j′ vary precisely over non-negative integers and
uivj = (1/v)i′

(uvb1)j′
. Thus, letting u′ = 1/v and v′ = uvb1 yields

B[1/v] = W [u′, v′]/(u′b1µ−m2v′µ − π) = W [u′, v′]/(u′m1v′µ − π),

which is regular. In the closed fiber of Z ′ = Bl(u,uv)(Z) over Spec(W ), let D1

denote the v′-axis in D+(uv) = SpecB[1/v] and when m2 > 0 let D2 denote
the u-axis in D+(u). The multiplicities of D1 and D2 in Z ′

k are respectively
m1 = b1µ−m2 and m2 (with multiplicity m2 = 0 being a device for recording
that there is no D2). The exceptional divisor E is a projective line over k
(with multiplicity µ and gluing data u′ = 1/v) and hence the uniformizer π has
divisor on Z ′ = Bl(u,uv)(Z) given by

divZ′(π) = (b1µ−m2)D1 + µE +m2D2 = m1D1 + µE +m2D2

(when m2 = 0, the final term really is omitted).
It is readily checked that the Dj ’s each meet E transversally at a single

k-rational point (suppressing D2 when m2 = 0). The intersection product
divZ′(π).E makes sense since E is proper over k, even though Z is not proper
over W , and it must vanish because divZ′(π) is principal, so by additivity of
intersection products in the first variable (restricted to effective Cartier divisors
for a fixed proper second variable such as E) we have

0 = divZ′(π).E = b1µ−m2 + µ(E.E) +m2.

Thus, E.E = −b1.
Now assume r′ > 0. Since n = b1r − r′, the condition 0 ≤ j ≤ (n/r)i can

be rewritten as 0 ≤ i ≤ (r/r′)(b1i − j). Letting j′ = i and i′ = b1i − j,

we have uivj = u′i′
v′j′

with u′ = 1/v and v′ = uvb1 . In particular,

uµvm2 = u′b1µ−m2v′µ. Thus,

(2.4.7) B[1/v] =

⊕
0≤j′≤(r/r′)i′ Wu′i′

v′j′

(u′b1µ−m2v′µ − π)
.

Documenta Mathematica 8 (2003) 325–402



J1(p) Has Connected Fibers 353

Note the similarity between (2.4.3) and (2.4.7) up to modification of parame-
ters: replace (n, r,m1,m2, µ) with (r, r′,m1, µ, b1µ −m2). The blow-up along
(u′, u′v′) therefore has closed fiber over Spec(W ) with the following irreducible
components: the v′-axis D1 in D+(uv) with multiplicity b1µ −m2, the u-axis
D2 in D+(u) with multiplicity m2 (so this only shows up when m2 > 0), and
the exceptional divisor E that is a projective line (via gluing u′ = 1/v) having
multiplicity µ and meeting D1 (as well as D2 when m2 > 0) transversally at
a single k-rational point. We will focus our attention on D+(uv) (as we have
already seen that the other chart D+(u) is regular), and in particular we are
interested in the “origin” in the closed fiber of D+(uv) over Spec(W ) where
the projective line E meets D1; near this origin, D+(uv) is an affine open that
is given by the spectrum of (2.4.7).

If r were also a unit in W then D+(uv) would be the spectrum of the ring
of µr(k)-invariants in W [t′1, t

′
2]/(t

′
1
m1t′2

µ − π) with the action [ζ](t′1) = ζt′1 and
[ζ](t′1) = ζr′

t′2 (this identification uses the identity m1 + r′µ = r(b1µ − m2)),
and without any restriction on r we at least see that (2.4.7) is an instance of
the general (2.4.3) and that there is a natural finite surjection

Spec(k[t′1, t
′
2]/(t

′
1
m1t′2

µ
)) → D+(uv)k.

On D+(uv)k, the component E of multiplicity µ is the image of the t′1-axis
and the component D1 with multiplicity m1 is the image of the t′2-axis. As
a motivation for what follows, note also that if r ∈ W× then since r > 1 we
see that the “origin” in D+(uv)k is necessarily a non-regular point in the total
space over Spec(W ) (by Serre’s Theorem 2.3.9).

We conclude (without requiring any of our integer parameters to be units in
W ) that if we make the change of parameters

(2.4.8) (n, r,m1,m2, µ) Ã (r, r′,m1, µ, b1µ−m2)

then D+(uv) is like the original situation (2.4.3) with a revised set of initial
parameters. In particular, n is replaced by the strictly smaller r > 1, so the
process will eventually end. Moreover, since µ > 0 we see that the case m2 = 0
is now “promoted” to the case m2 > 0. When we make the blow-up at the
origin in D+(uv)k, the strict transform E1 of E plays the same role that D2

played above, so E1 is entirely in the regular locus and the new exceptional
divisor E′ has multiplicity b1µ − m2 (this parameter plays the role for the
second blow-up that µ played for the first blow-up, as one sees by inspecting
our change of parameters in (2.4.8)).

As the process continues, nothing more will change around E1, so inductively
we conclude from the descriptions of the regular charts that the process ends
at a regular connected W -curve with closed-fiber Weil divisor

(2.4.9) · · · + (b1µ−m2)E
′ + µE1 +m2D2 + . . .

(where we have abused notation by writing E ′ to denote the strict transform
of E′ in the final resolution, and this strict transform clearly has generic mul-
tiplicity b1µ −m2). The omitted terms in (2.4.9) do not meet E1, so we may
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form the intersection against E1 to solve

0 = (b1µ−m2) + µ(E1.E1) +m2

just as in the case r′ = 0 (i.e., r = 1), so E1.E1 = −b1. Since

n

r
= b1 − 1

r/r′ ,

by induction on the length of the continued fraction we reach a regular resolu-
tion in the expected manner, with Ej .Ej = −bj for all j and the final resolution
having fiber over z ∈ Z looking exactly like in Figure 1. Note also that each
new blow-up separates all of the previous exceptional lines from the (strict
transform of the initial) component through z with multiplicity m1. Since
−bj ≤ −2 < −1 for all j, we conclude that at no stage of the blow-up pro-
cess before the end did we have a regular scheme (otherwise there would be
a −1-curve in a fiber over the original base Z). Thus, we have computed the
minimal regular resolution at z.

We now compute the multiplicity µj in the closed fiber of X ′reg for each
fibral component Ej over x′ ∈ X ′ in Figure 1. In order to compute the µj ’s, we
introduce some notation. Let n/r > 1 be a reduced-form fraction with positive
integers n and r, so we can write

n/r = [b1, b2, . . . , bλ]JH := b1 − 1

b2 − 1

· · · − 1

bλ

as a Jung–Hirzebruch continued fraction, where bj ≥ 2 for all j. Define
Pj = Pj(b1, . . . , bλ) and Qj = Qj(b1, . . . , bλ) by

P−1 = 0, Q−1 = −1, P0 = 1, Q0 = 0,

Pj = bjPj−1 − Pj−2, Qj = bjQj−1 −Qj−2

for all j ≥ 1. Clearly Pj and Qj are universal polynomials in b1, . . . , bj , and by
induction PjQj−1 −QjPj−1 = −1 and Qj > Qj−1 for all j ≥ 0, so in particular
Qj > 0 for all j > 0. Thus,

[b1, . . . , bλ]JH =
Pλ(b1, . . . , bλ)

Qλ(b1, . . . , bλ)

makes sense and Pλ/Qλ is in reduced form. Thus, Pλ = n and Qλ = r since
the Qj ’s are necessarily positive.

Documenta Mathematica 8 (2003) 325–402



J1(p) Has Connected Fibers 355

Corollary 2.4.3. With hypotheses and notation as in Theorem 2.4.1, let µj

denote the multiplicity of Ej in the fiber of X ′reg over k(x′)sep. The condition
r = 1 happens if and only if λ = 1, in which case µ1 = (m′

1 +m′
2)/n.

If r > 1 (so λ > 1), then the µj’s are the unique solution to the equation

(2.4.10)




b1 −1 0 0 . . . 0 0 0
−1 b2 −1 0 . . . 0 0 0
0 −1 b3 −1 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . −1 bλ−1 −1
0 0 0 0 . . . 0 −1 bλ







µ1

...

...
µλ




=




m′
2

0
...
0
m′

1



.

Keeping the condition r > 1, define P ′
j = Pj(bλ−j+1, . . . , bλ), so P ′

λ = n and
P ′

λ−1 = Qλ(b1, . . . , bλ) = r. If we let m̃2 = P ′
λ−1m

′
2 + m′

1 = rm′
2 + m′

1, then
the µj’s are also the unique solution to

(2.4.11)




P ′
λ 0 0 . . . 0 0 0

−P ′
λ−2 P ′

λ−1 0 . . . 0 0 0
0 −P ′

λ−3 P ′
λ−2 . . . 0 0 0

...
...

...
...

...
...

...
0 0 0 . . . −P ′

1 P ′
2 0

0 0 0 . . . 0 −1 P ′
1







µ1

...

...
µλ




=




m̃2

m′
1

...
m′

1

m′
1



.

In particular, µ1 = (rm′
2 +m′

1)/n.

Note that in the applications with X ′ = X/H as at the beginning of §2.3,
the condition χ′

1 6= χ′
2 (i.e., H ′

x|x′ does not act through scalars) is equivalent
to the condition r > 1 in Corollary 2.4.3.

Proof. The value of µ1 when r = 1 was established in the proof of Theorem
2.4.1, so now assume r > 1. On X ′reg (or rather, its base change to Osh

S,s) we
have

(2.4.12) div(πs) = m′
1X̃

′
2 +

λ∑

j=1

µjEj +m′
2X̃

′
1 + . . .

where

• the X̃ ′
1-term does not appear if there is only one analytic branch through

x′ (recall we also set m′
2 = 0 in this case),

• the X̃ ′
j-terms are a single term when there are two analytic branches

but only one global irreducible (geometric) component (in which case
m′

1 = m′
2),

• the omitted terms “. . . ” on the right side of (2.4.12) are not in the fiber
over x′ (and in particular do not intersect the Ej ’s).
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Thus, the equations Ej .div(πs) = 0 and the intersection calculations in the
proof of Theorem 2.4.1 (as summarized by Figure 1, including transversalities)
immediately yield (2.4.10). By solving this system of equations by working
up from the bottom row, an easy induction argument yields the reformulation
(2.4.11).

To prove Theorems 1.1.2 and 1.1.6, the preceding general considerations will
provide the necessary intersection-theoretic information on a minimal resolu-
tion. To apply Theorem 2.4.1 and Corollary 2.4.3 to the study of singularities
at points x′ on modular curves, we need to find the value of the parameter rx′

in each case. This will be determined by studying universal deformation rings
for moduli problems of elliptic curves.

3 The Coarse moduli scheme X1(p)

Let p be a prime number. In this section we review the construction of the
coarse moduli scheme X1(p) attached to Γ1(p) in terms of an auxiliary finite
étale level structure which exhibits X1(p) as the compactification of a quotient
of a fine moduli scheme. It is the fine moduli schemes whose completed local
rings are well understood through deformation theory (as in [34]), and this will
provide the starting point for our subsequent calculations of regular models
and component groups.

3.1 Some general nonsense

As in [34, Ch. 4], for a scheme T we let (Ell/T ) be the category whose objects
are elliptic curves over T -schemes and whose morphisms are cartesian diagrams.
The moduli problem [Γ1(p)] is the contravariant functor (Ell) → (Sets) that
to an elliptic curve E/S attaches the set of P ∈ E(S) such that the relative
effective Cartier divisor

[0] + [P ] + [2P ] + · · · + [(p− 1)P ],

viewed as a closed subscheme of E, is a closed subgroup scheme. For any
moduli problem P on (Ell/T ) and any object E/S over a T -scheme, we define
the functor PE/S(S′) = P(E/S′) to classify “P-structures” on base changes of
E/S . If PE/S is representable (with some property P relative to S) for every
E/S , we say that P is relatively representable (with property P). For example,
[Γ1(p)] is relatively representable and finite locally free of degree p2 −1 on (Ell)
for every prime p.

For p ≥ 5, the moduli problem [Γ1(p)]/Z[1/p] is representable by a smooth
affine curve over Z[1/p] [34, Cor. 2.7.3, Thm. 3.7.1, and Cor. 4.7.1]. For any
elliptic curve E/S over an Fp-scheme S, the point P = 0 is fixed by the auto-
morphism −1 of E/S , and is in [Γ1(p)](E/S) because [0]+[P ]+· · ·+[(p−1)P ] is
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the kernel of the relative Frobenius morphism F : E → E(p). Thus, [Γ1(p)]/Z(p)

is not rigid, so it is not representable.
As there is no fine moduli scheme associated to [Γ1(p)]/Z(p)

for any prime

p, we let X1(p) be the compactified coarse moduli scheme M([Γ1(p)]/Z(p)
), as

constructed in [34, Ch. 8]. This is a proper normal Z(p)-model of a smooth
and geometrically connected curve X1(p)/Q, but X1(p) is usually not regular.
Nevertheless, the complete local rings on X1(p) are computable in terms of
abstract deformation theory. Since (Z/pZ)×/{±1} acts on isomorphism classes
of Γ1(p)-structures via

(E,P ) 7→ (E, a · P ) ' (E,−a · P ),

we get a natural action of this group on X1(p) which is readily checked to be a
faithful action (i.e., non-identity elements act non-trivially). Thus, for any sub-
group H ⊆ (Z/pZ)×/{±1} we get the modular curve XH(p) = X1(p)/H which
is a normal proper connected Z(p)-curve with smooth generic fiber XH(p)/Q.
When p > 3, the curve XH(p) has tame cyclic quotient singularities at its
non-regular points.

In order to compute a minimal regular model for these normal curves, we
need more information than is provided by abstract deformation theory: we
need to keep track of global irreducible components on the geometric fiber mod
p, whereas deformation theory will only tell us about the analytic branches
through a point. Fortunately, in the case of modular curves XH(p), distinct
analytic branches through a closed-fiber geometric point always arise from dis-
tinct global (geometric) irreducible components through the point. In order to
review this fact, as well as to explain the connection between complete local
rings on XH(p) and rings of invariants in universal deformation rings, we need
to recall how X1(p) can be constructed from fine moduli schemes. Let us briefly
review the construction process.

Pick a representable moduli problem P that is finite, étale, and Galois over
(Ell/Z(p)) with Galois group GP , and for which M(P) is affine. For example
(cf. [34, §4.5–4.6]) if ` 6= p is a prime with ` ≥ 3, we can take P to be the
moduli problem [Γ(`)]/Z(p)

that attaches to E/S the set of isomorphisms of
S-group schemes

φ : (Z/`Z)2S ' E[`];

the Galois group GP is GL2(F`). Let Y1(p;P) be the fine moduli scheme
M([Γ1(p)]/Z(p)

,P) that classifies pairs consisting of a Γ1(p)-structure and a P-
structure on elliptic curves over variable Z(p)-schemes. The scheme Y1(p;P) is
a flat affine Z(p)-curve. Let Y1(p) be the quotient of Y1(p;P) by the GP -action.

We introduce the global P rather than just use formal deformation theory
throughout because on characteristic-p fibers we need to retain a connection be-
tween closed fiber irreducible components of global modular curves and closed
fiber “analytic” irreducible components of formal deformation rings. The pre-
cise connection between global P’s and infinitesimal deformation theory is given
by the well-known:

Documenta Mathematica 8 (2003) 325–402



358 Conrad, Edixhoven, Stein

Theorem 3.1.1. Let k be an algebraically closed field of characteristic p and
let W = W (k) be its ring of Witt vectors. Let z ∈ Y1(p)/k be a rational point.
Let Aut(z) denote the finite group of automorphisms of the (non-canonically
unique) Γ1(p)-structure over k underlying z. Choose a P-structure on the el-
liptic curve underlying z, with P as above, and let z′ ∈ Y1(p;P)(k) be the
corresponding point over z.

The ring ÔY1(p;P)W ,z′ is naturally identified with the formal deformation ring

of z. Under the resulting natural action of Aut(z) on ÔY1(p;P)W ,z′ , the subring

of Aut(z)-invariants is ÔY1(p)W ,z.
For any subgroup H ⊆ (Z/pZ)×/{±1} equipped with its natural action on

Y1(p), the stabilizer Hz′|z of z′ in H acts faithfully on the universal deformation

ring ÔY1(p;P)W ,z′ of z in the natural way, with subring of invariants ÔYH(p)W ,z.

Proof. Since P is étale and Y1(p;P)W is a fine moduli scheme, the interpreta-

tion of ÔY1(p;P)W ,z′ as a universal deformation ring is immediate. Since Y1(p)W

is the quotient of Y1(p;P)W by the action of GP , it follows that ÔY1(p)W ,z is

identified with the subring of invariants in ÔY1(p;P)W ,z′ for the action of the
stabilizer of z′ for the GP -action on Y1(p;P)W . We need to compute this
stabilizer subgroup.

If z′ = (Ez, Pz, ι) with supplementary P-structure ι, then g ∈ GP fixes z′

if and only if (Ez, Pz, ι) is isomorphic to (Ez, Pz, g(ι)). This says exactly that
there exists an automorphism αg of (Ez, Pz) carrying ι to g(ι), and such αg is
clearly unique if it exists. Moreover, any two P-structures on Ez are related
by the action of a unique g ∈ GP because of the definition of GP as the Galois
group of P (and the fact that z is a geometric point). Thus, the stabilizer of
z in GP is naturally identified with Aut(Ez, Pz) = Aut(z) (compatibly with
actions on the universal deformation ring of z). The assertion concerning the
H-action is clear.

Since Y1(p;P) is a regular Z(p)-curve [34, Thm. 5.5.1], it follows that its
quotient Y1(p) is a normal Z(p)-curve. Moreover, by [34, Prop. 8.2.2] the natural
map j : Y1(p) → A1

Z(p)
is finite, and hence it is also flat [44, 23.1]. In [34],

X1(p) is defined to be the normalization of Y1(p) over the compactified j-line
P1

Z(p)
. Both X1(p) and Y1(p) are independent of the auxiliary choice of P. The

complex analytic theory shows that X1(p) has geometrically connected fibers
over Z(p), so the same is true for Y1(p) since the complete local rings at the
cusps are analytically irreducible mod p (by the discussion in §4.2, especially
the self-contained Lemma 4.2.4 and Lemma 4.2.5).

3.2 Formal parameters

To do deformation theory computations, we need to recall some canonical
formal parameters in deformation rings. Fix an algebraically closed field k
of characteristic p and let W = W (k) denote its ring of Witt vectors. Let
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z ∈ Y1(p)/k be a k-rational point corresponding to an elliptic curve Ez/k with
Γ1(p)-structure Pz.

For later purposes, it is useful to give a conceptual description of the 1-
dimensional “reduced” cotangent space m/(p,m2) of R0

z, or equivalently the
cotangent space to the equicharacteristic formal deformation functor of Ez:

Theorem 3.2.1. The cotangent space to the equicharacteristic formal defor-
mation functor of an elliptic curve E over a field k is canonically isomorphic
to Cot0(E)⊗2.

Proof. This is just the dual of the Kodaira-Spencer isomorphism. More specif-
ically, the cotangent space is isomorphic to H1(E, (Ω1

E/k)∨)∨, and Serre duality
identifies this latter space with

H0(E, (Ω1
E/k)⊗2) H0(E,Ω1

E/k)⊗2'
oo Cot0(E)⊗2,

the first map being an isomorphism since Ω1
E/k is (non-canonically) trivial.

Let
Ez → Spec(R0

z)

denote an algebraization of the universal deformation of Ez, so non-canonically
R0

z ' W [[t]] and (by Theorem 3.1.1) there is a unique local W -algebra map
R0

z → Rz to the universal deformation ring Rz of (Ez, Pz) such that there is a
(necessarily unique) isomorphism of deformations between the base change of
Ez over Rz and the universal elliptic curve underlying the algebraized universal
Γ1(p)-structure deformation at z.

Now make the additional hypothesis Pz = 0, so upon choosing a formal co-
ordinate x for the formal group of Ez it makes sense to consider the coordinate

x = x(Pz) ∈ Rz

of the “point” Pz in the universal Γ1(p)-structure over Rz. We thereby get a
natural local W -algebra map

(3.2.1) W [[x, t]] → Rz.

Theorem 3.2.2. The natural map (3.2.1) is a surjection with kernel generated
by an element fz that is part of a regular system of parameters of the regular
local ring W [[x, t]]. Moreover, x and t span the 2-dimensional cotangent space
of the target ring.

Proof. The surjectivity and cotangent-space claims amount to the assertion
that an artinian deformation whose Γ1(p)-structure vanishes and whose t-
parameter vanishes necessarily has p = 0 in the base ring (so we then have
a constant deformation). The vanishing of p in the base ring is [34, 5.3.2.2].
Since the deformation ring Rz is a 2-dimensional regular local ring, the kernel
of the surjection (3.2.1) is a height-1 prime that must therefore be principal
with a generator that is part of a regular system of parameters.
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3.3 Closed-fiber description

For considerations in Section 5, we will need some more refined information,
particularly a description of fz mod p in Theorem 3.2.2. To this end, we first
need to recall some specialized moduli problems in characteristic p.

Definition 3.3.1. If E/S is an elliptic curve over an Fp-scheme S, and G ↪→ E
is a finite locally free closed subgroup scheme of order p, we shall say that G is a
(1, 0)-subgroup if G is the kernel of the relative Frobenius map FE/S : E → E(p)

and G is a (0, 1)-subgroup if the order p group scheme E[p]/G ↪→ E/G is the
kernel of the relative Frobenius for the quotient elliptic curve E/G over S.

Remark 3.3.2. This is a special case of the more general concept of (a, b)-cyclic
subgroup which is developed in [34, §13.4] for describing the mod p fibers of
modular curves. On an ordinary elliptic curve over a field of characteristic p,
an (a, b)-cyclic subgroup has connected-étale sequence with connected part of
order pa and étale part of order pb.

Let P be a representable moduli problem over (Ell/Z(p)) that is finite, étale,
and Galois with M(P) affine (as in §3.1). For (a, b) = (1, 0), (0, 1), it makes
sense to consider the subfunctor

(3.3.1) [[Γ1(p)]-(a, b)-cyclic,P]

of points of [Γ1(p)/Fp
,P] whose Γ1(p)-structure generates an (a, b)-cyclic sub-

group. By [34, 13.5.3, 13.5.4], these subfunctors (3.3.1) are represented by
closed subschemes of Y1(p;P)/Fp

that intersect at exactly the supersingular

points and have ordinary loci that give a covering of Y1(p;P)ord/Fp
by open sub-

schemes. Explicitly, we have an Fp-scheme isomorphism

(3.3.2) M([Γ1(p)]-(0, 1)-cyclic,P) ' M([Ig(p)],P)

with a smooth (possibly disconnected) Igusa curve, where [Ig(p)] is the mod-
uli problem that classifies Z/pZ-generators of the kernel of the relative Ver-
schiebung VE/S : E(p) → E, and the line bundle ω of relative 1-forms on the
universal elliptic curve over M(P)/Fp

provides the description

(3.3.3) M([Γ1(p)]-(1, 0)-cyclic,P) ' Spec((SymM(P)/Fp
ω)/ω⊗(p−1))

as the cover obtained by locally requiring a formal coordinate of the level-p
structure to have (p−1)th power equal to zero. The scheme (3.3.3) has generic
multiplicity p− 1 and has smooth underlying reduced curve M(P)/Fp

.
We conclude that Y1(p;P) is Z(p)-smooth at points in

M([Γ1(p)]-(0, 1)-cyclic,P)ord,

and near points in M([Γ1(p)]-(1, 0)-cyclic,P) we can use a local trivialization
of ω to find a nilpotent function X with a moduli-theoretic interpretation as
the formal coordinate of the point in the Γ1(p)-structure (with Xp−1 arising as
Φp(X + 1) mod p along the ordinary locus). Thus, we get the “ordinary” part
of:
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Theorem 3.3.3. Let k be an algebraically closed field of characteristic p, and
z ∈ Y1(p)/k a rational point corresponding to a (1, 0)-subgroup of an elliptic
curve E over k. Choose z′ ∈ Y1(p;P)/k over z. Let fz be a generator of the

kernel of the surjection W [[x, t]] ³ ÔY1(p;P),z′ in (3.2.1).

We can choose fz so that

fz mod p =

{
xp−1 if E is ordinary,
xp−1t′ if E is supersingular,

with p, x, t′ a regular system of parameters in the supersingular case. In par-
ticular, Y1(p;P)red/k has smooth irreducible components, ordinary double point
singularities at supersingular points, and no other non-smooth points.

The significance of Theorem 3.3.3 for our purposes is that it ensures the
regular Z(p)-curve Y1(p;P)Z(p)

is nil-semistable in the sense of Definition 2.3.1.

In particular, for p > 3 and any subgroup H ⊆ (Z/pZ)×/{±1}, the modular
curve XH(p) has tame cyclic quotient singularities away from the cusps.

Proof. The geometric irreducible components of Y1(p,P)red/k are smooth curves

(3.3.2) and (3.3.3) that intersect at exactly the supersingular points, and (3.3.3)
settles the description of fz mod p in the ordinary case. It remains to verify
the description of fz mod p at supersingular points z, for once this is checked
then the two minimal primes (x) and (t′) in the deformation ring at z must
correspond to the k-fiber irreducible components of the smooth curves (3.3.2)
and (3.3.3)red through z′, and these two primes visibly generate the maximal
ideal at z′ in the k-fiber so (3.3.2) and (3.3.3)red intersect transversally at z′ as
desired.

Consider the supersingular case. The proof of [34, 13.5.4] ensures that we
can choose fz so that

(3.3.4) fz mod p = g(1,0)g(0,1),

with k[[x, t]]/g(0,1) the complete local ring at z′ on the closed subscheme (3.3.2)
and likewise for k[[x, t]]/g(1,0) and (3.3.3). By (3.3.3), we can take g(1,0) = xp−1,
so by (3.3.4) it suffices to check that the formally smooth ring k[[x, t]]/g(0,1) does
not have t as a formal parameter. In the proof of [34, 12.8.2], it is shown that
there is a natural isomorphism between the moduli stack of Igusa structures
and the moduli stack of (p− 1)th roots of the Hasse invariant of elliptic curves
over Fp-schemes. Since the Hasse invariant commutes with base change and
the Hasse invariant on the the universal deformation of a supersingular elliptic
curve over k[[t]] has a simple zero [34, 12.4.4], by extracting a (p − 1)th root
we lose the property of t being a formal parameter if p > 2. We do not need
the theorem for the supersingular case when p = 2, so we leave this case as an
exercise for the interested reader.
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4 Determination of non-regular points

Since the quotient XH(p) of the normal proper Z(p)-curve X1(p;P) is normal,
there is a finite set of non-regular points in codimension-2 on XH(p) that we
have to resolve to get a regular model. We will prove that the non-regular points
on the nil-semistable XH(p) are certain non-cuspidal Fp-rational points with
j-invariants 0 and 1728, and that these singularities are tame cyclic quotient
singularities when p > 3, so Jung–Hirzebruch resolution in Theorem 2.4.1 will
tell us everything we need to know about the minimal regular resolution of
XH(p).

4.1 Analysis away from cusps

The only possible non-regular points on XH(p) are closed points in the closed
fiber. We will first consider those points that lie in YH(p), and then we will
study the situation at the cusps. The reason for treating these cases separately
is that the deformation theory of generalized elliptic curves is a little more
subtle than that of elliptic curves. One can also treat the situation at the
cusps by using Tate curves instead of formal deformation theory; this is the
approach used in [34].

In order to determine the non-regular points on YH(p), by Lemma 2.1.1 we
only need to consider geometric points. By Theorem 3.1.1, we need a criterion
for detecting when a finite group acting on a regular local ring has regular
subring of invariants. The criterion is provided by Serre’s Theorem 2.3.9 and
leads to:

Theorem 4.1.1. A geometric point z = (Ez, Pz) ∈ Y1(p) has non-regular image
in YH(p) if and only if it is a point in the closed fiber such that |Aut(Ez)| > 2,
Pz = 0, and 2|H| - |Aut(Ez)|.

In particular, when p > 3 there are at most two non-regular points on YH(p)
and such points are Fp-rational, while for p ≤ 3 (so H is trivial) the unique
(Fp-rational) supersingular point is the unique non-regular point.

Proof. Let k be an algebraically closed field of characteristic p and define
W = W (k); we may assume that z is a k-rational point. By Lemma 2.1.1,
we may consider the situation after base change by Z(p) → W . A non-regular
point z must be a closed point on the closed fiber. Let z′ be a point over z in
Y1(p;P)(k). Let (Ez, Pz) be the structure arising from z.

First suppose p > 3 and H is trivial. The group Autk(Ez) is cyclic of
order prime to p, so the automorphism group Aut(z) of the Γ1(p)-structure
underlying z is also cyclic of order prime to p. By Theorems 3.1.1 and 2.3.9,
the regularity of ÔY1(p)W ,z is therefore equivalent to the existence of a stable
line under the action of Aut(z) on the 2-dimensional cotangent space to the

regular universal deformation ring Rz = ÔY1(p;P)W ,z′ of the Γ1(p)-structure z.
When the Γ1(p)-structure z is étale (i.e., Pz 6= 0), then the formal defor-

mation theory for z is the same as for the underlying elliptic curve Ez/〈Pz〉,
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whence the universal deformation ring is isomorphic to W [[t]]. In such cases, p
spans an Aut(z)-invariant line in the cotangent space of the deformation ring.
Even when H is not assumed to be trivial, this line is stable under the action
of the stabilizer of z′ the preimage of H in (Z/pZ)×). Hence, we get regularity
at z for any H when p > 3 and Pz 6= 0.

Still assuming p > 3, now drop the assumption of triviality on H but suppose
that the Γ1(p)-structure is not étale, so z = (Ez, 0) and Aut(z) = Autk(Ez).
The preimage H ′ ⊆ (Z/pZ)× of H acts on the deformation ring Rz since
Pz = 0. By Theorem 3.1.1 and Theorem 3.2.2, the cotangent space to Rz is
canonically isomorphic to

(4.1.1) Cot0(Ez) ⊕ Cot0(Ez)
⊗2,

where this decomposition corresponds to the lines spanned by the images of x
and t respectively. Conceptually, the first line in (4.1.1) arises from equichar-
acterisitc deformations of the point of order p on constant deformations of the
elliptic curve Ez, and the second line arises from deformations of the elliptic
curve without deforming the vanishing level structure Pz. These identifications
are compatible with the natural actions of Aut(z) = Aut(Ez).

Since p > 3, the action of Aut(Ez) = Aut(z) on the line Cot0(Ez) is given
by a faithful (non-trivial) character χid, and the other line in (4.1.1) is acted
upon by Aut(Ez) via the character χ2

id. The resulting representation of Aut(z)
on Cot0(Ez)

⊗2 is trivial if and only if χ2
id = 1, which is to say (by faithfulness)

that Aut(Ez) has order 2 (i.e., j(Ez) 6= 0, 1728). Since the H ′-action is trivial
on the line Cot0(Ez)

⊗2 (due to H ′ only acting on the level structure) and we
are passing to invariants by the action of the group H ′ ×Aut(Ez/k), by Serre’s
theorem we get regularity without restriction on H when j(Ez) 6= 0, 1728.

If j(Ez) ∈ {0, 1728} then |Aut(Ez)| > 2 and the cyclic H ′ acts on (4.1.1)
through a representation ψ ⊕ 1 with ψ a faithful character. The cyclic Aut(z)
acts through a representation χ ⊕ χ2 with χ a faithful character, so χ2 6= 1.
The commutative group of actions on (4.1.1) generated by H ′ and Aut(z) is
generated by pseudo-reflections if and only if the action of the cyclic Aut(z) on
the first line is induced by the action of a subgroup of H ′. That is, the order of
χ must divide the order of ψ, or equivalently |Aut(z)| must divide |H ′| = 2|H|.
This yields exactly the desired conditions for non-regularity when p > 3.

Now suppose p ≤ 3, so H is trivial. If Aut(Ez/k) = {±1}, so z is an ordinary
point, then for p = 3 we can use the preceding argument to deduce regularity
at z. Meanwhile, for p = 2 we see that Rz is formally smooth by Theorem
3.3.3, so the subring of invariants at z is formally smooth (by [34, p. 508]). It
remains to check non-regularity at the unique (supersingular) point z ∈ Y1(p)/k

with j = 0 = 1728 in k.
By Serre’s theorem, it suffices to check that the action of Aut(z) = Aut(Ez)

on (4.1.1) is not generated by pseudo-reflections, where Ez is the unique super-
singular elliptic curve over k (up to isomorphism). The action of Aut(Ez) is
through 1-dimensional characters, so the p-Sylow subgroup must act trivially.
In both cases (p = 2 or 3) the group Aut(Ez) has order divisible by only two
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primes p and p′, with the p′-Sylow of order > 2. This p′-Sylow must act through
a faithful character on Cot0(Ez) (use [20, Lemma 3.3] or [68, Lemma 2.16]),
and hence this group also acts non-trivially on Cot0(Ez)

⊗2. It follows that this
action is not generated by pseudo-reflections.

4.2 Regularity along the cusps

Now we check that XH(p) is regular along the cusps, so we can focus our
attention on YH(p) when computing the minimal regular resolution of XH(p).
We will again use deformation theory, but now in the case of generalized elliptic
curves. Throughout this section, p is an arbitrary prime.

Recall that a generalized elliptic curve over a scheme S is a proper flat map
π : E → S of finite presentation equipped with a section e : S → Esm into the
relative smooth locus and a map

+ : Esm ×S E → E

such that

• the geometric fibers of π are smooth genus 1 curves or Néron polygons;

• + restricts to a commutative group scheme structure on Esm with identity
section e;

• + is an action of Esm on E such that on singular geometric fibers with
at least two “sides”, the translation action by each rational point in the
smooth locus induces a rotation on the graph of irreducible components.

Since the much of the basic theory of Drinfeld structures was developed in [34,
Ch. 1] for arbitrary smooth separated commutative group schemes of relative
dimension 1, it can be applied (with minor changes in proofs) to the smooth
locus of a generalized elliptic curve. In this way, one can merge the “affine”
moduli-theoretic Z-theory in [34] with the “proper” moduli-theoretic Z[1/N ]-
theory in [15]. We refer the reader to [21] for further details on this synthesis.

The main deformation-theoretic fact we need is an analogue of Theorem
3.2.1:

Theorem 4.2.1. An irreducible generalized elliptic curve C1 over a perfect
field k of characteristic p > 0 admits a universal deformation ring that is
abstractly isomorphic to W [[t]], and the equicharacteristic cotangent space of
this deformation ring is canonically isomorphic to Cot0(C

sm
1 )⊗2.

Proof. The existence and abstract structure of the deformation ring are special
cases of [15, III, 1.2]. To describe the cotangent space intrinsically, we wish to
put ourselves in the context of deformation theory of proper flat curves. In-
finitesimal deformations of C1 admit a unique generalized elliptic curve struc-
ture once we fix the identity section [15, II, 2.7], and any two choices of iden-
tity section are uniquely related by a translation action. Thus, the deformation
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theory for C1 as a generalized elliptic (i.e., marked) curve coincides with its de-
formation theory as a flat (unmarked) curve. In particular, the tangent space
to this deformation functor is canonically identified with Ext1C1

(Ω1
C1/k,OC1

)

[56, §4.1.1].
Since the natural map Ω1

C1/k → ωC1/k to the invertible relative dualizing

sheaf is injective with finite-length cokernel (supported at the singularity),

Ext1C1
(ωC1/k,OC1

) ' Ext1C1
(ω⊗2

C1/k, ωC1/k) ' H0(C1, ω
⊗2
C1/k)∨,

with the final isomorphism provided by Grothendieck duality. Thus, the cotan-
gent space to the deformation functor is identified with H0(C1, ω

⊗2
C1/k). Since

ωC1/k is (non-canonically) trivial, just as for elliptic curves, we get a canonical
isomorphism

H0(C1, ω
⊗2
C1/k) ' H0(C1, ωC1/k)⊗2 ' Cot0(C

sm
1 )⊗2

(the final isomorphism defined via pullback along the identity section).

Definition 4.2.2. A Γ1(N)-structure on a generalized elliptic curve E → S is
an “S-ample” Drinfeld Z/NZ-structure on Esm; i.e., a section P ∈ Esm[N ](S)
such that the relative effective Cartier divisor

D =
∑

j∈Z/NZ

[jP ]

in Esm is a subgroup scheme which meets all irreducible components of all
geometric fibers.

If E/S admits a Γ1(N)-structure, then the non-smooth geometric fibers must
be d-gons for various d|N . In case N = p is prime, this leaves p-gons and 1-
gons as the only options. The importance of Definition 4.2.2 is the following
analogue of Theorem 3.1.1:

Theorem 4.2.3. Let k be an algebraically closed field of characteristic p > 0,
and W = W (k). The points of X1(p)/k − Y1(p)/k correspond to isomorphism
classes of Γ1(p)-structures on degenerate generalized elliptic curves over k with
1 or p sides.

For z ∈ X1(p)/k − Y1(p)/k, there exists a universal deformation ring Sz for

the Γ1(p)-structure z, and ÔX1(p)W ,z is the subring of Aut(z)-invariants in Sz.

Proof. In general, Γ1(p)-structures on generalized elliptic curves form a proper
flat Deligne-Mumford stack MΓ1(p) over Z(p) of relative dimension 1, and this
stack is smooth over Q and is normal (as one checks via abstract deformation
theory). For our purposes, the important point is that if we choose an odd
prime ` 6= p then we can define an evident [Γ1(p),Γ(`)]-variant on Definition
4.2.2 (imposing an ampleness condition on the combined level structure), and
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the open locus of points with trivial geometric automorphism group is a scheme
(as it is an algebraic space quasi-finite over the j-line). This locus fills up the
entire stack M [Γ1(p),Γ(`)] over Z(p), so this stack is a scheme.

The resulting normal Z(p)-flat proper scheme M [Γ1(p),Γ(`)] is finite over the
j-line, whence it must coincide with the scheme X1(p; [Γ(`)]) as constructed
in [34] by the ad hoc method of normalization of the fine moduli scheme
Y1(p; [Γ(`)]) over the j-line. We therefore get a map

M [Γ1(p),Γ(`)] = X1(p; [Γ(`)]) → X1(p)

that must be the quotient by the natural GL2(F`)-action on the source. Since
complete local rings at geometric points on a Deligne-Mumford stack coincide
with universal formal deformation rings, we may conclude as in the proof of
Theorem 3.1.1.

We are now in position to argue just as in the elliptic curve case: we shall
work out the deformation rings in the various possible cases and for p 6= 2 we
will use Serre’s pseudo-reflection theorem to deduce regularity of X1(p) along
the cusps on the closed fiber. A variant on the argument will also take care of
p = 2.

As in the elliptic curve case, it will suffice to consider geometric points. Thus,
there will be two types of Γ1(p)-structures (E,P ) to deform: E is either a p-gon
or a 1-gon.

Lemma 4.2.4. Let E0 be a p-gon over an algebraically closed field k of char-
acteristic p, and P0 ∈ Esm

0 (k) a Γ1(p)-structure. The deformation theory of
(E0, P0) coincides with the deformation theory of the 1-gon generalized elliptic
curve E0/〈P0〉.

Note that in the p-gon case, the point P0 ∈ Esm
0 (k) generates the order-p

constant component group of Esm
0 , so the group scheme 〈P0〉 generated by P0

is visibly étale and the quotient E0/〈P0〉 makes sense (as a generalized elliptic
curve) and is a 1-gon.

Proof. For any infinitesimal deformation (E,P ) of (E0, P0), the subgroup
scheme H generated by P is finite étale, and it makes sense to form the quo-
tient E/H as a generalized elliptic curve deformation of the 1-gon E0/H0 (with
H0 = 〈P0〉). Since any finite étale cover of a generalized elliptic curve admits a
unique compatible generalized elliptic curve structure once we fix a lift of the
identity section and demand geometric connectedness of fibers over the base
[15, II, 1.17], we see that the deformation theory of (E0, H0) (ignoring P ) is
equivalent to the deformation theory of the 1-gon E0/H0. The deformation
theory of a 1-gon is formally smooth of relative dimension 1 [15, III, 1.2], and
upon specifying (E,H) deforming (E0, H0) the étaleness of H ensures the exis-
tence and uniqueness of the choice of Γ1(p)-structure P generating H such that
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P lifts P0 on E0. That is, the universal deformation ring for (E0, P0) coincides
with that of E0/H0.

In the 1-gon case, there is only one (geometric) possibility up to isomorphism:
the pair (C1, 0) where C1 is the standard 1-gon (over an algebraically closed
field k of characteristic p). For this, we have an analogue of (4.1.1):

Lemma 4.2.5. The universal deformation ring of the Γ1(p)-structure (C1, 0) is
isomorphic to the regular local ring W [[t]][[X]]/Φp(X + 1), with cotangent space
canonically isomorphic to

Cot0(C
sm
1 ) ⊕ Cot0(C

sm
1 )⊗2.

Proof. Since the p-torsion on Csm
1 is isomorphic to µp, upon fixing an isomor-

phism Csm
1 [p] ' µp there is a unique compatible isomorphism Csm[p] ' µp for

any infinitesimal deformation C of C1. Thus, the deformation problem is that
of endowing a Z/pZ-generator to the µp inside of deformations of C1 (as a
generalized elliptic curve). By Theorem 4.2.3, this is the scheme of generators
of µp over the universal deformation ring W [[t]] of C1.

The scheme of generators of µp over Z is Z[Y ]/Φp(Y ), so we obtain
W [[t]][Y ]/Φp(Y ) as the desired (regular) deformation ring. Now just set
X = Y − 1. The description of the cotangent space follows from Theorem
4.2.1.

Since C1 has automorphism group (as a generalized elliptic curve) generated
by the unique extension [−1] of inversion from Csm

1 to all of C1, we conclude
that Aut(C1, 0) is generated by [−1]. This puts us in position to carry over our
earlier elliptic-curve arguments to prove:

Theorem 4.2.6. The scheme XH(p) is regular along its cusps.

Proof. As usual, we may work after making a base change by W = W (k) for
an algebraically closed field k of characteristic p > 0. Let z ∈ X1(p)/k be a
cusp whose image zH in XH(p)/k we wish to study. Let H ′ be the preimage
of H in (Z/pZ)×, and let H ′

z be the maximal subgroup of H ′ that acts on the
deformation space for z (e.g., H ′

z = H ′ if the level structure Pz vanishes). By

Theorem 4.2.3, the ring ÔXH(p),zH
is the subring of invariants under the action

of Aut(z) × H ′
z on the formal deformation ring for z. By Theorem 4.2.1 and

Lemma 4.2.4 (as well as [34, p. 508]), this deformation ring is regular (even
formally smooth) in the p-gon case. In the 1-gon case, Lemma 4.2.5 ensures
that the deformation ring is regular (and even formally smooth when p = 2).
Thus, for p 6= 2 we may use Theorem 2.3.9 to reduce the problem for p 6= 2 to
checking that the action of Aut(z) ×H ′

z on the 2-dimensional cotangent space
to the deformation functor has an invariant line.
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In the p-gon case, the deformation ring is W [[t]] and the cotangent line
spanned by p is invariant. In the 1-gon case, Lemma 4.2.5 provides a func-
torial description of the cotangent space to the deformation functor and from
this it is clear that the involution [−1] acts with an invariant line Cot0(z)

⊗2

when p 6= 2 and that H ′
z also acts trivially on this line.

To take care of p = 2 (for which H is trivial), we just have to check that any
non-trivial W -algebra involution ι of W [[T ]] has regular subring of invariants.
In fact, for T ′ = Tι(T ) the subring of invariants is W [[T ′]] by [34, p. 508].

5 The Minimal resolution

We now are ready to compute the minimal regular resolution XH(p)reg of
XH(p). Since XH(p)/Q is a projective line when p ≤ 3, both Theorem 1.1.2 and
Theorem 1.1.6 are trivial for p ≤ 3. Thus, from now on we assume p > 3. We
have found all of the non-regular points (Theorem 4.1.1): the Fp-rational points
of (1, 0)-type such that j ∈ {0, 1728}, provided that |H| is not divisible by 3
(resp. 2) when j = 0 (resp. j = 1728). Theorem 3.3.3 provides the necessary lo-
cal description to carry out Jung–Hirzebruch resolution at these points. These
are tame cyclic quotient singularities (since p > 3). Moreover, the closed fiber
of XH(p) is a nil-semistable curve that consists of two irreducible components
that are geometrically irreducible, as one sees by considering the (1,0)-cyclic
and (0,1)-cyclic components.

5.1 General considerations

There are four cases, depending on p ≡ ±1,±5 mod 12 as this determines the
behavior of the j-invariants 0 and 1728 in characteristic p (i.e., supersingular
or ordinary). This dichotomy between ordinary and supersingular cases corre-
sponds to Jung–Hirzebruch resolution with either one or two analytic branches.

Pick a point z = (E, 0) ∈ X1(p)(Fp) with j = 0 or 1728 corresponding
an elliptic curve E over Fp with automorphism group of order > 2. Let
zH ∈ XH(p)(Fp) be the image of z. By Theorem 4.1.1, we know that zH

is non-regular if and only if |H| is odd for j(E) = 1728, and if and only if |H|
is not divisible by 3 for j(E) = 0.

There is a single irreducible component through zH in the ordinary case
(arising from either (3.3.2) or (3.3.3)), while there are two such (transverse)
components in the supersingular case, and to compute the generic multiplicities
of these components in XH(p)/Fp

we may work with completions because the

irreducible components through zH are analytically irreducible (even smooth)
at zH .

Let C ′ and C denote the irreducible components of XH(p)/Fp
, with C ′ cor-

responding to étale level p-structures. Since the preimage of H in (Z/pZ)×

(of order 2|H|) acts generically freely (resp. trivially) on the preimage of C ′

(resp. of C) in a fine moduli scheme over XH(p)/Fp
obtained by adjoining
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some prime-to-p level structure, ramification theory considerations and Theo-
rem 3.3.3 show that the components C ′ and C in XH(p)/Fp

have respective

multiplicities of 1 and (p − 1)/2|H| = [(Z/pZ)×/{±1} : H]. Moreover, by
Theorem 3.3.3 we see that zH lies on C when it is an ordinary point.

5.2 The case p ≡ −1 mod 12

We are now ready to resolve the singularities on XH(p)/W with W = W (Fp).
We will first carry out the calculation in the case p ≡ −1 (mod 12), so 0 and
1728 are supersingular j-values. In this case (p − 1)/2 is not divisible by 2 or
3, so |H| is automatically not divisible by 2 or 3 (so we have two non-regular
points).

Write p = 12k−1 with k ≥ 1. By the Deuring Mass Formula [34, Cor. 12.4.6]
the components C and C ′ meet in (p− 11)/12 = k − 1 geometric points away
from the two supersingular points with j = 0, 1728. Consider one of the two
non-regular supersingular points zH . The complete local ring at zH onXH(p)W

is the subring of invariants for the commuting actions of Aut(z) and the preim-
age H ′ ⊆ (Z/pZ)× of H on the universal deformation ring Rz of the Γ1(p)-
structure z. Note that the actions of H ′ and Aut(z) on Rz have a common
involution. The action of H ′ on the tangent space fixes one line and acting
through a faithful character on the other line (see the proof of Theorem 4.1.1),
so by Serre’s Theorem 2.3.9 the subring of H ′-invariants in Rz is regular. By
Lemma 2.3.5 and the subsequent discussion there, the subring of H ′-invariant

has the form W [[x′, t′]]/(x′(p−1)/|H′|
t′ −p) with Aut(z)/{±1} acting on the tan-

gent space via χ|H| ⊕χ for a faithful character χ of Aut(z)/{±1}. Let h = |H|,
so ρ := (p− 1)/2h is the multiplicity of C in XH(p)/Fp

.

When j(zH) = 1728 the character χ is quadratic, so we apply Theorem 2.4.1
and Corollary 2.4.3 with n = 2, r = 1, m′

1 = 1, m′
2 = ρ. The resolution has

a single exceptional fiber D′ that is transverse to the strict transforms C and

C
′
, and D′ has self-intersection −2 and multiplicity (m′

1 +m′
2)/2 = (ρ+ 1)/2.

When j(zH) = 0 the character χ is cubic, so we apply Theorem 2.4.1 with
n = 3, m′

1 = 1, m′
2 = ρ, and r = h mod 3. That is, r = 1 when h ≡ 1 mod 6

and r = 2 when h ≡ −1 mod 6. In the case r = 1 we get a single exceptional

fiber E′ in the resolution, transverse to C and C
′
with self-intersection −3 and

multiplicity (ρ + 1)/3 (by Corollary 2.4.3). This is illustrated in Figure 2(a).
In the case r = 2 we use the continued fraction 3/2 = 2 − 1/2 to see that the
resolution of zH has exceptional fiber with two components E ′

1 and E′
2, and

these have self-intersection −2 and transverse intersections as shown in Figure
2(b) with respective multiplicities (2ρ+ 1)/3 and (ρ+ 2)/3 by Corollary 2.4.3.
This completes the computation of the minimal regular resolution XH(p)′ of
XH(p) when p ≡ −1 mod 12.

To compute the intersection matrix for the closed fiber of XH(p)′, we need
to compute some more intersection numbers. For h ≡ 1 mod 6 we let µ and
ν denote the multiplicities of D′ and E′ in XH(p)′, and for h ≡ −1 mod 6 we
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Figure 2: Minimal regular resolution XH(p)′ of XH(p), p = 12k − 1, k ≥ 1,
h = |H|
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define µ in the same way and let νj denote the multiplicity of E′
j in XH(p)′.

In other words,

µ = (ρ+ 1)/2, ν = (ρ+ 1)/3, ν1 = (2ρ+ 1)/3, ν2 = (ρ+ 2)/3.

Thus,

(5.2.1) C
′
+ ρC + µD′ + νE′ ≡ 0,

so if we intersect (5.2.1) with C and use the identities

ρ = (6k − 1)/h, C
′
.C = k − 1 = (hρ− 5)/6,

we get

C.C = −1 − (h− ε)/6

where ε = ±1 ≡ h mod 6. In particular, C.C < −1 unless h = 1 (i.e., unless

H is trivial). We can also compute the self-intersection for C
′
, but we do not

need it.
When H is trivial, so C is a −1-curve, we can contract C and then by

Theorem 2.1.2 and Figure 2 the self-intersection numbers for the components
D′ and E′ drop to −1 and −2 respectively. Then we may contract D′, so E′

becomes a −1-curve, and finally we end with a single irreducible component

(coming from C
′
). This proves Theorem 1.1.2 when p ≡ −1 mod 12.

Returning to the case of general H, let us prove Theorem 1.1.6 for

p ≡ −1 mod 12. Since C
′

has multiplicity 1 in the closed fiber of XH(p)′,
we can use the following special case of a result of Lorenzini [9, 9.6/4]:

Lemma 5.2.1 (Lorenzini). Let X be a regular proper flat curve over a com-
plete discrete valuation ring R with algebraically closed residue field and frac-
tion field K. Assume that X/K is smooth and geometrically connected. Let

X1, . . . , Xm be the irreducible components of the closed fiber X and assume
that some component Xi0 occurs with multiplicity 1 in the closed fiber divisor.

The component group of the Néron model of the Jacobian Pic0
XK/K has order

equal to the absolute value of the (m − 1) × (m − 1) minor of the intersection
matrix (Xi.Xj) obtained by deleting the i0th row and column.

The intersection submatrices formed by the ordered set {C,D′, E′} for
h ≡ 1 mod 6 and by {C,D′, E′

1, E
′
2} for h ≡ −1 mod 6 are given in Figure

3. The absolute value of the determinant is h in each case, so by Lemma 5.2.1
the order of the component group Φ(JH(p)/Fp

) is h = |H| = |H|/ gcd(|H|, 6).
To establish Theorem 1.1.6 for p ≡ −1 mod 12, it remains to show that the

natural Picard map J0(p) → JH(p) induces a surjection on mod-p geometric
component groups. We outline a method that works for general p but that we
will (for now) carry out only for p ≡ −1 mod 12, as we have only computed
the intersection matrix in this case.
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1 −2 0 0
1 0 −2 1
0 0 1 −2




(a) h ≡ 1 mod 6 (b) h ≡ −1 mod 6

Figure 3: Submatrices of intersection matrix for XH(p)′, p ≡ −1 mod 12

The component group for J0(p) is generated by (0)−(∞), where (0) classifies
the 1-gon with standard subgroup µp ↪→ Gm in the smooth locus, and (∞)
classifies the p-gon with subgroup Z/pZ ↪→ (Z/pZ) ×Gm in the smooth locus.
The generic-fiber Picard map induced by the coarse moduli scheme map

XH(p)/Z(p)
→ X0(p)/Z(p)

pulls (0) − (∞) back to a divisor

(5.2.2) P −
(p−1)/2|H|∑

j=1

P ′
i

where the P ′
i ’s are Q-rational points whose (cuspidal) reduction lies in the

component C
′

classifying étale level-structures and P is a point with residue
field (Q(ζp)

+)H whose (cuspidal) reduction lies in the component C classi-
fying multiplicative level-structures. This description is seen by using the
moduli interpretation of cusps (i.e., Néron polygons) and keeping track of
Gal(Q/Q)-actions, and it is valid for any prime p (e.g., the Γ1(p)-structures on
the standard 1-gon consistute a principal homogenous space for the action of
Gal(Q(µp)/Q), so they give a single closed point P on XH(p)/Q with residue
field (Q(ζp)

+)H).
To apply (5.2.2), we need to recall some general facts (see [9, 9.5/9, 9.6/1])

concerning the relationship between the closed fiber of a regular proper model
X of a smooth geometrically connected curve Xη and the component group
Φ of (the Néron model of) the Jacobian of Xη, with the base equal to the
spectrum of a discrete valuation ring R with algebraically closed residue field.
If {Xi}i∈I is the set of irreducible components in the closed fiber of X, then
we can form a complex

ZI
α

// ZI
β

// Z

where ZI is the free group on the Xi’s, the map α is defined by the intersection
matrix (Xi.Xj), and β sends each standard basis vector to the multiplicity of
the corresponding component in the closed fiber. The cokernel ker(β)/im(α)
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is naturally identified with the component group Φ via the map Pic(X) → ZI

that assigns to each invertible sheaf L its tuple of partial degrees degXi
(L).

By using [9, 9.1/5] to compute such line-bundle degrees, one finds that the
Néron-model integral point associated to the pullback divisor in (5.2.2) has
reduction whose image in Φ(JH(p)/Fp

) is represented by

(5.2.3)
[Q(P ) : Q]

mult(C)
· C −

(p−1)/2|H|∑

i=1

C
′
= C − p− 1

2|H| · C ′

when this component group is computed by using the regular model XH(p)′

that we have found for p ≡ −1 mod 12 (the same calculation will work for all
other p’s, as we shall see).

The important property emerging from this calculation is that one of the
coefficients in (5.2.3) is ±1, so an element in ker(β) that is a Z-linear combi-

nation of C and C
′
must be a multiple of (5.2.3) and hence is in the image of

Φ(J0(p)) under the Picard map. Thus, to prove that the component group for
J0(p) surjects onto the component group for JH(p), it suffices to check that
any element in ker(β) can be modified modulo im(α) to lie in the Z-span of C

and C
′
.

Since the matrix for α is the intersection matrix, it suffices (and is even
necessary) to check that the submatrix MC,C

′ of the intersection matrix given

by the rows labelled by the irreducible components other than C and C
′
is a

surjective matrix over Z. Indeed, such surjectivity ensures that we can always
subtract a suitable element of im(α) from any element of kerβ to kill coefficients

away from C and C
′
in a representative for an element in Φ ' ker(β)/im(α).

The surjectivity assertion over Z amounts to requiring that the matrix MC,C
′

have top-degree minors with gcd equal to 1. It is enough to check that those

minors that avoid the column coming from C
′
have gcd equal to 1. Thus, it is

enough to check that in Figure 3 the matrix of rows beneath the top row has top-
degree minors with gcd equal to 1. This is clear in both cases. In particular,
this calculation (especially the analysis of (5.2.3)) yields the following result
when p ≡ −1 mod 12:

Corollary 5.2.2. Let ρ = (p− 1)/2|H|. The degree-0 divisor C − ρC
′
repre-

sents a generator of the mod-p component group of JH(p).

The other cases p ≡ 1,±5 mod 12 will behave similarly, with Corollary 5.2.2
being true for all such p. The only differences in the arguments are that cases
with |H| divisible by 2 or 3 can arise and we will sometimes have to use the “one
branch” version of Jung–Hirzebruch resolution to resolve non-regular ordinary
points.

5.3 The case p ≡ 1 mod 12.

We have p = 12k + 1 with k ≥ 1, so (p − 1)/2 = 6k. In this case 0 and
1728 are both ordinary j-invariants, so the number of supersingular points is
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(p− 1)/12 = k by the Deuring Mass Formula. The minimal regular resolution
XH(p)′ of XH(p) is illustrated in Figure 4, depending on the congruence class
of h = |H| modulo 6. When h is divisible by 6 there are no non-regular points,
so XH(p)′ = XH(p)/W is as in Figure 4(a). When h is even but not divisible by
3 there is only the non-regularity at j = 0 to be resolved, as shown in Figures
4(b),(c). The case of odd h is given in Figures 4(d)–(f), and these are all easy
applications of Theorem 2.4.1 and Corollary 2.4.3. We illustrate by working
out the case h ≡ 5 mod 6, for which there are two ordinary singularities to
resolve.

Arguing much as in the case p ≡ −1 mod 12, but now with a “one branch”
situation at ordinary points, the ring to be resolved is formally isomorphic to

the ring of invariants in W [[x′, t′]]/(x′(p−1)/2|H|−p) under an action of the cyclic
Aut(z)/{±1} with a tangent-space action of χ|H| ⊕χ for a faithful character χ.
At a point with j = 1728 we have quadratic χ, n = 2, r = 1. Using the “one
branch” version of Theorem 2.4.1 yields the exceptional divisorD′ as illustrated
in Figure 4(f), transverse to C with self-intersection −2 and multiplicity ρ/2.
At a point with j = 0 we have a cubic χ, so n = 3. Since h ≡ 2 mod 3 when
h ≡ 5 mod 6, we have r = 2. Since 3/2 = 2 − 1/2, we get exceptional divisors
E′

1 and E′
2 with transverse intersections as shown and self-intersections of −2.

The “outer” component E′
1 has multiplicity ρ/3 and the “inner” component

E′
2 has multiplicity 2ρ/3. Once again we will suppress the calculation of C

′
.C

′

since it is not needed.
We now proceed to analyze the component group for each value of h mod 6.

Since C
′

has multiplicity 1 in the closed fiber, we can carry out the same
strategy that was used for p ≡ −1 mod 12, resting on Lemma 5.2.1. When

h ≡ 0 mod 6, there are only the components C and C
′

in the closed fiber of
XH(p)′ = XH(p), with C.C = −h/6. Thus, the component group has the
expected order |H|/6 and since there are no additional components we are
done in this case.

If h ≡ 1 mod 6, one finds that the submatrix of the intersection matrix
corresponding to the ordered set {C,D′, E′} is




−(h+ 5)/6 1 1
1 −2 0
1 0 −3




with absolute determinant h = |H|/ gcd(|H|, 6) as desired, and the bottom two
rows have 2×2 minors with gcd equal to 1. Moreover, in the special case h = 1
we see that C is a −1-curve, and after contracting this we contract D′ and E′

in turn, leaving us with only the component C
′
. This proves Theorem 1.1.2 for

p ≡ 1 mod 12.
For h ≡ 2 mod 6, the submatrix indexed by {C,E ′

1, E
′
2} is




−(h+ 4)/6 0 1
0 −2 1
1 1 −2
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with absolute determinant h/2 = |H|/ gcd(|H|, 6), and the bottom two rows
have 2 × 2 minors with gcd equal to 1. The cases h ≡ 3, 4 mod 6 are even
easier, since there are just two components to deal with, {C,D′} and {C,E′}
with corresponding matrices

(
−(h+ 3)/6 1

1 −2

)
,

(
−(h+ 2)/6 1

1 −3

)

that yield the expected results.
For the final case h ≡ −1 mod 6, the submatrix indexed by the ordered set

of components {C,D′, E′
1, E

′
2} is




−(h+ 7)/6 1 0 1
1 −2 0 0
0 0 −2 1
1 0 1 −2




with absolute determinant h = |H|/ gcd(|H|, 6) and gcd 1 for the 3 × 3 minors
along the bottom three rows. The case p ≡ 1 mod 12 is now settled.

5.4 The cases p ≡ ±5 mod 12

With p = 12k + 5 for k ≥ 0, we have (p − 1)/2 = 6k + 2, so h = |H| is not
divisible by 3. Thus, the supersingular j = 0 is always non-regular and the
ordinary j = 1728 is non-regular for even h.

Using Theorem 2.4.1 and Corollary 2.4.3, we obtain a minimal regular reso-
lution depending on the possibilities for h mod 6 not divisible by 3, as given in
Figure 5.

From Figure 5 one easily carries out the computations of the absolute de-
terminant and the gcd of minors from the intersection matrix, just as we have
done in earlier cases, and in all cases one gets |H|/ gcd(|H|, 6) for the absolute
determinant and the gcd of the relevant minors is 1. Also, the case h = 1 has
C as a −1-curve, and successive contractions end at an integral closed fiber, so
we have established Theorems 1.1.2 and 1.1.6 for the case p ≡ 5 mod 12.

When p = 12k − 5 with k ≥ 1, so (p − 1)/2 = 6k − 3 is odd, we have that
h = |H| is odd. Thus, j = 1728 does give rise to a non-regular point, but
the behavior at j = 0 depends on h mod 6. The usual applications of Jung–
Hirzebruch resolution go through, and the minimal resolution has closed-fiber
diagram as in Figure 6, depending on odd h mod 6, and both Theorem 1.1.2
and Theorem 1.1.6 drop out just as in the preceding cases.

6 The Arithmetic of J1(p)

Our theoretical results concerning component groups inspired us to carry out
some arithmetic computations in J1(p), and this section summarizes this work.

In Section 6.1 we recall the Birch and Swinnerton-Dyer conjecture, as this
motivates many of our computations, and then we describe some of the theory
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behind the computations that went into computing the tables of Section 6.6.
In Section 6.2 we find all p such that J1(p) has rank 0. We next discuss tables
of certain arithmetic invariants of J1(p) and we give a conjectural formula for
|J1(p)(Q)tor|, along with some evidence. In Section 6.3 we investigate Jaco-
bians of intermediate curves JH(p) associated to subgroups of (Z/pZ)×, and in
Section 6.4 we consider optimal quotients Af of J1(p) attached to newforms. In
Section 6.4.1 we describe the lowest-level modular abelian variety that (assum-
ing the Birch and Swinnerton-Dyer conjecture) should have infinite Mordell-
Weil group but to which the general theorems of Kato, Kolyvagin, et al., do
not apply.

6.1 Computational methodology

We used the third author’s modular symbols package for our computations;
this package is part of [10] V2.10-6. See Section 6.5 for a description of how to
use Magma to compute the tables. For the general theory of computing with
modular symbols, see [14] and [63].

Remark 6.1.1. Many of the results of this section assume that a Magma pro-
gram running on a computer executed correctly. Magma is complicated soft-
ware that runs on physical hardware that is subject to errors from both pro-
gramming mistakes and physical processes, such as cosmic radiation. We thus
make the running assumption for the rest of this section that the computa-
tions below were performed correctly. To decrease the chance of hardware
errors such as the famous Pentium bug (see [17]), we computed the tables in
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Section 6.6 on three separate computers with different CPU architectures (an
AMD Athlon 2000MP, a Sun Fire V480 which was donated to the third author
by Sun Microsystems, and an Intel Pentium 4-M laptop).

Let A be a modular abelian variety over Q, i.e., a quotient of J1(N) for
some N . We will make frequent reference to the following special case of the
general conjectures of Birch and Swinnerton-Dyer:

Conjecture 6.1.2 (BSD Conjecture). Let X(A) be the Shafarevich-Tate
group of A, let cp = |ΦA,p(Fp)| be the Tamagawa number at p for A, and let
ΩA be the volume of A(R) with respect to a generator of the invertible sheaf of
top-degree relative differentials on the Néron model A/Z of A over Z. Let A∨

denote the abelian variety dual of A. The group X(A) is finite and

L(A, 1)

ΩA
=

|X(A)| · ∏
p|N cp

|A(Q)| · |A∨(Q)| ,

where we interpret the right side as 0 in case A(Q) is infinite.

Remark 6.1.3. The hypothesis that A is modular implies that L(A, s) has an
analytic continuation to the whole complex plane and a functional equation of
a standard type. In particular, L(A, 1) makes sense. Also, when L(A, 1) 6= 0,
[32, Cor. 14.3] implies that X(A) is finite.

Let {f1, . . . , fn} be a set of newforms in S2(Γ1(N)) that is Gal(Q/Q)-
stable. Let I be the Hecke-algebra annihilator of the subspace generated by
f1, . . . , fn. For the rest of Section 6.1, we assume that A = AI = J1(N)/IJ1(N)
for such an I. Note that A is an optimal quotient in the sense that
IJ1(N) = ker(J1(N) → A) is an abelian subvariety of J1(N).

6.1.1 Bounding the torsion subgroup

To obtain a multiple of the order of the torsion subgroup A(Q)tor, we proceed
as follows. For any prime ` - N , the algorithm of [3, §3.5] computes the
characteristic polynomial f ∈ Z[X] of Frob` acting on any p-adic Tate module
of A with p 6= `. To compute |A(F`)|, we observe that

|A(F`)| = deg(Frob` −1) = det(Frob` −1),

and this is the value of the characteristic polynomial of Frob` at 1. For any
prime ` - 2N , the reduction map A(Q)tor → A(F`) is injective, so |A(Q)tor|
divides

T = gcd{|A(F`)| : ` < 60 and ` - 2N}.
(If N is divisible by all primes up to 60, let T = 0. In all of the examples in
this paper, N is prime and so T 6= 0.) The injectivity of reduction mod ` on
the finite group A(Q)tor for any prime ` 6= 2 is well known and follows from
the determination of the torsion in a formal group (see, e.g., the appendix to
[33] and [59, §IV.6–9]).

Documenta Mathematica 8 (2003) 325–402



380 Conrad, Edixhoven, Stein

The cardinality |A(F`)| does not change if A is replaced by a Q-isogenous
abelian variety B, so we do not expect in general that |A(Q)tor| = T . (For
much more on relationships between |A(Q)tor| and T , see [33, p. 499].) When
we refer to an upper bound on torsion, T is the (multiplicative) upper bound
that we have in mind.

The number 60 has no special significance; we had to make some choice to do
computations, and in practice the sequence of partial gcd’s rapidly stabilizes.
For example, if A = J1(37), then the sequence of partial gcd’s is:

15249085236272475, 802583433488025, 160516686697605, . . .

where the term 160516686697605 repeats for all ` < 1000.

6.1.2 The Manin index

Let p be a prime, let ΩA/Z denote the sheaf of relative 1-forms on the Néron
model of A over Z, and let I be the annihilator of A in the Hecke alge-
bra T ⊂ End(J1(N)). For a subring R ⊂ C, let S2(Γ1(N), R) be the R-module
of cusp forms whose Fourier expansion at ∞ lies in R[[q]]. The natural sur-
jective Hecke-equivariant morphism J1(N) → J1(N)/IJ1(N) = A induces (by
pullback) a Hecke-equivariant injection ΨA : H0(A/Z,ΩA/Z) ↪→ S2(Γ1(N),Q)
whose image lies in S2(Γ1(N),Q)[I]. (Here we identify S2(Γ1(N),Q) with
H0(X1(N),ΩX1(N)/Q) = H0(J1(N),ΩJ1(N)/Q) in the usual manner.)

Definition 6.1.4 (Manin index). The Manin index of A is

c = [S2(Γ1(N),Z)[I] : ΨA(H0(A/Z,ΩA/Z))] ∈ Q.

Remark 6.1.5. We name c after Manin, since he first studied c, but only in
the context of elliptic curves. When X0(N) → A is an optimal elliptic-curve
quotient attached to a newform f , the usual Manin constant of A is the rational
number c such that π∗(ωA) = ±c·fdq/q, where ωA is a basis for the differentials
on the Néron model of A. The usual Manin constant equals the Manin index,
since S2(Γ1(N),Z)[I] is generated as a Z-module by f .

A priori, the index in Definition 6.1.4 is only a generalized lattice index in the
sense of [12, Ch. 1, §3], which we interpret as follows. In [12], for any Dedekind
domain R, the lattice index is defined for any two finite free R-modules V
and W of the same rank ρ that are embedded in a ρ-dimensional Frac(R)-
vector space U . The lattice index is the fractional R-ideal generated by the
determinant of any automorphism of U that sends V isomorphically onto W .
In Definition 6.1.4, we take R = Z, U = S2(Γ1(N),Q)[I], V = S2(Γ1(N),Z)[I],
and W = ΨA(H0(A/Z,ΩA/Z)). Thus, c is the absolute value of the determinant
of any linear transformation of S2(Γ1(N),Q)[I] that sends S2(Γ1(N),Z)[I] onto
ΨA(H0(A/Z,ΩA/Z)). In fact, it is not necessary to consider lattice indexes,
as the following lemma shows (note we will use lattices indices later in the
statement of Proposition 6.1.10).
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Lemma 6.1.6. The Manin index c of A is an integer.

Proof. Let Xµ(N) be the coarse moduli scheme over Z that classifies isomor-
phism classes of pairs (E/S, α), with α : µN ↪→ Esm a closed subgroup in the
smooth locus of a generalized elliptic curve E with irreducible geometric fibers
Es. This is a smooth Z-curve that is not proper, and it is readily constructed
by combining the work of Katz-Mazur and Deligne-Rapoport (see §9.3 and
§12.3 of [16]). There is a canonical Z-point ∞ ∈ Xµ(N)(Z) defined by the
standard 1-gon equipped with the canonical embedding of µN into the smooth
locus Gm, and the theory of the Tate curve provides a canonical isomorphism
between Spf(Z[[q]]) and the formal completion of Xµ(N) along ∞.

There is an isomorphism between the smooth proper curves X1(N) and
Xµ(N) over Z[1/N ] because the open modular curves Y1(N) and Yµ(N)
coarsely represent moduli problems that may be identified over the category of
Z[1/N ]-schemes via the map

(E,P ) 7→ (E/〈P 〉, E[N ]/〈P 〉),

where E[N ]/〈P 〉 is identified with µN via the Weil pairing on E[N ]. For our
purposes, the key point (which follows readily from Tate’s theory) is that under
the moduli-theoretic identification of the analytification of the C-fiber ofXµ(N)
with the analytic modular curve X1(N) via the trivialization of µN (C) by

means of ζN = e±2π
√−1/N , the formal parameter q at the C-point ∞ computes

the standard analytic q-expansion for weight-2 cusp forms on Γ1(N). The
reason we consider Xµ(N) rather than X1(N) is simply because we want a
smooth Z-model in which the analytic cusp ∞ descends to a Z-point.

Let φ : J1(N) → A be the Albanese quotient map over Q, and pass to Néron
models over Z (without changing the notation). Since Xµ(N) is Z-smooth,
there is a morphism Xµ(N) → J1(N) over Z that extends the usual morphism
sending ∞ to 0. We have a map Ψ : H0(A,Ω) → Z[[q]]dq/q of Z-modules defined
by composition

H0(A,Ω) → H0(J1(N),Ω) → H0(Xµ(N),Ω)
q−exp−−−−→ Z[[q]]

dq

q
.

The map Ψ is injective, since it is injective after base extension to Q and
each group above is torsion free. The image of Ψ in Z[[q]]dq/q is a finite free
Z-module, contained in the image of S = S2(Γ1(N),Z), the sub-Z-module of
S2(Γ1(N),C) of those elements whose analytic q-expansion at ∞ has coeffi-
cients in Z. Since Ψ respects the action of Hecke operators, the image of Ψ is
contained in S[I], so the lattice index c is an integer.

We make the following conjecture:

Conjecture 6.1.7. If A = Af is a quotient of J1(N) attached to a single
Galois-conjugacy class of newforms, then c = 1.
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Manin made this conjecture for one-dimensional optimal quotients of J0(N).
Mazur bounded c in some cases in [46], Stevens considered c for one-dimensional
quotients of J1(N) in [65], González and Lario considered c for Q-curves in [26],
Agashe and Stein considered c for quotients of J0(N) of dimension bigger than 1
in [4], and Edixhoven proved integrality results in [19, Prop. 2] and [22, §2].
Remark 6.1.8. We only make Conjecture 6.1.7 when A is attached to a single
Galois-conjugacy class of newforms, since the more general conjecture is false.
Adam Joyce [31] has recently used failure of multiplicity one for J0(p) to pro-
duce examples of optimal quotients A of J1(p), for p = 431, 503, and 2089,
whose Manin indices are divisible by 2. Here, A is isogenous to a product of
two elliptic curves, so A is not attached to a single Galois-orbit of newforms.

Remark 6.1.9. The question of whether or not c is an isogeny-invariant is not
meaningful in the context of this paper because we only define the Manin index
for optimal quotients.

6.1.3 Computing L-ratios

There is a formula for L(Af , 1)/ΩAf
in [3, §4.2] when Af is an optimal quotient

of J0(N) attached to a single Galois conjugacy class of newforms. In this section
we describe that formula; it applies to our quotient A of J1(N).

Recall our running hypothesis that A = AI is an optimal (new) quotient of
J1(N) attached to a Galois conjugacy class of newforms {f1, . . . , fn}. Let

Ψ : H1(X1(N),Q) → Hom(S2(Γ1(N))[I],C)

be the linear map that sends a rational homology class γ to the functional
∫

γ

on the subspace S2(Γ1(N))[I] in the space of holomorphic 1-forms on X1(N).
Let T ⊂ End(H1(X1(N),Q)) be the ring generated by all Hecke operators.

Since the T-module H = Hom(S2(Γ1(N))[I],C) has a natural R-structure
(and even a natural Q-structure), it admits a natural T-linear and C-semilinear
action by complex conjugation. If M is a T-submodule of H, let M+ denote
the T-submodule of M fixed by complex conjugation.

Let c be the Manin index of A as in Section 6.1.2, let c∞ be the number
of connected components of A(R), let ΩA be the volume of A(R) as in Con-
jecture 6.1.2, and let {0,∞} ∈ H1(X1(N),Q) be the rational homology class
whose integration functional is integration from 0 to i∞ along the i-axis (for
the precise definition of {0,∞} and a proof that it lies in the rational homology
see [38, Ch. IV §1–2]).
Proposition 6.1.10. Let A = AI be an optimal quotient of J1(N) attached to
a Galois-stable collection of newforms. With notation as above, we have

(6.1.1) c∞ · c · L(A, 1)

ΩA
= [Ψ(H1(X1(N),Z))+ : Ψ(T{0,∞})],

where the index is a lattice index as discussed in Section 6.1.7 (in particular,
L(A, 1) = 0 if and only if Ψ(T{0,∞}) has smaller rank than H1(X1(N),Z)+).
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Proof. It is straightforward to adapt the argument of [3, §4.2] with J0(N)
replaced by J1(N) (or even JH(N)), but one must be careful when replacing
Af with A. The key observation is that if f1, . . . , fn is the unique basis of
normalized newforms corresponding to A, then L(A, s) = L(f1, s) · · ·L(fn, s).

Remark 6.1.11. This equality (6.1.1) need not hold if oldforms are in-
volved, even in the Γ0(N) case. For example, if A = J0(22), then
L(A, s) = L(J0(11), s)

2, but two copies of the newform corresponding to J0(11)
do not form a basis for S2(Γ0(22)).

We finish this section with some brief remarks on how to compute the rational
number c · L(A, 1)/ΩA using (6.1.1) and a computer. Using modular symbols,
one can explicitly compute with H1(X1(N),Z). Though the above lattice index
involves two lattices in a complex vector space, the index is unchanged if we
replace Ψ with any linear map to a Q-vector space such that the kernel is
unchanged (see [3, §4.2]). Such a map may be computed via standard linear
algebra by finding a basis for Hom(H1(X1(N),Q),Q)[I].

To compute c∞, use the following well-known proposition; we include a proof
for lack of an adequate published reference.

Proposition 6.1.12. For an abelian variety A over R,

c∞ = 2dimF2
A[2](R)−d,

where d = dimA and c∞ := |A(R)/A0(R)|.
Proof. Let Λ = H1(A(C),Z), so the exponential uniformization of A(C) pro-
vides a short exact sequence

0 → Λ → Lie(A(C)) → A(C) → 0.

There is an evident action of Gal(C/R) on all terms via the action on A(C), and
this short exact sequence is Galois-equivariant because A is defined over R. Let
Λ+ be the subgroup of Galois-invariants in Λ, so we get an exact cohomology
sequence

0 → Λ+ → Lie(A(R)) → A(R) → H1(Gal(C/R),Λ) → 0

because higher group cohomology for a finite group vanishes on a Q-vector
space (such as the Lie algebra of A(C)). The map Lie(A(R)) → A(R) is the
exponential map for A(R), and so its image is A(R)0. Thus, Λ+ has Z-rank
equal to dimA and

A(R)/A(R)0 ' H1(Gal(C/R),Λ).

To compute the size of this H1, consider the short exact sequence

0 → Λ
2→ Λ → Λ/2Λ → 0
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of Galois-modules. Since Λ/nΛ ' A[n](C) as Galois-modules for any n 6= 0,
the long-exact cohomology sequence gives an isomorphism

A[2](R)/(Λ+/2Λ+) ' H1(Gal(C/R),Λ).

Remark 6.1.13. Since the canonical isomorphism

A[n](C) ' H1(A(C),Z)/nH1(A(C),Z)

is Gal(C/R)-equivariant, we can identify A[2](R) with the kernel of τ − 1
where τ is the mod-2 reduction of the involution on H1(A(C),Z) induced by
the action τ of complex conjugation on A(C). In the special case when A is
a quotient of some J1(N), and we choose a connected component of C − R
to uniformize Y1(N) in the usual manner, then via the Gal(C/R)-equivariant
isomorphism H1(J1(N)(C),Z) ' H1(X1(N)(C),Z) we see that H1(A(C),Z)
may be computed by modular symbols and that the action of τ on the modular
symbol is {α, β} 7→ {−α,−β}. This makes A[2](R), and hence c∞, readily
computable via modular symbols.

6.2 Arithmetic of J1(p)

6.2.1 The Tables

For p ≤ 71, the first part of Table 1 (on page 393) lists the dimension of J1(p)
and the rational number L = c ·L(J1(p), 1)/ΩJ1(p). Table 1 also gives an upper
bound T (in the sense of divisibility) on |J1(p)(Q)tor| for p ≤ 71, as discussed
in §6.1.1.

When L 6= 0, Conjecture 6.1.2 and the assumption that c = 1 imply that the
numerator of L divides cp · |X(A)|, that in turn divides T 2L. For every p 6= 29
with p ≤ 71, we found that T 2L = 1. For p = 29, we have T 2L = 212; it would
be interesting if the isogeny-invariant T overestimates the order of J1(29)(Q)tor
or if X(J1(29)) is nontrivial.

6.2.2 Determination of positive rank

Proposition 6.2.1. The primes p such that J1(p) has positive rank are the
same as the primes for which J0(p) has positive rank:

p = 37, 43, 53, 61, 67, and all p ≥ 73.

Proof. Proposition 2.8 of [45, §III.2.2, p. 147] says: “Suppose g+ > 0 (which is
the case for all N > 73, as well as N = 37, 43, 53, 61, 67). Then the Mordell-
Weil group of J+ is a torsion-free group of infinite order (i.e. of positive rank).”
Here, N is a prime, g+ is the genus of the Atkin-Lehner quotient X0(N)+ of
X0(N), and J+ is isogenous to the Jacobian of X0(N)+. This is essentially
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correct, except for the minor oversight that g+ > 0 also when N = 73 (this is
stated correctly on page 34 of [45]).

By Mazur’s proposition J0(p) has positive algebraic rank for all p ≥ 73 and
for p = 37, 43, 53, 61, 67. The sign in the functional equation for L(J+, s) is −1,
so

L(J, 1) = L(J+, 1)L(J−, 1) = 0 · L(J−, 1) = 0

for all p such that g+ > 0. Using (6.1.1) we see that L(J, 1) 6= 0 for all p such
that g+ = 0, which by Kato (see [32, Cor. 14.3]) or Kolyvagin–Logachev (see
[36]) implies that J has rank 0 whenever g+ = 0. Thus L(J0(p), 1) = 0 if and
only if J0(p) has positive rank.

Work of Kato (see [32, Cor. 14.3]) implies that if J1(p) has analytic rank 0,
then J1(p) has algebraic rank 0. It thus suffices to check that L(J1(p), 1) 6= 0
for the primes p such that J0(p) has rank 0. We verify this by computing
c · L(J1(p), 1)/ΩJ1(p) using (6.1.1), as illustrated in Table 1.

If we instead consider composite level, it is not true that J0(N) has positive
analytic rank if and only if J1(N) has positive analytic rank. For example,
using (6.1.1) we find that J0(63) has analytic rank 0, but J1(63) has positive
analytic rank. Closer inspection using Magma (see the program below) shows
that there is a two-dimensional new quotient Af with positive analytic rank,
where f = q+(ω−1)q2 +(−ω−2)q3 + · · · , and ω3 = 1. It would be interesting
to prove that that the algebraic rank of Af is positive.

> M := ModularSymbols(63,2);

> S := CuspidalSubspace(M);

> LRatio(S,1); // So J_0(63) has rank 0

1/384

> G<a,b> := DirichletGroup(63,CyclotomicField(6));

> e := a^5*b;

> M := ModularSymbols([e],2,+1);

> S := CuspidalSubspace(M);

> LRatio(S,1); // This step takes some time.

0

> D := NewformDecomposition(S);

> LRatio(D[1],1);

0

> qEigenform(D[1],5);

q + (-2*zeta_6 + 1)*q^2 + (-2*zeta_6 + 1)*q^3 - q^4 + O(q^5)
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6.2.3 Conjectural order of J1(Q)tor

For any Dirichlet character ε modulo N , define Bernoulli numbers B2,ε by

N∑

a=1

ε(a)teat

eNt − 1
=

∞∑

k=0

Bk,ε

k!
tk.

We make the following conjecture.

Conjecture 6.2.2. Let p ≥ 5 be prime. The rational torsion subgroup
J1(p)(Q)tor is generated by the differences of Q-rational cusps on X1(p). Equiv-
alently (see below), for any prime p ≥ 5,

(6.2.1) |J1(p)(Q)tor| =
p

2p−3
·
∏

ε6=1

B2,ε

where the product is over the nontrivial even Dirichlet characters ε of conductor
dividing p.

Due to how we defined X1(p), its Q-rational cusps are exactly its cusps lying
over the cusp ∞ ∈ X0(p)(Q) (corresponding to the standard 1-gon equipped
with the subgroup µp in its smooth locus Gm) via the second standard degen-
eracy map

(E,P ) 7→ (E/〈P 〉, E[p]/〈P 〉).
In [49] Ogg showed that |J1(13)(Q)| = 19, verifying Conjecture 6.2.2 for p = 13.
The results of [37] are also relevant to Conjecture 6.2.2, and suggest that the
rational torsion of J1(p) is cuspidal. Let C(p) be the conjectural order of
J1(p)(Q)tor on the right side of (6.2.1). In [37, p. 153], Kubert and Lang prove
that C(p) is equal to the order of the group generated by the differences of
Q-rational cusps on X1(p) (in their language, these are viewed as the cusps
that lie over 0 ∈ X0(p)(Q) via the first standard degeneracy map

(E,P ) 7→ (E, 〈P 〉)),

and so C(p) is a priori an integer that moreover divides |J1(p)(Q)tor|.
Table 1 provides evidence for Conjecture 6.2.2. Let T (p) be the upper bound

on J1(p)(Q)tor (see Table 1). For all p ≤ 157, we have C(p) = T (p) except for
p = 29, 97, 101, 109, and 113, where T (p)/C(p) is 26, 17, 24, 37, and 212 · 32,
respectively. Thus Conjecture 6.2.2 is true for p ≤ 157, except possibly in these
five cases, where the deviation is consistent with the possibility that T (p) is a
nontrivial multiple of the true order of the torsion subgroup (recall that T (p)
is an isogeny-invariant, and so it is not surprising that it may be too large).

6.3 Arithmetic of JH(p)

For each divisor d of p−1, let H = Hd denote the unique subgroup of (Z/pZ)×

of order (p−1)/d. The group of characters whose kernel contains Hd is exactly
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the group of characters of order dividing d. Since the linear fractional trans-
formation associated to

( −1 0
0 −1

)
acts trivially on the upper half plane, we lose

nothing (for the computations that we will do in this section) if we assume that
−1 ∈ H, and so |H| is even.

For any subgroup H of (Z/pZ)× as above, let JH be the Jacobian of XH(p),
as in Section 1. For each p ≤ 71, Table 2 lists the dimension of JH = JH(p),
the rational number L = c · L(JH , 1)/ΩJH

, an upper bound T on |JH(Q)tor|,
the conjectural multiple T 2L of |X(JH)| · cp, and cp = |Φ(JH)|. We compute
|Φ(JH)(Fp)| = |Φ(JH)(Fp)| using Theorem 1.1.3. Note that Table 2 omits the
data for d = (p− 1)/2, since JH = J1(p) for such d, so the corresponding data
is therefore already contained in Table 1.

When L 6= 0, we have T 2L = |Φ(JH)| in all but one case. The exceptional
case is p = 29 and d = 7, where T 2L = 26, but |Φ(JH)| = 1; probably T
overestimates the torsion in this case. In the following proposition we use this
observation to deduce that |X(JH)| = c = 1 in some cases.

Proposition 6.3.1. Suppose that p ≤ 71 is a prime and d | (p − 1) with
(p − 1)/d even. Let JH be the Jacobian of XH(p), where H is the subgroup
of (Z/pZ)× of order (p − 1)/d. Assume that Conjecture 6.1.2 is true, and if
p = 29 then assume that d 6= 7, 14. If L(JH , 1) 6= 0, then |X(JH)| = 1 and
c = 1.

It is not interesting to remove the condition p ≤ 71 in the statement of the
proposition, since when p > 71 the quantity L(JH , 1) automatically vanishes
(see Proposition 6.2.1). It is probably not always the case that |X(JH)| = 1;
for example, Conjecture 6.1.2 and the main result of [1] imply that 72 divides
|X(J0(1091))|.

Proof. We deduce the proposition from Tables 1–3 as follows. Using Conjec-
ture 6.1.2 we have

(6.3.1) c · |X(JH)| = c · L(JH , 1)

ΩJH
· |Φ(JH)| · |JH(Q)tor|2.

Let T denote the torsion bound on JH(Q)tor as in Section 6.1.1 and let
L = c · L(JH , 1)/ΩJH

, so the right side of (6.3.1) divides T 2L/|Φ(JH)|. An
inspection of the tables shows that T 2L/|Φ(JH)| = 1 for JH satisfying the
hypothesis of the proposition (in the excluded cases p = 29 and d = 7, 14,
the quotient equals 26 and 212, respectively). Since c ∈ Z, we conclude that
c = |X(JH)| = 1.

Remark 6.3.2. Theorem 1.1.3 is an essential ingredient in the proof of Proposi-
tion 6.3.1 because we used Theorem 1.1.3 to compute the Tamagawa factor cp.
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6.4 Arithmetic of newform quotients

Tables 4–5 at the end of this paper contain arithmetic information about each
newform abelian variety quotient Af of J1(p) with p ≤ 71.

The first column gives a label determining a Galois-conjugacy class of new-
forms {f, . . .}, where A corresponds to the first class, B to the second, etc.,
and the classes are ordered first by dimension and then in lexicographical order
by the sequence of nonegative integers | tr(a2(f))|, | tr(a3(f))|, | tr(a5(f))|, . . ..
(WARNING: This ordering does not agree with the one used by Cremona in
[14]; for example, our 37A is Cremona’s 37B.) The next two columns list the
dimension of Af and the order of the Nebentypus character of f , respectively.
The fourth column lists the rational number L = L(Af , 1)/ΩAf

, and the fifth
lists the product T 2L, where T is an upper bound (as in Section 6.1.1) on the
order of Af (Q)tor. The sixth column, labeled “modular kernel”, lists invariants
of the group of Q-points of the kernel of the polarization A∨

f ↪→ J1(p) → Af ;
this kernel is computed by using an algorithm based on Proposition 6.4.1 be-
low. The elementary divisors of the kernel are denoted with notation such as
[22142] to denote

Z/2Z × Z/2Z × Z/14Z × Z/14Z.

Proposition 6.4.1. Suppose A = AI is an optimal quotient of J = J1(N)
attached to the annihilator I of a Galois-stable collection of newforms. The
group of Q-points of the kernel of the natural map A∨ ↪→ J → A is isomorphic
to the cokernel of the natural map

Hom(H1(X1(N),Z),Z)[I] → Hom(H1(X1(N),Z)[I],Z).

Proof. The proof is the same as [35, Prop. 1].

It is possible to compute the modular kernel by using the formula in this
proposition, together with modular symbols and standard algorithms for com-
puting with finitely generated abelian groups.

We do not give T in Tables 4–5, since in all but six cases T 2L 6= 0, hence
T 2L and L determine T . The remaining six cases are 37B, 43A, 53A, 61A,
61B, and 67C, and in all these cases T = 1.

Remark 6.4.2. If A = Af is an optimal quotient of J1(p) attached to a new-
form, then the tables do not include the toric, additive, and abelian ranks of
the closed fiber of the Néron model of A over Fp, since they are easy to de-
termine from other data about A as follows. If ε(f) = 1, then the toric rank
is dim(A), since A is isogenous to an abelian subvariety of J0(p) and so A has
purely toric reduction over Zp. Now suppose that ε(f) is nontrivial, so A is
isogenous to an abelian subvariety of the abelian variety J1(p)/J0(p) that has
potentially good reduction at p. Hence the toric rank of A is zero, and inertia
Ip ⊂ Gp = Gal(Qp/Qp) acts with finite image on the Q`-adic Tate module V`

of A for any ` 6= p. Hence V` splits as a nontrivial direct sum of simple repre-
sentations of Ip. Let V ′ be a factor of V` corresponding to a simple summand K
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of T ⊗ Q`, where T is the Hecke algebra. Since the Artin conductor of the
2-dimensional K-representation V ′

` is p, the Q`[Ip]-module Q` ⊗Q`
V ′ is the di-

rect sum of the trivial representation and the character ε(f) : (Z/pZ)× → Q
×
`

viewed as a character of Gp via the identification Gal(Qp(ζp)/Qp) = (Z/pZ)×.
This implies that the abelian rank as well as the additive rank are both equal
to half of the dimension of A.

6.4.1 The Simplest example not covered by general theory

The prime p = 61 is the only prime p ≤ 71 such that the maximal quotient
of J1(p) with positive analytic rank is not a quotient of J0(p). Let ε be a
Dirichlet character of conductor 61 and order 6. Consider the abelian variety
Af attached to the newform

f = q + (e2πi/3 − 1)q2 − 2q3 + · · ·

that lies in the 6-dimensional C-vector space S2(Γ1(61), ε). Using Proposi-
tion 6.1.10, we see that L(f, 1) = 0.

It would be interesting to show that Af has positive algebraic rank, since
Af is not covered by the general theorems of Kolyvagin, Logachev, and Kato
concerning Conjecture 6.1.2. This example is the simplest example in the
following sense: every elliptic curve over Q is a quotient of some J0(N), and
an inspection of Tables 4–5 for any integer N < 61 shows that the maximal
quotient of J1(N) with positive analytic rank is also a quotient of J0(N).

The following observation puts this question in the context of Q-curves, and
may be of some use in a direct computation to show that Af has positive
algebraic rank. Since f = f⊗ε−1, Shimura’s theory (see [62, Prop. 8]) supplies
an isogeny ϕ : Af → Af defined over the degree-6 abelian extension of Q cut
out by ker(ε). Using ϕ, one sees that Af is isogenous to a product of two elliptic
curves. According to Enrique Gonzalez-Jimenez (personal communication) and
Jordi Quer, if t6 + t5 − 25t4 + 8t3 + 123t2 − 126t + 27 = 0, so t generates the
degree 6 subfield of Q(ζ61) corresponding to ε, then one of the elliptic-curve
factors of Af has equation y2 = x3 + c4x+ c6, where

c4 =
1

3
(−321 + 738t− 305t2 − 196t3 + 47t4 + 13t5),

c6 =
1

3
(−4647 + 6300t+ 996t2 − 1783t3 − 432t4 − 14t5).

6.4.2 Can Optimal Quotients Have Nontrivial Component Group?

Let p be a prime. Component groups of optimal quotients of J0(p) are well-
understood in the sense of the following theorem of Emerton [23]:

Theorem 6.4.3 (Emerton). If A1, . . . , An are the distinct optimal quotients
of J0(p) attached the Galois-orbits of newforms, then the product of the or-
ders of the component groups of the Ai’s equals the order of the component
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group of J0(p), i.e., the numerator of (p − 1)/12. Moreover, the natural maps
Φ(J0(p)) → Φ(Ai) are surjective.

Shuzo Takehashi asked a related question about J1(p):

Question 6.4.4 (Takehashi). Suppose A = Af is an optimal quotient of
J1(p) attached to a newform. What can be said about the component group
of A? In particular, is the component group of A necessarily trivial?

Since J1(p) has trivial component group (see Theorem 1.1.1), the triviality
of the component group of A is equivalent to the surjectivity of the natural
map from Φ(J1(p)) to Φ(Af ).

The data in Tables 4–5 sheds little light on Question 6.4.4. The following
are the Af ’s that have nonzero L = c ·L(Af , 1)/Ω with numerator divisible by
an odd prime: 37D, 37F, 43C, 43F, 53D, 61E, 61F, 61G, 61J, 67D, 67E,
and 67G. For each of these, Conjecture 6.1.2 implies that c · X(Af ) · cp is
divisible by an odd prime. However, it seems difficult to deduce which factors
in the product are not equal to 1. We remark that for each Af listed above
such that the numerator of L is exactly divisible by p, there is a rank-1 elliptic
curve E over Q such that E[p] ⊂ A, so methods as in [2] may shed light on
this problem.

6.5 Using Magma to compute the tables

In this section, we describe how to use Magma V2.10-6 (or later) to compute
the entries in Tables 1–5 at the end of this paper.

6.5.1 Computing Table 1: Arithmetic of J1(p)

Let p be a prime. The following Magma code illustrates how to compute the
two rows in Table 1 corresponding to p (= 19). Note that the space of cuspidal
modular symbols has dimension 2 dim J1(p).

> p := 19;

> M := ModularSymbols(Gamma1(p));

> S := CuspidalSubspace(M);

> S;

Modular symbols space of level 19, weight 2, and dimension

14 over Rational Field (multi-character)

> LRatio(S,1);

1/19210689

> Factorization(19210689);

[ <3, 4>, <487, 2> ]

> TorsionBound(S,60);

4383

Remark 6.5.1. It takes less time and memory to compute c · L(J1(p), 1)/Ω in
Q×/2Z, and this is done by replacing M:=ModularSymbols(Gamma1(p)) with
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M:=ModularSymbols(Gamma1(p),2,+1). A similar remark applies to all com-
putations of L-ratios in the sections below.

6.5.2 Computing Tables 2–3: Arithmetic of JH(p)

Let p be a prime, d a divisor of p − 1 such that (p − 1)/d is even, and H the
subgroup of (Z/NZ)× of order (p−1)/d. We use Theorem 1.1.3 and commands
similar to the ones in Section 6.5.1 to fill in the entries in Tables 2–3. The
following code illustrates computation of the second row of Table 2 for p = 19.

> p := 19;

> [d : d in Divisors(p-1) | IsEven((p-1) div d)];

[ 1, 3, 9 ]

> d := 3;

> M := ModularSymbolsH(p,(p-1) div d, 2, 0);

> S := CuspidalSubspace(M);

> S;

Modular symbols space of level 19, weight 2, and dimension 2

over Rational Field (multi-character)

> L := LRatio(S,1); L;

1/9

> T := TorsionBound(S,60); T;

3

> T^2*L;

1

> Phi := d / GCD(d,6); Phi;

1

It takes about ten minutes to compute all entries in Table 2–3 using an Athlon
2000MP-based computer.

6.5.3 Computing Tables 4–5

Let p be a prime number. To compute the modular symbols factors cor-
responding to the newform optimal quotients Af of J1(p), we use the
NewformDecomposition command. To compute the modular kernel, we use
the command ModularKernel. The following code illustrates computation of
the second row of Table 4 corresponding to p = 19.

> p := 19;

> M := ModularSymbols(Gamma1(19));

> S := CuspidalSubspace(M);

> D := NewformDecomposition(S);

> D;

[

Modular symbols space for Gamma_0(19) of weight 2 and

dimension 2 over Rational Field,
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Modular symbols space of level 19, weight 2, and

dimension 12 over Rational Field (multi-character)

]

> A := D[2];

> Dimension(A) div 2;

6

> Order(DirichletCharacter(A));

9

> L := LRatio(A,1); L;

1/2134521

> T := TorsionBound(A,60);

> T^2*L;

1

> Invariants(ModularKernel(A));

[ 3, 3 ]

It takes about 2.5 hours to compute all entries in Tables 4–5, except that the
entries corresponding to p = 71, using an Athlon 2000MP-based computer.
The p = 71 entry takes about 3 hours.
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6.6 Arithmetic tables

The notation in Tables 1–5 below is explained in Section 6.

Table 1: Arithmetic of J1(p)

J1(p) dim c · L(J1(p), 1)/Ω

11 1 1/52

13 2 1/192

17 5 1/26 ·732

19 7 1/34 ·4872

23 12 1/112 ·371812

29 22 1/212 ·32 ·72 ·432 ·178372

31 26 1/24 ·54 ·72 ·112 ·23023812

37 40 0
41 51 1/28 ·52 ·132 ·314 ·4312 ·2501837212

43 57 0
47 70 1/232 ·1392 ·823970872 ·124511968332

53 92 0
59 117 1/292 ·592 ·99885536136913938123587942712

61 126 0
67 155 0
71 176 1/52 ·72 ·312 ·1132 ·2112 ·2812 ·7014 ·127132·

130708499192256557290612

J1(p) Torsion Bound

11 5
13 19
17 23 ·73
19 32 ·487
23 11·37181
29 212 ·3·7·43·17837
31 22 ·52 ·7·11·2302381
37 32 ·5·7·19·37·73·577·17209
41 24 ·5·13·312 ·431·250183721
43 22 ·7·19·29·463·1051·416532733
47 23·139·82397087·12451196833
53 7·13·85411·96331·379549·641949283
59 29·59·9988553613691393812358794271
61 5·72 ·112 ·19·31·2081·2801·40231·411241·514216621
67 11·67·193·6612 ·2861·8009·11287·9383200455691459
71 5·7·31·113·211·281·7012 ·12713 · 13070849919225655729061
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Table 2: Arithmetic of JH(p)

p d dim L = c · L(JH , 1)/Ω T = Torsion Bound T 2L |Φ(JH)|
11 1 1 1/5 5 5 5
13 1 0 1 1 1 1

2 0 1 1 1 1
3 0 1 1 1 1

17 1 1 1/22 22 22 22

2 1 1/23 22 2 2
4 1 1/24 22 1 1

19 1 1 1/3 3 3 3
3 1 1/32 3 1 1

23 1 2 1/11 11 11 11
29 1 2 1/7 7 7 7

2 4 1/32 ·7 3·7 7 7
7 8 1/26 ·72 ·432 26 ·7·43 26 1

31 1 2 1/5 5 5 5
3 6 1/24 ·5·72 22 ·5·7 5 5
5 6 1/54 ·112 52 ·11 1 1

37 1 2 0 3 0 3
2 4 0 3·5 0 3
3 4 0 3·7 0 1
6 10 0 3·5·7·37 0 1
9 16 0 32 ·7·19·577 0 1

41 1 3 1/2·5 2·5 2·5 2·5
2 5 1/26 ·5 23 ·5 5 5
4 11 1/28 ·5·132 24 ·5·13 5 5
5 11 1/2·52 ·4312 2·5·431 2 2
10 21 1/26 ·52 ·314 ·4312 23 ·5·312 ·431 1 1
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Table 3: Arithmetic of JH(p) (continued)

p d dim L = c · L(JH , 1)/Ω T = Torsion Bound T 2L |Φ(JH)|
43 1 3 0 7 0 7

3 9 0 22 ·7·19 0 7
7 15 0 7·29·463 0 1

47 1 4 1/23 23 23 23
53 1 4 0 13 0 13

2 8 0 7·13 0 13
13 40 0 13·96331·379549 0 1

59 1 5 1/29 29 29 29
61 1 4 0 5 0 5

2 8 0 5·11 0 5
3 12 0 5·7·19 0 5
5 16 0 5·2801 0 1
6 26 0 5·72 ·11·19·31 0 5
10 36 0 5·112 ·2081·2801 0 1
15 56 0 5·7·19·2801· 0 1

514216621
67 1 5 0 11 0 11

3 15 0 11·193 0 11
11 45 0 11·661·2861·8009 0 1

71 1 6 1/5·7 5·7 5·7 5·7
5 26 1/52 ·7·312 ·2112 5·7·31·211 7 7
7 36 1/5·72 ·1132 ·127132 5·7·113·12713 5 5
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Table 4: Arithmetic of Optimal Quotients Af of J1(p)

Af dim ord(ε) L = c · L(Af , 1)/Ω T 2L modular kernel
11A 1 1 1/52 1 []
13A 2 6 1/192 1 []
17A 1 1 1/24 1 [22]
17B 4 8 1/22 ·732 1 [22]
19A 1 1 1/32 1 [32]
19B 6 9 1/32 ·4872 1 [32]
23A 2 1 1/112 1 [112]
23B 10 11 1/371812 1 [112]
29A 2 2 1/32 1 [144]
29B 2 1 1/72 1 [22142]
29C 6 7 1/26 ·432 26 [210142]
29D 12 14 1/26 ·178372 26 [28144]
31A 2 1 1/52 1 [32152]
31B 4 5 1/52 ·112 1 [36152]
31C 4 3 1/24 ·72 1 [54154]
31D 16 15 1/23023812 1 [158]
37A 1 1 1/32 1 [122]
37B 1 1 0 0 [362]
37C 2 2 2/52 2 [184]
37D 2 3 3/72 3 [62182]
37E 4 6 1/372 1 [34184]
37F 6 9 3/5772 3 [26621024]
37G 6 9 1/32 ·192 1 [283421022]
37H 18 18 1/732 ·172092 1 [212612]
41A 2 2 1/24 1 [204]
41B 3 1 1/22 ·52 1 [22204]
41C 6 4 1/22 ·132 1 [521010]
41D 8 10 1/314 1 [412204]
41E 8 5 1/4312 1 [412204]
41F 24 20 1/2501837212 1 [2201012]
43A 1 1 0 0 [422]
43B 2 1 2/72 2 [32422]
43C 2 3 3/24 3 [3521052]
43D 4 3 1/192 1 [741054]
43E 6 7 1/292 1 [383922732]
43F 6 7 7/4632 7 [383922732]
43G 36 21 1/10512 ·4165327332 1 [3122112]
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Table 5: Arithmetic of Optimal Quotients Af of J1(p) (continued)

Af dim ord(ε) L = c · L(Af , 1)/Ω T 2L modular kernel
47A 4 1 1/232 1 [236]
47B 66 23 1/1392 ·823970872· 1 [236]

124511968332

53A 1 1 0 0 [522]
53B 3 1 2/132 2 [22262522]
53C 4 2 2/72 2 [268]
53D 36 13 13/963312 ·3795492 13 [266266]
53E 48 26 1/854112 ·6419492832 1 [264268]
59A 5 1 1/292 1 [298]
59B 112 29 1/592· 1 [298]

99885536136913938123587942712

61A 1 1 0 0 [602]
61B 2 6 0 0 [554]
61C 3 1 2/52 2 [62302602]
61D 4 2 2/112 2 [308]
61E 8 3 3/72 ·192 3 [108308]
61F 8 6 112/72 ·312 112 [1083043304]
61G 12 5 5/28012 5 [618306]
61H 16 10 1/112 ·20812 1 [38616308]
61I 32 15 1/5142166212 1 [240683016]
61J 40 30 52/402312 ·4112412 52 [2326123020]
67A 1 1 1 1 [1652]
67B 2 1 22/112 22 [623302]
67C 2 1 0 0 [664]
67D 10 11 11/28612 11 [31675212827312]
67E 10 3 32/1932 32 [11103310]
67F 10 11 1/6612 1 [31646232508532]
67G 20 11 11/80092 11 [3362409994]
67H 100 33 1/672 ·6612 ·112872· 1 [3603320]

93832004556914592

71A 3 1 1/72 1 [523523152]
71B 3 1 1/52 1 [723523152]
71C 20 5 1/312 ·2112 1 [7303510]
71D 30 7 1/1132 ·127132 1 [5503510]
71E 120 35 1/2812 ·7014· 1 [5203540]

130708499192256557290612
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pp. 25–39.
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1967–1969 (SGA 7 I), Lecture Notes in Mathematics, Vol. 288.

[29] , Groupes de monodromie en géométrie algébrique. II, Springer-
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1 Introduction

Fix a prime p. Consider a classical newform

F =
∑

n≥1

anqn ∈ Sk

(
Γ1(Npt),Qp

)

where k and N are positive integers and p - N is a prime (by a newform we mean
a Hecke eigenform that lies in the new subspace and is normalized so that a1 = 1).
The slope of F is ordp(ap), where ordp(p) = 1. By [Shi94, Prop. 3.64], the twist

Fχ =
∑

χ(n)anqn

of F by any Dirichlet character χ of conductor dividing p is an eigenform on
Γ1(Npmax {t+1,2}). This twist has infinite slope.

In Section 2, we prove that if F has finite slope then it is possible to approximate
Fχ arbitrarily closely by (classical) finite slope eigenforms. Assuming refinements of
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standard conjectures, the best estimate we obtain for the smallest weight of an ap-
proximating eigenforms is exponential in the approximating modulus pA. Section 4
contains computations that suggest that the best estimates should have weight that
is linear in pA.

One motivation for the question of approximation of infinite slope eigenforms
by finite slope eigenforms is the desire to understand the versal deformation space
of a residual modular representation [Maz89] (the deformation space of an irre-
ducible representation is universal [Maz89] as is the deformation space of a residual
pseudo-representation [CM98]). In [GM98] (see also [Maz97], and [Böc01] for a
generalization), it was shown that the Zariski closure of the locus of finite slope
modular deformations of an absolutely irreducible “totally unobstructed” residual
modular representation is Zariski dense in the associated representation space but
very little is known about the topological closure of this locus. For example, it is
not known if it contains any nonempty open sets. Our result implies that it contains
tamely ramified twists of modular deformations. We also show in Section 3.1 that
a result of Hatada implies that in at least one (albeit not irreducible) case it does
not contain all modular deformations.

Our investigation began with with our answer in Section 2 to a question of
Jochnowitz. The idea of studying the p-adic variation of modular forms began with
Serre [Ser73] and was since developed by Katz [Kat75] and Hida [Hid86] (see also
[Gou88] for a sketch of the theory). It follows, in particular, from their work, that
one can approximate all forms on X0(p

n) with forms on the j-line X0(1), but not
necessarily with eigenforms.

We prove the above result about twists in Section 2, then state some questions
about approximation by finite slope forms in Section 2.1. We explain how to rein-
terpret Hatada’s result in Section 3.1, then present the results of our computations
in Section 4.

Based on the results and computations discussed in this article, Mazur has sug-
gested that it may be the case that an infinite slope eigenform can be approximated
by finite slope eigenforms only if the corresponding representation is what he calls
tamely semistable (i.e., semistable, in the sense of [CF00], after a tame extension).

Acknowledgments. The authors thank Naomi Jochnowitz for provoking this
line of thought and for interesting conversations, Barry Mazur for helpful comments
and questions, Frank Calegari for conversations, Löıc Merel for his comments on an
early draft of this paper, and the referee for a brilliant report.

2 Approximating Teichmüller Twists of Finite Slope
Eigenforms

This section is the theoretical heart of the paper. We prove that the infinite slope
eigenforms obtained as twists of finite slope eigenforms by powers of the Teichmüller
character can always be approximated by finite slope eigenforms. We first show that
certain overconvergent eigenforms of sufficiently close weight are congruent and have
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the same slope. Then we use the θ operator on overconvergent forms to deduce the
main result (Theorem 2.1) below.

Let p be a prime. All eigenforms in this section will be cusp forms with coeffi-
cients in Qp normalized so that a1 = 1. Suppose F =

∑
n≥1 anqn is an eigenform

and χ : (Z/MZ)∗ → C∗
p is a Dirichlet character with modulus M , which we extend

to Z/MZ by setting χ(n) = 0 if (n, M) 6= 1. Then the twist of F by χ is the
eigenform

Fχ =
∑

n≥1

χ(n)anqn.

Let ω : (Z/pZ)∗ → Z∗
p be the Teichmüller character (so ω(n) ≡ n (mod p)). The

following theorem concerns finite slope approximations of twists of F by powers of ω.
For example, it concerns the twist

Fω0
=

∑

(n,p)=1

an(F )qn

of F by the trivial character mod p, which we call the “p-deprivation” of F and
which has infinite slope.

Theorem 2.1. Suppose F is a classical eigenform on X1(Npt), t ≥ 1, over Qp

of weight k, character ψ, and finite slope at p. Let A ∈ Z>0 and r, s ∈ Z≥0 with
r, s < p − 1. Then there exists a classical finite slope eigenform G on X1(Npt) with
G(q) ≡ Fωr

(q) (mod pA) such that G has weight congruent to k + 2r − s modulo
p − 1 and character ψ · ωs.

(The slope of G will be at least A, since the pth Fourier coefficient of F ωr
is 0.)

Let q = 4 if p = 2 and p otherwise. Let τ : Z∗
p → C∗

p be the character of finite
order such that a ≡ τ(a) (mod q). We only need to assume that F =

∑
n≥1 anqn is

an overconvergent eigenform of tame level N of finite slope with arithmetic weight-
character κ : a → χ(a)〈〈a〉〉k, where χ is a character of finite order whose conductor
divides Npt, k is a possibly negative integer, and 〈〈a〉〉 = a/τ(a). (For example, if
F is a classical eigenform of weight k and character ψ, then χ = ψωk.) Recall that
the collection of continuous characters on Z∗

p is a metric space, with

d(ρ, ψ) = max{|ρ(a) − ψ(a)| : a ∈ Z∗
p},

where | | is the absolute value on Cp normalized so that |p| = 1/p. We need,

Proposition 2.2. Suppose L ∈ Z≥0 and H is an overconvergent eigenform of tame
level N , finite slope and weight-character κ. Then if γ is a weight-character suffi-
ciently close to κ there exists an overconvergent eigenform R of weight-character γ
with the same slope as H such that

H(q) ≡ R(q) (mod pL).
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Proof. We will use the notation of the “R-families” section (in §B5) of [Col97b]. In
particular, B is an affinoid disk in weight space containing κ and X is an affinoid
finite over B such that A(X) is generated by the images of the “Hecke operators”
T (n). Moreover, if x ∈ X and ηx : A(X) → Cp is the corresponding homomorphism,
then

Fx(q) =
∑

n≥1

ηx(T (n))qn

is the q-expansion of an overconvergent finite slope eigenform and finally there is a
point y ∈ X such that Fy(q) = H(q). Note that X is a subdomain of the eigencurve
of tame level N (although the eigencurves of level N > 1 are not yet defined in the
literature).

The ring A0(X) is finite over A0(B) by Corollary 6.4.1/5 of [BGR84]. Let
f1, . . . , fn be generators. Let f0 be a uniformizing parameter on B so that A(B) =
Cp〈f0〉, where Cp〈f0〉 is the ring of power series in f0 whose coefficients tend to 0
with their degree. Let ZL(y) be the following Weiersträss subdomain of X:

{x ∈ X : |fi(x) − fi(y)| ≤ p−L, 0 ≤ i ≤ n}.

Since the functions x → ηx(T (n)) lie in A0(X), it follows that if x ∈ ZL(y), then

Fx(q) ≡ H(q) (mod pL).

Finally, since ZL(y) is a subdomain of X and X is finite over B, the map from ZL(y)
to B is quasi-finite. It follows from Proposition A5.5 of [Col97b] that its image in B
is a subdomain. Since κ is the image of y, its image contains a disk around y.

Proof of Theorem 2.1. Let α be the slope of F . It follows from Proposition 2.2 that
if m ∈ Z is sufficiently small p-adically there exists an overconvergent eigenform K
of tame level N , weight-character χ · 〈〈 〉〉k−m and slope α such that K(q) ≡ F (q)
(mod pA). Suppose m ≥ k. Then, by Proposition 4.3 of [Col96] (see also [Col97a])
if F1 = θm−k+1K, then F1 is an overconvergent eigenform of weight-character

κ1 := ω2(m−k+1) · χ · 〈〈 〉〉k1 ,

where k1 = m − k + 2, and F1 has finite slope α1 = α + m − k + 1. Applying
this same process to F1, for ` ∈ Z sufficiently small p-adically such that ` ≥ k1, we
obtain an overconvergent finite slope eigenform F2 of weight-character κ2, where
κ2 = ω2` · χ · 〈〈 〉〉k2 and where k2 = ` − k1 + 2 = k + ` − m, such that if F2(q) =∑

n≥1 bnqn, then

bn ≡ n`−k1+1nm−k+1an

≡ n`an (mod pA).

The latter is congruent to ωr(n)an (mod pA) if ` ≡ r (mod ϕ(pA)) and ` + v(ap) ≥
A. It follows from [Col96, §8], [Col97a], and [Col97b] that if c is an integer suf-
ficiently small p-adically, such that c + k2 > v(bp) + 1 (note that v(bp) is the
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slope of F2 so is finite) there exists a classical eigenform G on X1(Npt) of weight
k2 + c = k + ` − m + c, slope v(bp) and character ωm+r−c · ψ such that G(q) ≡
F2(q) ≡ Fωr

(q) (mod pA). We can choose c so that m + r − c ≡ s (mod p − 1) and
then k2 + c ≡ k + 2r − s mod (p − 1).

The following corollary addresses a question of Jochnowitz, which motivated
this entire investigation:

Corollary 2.3. Suppose R is a classical eigenform of weight k on X1(N), let A ∈
Z>0, and let r ∈ Z≥0 with r < p − 1. Then there exists a classical eigenform S
on X1(N) of weight congruent to k + 2r modulo p − 1 such that S(q) ≡ Rωr

(q)
(mod pA).

Proof. Suppose the F in Theorem 2.1 is one of the old eigenforms associated to R
on X1(Np) and s = 0. Let G be a classical eigenform of weight c+ k2 as mentioned
in the proof of the theorem, but suppose c+k2 > 2v(bp)+1. Then G is old of weight
congruent to k mod (p−1) and G is congruent to an eigenform S of the same weight
on X1(N) modulo pv(bp). Since bp ≡ 0 (mod pA), we obtain the corollary.

Remark 2.4. Assuming a natural refinement of the Gouvêa-Mazur conjectures, the
best estimate we obtain for the weight of H in the above proof is exponential in pA.
Computational evidence suggests that the best estimates should have weights that
are linear in pA (see Section 4).

Remark 2.5. Jochnowitz and Mazur have independently observed that the above
argument can be used to prove the following result: Suppose F is an overconvergent
eigenform of arithmetic weight-character κ, which is a limit of overconvergent eigen-
forms of finite slope. If ι : Z∗

p → Z∗
p is the identity character, then the twist F ι/κ(q)

of F by ι/κ, which is the q-expansion of a convergent eigenform of weight-character
ι2/κ, is the limit of overconvergent eigenforms of finite slope.

Remark 2.6. One can also approach the p-deprivation (the twist by the 0th power
of Teichmüller) of a finite slope eigenform F by using the evil twins of eigenforms
approaching F .

2.1 Questions

Some natural questions arise:

1. Is every p-adic convergent eigenform which is the limit of finite slope overcon-
vergent eigenforms an overconvergent eigenform? (We can show the twist of
an overconvergent eigenform by a Dirichlet character is overconvergent.)

2. Which infinite slope eigenforms are limits of finite slope eigenforms?

3. If F (q) is the q-expansion of an overconvergent eigenform of weight-character κ,
is F ι/κ(q) the q-expansion of an overconvergent eigenform of weight-character
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ι2/κ (recall that ι is the identity character Z∗
p

∼−→ Z∗
p)? Another closely re-

lated question is as follows: Suppose ρ is the representation of the absolute
Galois group of Q attached to an overconvergent eigenform and let χ denote
the cyclotomic character. Then is the representation ρ⊗χ · det(ρ)−1 attached
to an overconvergent eigenform?

3 An Infinite Slope Eigenform that is Not Approximable

In Section 3.1, we prove an extension to higher level of a theorem of Hatada about
the possibilities for systems of Hecke eigenvalues modulo 8. We use this result
to deduce that the normalized weight 2 cusp form on X0(32) is not 2-adically
approximable by normalized eigenforms of tame level 1 and finite slope. In Sec-
tion 3.2 we give an example of an infinite slope eigenform of level 27 that computer
computations suggest cannot be approximated by finite slope forms. For related
investigations, see [CE03].

3.1 An Extension of a Theorem of Hatada

Theorem 3.1. If F =
∑

anqn is a normalized cuspidal newform over C2 of finite
slope on X0(2

n), then a2 ≡ 0 (mod 8) and ap ≡ p+1 (mod 8) for all odd primes p.

Proof. Suppose F has weight k and finite slope α. The assumption that F has finite
slope implies n ≤ 1. If n = 0 the assertion of Theorem 3.1 was proved by Hatada
in [Hat79], so we may assume that n = 1 and α = (k − 2)/2 (in general, the slope
of a newform on Γ0(p) of weight k is (k − 2)/2). Note that α ≥ 3 since there are no
newforms on X0(2) of weight < 8. It follows from Theorems A of [Col97b] (see §B2
of [Col97b] for the extension to p = 2) and Theorem B5.7 of [Col97b] that if j is
an integer sufficiently close 2-adically to k, then there exists a classical normalized
cuspidal eigenform G on X0(2) of weight j and slope α such that

G(q) ≡ F (q) (mod 8).

If in addition we assume that j > 2(α + 1), then G must be old (since the slope
of a newform of weight j is (j − 2)/2 6= α). Thus there is a cuspidal eigenform
H =

∑
bnqn of level 1 such that G is a linear combination of H(q) and H(q2).

More precisely,
G(q) = H(q) − ρH(q2)

where ρ is a root of P (X) = X2 − b2X + 2j−1. By Hatada’s theorem ord2(b2) ≥ 3,
and j ≥ 12, so the slopes of the Newton polygon of P (X) at 2 are both at least 3.
Thus G(q) ≡ H(q) (mod 8), which proves the theorem because H has level 1.

Corollary 3.2. Let G be the normalized weight 2 cusp form on X0(32). Then G
is not 2-adically approximable by normalized eigenforms of tame level 1 and finite
slope.
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Proof. If F32 were approximable there would have to be a normalized eigenform F
on X0(2) such that F32(q) ≡ F (q) (mod 8). However, F32(q) =

∑∞
n=1 anqn where,

ap =

{
2x if p = x2 + y2, written so x + y ≡ x2 (mod 4)

0 otherwise.

As a3 = 0 6≡ 4 (mod 8), we see from Theorem 3.1 that F does not exist.

Remark 3.3. If p ≡ 1 (mod 4) then the coefficient of ap in F32 agrees modulo 8 with
p + 1. If p is 3 mod 4 it does not because for F32 the coefficient vanishes. What
is happening is that there is a reducible mod 8 pseudo-representation (namely the
trivial one-dimensional representation plus the cyclotomic character) such that any
finite slope level 2n form gives this pseudo-representation mod 8. Conversely the
mod 8 representation associated to F32 is the direct sum of the quadratic character
associated to Q(i) and the cyclotomic character. Hence the congruence works when
p = 1 mod 4 but not otherwise.

3.2 Another Eigenform that Conjecturally Cannot be Approxi-

mated

In this section we consider an infinite slope eigenform that is not a Teichmüller
twist of a finite slope eigenform. We conjecture that this eigenform cannot be
approximated arbitrarily closely by finite slope eigenforms.

Conjecture 3.4. There are exactly five residue classes in (Z/9Z)[[q]] of normalized
eigenforms in Sk(Γ0(N)) where k ≥ 1 and N = 1, 3, 9. They are given in the
following table, where the indicated weight is the smallest weight where that system
of eigenvalues occurs (the level is 1 in each case):

Weight [ a2, a3, . . . , a43 mod 9 ]

12 [ 3, 0, 6, 5, 3, 8, 0, 2, 6, 3, 8, 2, 6, 5 ]

16 [ 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 2, 2, 0, 2 ]

20 [ 6, 0, 3, 8, 6, 5, 0, 2, 3, 6, 5, 2, 3, 8 ]

24 [ 6, 0, 3, 5, 6, 8, 0, 2, 3, 6, 8, 2, 3, 5 ]

32 [ 3, 0, 6, 8, 3, 5, 0, 2, 6, 3, 5, 2, 6, 8 ]

The system of eigenvalues mod 9 associated to the weight 2 form F on X0(27) is

[ 0, 0, 0, 8, 0, 5, 0, 2, 0, 0, 5, 2, 0, 8 ],

so we conjecture that there is no eigenform f on Γ0(N) with N | 9 such that f ≡ F
(mod 9).

As evidence, we verified that each of the mod 9 reductions of each newform of
level 1 and weight k ≤ 74 has one of the five systems of Hecke eigenvalues listed in
the table. We also verified that all newforms of levels 3 and 9 and weight k ≤ 40
have corresponding system of eigenvalues mod 9 in the above table. We checked
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using the method described in Section 4 that there is no newform of level 1 with
weight k ≤ 300 that approximates the weight 2 form on X0(27) modulo 9.

We now make some remarks about pseudo-representations when p = 3. Let

χ : Z/27Z → Z/9Z

be the mod 9 cyclotomic character, so χ has order 6 and if gcd(n, 3) = 1 then
χ(n) = n ∈ Z/9Z. The pseudo-representation corresponding to a form of weight k
giving the system of eigenvalues in the table in Conjecture 3.4 are

Weight Pseudo-representation

12 χ2 ⊕ χ3

16 1 ⊕ χ3

20 χ3 ⊕ χ4

24 1 ⊕ χ5

32 1 ⊕ χ
S2(Γ0(27)) χ2 ⊕ χ5

Note that the square of any pseudo-representation of level 1 in the above table has 1
as an eigenvalue, but the square of the pseudo-representation attached to S2(Γ0(27))
does not have 1 as an eigenvalue. Also,

F ≡ f16 ⊗ χ2 (mod 9),

where f16 is of weight 16. The order of χ2 is 3, so χ2 is not a power of the Teichmüller
character (which has order 2) and Theorem 2.1 does not apply.

Further computations suggest that the pseudo-representations attached to forms
of level 1 with coefficients in Z9 are

Weight Pseudo-representations

k ≡ 0 (mod 6) 1 ⊕ χ5, χ2 ⊕ χ3

k ≡ 2 (mod 6) 1 ⊕ χ, χ3 ⊕ χ4

k ≡ 4 (mod 6) 1 ⊕ χ3

The pseudo-representations attached to forms of level 27 with coefficients in Z9

seem to be

Weight Pseudo-representations

k ≡ 0 (mod 6) χ ⊕ χ4

k ≡ 2 (mod 6) χ2 ⊕ χ5

k ≡ 4 (mod 6) χ ⊕ χ2, χ4 ⊕ χ5

Also note that if χi ⊕χj is one of the pseudo-representations of level 27 in the table,
then the sum of the orders of χi and χj is 9, whereas at level 1 the sum of the orders
is at most 7.
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4 Computations About Approximating Infinite Slope
Eigenforms

In this section, we investigate computationally how well certain infinite slope form
can be approximated by finite slope eigenforms.

4.1 A Question About Families

The following question is an analogue of [GM92, §8] but for eigenforms of infinite
slope. Fix a prime p and an integer N with (N, p) = 1.

Question 4.1. Suppose f ∈ Sk0(Γ0(Npr)) is an eigenform having infinite slope
(note that f need not be a newform). Is there a “family” of eigenforms {fk}, with
fk ∈ Sk(Γ0(Np)), where the weights k run through an arithmetic progression

k ∈ K = {k0 + mpν(p − 1) for m = 1, 2, . . .}

for some integer ν, such that

fk ≡ f (mod pn),

where n = ordp(k − k0) + 1? (When p = 2 set n = ord2(k − k0) + 2.)

Our question differs from the one in [GM92, §8] because there the form being
approximated has finite slope, whereas our form f does not. We know, as discussed
in the previous section, that our question sometimes has a negative answer since it
might not be possible to approximate f at all.

4.2 An Approximation Bound

Let
f =

∑

n≥1

anqn ∈ K[[q]]

be a q-expansion with coefficients that generate a number field K. Fix a prime p
and an even integer k ≥ 2. In order to gather some data about Question 4.1, we
now define a reasonably easy to compute upper bound on how well f can be approx-
imated by an eigenform in Sk(Γ0(p)). Suppose ` ≥ 1, let F be the characteristic
polynomial of T` acting on the space Sk(Γ0(p)) of classical cusp forms of weight k
and tame level 1, and let H be the characteristic polynomial of a` ∈ K. Let G be
the resultant of F (Y ) and H(X + Y ) with respect to the variable Y , normalized
so that G is monic. Thus the roots of G are the differences α − β where α runs
through the roots of F and β runs through the Gal(Q/Q)-conjugates of a`. We
can easily compute the p-valuations of the roots of G without finding the roots,
because the p-valuations of the roots are the slopes of the newton polygon of G.
Let m` ∈ Q ∪ {∞} be the maximum of the slopes of the Newton polygon of G. Let

ck(f, r) = min{m` : ` ≤ r is prime}.
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We note that computing ck(f, r) requires knowing only the characteristic polyno-
mials of Hecke operators T` on Sk(Γ0(p)) and of a` for primes ` ≤ r.

Proposition 4.2. If there is a normalized eigenform g ∈ Sk(Γ0(p)) such that f ≡ g
(mod pA), then A ≤ ck(f, r) for any r.

Proof. To see this observe that ck(f, r) is the minimum of the

ordp(an(f) − an(g))

where 1 ≤ n ≤ r and g runs through all normalized eigenforms in Sk(Γ0(p)), and
we run through all possible embeddings of f and g into Zp[[q]].

The motivation for our definition of ck(f, r) is that it is straightforward to com-
pute from characteristic polynomials of Hecke operators, even when the coefficients
of f lie in a complicated number field. The number ck(f, r) could overestimate the
true extent to which f is approximated by an eigenform in Sk(Γ0(p)) in at least two
ways:

1. There is an r′ > r such that ck(f, r′) < ck(f, r).

2. No single eigenform g is congruent to f , but each coefficient of f is congruent
to some coefficient of some eigenform g.

4.3 Some Data About Approximations

Let p be a prime and f ∈ Sk0(Γ0(p
r)) be a newform of infinite slope. Suppose

that the answer to Question 4.1 for f is yes. If k is a weight (in the arithmetic
progression) then there should be an eigenform fk ∈ Sk(Γ0(p)) such that fk ≡ f
(mod pn+1) where n = ordp(k − k0). Thus we should have

ordp(k − k0) + 1 ≤ ck(f, r)

for all r > 1 and all k in an arithmetic progression K = {k0 + mpν(p − 1) for m =
0, 1, 2, . . .}. (When p = 2 we should have ord2(k − k0) + 2 ≤ ck(f, r).)

The following or the results of some computations of ck(f, r).
p = 2:

1. For k0 = 6, 10, 12, 14, 16, 20 let f ∈ Sk0(Γ0(4)) be the unique newform. Then
for all k with k0 < k ≤ 100 we have ck(f, 47) = ord2(k − k0) + 2.

2. For k0 = 18, 22 let f ∈ Sk0(Γ0(4)) be the unique, up to Galois conjugacy,
newform. Then for all k with k0 < k ≤ 100 we have ck(f, 7) = ord2(k−k0)+2.

3. Let f ∈ S4(Γ0(8)) be the unique newform. For most 4 < k ≤ 100 we have
ck(f, 47) = ord2(k − k0) + 2. However, in this range if ord2(k − k0) ≥ 4 then
ck(f, 47) = 5 Since ord2(68 − 4) + 2 = 8, this is a problem; perhaps this
form is not approximated. Very similar behavior occurs for the newforms in
S6(Γ0(8)), S8(Γ0(8)), and S4(Γ0(16)).
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4. For the two newforms f ∈ S6(Γ0(16)), we have ck(f, 47) ≤ 3 for all k < 100,
so these f probably can not be approximated by finite slope forms.

5. Let f be the 2-deprivation of the unique normalized eigenform in Sk0(Γ0(1)) for
k0 = 12, 16, 18, 20, 22, 26. Then ck(f, 47) = ord2(k − k0) + 2 for 12 < k ≤ 100.
Same statement for k0 = 24, 28 for the 2-deprivation of one of the Galois
conjugates and ck(f, 47) replaced by ck(f, 7).

p = 3:

1. Suppose f is a newform in Sk0(Γ0(9)) for k0 ≤ 12. Then for k0 < k ≤ 100 we
have ck(f, 47) = ord3(k − k0) + 1, except possibly for the nonrational form of
weight 8, where we have only checked that ck(f, 7) ≥ ord3(k − k0) + 1.

2. Let f be the twist of a newform in Sk0(Γ0(1)) by ω3 for k0 ≤ 32. Then
ck(f, 7) ≥ ord3(k − k0) + 1 for k0 < k ≤ 100, with equality usually.

3. Let f be the newform in S2(Γ0(45)) of tame level 5. Then c2+(3−1)3n(f, 7) =
n+1 for n = 0, 1, 2, 3 (here we are testing congruences with forms in Sk(Γ0(15))).

p = 5:

1. Let f = q + q2 + · · · ∈ S4(Γ0(25)) be a newform. Then c4+4(f, 7) = 1,
c4+4·5(f, 7) = 2, and c4+4·52(f, 7) = 3. Same result for the newform f =
q + 4q2 + · · · ∈ S4(Γ0(25)).

2. Let f = q − q2 + · · · ∈ S2(Γ0(2 · 25)). Then c2+4(f, 7) = 1 and c2+4·5(f, 7) = 2,
where we are testing congruences with forms in Sk(Γ0(10)).

3. Let f be one of the newforms in S2(Γ0(5
3)) defined over a quadratic extension

of Q. Then c2+4(f, 7) = c2+4·5(f, 7) = c2+4·52(f, 2) = 1/2. Thus it seems
unlikely that f can be approximated by forms of finite slope.

p = 7:

1. Let f ∈ S2(Γ0(49)) be the newform. Then c2+6(f, 7) = 1 and c2+6·7(f, 7) = 2.
Same statement for the form f = q − q2 ∈ S4(Γ0(49)) at weights 4 + 6 and
4 + 6 · 7.

The data and results of this paper suggests the following:

Guess 4.3. Let p be a prime and N an integer coprime to p. Then the eigenforms
on X0(Npt) that can be approximated by finite-slope eigenforms are exactly the
eigenforms on X0(Np2). Suppose f is an infinite slope eigenform that can be ap-
proximated by finite slope eigenforms and f has weight k0. Then for any k > k0

with k ≡ k0 (mod p− 1), there is an eigenform fk on X0(Np) of weight k such that
f ≡ fk (mod pn) where n = ordp(k−k0)+1 (or +2 if p = 2). (In general one might
have to restrict to n sufficiently large.)
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[BGR84] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis: A
systematic approach to rigid analytic geometry, Springer-Verlag, Berlin,
1984.

[CE03] F. Calegari and M. Emerton, The Hecke Algebra Tk has Large Index,
Preprint, 2003.

[CM98] R. Coleman and B. Mazur, The Eigencurve, Galois representations in
arithmetic algebraic geometry (Durham, 1996), Cambridge Univ. Press,
Cambridge, 1998, pp. 1–113.

[Col96] R. F. Coleman, Classical and overconvergent modular forms, Invent. Math.
124 (1996), no. 1-3, 215–241.

[Col97a] R. F. Coleman, Classical and overconvergent modular forms of higher level,
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[Gou88] F. Q. Gouvêa, Arithmetic of p-adic modular forms, Springer-Verlag,
Berlin, 1988.

[Hat79] K. Hatada, Eigenvalues of Hecke operators on SL(2, Z), Math. Ann. 239
(1979), no. 1, 75–96.

[Hat01] K. Hatada, On classical and l-adic modular forms of levels Nlm and N ,
J. Number Theory 87 (2001), no. 1, 1–14.

12



[Hid86] H. Hida, Iwasawa modules attached to congruences of cusp forms, Ann.
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Shafarevich–Tate Groups of Nonsquare Order

William A. Stein

Abstract. Let A denote an abelian variety over Q. We give the first known
examples in which #X(A/Q) is neither a square nor twice a square. For
example, let E be the elliptic curve y2 + y = x3 − x of conductor 37. We
prove that for every odd prime p < 25000 (with p 6= 37), there is a twist A
of E × · · · × E (p − 1 copies) such that #X(A/Q) = pn2 for some integer n.
We prove this by showing under certain hypothesis on E and p that there is
an exact sequence

0 → E(Q)/pE(Q) → X(A/Q)[p∞] → X(E/K)[p∞] → X(E/Q)[p∞] → 0,

where K is a certain abelian extension of Q of degree p.

1. Introduction

The Shafarevich–Tate group of an abelian variety A over a number field F is

X(A/F ) := Ker

(
H1(F,A) →

⊕

all v

H1(Fv, A)

)
.

What are the possibilities for the group structure of X(A/F )? It is conjectured
that X(A/F ) is finite and this is known in some cases.

Theorem 1.1 (Kato, Kolyvagin, Wiles, et al.). Suppose A is an elliptic curve
over Q. (1) If ords=1 L(A, s) ≤ 1, then X(A/Q) is finite. (2) If χ is a char-
acter of the Galois group of an abelian extension K of Q and L(A,χ, 1) 6= 0, then
the χ-component of X(A/K)⊗ZZ[χ] is finite. (Here Z[χ] is generated by the image
of χ.)

The Cassels–Tate pairing X(A/F )×X(A∨/F ) → Q/Z imposes strong con-
straints on the structure of X(A/F ).

Theorem 1.2 (Tate, Flach). Let p be a prime and suppose that there is a polariza-
tion λ : A → A∨ of degree coprime to p. If p = 2 assume also that λ arises from
an F -rational divisor on A (this hypothesis is automatic if A is an elliptic curve,
but can fail in general). If X(A/F )[p∞] is finite then #X(A/F )[p∞] is a perfect
square.

Proof. If λ is F -rational, the Cassels–Tate pairing on X(A/F )[p∞] (induced by λ)
is nondegenerate and alternating (see [Tat63]), so #X(A/F )[p∞] is a perfect



2 W. A. Stein

square. Even when λ is not F -rational, the Cassels–Tate pairing is nondegenerate
and antisymmetric (see [Fla90]), which when p is odd implies that #X(A/F )[p∞]
is a perfect square.

It is tempting to conjecture that #X(A/F ) is always a perfect square. Per-
haps squareness is a fundamental property of Shafarevich–Tate groups? While
implementing algorithms based on [PS97] for computing with Jacobians of hyper-
elliptic curves, M. Stoll was shocked to discover an example of an abelian variety
of dimension two such that #X(A/F )[2∞] = 2. This was surprising because, for
example, one finds in the literature [SD67, pg.149] the following statement: “[The
group X(A/F )] is conjectured to be finite, and Tate [26] has shown that if it is fi-
nite its order is a perfect square.” Stoll and B. Poonen discovered what hid behind
this and other similar examples in which #X(A/F ) is twice a perfect square.

An algebraic curve X of genus g over a local field k is deficient if X has no
k-rational divisor of degree g − 1.

Theorem 1.3 (Poonen-Stoll [PS99]). Suppose A is the Jacobian of an algebraic
curve over F that is deficient at an odd number of places. If #X(A/F ) is finite,
then #X(A/F ) is twice a square.

For example, they prove that the Jacobian J of the nonsingular projective
curve defined by

y2 = −3(x2 + 1)(x2 − 6x + 1)(x2 + 6x + 1)

has Shafarevich–Tate group of order 2 (to see that #X(J) | 2 they observe that J
is isogenous to a product of CM elliptic curves and apply a theorem of Rubin;
see [PS99, Prop. 27] for details). Also, Jordan and Livné [JL99] give an infinite
family of Atkin–Lehner quotients of Shimura curves which are deficient at an odd
number of places.

Though #X(A/F ) need not be square, one might still be tempted to con-
jecture that X(A/F ) must have order either a square or twice a square. Let p
be an odd prime. In this paper, we construct (under certain hypotheses that are
satisfied for p < 25000) abelian varieties A such that #X(A/Q) = pn2 for some
integer n. For example (see Section 3):

Theorem 1.4. Let E be the elliptic curve y2 + y = x3 − x of conductor 37. For
every odd prime p < 25000 (with p 6= 37), there is a twist A of E×(p−1) such that
#X(A/Q) = pn2 for some integer n.

This paper was originally motivated by the problem of relating the conjecture
of Birch and Swinnerton-Dyer about the ranks of elliptic curves E to the Birch and
Swinnerton-Dyer formula for the orders #X(A) for abelian varieties A of analytic
rank 0.

Let p be a prime. Under suitable hypotheses, we construct an abelian va-
riety A and a natural map E(Q)/pE(Q) ↪→ X(A/Q). Thus if E(Q) ∼= Z then
X(A/Q) has a natural subgroup of order p, and no other natural subgroup of
order p presents itself. Moreover, when E is defined by y2 + y = x3 − x, the Birch
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and Swinnerton-Dyer formula predicts that X(A/Q)[3] is of order 3. Further in-
vestigation led to the results of this paper.

Acknowledgement: It is a pleasure to thank Kevin Buzzard, Frank Calegari, Sol
Friedberg, Benedict Gross, Emmanuel Kowalski, Barry Mazur, Bjorn Poonen, and
David Rohrlich for their helpful comments, and in particular Michael Stoll for
Lemma 2.10 and Cristian González for carefully reading this paper, making many
comments, and sending me a proof of Proposition 2.13.

1.1. Notation

If G is an abelian group and n is an integer, then G[n] denotes the subgroup of
elements of order n and G[n∞] is the subgroup of elements of order any power
of n. We refer to elliptic curves using the notation of [C97].

2. Construction of Nonsquare Shafarevich–Tate Groups

For the rest of this paper we will work with an elliptic curve E over Q. Aside from
the significant use of known cases of the Birch and Swinnerton-Dyer conjecture
below, much of the construction should generalize to the situation when E is
replaced by a principally polarized abelian variety over a global field.

For the rest of this section, fix an elliptic curve E over Q. By [BCDT01], E
is modular so there is a newform f =

∑∞
n=1 anqn of level equal to the conduc-

tor N = NE of E such that L(E, s) = L(f, s). For each prime q | N , the Tamagawa
number cq of E at q is the order of the group of rational components of the special
fiber of the Néron model of E at q.

2.1. Twisting By Characters of Prime Order

Let p be a prime number. For any prime ` ≡ 1 (mod p), let

χp,` : (Z/`Z)∗ → µp ⊂ C∗

be one of the p−1 Galois-conjugate Dirichlet characters of order p and conductor `.

Conjecture 2.1. Suppose p is a prime such that ρE,p : Gal(Q/Q) → Aut(E[p])
is surjective. Then there exists a prime ` - N such that L(E,χp,`, 1) 6= 0, ` ≡ 1
(mod p) and a` 6≡ ` + 1 (mod p).

Remarks 2.2.
1. Formulas involving modular symbols imply that L(E,χp,`, 1) 6= 0 if and

only if L(E,χσ
p,`, 1) 6= 0 for any Gal(Q/Q)-conjugate χσ

p,` of χp,`.

2. J. Fearnley proved related nonvanishing results when L(E, 1) 6= 0 in
[Fea01].

3. If E is the elliptic curve y2 + y = x3 − x of conductor 37 and rank 1, then
` = 41 is the only ` ≡ 1 (mod 5) with ` < 1000 for which L(E,χ5,`, 1) = 0.

The following proposition gives evidence for Conjecture 2.1 for the lowest-
conductor elliptic curves of ranks 1, 2, and 3.
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Proposition 2.3. Conjecture 2.1 is true for the rank 1 elliptic curve 37A for every
odd p < 25000 (with p 6= 37). The conjecture is true for the rank 2 curve 389A for
every odd p < 1000 (with p 6= 389). The conjecture is true for the rank 3 curve
5077A for every odd p < 1000.

Proof. Consider the modular symbol

ep,` =
∑

a∈(Z/`Z)∗

χp,`(a) ·
{

0,
a

`

}
∈ H1(X0(N), Q(ζp)).

Then L(E,χp,`, 1) 6= 0 if and only if the image of ep,` under

H1(X0(N), Q(ζp)) → H1(E, Q(ζp))

is nonzero. In any particular case, we can use modular symbols to determine
whether or not this image is nonzero.

When p is large, it is difficult to compute in the field Q(ζp), so instead we
compute in the residue class field F` = Z[ζp]/m ∼= Z/`Z, where m is one of the
maximal ideals of Z[ζp] that lies over `. (Note that ` splits completely in Z[ζp]
because ` ≡ 1 (mod p).) After reducing modulo m, we compute the image of

ep,` =
∑

a∈(Z/`Z)∗

a(`−1)/p ·
{

0,
a

`

}
∈ H1(X0(N), F`)

in H1(E, F`). If it is nonzero, then the image of ep,` in H1(E, Q(ζp)) is nonzero.
A big computation (that takes hundreds of hours using Magma [BCP97])

shows that the image of ep,` is nonzero in the cases asserted by the proposition. So
the reader can carry out similar computations, we include the following Magma
V2.10-6 code, which illustrates verification of the proposition for 37A for p < 100:

procedure VerifyConjecture(E, p)

assert Type(E) eq CrvEll;

assert Type(p) eq RngIntElt and IsPrime(p) and IsOdd(p);

N := Conductor(E);

assert N mod p ne 0;

M := ModularSymbols(E,+1); // takes a long time if N large!

ell := 3; t := Cputime();

printf "p=%o: ", p;

while true do

while (ell mod p ne 1) or (N mod ell eq 0) or

TraceOfFrobenius(ChangeRing(E,GF(ell))) mod p eq (ell+1) do

ell := NextPrime(ell);

end while;

k := FiniteField(ell);

printf "trying ell=%o...",ell;

psi := DirichletGroup(ell,k).1;

eps := psi^(Order(psi) div p); // order p character

M_k := BaseExtend(M,k);
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phi := RationalMapping(M_k);

e := TwistedWindingElement(M_k,1,eps);

if phi(e) ne 0 then

printf " success! (%o seconds)\n", Cputime(t);

return;

end if;

printf "failed. ";

ell := NextPrime(ell);

end while;

end procedure;

E := EllipticCurve([0,0,1,-1,0]); // 37A

for p in [q : q in [3..100] | IsPrime(q) and q ne 37] do

VerifyConjecture(E,p);

end for;

The above input results in the following abbreviated output:

p=3: trying ell=7... success! (0.021 seconds)

p=5: trying ell=11... success! (0.039 seconds)

p=7: trying ell=29... success! (0.121 seconds)

...

p=89: trying ell=179... success! (0.739 seconds)

p=97: trying ell=389... success! (1.491 seconds)

2.2. A Restriction of Scalars Exact Sequence

As above, E is an elliptic curve over Q. Let p be any prime (note that p = 2 is
allowed). Suppose ` ≡ 1 (mod p) is another prime and that ` - NE . Let K ⊂ Q(µ`)
be the abelian extension of Q that corresponds to χp,` (thus K is the unique
subfield of Q(µ`) of degree p).

Let R = ResK/Q(EK) be the restriction of scalars down to Q of E viewed
as an elliptic curve over K. Thus R is an abelian variety over Q of dimension
p = [K : Q]. It is characterized by the fact that it represents the following functor
on Q-schemes S:

S 7→ EK(SK).

As a Galois module,

R(Q) = E(Q) ⊗Z Z[Gal(K/Q)],

where τ ∈ Gal(Q/Q) acts on
∑

Pσ ⊗ σ by

τ
(∑

Pσ ⊗ σ
)

=
∑

τ(Pσ) ⊗ τ|K · σ,

where τ|K is the image of τ in Gal(K/Q).
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Proposition 2.4. The identity map induces a closed immerion ι : E ↪→ R, and the
trace Tr : K → Q induces a surjection Tr : R → E whose kernel is geometrically
connected. Thus we have an exact sequence of abelian varieties

(1) 0 → A → R
Tr−→ E → 0.

Proof. The existence of ι and Tr follows from Yoneda’s lemma. The map ι is
induced by the functorial inclusion E(S) ↪→ EK(SK) = R(S), so ι is injective.

The Tr map is induced by the functorial trace map on points R(S) = EK(SK)
Tr−→

E(S).

To verify that Ker(Tr) is geometrically connected, we base extend the exact
sequence (1) to Q. First, note that there is an isomorphism

RQ
∼= EQ × · · · × EQ.

After base extension, we identify the trace map with the summation map

+ : EQ × · · · × EQ −→ EQ.

Let n = [K : Q]. The map defined by

(a1, . . . , an−1) 7→
(

a1, a2, . . . , an−1,−
n−1∑

i=1

ai

)
,

is an isomorphism from E
×(n−1)

Q to Ker(+) = Ker(TrQ). Thus Ker(TrQ) is isomor-

phic to a product of copies of EQ, and hence is connected.

Corollary 2.5. ι(E) ∩ Ker(Tr) = ι(E)[p].

Proof. The composition Q ↪→ K
Tr−→ Q is multiplication by p, so the composition

E
ι−→ R

Tr−→ E is also multiplication by p. Since ι(E) ∩ Ker(Tr) is the kernel
of Tr ◦ι = [p], it equals E[p].

Lemma 2.6. The abelian varieties AK , RK , and (R/ι(E))K are all isomorphic to
a product of copies of EK .

Proposition 2.7. The exact sequence 0 → A → R → E → 0 of Proposition 2.4
extends to an exact sequence 0 → A → R → E → 0 of Néron models over Z.

Proof. We use results of [BLR90, Ch. 7] and the fact that formation of Néron
models commutes with unramified base change (see [BLR90, §1.2, Prop. 2]) to
prove that for every prime q, the complex

(2) 0 → AZq
→ RZq

→ EZq
→ 0

is exact.

First suppose that q 6= `, and let q be a prime of K lying over q. We use the
fact that formation of Néron models commutes with unramified base extension
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and check exactness of (2) after base extension to the unramified extension OK,q

of Zq. By Lemma 2.6, the generic fiber of the base extension of (2) to OK,q is

0 → E
⊕(n−1)
K,q → E⊕n

K,q
Σ−→ EK,q → 0.

Thus the corresponding complex of Néron models over OK,q is

0 → E⊕(n−1)
OK,q

→ E⊕n
OK,q

Σ−→ EOK,q
→ 0,

which is exact, since it is exact on S-points for any ring S.

Suppose that q = `. Since p 6= `, [BLR90, Prop. 7.5.3 (a)] asserts that the
sequence 0 → AZq

→ RZq
→ EZq

is exact. Since p 6= q, the map [p] : EZq
→ EZq

is an étale morphism of smooth schemes. Since E has good reduction at q, we
also know that the fibers of EZq

are geometrically connected, so [p] is surjective
(for more details, see the proof of [AS02, Lem. 3.2]). It follows that RZq

→ EZq
is

surjective.

2.3. The Cokernel of Trace

Let ` be a prime as in Conjecture 2.1. This section is devoted to computing the
cokernel of the trace map R(Q) → E(Q). Note that R(Q) = E(K), so this cokernel
is also E(Q)/TrK/Q(E(K)).

Lemma 2.8. Let K` denote the completion of K at the totally ramified prime of K
lying over `. Then E(K)[p] = E(K`)[p] = 0.

Proof. The characteristic polynomial of Frob` ∈ Gal(Qur
` /Q`) on E[p] = E(Qur

` )[p]
is x2 − a`x + ` ∈ Fp[x]. By hypothesis a` 6≡ ` + 1 (mod p), so +1 is not a root of
x2 − a`x + ` hence

E(Q`)[p] = E(Qur
` )[p]Frob` −1 = 0.

Since K is totally ramified at ` and E has good reduction at `, E(K`)[p] = 0 as
well, so E(K)[p] = 0, as required.

Proposition 2.9. Coker(R(Q) → E(Q)) ∼= E(Q)/pE(Q).

Proof. By Corollary 2.5 the the image of ι(E(Q)) ⊂ R(Q) in E(Q) is pE(Q), so
the cokernel of R(Q) → E(Q) is a quotient of E(Q)/pE(Q). Thus it suffices to
prove that R(Q)/ι(E(Q)) is finite of order coprime to p.

We have an exact sequence 0 → E → R → A′ → 0, with A′ an abelian variety
that is isogenous to A (in fact, A′ is the abelian variety dual of A since R is self

dual, but we will not use this fact.) The L-series of A′ is
∏p−1

i=1 L(E,χi
p,`, s), so

by hypothesis L(A′, 1) 6= 0 and it follows from Kato’s theorem (see [Rub98, §8.1])
that A′(Q) is finite. Thus R(Q)/ι(E(Q)) is finite since R(Q)/ι(E(Q)) ⊂ A′(Q).

By Lemma 2.6, A′
K ≈ E

×(p−1)
K and by Lemma 2.8 E(K)[p] = 0, so A′(Q)[p] = 0,

which proves the proposition.
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2.4. Étale Cohomology and Shafarevich–Tate Groups

Fix an elliptic curve E over Q and a prime p -
∏

cE,q.
In this section, we use results mostly due to Mazur to relate the Shafarevich–

Tate groups of A, R, and E to certain étale cohomology groups. We maintain the
notation and assumptions of the previous sections, except that we abuse notation
slightly and let A, R, and E also denote the étale sheaves on Spec(Z) defined by
the Néron models A, R, and E . Let B be either A, R, or E and let B = BQ be the
corresponding abelian variety. Let Hq(Z,B) be the qth étale cohomology group
of B.

Lemma 2.10. There is an isomorphism B(Q`)[p] ∼= B(F`)[p].

Proof. This follows from [ST68, Lem. 2, pg. 495], but we sketch a proof for the
convenience of the reader. Let B1(Q`) denote the kernel of the natural reduction
map r : B(Q`) → B(F`). Using formal groups and that p 6= `, one sees that
[p] : B1(Q`) → B1(Q`) is an isomorphism. Since B is smooth over Q`, Hensel’s
lemma (see [BLR90, §2.3 Prop. 5]) implies that the reduction map is surjective,
so we obtain an exact sequence

0 → B1(Q`) → B(Q`) → B(F`) → 0.

The snake lemma applied to the multiplication-by-p diagram attached to this exact
sequence yields the exact sequence

0 → B(Q`)[p] → B(F`)[p] → 0 → B(Q`)/pB(Q`) → B(F`)/pB(F`) → 0,

which proves the lemma.

The Tamagawa number of B at a prime q is cB,q = #ΦB,q(Fq), where ΦB,q

is the component group of the closed fiber of the Néron model of B at q.

Lemma 2.11. p - cB,q.

Proof. First suppose q = `. The cokernel of B(F`) → ΦB,`(F`) is contained in
H1(F`,B0), which is 0 by Lang’s theorem (see [Lan56] or [Ser88, §VI.4]), so if
ΦB,`(F`)[p] 6= 0 then B(F`)[p] 6= 0. But by Lemmas 2.6, 2.8, and 2.10,

B(F`)[p] ∼= B(Q`)[p] ⊂ B(K`)[p] ∼= E(K`)[p] × · · · × E(K`)[p] = 0.

Next suppose that q 6= `. Since formation of Néron models commutes with
unramified base extension, we have

ΦB,q(Fq)[p] ∼= ΦE,q(Fq)[p] × · · · × ΦE,q(Fq)[p] = 0,

by our hypotheses on p.

Following the appendix to [Maz72], let

Σ(B/Q) = ker


H1(Q, B) →

⊕

all finite q

H1(Qq, B)


 ,
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where the sum is over all finite primes q of Q. If p is an odd prime, then Σ(B/Q)[p∞] =
X(B/Q)[p∞]; also one can see easily using Tate cohomology for the cyclic group
Gal(C/R) that

Σ(B/Q)[2]/X(B/Q)[2] ⊂ H1(R, B(C)) ∼= B(R)/B(R)0,

where B(R)/B(R)0 has order 2e for some e ≤ dim B.

Proposition 2.12 (Mazur). Suppose that a` 6≡ ` + 1 (mod p). If p is odd, then

H1(Z,B)[p∞] ∼= X(B/Q)[p∞].

Also, #H1(Z,B)[2∞]/X(B/Q)[2∞] divides #(B(R)/B(R)0).

Proof. It follows from the appendix to [Maz72] that there is an exact sequence

(3) 0 → Σ(B)[p∞] → H1(Z,B)[p∞] →
⊕

all finite q

H1
(
Fq,ΦB,q(Fq)

)
[p∞],

where ΦB,q is the component group of the fiber of B at q. By [Ser79, VIII.4.8],

#H1(Fq,ΦB,q(Fq)) = #ΦB,q(Fq) = cB,q,

so the proposition follows from Lemma 2.11.

Proposition 2.13. H2(Z,A)[p] = 0.

Proof. We apply the lemmas in [Sch83, §III.6]. Note that A has good reduc-
tion at p by [Mil72, Prop. 1], and H1(Z,A)[p∞] is finite by Kato’s theorem (see
[Rub98, §8.1]) and Proposition 2.12. In the proof of Proposition 2.9, we showed
that A′(Q) is finite of order coprime to p, where A′ is the abelian variety dual
of A. We now use1 Lemma 7 of [Sch83, §III.6], which because A′(Q)[p] = 0
implies that H2(Z,A[p∞]) = 0 (Schneider uses Hq

fpqf, but this is not a prob-

lem since étale and fpqf cohomology agree on the smooth scheme A.) It is easy
to see (see, e.g., the proof of Lemma 6 of [Sch83, §III.6]) that the natural map
Hq(Z,A[p∞]) → Hq(Z,A)[p∞] is surjective for any q > 0, in particular, for q = 2,
so H2(Z,A)[p∞] = 0 which proves the proposition.

2.5. The Main Theorem

Fix an elliptic curve E over Q and a prime p -
∏

cE,q such that ρE,p : GQ →
Aut(E[p]) is surjective. If p = 2 assume also that E(R) is connected. Assume
that ` is one of the primes whose existence is predicted by Conjecture 2.1. Let A
and R be the corresponding abelian varieties, which fit into an exact sequence
0 → A → R → E → 0, and recall that L(A, 1) 6= 0 so A(Q) and X(A/Q) are
both finite (by [Rub98, §8.1] and [Kat, Cor. 14.3]).

1Note that the proof of Lemma 7 of [Sch83, §III.6] relies on a theorem of Artin and Mazur whose

proof they never published; generalizations of this theorem have been published by McCallum

[McC86, §5] and Milne [Mil86, §III.3.4], and Mazur assures the author that he and Milne both

know the proof of Artin-Mazur duality well.
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Theorem 2.14. There is an exact sequence

0 → E(Q)/pE(Q) → X(A/Q)[p∞] → X(E/K)[p∞] → X(E/Q)[p∞] → 0.

In particular, if E has odd rank and X(E/Q)[p∞] is finite, then #X(A/Q)[p∞]
is not a perfect square.

Proof. By Proposition 2.7 we have an exact sequence of étale sheaves

0 → A → R → E → 0,

which gives rise to an exact sequence of étale cohomology groups

H0(Z,R) → H0(Z, E) → H1(Z,A) → H1(Z,R) → H1(Z, E) → H2(Z,A).

We have
H0(Z,R) = R(Z) = R(Q)

and likewise for E , so by Propositions 2.9, 2.12, and 2.13 we obtain an exact
sequence

0 → E(Q)/pE(Q) → X(A/Q)[p∞] → X(R/Q)[p∞] → X(E/Q)[p∞] → 0.

By Shapiro’s lemma, there is an isomorphism X(R/Q) ∼= X(E/K) (see [AS02,
§1.3]), which yields the claimed exact sequence.

Kato’s theorem ([Rub98, §8.1] and [Kat, Cor. 14.3]) implies that X(E/K)[p∞]
is finite (for the trivial character use our hypothesis that X(E/Q)[p∞] is finite,
and for the nontrivial characters use our hypothesis that L(E,χp,`, 1) 6= 0). The-
orem 1.2 then implies that #X(E/K)[p∞] is a perfect square. If E(Q) has odd
rank then #(E(Q)/pE(Q)) is an odd power of p (since E[p] is irreducible), so
#X(A/Q)[p∞] cannot be a perfect square.

Remark 2.15. In the language of visibility of Shafarevich-Tate groups (see [CM00]),
Theorem 2.14 asserts that the visible subgroup of X(A) with respect to the embed-
ding A ↪→ R is canonically isomorphic to the Mordell-Weil quotient E(Q)/pE(Q).

Proposition 2.16. If q 6= p is a prime, then

(4) X(E/K)[q∞] ∼= X(E/Q)[q∞] ⊕ X(A/Q)[q∞].

In particular, if X(E/Q)[q∞] is finite, then X(A/Q)[q∞] has order a perfect
square.

Proof. The intersection of E and A in R is E[p], so the summation map E×A → R
is an isogeny with kernel E[p]. Considering the long exact sequence associated to
0 → E[p] → E × A → R → 0, we see that

(5) H1(Q, E × A)[q∞] ∼= H1(Q, R)[q∞],

and likewise for any completion Qv of Q. We then obtain (4) by combining (5) with
the fact that cohomology commutes with products and that H1(Q, R) ∼= H1(K,E).

If X(E/Q)[q∞] is finite, then since X(A/Q)[q∞] is finite (since L(A, 1) 6= 0,
by construction), it follows from (4) that X(E/K)[q∞] is finite. We have by The-
orem 1.2 that both X(E/K)[q∞] and X(E/Q)[q∞] have order a perfect square,
so (4) implies that X(A/Q)[q∞] has order a perfect square.
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3. An Example

Combining Proposition 2.3, Theorem 2.14, and Proposition 2.16 yields the follow-
ing theorem.

Theorem 3.1. Let E be the elliptic curve y2 + y = x3 − x of conductor 37. For
every odd prime p < 25000 (with p 6= 37), there is a twist A of E×(p−1) such that
#X(A/Q) = pn2 for some integer n.

Remark 3.2. Using the elliptic curve of conductor 43 in place of E one can con-
struct an abelian variety A with X(A/Q) = 37n2 for some integer n.

Though unnecessary for Theorem 3.1, we prove below that X(E/Q) = 0,
which removes our dependence on Proposition 2.13. We show that X(E/Q)[p∞] =
0 for all odd p using [Kol90, Thm. A], and we use a 2-descent (with [CrB]) to see
that X(E/Q)[2] = 0.

Theorem 3.3 (Kolyvagin). Let E be an elliptic curve and let L = Q(
√

−D) be an
imaginary quadratic field of odd discriminant −D, where all primes dividing the
conductor of E split, and assume that D 6= 3, 4. If the Heegner point yL ∈ E(L)
has infinite order (equivalently, by [GZ86], L′(E/L, 1) 6= 0), then #X(E/L) |
t · [E(L) : ZyL]2, where the only primes that divide t are 2 or primes where ρE,p

is not surjective.

By [C97], E is isolated in its isogeny class, so ρ : Gal(Q/Q) → Aut(E[p])
is surjective for all primes p (see [RS01, §1.4]) hence t is a power of 2. Let L =
Q(

√
−7). To compute [E(L) : ZyL] up to a power of 2 we use the Gross-Zagier

formula and the fact that [E(L) : E(Q) + ED(Q)] is a power of 2. By [GZ86,
Thm. 6.3],

h(yL) =
u2|D| 1

2

‖ωf‖ L′(E, 1)L(ED, 1),

where D = −7, u = 1, and ‖ωf‖ is the Peterson norm of the newform f cor-
responding to E. Generators for the period lattice of E are ω1 ∼ 2.993459 and
ω2 ∼ 2.451389i, so ‖ωf‖ ∼ 7.338133. The quadratic twist ED is the curve 1813B1

in [CrA], and ED(Q) = 0. From [CrA] we find that L′(E, 1) ∼ 0.306000 and
L(ED, 1) ∼ 1.853076, so h(yL) ∼ 0.204446. The height of a generator of E(Q) is
∼ 0.051111 ∼ h(yL)/4, so [E(L) : ZyL] is a power of 2. (As a double check, and to
avoid dependence on the Gross-Zagier formula, we wrote a program using [BCP97]
to compute Heegner points and found that yL = (0, 0), which is a generator for
E(Q).) Thus #X(E/L) is a power of 2.

To connect X(E/L) with X(E/Q), use the inflation-restriction exact se-
quence

0 → H1(L/Q, E(L)) → H1(Q, E(Q)) → H1(L,E(Q)).

Let p be an odd prime. Since H1(L/Q, E(L)) is a 2-group, the above sequence
leads to an injective map

H1(Q, E(Q))[p] ↪→ H1(L,E(Q))[p],
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which induces an inclusion

X(E/Q)[p] ↪→ X(E/L)[p] = 0.
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CONSTRUCTING ELEMENTS IN SHAFAREVICH-TATE

GROUPS OF MODULAR MOTIVES

NEIL DUMMIGAN, WILLIAM STEIN, AND MARK WATKINS

Abstract. We study Shafarevich-Tate groups of motives attached to modular

forms on Γ0(N) of weight bigger than 2. We deduce a criterion for the existence

of nontrivial elements of these Shafarevich-Tate groups, and give 16 examples

in which a strong form of the Beilinson-Bloch conjecture implies the existence

of such elements. We also use modular symbols and observations about Tam-

agawa numbers to compute nontrivial conjectural lower bounds on the orders

of the Shafarevich-Tate groups of modular motives of low level and weight at

most 12. Our methods build upon the idea of visibility due to Cremona and

Mazur, but in the context of motives instead of abelian varieties.

1. Introduction

Let E be an elliptic curve defined over Q and let L(E, s) be the associated L-
function. The conjecture of Birch and Swinnerton-Dyer [BS-D] predicts that the
order of vanishing of L(E, s) at s = 1 is the rank of the group E(Q) of rational
points, and also gives an interpretation of the leading term in the Taylor expansion
in terms of various quantities, including the order of the Shafarevich-Tate group
of E.

Cremona and Mazur [CM1] look, among all strong Weil elliptic curves over Q of
conductor N ≤ 5500, at those with nontrivial Shafarevich-Tate group (according
to the Birch and Swinnerton-Dyer conjecture). Suppose that the Shafarevich-Tate
group has predicted elements of prime order p. In most cases they find another
elliptic curve, often of the same conductor, whose p-torsion is Galois-isomorphic to
that of the first one, and which has positive rank. The rational points on the second
elliptic curve produce classes in the common H1(Q, E[p]). They show [CM2] that
these lie in the Shafarevich-Tate group of the first curve, so rational points on one
curve explain elements of the Shafarevich-Tate group of the other curve.

The Bloch-Kato conjecture [BK] is the generalisation to arbitrary motives of the
leading term part of the Birch and Swinnerton-Dyer conjecture. The Beilinson-
Bloch conjecture [B, Be] generalises the part about the order of vanishing at the
central point, identifying it with the rank of a certain Chow group.

This paper is a partial generalisation of [CM1] and [AS] from abelian varieties
over Q associated to modular forms of weight 2 to the motives attached to modular
forms of higher weight. It also does for congruences between modular forms of equal
weight what [Du2] did for congruences between modular forms of different weights.

Date: 28 January 2003.

1991 Mathematics Subject Classification. 11F33, 11F67, 11G40.
Key words and phrases. modular form, L-function, visibility, Bloch-Kato conjecture,

Shafarevich-Tate group.
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We consider the situation where two newforms f and g, both of even weight k > 2
and level N , are congruent modulo a maximal ideal q of odd residue characteristic,
and L(g, k/2) = 0 but L(f, k/2) 6= 0. It turns out that this forces L(g, s) to vanish
to order at least 2 at s = k/2. In Section 7, we give sixteen such examples (all with
k = 4 and k = 6), and in each example, we find that q divides the numerator of the
algebraic number L(f, k/2)/ vol∞, where vol∞ is a certain canonical period.

In fact, we show how this divisibility may be deduced from the vanishing of
L(g, k/2) using recent work of Vatsal [V]. The point is, the congruence betweenf
and g leads to a congruence between suitable “algebraic parts” of the special values
L(f, k/2) and L(g, k/2). In slightly more detail, a multiplicity one result of Faltings
and Jordan shows that the congruence of Fourier expansions leads to a congruence of
certain associated cohomology classes. These are then identified with the modular
symbols which give rise to the algebraic parts of special values. If L(g, k/2) vanishes
then the congruence implies that L(f, k/2)/ vol∞ must be divisible by q.

The Bloch-Kato conjecture sometimes then implies that the Shafarevich-Tate
group X attached to f has nonzero q-torsion. Under certain hypotheses and as-
sumptions, the most substantial of which is the Beilinson-Bloch conjecture relating
the vanishing of L(g, k/2) to the existence of algebraic cycles, we are able to con-
struct some of the predicted elements of X using the Galois-theoretic interpretation
of the congruence to transfer elements from a Selmer group for g to a Selmer group
for f . One might say that algebraic cycles for one motive explain elements of X
for the other, or that we use the congruence to link the Beilinson-Bloch conjecture
for one motive with the Bloch-Kato conjecture for the other.

We also compute data which, assuming the Bloch-Kato conjecture, provides
lower bounds for the orders of numerous Shafarevich-Tate groups (see Section 7.3).
We thank the referee for many constructive comments.

2. Motives and Galois representations

This section and the next provide definitions of some of the quantities appearing
later in the Bloch-Kato conjecture. Let f =

∑
anqn be a newform of weight k ≥ 2

for Γ0(N), with coefficients in an algebraic number field E, which is necessarily
totally real. Let λ be any finite prime of E, and let ` denote its residue characteristic.
A theorem of Deligne [De1] implies the existence of a two-dimensional vector space
Vλ over Eλ, and a continuous representation

ρλ : Gal(Q/Q) → Aut(Vλ),

such that

(1) ρλ is unramified at p for all primes p not dividing `N , and
(2) if Frobp is an arithmetic Frobenius element at such a p then the character-

istic polynomial of Frob−1
p acting on Vλ is x2 − apx + pk−1.

Following Scholl [Sc], Vλ may be constructed as the λ-adic realisation of a
Grothendieck motive Mf . There are also Betti and de Rham realisations VB and
VdR, both 2-dimensional E-vector spaces. For details of the construction see [Sc].
The de Rham realisation has a Hodge filtration VdR = F 0 ⊃ F 1 = · · · = F k−1 ⊃
F k = {0}. The Betti realisation VB comes from singular cohomology, while Vλ

comes from étale `-adic cohomology. For each prime λ, there is a natural isomor-
phism VB ⊗Eλ ' Vλ. We may choose a Gal(Q/Q)-stable Oλ-module Tλ inside each
Vλ. Define Aλ = Vλ/Tλ. Let A[λ] denote the λ-torsion in Aλ. There is the Tate
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twist Vλ(j) (for any integer j), which amounts to multiplying the action of Frobp

by pj .
Following [BK] (Section 3), for p 6= ` (including p = ∞) let

H1
f (Qp, Vλ(j)) = ker(H1(Dp, Vλ(j)) → H1(Ip, Vλ(j))).

The subscript f stands for “finite part”, Dp is a decomposition subgroup at a prime
above p, Ip is the inertia subgroup, and the cohomology is for continuous cocycles
and coboundaries. For p = ` let

H1
f (Q`, Vλ(j)) = ker(H1(D`, Vλ(j)) → H1(D`, Vλ(j) ⊗Q`

Bcris))

(see Section 1 of [BK] for definitions of Fontaine’s rings Bcris and BdR). Let
H1

f (Q, Vλ(j)) be the subspace of elements of H1(Q, Vλ(j)) whose local restrictions

lie in H1
f (Qp, Vλ(j)) for all primes p.

There is a natural exact sequence

0 −−−−→ Tλ(j) −−−−→ Vλ(j)
π−−−−→ Aλ(j) −−−−→ 0.

Let H1
f (Qp, Aλ(j)) = π∗H1

f (Qp, Vλ(j)). Define the λ-Selmer group H1
f (Q, Aλ(j))

to be the subgroup of elements of H1(Q, Aλ(j)) whose local restrictions lie in
H1

f (Qp, Aλ(j)) for all primes p. Note that the condition at p = ∞ is superflu-
ous unless ` = 2. Define the Shafarevich-Tate group

X(j) = ⊕λH1
f (Q, Aλ(j))/π∗H

1
f (Q, Vλ(j)).

Define an ideal #X(j) of OE , in which the exponent of any prime ideal λ is the
length of the λ-component of X(j). We shall only concern ourselves with the case
j = k/2, and write X for X(k/2). It depends on the choice of Gal(Q/Q)-stable
Oλ-module Tλ inside each Vλ. But if A[λ] is irreducible then Tλ is unique up to
scaling and the λ-part of X is independent of choices.

In the case k = 2 the motive comes from a (self-dual) isogeny class of abelian
varieties over Q, with endomorphism algebra containing E. Choose an abelian
variety B in the isogeny class in such a way that the endomorphism ring of B
contains the full ring of integers OE . If one takes all the Tλ(1) to be λ-adic Tate
modules, then what we have defined above coincides with the usual Shafarevich-
Tate group of B (assuming finiteness of the latter, or just taking the quotient by
its maximal divisible subgroup). To see this one uses 3.11 of [BK], for ` = p. For
` 6= p, H1

f (Qp, V`) = 0. Considering the formal group, every class in B(Qp)/`B(Qp)

is represented by an `-power torsion point in B(Qp), so maps to zero in H1(Qp, A`).
Define the group of global torsion points

ΓQ = ⊕λH0(Q, Aλ(k/2)).

This is analogous to the group of rational torsion points on an elliptic curve. Define
an ideal #ΓQ of OE , in which the exponent of any prime ideal λ is the length of
the λ-component of ΓQ.

3. Canonical periods

We assume from now on for convenience that N ≥ 3. We need to choose conve-
nient OE-lattices TB and TdR in the Betti and de Rham realisations VB and VdR of
Mf . We do this in a way such that TB and TdR ⊗OE

OE [1/Nk!] agree with (respec-
tively) the OE-lattice Mf,B and the OE [1/Nk!]-lattice Mf,dR defined in [DFG1]
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using cohomology, with non-constant coefficients, of modular curves. (In [DFG1],
see especially Sections 2.2 and 5.4, and the paragraph preceding Lemma 2.3.)

For any finite prime λ of OE define the Oλ module Tλ inside Vλ to be the image
of TB ⊗ Oλ under the natural isomorphism VB ⊗ Eλ ' Vλ. Then the Oλ-module
Tλ is Gal(Q/Q)-stable.

Let M(N) be the modular curve over Z[1/N ] parametrising generalised elliptic
curves with full level-N structure. Let E be the universal generalised elliptic curve
over M(N). Let Ek−2 be the (k−2)-fold fibre product of E over M(N). (The motive
Mf is constructed using a projector on the cohomology of a desingularisation of
Ek−2). Realising M(N)(C) as the disjoint union of φ(N) copies of the quotient
Γ(N)\H∗ (where H∗ is the completed upper half plane), and letting τ be a variable
on H, the fibre Eτ is isomorphic to the elliptic curve with period lattice generated
by 1 and τ . Let zi ∈ C/〈1, τ〉 be a variable on the ith copy of Eτ in the fibre
product. Then 2πif(τ) dτ ∧ dz1 ∧ . . . ∧ dzk−2 is a well-defined differential form
on (a desingularisation of) Ek−2 and naturally represents a generating element of
F k−1TdR. (At least we can make our choices locally at primes dividing Nk! so that
this is the case.) We shall call this element e(f).

Under the de Rham isomorphism between VdR ⊗ C and VB ⊗ C, e(f) maps to
some element ωf . There is a natural action of complex conjugation on VB , breaking
it up into one-dimensional E-vector spaces V +

B and V −
B . Let ω+

f and ω−
f be the

projections of ωf to V +
B ⊗ C and V −

B ⊗ C, respectively. Let T ±
B be the intersections

of V ±
B with TB . These are rank one OE-modules, but not necessarily free, since the

class number of OE may be greater than one. Choose nonzero elements δ±
f of T±

B

and let a± be the ideals [T ±
B : OEδ±

f ]. Define complex numbers Ω±
f by ω±

f = Ω±
f δ±

f .

4. The Bloch-Kato conjecture

In this section we extract from the Bloch-Kato conjecture for L(f, k/2) a predic-
tion about the order of the Shafarevich-Tate group, by analysing the other terms
in the formula.

Let L(f, s) be the L-function attached to f . For <(s) > k+1
2 it is defined by

the Dirichlet series with Euler product
∑∞

n=1 ann−s =
∏

p(Pp(p
−s))−1, but there

is an analytic continuation given by an integral, as described in the next section.
Suppose that L(f, k/2) 6= 0. The Bloch-Kato conjecture for the motive Mf (k/2)
predicts the following equality of fractional ideals of E:

L(f, k/2)

vol∞
=

(∏

p

cp(k/2)

)
#X

a±(#ΓQ)2
.

Here, and from this point onwards, ± represents the parity of (k/2) − 1. The
quantity vol∞ is equal to (2πi)k/2 multiplied by the determinant of the isomorphism
V ±

B ⊗ C ' (VdR/F k/2) ⊗ C, calculated with respect to the lattices OEδ±
f and the

image of TdR. For l 6= p, ordλ(cp(j)) is defined to be

length H1
f (Qp, Tλ(j))tors − ordλ(Pp(p

−j))

= length
(
H0(Qp, Aλ(j))/H0

(
Qp, Vλ(j)Ip/Tλ(j)Ip

))
.

We omit the definition of ordλ(cp(j)) for λ | p, which requires one to assume
Fontaine’s de Rham conjecture ([Fo1], Appendix A6), and depends on the choices
of TdR and TB , locally at λ. (We shall mainly be concerned with the q-part of the
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Bloch-Kato conjecture, where q is a prime of good reduction. For such primes, the
de Rham conjecture follows from Theorem 5.6 of [Fa].)

Strictly speaking, the conjecture in [BK] is only given for E = Q. We have
taken here the obvious generalisation of a slight rearrangement of (5.15.1) of [BK].
The Bloch-Kato conjecture has been reformulated and generalised by Fontaine and
Perrin-Riou, who work with general E, though that is not really the point of their
work. In Section 11 of [Fo2] it is sketched how to deduce the original conjecture
from theirs, in the case E = Q.

Lemma 4.1. vol∞ /a± = c(2πi)k/2a±Ω±, with c ∈ E and ordλ(c) = 0 for λ - Nk!.

Proof. We note that vol∞ is equal to (2πi)k/2 times the determinant of the period
map from F k/2VdR ⊗ C to V ±

B ⊗ C, with respect to lattices dual to those we used
above in the definition of vol∞ (c.f. the last paragraph of 1.7 of [De2]). We are
using here natural pairings. Meanwhile, Ω± is the determinant of the same map
with respect to the lattices F k/2TdR and OEδ±

f . Recall that the index of OEδ±
f in

T±
B is the ideal a±. Then the proof is completed by noting that, locally away from

primes dividing Nk!, the index of TdR in its dual is equal to the index of TB in its
dual, both being equal to the ideal denoted η in [DFG2]. ¤

Remark 4.2. Note that the “quantities” a±Ω± and vol∞ /a± are independent of
the choice of δ±

f .

Lemma 4.3. Let p - N be a prime and j an integer. Then the fractional ideal cp(j)
is supported at most on divisors of p.

Proof. As on p. 30 of [Fl2], for odd l 6= p, ordλ(cp(j)) is the length of the finite
Oλ-module H0(Qp, H

1(Ip, Tλ(j))tors), where Ip is an inertia group at p. But Tλ(j)
is a trivial Ip-module, so H1(Ip, Tλ(j)) is torsion free. ¤

Lemma 4.4. Let q - N be a prime satisfying q > k. Suppose that A[q] is an
irreducible representation of Gal(Q/Q), where q | q. Let p | N be a prime, and if
p2 | N suppose that p 6≡ −1 (mod q). Suppose also that f is not congruent modulo
q (for Fourier coefficients of index coprime to Nq) to any newform of weight k,
trivial character, and level dividing N/p. Then ordq(cp(j)) = 0 for all integers j.

Proof. There is a natural injective map from Vq(j)
Ip/Tq(j)

Ip to H0(Ip, Aq(j)) (i.e.,
Aq(j)

Ip). Consideration of q-torsion shows that

dimOE/q H0(Ip, A[q](j)) ≥ dimEq
H0(Ip, Vq(j)).

To prove the lemma it suffices to show that

dimOE/q H0(Ip, A[q](j)) = dimEq
H0(Ip, Vq(j)),

since this ensures that H0(Ip, Aq(j)) = Vq(j)
Ip/Tq(j)

Ip , hence that H0(Qp, Aq(j)) =
H0(Qp, Vq(j)

Ip/Tq(j)
Ip). If the dimensions differ then, given that f is not congru-

ent modulo q to a newform of level dividing N/p, Condition (b) of Proposition 2.3
of [L] is satisfied. If Condition (a) was not satisfied then Proposition 2.2 of [L]
would imply that f was congruent modulo q to a twist of level dividing N/p. Since
Condition (c) is clearly also satisfied, we are in a situation covered by one of the
three cases in Proposition 2.3 of [L]. Since p 6≡ −1 (mod q) if p2 | N , Case 3
is excluded, so A[q](j) is unramified at p and ordp(N) = 1. (Here we are using
Carayol’s result that N is the prime-to-q part of the conductor of Vq [Ca1].) But
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then Theorem 1 of [JL] (which uses the condition q > k) implies the existence of
a newform of weight k, trivial character and level dividing N/p, congruent to g
modulo q, for Fourier coefficients of index coprime to Nq. This contradicts our
hypotheses. ¤

Remark 4.5. For an example of what can be done when f is congruent to a form
of lower level, see the first example in Section 7.4 below.

Lemma 4.6. If q | q is a prime of E such that q - Nk!, then ordq(cq) = 0.

Proof. It follows from Lemma 5.7 of [DFG1] (whose proof relies on an application,
at the end of Section 2.2, of the results of [Fa]) that Tq is the Oq[Gal(Qq/Qq)]-
module associated to the filtered module TdR ⊗ Oq by the functor they call V.
(This property is part of the definition of an S-integral premotivic structure given
in Section 1.2 of [DFG1].) Given this, the lemma follows from Theorem 4.1(iii) of
[BK]. (That V is the same as the functor used in Theorem 4.1 of [BK] follows from
the first paragraph of 2(h) of [Fa].) ¤

Lemma 4.7. If A[λ] is an irreducible representation of Gal(Q/Q), then

ordλ(#ΓQ) = 0.

Proof. This follows trivially from the definition. ¤

Putting together the above lemmas we arrive at the following:

Proposition 4.8. Let q - N be a prime satisfying q > k and suppose that A[q] is an
irreducible representation of Gal(Q/Q), where q | q. Assume the same hypotheses
as in Lemma 4.4 for all p | N . Choose TdR and TB which locally at q are as in the
previous section. If L(f, k/2)a±/ vol∞ 6= 0 then the Bloch-Kato conjecture predicts
that

ordq(#X) = ordq(L(f, k/2)a±/ vol∞).

5. Congruences of special values

Let f =
∑

anqn and g =
∑

bnqn be newforms of equal weight k ≥ 2 for Γ0(N).
Let E be a number field large enough to contain all the coefficients an and bn.
Suppose that q | q is a prime of E such that f ≡ g (mod q), i.e. an ≡ bn (mod q)
for all n. Assume that A[q] is an irreducible representation of Gal(Q/Q), and that
q - Nφ(N)k!. Choose δ±

f ∈ T±
B in such a way that ordq(a

±) = 0, i.e., δ±
f generates

T±
B locally at q. Make two further assumptions:

L(f, k/2) 6= 0 and L(g, k/2) = 0.

Proposition 5.1. With assumptions as above, ordq(L(f, k/2)/ vol∞) > 0.

Proof. This is based on some of the ideas used in Section 1 of [V]. Note the apparent
typo in Theorem 1.13 of [V], which presumably should refer to “Condition 2”. Since
ordq(a

±) = 0, we just need to show that ordq(L(f, k/2)/((2πi)k/2Ω±)) > 0, where

±1 = (−1)(k/2)−1. It is well known, and easy to prove, that
∫ ∞

0

f(iy)ys−1dy = (2π)−sΓ(s)L(f, s).
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Hence, if for 0 ≤ j ≤ k − 2 we define the jth period

rj(f) =

∫ i∞

0

f(z)zjdz,

where the integral is taken along the positive imaginary axis, then

rj(f) = j!(−2πi)−(j+1)Lf (j + 1).

Thus we are reduced to showing that ordq(r(k/2)−1(f)/Ω±) > 0.

Let D0 be the group of divisors of degree zero supported on P1(Q). For a Z-
algebra R and integer r ≥ 0, let Pr(R) be the additive group of homogeneous
polynomials of degree r in R[X,Y ]. Both these groups have a natural action of
Γ1(N). Let SΓ1(N)(k,R) := HomΓ1(N)(D0, Pk−2(R)) be the R-module of weight k
modular symbols for Γ1(N).

Via the isomorphism (8) in Section 1.5 of [V], combined with the argument
in 1.7 of [V], the cohomology class ω±

f corresponds to a modular symbol Φ±
f ∈

SΓ1(N)(k, C), and δ±
f corresponds to an element ∆±

f ∈ SΓ1(N)(k,OE,q). We are

now dealing with cohomology over X1(N) rather than M(N), which is why we
insist that q - φ(N). It follows from the last line of Section 4.2 of [St] that, up to
some small factorials which do not matter locally at q,

Φ±
f ([∞] − [0]) =

k−2∑

j=0,j≡(k/2)−1 (mod 2)

rf (j)XjY k−2−j .

Since ω±
f = Ω±

f δ±
f , we see that

∆±
f ([∞] − [0]) =

k−2∑

j=0,j≡(k/2)−1 (mod 2)

(rf (j)/Ω±
f )XjY k−2−j .

The coefficient of X(k/2)−1Y (k/2)−1 is what we would like to show is divisible by q.
Similarly

Φ±
g ([∞] − [0]) =

k−2∑

j=0,j≡(k/2)−1 (mod 2)

rg(j)X
jY k−2−j .

The coefficient of X(k/2)−1Y (k/2)−1 in this is 0, since L(g, k/2) = 0. Therefore it
would suffice to show that, for some µ ∈ OE , the element ∆±

f −µ∆±
g is divisible by q

in SΓ1(N)(k,OE,q). It suffices to show that, for some µ ∈ OE , the element δ±
f −µδ±

g

is divisible by q, considered as an element of q-adic cohomology of X1(N) with
non-constant coefficients. This would be the case if δ±

f and δ±
g generate the same

one-dimensional subspace upon reduction modulo q. But this is a consequence of
Theorem 2.1(1) of [FJ] (for which we need the irreducibility of A[q]). ¤

Remark 5.2. The signs in the functional equations of L(f, s) and L(g, s) are equal.
They are determined by the eigenvalue of the Atkin-Lehner involution WN , which
is determined by aN and bN modulo q, because aN and bN are each Nk/2−1 times
this sign and q has residue characteristic coprime to 2N . The common sign in
the functional equation is (−1)k/2wN , where wN is the common eigenvalue of WN

acting on f and g.
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This is analogous to the remark at the end of Section 3 of [CM1], which shows
that if q has odd residue characteristic and L(f, k/2) 6= 0 but L(g, k/2) = 0 then
L(g, s) must vanish to order at least two at s = k/2. Note that Maeda’s conjecture
implies that there are no examples of g of level one with positive sign in their
functional equation such that L(g, k/2) = 0 (see [CF]).

6. Constructing elements of the Shafarevich-Tate group

Let f , g and q be as in the first paragraph of the previous section. In the previ-
ous section we showed how the congruence between f and g relates the vanishing
of L(g, k/2) to the divisibility by q of an “algebraic part” of L(f, k/2). Conjec-
turally the former is associated with the existence of certain algebraic cycles (for
Mg) while the latter is associated with the existence of certain elements of the
Shafarevich-Tate group (for Mf , as we saw in §4). In this section we show how the
congruence, interpreted in terms of Galois representations, provides a direct link
between algebraic cycles and the Shafarevich-Tate group.

For f we have defined Vλ, Tλ and Aλ. Let V ′
λ, T ′

λ and A′
λ be the corresponding

objects for g. Since ap is the trace of Frob−1
p on Vλ, it follows from the Cebotarev

Density Theorem that A[q] and A′[q], if irreducible, are isomorphic as Gal(Q/Q)-
modules.

Recall that L(g, k/2) = 0 and L(f, k/2) 6= 0. Since the sign in the functional
equation for L(g, s) is positive (this follows from L(f, k/2) 6= 0, see Remark 5.2),
the order of vanishing of L(g, s) at s = k/2 is at least 2. According to the
Beilinson-Bloch conjecture [B, Be], the order of vanishing of L(g, s) at s = k/2

is the rank of the group CH
k/2
0 (Mg)(Q) of Q-rational rational equivalence classes

of null-homologous, algebraic cycles of codimension k/2 on the motive Mg. (This
generalises the part of the Birch–Swinnerton-Dyer conjecture which says that for
an elliptic curve E/Q, the order of vanishing of L(E, s) at s = 1 is equal to the
rank of the Mordell-Weil group E(Q).)

Via the q-adic Abel-Jacobi map, CH
k/2
0 (Mg)(Q) maps to H1(Q, V ′

q(k/2)), and

its image is contained in the subspace H1
f (Q, V ′

q(k/2)), by 3.1 and 3.2 of [Ne]. If,

as expected, the q-adic Abel-Jacobi map is injective, we get (assuming also the
Beilinson-Bloch conjecture) a subspace of H1

f (Q, V ′
q(k/2)) of dimension equal to

the order of vanishing of L(g, s) at s = k/2. In fact, one could simply conjecture
that the dimension of H1

f (Q, V ′
q(k/2)) is equal to the order of vanishing of L(g, s) at

s = k/2. This would follow from the “conjectures” Cr(M) and Ci
λ(M) in Sections 1

and 6.5 of [Fo2]. We shall call it the “strong” Beilinson-Bloch conjecture.
Similarly, if L(f, k/2) 6= 0 then we expect that H1

f (Q, Vq(k/2)) = 0, so that

H1
f (Q, Aq(k/2)) coincides with the q-part of X.

Theorem 6.1. Let q - N be a prime satisfying q > k. Let r be the dimension of
H1

f (Q, V ′
q(k/2)). Suppose that A[q] is an irreducible representation of Gal(Q/Q)

and that for no prime p | N is f congruent modulo q (for Fourier coefficients of
index coprime to Nq) to a newform of weight k, trivial character and level dividing
N/p. Suppose that, for all primes p | N , p 6≡ −wp (mod q), with p 6≡ −1 (mod q)
if p2 | N . (Here wp is the common eigenvalue of the Atkin-Lehner involution Wp

acting on f and g.) Then the q-torsion subgroup of H1
f (Q, Aq(k/2)) has Fq-rank at

least r.
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Proof. The theorem is trivially true if r = 0, so we assume that r > 0. It follows
easily from our hypothesis that the rank of the free part of H1

f (Q, T ′
q(k/2)) is r.

The natural map from H1
f (Q, T ′

q(k/2))/qH1
f (Q, T ′

q(k/2)) to H1(Q, A′[q](k/2)) is
injective. Take a nonzero class c in the image, which has Fq-rank r. Choose

d ∈ H1
f (Q, T ′

q(k/2)) mapping to c. Consider the Gal(Q/Q)-cohomology of the
short exact sequence

0 −−−−→ A′[q](k/2) −−−−→ A′
q(k/2)

π−−−−→ A′
q(k/2) −−−−→ 0,

where π is multiplication by a uniformising element of Oq. By irreducibility,
H0(Q, A[q](k/2)) is trivial. Hence H0(Q, Aq(k/2)) is trivial, so H1(Q, A[q](k/2)) in-
jects into H1(Q, Aq(k/2)), and we get a nonzero, q-torsion class γ ∈ H1(Q, Aq(k/2)).

Our aim is to show that resp(γ) ∈ H1
f (Qp, Aq(k/2)), for all (finite) primes p. We

consider separately the cases p - qN , p | N and p = q.

Case (1) p - qN :
Consider the Ip-cohomology of the short exact sequence above. Since in this

case A′
q(k/2) is unramified at p, H0(Ip, A

′
q(k/2)) = A′

q(k/2), which is q-divisible.

Therefore H1(Ip, A
′[q](k/2)) (which, remember, is the same as H1(Ip, A[q](k/2)))

injects into H1(Ip, A
′
q(k/2)). It follows from the fact that d ∈ H1

f (Q, T ′
q(k/2)) that

the image in H1(Ip, A
′
q(k/2)) of the restriction of c is zero, hence that the restriction

of c to H1(Ip, A
′[q](k/2)) ' H1(Ip, A[q](k/2)) is zero. Hence the restriction of γ

to H1(Ip, Aq(k/2)) is also zero. By line 3 of p. 125 of [Fl1], H1
f (Qp, Aq(k/2)) is

equal to (not just contained in) the kernel of the map from H1(Qp, Aq(k/2)) to
H1(Ip, Aq(k/2)), so we have shown that resp(γ) ∈ H1

f (Qp, Aq(k/2)).

Case (2) p | N :
First we show that H0(Ip, A

′
q(k/2)) is q-divisible. It suffices to show that

dim H0(Ip, A
′[q](k/2)) = dim H0(Ip, V

′
q(k/2)),

since then the natural map from H0(Ip, V
′
q(k/2)) to H0(Ip, A

′
q(k/2)) is surjec-

tive; this may be done as in the proof of Lemma 4.4. It follows as above that
the image of c ∈ H1(Q, A[q](k/2)) in H1(Ip, A[q](k/2)) is zero. Then resp(c)
comes from H1(Dp/Ip, H

0(Ip, A[q](k/2))), by inflation-restriction. The order of
this group is the same as the order of the group H0(Qp, A[q](k/2)) (this is Lemma
1 of [W]), which we claim is trivial. By the work of Carayol [Ca1], the level
N is the conductor of Vq(k/2), so p | N implies that Vq(k/2) is ramified at p,
hence dim H0(Ip, Vq(k/2)) = 0 or 1. As above, we see that dim H0(Ip, Vq(k/2)) =
dim H0(Ip, A[q](k/2)), so we need only consider the case where this common di-

mension is 1. The (motivic) Euler factor at p for Mf is (1−αp−s)−1, where Frob−1
p

acts as multiplication by α on the one-dimensional space H0(Ip, Vq). It follows from
Theoréme A of [Ca1] that this is the same as the Euler factor at p of L(f, s). By The-
orems 3(ii) and 5 of [AL], it then follows that p2 - N and α = −wpp

(k/2)−1, where

wp = ±1 is such that Wpf = wpf . Twisting by k/2, Frob−1
p acts on H0(Ip, Vq(k/2))

(hence also on H0(Ip, A[q](k/2))) as −wpp
−1. Since p 6≡ −wp (mod q), we see that

H0(Qp, A[q](k/2)) is trivial. Hence resp(c) = 0 so resp(γ) = 0 and certainly lies in
H1

f (Qp, Aq(k/2)).

Case (3) p = q:
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Since q - N is a prime of good reduction for the motive Mg, V ′
q is a crystalline

representation of Gal(Qq/Qq), meaning Dcris(V
′
q) and V ′

q have the same dimension,

where Dcris(V
′
q) := H0(Qq, V

′
q ⊗Qq

Bcris). (This is a consequence of Theorem 5.6 of

[Fa].) As already noted in the proof of Lemma 4.6, Tq is the Oq[Gal(Qq/Qq)]-module
associated to the filtered module TdR ⊗ Oq. Since also q > k, we may now prove,
in the same manner as Proposition 9.2 of [Du1], that resq(γ) ∈ H1

f (Qq, Aq(k/2)).
For the convenience of the reader, we give some details.

In Lemma 4.4 of [BK], a cohomological functor {hi}i≥0 is constructed on the
Fontaine-Lafaille category of filtered Dieudonné modules over Zq. hi(D) = 0 for

all i ≥ 2 and all D, and hi(D) = Exti(1FD, D) for all i and D, where 1FD is the
“unit” filtered Dieudonné module.

Now let D = TdR ⊗ Oq and D′ = T ′
dR ⊗ Oq. By Lemma 4.5 (c) of [BK],

h1(D) ' H1
e (Qq, Tq),

where

H1
e (Qq, Tq) = ker(H1(Qq, Tq) → H1(Qq, Vq)/H

1
e (Qq, Vq))

and

H1
e (Qq, Vq) = ker(H1(Qq, Vq) → H1(Qq, B

f=1
cris ⊗Qq

Vq)).

Likewise h1(D′) ' H1
e (Qq, T

′
q). When applying results of [BK] we view D, Tq etc.

simply as Zq-modules, forgetting the Oq-structure.
For an integer j let D(j) be D with the Hodge filtration shifted by j. Then

h1(D(j)) ' H1
e (Qq, Tq(j))

(as long as k − p + 1 < j < p − 1, so that D(j) satisfies the hypotheses of Lemma
4.5 of [BK]). By Corollary 3.8.4 of [BK],

H1
f (Qq, Vq(j))/H

1
e (Qq, Vq(j)) ' (D(j) ⊗Zq

Qq)/(1 − f)(D(j) ⊗Zq
Qq),

where f is the Frobenius operator on crystalline cohomology. By 1.2.4(ii) of [Sc],
and the Weil conjectures, H1

e (Qq, Vq(j)) = H1
f (Qq, Vq(j)), since j 6= (k − 1)/2.

Similarly H1
e (Qq, V

′
q(j)) = H1

f (Qq, V
′
q(j)).

We have

h1(D(k/2)) ' H1
f (Qq, Tq(k/2)) and h1(D′(k/2)) ' H1

f (Qq, T
′
q(k/2)).

The exact sequence in the middle of page 366 of [BK] gives us a commutative
diagram.

h1(D′(k/2))
π−−−−→ h1(D′(k/2)) −−−−→ h1(D′(k/2)/qD′(k/2))

y
y

y

H1(Qq, T
′
q(k/2))

π−−−−→ H1(Qq, T
′
q(k/2)) −−−−→ H1(Qq, A

′[q](k/2)).

The vertical arrows are all inclusions and we know that the image of h1(D′(k/2))
in H1(Qq, T

′
q(k/2)) is exactly H1

f (Qq, T
′
q(k/2)). The top right horizontal map is

surjective since h2(D′(k/2)) = 0.
The class resq(c) ∈ H1(Qq, A

′[q](k/2)) is in the image of H1
f (Qq, T

′
q(k/2)), by

construction, and therefore is in the image of h1(D′(k/2)/qD′(k/2)). By the fullness
and exactness of the Fontaine-Lafaille functor [FL] (see Theorem 4.3 of [BK]),
D′(k/2)/qD′(k/2) is isomorphic to D(k/2)/qD(k/2).
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It follows that the class resq(c) ∈ H1(Qq, A[q](k/2)) is in the image of h1(D(k/2)/qD(k/2))
by the vertical map in the exact sequence analogous to the above. Since the map
from h1(D(k/2)) to h1(D(k/2)/qD(k/2)) is surjective, resq(c) lies in the image
of H1

f (Qq, Tq(k/2)). From this it follows that resq(γ) ∈ H1
f (Qq, Aq(k/2)), as de-

sired. ¤

Theorem 2.7 of [AS] is concerned with verifying local conditions in the case k = 2,
where f and g are associated with abelian varieties A and B. (Their theorem also
applies to abelian varieties over number fields.) Our restriction outlawing congru-
ences modulo q with cusp forms of lower level is analogous to theirs forbidding q
from dividing Tamagawa factors cA,l and cB,l. (In the case where A is an elliptic
curve with ordl(j(A)) < 0, consideration of a Tate parametrisation shows that if
q | cA,l, i.e., if q | ordl(j(A)), then it is possible that A[q] is unramified at l.)

In this paper we have encountered two technical problems which we dealt with
in quite similar ways:

(1) dealing with the q-part of cp for p | N ;
(2) proving local conditions at primes p | N , for an element of q-torsion.

If our only interest was in testing the Bloch-Kato conjecture at q, we could have
made these problems cancel out, as in Lemma 8.11 of [DFG1], by weakening the
local conditions. However, we have chosen not to do so, since we are also interested
in the Shafarevich-Tate group, and since the hypotheses we had to assume are not
particularly strong. Note that, since A[q] is irreducible, the q-part of X does not
depend on the choice of Tq.

7. Examples and Experiments

This section contains tables and numerical examples that illustrate the main
themes of this paper. In Section 7.1, we explain Table 1, which contains 16 exam-
ples of pairs f, g such that the strong Beilinson-Bloch conjecture and Theorem 6.1
together imply the existence of nontrivial elements of the Shafarevich-Tate group
of the motive attached to f . Section 7.2 outlines the higher-weight modular symbol
computations that were used in making Table 1. Section 7.3 discusses Table 2,
which summarizes the results of an extensive computation of conjectural orders of
Shafarevich-Tate groups for modular motives of low level and weight. Section 7.4
gives specific examples in which various hypotheses fail. Note that in §7 “modular
symbol” has a different meaning from in §5, being related to homology rather than
cohomology. For precise definitions see [SV].

7.1. Visible X Table 1. Table 1 on page 11 lists sixteen pairs of newforms f
and g (of equal weights and levels) along with at least one prime q such that there
is a prime q | q with f ≡ g (mod q). In each case, ords=k/2 L(g, k/2) ≥ 2 while
L(f, k/2) 6= 0. The notation is as follows. The first column contains a label whose
structure is

[Level]k[Weight][GaloisOrbit]

This label determines a newform g =
∑

anqn, up to Galois conjugacy. For example,
127k4C denotes a newform in the third Galois orbit of newforms in S4(Γ0(127)).
The Galois orbits are ordered first by the degree of Q(. . . , an, . . .), then by the
sequence of absolute values |Tr(ap(g))| for p not dividing the level, with positive
trace being first in the event that the two absolute values are equal, and the first
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Table 1. Visible X

g deg(g) f deg(f) q’s
127k4A 1 127k4C 17 43
159k4B 1 159k4E 16 5, 23
365k4A 1 365k4E 18 29
369k4B 1 369k4I 9 13

453k4A 1 453k4E 23 17
465k4B 1 465k4I 7 11
477k4B 1 477k4L 12 73
567k4B 1 567k4H 8 23

581k4A 1 581k4E 34 192

657k4A 1 657k4C 7 5
657k4A 1 657k4G 12 5
681k4A 1 681k4D 30 59

684k4C 1 684k4K 4 72

95k6A 1 95k6D 9 31, 59
122k6A 1 122k6D 6 73
260k6A 1 260k6E 4 17

Galois orbit is denoted A, the second B, and so on. The second column contains the
degree of the field Q(. . . , an, . . .). The third and fourth columns contain f and its
degree, respectively. The fifth column contains at least one prime q such that there
is a prime q | q with f ≡ g (mod q), and such that the hypotheses of Theorem 6.1
(except possibly r > 0) are satisfied for f , g, and q.

For the two examples 581k4E and 684k4K, the square of a prime q appears in
the q-column, meaning q2 divides the order of the group Sk(Γ0(N), Z)/(W + W ⊥),
defined at the end of 7.3 below.

We describe the first line of Table 1 in more detail. See the next section for
further details on how the computations were performed.

Using modular symbols, we find that there is a newform

g = q − q2 − 8q3 − 7q4 − 15q5 + 8q6 − 25q7 + · · · ∈ S4(Γ0(127))

with L(g, 2) = 0. Because W127(g) = g, the functional equation has sign +1, so
L′(g, 2) = 0 as well. We also find a newform f ∈ S4(Γ0(127)) whose Fourier coeffi-
cients generate a number field K of degree 17, and by computing the image of the
modular symbol XY {0,∞} under the period mapping, we find that L(f, 2) 6= 0.
The newforms f and g are congruent modulo a prime q of K of residue character-
istic 43. The mod q reductions of f and g are both equal to

f = q + 42q2 + 35q3 + 36q4 + 28q5 + 8q6 + 18q7 + · · · ∈ F43[[q]].

There is no form in the Eisenstein subspaces of M4(Γ0(127)) whose Fourier co-
efficients of index n, with (n, 127) = 1, are congruent modulo 43 to those of f , so
ρf,q ≈ ρg,q is irreducible. Since 127 is prime and S4(SL2(Z)) = 0, f does not arise
from a level 1 form of weight 4. Thus we have checked the hypotheses of Theo-
rem 6.1, so if r is the dimension of H1

f (Q, V ′
q(k/2)) then the q-torsion subgroup of

H1
f (Q, Aq(k/2)) has Fq-rank at least r.
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Recall that since ords=k/2 L(g, s) ≥ 2, we expect that r ≥ 2. Then, since

L(f, k/2) 6= 0, we expect that the q-torsion subgroup of H1
f (Q, Aq(k/2)) is equal to

the q-torsion subgroup of X. Admitting these assumptions, we have constructed
the q-torsion in X predicted by the Bloch-Kato conjecture.

For particular examples of elliptic curves one can often find and write down ratio-
nal points predicted by the Birch and Swinnerton-Dyer conjecture. It would be nice
if likewise one could explicitly produce algebraic cycles predicted by the Beilinson-
Bloch conjecture in the above examples. Since L′(g, k/2) = 0, Heegner cycles have

height zero (see Corollary 0.3.2 of [Z]), so ought to be trivial in CH
k/2
0 (Mg) ⊗ Q.

7.2. How the computation was performed. We give a brief summary of how
the computation was performed. The algorithms that we used were implemented
by the second author, and most are a standard part of MAGMA (see [BCP]).

Let g, f , and q be some data from a line of Table 1 and let N denote the level of g.
We verified the existence of a congruence modulo q, that L(g, k

2 ) = L′(g, k
2 ) = 0

and L(f, k
2 ) 6= 0, and that ρf,q = ρg,q is irreducible and does not arise from any

Sk(Γ0(N/p)), as follows:
To prove there is a congruence, we showed that the corresponding integral spaces

of modular symbols satisfy an appropriate congruence, which forces the existence of
a congruence on the level of Fourier expansions. We showed that ρg,q is irreducible
by computing a set that contains all possible residue characteristics of congruences
between g and any Eisenstein series of level dividing N , where by congruence, we
mean a congruence for all Fourier coefficients of index n with (n,N) = 1. Similarly,
we checked that g is not congruent to any form h of level N/p for any p that exactly
divides N by listing a basis of such h and finding the possible congruences, where
again we disregard the Fourier coefficients of index not coprime to N .

To verify that L(g, k
2 ) = 0, we computed the image of the modular symbol

e = X
k
2 −1Y

k
2 −1{0,∞} under a map with the same kernel as the period mapping,

and found that the image was 0. The period mapping sends the modular symbol e
to a nonzero multiple of L(g, k

2 ), so that e maps to 0 implies that L(g, k
2 ) = 0. In a

similar way, we verified that L(f, k
2 ) 6= 0. Next, we checked that WN (g) = (−1)k/2g

which, because of the functional equation, implies that L′(g, k
2 ) = 0. Table 1 is of

independent interest because it includes examples of modular forms of even weight
> 2 with a zero at k

2 that is not forced by the functional equation. We found no
such examples of weights ≥ 8.

7.3. Conjecturally nontrivial X. In this section we apply some of the results
of Section 4 to compute lower bounds on conjectural orders of Shafarevich-Tate
groups of many modular motives. The results of this section suggest that X of a
modular motive is usually not “visible at level N”, i.e., explained by congruences
at level N , which agrees with the observations of [CM1] and [AS]. For example,
when k > 6 we find many examples of conjecturally nontrivial X but no examples
of nontrivial visible X.

For any newform f , let L(Mf/Q, s) =
∏d

i=1 L(f (i), s) where f (i) runs over the

Gal(Q/Q)-conjugates of f . Let T be the complex torus Cd/(2πi)k/2L, where the
lattice L is defined by integrating integral cuspidal modular symbols (for Γ0(N))
against the conjugates of f . Let ΩMf /Q denote the volume of the (−1)(k/2)−1

eigenspace T ± = {z ∈ T : z = (−1)(k/2)−1z} for complex conjugation on T .
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Lemma 7.1. Suppose that p - Nk! is such that f is not congruent to any of its
Galois conjugates modulo a prime dividing p. Then the p-parts of

L(Mf/Q, k/2)

ΩMf /Q
and Norm

(
L(f, k/2)

vol∞
a±

)

are equal, where vol∞ is as in Section 4.

Proof. Let H be the Z-module of all integral cuspidal modular symbols for Γ0(N).
Let I be the image of H under projection into the submodule of H⊗Q corresponding
to f and its Galois conjugates. Note that I is not necessarily contained in H, but
it is contained in H ⊗ Z[ 1

m ] where m is divisible by the residue characteristics of
any primes of congruence between f and cuspforms of weight k for Γ0(N) which
are not Galois conjugate to f .

The lattice L defined in the paragraph before the lemma is (up to divisors of
Nk!) obtained by pairing the cohomology modular symbols Φ±

f(i) (as in §5) with

the homology modular symbols in H; equivalently, since the pairing factors through
the map H → I, the lattice L is obtained by pairing with the elements of I. For
1 ≤ i ≤ d let Ii be the OE-module generated by the image of the projection of I
into I ⊗ E corresponding to f (i). The finite index of I ⊗ OE in ⊕d

i=1Ii is divisible
only by primes of congruence between f and its Galois conjugates. Up to these
primes, ΩMf /Q/(2πi)((k/2)−1)d is then a product of the d quantities obtained by

pairing Φ±
f(i) with Ii, for 1 ≤ i ≤ d. (These quantities inhabit a kind of tensor

product of C∗ over E∗ with the group of fractional ideals of E.) Bearing in mind
the last line of §3, we see that these quantities are the a±Ω±

f(i) , up to divisors of

Nk!. Now we may apply Lemma 4.1. We have then a factorisation of the left hand
side which shows it to be equal to the right hand side, to the extent claimed by the

lemma. Note that L(f,k/2)
vol∞

a± has an interpretation in terms of integral modular
symbols, as in §5, and just gets Galois-conjugated when one replaces f by some
f (i). ¤
Remark 7.2. The newform f = 319k4C is congruent to one of its Galois conjugates

modulo 17 and 17 | L(Mf /Q,k/2)
ΩMf /Q

so the lemma and our computations say nothing

about whether or not 17 divides Norm
(

L(f,k/2)
vol∞

a±
)
.

Let S be the set of newforms with level N and weight k satisfying either k = 4
and N ≤ 321, or k = 6 and N ≤ 199, or k = 8 and N ≤ 149, or k = 10 and N ≤ 72,
or k = 12 and N ≤ 49. Given f ∈ S, let B be defined as follows:

(1) Let L1 be the numerator of the rational number L(Mf/Q, k/2)/ΩMf /Q. If
L1 = 0 let B = 1 and terminate.

(2) Let L2 be the part of L1 that is coprime to Nk!.
(3) Let L3 be the part of L2 that is coprime to p + 1 for every prime p such

that p2 | N .
(4) Let L4 be the part of L3 coprime to the residue characteristic of any prime

of congruence between f and a form of weight k and lower level. (By
congruence here, we mean a congruence for coefficients an with n coprime
to the level of f .)

(5) Let L5 be the part of L4 coprime to the residue characteristic of any prime
of congruence between f and an Eisenstein series. (This eliminates residue
characteristics of reducible representations.)
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Table 2. Conjecturally nontrivial X (mostly invisible)

f deg(f) B (X bound) all odd congruence primes
127k4C∗ 17 432 43, 127
159k4E∗ 8 232 3, 5, 11, 23, 53, 13605689
263k4B 39 412 263
269k4C 39 232 269
271k4B 39 292 271
281k4B 40 292 281
295k4C 16 72 3, 5, 11, 59, 101, 659, 70791023
299k4C 20 292 13, 23, 103, 20063, 21961
321k4C 16 132 3, 5, 107, 157, 12782373452377
95k6D∗ 9 312 ·592 3, 5, 17, 19, 31, 59, 113, 26701
101k6B 24 172 101
103k6B 24 232 103
111k6C 9 112 3, 37, 2796169609
122k6D∗ 6 732 3, 5, 61, 73, 1303196179
153k6G 5 72 3, 17, 61, 227
157k6B 34 2512 157
167k6B 40 412 167
172k6B 9 72 3, 11, 43, 787
173k6B 39 712 173
181k6B 40 1072 181
191k6B 46 850912 191
193k6B 41 312 193
199k6B 46 2003292 199
47k8B 16 192 47
59k8B 20 292 59
67k8B 20 292 67
71k8B 24 3792 71
73k8B 22 1972 73
74k8C 6 232 37, 127, 821, 8327168869
79k8B 25 3072 79
83k8B 27 10192 83
87k8C 9 112 3, 5, 7, 29, 31, 59, 947, 22877, 3549902897
89k8B 29 444912 89
97k8B 29 112 ·2772 97
101k8B 33 192 ·115032 101
103k8B 32 753672 103
107k8B 34 172 ·4912 107
109k8B 33 232 ·2292 109
111k8C 12 1272 3, 7, 11, 13, 17, 23, 37, 6451, 18583, 51162187
113k8B 35 672 ·6412 113
115k8B 12 372 3, 5, 19, 23, 572437, 5168196102449
117k8I 8 192 3, 13, 181
118k8C 8 372 5, 13, 17, 59, 163, 3923085859759909
119k8C 16 12832 3, 7, 13, 17, 109, 883, 5324191, 91528147213
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f deg(f) B (X bound) all odd congruence primes
121k8F 6 712 3, 11, 17, 41
121k8G 12 132 3, 11
121k8H 12 192 5, 11
125k8D 16 1792 5
127k8B 39 592 127
128k8F 4 112 1
131k8B 43 2412 ·8178382012 131
134k8C 11 612 11, 17, 41, 67, 71, 421, 2356138931854759
137k8B 42 712 ·7490932 137
139k8B 43 472 ·892 ·10212 139
141k8C 14 132 3, 5, 7, 47, 4639, 43831013, 4047347102598757
142k8B 10 112 3, 53, 71, 56377, 1965431024315921873
143k8C 19 3072 3, 11, 13, 89, 199, 409, 178397, 639259, 1744053597287
143k8D 21 1092 3, 7, 11, 13, 61, 79, 103, 173, 241, 769, 36583
145k8C 17 295872 5, 11, 29, 107, 251623, 393577, 518737, 9837145699
146k8C 12 36912 11, 73, 269, 503, 1673540153, 11374452082219
148k8B 11 192 3, 37
149k8B 47 114 ·409967892 149
43k10B 17 4492 43
47k10B 20 22132 47
53k10B 21 6732 53
55k10D 9 712 3, 5, 11, 251, 317, 61339, 19869191
59k10B 25 372 59
62k10E 7 232 3, 31, 101, 523, 617, 41192083
64k10K 2 192 3
67k10B 26 1912 ·6172 67
68k10B 7 832 3, 7, 17, 8311
71k10B 30 11032 71
19k12B 9 672 5, 17, 19, 31, 571
31k12B 15 672 ·712 31, 13488901
35k12C 6 172 5, 7, 23, 29, 107, 8609, 1307051
39k12C 6 732 3, 13, 1491079, 3719832979693
41k12B 20 543472 7, 41, 3271, 6277
43k12B 20 2129692 43, 1669, 483167
47k12B 23 244692 17, 47, 59, 2789
49k12H 12 2712 7

(6) Let B be the part of L5 coprime to the residue characteristic of any prime
of congruence between f and any one of its Galois conjugates.

Proposition 4.8 and Lemma 7.1 imply that if ordp(B) > 0 then, according to the
Bloch-Kato conjecture, ordp(#X) = ordp(B) > 0.

We computed B for every newform in S. There are many examples in which L3 is
large, but B is not, and this is because of Tamagawa factors. For example, 39k4C
has L3 = 19, but B = 1 because of a 19-congruence with a form of level 13; in this
case we must have 19 | c3(2), where c3(2) is as in Section 4. See Section 7.4 for more
details. Also note that in every example B is a perfect square, which, away from
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congruence primes, is as predicted by the existence of Flach’s generalised Cassels-
Tate pairing [Fl1]. (Note that if A[λ] is irreducible then the lattice Tλ is at worst a
scalar multiple of its dual, so the pairing shows that the order of the λ-part of X,
if finite, is a square.) That our computed value of B should be a square is not a
priori obvious.

For simplicity, we discard residue characteristics instead of primes of rings of
integers, so our definition of B is overly conservative. For example, 5 occurs in
row 2 of Table 1 but not in Table 2, because 159k4E is Eisenstein at some prime
above 5, but the prime of congruences of characteristic 5 between 159k4B and
159k4E is not Eisenstein.

The newforms for which B > 1 are given in Table 2. The second column of the
table records the degree of the field generated by the Fourier coefficients of f . The
third contains B. Let W be the intersection of the span of all conjugates of f with
Sk(Γ0(N), Z) and W ⊥ the Petersson orthogonal complement of W in Sk(Γ0(N), Z).
The fourth column contains the odd prime divisors of #(Sk(Γ0(N), Z)/(W +W ⊥)),
which are exactly the possible primes of congruence between f and non-conjugate
cusp forms of the same weight and level. We place a ∗ next to the four entries of
Table 2 that also occur in Table 1.

7.4. Examples in which hypotheses fail. We have some other examples where
forms of different levels are congruent (for Fourier coefficients of index coprime to
the levels). However, Remark 5.2 does not apply, so that one of the forms could have
an odd functional equation, and the other could have an even functional equation.
For instance, we have a 19-congruence between the newforms g = 13k4A and
f = 39k4C of Fourier coefficients of index coprime to 39. Here L(f, 2) 6= 0, while
L(g, 2) = 0 since L(g, s) has odd functional equation. Here f fails the condition
about not being congruent to a form of lower level, so in Lemma 4.4 it is possible
that ordq(c3(2)) > 0. In fact this does happen. Because V ′

q (attached to g of

level 13) is unramified at p = 3, H0(Ip, A[q]) (the same as H0(Ip, A
′[q])) is two-

dimensional. As in (2) of the proof of Theorem 6.1, one of the eigenvalues of Frob−1
p

acting on this two-dimensional space is α = −wpp
(k/2)−1, where Wpf = wpf .

The other must be β = −wpp
k/2, so that αβ = pk−1. Twisting by k/2, we see

that Frob−1
p acts as −wp on the quotient of H0(Ip, A[q](k/2)) by the image of

H0(Ip, Vq(k/2)). Hence ordq(cp(k/2)) > 0 when wp = −1, which is the case in our
example here with p = 3. Likewise H0(Qp, A[q](k/2)) is nontrivial when wp = −1,
so (2) of the proof of Theorem 6.1 does not work. This is just as well, since had
it worked we would have expected ordq(L(f, k/2)/ vol∞) ≥ 3, which computation
shows not to be the case.

In the following example, the divisibility between the levels is the other way
round. There is a 7-congruence between g = 122k6A and f = 61k6B, both
L-functions have even functional equation, and L(g, 3) = 0. In the proof of The-
orem 6.1, there is a problem with the local condition at p = 2. The map from
H1(I2, A

′[q](3)) to H1(I2, A
′
q(3)) is not necessarily injective, but its kernel is at

most one dimensional, so we still get the q-torsion subgroup of H1
f (Q, Aq(2)) hav-

ing Fq-rank at least 1 (assuming r ≥ 2), and thus get elements of X for 61k6B
(assuming all along the strong Beilinson-Bloch conjecture). In particular, these
elements of X are invisible at level 61. When the levels are different we are no
longer able to apply Theorem 2.1 of [FJ]. However, we still have the congruences of
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integral modular symbols required to make the proof of Proposition 5.1 go through.
Indeed, as noted above, the congruences of modular forms were found by producing
congruences of modular symbols. Despite these congruences of modular symbols,
Remark 5.2 does not apply, since there is no reason to suppose that wN = wN ′ ,
where N and N ′ are the distinct levels.

Finally, there are two examples where we have a form g with even functional
equation such that L(g, k/2) = 0, and a congruent form f which has odd functional
equation; these are a 23-congruence between g = 453k4A and f = 151k4A, and
a 43-congruence between g = 681k4A and f = 227k4A. If ords=2 L(f, s) = 1,
it ought to be the case that dim(H1

f (Q, Vq(2))) = 1. If we assume this is so,

and similarly that r = ords=2(L(g, s)) ≥ 2, then unfortunately the appropriate
modification of Theorem 6.1 (with strong Beilinson-Bloch conjecture) does not
necessarily provide us with nontrivial q-torsion in X. It only tells us that the q-
torsion subgroup of H1

f (Q, Aq(2)) has Fq-rank at least 1. It could all be in the image

of H1
f (Q, Vq(2)). X appears in the conjectural formula for the first derivative of

the complex L function, evaluated at s = k/2, but in combination with a regulator
that we have no way of calculating.

Let Lq(f, s) and Lq(g, s) be the q-adic L functions associated with f and g by
the construction of Mazur, Tate and Teitelbaum [MTT], each divided by a suitable
canonical period. We may show that q | L′

q(f, k/2), though it is not quite clear
what to make of this. This divisibility may be proved as follows. The measures
dµf,α and (a q-adic unit times) dµg,α′ in [MTT] (again, suitably normalised) are
congruent mod q, as a result of the congruence between the modular symbols out
of which they are constructed. Integrating an appropriate function against these
measures, we find that L′

q(f, k/2) is congruent mod q to L′
q(g, k/2). It remains to

observe that L′
q(g, k/2) = 0, since L(g, k/2) = 0 forces Lq(g, k/2) = 0, but we are

in a case where the signs in the functional equations of L(g, s) and Lq(g, s) are
the same, positive in this instance. (According to the proposition in Section 18 of
[MTT], the signs differ precisely when Lq(g, s) has a “trivial zero” at s = k/2.)

We also found some examples for which the conditions of Theorem 6.1 were
not met. For example, we have a 7-congruence between 639k4B and 639k4H,
but w71 = −1, so that 71 ≡ −w71 (mod 7). There is a similar problem with a
7-congruence between 260k6A and 260k6E — here w13 = 1 so that 13 ≡ −w13

(mod 7). According to Propositions 5.1 and 4.8, Bloch-Kato still predicts that
the q-part of X is non-trivial in these examples. Finally, there is a 5-congruence
between 116k6A and 116k6D, but here the prime 5 is less than the weight 6 so
Propositions 5.1 and 4.8 (and even Lemma 7.1) do not apply.
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1991/92. Astérisque 206 (1992), Exp. No. 751, 4, 205–249.

[FL] J.-M. Fontaine, G. Lafaille, Construction de représentations p-adiques, Ann. Sci. E.N.S. 15

(1982), 547–608.

[JL] B. W. Jordan, R. Livné, Conjecture “epsilon” for weight k > 2, Bull. Amer. Math. Soc. 21

(1989), 51–56.
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1 Introduction

In the late 1980s, Brumer and McGuinness [2] undertook the construction
of a database of elliptic curves whose discriminant ∆ was both prime and
satisfied |∆| ≤ 108. While the restriction to primality was nice for many
reasons, there are still many curves of interest lacking this property. As
ten years have passed since the original experiment, we decided to un-
dertake an extension of it, simultaneously extending the range for the
type of curves they considered, and also including curves with composite
discriminant. Our database can be crudely described as being the curves
with |∆| ≤ 1012 which either have conductor smaller than 108 or have
prime conductor less than 1010—but there are a few caveats concern-
ing issues like quadratic twists and isogenous curves. For each curve in
our database, we have undertaken to compute various invariants (as did
Brumer and McGuinness), such as the Birch–Swinnerton-Dyer L-ratio,
generators, and the modular degree. We did not compute the latter two
of these for every curve. The database currently contains about 44 million
curves; the end goal is find as many curves with conductor less than 108

as possible, and we comment on this direction of growth of the database
below. Of these 44 million curves, we have started a first stage of pro-
cessing (computation of analytic rank data), with point searching to be
carried out in a later second stage of computation.

Our general frame of mind is that computation of many of the in-
variants is rather trivial, for instance, the discriminant, conductor, and
even the isogeny structure. We do not even save these data, expecting
them to be recomputable quite easily in real time. For instance, for each
isogeny class, we store only one representative (the one of minimal Falt-
ings height), as we view the construction of isogenous curves as a “fast”
process. It is only information like analytic ranks, modular degrees (both



of which use computation of the Frobenius traces ap), and coordinates of
generators that we save; saving the ap would take too much storage space.
It might be seen that our database could be used a “seed” for other more
specialised databases, as we can quickly calculate the less time-consuming
information and append it to the saved data.

2 Generating the Curves.

While Brumer and McGuinness fixed the a1, a2, a3 invariants of the
elliptic curve (12 total possibilities) and then searched for a4 and a6 which
made |∆| small, we instead decided to break the c4 and c6 invariants into
congruence classes, and then find small solutions to c3

4 − c2
6 = 1728∆. We

write c?
4 for the least nonnegative residue of c4 modulo 576, and c?

6 for
the least nonnegative residue of c6 modulo 1728. The work of Connell [3]
gives necessary and sufficient conditions on c4 and c6 for an elliptic curve
with such invariants to exist. We first need that c6 ≡ 3 (mod 4) (when it
follows that c4 is odd), or 24 | c4 and c6 ≡ 0, 8 (mod 32), and secondly we
require a local condition at the prime 3, namely that c6 6≡ ±9 (mod 27).
Using this information and the fact that 1728 |

(

c3
4 − c2

6

)

, this leads to
288 possible (c?

4, c
?
6) pairs.

For each fixed such (c?
4, c

?
6) pair, we can simply loop over c4 and c6,

finding the curves with |∆| ≤ 1012. Of course, it is only under the ABC-
conjecture that we would have an upper bound on c4 to ensure that we
would have found all such curves, and even then the bound would be too
large. Our method was to take c4 ≤ 1.44 · 1012 in this first step; in any
case, curves with larger c4 are most likely found more easily using the
method of Elkies [5].

2.1 Minimal Twists

In the sequel, we shall write Ed for the quadratic twist of E by d. For each
(c4, c6) pair (again with c4 ≤ 1.44 · 1012) which satisfies the |∆| ≤ 1012

condition, we then determine whether this curve is minimal—not only
in the traditional sense for its minimal discriminant, but also whether
it is has the minimal discriminant in its family of quadratic twists. For
p ≥ 5, this is rather easy to determine; unless p6 | ∆ and p | c4, the curve
is minimal for quadratic twists (the only difference between this and the
standard notion of minimality is that the exponent here is 6 instead of 12).
If both the above conditions hold, then we throw the curve out, as Ep̃,

where p̃ =
(

−1

p

)

p, is a curve with lesser discriminant (which will be



found by our search procedure). Given that the curve is minimal at a
prime divisor p ≥ 5 of ∆, the local conductor at p is p2 if p | c4 and p1

otherwise.
The case with p = 3 is a bit harder. By Connell’s conditions, we see

that if 39 |
(

c3
4 − c2

6

)

while 3 | c6 but 35 does not exactly divide c6, then
E−3 is a curve with invariants (c4/9,−c6/27) which has the discriminant
reduced by 36. This is the only prohibition against the curve being the
minimal twist at 3. If 3 || c4, the curve has good reduction (at 3), while
if c4 is not divisible by 3, the curve has either good or multiplicative
reduction. In both cases, the local conductor can be computed readily,
it being 30 for good reduction and 31 for multiplicative. To compute the
conductor in the remaining cases, let c̃4 be the the least nonnegative
residue of (c4/9) modulo 3, and c̃6 be the the least nonnegative residue
of (c6/27) modulo 9. Table 1 then gives us the exponent of the local
conductor. Here e = 5 if 34 | c4 and e = 4 if 33 || c4 (note that we must
have 35 || c6 in this case for the curve to be twist-minimal).

Table 1. Local Conductors at 3

c̃4\c̃6 0 1 2 3 4 5 6 7 8

0 e 3 3 5 2 2 5 3 3
1 2 3 4 3 4 4 3 4 3
2 2 3 2 3 3 3 3 2 3

For p = 2, the minimality test and conductor computation is much
more complicated. We include the prime at infinity (twisting by −1) in the
test for p = 2. By Connell’s conditions, if 26 | c4 and 28 | c6, we see that
E2 is a curve with invariants (c4/4, c6/8), and has a lesser discriminant.
Also if 26 | c4 and 26 || c6, then one of the twists E±2 (the sign depending
on whether c6/8 is 8 mod 32) has lesser discriminant. And finally if we
have 24 || c4 and 26 || c6 and 218 |

(

c3
4 − c2

6

)

, then one of E±1 (depending
on whether c6/64 is 3 mod 4) is nonminimal (in the standard sense)
at 2, and hence can be ignored. If none of these events happens, then the
curve is twist-minimal at p = 2 and the infinite prime. We next describe
how to compute the local conductor at p = 2 in terms of congruence
conditions. If c4 is odd, then the local conductor is 20 or 21, depending
on whether 2 divides ∆. If c4 is even, then it is divisible by 16. In this
case, if c6 is 8 mod 32, there is good reduction at 2, and again the local
conductor is 20. So we are left to consider the cases of additive reduction
where 24 | c4 and 25 | c6. Let c̃4 be the the least nonnegative residue of



(c4/16) modulo 8, and c̃6 be the the least nonnegative residue of (c6/32)
modulo 8. Table 2 then gives the exponent of the local conductor at 2. In
this, the dashed entries simply do not occur. For the entries marked by e,
let c̃4 be the the least nonnegative residue of (c4/16) modulo 16, and c̃6

be the the least nonnegative residue of (c6/32) modulo 16. We then use
the further Table 3. All the conductor computations are exercises with
Tate’s algorithm [9].

Table 2. Local Conductors at 2

c̃4\c̃6 0 1 2 3 4 5 6 7

1,5 6 4 e 3 6 4 e 3
2,6 8 3 6 4 7 3 6 4
3,7 5 2 7 2 5 2 7 4
4 6 2 - 4 3 2 - 4
0 6 2 - 4 2 2 - 4

Table 3. More of the Same

c̃4\c̃6 2 6 10 14

1 4 5 5 3
5 3 2 4 4
9 5 3 4 5
13 4 4 3 2

A curve which has minimal discriminant at p = 2 will be of minimal
conductor at p = 2 unless 24 || N or 26 || N ; we can throw out the
curve in the first case, since E−1 will be found in the search process (and
it has lesser conductor). But in the latter case, we cannot immediately
discard the curve, as E2 will have conductor smaller by a factor of 2, but
the discriminant rises by a factor of 64. So only if |∆| ≤ 1012/64 do we
discard the curve; in the alternative case we replace the curve by E2, so
that we have the twist of minimal conductor. Finally, if we have 25 || N
(possibly after the above twisting by 2), or 27 | N , we make the arbitrary
decision to discard the curve if c6 < 0, as we will also find E−1 in the
search, which will have the same conductor and discriminant.

Using the above method, we can rid ourselves of all curves which
are not minimal twists, and simultaneously compute the conductor. If
N > 1010, we simply ignore the curve; if N > 108 (and N ≤ 1010), we



check whether N is a strong pseudoprime for 2, 13, 23, and 1662803,
this being sufficient to prove primality [6]. At this point, we have a list
of curves which meet our size conditions on the discriminant, and which
have the minimal conductor in a family of quadratic twists, and minimal
discriminant at primes other than p = 2.

2.2 Isogenous Curves

The next step will be to get rid of isogenous curves. The process of finding
all curves isogenous to a given one is described in [4]. This is a fairly fast
process, as most curves will have no nontrivial isogenies. Amongst the
isogenous curves, we then take the curve of largest fundamental volume,
that is, minimal Faltings height (which is unique by [8], as our represen-
tative. Note that this curve might not have the minimal discriminant in
the isogeny class. Our final set of curves is then: the set of elliptic curves
E such that E has minimal height in its isogeny class, and has some
isogenous curve F for which we have c4 ≤ 1.44 · 1012 and either N ≤ 1010

with |∆| prime, or N ≤ 108 with |∆| ≤ 1012 for either the curve F or F2.

2.3 Future Extension of the Database

As stated above, we would desire to have all minimal twists which have
conductor less than 108. There are three ways of enlarging the database.
The first is extending the range on c4 by using the algorithm of [5]. The
second is to incorporate the data from the exhaustive methods of Cre-
mona. The third is to find families in which we expect the conductor to
be substantially less than the discriminant; for instance, curves with a
rational point of order 5 often have some prime to the 5th power divid-
ing the discriminant. In the same vein, curves with (say) a 5-isogeny are
parametrised from X0(5), and in such a parametrised family we again ex-
pect a large difference between the conductor and discriminant. We could
also extend the discriminant limit to (say) 1013 for certain (c?

4, c
?
6) pairs,

especially those for which we know ahead of time that we will save signif-
icant powers of 2 and 3 in the conductor compared to the discriminant.

3 Data Computed for Each Curve

One object of interest for an elliptic curve is its algebraic rank. This is
hard to compute; indeed, there is no known algorithm to do this, only
ones which work conditionally. By the process given in [4], we can try



to determine the analytic rank of the curve, which is the degree of
vanishing of its L-series at the central point. Of course, as there is no
way to determine if a computed number is exactly zero, we can only
give a good guess as to the analytic rank. The conjecture of Birch and
Swinnerton-Dyer asserts that the algebraic rank and the analytic rank
are equal, and that the first nonzero derivative of the L-function at the
central point has arithmetic significance. For each curve in the database,
we computed the suspected analytic rank and first nonzero derivative for
both the curve itself and some of its quadratic twists.

Each curve in our database is the curve of minimal Faltings height
in its isogeny class. A conjecture of Stevens [8] asserts that this curve
should be the optimal curve for parametrisations from X1(N), in the
sense that the parametrisations to the isogenous curves factor through
the parametrisation to the strong curve (the existence of a modular
parametrisation from X1(N) was proved in [1] following the methods
initiated by Wiles [11]). It is sometimes the case that the optimal curve
for parametrisations from X0(N) differs from the curve we find; in [10],
a process is given to find the X0(N)-optimal curve, assuming a technical
condition, namely that the Manin constant of the optimal curve is 1 (this
is similar to the Stevens conjecture). As many of the Frobenius traces
were already computed for the analytic rank computation, these can be
re-used at this stage. In a section below, we discuss the data obtained.

In the aforementioned paper [10], a process is given to compute the
modular degree of an elliptic curve, again assuming that the Manin con-
stant is 1. Compared to the computation of the analytic rank, which
requires about the first

√
N of the Frobenius traces, this method requires

on the order of N of these (actually Ñ , the symmetric-square conduc-
tor; see below). Thus for N ≥ 300000 or so, it becomes rather time-
consuming to compute the modular degree. We therefore compromised,
computing the modular degree only if the symmetric-square conductor of
the elliptic curve was sufficiently small (if we write N =

∏

p pfp as a prod-
uct of local conductors, then the symmetric-square conductor is simply
Ñ =

∏

p pdfp/2e, except possibly when f2 = 8, when the local symmetric-
square conductor at 2 might be either 23 or 24; see [10] for details). We
also computed the modular degree in some other interesting cases, for
instance, when the rank is large.



4 Differing Optimal Curves

Here we discuss the question of differing optimal curves for parametrisa-
tions from X0(N) and X1(N). Note that we do not compute the actual
optimal curve for the latter, relying instead on the Stevens conjecture,
and compute the optimal curve for X0(N) only under the assumption
that the Manin constant is 1. But the results are still interesting.

There appear to be three major cases when the optimal curves differ
by a 2-isogeny. One of these, the so-called Setzer-Neumann curves, was
considered in [7]. These curves are parametrised by c4 = u2 + 48 and
c6 = −u

(

u2 + 72
)

, with the discriminant u2 + 64 being a prime and u
being taken to be congruent to 1 mod 4. The second family corresponds
to taking c4 = 16

(

u2 + 3
)

and c6 = −32u
(

2u2 + 9
)

with u again being
1 mod 4 and p = u2 + 4 being prime. Here the conductor is 4p and the
discriminant is 16p; the differing optimal curves property appears to be
preserved upon twisting by −1.

The third family we found is obtained by taking c4 = p (p + 16) + 16
and c6 = (p + 8)

(

p2 + 16p − 8
)

of discriminant p (p + 16) with both p
and p + 16 primes congruent to 3 mod 4. A similar thing occurs if p and
p + 16 are more generally powers of primes, but at least one of the two
must be a power of a prime which is congruent to 3 mod 4 (i.e. p = 11 or
p = 2401 works, but p = 625 does not). If p is congruent to 1 mod 4, then
the sign of c6 must be switched. Finally, p can be taken to be negative,
for instance p = −5. Note that p = 9 leads to 15A, in which the optimal
curves differ by a 4-isogeny; also, 17A might be thrown into consideration
here with p = 1, which also has the optimal curves differing by a 4-isogeny.

With these considerations, there are but a couple of outstanding cases
of optimal curves differing by a 2-isogeny (though proofs of this classifi-
cation are lacking), those being the isogeny classes 24A/48A, 40A/80A,
32A/64A, and 128B/128D, though this last case can be seen as the p = 8
case of the second family. Ignoring the 5-isogeny example of 11A as being
spurious, this leaves just the occasions of the optimal curves differing by
a 3-isogeny. Here, all known examples are parametrised by

c4 = (n + 3)
(

n3 + 9n2 + 27n + 3
)

and

c6 = −
(

n6 + 18n5 + 135n4 + 504n3 + 891n2 + 486n − 27
)

with the discriminant being n
(

n2 + 9n + 27
)

. The n’s for which the opti-
mal curves differ are (experimentally) precisely those for which n2+9n+27



is a prime power and n has no prime factors congruent to 1 mod 6; else
the optimal curves are the same. We have no theoretical justification of
this observation.

5 Data Obtained

This may seem strange for a comprehensive database project, but we do
not dwell on large-scale phemonemon; indeed, the Brumer–McGuinness
work is probably already sufficient in this manner, at least for prime con-
ductor. As noted there, telling the difference between a small power of 108

(or whatever the upper limit of consideration may be) and a large power
of its logarithm is rather hopeless—extending their data by a factor of
5/4 on the logarithmic scale does not help matters much. We mention
that there are 11386955 isogeny classes of curves with prime conductor
less than 1010 in our database (this should grow slightly when curves
with c4 ≥ 1.44 · 1012 are added). Of these curves with prime conduc-
tor, of the ones we have processed, we have that 62.5% of the curves
with even functional equation possess rank 0, compared to about 60% for
Brumer–McGuinness. It is conjectured that asymptotically this percent-
age should be 100%. Similarly, 92.5% of the curves with odd functional
equation have rank 1, slightly more than the previous results; there is
no real reason to think that our numbers will change drastically upon
extending the rank computation to all the prime conductor curves we
have. The least conductor for a rank 5 curve we have found is 48012824
for [0, 1, 0,−625, 6099], and for rank 6 we have [0, 0, 1,−277, 4566] of con-
ductor 7647224363. These respectively fall short to the best-known (to
the authors) examples of [0, 0, 1,−79, 342] of conductor 19047851 and
[0, 0, 1,−7077, 235516] of conductor 5258110041.

Instead of concentrating on large-scale behavior, we see our database
as more of a tool to be used by other mathematicians. For instance,
Neil Dummigan queried us concerning examples of strong Weil curves
with rank 2 and a rational point of order 5 for which the conductor
is not divisible by 5, and we were able to provide him with the exam-
ple [0, 1, 1,−840, 39800] of conductor 13881 (and modular degree 52000),
among other examples which were beyond the range of Cremona’s ta-
bles (which include [1, 1, 1,−2365, 43251] of conductor 5302). Though we
would likely be better able to answer the question after extending our
database with parametrisations from X0(5), the efficacy of our database
was evinced. As another example, the second author has conjectured in
[10] that 2r divides the modular degree for any curve (where r is the rank),



and perhaps higher powers of 2 should divide the modular degree when the
conductor is composite, due to factorisation through Atkin–Lehner invo-
lutions. For many large-rank curves in the Brumer–McGuinness database,
we verified this. With our extension to curves of composite conductor, we
are able to give more evidence for this conjecture. Also, the third 2-isogeny
family in the previous section was discovered after looking at our data, as
was the parametrisation of the 3-isogeny family, and finally our analytic
rank data concerning quadratic twists could be of use.
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1 Introduction

In this paper we describe the Birch and Swinnerton-Dyer conjecture in the
case of modular abelian varieties and how to use Magma to do computations
with some of the quantities that appear in the conjecture. We assume the
reader has some experience with algebraic varieties and number theory, but
do not assume the reader has proficiency working with elliptic curves, abelian
varieties, modular forms, or modular symbols.

In Section 2 we quickly survey abelian varieties, modular forms, Hecke
algebras, modular curves, and modular Jacobians, then discuss Shimura’s con-
struction of abelian varieties attached to modular forms. In Section 3 we sur-
vey many quantities associated to an abelian variety, including the Mordell-
Weil group, torsion subgroup, regulator, Tamagawa numbers, real volume, and
Shafarevich-Tate group, and use these to state the full Birch and Swinnerton-
Dyer conjecture for modular abelian varieties. Section 4 contains some com-
putational results from other papers about the Birch and Swinnerton-Dyer
conjecture.

The rest of the paper is about how to use the package that I wrote for
Magma to carry out an explicit computational study of modular abelian va-
rieties. Section 5 is about modular symbols and how to compute with them
in Magma. In Section 6 we state a theorem that allows us to use Magma

to compute subgroups of Shafarevich-Tate groups of abelian varieties. In Sec-
tion 7 we discuss computation of special values of L-functions. Section 8 is
about computing Tamagawa numbers, and in Section 9 we describe how to
compute a divisor and multiple of the order of the torsion subgroup. All these
computations are pulled together in Section 10 to obtain a conjectural divisor
and multiple of the order of the Shafarevich-Tate group of a modular abelian
variety of dimension 20. We finish with Section 11, which contains an example
in which the level is composite and elements of the Shafarevich-Tate group
only becomes “visible” at higher level.
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Taken together, these computations give evidence for the Birch and
Swinnerton-Dyer conjecture and increase our explicit understanding of mod-
ular abelian varieties.

2 Modular Abelian Varieties

An elliptic curve E over the rational numbers Q is a one-dimensional commu-
tative compact algebraic group. Such a curve is usually given as the projective
closure of an affine curve y2 = x3 +ax+ b, with a and b in Q. The points over
the real numbers R of y2 = x3 − x + 1 are illustrated in Figure 1. If P and Q

�

�
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R

−R

1

2

2

2
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Fig. 1. Adding P = (0, 1) to Q = (1, 1) to get R = (−1,−1) on y2 = x3 − x + 1

are two distinct points on E, we find their sum as follows: draw the unique
line through them and let (x, y) be the third point of intersection of this line
with E. Then the sum of P and Q is R = (x,−y), as illustrated in Figure 1.
For more about elliptic curves, see [33, 34].

This paper is about abelian varieties, which are compact (commutative)
algebraic groups of dimension possibly greater than 1. For example, the Carte-
sian product of two elliptic curves is an abelian variety of dimension 2.

Explicit equations for abelian varieties are vastly more complicated than
for elliptic curves, so algorithms for computing with abelian varieties without
recourse to explicit algebraic equations are of great value. In this paper we
focus on such algorithms in the case when the abelian variety is endowed with
extra structure coming from modular forms.

A cuspidal modular form of weight 2 for
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Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : N | c

}

is a holomorphic function f(z) on the upper half plane such that for all γ =(
a b
c d

)
∈ Γ0(N) we have

f

(
az + b

cz + d

)
= (cz + d)2f(z),

and which satisfies certain vanishing conditions at the cusps (see [13, pg. 42]
for a precise definition). We denote the finite dimensional complex vector space
of all cuspidal modular forms of weight 2 for Γ0(N) by S2(Γ0(N)). Because(

1 1
0 1

)
∈ Γ0(N), cuspidal modular forms have a Fourier series representation

f(z) =

∞∑

n=1

anqn =

∞∑

n=1

ane2πinz.

The Hecke algebra

T = Z[T1, T2, T3, . . .] ⊂ End(S2(Γ0(N)))

is a commutative ring that is free of rank equal to dimC S2(Γ0(N)) (for the
definition and basic properties of the Hecke operators Tn, see [13, §3] and the
references therein).

A newform is a modular form

f = q +
∑

n≥2

anqn

that is a simultaneous eigenvector for every element of the Hecke algebra and
such that the coefficients {ap : p - N} are not the prime-index coefficients of
another eigenform of some level that strictly divides N .

The group Γ0(N) acts as a discrete group of linear fractional transfor-
mations on the upper half plane; the quotient of the upper half plane by
this action is a non-compact Riemann surface. Its compactification has the
structure of algebraic curve over Q, i.e., the compactification is the set of
complex points of an algebraic curve X0(N) defined by polynomial equations
with coefficients in Q.

A divisor on an algebraic curve X is an element of the free abelian group
generated by the points of X. For example, if f is a rational function on X
then

(f) = (formal sum of poles of f) − (formal sum of zeros of f)

is a divisor on X, where the sums are with multiplicity. Two divisors D1 and
D2 are linearly equivalent if there is a rational function f on X such that
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D1 − D2 = (f). The Jacobian J of an algebraic curve X is an abelian variety
of dimension equal to the genus (number of holes in the Riemann surface
X(C)) of X such that the underlying group of J is naturally isomorphic to
the group of divisor classes of degree 0 on X. Let J0(N) denote the Jacobian
of X0(N).

Similarly, let

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) : N | c and a ≡ 1 (mod N)

}
,

define X1(N) similarly, and let J1(N) be the Jacobian of X1(N).
A modular abelian variety is an abelian variety A for which there exists

a surjective morphism J1(N) → A. Modular abelian varieties are appealing
objects to study. For example, it is a deep theorem that every elliptic curve
over Q is modular (see [7, 40, 41]), and this implies Fermat’s Last Theorem
(see [25, Cor. 1.2]). In [27], Ken Ribet conjectured that the simple abelian va-
rieties over Q of “GL2-type” are exactly the simple modular abelian varieties.
A closely related conjecture of Serre (see [29, pg. 179] and [28]) asserts that
every odd irreducible Galois representation

ρ : Gal(Q/Q) → GL2(Fp)

is “modular”; this conjecture is equivalent to the assertion that ρ can be real-
ized (up to twist) as the action of Gal(Q/Q) on a subgroup of the points on
some J1(N) (see [28, §3.3.1] for a partial explanation). Though Serre’s conjec-
ture is still far from proved, it implies Ribet’s conjecture (see [27, Thm. 4.4]).

We now return to considering Γ0(N), though we could consider Γ1(N)
for everything in the rest of this section. The Hecke algebra T, which we
introduced above as a ring of linear transformations on S2(Γ0(N)), also acts
via endomophisms on J0(N).

In order to construct Galois representations attached to modular forms,
Goro Shimura (see [31, §1] and [32, §7.14]) associated to each newform f =∑

anqn a simple abelian variety Af defined over Q. Let If be the ideal of
elements of T that annihilate f . Then

Af = J0(N)/IfJ0(N).

The dimension of Af equals the degree of the field generated over Q by the
coefficients an of f . Note that Af need not be simple over Q.

We will frequently mention the dual A∨
f below. The dual can be consid-

ered as an abelian subvariety of J0(N), by using that Jacobians are canoni-
cally self dual and the dual of the quotient map J0(N) → Af is an inclusion
A∨

f ↪→ J0(N). Note that A∨
f is the connected component of the intersection

of the kernels of all elements of If .
We say that a newform g is a Galois conjugate of f if there is σ in

Gal(Q/Q) such that g =
∑

σ(an)qn. If g is a Galois conjugate of f , then
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Af = Ag; if g is not a conjugate of f then the only homomorphism from Af

to Ag is the zero map. (A nonzero homomorphism Af → Ag would induce
an isogeny of Tate modules, from which one could deduce that f and g are
Galois conjugate.)

We will concern ourselves almost entirely with these modular abelian va-
rieties attached to newforms, because, as mentioned above, there are a number
of algorithms for computing with them that do not require explicit algebraic
equations (see [2, 3, 9, 10, 15, 19, 37, 35]). Also, it follows from standard re-
sults about constructing spaces of cusp forms from newforms, which can be
found in [4, 22], that every modular abelian variety is isogenous to a prod-
uct of abelian varieties of the form Af . (An isogeny of abelian varieties is a
surjective homomorphism with finite kernel.)

3 The Birch and Swinnerton-Dyer Conjecture

In the 1960s Bryan Birch and Peter Swinnerton-Dyer did computations with
elliptic curves at Cambridge University on the EDSAC computer (see, e.g.,
[5]). These computations led to earth-shattering conjectures about the arith-
metic of elliptic curves over Q. Tate [39] formulated their conjectures in a
more functorial way that generalized them to abelian varieties over global
fields (such as the rational numbers). We now state their conjectures below
for modular abelian varieties over Q.

Let Af be a modular abelian variety. Mordell and Weil proved that the
abelian group Af (Q) of rational points on Af is finitely generated, so it is
isomorphic to Zr × T where T is the finite group Af (Q)tor of all elements of
finite order in Af (Q). The exponent r is called the Mordell-Weil rank of Af .

If f is a newform, the L-function of f is defined by the Dirichlet series
L(f, s) =

∑
n≥1 ann−s. Hasse showed that L(f, s) has an analytic continuation

to a holomorphic function on the whole complex plane. The Hasse-Weil L-
function of Af is

L(Af , s) =
∏

L(g, s)

where the product is over the Galois conjugates g of f . The analytic rank of
Af is ords=1L(Af , s).

We are now ready to state the first part of the conjecture.

Conjecture 3.1 (Birch and Swinnerton-Dyer) The analytic rank of Af

is equal to the Mordell-Weil rank of Af .

Remark 1.

1. It is an open problem to give, with proof, an example of an elliptic curve
with analytic rank at least 4. No examples with analytic rank at least 3
were known until the deep theorem of [16, Prop. 7.4].
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2. When Af is an elliptic curve, Conjecture 3.1 is the Clay Mathematics
Institute Millennium Prize Problem from arithmetic geometry [17], so it
has received much publicity.

In order to explain the conjecture of Birch and Swinnerton-Dyer about
the leading coefficient of L(Af , s) at s = 1, we introduce the regulator, real
volume, Tamagawa numbers, and Shafarevich-Tate group of Af . Most of what
we say below is true for a general abelian variety over a global field; the
notable exceptions are that we do not know that the L-function is defined on
the whole complex plane, and there are hardly any cases in general when the
Shafarevich-Tate group is known to be finite.

Let Af (Q)/tor denote the quotient of Af (Q) by its torsion subgroup,
so Af (Q)/tor is isomorphic to Zr, where r is the Mordell-Weil rank of Af .
The height pairing is a nondegenerate bilinear pairing h on Af (Q)/tor. The
regulator RegAf

of Af is the absolute value of the determinant of a matrix
who entries are h(Pi, Pj), where P1, . . . , Pr are a basis for Af (Q)/tor. When
Af (Q) has rank zero, the regulator is 1.

We use a certain integral model of Af to define the real volume and
Tamagawa numbers of Af . The Néron model A of Af , whose existence was
established by Néron in [24] (see also [6, Ch. 1]), is a canonical object associ-
ated to Af that is defined over Z. The Néron model can be reduced modulo p
for every prime p, and when base extended to Q, the Néron model is isomor-
phic to Af . The Néron model A is determined, up to unique isomorphism, by
the following properties, which the reader unfamiliar with schemes can safely
ignore: A is a smooth commutative group scheme over Z such that whenever S
is a smooth scheme over Z the restriction map

Hom(S,A) → HomQ(SQ, A)

is a bijection.
The real volume ΩAf

of Af is the absolute value of the integral over
Af (R) of h1 ∧ · · · ∧ hd where h1, . . . , hd are a basis for the holomorphic 1-
forms on A. Using various identifications as in [1, §2.2.2] one sees that the
Z-span M of h1, . . . , hd can be viewed as a submodule of

W = S2(Γ0(N),Z) ∩ (Cf1 ⊕ · · · ⊕ Cfd)

where f1, . . . , fd are the Gal(Q/Q) conjugates of f . We call the index of M
in W the Manin constant of Af , and conjecture (see [1]) that the Manin
constant is 1. This conjecture would imply that a basis h1, . . . , hd can be
computed, since W can be computed.

The reduction modulo p of A is an algebraic group AFp
over the finite

field Fp with p elements. If p does not divide N , then this group is connected,
but when p divides N , the reduction AFp

need not be connected. Let

ΦA,p = AFp
/A0

Fp
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be the finite group of components. The Tamagawa number of Af at p, denoted
cp, is the number of Fp-rational components of the reduction of A modulo p,
so cp = #ΦA,p(Fp).

The only object left to define before we state the second part of the Birch
and Swinnerton-Dyer conjecture is the Shafarevich-Tate group of Af . This is
a group that measures the failure of a certain local-to-global principle for Af .
To give an exact description, we let H1(Q, Af ) be the first Galois cohomology
group of Af , which is a torsion group with infinitely many elements of any
order bigger than 1 (see [30] for a proof in the case when Af is an elliptic curve;
the top of page 278 of [8] also purports to contain a proof). More precisely,
H1(Q, Af ) is the set of equivalence classes of maps c : Gal(Q/Q) → Af (Q),
with finite image, such that c(στ) = c(σ) + σc(τ), and two classes c1 and c2

are equivalent if there exists P in Af (Q) such that c1(σ) − c2(σ) = σ(P ) − P
for all σ ∈ Gal(Q/Q). For each prime p we define H1(Qp, Af ) analogously,
but with the rational numbers Q replaced by the p-adic numbers Qp. Also,
we allow p = ∞, in which case Qp = R. Then

X(Af ) = ker


H1(Q, Af ) −→

⊕

primes p≤∞
H1(Qp, Af )


 .

We are now ready to state the full Birch and Swinnerton-Dyer conjecture
for modular abelian varieties Af .

Conjecture 3.2 Let A = Af be a modular abelian variety attached to a new-
form, and let r = ords=1L(A, s) be the analytic rank of A. Then

L(r)(A, 1)

r!
=

∏
cp · ΩA · RegA

#A(Q)tor · #A∨(Q)tor
· #X(A).

Recall that L(r)(Af , 1) makes sense at s = 1 because Af is attached to
a modular form. Also Kato established in [18, Cor. 14.3] that if L(Af , 1) 6= 0
then X(Af ) is finite, and Kolyvagin-Logachev ([20, Thm. 0.3]) proved that
if f is a modular form in S2(Γ0(N)) and ords=1L(f, s) ≤ 1, then X(Af ) is
finite. When the theorems of Kato, Kolyvagin, and Logachev do not apply,
we do not know even one example of a modular abelian variety Af for which
X(Af ) is provably finite. John Tate once remarked that Conjecture 3.2 (for
arbitrary abelian varieties) relates the value of a function where it is not known
to be defined to the order of a group that is not known to be finite.

The rest of this paper is about how to use Magma to gather computa-
tional evidence for Conjecture 3.2, a task well worth pursuing. Elliptic curves
are naturally surrounded by modular abelian varieties, so we want to under-
stand modular abelian varieties well in order to say something about Conjec-
tures 3.1–3.2 for elliptic curves. Doing explicit computations about these con-
jectures results in stimulating tables of data about modular abelian varieties,
which could never be obtained except by direct computation. Until [2, 15]
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there were very few nontrivial computational examples of Conjecture 3.2 for
abelian varieties in the literature, so it is important to test the conjecture since
we might find a counterexample. Trying to compute information about a con-
jecture stimulates development of algorithms and theorems about that con-
jecture. Finally, our computations may lead to refinements of Conjecture 3.2
in the special case of modular abelian varieties; for example, most objects in
Conjecture 3.2 are modules over the Hecke algebra so there should be more
precise module-theoretic versions of the conjecture.

4 Some Computational Results

In [2] we use Magma to compute some of the arithmetic invariants of the
19608 abelian variety quotients Af of J0(N) with N ≤ 2333. Over half of these
Af have analytic rank 0, and for these we compute a divisor and a multiple
of the order of X(Af ) predicted by Conjecture 3.2. We find that there are
at least 168 abelian varieties Af such that the Birch and Swinnerton-Dyer
Conjecture implies that #X(Af ) is divisible by an odd prime, and we use
Magma to show that for 37 of these the odd part of the conjectural order
of X(Af ) divides #X(Af ) by constructing nontrivial elements of X(Af )
using visibility theory. The challenge remains to show that the remaining 131
abelian varieties Af have odd part of X(Af ) divisible by the odd part of the
conjectural order of X(Af ) (we successfully take up this challenge for one
example of level 551 in Section 11 of the present paper).

In [9, §2 and §7] we investigate Conjecture 3.1–3.2 when Af is a quotient
of J1(p) with p prime. In particular, we compute some of the invariants of
every Af for p ≤ 71.

It was once thought by some mathematicians that Shafarevich-Tate
groups of abelian varieties would have order a perfect square (or at least
twice a perfect square). This is false, as we showed in the paper [36], where we
use Magma to prove that for every odd prime p < 25000 there is an abelian
variety whose Shafarevich-Tate group has order pn2 with n an integer.

Much of the data mentioned above is of interest even if the full Birch
and Swinnerton-Dyer conjecture were known since this data could probably
never be discovered without considerable computation, even assuming the
conjectures were true.

The rest of this paper is about how to use Magma to do computations
with newform quotients Af of J0(N) as in [2]. These computations involve
modular symbols, which underly most algorithms for working with modular
abelian varieties. (I hope to add functionality to a future release of Magma for
computing directly with modular abelian varieties, so that no explicit mention
of modular symbols is required.)

Remark 2. From a computational point of view, it is difficult to give evidence
for Conjecture 3.1 when the dimension is greater than 1 in cases not covered by
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the general theorems of Kato, Kolyvagin, and Logachev. To give new evidence
we would have to consider a modular abelian variety Af with either f a
newform in S2(Γ0(N)) and ords=1L(f, s) > 1, or f a newform in S2(Γ1(N))
but not in S2(Γ0(N)) and ords=1L(f, s) > 0. We would then show that Af (Q)
is infinite, and more precisely that it has the rank predicted by Conjecture 3.1.
In the above 2 cases the only known way to show that Af (Q) is infinite
is to exhibit a point of infinite order in Af (Q), and this seems to require
knowing equations for Af . Also when L(Af , 1) = 0, Conjecture 3.2 involves
a regulator term, which we do not know how to compute without explicitly
finding the points on a model for Af . Thus we will focus on giving evidence
for Conjecture 3.2 in the case when L(f, 1) 6= 0.

5 Modular Symbols

In this section we describe how modular symbols are related to homology
of modular curves, and illustrate how to compute with modular symbols in
Magma. We also discuss computing decomposition of modular symbols spaces
and, for efficiency reasons, computing in the +1 quotient.

Let N be a positive integer. The integral homology H1(X0(N),Z) of the
modular curve X0(N) is a free abelian group of rank equal to the genus of
X0(N). The Hecke algebra T = Z[T1, T2, T3, . . .] acts on a H1(X0(N),Z) as
a ring of homomorphisms and makes H1(X0(N),Z) into a T-module. This
section is concerned with how to compute with this module using Magma.
Section 12 contains a complete log of all Magma computations given below.

Modular symbols provide a finite computable presentation for the homol-
ogy of X0(N) along with the action of the Hecke algebra T on this homology.
The relative rational homology H1(X0(N),Q, cusps) is the rational homology
of X0(N) relative to the cusps; it is the finitely generated free abelian group
of homology equivalence classes of geodesic paths from α to β, where α and
β lie in P1(Q) = Q∪{∞}. A finite presentation for H1(X0(N),Q, cusps) can
be found in [23]. For simplicity, we typically compute H1(X0(N),Q, cusps)
first, then find H1(X0(N),Z) inside H1(X0(N),Q, cusps) if it is needed.
By definition, We now illustrate how Magma can compute a basis for
H1(X0(N),Q, cusps), and, given arbitrary α and β in P1(Q), find an equiva-
lent linear combination of basis elements.

M := ModularSymbols(389) ;
BASIS(M ) ;

The output of BASIS(M ) begins with the symbol {−1/337, 0}. Figure 2 on
page 10 illustrates how the expression {−1/337, 0} represents the relative
rational homology class determined by a geodesic path from −1/337 to 0 in
the upper half plane. The cusps determined by −1/337 and 0 are equivalent
by an element of Γ0(389), so the image of the geodesic path in the 32 holed
torus X0(389)(C) is a closed loop.
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...

PSfrag replacements

0− 1
337

∞

Quotient by Γ0(389)

31 more holes

[0]

[∞]

Fig. 2. The Modular Symbol {−1/337, 0}

The following Magma code illustrates how to find the image in the rel-
ative homology of an arbitrary path between cusps. The extra < and > are
needed because we are considering modular symbols of weight k = 2; in gen-
eral there is a coefficient which is a homogenous polynomial of degree k − 2,
which is the first argument to the coercion. The CUSPS()| part of the expres-
sion is needed so that the sequence is a sequence of cusps (this is not required
if both cusps are rational numbers).

M ! <1, [CUSPS() | −1/337, INFINITY()] > ;

For more about computing with modular symbols, see [11, 12, 23, 37, 35].
Precise relationships between H1(X0(N),Q) and S2(Γ0(N)), along with

some linear algebra, make it possible for us to compute a basis of S2(Γ0(N))
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from knowledge about H1(X0(N),Q) as a T-module. The following code,
which computes a basis for S2(Γ0(389)), computes H1(X0(389),Q) and uses
it to deduce the basis.

S := CUSPFORMS(389) ;
SETPRECISION(S , 40) ;
BASIS(S) ;

The SETPRECISION command sets the output precision for q-expansions. The
computed basis consists of q-expansions with coefficients in Z.

Using NEWFORMDECOMPOSITION, we find the submodules of H1(X0(389),Q)
that correspond to Galois-conjugacy classes of newforms. These in turn cor-
respond to the modular abelian varieties Af attached to newforms. Magma

excels at dense linear algebra over Q and is highly optimized for computing
these decompositions. The following commands compute a decomposition of
the new subspace of H1(X0(389),Q) corresponding to newforms.

M := ModularSymbols(389) ;
N := NEWSUBSPACE(CUSPIDALSUBSPACE(M )) ;
NEWFORMDECOMPOSITION(N ) ;

Since 389 is prime, the NEWSUBSPACE command is not necessary since every-
thing is automatically new (there are no nonzero cusp forms of level 1 and
weight 2). The decomposition consists of five factors of dimensions 2, 4, 6, 12,
and 40; these correspond to newforms defined over fields of degrees 1, 2, 3, 6,
and 20, respectively, which in turn correspond to abelian varieties over Q of
dimensions 1, 2, 3, 6, and 20, respectively.

Remark 3. When information about the powers of 2 appearing in Conjec-
ture 3.2 is not needed, we can instead do all computations in the “+1 quotient”
of the space of modular symbols, which has half the dimension.

M := ModularSymbols(389, 2,+1) ; // the plus one quotient

6 Visibility Theory

Mazur introduced the notion of visibility to unify diverse ideas for constructing
elements of Shafarevich-Tate groups. In this section we define what it means
for an element of the Shafarevich-Tate group to be visible, state a theorem
that allows us to compute pieces of this visible subgroup in some cases, and
illustrate the theorem with a 20 dimensional abelian variety of level 389.

Suppose i : A → J is an injective morphism of abelian varieties over Q.
Then the visible subgroup of X(A) is the kernel of the induced map X(A) →
X(J).

Our interest in visibility in the present paper is that it allows us to obtain
a provable divisor of #X(A), which is useful in giving evidence for Conjec-
ture 3.2. The following theorem is proved in [3, Thm. 3.1] for abelian varieties
over number fields.
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Theorem 6.1 Let A and B be abelian subvarieties of an abelian variety J
over Q such that A(Q)∩B(Q) is finite. (Note that J need not be a Jacobian.)
Let N be an integer divisible by the residue characteristics of primes of bad
reduction for B (so if A and B are modular then N is the level). Suppose p
is an odd prime and that

p - N · #(J/B)(Q)tor · #B(Q)tor ·
∏

p

cA,p · cB,p,

where cA,p = #ΦA,p(Fp) (resp., cB,p) is the Tamagawa number of A (resp.,
B) at p. Suppose furthermore that B(Q)[p] ⊂ A(Q), where both are viewed as
subgroups of J(Q). Then there is a natural map

ϕ : B(Q)/pB(Q) → X(A)[p]

such that
dimFp

ker(ϕ) ≤ dimQ A(Q) ⊗ Q.

In particular, if A has Mordell-Weil rank 0, then ϕ is injective.

Let A be the 20 dimensional quotient of J0(389) attached to a newform
and B the elliptic curve quotient of J0(389). We use Magma to verify the
hypothesis of Theorem 6.1 for J = A∨ + B∨ ⊂ J0(389) with p = 5, and hence
deduce that B(Q)/5B(Q) = (Z/5Z) × (Z/5Z) injects into X(A).

Since A and B are quotients of J0(389), we have N = 389. Next we
construct the corresponding spaces A and B of modular symbols.

M := ModularSymbols(389) ;
N := NEWSUBSPACE(CUSPIDALSUBSPACE(M )) ;
D := SORTDECOMPOSITION(NEWFORMDECOMPOSITION(N )) ;
A := D [5] ; B := D [1] ;

The command INTERSECTIONGROUP computes the group structure of the inter-
section of two abelian subvarieties. In our case these are the abelian varieties
A∨ and B∨, and we find that A∨ ∩ B∨ = (Z/20Z) × (Z/20Z). In particu-
lar, B∨[5] = (Z/5Z) × (Z/5Z) is contained in A∨ as abelian subvarieties of
J0(389).

INTERSECTIONGROUP(A, B) ;

Using the TORSIONBOUND command (see Section 9 below), we obtain a multiple
of the order of the torsion subgroup of B (it is 1) and of J/B (it is 97).

TORSIONBOUND(A, 7) ;
TORSIONBOUND(B , 7) ;

Neither torsion subgroup has order divisible by 5, as required to apply The-
orem 6.1. The reason that TORSIONBOUND(A, 7) is a multiple of the order of
the torsion subgroup of J/B is because TORSIONBOUND is an isogeny invariant
and A is isogenous to J/B. (The kernel of the natural map from A to J/B is
A ∩ B = (Z/20Z) × (Z/20Z), which is finite.)



Studying the Birch and Swinnerton-Dyer Conjecture 13

Finally, we compute the Tamagawa numbers of A and B and obtain 97
and 1, respectively (see Section 8 below).

TAMAGAWANUMBER(A, 389) ;
TAMAGAWANUMBER(B , 389) ;

Putting everything together we see that B(Q)/5B(Q) is a subgroup of X(A).
Finally, using the RANK command on the elliptic curve attached to B, we see
that B(Q)/5B(Q) = (Z/5Z) × (Z/5Z).

E := ELLIPTICCURVE(B) ;
RANK(E ) ;

Thus 25 divides #X(A), which gives evidence for Conjecture 3.2, as we will
see in Section 10.

Frequently not all of X(A) can be constructed using Theorem 6.1
and abelian subvarieties B of J0(N). One obstruction to visibility arises
from a canonical homomorphism from A∨ to A. Jacobians of curves are
canonically isomorphic to their dual abelian variety and the composition
A∨ → J0(389)

∨ ∼= J0(389) → A defines a homomorphism from A∨ to A.
According to [3, §5.3], if p does not divide the kernel of A∨ → A, then no el-
ement of order p in X(A) is visible in J0(N). The command MODULARKERNEL

computes the group structure of the kernel of A∨ → A.

G := MODULARKERNEL(A) ;
FACTORIZATION(#G) ;

We find that the modular kernel has order 22452, so any element of X(A∨)
that is visible in J0(389) has order divisible only by 2 and 5.

7 Computing Special Values of Modular L-function

This section is about computing the quotient L(Af , 1)/ΩAf
. We discuss the

Manin constant and the LRATIO command.
Let A = Af for some newform f and assume that L(A, 1) 6= 0. We can

then rewrite Conjecture 3.2 as follows:

L(A, 1)

ΩA
=

∏
cp · #X(A)

#A(Q)tor · #A∨(Q)tor
.

We do not know an algorithm, in general, to compute L(A, 1)/ΩA. How-
ever, we can compute cA ·L(A, 1)/ΩA, where cA is the Manin constant, which
is defined in [1, §2.2]. We conjecture that cA = 1, and prove in [1, §2.2.2] that
if f is a newform on Γ0(N) then cA is an integer divisible only by primes whose
square divides 4N . Moreover, if N is odd then 2dim A is the largest power of 2
that can divide cA. See also [14] for results when A has dimension 1, and [9,
§6.1.2] for a proof that cA is an integer when Γ0(N) is replaced by Γ1(N).
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The algorithm described in [9, §2.1.3], [2, §4] and [37, §3.10] to compute
cA · L(A, 1)/ΩA is implemented in Magma via the LRATIO command. For
example, if A is as in Section 6, then cA · L(A, 1)/ΩA = 211 · 52/97.

LRATIO(A, 1)

8 Computing Tamagawa Numbers

In this section we discuss computing Tamagawa numbers when p || N and
some bounds when p2 | N . We also discuss issues that arise in going from the
order of the component group to the Tamagawa number when p || N .

Let A = Af be a modular abelian variety attached to a newform
f ∈ S2(Γ0(N)). When p || N , [10, §2.1] contains a computable formula for
#ΦA,p(Fp) and for cp = #ΦA,p(Fp), where the latter formula is in some cases
only valid up to a bounded power of 2. Also [19] is about how to compute
these orders. Note that the Tamagawa number of A at p is the same as the
Tamagawa number of A∨ at p.

When p2 | N the authors do not know an algorithm to compute cp.
However, in this case Lenstra and Oort proved in [21, Cor. 1.15] that

∑

`6=p

(` − 1)ord`(#ΦA,p(Fp)) ≤ 2 dim(Af ),

so if ` | #ΦA,p(Fp) then ` ≤ 2 · dim(Af ) + 1 or ` = p. (Here ord`(x) denotes
the exponent of the largest power of ` that divides x.)

Using [10], when p || N we know how to compute the order of the com-
ponent group over the algebraic closure, but not its structure as a group.
The command COMPONENTGROUPORDER computes the order of ΦA,p(Fp). The
command TAMAGAWANUMBER computes cp = #ΦA,p(Fp) when the subgroup
of elements of ΦA,p(Fp) fixed by the Galois group has order that does not
depend on the underlying group structure. By computing the Atkin-Lehner
involution on modular symbols, we can decide whether the Galois group acts
trivially or by −1 on ΦA,p(Fp) since the Atkin-Lehner involution acts as the
negative of the canonical generator Frobenius of Gal(Fp/Fp). We can thus
compute #ΦA,p(Fp) when the Galois group acts trivially. When the Galois
group acts nontrivially, ΦA,p(Fp) is the 2-torsion subgroup of ΦA,p(Fp), whose
order we know as long as 4 does not divide #ΦA,p(Fp). It is an open problem
to given an algorithm to compute the group structure of ΦA,p(Fp) or the order
of ΦA,p(Fp) in general.

Section 11 contains an example of an abelian variety of dimension 18 in
which the author is only able to find the Tamagawa number up to a controlled
power of 2.
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9 Computing the Torsion Subgroup

In this section we describe how to compute a divisor and multiple of the order
of the torsion subgroup and explain how knowing a divisor of #Af (Q)tor
yields a divisor of #A∨

f (Q)tor.
The papers [2, §3.5–3.6] and [9, §2.1.1] contain discussions of how to

compute a divisor and multiple of the order of the torsion subgroup Af (Q)tor
of Af (Q), and likewise for A∨

f (Q)tor. (The multiple of #A∨
f (Q)tor is the same

as for Af (Q)tor, and the divisor can be computed as described below.) We
compute the multiple by using that Af (Q)tor injects into Af (Fp) for all p
not dividing 2N , and that #Af (Fp) is fairly easy to compute, though we
do not know how to compute the group structure. We compute the lower
bound by considering the subgroup of elements of J0(N)(Q)tor generated by
rational cusps on X0(N) (see [38, §1.3]), and taking its image in Af (Q)tor
or intersecting its image with A∨

f (Q)tor ⊂ J0(N)(Q)tor. Note that there is
no reason for the subgroup generated by rational cusps to equal the rational
subgroup of the group generated by all cusps, and one might want to compute
and work with this possibly larger group instead.

Let A and B be as in Section 6, where we showed that the torsion sub-
group of B is trivial and the order of B(Q) and B∨(Q) divides 97. In Sec-
tion 10, we give an example in which the divisor and multiple of the order of
the torsion subgroup differ by a power of 2.

RATIONALCUSPIDALSUBGROUP(A) ; // subgroup of A(Q)

As mentioned in Section 6, there is a homomorphism A∨ → A of degree
224 · 52, which implies that 97 also divides #A∨

f (Q)tor. Thus #Af (Q)tor =
#A∨

f (Q)tor = 97.

Remark 4. Computation of a nontrivial divisor of #A∨
f (Q)tor directly using

rational cusps is not yet implemented in Magma, though in principle this
should not be difficult to implement.

10 A Divisor and Multiple of the Order of the

Shafarevich-Tate Group

In this section we substitute the values computed above into Conjecture 3.2
to obtain a conjectural divisor and multiple of the order of a Shafarevich-
Tate group. We then remark that the visibility computation of Section 6 gives
evidence for Conjecture 3.2. This example is also discussed in [3, §4.2].

To obtain evidence for Conjecture 3.2, we consider an abelian variety Af

with L(Af , 1) 6= 0 and combine the invariants whose computation is described
above with Conjecture 3.2 to obtain a conjectural divisor and multiple of the
order of X(Af ). We then observe that this divisor and multiple is consistent
with Conjecture 3.2.
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We now combine the computations from the previous sections for the 20
dimensional quotient A of J0(389). Recall that Conjecture 3.2 asserts that

L(A, 1)

ΩA
=

∏
cp · #X(A)

#A(Q)tor · #A∨(Q)tor
.

This equation becomes

2n · 211 · 52

97
=

97 · #X(A)

972

where 0 ≤ n ≤ 20 (using the bound from [1, Thm. 2.7]). Thus the conjecture
asserts that #X(A) = 52 ·211+n, and we have computed a conjectural divisor
52 · 211 and a conjectural multiple 52 · 231 of #X(A). Using visibility theory
from Section 6 we have proved that 52 | #X(A), which provides evidence for
Conjecture 3.2.

11 An Element of the Shafarevich-Tate Group that

Becomes Visible at Higher Level

We finish this paper by considering the 18-dimensional newform quotient A of
J0(551). In this example, the level 551 = 19 ·29 is composite, the Shafarevich-
Tate group is conjecturally nontrivial, and the methods of Section 6 do not
produce nontrivial elements of the Shafarevich-Tate group at level 551.

This example is striking because it is, in some sense, the simplest known
example of “visibility only at a higher level”; more precisely, the methods of
Section 6 do produce a nontrivial element at the rather small level 1102. For
a similar example, see [3, §4.3], where the levels involved are much larger.

We first compute the space of modular symbols corresponding to A:

M := ModularSymbols(551) ;
N := NEWSUBSPACE(CUSPIDALSUBSPACE(M )) ;
D := SORTDECOMPOSITION(NEWFORMDECOMPOSITION(N )) ;
A := D [8] ;

Next we compute a divisor and a multiple of the order of the torsion subgroup
of A(Q) and A∨(Q). Using odd primes p ≤ 7 we obtain the multiple 160, and
using the rational cuspidal subgroup we obtain the divisor 40.

TORSIONBOUND(A, 7) ;
RATIONALCUSPIDALSUBGROUP(A) ;

Since the divisor and multiple are different, we try more finite fields. For
p ≤ 29 the multiple we obtain is still 160; however, for p = 31 the multiple is
80, which is where it appears to stabilize.

TORSIONBOUND(A, 31) ;



Studying the Birch and Swinnerton-Dyer Conjecture 17

We conclude that 40 | #A(Q)tor | 80 and 5 | #A∨(Q)tor | 80. We know that
5 divides #A∨(Q)tor because, as we will see below, there is a homomorphism
A∨ → A of degree not divisible by 5.

Next we compute the modular kernel, which is of order 244 · 134.

FACTORIZATION(#MODULARKERNEL(A)) ;

The only possible elements of X(A) that we can construct using Theorem 6.1
at level 551 are of order 13.

The level 551 is not prime, so computation of the Tamagawa numbers
involves certain relatively slow algorithms (a minute rather than seconds)
that involve arithmetic in quaternion algebras. Also, in this example, we are
unable to determine the exact power of 2 that divides the Tamagawa number
at 19.

TAMAGAWANUMBER(A, 19) ; // takes over a minute; gives an error
TAMAGAWANUMBER(A, 29) ;

We find that c29 = 40. We also deduce that c19 = 2 or 4 by noting that the
component group over F19 has order 22 · 132 by using the command

COMPONENTGROUPORDER(A, 19) ;

and noting that the Galois generator Frobenius acts as −1 because

ATKINLEHNEROPERATOR(A, 19)[1, 1] ;

returns 1. Finally note that the 2 torsion in any group of order 22 · 132 is a
subgroup of order either 2 or 4.

Next we find that L(A, 1)/ΩA = 2n · 22 · 32/5, with 0 ≤ n ≤ 18, using the
command

LRATIO(A, 1)

and the fact that the Manin constant divides 2dim A (see [1, Thm. 2.7]).
Putting these computations together we find that Conjecture 3.2 asserts

that
2n · 22 · 32

5
=

2m · 40 · #X(A)

40 · 2r · 5 · 2s
,

where 0 ≤ n ≤ 18, 1 ≤ m ≤ 2, 0 ≤ r ≤ 1, and 0 ≤ s ≤ 4. Solving for #X(A),
we see that Conjecture 3.2 predicts that

#X(A) = 2t · 32

with 2 ≤ t ≤ 24.
Theorem 6.1 does not construct elements of order 2 (yet), so we do not

consider the factor 2t further. As mentioned above, we cannot construct any
elements of X(A) of order 3 using visibility at level 551. We can, however,
consider the images of A in J0(2 · 551) under various natural maps. These
natural maps are the degeneracy maps δ1 and δ2, which correspond to the
maps f(q) 7→ f(q) and f(q) 7→ f(q2) from S2(Γ0(551)) to S2(Γ0(2 · 551)).
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We next compute the space of modular symbols that corresponds to the
sum C = δ1(A)+δ2(A) of the images of A at level 2·551 by the two degeneracy
maps δ1 and δ2.

M := ModularSymbols(2∗551, 2) ;
N := NEWSUBSPACE(CUSPIDALSUBSPACE(M )) ;
D := SORTDECOMPOSITION(NEWFORMDECOMPOSITION(N )) ;
M551 := ModularSymbols(M , 551) ;
N551 := NEWSUBSPACE(CUSPIDALSUBSPACE(M551)) ;
D551 := SORTDECOMPOSITION(NEWFORMDECOMPOSITION(N551)) ;
A551 := D551[#D551] ;
C := M !! A551 ; // sum of images under degeneracy maps

The sum C contains the 3-torsion of the rank 2 elliptic curve B defined by
y2 + xy = x3 + x2 − 29x + 61, as the following computation shows.

INTERSECTIONGROUP(C , D [1]) ;
B := ELLIPTICCURVE(D [1]) ; B ;

It follows that B[3] is contained in C. The following computation shows that
the Tamagawa numbers of B are 2, 2, and 1 and B(Q) ≡ Z × Z:

TAMAGAWANUMBER(B , 2) ;
TAMAGAWANUMBER(B , 19) ;
TAMAGAWANUMBER(B , 29) ;
MORDELLWEILGROUP(B) ;

Theorem 6.1 implies that B(Q)/3B(Q) = Z/3Z × Z/3Z is a subgroup of
X(C). By [26, §2], there is an isogeny ϕ from A × A to C whose kernel is
isomorphic to the intersection of A with the Shimura subgroup of J0(551). The
Shimura subgroup Σ is a subgroup of J0(N) that, according to [26, Prop. 2],
is annihilated by Tp − (p + 1) for all primes p - 551. Using Magma we find
that 3 - det(T3|A − 4) = 12625812402998886400, so the degree of ϕ is coprime
to 3.

T 3 := HECKEOPERATOR(A, 3) ;
d := DETERMINANT(T 3−4) ;
VALUATION(d , 3) ;

Since 3 | #X(C) it follows that 3 | #X(A). By [2, §5.3] the power of 3
that divides #X(A) is even, so 9 | #X(A), as predicted by the Birch and
Swinnerton-Dyer conjecture.

12 Complete Magma Log

This is a complete log of using MAGMA V2.10-6 to do all of the computations
discussed in this paper. The output has been edited slightly to save space.
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> M := ModularSymbols(389);

> Basis(M);

[

{-1/337, 0},{-1/237, 0},{-1/342, 0},{-1/266, 0},{-1/170, 0},

{-1/272, 0},{-1/333, 0},{-1/355, 0},{-1/270, 0},{-1/301, 0},

{-1/293, 0},{-1/87, 0},{-1/306, 0},{-1/205, 0},{-1/209, 0},

{-1/277, 0},{-1/383, 0},{-1/142, 0},{-1/178, 0},{-1/116, 0},

{-1/61, 0},{-1/127, 0},{-1/235, 0},{-1/240, 0},{-1/93, 0},

{-1/121, 0},{-1/221, 0},{-1/199, 0},{-1/213, 0},{-1/370, 0},

{-1/282, 0},{-1/379, 0},{-1/100, 0},{-1/286, 0},{-1/165, 0},

{-1/158, 0},{-1/376, 0},{-1/228, 0},{-1/125, 0},{-1/72, 0},

{-1/374, 0},{-1/140, 0},{-1/81, 0},{-1/186, 0},{-1/53, 0},

{-1/37, 0},{-1/175, 0},{-1/108, 0},{-1/183, 0},{-1/316, 0},

{-1/363, 0},{-1/250, 0},{-1/359, 0},{-1/162, 0},{-1/106, 0},

{-1/350, 0},{-1/216, 0},{-1/243, 0},{-1/111, 0},{-1/324, 0},

{-1/311, 0},{-1/97, 0},{-1/259, 0},{-1/194, 0},{oo, 0}

]

> M ! <1, [Cusps() | -1/337, Infinity()]>;

{-1/337, 0} + -1*{oo, 0}

> S := CuspForms(389);

> SetPrecision(S,40);

> Basis(S);

[

q + 474049571*q^32 + 480335856*q^33 + 984946270*q^34 +

1338756227*q^35 + 1246938503*q^36 - 29119245*q^37 +

1504020580*q^38 - 2463550751*q^39 + O(q^40),

...

]

> M := ModularSymbols(389);

> N := NewSubspace(CuspidalSubspace(M));

> NewformDecomposition(N);

[

Modular symbols space for Gamma_0(389) of weight 2 and

dimension 2 over Rational Field,

Modular symbols space for Gamma_0(389) of weight 2 and

dimension 4 over Rational Field,

Modular symbols space for Gamma_0(389) of weight 2 and

dimension 6 over Rational Field,

Modular symbols space for Gamma_0(389) of weight 2 and

dimension 12 over Rational Field,

Modular symbols space for Gamma_0(389) of weight 2 and

dimension 40 over Rational Field ]

> M := ModularSymbols(389,2,+1);

> M := ModularSymbols(389);

> N := NewSubspace(CuspidalSubspace(M));

> D := NewformDecomposition(N);
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> A := D[5]; B := D[1];

> IntersectionGroup(A,B);

Abelian Group isomorphic to Z/20 + Z/20

> TorsionBound(A,7);

97

> TorsionBound(B,7);

1

> TamagawaNumber(A,389);

97

> TamagawaNumber(B,389);

1

> E := EllipticCurve(B);

> Rank(E);

2

> G := ModularKernel(A);

Abelian Group isomorphic to Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 +

Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 +

Z/2 + Z/40 + Z/40

> Factorization(#G);

[ <2, 24>, <5, 2> ]

> LRatio(A,1);

51200/97

> RationalCuspidalSubgroup(A);

Abelian Group isomorphic to Z/97

> M := ModularSymbols(551);

> N := NewSubspace(CuspidalSubspace(M));

> D := NewformDecomposition(N);

> A := D[8];

> TorsionBound(A,7);

160

> RationalCuspidalSubgroup(A);

Abelian Group isomorphic to Z/2 + Z/20

> TorsionBound(A,31);

80

> Factorization(#ModularKernel(A));

[ <2, 44>, <13, 4> ]

> TamagawaNumber(A,19);

No algorithm known to compute the Tamagawa number at 2. Use

ComponentGroupOrder instead.

> TamagawaNumber(A,29);

40

> ComponentGroupOrder(A,19);

676

> AtkinLehnerOperator(A,19)[1,1];

1

> LRatio(A,1);

36/5

> M := ModularSymbols(2*551,2);

> N := NewSubspace(CuspidalSubspace(M));
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> D := SortDecomposition(NewformDecomposition(N));

> M551 := ModularSymbols(M,551);

> N551 := NewSubspace(CuspidalSubspace(M551));

> D551 := NewformDecomposition(N551);

> A551 := D551[#D551];

> C := M!!A551;

> IntersectionGroup(C,D[1]);

Abelian Group isomorphic to Z/32 + Z/32

> B := EllipticCurve(D[1]); B;

Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 29*x + 61

> TamagawaNumber(B,2);

2

> TamagawaNumber(B,19);

2

> TamagawaNumber(B,29);

1

> MordellWeilGroup(B);

Abelian Group isomorphic to Z + Z

> MordellWeilGroup(B);

Abelian Group isomorphic to Z + Z

> T3 := HeckeOperator(A,3);

> d := Determinant(T3-4);

> Valuation(d,3);

0
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MODULAR PARAMETRIZATIONS OF NEUMANN–SETZER

ELLIPTIC CURVES

WILLIAM STEIN AND MARK WATKINS

Abstract. Suppose p is a prime of the form u2 + 64 for some integer u, which
we take to be 3 mod 4. Then there are two Neumann–Setzer elliptic curves E0

and E1 of prime conductor p, and both have Mordell–Weil group Z/2Z. There is

a surjective map X0(p)
π−→ E0 that does not factor through any other elliptic curve

(i.e., π is optimal), where X0(p) is the modular curve of level p. Our main result
is that the degree of π is odd if and only if u ≡ 3 (mod 8). We also prove the
prime-conductor case of a conjecture of Glenn Stevens, namely that that if E is
an elliptic curve of prime conductor p then the optimal quotient of X1(p) in the
isogeny class of E is the curve with minimal Faltings height. Finally we discuss
some conjectures and data about modular degrees and orders of Shafarevich–Tate
groups of Neumann–Setzer curves.

1. Introduction

Let p be a prime of the form u2 + 64 for some integer u, which we take to be 3
modulo 4. Neumann and Setzer [Neu71, Set75] considered the following two elliptic
curves of conductor p (note that Setzer chose u ≡ 1 (mod 4) instead):

E0 : y2 + xy = x3 − u + 1

4
x2 + 4x − u,(1.1)

E1 : y2 + xy = x3 − u + 1

4
x2 − x.(1.2)

For E1 we have c4 = p − 16 and c6 = u(p + 8) with ∆ = p = u2 + 64, while for E0 we
have c4 = p − 256 and c6 = u(p + 512) with ∆ = −p2. Thus each Ei is isomorphic to
a curve of the form y2 = x3 − 27c4x − 54c6 for the indicated values of c4 and c6. The
curves E0 and E1 are 2-isogenous and one can show using Lutz-Nagell and descent
via 2-isogeny that

E0(Q) = E1(Q) = Z/2Z.

Moreover, if E is any elliptic curve over Q of prime conductor with a rational point
of order 2 then E is a Neumann–Setzer curve or has conductor 17 (see [Set75]).

Let X0(p) be the modular curve of level p. By [Wil95] there is a surjective map
π : X0(p) → E0, and by [MO89, §5, Lem. 3] we may choose π to be optimal, in the
sense that π does not factor through any other elliptic curve. The modular degree of
E0 is deg(π).

We prove in Section 2 that the modular degree of E0 is odd if and only if u ≡ 3
(mod 8). Our proof relies mostly on results from [Maz77]. In Section 3 we show that
E1 is the curve of minimal Faltings height in the isogeny class {E0, E1} of E1 and prove
that E1 is an optimal quotient of X1(p), which is enough to prove the prime-conductor
case of a conjecture of [Ste89] (this case is not covered by the results of [Vat03]).
Finally, in Section 4 we give evidence for our conjecture that there are infinitely
many elliptic curves with odd modular degree, and give a conjectural refinement of

Date: December 2003.
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Theorem 2.1. We also present some data about p-divisibility of conjectural orders of
Shafarevich–Tate groups of Neumann–Setzer curves.

1.1. Notation. Let p be a prime and n be the numerator of (p − 1)/12.
We use standard notation for modular forms, modular curves, and Hecke alge-

bras, as in [DI95] and [Maz77]. In particular, let X0(p) be the compactified coarse
moduli space of elliptic curves with a cyclic subgroup of order p. Then X0(p) is an
algebraic curve defined over Q. Let J = J0(p) be the Jacobian of X0(p), and let
T = Z[T2, T3, . . .] ⊂ End(J) be the Hecke algebra. Also, let X1(p) be the modular
curve the classifies isomorphism classes of pairs (E, P ), where P ∈ E is a point of
order p.

To each newform f ∈ S2(Γ0(p)), there is an associated abelian subvariety A =
Af ⊂ J0(p). We call the kernel ΨA of the natural map A ↪→ J → A∨ the modular
kernel. For example, when A is an elliptic curve, this map is induced by pullback
followed by push forward on divisors and ΨA is multiplication by deg(X0(p) → A).
The modular degree of A is the square root of the degree of ΨA. This definition makes
sense even when dim(A) > 1, since the degree of a polarization is the square of its
Euler characteristic, hence a perfect square (see [Mum70, §16, pg. 150]). If I ⊂ T is
an ideal, let

A[I] = {x ∈ A(Q) : Ix = 0} and A[I∞] =
⋃

n>0

A[In].

1.2. Acknowledgements. The authors would like to thank the American Institute
of Mathematics for hospitality while they worked on this paper, the National Science
Foundation for financial support, and Matt Baker, Frank Calegari, and Barry Mazur
for helpful conversations.

2. Determination of the Parity of the Modular Degree

Let p, E0, J and n be as in Section 1, and fix notation as in Section 1.1. In this
section we prove the following theorem.

Theorem 2.1. The modular degree of E0 is odd if and only if u ≡ 3 (mod 8).

In order to prove the theorem we deduce seven lemmas using techniques and results
from [Maz77].

Let m be the modular degree of E0, and let

B = ker(J
π−→ E0).

Lemma 2.2. We have m2 = #(B ∩ E0).

Proof. As mentioned in Section 1.1, the composition E0 → J → E0 is multiplication
by the degree of X0(p) → E0, i.e., multiplication by the modular degree of E0. The
lemma follows since multiplication by m on E0 has degree m2. ¤

The Eisenstein ideal I of T is the ideal generated by T` − (` + 1) for ` 6= p and
Tp−1. By hypothesis, there is a Neumann–Setzer curve of conductor p, which implies
that the numerator n of (p − 1)/12 is even (we do the elementary verification that
this numerator is even in the proof of Theorem 2.1 below). As discussed in [Maz77,
Prop. II.9], the 2-Eisenstein prime m = (2) + I of T is a maximal ideal of T, with
T/m ∼= Z/2Z.

Lemma 2.3. We have E0[m] = E0[2].
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Proof. By [Maz77, Prop. II.11.1, Thm. III.1.2], the Eisenstein ideal I annihilates
J(Q)tor, so m annihilates J(Q)tor[2]. Since J(Q)tor is cyclic of order n (by [Maz77,
Thm. III.1.2]), J(Q)tor[2] has order 2, so J(Q)tor[2] = E0(Q)tor[2], hence E0(Q)[m] 6=
0. The Hecke algebra T acts on E0 through End(E0) ∼= Z, so each element of T acts
on E0 as an integer; in particular, the elements of m all act as multiples of 2 (since
E0[m] 6= 0 and 2 ∈ m), so E0[m] = E0[2] since 2 ∈ m. ¤
Lemma 2.4. Suppose A ⊂ J0(p) is a T-stable abelian subvariety and ℘ ⊂ T is a
maximal ideal such that A[℘∞] 6= 0. Then A[℘] 6= 0. Also A[℘∞] is infinite.

Proof. Arguing as in [Maz77, §II.14, pg. 112], we see that for any r, A[℘r]/A[℘r+1]
is isomorphic to a direct sum of copies of A[℘]. If A[℘] = 0, then since A[℘∞] 6= 0,
there must exist an r such that A[℘r]/A[℘r+1] 6= 0. But A[℘r]/A[℘r+1] is contained
in a direct sum of copies of A[℘] = 0, which is a contradiction.

To see that A[℘∞] is infinite, note that if ` is the residue characteristic of ℘ and
Tate`(A) is the Tate module of A at `, then

Tate℘(A) = lim←−
r

A[℘r] = Tate`(A) ⊗T T℘

is infinite. (For more details, see the proof of [RS01, Prop. 3.2].) ¤
The analogues of Lemmas 2.5–2.7 below are true, with the same proofs, for m any

Eisenstein prime. We state and prove them for the 2-Eisenstein prime, since that is
the main case of interest to us. Let J̃ (2) be the 2-Eisenstein quotient of J , where J̃ (2)

is as defined in [Maz77, §II.10]. More precisely, we have the following:

Lemma 2.5. The simple factors of J̃ (2) correspond to the Gal(Q/Q)-conjugacy
classes of newforms f such that Af [m] 6= 0 (or equivalently, A∨

f [m] 6= 0).

Proof. On page 97 of [Maz77] we find that the C-simple factors of J̃ (2) are in bijection
with the irreducible components Spec(If ) of Spec(T) which meet the support of the
ideal m, so the If are the newform ideals contained in m. We have for any If ,

If ⊂ m ⇐⇒ Tm/(If )m 6= 0 ⇐⇒ Tatem(Af ) 6= 0 ⇐⇒ Af [m] 6= 0.

Note that the same argument applies to A∨
f . ¤

Lemma 2.6. Suppose A and B are abelian varieties equipped with an action of the
Hecke ring T and that ϕ : A → B is a T-module isogeny. If ℘ ⊂ T is a maximal
ideal and B[℘] 6= 0, then also A[℘] 6= 0.

Proof. Let ψ : B → A be the isogeny complementary to ϕ, so ψ is the unique isogeny
such that ψ◦ϕ is multiplication by deg(ϕ). Then ψ is also a T-module homomorphism
(one can see this in various ways; one way is to use the rational representation on
homology to view the endomorphisms as matrices acting on lattices, and to note that
if matrices M and N commute, then M−1 and N also commute). By Lemma 2.4,
the union B[℘∞] is infinite, so ψ(B[℘∞]) 6= 0. Since ψ(B[℘∞]) ⊂ A[℘∞], Lemma 2.4
implies that A[℘] 6= 0, as claimed. ¤
Lemma 2.7. Suppose B ⊂ J0(p) is a sum of abelian subvarieties Af attached to
newforms. If B[m] 6= 0, then there is some Af ⊂ B such that Af [m] 6= 0.

Proof. There is something to be proved because if x ∈ B[m] it could be the case that
x = y + z with y ∈ Af and z ∈ Ag, but x 6∈ Ah for any h. Let C = ⊕Af , where the
Af ⊂ J0(p) are simple abelian subvarieties of B corresponding to conjugacy classes
of newforms. Then there is an isogeny ϕ : C → B given by

ϕ(x1, . . . , xn) = x1 + · · · + xn,
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where the sum is in B ⊂ J0(p). By Lemma 2.6, C[m] 6= 0. Since C[m] ∼= ⊕Af [m], it
follows that Af [m] 6= 0 for some Af ⊂ B. ¤

Lemma 2.8. If 4 | n, then dim J̃ (2) > 1.

Proof. This follows from the remark on page 163 of [Maz77]. Since the proof is only
sketched there, we give further details for the convenience of the reader. Because
4 | n, the cuspidal subgroup C, which is generated in J0(p) by (0)− (∞) and is cyclic
of order n, contains an element of order 4. Let C(2) be the 2-primary part of C,

and let D = ker(J0(p) → J̃ (2)). If there is a nonzero element in the kernel of the

homomorphism C(2) → J̃ (2), then D[m] 6= 0, where m is the 2-Eisenstein prime. But
then by Lemma 2.7, there is an Af ⊂ D such that Af [m] 6= 0. By Lemma 2.5, A∨

f is

a quotient of J̃ (2), so Af ⊂ (J̃ (2))∨ so Af cannot be in D. This contradiction shows

that the map C(2) → J̃ (2) is injective, so J̃ (2) contains a rational point of order 4.

However, as mentioned in the introduction, E0(Q) has order 2, so J̃ (2) 6= E0. Thus

J̃ (2) has dimension bigger than 1. ¤

Having established the above lemmas, we are now ready to deduce the theorem.

Proof of Theorem 2.1. It seems more straightforward to prove the equivalent state-
ment that the modular degree is even if and only if u ≡ 7 (mod 8), so we will prove
this instead.

(=⇒) u ≡ 7 (mod 8) implies that the modular degree is even: Writing u = 8k + 7 we
see that p = (8k + 7)2 + 64 ≡ 1 (mod 16), so 16 | (p − 1) hence 4 | n. By Lemma 2.3

and Lemma 2.5, E0 is a factor of J̃ (2). By Lemma 2.8, the dimension of J̃ (2) is bigger
than 1, so by Lemma 2.5 there is an Af distinct from E0 such that Af [m] 6= 0. Since
Af ⊂ B = ker(J0(p) → E0), it follows that B[m] 6= 0. As discussed on page 38 of
[Maz77], J [m] has dimension 2 over F2 so E0[m] = J [m], hence B[m] ⊂ E0[m]. It
follows that 2 | #(B ∩ E0), so E0 has even modular degree.

(⇐=) Modular degree even implies that u ≡ 7 (mod 8): Suppose that the modular
degree m of E0 is even. Letting B = ker(J0(p) → E0), we have

E0 ∩ B ∼= ker(E0 → J0(p) → E0),

so Ψ := E0 ∩ B = E0[m]. Lemma 2.3 and our assumption that m is even imply that

E0[m] = E0[2] ⊂ E0[m] = Ψ,

so Ψ[m] 6= 0. Since Ψ[m] 6= 0, and Ψ ⊂ B, we have B[m] 6= 0. By Lemma 2.7, there
is some Af ⊂ B such that Af [m] 6= 0. Then by Lemma 2.5 we see that Af is an

isogeny factor of J̃ (2). Thus J̃ (2) has dimension bigger than 1. If u = 8k + 3, then
p = (8k + 3)2 + 64 ≡ 9 (mod 16), so that 2 || n. However, when 2 || n, [Maz77,

Prop. III.7.5] implies that J̃ (2) = E0, which is false, so u ≡ 7 (mod 8). ¤

Remark 2.9. Frank Calegari observed that Lemma 2.8 and its converse also follow
from conditions (i) and (v) of Théorème 3 of [Mer96].

3. The Stevens Conjecture for Neumann–Setzer Curves is True

Let E be an arbitrary elliptic curve over Q of conductor N . Stevens conjectured
in [Ste89] that the optimal quotient of X1(N) in the isogeny class of E is the curve in
the isogeny class of E with minimal Faltings height. In this section we explain why
this conjecture is true when N is prime.
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Let p = u2+64 be prime and E1 and E0 be as in Section 1. In this section we verify
that the curve E1 has smaller Faltings height than E0, then show that E1 is X1(p)-
optimal. The Stevens conjecture asserts that the X1(p)-optimal curve is the curve
of minimal Faltings height in an isogeny class, so our results verify the conjecture
for Neumann–Setzer curves. In fact, the Stevens conjecture is true for all isogeny
classes of elliptic curves of prime conductor. For if E is an elliptic curve of prime
conductor, then by [Set75] there is only one curve in the isogeny class of E, unless E
is a Neumann–Setzer curve or the conductor of E is 11, 17, 19, or 37. When the
isogeny class of E contains only one curve, that curve is obviously both X1-optimal
and of minimal Faltings height. The conjecture is also well-known to be true for
curves of conductor 11, 17, 19, or 37 (see [Ste89]). We note that Vatsal [Vat03] has
recently extended results of Tang [Tan97] that make considerable progress toward the
Stevens conjecture, but his work is not applicable to Neumann–Setzer curves.

Lemma 3.1. The curve E1 has smaller Faltings height than E0.

Proof. By [Ste89, Thm. 2.3, pg. 84] it is enough to exhibit an isogeny from E1 to
E0 whose extension to Néron models is étale. Let ϕ be the isogeny E0 → E1 of
degree 2 whose kernel is the subgroup generated by the point whose coordinates
are (u/4, −u/8) in terms of the Weierstrass equation (1.1) for E0, which is a global
minimal model for E0. The kernel of ϕ does not extend to an étale group scheme
over Z, since its special fiber at 2 is not étale (it has only one F2-point), so the
morphism on Néron models induced by E0 → E1 cannot be étale, since kernels of
étale morphisms are étale. By [Ste89, Lemma 2.5] the dual isogeny E1 → E0 extends
to an étale morphism of Néron models. ¤

Proposition 3.2. The curve E1 is X1(p)-optimal.

Proof. By [MO89, §5, Lem. 3], E0 is an optimal quotient of X0(p), so we have an
injection E0 ↪→ J0(p). As in [Maz77, pg. 100], let Σ be the kernel of the functorial
map J0(p) → J1(p) induced by the cover X1(p) → X0(p). By [Maz77, Prop. II.11.6],
Σ is the Cartier dual of the constant subgroup scheme U , which turns out to equal
J0(p)(Q)tor. Because #(E0 ∩ U) = 2 and E0[2] is self dual, we have #(E0 ∩ Σ) = 2.
Thus the image of E0 in J1(p) is the quotient of E0 by the subgroup generated by the
rational point of order 2 (note that the Cartier dual of Z/2Z is µ2 = Z/2Z). This
quotient is E1, so E1 ⊂ J1(p), which implies that E1 is an optimal quotient of X1(p),
as claimed. ¤

Remark 3.3. The above proposition could also be proved in a slightly different man-
ner. The Faltings height of an elliptic curve is

√
2π/Ω where Ω is the volume of the

fundamental parallelogram associated to the curve. When the conductor is prime,
we have by [AL96] that the Manin constants for X0(p) and X1(p) are 1; this says
that for a G-optimal curve E, the period lattice generated by G has covolume equal
to ΩE . Since the lattice generated by Γ1(p) is contained in the lattice generated by
Γ0(p) (and thus has larger covolume), the Faltings height of the X1(p)-optimal curve
must be less than or equal to that of the X0(p)-optimal curve. So if these two curves
differ, the X1(p)-optimal curve must have smaller Faltings height.

Remark 3.4. On page 12 of [Maz98], there is a “To be removed from the final draft”
comment that asks (in our notation) whether E0 is X0(p)-optimal when p ≡ 1
(mod 16). This is already answered by [MO89], whereas here we go further and
show additionally that E1 is X1(p)-optimal.
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4. Conjectures

4.1. Refinement of Theorem 2.1. The following conjectural refinement of Theo-
rem 2.1 is supported by the experimental data of [Wat02]. It is unclear whether the
method of proof of Theorem 2.1 can be extended to prove this conjecture.

Conjecture 4.1. If u ≡ 7 (mod 8), then 2 exactly divides the modular degree of E0

if and only if u ≡ 7 (mod 16).

We can note that the pattern seems to end here; for curves with u ≡ 15 (mod 16)
the data give no further information about the 2-valuation of the modular degree.
For instance, with u = −17 we have that [1, 1, 1, −2, 16] has modular degree 23 · 3,
while with u = 175 the curve [1, 1, 1, −634, −6484] has modular degree 22 · 33 · 5 · 23.
Similarly, we have that u = −33 gives the curve [1, −1, 1, −19, 68] with modular
degree 25 · 3, while u = 127 gives the curve [1, 1, 1, −332, −2594] of modular degree
22 · 32 · 5 · 43.
4.2. The Parity of the Modular Degree. According to Cremona’s tables [Cre],
of the 29755 new optimal elliptic curve quotients of J0(N) with N < 8000, a mere 89
have odd modular degree, which is less than 0.3%. There are 52878 non Neumann–
Setzer curves in the database of [BM90] with prime conductor N ≤ 107; of these
curves 4592, or 8%, have odd modular degree (see [Wat02]). One reason that curves
tend to have even modular degree is that for many curves the modular parametriza-
tion factors through an Atkin-Lehner quotient. Note that the method of [Wat02]
used to compute the modular degree is rigourous when the level is prime because by
[AL96] the Manin constant is 1 when the level is odd and square-free.

If f(x) = (8x + 3)2 + 64, then it is a well-known conjecture (see [HL22] and
e.g., [Guy94, §A1]) that there are infinitely many primes of the form f(n) for some
integer n, thus we make the following conjecture.

Conjecture 4.2. There are infinitely many elliptic curves over Q with odd modular
degree.

Our data suggest the following conjecture:

Conjecture 4.3. If E is an optimal elliptic curve quotient of J0(p) with p 6≡ 3
(mod 8) and E is not a Neumann–Setzer curve then the modular degree of E is even
or p = 17.

There are 23442 Brumer-McGuinness (see [BM90]) curves of conductor 37 ≤ p ≤
107 with p ≡ 3 (mod 8), of which 11815 have even functional equation, of which
7322 have rank 0, and 4589 have odd modular degree. The significance of the data
concerning the rank is that the second author has conjectured that 2r divides the
modular degree, where r is the rank.

Remark 4.4. Instead of asking about divisibility by 2, one could ask about divisibility
by p. The first author and Frank Calegari make a conjecture about discriminants of
Hecke algebras in [CS03] that implies that the modular degree of an elliptic curve of
prime conductor p is not divisible by p. This conjecture agrees with our data.

4.3. Shafarevich–Tate Groups of Neumann–Setzer Curves. We consider the
distribution of X in the Neumann–Setzer family (and note that similar phenomena
occur in the related families listed in [SW02]). We look at u with u2 + 64 prime and
less than 2 · 1012. We now take u to be positive, which thus replaces the restriction
that u be 3 mod 4. The heuristics of [Del01] would seem to give us an idea of how
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Table 1. Frequency of a prime dividing X

restriction number p = 3 p = 5 p = 7 p = 11
u ≡ 1 (mod 8) 25559 33.2% 16.9% 9.2% 3.0%
u ≡ 3 (mod 8) 25557 39.7% 20.3% 14.3% 8.4%
u ≡ 5 (mod 8) 25584 36.2% 18.5% 11.5% 5.0%
u ≡ 7 (mod 8) 25612 34.3% 20.3% 14.3% 8.2%
u ≡ 0 (mod 3) 34009 36.0% 18.7% 12.1% 6.0%
u ≡ 1 (mod 3) 34032 35.2% 18.6% 11.5% 5.6%
u ≡ 2 (mod 3) 34271 36.3% 19.7% 13.3% 6.9%
u ≡ 0 (mod 5) 34208 33.1% 18.0% 11.4% 5.4%
u ≡ 2 (mod 5) 33879 37.1% 19.5% 12.8% 6.5%
u ≡ 3 (mod 5) 34225 37.3% 19.5% 12.7% 6.5%

total 102312 35.8% 19.0% 12.3% 6.2%
Delaunay 36.1% 20.7% 14.5% 9.2%

often we expect a given prime to divide X. For instance, since Neumann–Setzer
curves have rank 0, the prime 3 should divide X about 36.1% of the time. However,
Table 1 gives a slightly different story with effects seen that depend on the various
congruential properties of u.
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Abstract. In this paper, we study p-divisibility of discriminants of Hecke
algebras associated to spaces of cusp forms of prime level. By consider-
ing cusp forms of weight bigger than 2, we are are led to make a precise
conjecture about indexes of Hecke algebras in their normalisation which
implies (if true) the surprising conjecture that there are no mod p con-
gruences between non-conjugate newforms in S2(Γ0(p)), but there are
almost always many such congruences when the weight is bigger than 2.

1 Basic Definitions

We first recall some commutative algebra related to discriminants, then
introduce Hecke algebras of spaces of cusp forms.

1.1 Commutative Algebra

In this section we recall the definition of discriminant of a finite algebra
and note that the discriminant is nonzero if and only if no base extension
of the algebra contains nilpotents.

Let R be a ring and let A be an R-algebra that is free of finite rank
as an R-module. The trace of x ∈ A is the trace, in the sense of linear
algebra, of left multiplication by x.

Definition 1 (Discriminant). Let ω1, . . . , ωn be an R-basis for A. Then
the discriminant disc(A) of A is the determinant of the n × n matrix
(tr(ωiωj)).

? ? ? Supported in part by the American Institute of Mathematics
† Supported in part by a National Science Foundation Postdoctoral Fellowship



The discriminant is only well-defined modulo squares of units in R. When
R = Z the discriminant is well defined, since the only units are ±1.

We say that A is separable over R if for every extension R′ of R, the
ring A ⊗ R′ contains no nilpotents.

Proposition 1. Suppose R is a field. Then A has nonzero discriminant
if and only if A is separable over R.

Proof. For the convenience of the reader, we summarize the proof in
[Mat86, §26]. If A contains a nilpotent then that nilpotent is in the kernel
of the trace pairing, so the discriminant is 0. Conversely, if A is sepa-
rable then we may assume that R is algebraically closed. Then A is an
Artinian reduced ring, hence isomorphic as a ring to a finite product of
copies of R, since R is algebraically closed. Thus the trace form on A is
nondegenerate.

1.2 The Discriminant Valuation

We next introduce Hecke algebras attached to certain spaces of cusp forms
of prime level p, define the discriminant valuation as the exponent of the
largest power of p that divides the discriminant, and observe that there are
eigenform congruences modulo p exactly when the discriminant valuation
is positive. We then present an example to illustrate the definitions.

Let Γ be a congruence subgroup of SL2(Z). In this paper, we will
only consider Γ = Γ0(p) for p prime. For any positive integer k, let Sk(Γ )
denote the space of holomorphic weight k cusp forms for Γ . Let

T = Z[. . . , Tn, . . .] ⊂ End(Sk(Γ ))

be the associated Hecke algebra, which is generated by Hecke operators
Tn for all integers n, including n = p (we will sometimes write Up for Tp).
Then T is a commutative ring that is free as a module over Z of rank
equal to dim Sk(Γ ). We will also sometimes consider the image Tnew of T
in End(Sk(Γ )new).

Definition 2 (Discriminant Valuation). Let p be a prime, k a positive
integer, and suppose that Γ = Γ0(p). Let T be the corresponding Hecke
algebra. Then the discriminant valuation of Γ in weight k is

dk(Γ ) = ordp(disc(T)).



We expect that dk(Γ ) is finite for the following reason. The Hecke
operators Tn, with n not divisible by p, are diagonalizable since they are
self adjoint with respect to the Petersson inner product. When k = 2
one knows that Up is diagonalizable since the level is square free, and
when k > 2 one expects this (see [CE98]). If T contains no nilpotents,
Proposition 1 implies that the discriminant of T is nonzero. Thus dk(Γ )
is finite when k = 2 and conjectured to be finite when k > 2.

Let p be a prime and suppose that Γ = Γ0(p). A normalised eigenform
is an element f =

∑
anqn ∈ Sk(Γ ) that is an eigenvector for all Hecke

operators T`, including those that divide p, normalised so that a1 = 1.
The quantity dk(Γ ) is of interest because it measures mod p congruences
between normalised eigenforms in Sk(Γ ).

Proposition 2. Assume that dk(Γ ) is finite. The discriminant valuation
dk(Γ ) is positive (i.e., the discriminant is divisible by p) if and only if
there is a congruence in characteristic p between two normalized eigen-
forms in Sk(Γ ). (The two congruent eigenforms might be Galois conju-
gate.)

Proof. It follows from Proposition 1 that dk(Γ ) > 0 if and only if T⊗Fp

is not separable. The Artinian ring T ⊗ Fp is not separable if and only if
the number of ring homomorphisms T ⊗ Fp → Fp is less than

dimFp
T ⊗ Fp = dimC Sk(Γ ).

Since dk(Γ ) is finite, the number of ring homomorphisms T ⊗ Qp → Qp

equals dimC Sk(Γ ). The proposition follows from the fact that for any
ring R, there is a bijection between ring homomorphisms T → R and
normalised eigenforms with q-expansion in R.

The same proof also shows that a prime ` divides the discriminant of
T if and only if there is a congruence mod ` between two normalized
eigenforms in Sk(Γ )

Example 1. If Γ = Γ0(389) and k = 2, then dimC S2(Γ ) = 32. Let f be
the characteristic polynomial of T2. One can check that f is square free
and 389 exactly divides the discriminant of f . This implies that d2(Γ ) = 1
and that T2 generates T ⊗ Z389 as an algebra over Z389. (If T2 only
generated a subring of T⊗Z389 of finite index > 1, then the discriminant
of f would be divisible by 3892.)



Modulo 389 the characteristic polynomial f is congruent to

(x + 2)(x + 56)(x + 135)(x + 158)(x + 175)2(x + 315)(x + 342)(x2 + 387)
(x2 + 97x + 164)(x2 + 231x + 64)(x2 + 286x + 63)(x5 + 88x4 + 196x3+
113x2 + 168x + 349)(x11 + 276x10 + 182x9 + 13x8 + 298x7 + 316x6+
213x5 + 248x4 + 108x3 + 283x2 + x + 101)

The factor (x + 175)2 indicates that T ⊗ F389 is not separable over F389

since the image of (f/(x+175))(T2) in T⊗F389 is nilpotent (it is nonzero
but its square is 0). There are 32 eigenforms over Q2 but only 31 mod 389
eigenforms, so there must be a congruence. There is a newform F in
S2(Γ0(389),Z389) whose a2 term is a root of

x2 +(−39+190 ·389+96 ·3892 + · · · )x+(−106+43 ·389+19 ·3892 + · · · ).

There is a congruence between F and its Gal(Q389/Q389)-conjugate.

2 Computing Discriminants

In this section we sketch the algorithm that we use for computing the
discriminants mentioned in this paper.

This algorithm was inspired by a discussion of the second author with
Hendrik Lenstra. We leave the details of converting the description below
into standard matrix operations to the reader. Also, the modular symbols
algorithms needed to compute Hecke operators are quite involved.

Let Γ = Γ0(p), and let k ≥ 2 be an integer. The following sketches an
algorithm for computing the discriminant of the Hecke algebra T acting
on Sk(Γ ).

1. For any given n, we can explicitly compute a matrix that represents
the action of Hecke operators Tn on Sk(Γ ) using modular symbols.
We use the second author’s MAGMA [BCP97] packages for comput-
ing with modular symbols, which builds on work of many people (in-
cluding [Cre97] and [Mer94]).

2. Using the Sturm bound, as described in the appendix to [LS02], find
an integer b such that T1, . . . , Tb generate T as a Z-module. (The
integer b is d(k/12) · [SL2(Z) : Γ ]e.)

3. Find a subset B of the Ti that form a Q-basis for T⊗Z Q. (This uses
Gauss elimination.)

4. View T as a ring of matrices acting on Qd, where d = dim(Sk(Γ ))
and try random sparse vectors v ∈ Qd until we find one such that the
set of vectors C = {T (v) : T ∈ B} are linearly independent.



5. Write each of T1(v), . . . , Tb(v) as Q-linear combinations of the ele-
ments of C.

6. Find a Z-basis D for the Z-span of these Q-linear combinations of
elements of C. (This basis D corresponds to a Z-basis for T, but is
much easier to find that directly looking for a Z-basis in the space of
d × d matrices that T is naturally computed in.)

7. Unwinding what we have done in the previous steps, find the trace
pairing on the elements of D, and deduce the discriminant of T by
computing the determinant of the trace pairing matrix.

A very time-consuming step, at least in our implementation, is com-
puting D from T1(v), . . . , Tb(v) expressed in terms of C, and this explains
why we embed T in Qd instead of viewing the elements of T as vectors
in Qd×d.

An implementation by the second author of the above algorithm is
included with the MAGMA computer algebra system. The relevant source
code is in the file Geometry/ModSym/linalg.m in the package directory
(or ask the second author of the apper to send you a copy linalg.m). We
illustrate the use of MAGMA to compute discriminants below, which were
run under MAGMA V2.10-21 for Linux on a computer with an Athlon
2800MP processor (2.1Ghz).

> M := ModularSymbols(389,2, +1);

> S := CuspidalSubspace(M);

> time D := DiscriminantOfHeckeAlgebra(S);

Time: 0.750

> D;

629670054720061882880174736321392595498204931550235108311\

04000000

> Factorisation(D);

[ <2, 53>, <3, 4>, <5, 6>, <31, 2>, <37, 1>, <389, 1>, ...]

> M := ModularSymbols(997,2, +1); S := CuspidalSubspace(M);

> time D := DiscriminantOfHeckeAlgebra(S);

Time: 55.600

The reason for the +1 in the construction of modular symbols is so that
we compute on a space that is isomorphic as a T-module to one copy of
S2(Γ0(p)), instead of two copies.

3 Data About Discriminant Valuations

In this section we report on our extensive computations of dk(Γ0(p)).
We first note that there is only one p < 50000 such that d2(Γ0(p)) > 0.



Next we give a table of values of d4(Γ0(p)), which seems to exhibit a nice
pattern.

3.1 Weight Two

Theorem 1. The only prime p < 60000 such that d2(Γ0(p)) > 0 is p =
389, with the possible exception of 50923 and 51437.

Computations in this direction by the second author have been cited in
[Rib99], [MS01], [OW02], and [MO02]. For example, Theorem 1 is used
for p < 1000 in [MS01] as a crucial step in proving that if E is an elliptic
curve over Q(µp), with 17 ≤ p < 1000, then not all elements of E(Q)[p]
are rational over Q(µp).

Proof. This is the result of a large computer computation. The rest of
this proof describes how we did the computation, so the reader has some
idea how to replicate or extend the computation. The computation de-
scribed below took about one week using a cluster equipped with 10
Athlon 2000MP processors. The computations are nontrivial; we compute
spaces of modular symbols, supersingular points, and Hecke operators on
spaces of dimensions up to 5000.

The aim is to determine whether or not p divides the discriminant of
the Hecke algebra of level p for each p < 60000. If T is an operator with
integral characteristic polynomial, we write disc(T ) for disc(charpoly(T )),
which also equals disc(Z[T ]). We will often use that

disc(T ) mod p = disc(charpoly(T ) mod p).

We ruled out the possibility that dk(Γ0(p)) > 0 for most levels p <
60000 by computing characteristic polynomials of Hecke operators us-
ing an algorithm that the second author and D. Kohel implemented in
MAGMA ([BCP97]), which is based on the Mestre-Oesterle method of
graphs [Mes86] (or contact the second author for an English translation).
Our implementation is available as the “Module of Supersingular Points”
package that comes with MAGMA. We computed disc(Tq) modulo p for
several small primes q, and in most cases found a prime q such that this
discriminant is nonzero. The following table summarises how often we
used each prime q (note that there are 6057 primes up to 60000):



q number of p < 60000 where q smallest s.t. disc(Tq) 6= 0 mod p

2 5809 times
3 161 (largest: 59471)
5 43 (largest: 57793)
7 15 (largest: 58699)
11 15 (the smallest is 307; the largest 50971)
13 2 (they are 577 and 5417)
17 3 (they are 17209, 24533, and 47387)
19 1 (it is 15661 )

The numbers in the right column sum to 6049, so 8 levels are missing.
These are

389, 487, 2341, 7057, 15641, 28279, 50923, and 51437.

(The last two are still being processed. 51437 has the property that
disc(Tq) = 0 for q = 2, 3, . . . , 17.) We determined the situation with the
remaining 6 levels using Hecke operators Tn with n composite.

p How we rule level p out, if possible

389 p does divide discriminant
487 using charpoly(T12)
2341 using charpoly(T6)
7057 using charpoly(T18)
15641 using charpoly(T6)
28279 using charpoly(T34)

Computing Tn with n composite is very time consuming when p is
large, so it is important to choose the right Tn quickly. For p = 28279,
here is a trick we used to quickly find an n such that disc(Tn) is not
divisible by p. This trick might be used to speed up the computation
for some other levels. The key idea is to efficiently discover which Tn to
compute. Computing Tn on the full space of modular symbols is diffi-
cult, but using projections we can compute Tn on subspaces of modular
symbols with small dimension more quickly (see, e.g., [Ste00, §3.5.2]).
Let M be the space of mod p modular symbols of level p = 28279, and let
f = gcd(charpoly(T2), deriv(charpoly(T2))). Let V be the kernel of f(T2)
(this takes 7 minutes to compute). If V = 0, we would be done, since
then disc(T2) 6= 0 ∈ Fp. In fact, V has dimension 7. We find the first few
integers n so that the charpoly of Tn on V has distinct roots, and they
are n = 34, 47, 53, and 89. We then computed charpoly(T34) directly on
the whole space and found that it has distinct roots modulo p.



3.2 Some Data About Weight 4

The following are the valuations d = d4(Γ0(p)) at p of the discriminant of
the Hecke algebras associated to S4(Γ0(p)) for p < 500. This data suggests
a pattern, which motivates Conjecture 1 below.

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
d 0 0 0 0 0 2 2 2 2 4 4 6 6 6 6 8 8

p 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139
d 10 10 10 12 12 12 14 16 16 16 16 18 18 20 20 22 24

p 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233
d 24 24 26 26 26 28 28 30 30 32 32 32 34 36 36 38 38

p 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337
d 38 40 40 42 42 44 44 46 46 46 48 50 50 52 52 54 56

p 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439
d 56 58 58 58 60 62 62 62 65 66 66 68 68 70 70 72 72

p 443 449 457 461 463 467 479 487 491 499
d 72 74 76 76 76 76 78 80 80 82

4 Speculations

Motivated by the promise of a pattern suggested by the table in Sec-
tion 3.2, we computed dk(Γ0(p)) for many values of k and p. Our obser-
vations led us to the following results and conjectures.

Theorem 2. Suppose p is a prime and k ≥ 4 is an even integer. Then
dk(Γ0(p)) > 0 unless

(p, k) ∈ {(2, 4), (2, 6), (2, 8), (2, 10),
(3, 4), (3, 6), (3, 8),

(5, 4), (5, 6), (7, 4), (11, 4)},
in which case dk(Γ0(p)) = 0.

Proof. From [Rib91], mod p eigenforms on Γ0(p) of weight k arise exactly
from mod p eigenforms on Γ0(1) of weight (k/2)(p + 1). Moreover, there
is an equality of dimensions of vector spaces:

dim S(k/2)(p+1)(Γ0(1)) + dim S(k/2)(p+1)−(p−1)(Γ0(1)) = dim Sk(Γ0(p)).

Thus the dimension of Sk(Γ0(p)) is bigger than the number of mod p
eigenforms whenever dim S(k/2)(p+1)−(p−1)(Γ0(1)) is non-zero. The cases
of dimension zero correspond exactly to the finite list of exceptions above,
for which one can explicitly calculate that dk(Γ0(p)) = 0.



Note that for k = 2, however, there is a canonical identification of
spaces

S(p+1)(Γ0(1),Fp) ' S2(Γ0(p),Fp),

described geometrically in [Gro90]. For k = 4, the data suggests that the
discriminants d4(Γ0(p)) are significantly larger than zero for large p, and
the table above suggests a formula of the form 2 · bp/12c (Not entirely co-
incidentally, this is the difference in dimension of the spaces S4(Γ0(p)) and
S2(p+1)(Γ0(1))). This exact formula is not correct, however, as evidenced
by the case when p = 139. If we consider the Hecke algebra T4 for p = 139
in more detail, however, we observe that T4⊗Q139 is ramified at 139, and
in particular contains two copies of the field Q139(

√
139). Just as in the

case when k = 2 and p = 389, there is a “self congruence” between the
associated ramified eigenforms and their Galois conjugates. For all other p
in the range of the table, there is no ramification, and all congruences
take place between distinct eigenforms. Such congruences are measured
by the index of the Hecke algebra, which is defined to be the index of
T in its normalisation T̃. If we are only interested in mod p congruences
(rather than mod ` congruences for ` 6= p), one can restrict to the index
of T ⊗ Zp inside its normalisation. There is a direct relation between the
discriminant and the index. Suppose that T⊗Qp =

∏
Ki for certain fields

Ki/Qp (We may assume here that T is not nilpotent, for otherwise both

the discriminant and index are infinite). Then if ip(Γ ) = ordp([T, T̃]),
then

dp(Γ ) = 2ip(Γ ) +
∑

ordp(∆(Ki/Qp)).

If we now return to the example k = 4 and p = 139, we see that the
discrepancy from the discriminant dp(Γ0(139)) = 24 to the estimate
2b139/12c = 22 is exactly accounted for by the two eigenforms with coeffi-
cients in Q139(

√
139), which contribute 2 to the above formula. This leads

us to predict that the index is exactly given by the formula bp/12c. Note
that for primes p this is exactly the dimension of Sp+3(Γ0(1)). Similar
computations lead to the following more general conjecture.

Let k = 2m be an even integer and p a prime. Let T be the Hecke
algebra associated to Sk(Γ0(p)) and let T̃ be the integral closure of T in
T ⊗ Q (which is a product of number fields).

Conjecture 1. Suppose p ≥ k − 1. Then

ordp([T̃ : T]) =

⌊
p

12

⌋
·
(

m

2

)
+ a(p, m),



where

a(p, m) =





0 if p ≡ 1 (mod 12),

3 ·
(

dm
3 e
2

)
if p ≡ 5 (mod 12),

2 ·
(

dm
2 e
2

)
if p ≡ 7 (mod 12),

a(5, m) + a(7, m) if p ≡ 11 (mod 12).

Here
(x
y

)
is the binomial coefficient “x choose y”, and floor and ceiling are

as usual. The conjecture is very false if k À p.

When k = 2, the conjecture specializes to the assertion that [T̃ :
T] is not divisible by p. A possibly more familiar concrete consequence
of the conjecture is the following conjecture about elliptic curves. The
modular degree of an elliptic curve E is the smallest degree of a surjective
morphism X0(N) → E, where N is the conductor of E.

Conjecture 2. Suppose E is an elliptic curve of prime conductor p. Then p
does not divide the modular degree mE of E.

Using the algorithm in [Wat02], M. Watkins has computed modular de-
grees of a huge number of elliptic curves of prime conductor p < 107,
and not found a counterexample. Looking at smaller data, there is only
one elliptic curve E of prime conductor p < 20000 such that the modular
degree of E is even as big as the conductor of E, and that is a curve of
conductor 13723. This curve has equation [1, 1, 1, −10481, 408636], modu-
lar degree mE = 16176 = 24 · 3 · 337. The modular degree can be divisible
by large primes. For example, there is a Neumann-Setzer elliptic curve of
prime conductor 90687593 whose modular degree is 1280092043, which
is over 14 times as big as 90687593. In general, for an elliptic curve of
conductor N , one has the estimate mE À N7/6−ε (see [Wat04]).

5 Conjectures Inspired by Conjecture 1

First, some notation. Let p be an odd prime. Let Γ = Γ0(p), and let

Sk(R) := Sk(Γ )new ⊗ R.

The spaces Sk carry an action of the Hecke algebra Tnew
k , and a Fricke

involution wp. If 1
2 ∈ R, the space Sk can be decomposed into + and −

eigenspaces for wp. We call the resulting spaces S+
k and S−

k respectively.



Similarly, let M+
k and M−

k be the +1 and −1 eigenspaces for wp on the
full spaces of new modular forms of weight k for Γ0(p).

It follows from [AL70, Lem. 7] (which is an explicit formula for the
trace to lower level) and the fact that Up and wp both preserve the new
subspace, that the action of the Hecke operator Up on Sk is given by the
formula

Up = −p(k−2)/2wp.

This gives rise to two quotients of the Hecke algebra:

T+ = Tnew/(Up + p(k−2)/2) and T− = Tnew/(Up − p(k−2)/2).

where T+ and T− act on S+ and S−, respectively. Recall that T̃ is the
normalization (integral closure) of T in T ⊗ Q. Let T̃new denote the
integral closure of Tnew in Tnew ⊗ Q.

Lemma 1. There are injections

Tnew ↪→ T+ ⊕ T− ↪→ T̃new.

We now begin stating some conjectures regarding the rings T±.

Conjecture 3. Let k < p − 1. Then T+ and T− are integrally closed.
Equivalently, all congruences between distinct eigenforms in Sk(Zp) take
place between + and − eigenforms.

Note that for k = 2, there cannot be any congruences between + and
− forms because this would force 1 ≡ −1 mod p, which is false, because p
is odd. Thus we recover the conjecture that p - [T̃ : T] when k = 2. Our
further conjectures go on to describe explicitly the congruences between
forms in S+

k and S−
k .

Let E2 be the non-holomorphic Eisenstein series of weight 2. The
q-expansion of E2 is given explicitly by

E2 = 1 − 24
∞∑

n=1

qn


∑

d|n
d


 .

Moreover, the function E∗
2 = E2(τ) − pE2(pτ) is holomorphic of weight 2

and level Γ0(p), and moreover on q-expansions, E∗
2 ≡ E2 mod p.

Lemma 2. Let p > 3. Let f ∈ Mk(Γ0(p),Fp) be a Hecke eigenform.
Then θf is an eigenform inside Sk+2(Γ0(p),Fp).



Proof. One knows that ∂f = θf − kE2f/12 is of weight k + 2. On q-
expansions, E2 ≡ E∗

2 mod p, and thus for p > 3,

θf ≡ ∂f + kE∗
2f/12 (mod p)

is the reduction of a weight k + 2 form of level p. It is easy to see that θf
is a cuspidal Hecke eigenform.

Let us now assume Conjecture 3 and consider the implications for
k = 4 in more detail. The space of modular forms M2(Γ0(p),Fp) consists
precisely of S2 and the Eisenstein series E∗

2 . The map θ defined above
induces maps:

θ : S+
2 (Fp) → S4(Fp), θ : M−

2 (Fp) → S4(Fp).

The images are distinct, since θf = θg implies (with some care about ap)
that f = g.

Conjecture 4. Let f ∈ S2(Zp) and g ∈ S4(Zp) be two eigenforms such
that θf ≡ g mod p. Then the eigenvalue of wp on f and g have opposite
signs.

Assuming this, we get inclusions:

θS+
2 (Fp) ↪→ S−

4 (Fp), θM−
2 (Fp) ↪→ S+

4 (Fp).

Now we are ready to state our main conjecture:

Conjecture 5. There is an Hecke equivariant exact sequence:

0 - θS+
2 (Fp) - S−

4 (Fp) - S+
4 (Fp) - θM−

2 (Fp) - 0.

Moreover, the map S−
4 (Fp) → S+

4 (Fp) here is the largest such equivariant
map between these spaces. Equivalently, a residual eigenform of weight 4
and level p occurs in both the + and − spaces if and only if it is not in
the image of θ.

Let us give some consequences of our conjectures for the index of Tnew

inside its normalisation. Fix a residual representation ρ : Gal(Q/Q) →
GL2(Fq) and consider the associated maximal ideal m inside T4. If ρ lies
in the image of θ then our conjecture implies that it is not congruent
to any other eigenform. If ρ is not in the image of θ, then it should
arise exactly from a pair of eigenforms, one inside S+

4 (Qp) and one inside

S−
4 (Qp). Suppose that q = pr. If there is no ramification in T ⊗ Q over



p (this is often true), then the + and − eigenforms will both be defined
over the ring W (Fq) of Witt vectors of Fq. Since Up = p on S−

4 and −p on
S+

4 , these forms can be at most congruent modulo p. Thus the completed
Hecke algebra (T4)m is exactly

{(a, b) ∈ W (Fq) ⊕ W (Fq), |a ≡ b mod p}.

One sees that this has index q = pr inside its normalisation. Thus the (log
of the) total index is equal to

∑
ri over all eigenforms that occur inside

S+
4 and S−

4 , which from our exact sequence we see is equal to

dim S−
4 − dim S+

2 .

Conjecture 1 when k = 4, would then follow from the equality of dimen-
sions:

dim S−
4 (Fp) − dim S+

2 (Fp) =

⌊
p

12

⌋
.

We expect that something similar, but a little more complicated,
should happen in general. In weight 2k, there are mod pk−r congruences
exactly between forms in the image of θr−1 but not of θr.

5.1 Examples

We write small s’s and m’s for dimensions below.
Let p = 101. Then s+

2 = 1, m−
2 = 7 + 1 = 8, s−

4 = 9, s+
4 = 16. We

predict the index should be 9 − 1 = 8 = b101/12c. In the table below, we
show the characteristic polynomials of T2 on S−

4 and S+
4 , and for weight 2,

we take the characteristic polynomial of θT2 (or the same, taking F (x/2)
where F (x) is the characteristic polynomial of T2). Note that we have to
add the Eisenstein series, which has characteristic polynomial x − 1 − 2,
which becomes x − 6 ≡ x + 95 mod 101 under θ.

Factors of the Characteristic Polynomial of T2 for p = 101.

θS+
2 (F101) S−

4 (F101) S+
4 (F101) θM−

2 (F101)

(x) (x) (x + 46) (x + 95)
(x + 46) (x + 95) (x2 + 90x + 78)
(x2 + 58x + 100) (x2 + 58x + 100) (x2 + 96x + 36)
(x5 + 2x4 + 27x3 (x2 + 90x + 78) (x3 + 16x2

+49x2 + 7x + 65) (x2 + 96x + 36) +35x + 72)
(x3 + 16x2 + 35x + 72)
(x5 + 2x4 + 27x3

+49x2 + 7x + 65)



Here are some further conjectures when k > 4.

Conjecture 6. Let p and k be such that 4 < k < p − 1. There is an Hecke
equivariant exact sequence:

0 - θS+
k−2(Fp) - S−

k (Fp) - S+
k (Fp) - θS−

k−2(Fp) - 0.

Moreover, all forms not in the image of θ contribute maximally to the
index (a factor of p(k−2)/2). Thus the total index should be equal to

(k − 2)

2
(dim S+

k −dim S−
k−2) + the index at level p and weight k − 2.

This is the sum
k∑

n=2

(2n − 2)

2
(s+

2n − s−
2n−2).

When k = 4, we need to add the Eisenstein series to S−
2 in our previous

conjecture. Note that s+
k − s−

k−2 = s−
k − s+

k−2 for k > 4 (and with s−
2

replaced by m−
2 when k = 2). This follows from our conjectures, but can

easily be proved directly. As an example, when p = 101, we have s+
2 = 1,

s−
4 = 9, s+

6 = 17, s−
8 = 26, s+

10 = 34, s−
12 = 42, s+

14 = 51, and so we would
predict the indexes Ik to be as given in the following table:

k Ik?

2 0
4 8 = 8 + 0
6 24 = 24 + 0
8 51 = 48 + 3
10 83 = 80 + 3
12 123 = 120 + 3
14 177 = 168 + 9

This agrees with our conjectural formula, which says that the index
should be equal in this case to

8

(
k/2

2

)
+ 3

(
dk/6e

2

)
.

it also agrees with computation.
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Chapter 1

Preface

This book is based on notes I created for a one-semester undergraduate course on
Algebraic Number Theory, which I taught at Harvard during Spring 2004. The
primary sources for the course were chapter 1 of Swinnerton-Dyer’s book A Brief
Guide to Algebraic Number Theory [SD01] and chapter 2 of Cassels’s article Global
Fields [Cas67]. I wrote these notes by following closely the above two chapters; in
some cases I added substantial text and examples. For example, chapter 1 of [SD01]
is 30 pages, whereas my rewrite of it occupies over 100 pages. In contrast, I follow
[Cas67] more closely. I have no intent whatever to plagiarize. I acknowledge as such
those chapters in this book which are simply a close rewrite of [Cas67]. My goal is
to take the useful classical article ([Cas67]) and make it more accessible to students
by modernizing the notation, and adding additional explanations and examples.

I have no intent to publish this book with a traditional publisher, so it will
remain freely available indefinitely. If you have comments, corrections, suggestions
for additions, etc., please send them to me!

—————————

Copyright: William Stein, 2004.

License: FREE! More precisely, this book my be freely redistributed, copied, or
even sold without requiring you to obtain written permission from me. You may
even extend or change this book, but this preface page must remain in any derived
work, and any derived work must also remain free, including the LATEX source files.
In particular, I have no interest in making any money from this book.

Please send me any typos or corrections: was@math.harvard.edu.
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Chapter 2

Introduction

2.1 Mathematical background I assume you have

In addition to general mathematical maturity, this book assumes you have the
following background:

• Basics of finite group theory

• Commutative rings, ideals, quotient rings

• Some elementary number theory

• Basic Galois theory of fields

• Point set topology

• Basic of topological rings, groups, and measure theory

For example, if you have never worked with finite groups before, you should read
another book first. If you haven’t seen much elementary ring theory, there is still
hope, but you will have to do some additional reading and exercises. I will briefly
review the basics of the Galois theory of number fields.

Some of the homework problems involve using a computer, but I’ll give you
examples which you can build on. I will not assume that you have a programming
background or know much about algorithms. If you don’t have PARI [ABC+] or
Magma [BCP97], and don’t want to install either one on your computer, you might
want to try the following online interface to PARI and Magma:

http://modular.fas.harvard.edu/calc/

9
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2.2 What is algebraic number theory?

A number field K is a finite algebraic extension of the rational numbers Q. Every
such extension can be represented as all polynomials in an algebraic number α:

K = Q(α) =

{

m
∑

n=0

anαn : an ∈ Q

}

.

Here α is a root of a polynomial with coefficients in Q.

Algebraic number theory involves using techniques from (mostly commutative)
algebra and finite group theory to gain a deeper understanding of number fields.
The main objects that we study in algebraic number theory are number fields,
rings of integers of number fields, unit groups, ideal class groups,norms, traces,
discriminants, prime ideals, Hilbert and other class fields and associated reciprocity
laws, zeta and L-functions, and algorithms for computing each of the above.

2.2.1 Topics in this book

These are some of the main topics that are discussed in this book:

• Rings of integers of number fields

• Unique factorization of ideals in Dedekind domains

• Structure of the group of units of the ring of integers

• Finiteness of the group of equivalence classes of ideals of the ring of integers
(the “class group”)

• Decomposition and inertia groups, Frobenius elements

• Ramification

• Discriminant and different

• Quadratic and biquadratic fields

• Cyclotomic fields (and applications)

• How to use a computer to compute with many of the above objects (both
algorithms and actual use of PARI and Magma).

• Valuations on fields

• Completions (p-adic fields)

• Adeles and Ideles
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Note that we will not do anything nontrivial with zeta functions or L-functions.
This is to keep the prerequisites to algebra, and so we will have more time to
discuss algorithmic questions. Depending on time and your inclination, I may also
talk about integer factorization, primality testing, or complex multiplication elliptic
curves (which are closely related to quadratic imaginary fields).

2.3 Some applications of algebraic number theory

The following examples are meant to convince you that learning algebraic number
theory now will be an excellent investment of your time. If an example below seems
vague to you, it is safe to ignore it.

1. Integer factorization using the number field sieve. The number field sieve is
the asymptotically fastest known algorithm for factoring general large integers
(that don’t have too special of a form). Recently, in December 2003, the
number field sieve was used to factor the RSA-576 $10000 challenge:

1881988129206079638386972394616504398071635633794173827007 . . .
. . . 6335642298885971523466548531906060650474304531738801130339 . . .
. . . 6716199692321205734031879550656996221305168759307650257059
= 39807508642406493739712550055038649119906436234252670840 . . .

. . . 6385189575946388957261768583317
×47277214610743530253622307197304822463291469530209711 . . .

. . . 6459852171130520711256363590397527

(The . . . indicates that the newline should be removed, not that there are
missing digits.) For more information on the NFS, see the paper by Lenstra
et al. on the Math 129 web page.

2. Primality test: Agrawal and his students Saxena and Kayal from India re-
cently (2002) found the first ever deterministic polynomial-time (in the num-
ber of digits) primality test. There methods involve arithmetic in quotients of
(Z/nZ)[x], which are best understood in the context of algebraic number the-
ory. For example, Lenstra, Bernstein, and others have done that and improved
the algorithm significantly.

3. Deeper point of view on questions in number theory:

(a) Pell’s Equation (x2−dy2 = 1) =⇒ Units in real quadratic fields =⇒ Unit
groups in number fields

(b) Diophantine Equations =⇒ For which n does xn + yn = zn have a non-
trivial solution in Q(

√
2)?

(c) Integer Factorization =⇒ Factorization of ideals

(d) Riemann Hypothesis =⇒ Generalized Riemann Hypothesis
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(e) Deeper proof of Gauss’s quadratic reciprocity law in terms of arithmetic
of cyclotomic fields Q(e2πi/n), which leads to class field theory.

4. Wiles’s proof of Fermat’s Last Theorem, i.e., xn+yn = zn has no nontrivial
integer solutions, uses methods from algebraic number theory extensively (in
addition to many other deep techniques). Attempts to prove Fermat’s Last
Theorem long ago were hugely influential in the development of algebraic
number theory (by Dedekind, Kummer, Kronecker, et al.).

5. Arithmetic geometry: This is a huge field that studies solutions to polyno-
mial equations that lie in arithmetically interesting rings, such as the integers
or number fields. A famous major triumph of arithmetic geometry is Faltings’s
proof of Mordell’s Conjecture.

Theorem 2.3.1 (Faltings). Let X be a plane algebraic curve over a number
field K. Assume that the manifold X(C) of complex solutions to X has genus
at least 2 (i.e., X(C) is topologically a donut with two holes). Then the set
X(K) of points on X with coordinates in K is finite.

For example, Theorem 2.3.1 implies that for any n ≥ 4 and any number
field K, there are only finitely many solutions in K to xn + yn = 1. A famous
open problem in arithmetic geometry is the Birch and Swinnerton-Dyer
conjecture, which gives a deep conjectural criterion for exactly when X(K)
should be infinite when X(C) is a torus.
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Classical Viewpoint
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Chapter 3

Finitely generated abelian
groups

We will now prove the structure theorem for finitely generated abelian groups, since
it will be crucial for much of what we will do later.

Let Z = {0,±1,±2, . . .} denote the ring of integers, and for each positive inte-
ger n let Z/nZ denote the ring of integers modulo n, which is a cyclic abelian group
of order n under addition.

Definition 3.0.2 (Finitely Generated). A group G is finitely generated if there
exists g1, . . . , gn ∈ G such that every element of G can be obtained from the gi.

Theorem 3.0.3 (Structure Theorem for Abelian Groups). Let G be a finitely
generated abelian group. Then there is an isomorphism

G ∼= (Z/n1Z) ⊕ (Z/n2Z) ⊕ · · · ⊕ (Z/nsZ) ⊕ Zr,

where n1 > 1 and n1 | n2 | · · · | ns. Furthermore, the ni and r are uniquely
determined by G.

We will prove the theorem as follows. We first remark that any subgroup of a
finitely generated free abelian group is finitely generated. Then we see that finitely
generated abelian groups can be presented as quotients of finite rank free abelian
groups, and such a presentation can be reinterpreted in terms of matrices over the
integers. Next we describe how to use row and column operations over the integers
to show that every matrix over the integers is equivalent to one in a canonical
diagonal form, called the Smith normal form. We obtain a proof of the theorem by
reinterpreting Smith normal form in terms of groups.

Proposition 3.0.4. Suppose G is a free abelian group of finite rank n, and H is a
subgroup of G. Then H is a free abelian group generated by at most n elements.

The key reason that this is true is that G is a finitely generated module over the
principal ideal domain Z. We will give a complete proof of a beautiful generalization

15
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of this result in the context of Noetherian rings next time, but will not prove this
proposition here.

Corollary 3.0.5. Suppose G is a finitely generated abelian group. Then there are
finitely generated free abelian groups F1 and F2 such that G ∼= F1/F2.

Proof. Let x1, . . . , xm be generators for G. Let F1 = Zm and let ϕ : F1 → G be
the map that sends the ith generator (0, 0, . . . , 1, . . . , 0) of Zm to xi. Then ϕ is a
surjective homomorphism, and by Proposition 3.0.4 the kernel F2 of ϕ is a finitely
generated free abelian group. This proves the corollary.

Suppose G is a nonzero finitely generated abelian group. By the corollary, there
are free abelian groups F1 and F2 such that G ∼= F1/F2. Choosing a basis for F1, we
obtain an isomorphism F1

∼= Zn, for some positive integer n. By Proposition 3.0.4,
F2

∼= Zm, for some integer m with 0 ≤ m ≤ n, and the inclusion map F2 ↪→ F1

induces a map Zm → Zn. This homomorphism is left multiplication by the n × m
matrix A whose columns are the images of the generators of F2 in Zn. The cokernel
of this homomorphism is the quotient of Zn by the image of A, and the cokernel
is isomorphic to G. By augmenting A with zero columns on the right we obtain a
square n × n matrix A with the same cokernel. The following proposition implies
that we may choose bases such that the matrix A is diagonal, and then the structure
of the cokernel of A will be easy to understand.

Proposition 3.0.6 (Smith normal form). Suppose A is an n×n integer matrix.
Then there exist invertible integer matrices P and Q such that A′ = PAQ is a
diagonal matrix with entries n1, n2, . . . , ns, 0, . . . , 0, where n1 > 1 and n1 | n2 | . . . |
ns. This is called the Smith normal form of A.

We will see in the proof of Theorem 3.0.3 that A′ is uniquely determined by A.

Proof. The matrix P will be a product of matrices that define elementary row
operations and Q will be a product corresponding to elementary column operations.
The elementary operations are:

1. Add an integer multiple of one row to another (or a multiple of one column
to another).

2. Interchange two rows or two columns.

3. Multiply a row by −1.

Each of these operations is given by left or right multiplying by an invertible ma-
trix E with integer entries, where E is the result of applying the given operation
to the identity matrix, and E is invertible because each operation can be reversed
using another row or column operation over the integers.

To see that the proposition must be true, assume A 6= 0 and perform the fol-
lowing steps (compare [Art91, pg. 459]):
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1. By permuting rows and columns, move a nonzero entry of A with smallest
absolute value to the upper left corner of A. Now attempt to make all other
entries in the first row and column 0 by adding multiples of row or column 1
to other rows (see step 2 below). If an operation produces a nonzero entry in
the matrix with absolute value smaller than |a11|, start the process over by
permuting rows and columns to move that entry to the upper left corner of
A. Since the integers |a11| are a decreasing sequence of positive integers, we
will not have to move an entry to the upper left corner infinitely often.

2. Suppose ai1 is a nonzero entry in the first column, with i > 1. Using the
division algorithm, write ai1 = a11q + r, with 0 ≤ r < a11. Now add −q times
the first row to the ith row. If r > 0, then go to step 1 (so that an entry with
absolute value at most r is the upper left corner). Since we will only perform
step 1 finitely many times, we may assume r = 0. Repeating this procedure
we set all entries in the first column (except a11) to 0. A similar process using
column operations sets each entry in the first row (except a11) to 0.

3. We may now assume that a11 is the only nonzero entry in the first row and
column. If some entry aij of A is not divisible by a11, add the column of A
containing aij to the first column, thus producing an entry in the first column
that is nonzero. When we perform step 2, the remainder r will be greater
than 0. Permuting rows and columns results in a smaller |a11|. Since |a11| can
only shrink finitely many times, eventually we will get to a point where every
aij is divisible by a11. If a11 is negative, multiple the first row by −1.

After performing the above operations, the first row and column of A are zero except
for a11 which is positive and divides all other entries of A. We repeat the above
steps for the matrix B obtained from A by deleting the first row and column. The
upper left entry of the resulting matrix will be divisible by a11, since every entry of
B is. Repeating the argument inductively proves the proposition.

Example 3.0.7. The matrix

(

1 2
3 4

)

is equivalent to

(

1 0
0 2

)

and the matrix





1 2 3
4 5 6
7 8 9





is equivalent to





1 0 0
0 3 0
0 0 0



 . Note that the determinants match, up to sign.

Theorem 3.0.3. Suppose G is a finitely generated abelian group, which we may
assume is nonzero. As in the paragraph before Proposition 3.0.6, we use Corol-
lary 3.0.5 to write G as a the cokernel of an n × n integer matrix A. By Propo-
sition 3.0.6 there are isomorphisms Q : Zn → Zn and P : Zn → Zn such that
A′ = PAQ is a diagonal matrix with entries n1, n2, . . . , ns, 0, . . . , 0, where n1 > 1
and n1 | n2 | . . . | ns. Then G is isomorphic to the cokernel of the diagonal matrix
A′, so

G ∼= (Z/n1Z) ⊕ (Z/n2Z) ⊕ · · · ⊕ (Z/nsZ) ⊕ Zr, (3.0.1)
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as claimed. The ni are determined by G, because ni is the smallest positive integer n
such that nG requires at most s + r − i generators (we see from the representation
(3.0.1) of G as a product that ni has this property and that no smaller positive
integer does).



Chapter 4

Commutative Algebra

We will do some serious commutative algebra in this chapter, which will provide a
powerful algebraic foundation for understanding the more refined number-theoretic
structures associated to number fields.

In the first section we establish the standard properties of Noetherian rings
and modules, including the Hilbert basis theorem. We also observe that finitely
generated abelian groups are Noetherian Z-modules, which fills the gap in our proof
of the structure theorem for finitely generated abelian groups. After establishing
properties of Noetherian rings, we consider the rings of algebraic integers and discuss
some of their properties.

4.1 Noetherian Rings and Modules

Let R be a commutative ring with unit element. We will frequently work with
R-modules, which are like vector spaces but over a ring. More precisely, recall that
an R-module is an additive abelian group M equipped with a map R × M → M
such that for all r, r′ ∈ R and all m, m′ ∈ M we have (rr′)m = r(r′m), (r + r′)m =
rm + r′m, r(m + m′) = rm + rm′, and 1m = m. A submodule is a subgroup of M
that is preserved by the action of R.

Example 4.1.1. The set of abelian groups are in natural bijection with Z-modules.

A homomorphism of R-modules ϕ : M → N is a abelian group homomorphism
such that for any r ∈ R and m ∈ M we have ϕ(rm) = rϕ(m). A short exact
sequence of R-modules

0 → L
f−→ M

g−→ N → 0

is a specific choice of injective homomorphism f : L → M and a surjective homo-
morphism g : M → N such that im(f) = ker(g).

Definition 4.1.2 (Noetherian). An R-module M is Noetherian if every submod-
ule of M is finitely generated. A ring R is Noetherian if R is Noetherian as a module
over itself, i.e., if every ideal of R is finitely generated.

19
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Notice that any submodule M ′ of M is Noetherian, because if every submodule
of M is finitely generated then so is every submodule of M ′, since submodules of
M ′ are also submodules of M .

Definition 4.1.3 (Ascending chain condition). An R-module M satisfies the
ascending chain condition if every sequences M1 ⊂ M2 ⊂ M3 ⊂ · · · of submodules
of M eventually stabilizes, i.e., there is some n such that Mn = Mn+1 = Mn+2 = · · · .

Proposition 4.1.4. If M is an R-module, then the following are equivalent:

1. M is Noetherian,

2. M satisfies the ascending chain condition, and

3. Every nonempty set of submodules of M contains at least one maximal ele-
ment.

Proof. 1 =⇒ 2: Suppose M1 ⊂ M2 ⊂ · · · is a sequence of submodules of M . Then
M∞ = ∪∞

n=1Mn is a submodule of M . Since M is Noetherian, there is a finite set
a1, . . . , am of generators for M . Each ai must be contained in some Mj , so there is
an n such that a1, . . . , am ∈ Mn. But then Mk = Mn for all k ≥ n, which proves
that the ascending chain condition holds for M .

2 =⇒ 3: Suppose 3 were false, so there exists a nonempty set S of submodules
of M that does not contain a maximal element. We will use S to construct an
infinite ascending chain of submodules of M that does not stabilize. Note that S is
infinite, otherwise it would contain a maximal element. Let M1 be any element of S.
Then there is an M2 in S that contains M1, otherwise S would contain the maximal
element M1. Continuing inductively in this way we find an M3 in S that properly
contains M2, etc., and we produce an infinite ascending chain of submodules of M ,
which contradicts the ascending chain condition.

3 =⇒ 1: Suppose 1 is false, so there is a submodule M ′ of M that is not finitely
generated. We will show that the set S of all finitely generated submodules of
M ′ does not have a maximal element, which will be a contradiction. Suppose S
does have a maximal element L. Since L is finitely generated and L ⊂ M ′, and
M ′ is not finitely generated, there is an a ∈ M ′ such that a 6∈ L. Then L′ =
L + Ra is an element of S that strictly contains the presumed maximal element L,
a contradiction.

Lemma 4.1.5. If

0 → L
f−→ M

g−→ N → 0

is a short exact sequence of R-modules, then M is Noetherian if and only if both L
and N are Noetherian.

Proof. First suppose that M is Noetherian. Then L is a submodule of M , so L is
Noetherian. If N ′ is a submodule of N , then the inverse image of N ′ in M is a
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submodule of M , so it is finitely generated, hence its image N ′ is finitely generated.
Thus N is Noetherian as well.

Next assume nothing about M , but suppose that both L and N are Noetherian.
If M ′ is a submodule of M , then M0 = ϕ(L)∩M ′ is isomorphic to a submodule of the
Noetherian module L, so M0 is generated by finitely many elements a1, . . . , an. The
quotient M ′/M0 is isomorphic (via g) to a submodule of the Noetherian module N ,
so M ′/M0 is generated by finitely many elements b1, . . . , bm. For each i ≤ m, let ci

be a lift of bi to M ′, modulo M0. Then the elements a1, . . . , an, c1, . . . , cm generate
M ′, for if x ∈ M ′, then there is some element y ∈ M0 such that x− y is an R-linear
combination of the ci, and y is an R-linear combination of the ai.

Proposition 4.1.6. Suppose R is a Noetherian ring. Then an R-module M is
Noetherian if and only if it is finitely generated.

Proof. If M is Noetherian then every submodule of M is finitely generated so M
is finitely generated. Conversely, suppose M is finitely generated, say by elements
a1, . . . , an. Then there is a surjective homomorphism from Rn = R ⊕ · · · ⊕ R to M
that sends (0, . . . , 0, 1, 0, . . . , 0) (1 in ith factor) to ai. Using Lemma 4.1.5 and
exact sequences of R-modules such as 0 → R → R⊕R → R → 0, we see inductively
that Rn is Noetherian. Again by Lemma 4.1.5, homomorphic images of Noetherian
modules are Noetherian, so M is Noetherian.

Lemma 4.1.7. Suppose ϕ : R → S is a surjective homomorphism of rings and R
is Noetherian. Then S is Noetherian.

Proof. The kernel of ϕ is an ideal I in R, and we have an exact sequence

0 → I → R → S → 0

with R Noetherian. By Lemma 4.1.5, it follows that S is a Noetherian R-modules.
Suppose J is an ideal of S. Since J is an R-submodule of S, if we view J as an R-
module, then J is finitely generated. Since R acts on J through S, the R-generators
of J are also S-generators of J , so J is finitely generated as an ideal. Thus S is
Noetherian.

Theorem 4.1.8 (Hilbert Basis Theorem). If R is a Noetherian ring and S is
finitely generated as a ring over R, then S is Noetherian. In particular, for any n
the polynomial ring R[x1, . . . , xn] and any of its quotients are Noetherian.

Proof. Assume first that we have already shown that for any n the polynomial ring
R[x1, . . . , xn] is Noetherian. Suppose S is finitely generated as a ring over R, so
there are generators s1, . . . , sn for S. Then the map xi 7→ si extends uniquely to a
surjective homomorphism π : R[x1, . . . , xn] → S, and Lemma 4.1.7 implies that S
is Noetherian.

The rings R[x1, . . . , xn] and (R[x1, . . . , xn−1])[xn] are isomorphic, so it suffices
to prove that if R is Noetherian then R[x] is also Noetherian. (Our proof follows
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[Art91, §12.5].) Thus suppose I is an ideal of R[x] and that R is Noetherian. We
will show that I is finitely generated.

Let A be the set of leading coefficients of polynomials in I along with 0. If
a, b ∈ A are nonzero with a + b 6= 0, then there are polynomials f and g in I with
leading coefficients a and b. If deg(f) ≤ deg(g), then a + b is the leading coefficient
of xdeg(g)−deg(f)f + g, so a + b ∈ A. If r ∈ R and a ∈ A with ra 6= 0, then ra
is the leading coefficient of rf , so ra ∈ A. Thus A is an ideal in R, so since R is
Noetherian there exists a1, . . . , an that generate A as an ideal. Since A is the set
of leading coefficients of elements of I, and the aj are in I, we can choose for each
j ≤ n an element fj ∈ I with leading coefficient aj . By multipying the fj by some
power of x, we may assume that the fj all have the same degree d.

Let S<d be the set of elements of I that have degree strictly less than d. This
set is closed under addition and under multiplication by elements of R, so S<d is
a module over R. The module S<d is submodule of the R-module of polynomials
of degree less than n, which is Noetherian because it is generated by 1, x, . . . , xn−1.
Thus S<d is finitely generated, and we may choose generators h1, . . . , hm for S<d.

Suppose g ∈ I is an arbitrary element. We will show by induction on the degree
of g that g is an R[x]-linear combination of f1, . . . , fn, h1, . . . hm. Thus suppose this
statement is true for all elements of I of degree less than the degree of g. If the degree
of g is less than d, then g ∈ S<d, so g is in the R[x]-ideal generated by h1, . . . , hm.
Next suppose that g has degree e ≥ d. Then the leading coefficient b of g lies in the
ideal A of leading coefficients of g, so there exist ri ∈ R such that b = r1a1 + · · · +
rnan. Since fi has leading coefficient ai, the difference g − xe−drifi has degree less
than the degree e of g. By induction g − xe−drifi is an R[x] linear combination of
f1, . . . , fn, h1, . . . hm, so g is also an R[x] linear combination of f1, . . . , fn, h1, . . . hm.
Since each fi and hj lies in I, it follows that I is generated by f1, . . . , fn, h1, . . . hm,
so I is finitely generated, as required.

Properties of Noetherian rings and modules will be crucial in the rest of this
course. We have proved above that Noetherian rings have many desirable properties.

4.1.1 Z is Noetherian

The ring Z of integers is Noetherian because every ideal of Z is generated by one
element.

Proposition 4.1.9. Every ideal of the ring Z of integers is principal.

Proof. Suppose I is a nonzero ideal in Z. Let d the least positive element of I.
Suppose that a ∈ I is any nonzero element of I. Using the division algorithm, write
a = dq + r, where q is an integer and 0 ≤ r < d. We have r = a− dq ∈ I and r < d,
so our assumption that d is minimal implies that r = 0, so a = dq is in the ideal
generated by d. Thus I is the principal ideal generated by d.

Proposition 4.1.6 and 4.1.9 together imply that any finitely generated abelian
group is Noetherian. This means that subgroups of finitely generated abelian groups
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are finitely generated, which provides the missing step in our proof of the structure
theorem for finitely generated abelian groups.
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Chapter 5

Rings of Algebraic Integers

In this chapter we will learn about rings of algebraic integers and discuss some
of their properties. We will prove that the ring of integers OK of a number field
is Noetherian. We will also develop some basic properties of norms, traces, and
discriminants, and give more properties of rings of integers in the general context
of Dedekind domains.

5.1 Rings of Algebraic Integers

Fix an algebraic closure Q of Q. For example, Q could be the subfield of the
complex numbers C generated by all roots in C of all polynomials with coefficients
in Q.

Much of this course is about algebraic integers.

Definition 5.1.1 (Algebraic Integer). An element α ∈ Q is an algebraic integer
if it is a root of some monic polynomial with coefficients in Z.

Definition 5.1.2 (Minimal Polynomial). The minimal polynomial of α ∈ Q is
the monic polynomial f ∈ Q[x] of least positive degree such that f(α) = 0.

The minimal polynomial of α divides any polynomial h such that h(α) = 0, for
the following reason. If h(α) = 0, use the division algorithm to write h = qf + r,
where 0 ≤ deg(r) < deg(f). We have r(α) = h(α) − q(α)f(α) = 0, so α is a root
of r. However, f is the polynomial of least positive degree with root α, so r = 0.

Lemma 5.1.3. If α is an algebraic integer, then the minimal polynomial of α has
coefficients in Z.

Proof. Suppose f ∈ Q[x] is the minimal polynomial of α and g ∈ Z[x] is a monic
integral polynomial such that g(α) = 0. As mentioned after the definition of minimal
polynomial, we have g = fh, for some h ∈ Q[x]. If f 6∈ Z[x], then some prime p
divides the denominator of some coefficient of f . Let pi be the largest power of p that
divides some denominator of some coefficient f , and likewise let pj be the largest
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power of p that divides some denominator of a coefficient of g. Then pi+jg =
(pif)(pjg), and if we reduce both sides modulo p, then the left hand side is 0 but
the right hand side is a product of two nonzero polynomials in Fp[x], hence nonzero,
a contradiction.

Proposition 5.1.4. An element α ∈ Q is integral if and only if Z[α] is finitely
generated as a Z-module.

Proof. Suppose α is integral and let f ∈ Z[x] be the monic minimal polynomial
of α (that f ∈ Z[x] is Lemma 5.1.3). Then Z[α] is generated by 1, α, α2, . . . , αd−1,
where d is the degree of f . Conversely, suppose α ∈ Q is such that Z[α] is finitely
generated, say by elements f1(α), . . . , fn(α). Let d be any integer bigger than the
degree of any fi. Then there exist integers ai such that αd =

∑

aifi(α), hence α
satisfies the monic polynomial xd − ∑

aifi(x) ∈ Z[x], so α is integral.

The rational number α = 1/2 is not integral. Note that G = Z[1/2] is not a
finitely generated Z-module, since G is infinite and G/2G = 0.

Proposition 5.1.5. The set Z of all algebraic integers is a ring, i.e., the sum and
product of two algebraic integers is again an algebraic integer.

Proof. Suppose α, β ∈ Z, and let m, n be the degrees of the minimal polynomials
of α, β, respectively. Then 1, α, . . . , αm−1 span Z[α] and 1, β, . . . , βn−1 span Z[β] as
Z-module. Thus the elements αiβj for i ≤ m, j ≤ n span Z[α, β]. Since Z[α + β]
is a submodule of the finitely-generated module Z[α, β], it is finitely generated, so
α + β is integral. Likewise, Z[αβ] is a submodule of Z[α, β], so it is also finitely
generated and αβ is integral.

Recall that a number field is a subfield K of Q such that the degree [K : Q] :=
dimQ(K) is finite.

Definition 5.1.6 (Ring of Integers). The ring of integers of a number field K
is the ring

OK = K ∩ Z = {x ∈ K : x is an algebraic integer}.

The field Q of rational numbers is a number field of degree 1, and the ring
of integers of Q is Z. The field K = Q(i) of Gaussian integers has degree 2 and
OK = Z[i]. The field K = Q(

√
5) has ring of integers OK = Z[(1 +

√
5)/2]. Note

that the Golden ratio (1 +
√

5)/2 satisfies x2 − x − 1. According to Magma, the
ring of integers of K = Q( 3

√
9) is Z[ 3

√
3], where 3

√
3 = 1

3( 3
√

9)2.

Definition 5.1.7 (Order). An order in OK is any subring R of OK such that the
quotient OK/R of abelian groups is finite. (Note that R must contain 1 because it
is a ring, and for us every ring has a 1.)

As noted above, Z[i] is the ring of integers of Q(i). For every nonzero integer
n, the subring Z + niZ of Z[i] is an order. The subring Z of Z[i] is not an order,
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because Z does not have finite index in Z[i]. Also the subgroup 2Z + iZ of Z[i] is
not an order because it is not a ring.

We will frequently consider orders in practice because they are often much easier
to write down explicitly than OK . For example, if K = Q(α) and α is an algebraic
integer, then Z[α] is an order in OK , but frequently Z[α] 6= OK .

Lemma 5.1.8. Let OK be the ring of integers of a number field. Then OK ∩Q = Z
and QOK = K.

Proof. Suppose α ∈ OK ∩ Q with α = a/b in lowest terms and b > 0. The monic
minimal polynomial of α is bx−a ∈ Z[x], so if b 6= 1 then Lemma 5.1.3 implies that
α is not an algebraic integer, a contradiction.

To prove that QOK = K, suppose α ∈ K, and let f(x) ∈ Q[x] be the minimal
monic polynomial of α. For any positive integer d, the minimal monic polynomial
of dα is ddeg(f)f(x/d), i.e., the polynomial obtained from f(x) by multiplying the
coefficient of xdeg(f) by 1, multiplying the coefficient of xdeg(f)−1 by d, multiplying
the coefficient of xdeg(f)−2 by d2, etc. If d is the least common multiple of the
denominators of the coefficients of f , then the minimal monic polynomial of dα has
integer coefficients, so dα is integral and dα ∈ OK . This proves that QOK = K.

In the next two sections we will develop some basic properties of norms and
traces, and deduce further properties of rings of integers.

5.2 Norms and Traces

Before discussing norms and traces we introduce some notation for field extensions.
If K ⊂ L are number fields, we let [L : K] denote the dimension of L viewed as a
K-vector space. If K is a number field and a ∈ Q, let K(a) be the number field
generated by a, which is the smallest number field that contains a. If a ∈ Q then a
has a minimal polynomial f(x) ∈ Q[x], and the Galois conjugates of a are the roots
of f . For example the element

√
2 has minimal polynomial x2 − 2 and the Galois

conjugates of
√

2 are ±
√

2.
Suppose K ⊂ L is an inclusion of number fields and let a ∈ L. Then left multi-

plication by a defines a K-linear transformation `a : L → L. (The transformation
`a is K-linear because L is commutative.)

Definition 5.2.1 (Norm and Trace). The norm and trace of a from L to K are

NormL/K(a) = Det(`a) and trL/K(a) = tr(`a).

It is standard from linear algebra that determinants are multiplicative and traces
are additive, so for a, b ∈ L we have

NormL/K(ab) = NormL/K(a) · NormL/K(b)

and
trL/K(a + b) = trL/K(a) + trL/K(b).
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Note that if f ∈ Q[x] is the characteristic polynomial of `a, then the constant
term of f is (−1)deg(f) Det(`a), and the coefficient of xdeg(f)−1 is − tr(`a).

Proposition 5.2.2. Let a ∈ L and let σ1, . . . , σd, where d = [L : K], be the distinct
field embeddings L ↪→ Q that fix every element of K. Then

NormL/K(a) =
d

∏

i=1

σi(a) and trL/K(a) =
d

∑

i=1

σi(a).

Proof. We prove the proposition by computing the characteristic polynomial F of a.
Let f ∈ K[x] be the minimal polynomial of a over K, and note that f has distinct
roots (since it is the polynomial in K[x] of least degree that is satisfied by a).
Since f is irreducible, [K(a) : K] = deg(f), and a satisfies a polynomial if and only
if `a does, the characteristic polynomial of `a acting on K(a) is f . Let b1, . . . , bn

be a basis for L over K(a) and note that 1, . . . , am is a basis for K(a)/K, where
m = deg(f)− 1. Then aibj is a basis for L over K, and left multiplication by a acts
the same way on the span of bj , abj , . . . , a

mbj as on the span of bk, abk, . . . , a
mbk,

for any pair j, k ≤ n. Thus the matrix of `a on L is a block direct sum of copies
of the matrix of `a acting on K(a), so the characteristic polynomial of `a on L
is f [L:K(a)]. The proposition follows because the roots of f [L:K(a)] are exactly the
images σi(a), with multiplicity [L : K(a)] (since each embedding of K(a) into Q
extends in exactly [L : K(a)] ways to L by Exercise 9).

The following corollary asserts that the norm and trace behave well in towers.

Corollary 5.2.3. Suppose K ⊂ L ⊂ M is a tower of number fields, and let a ∈ M .
Then

NormM/K(a) = NormL/K(NormM/L(a)) and trM/K(a) = trL/K(trM/L(a)).

Proof. For the first equation, both sides are the product of σi(a), where σi runs
through the embeddings of M into K. To see this, suppose σ : L → Q fixes K. If σ′

is an extension of σ to M , and τ1, . . . , τd are the embeddings of M into Q that fix L,
then τ1σ

′, . . . , τdσ
′ are exactly the extensions of σ to M . For the second statement,

both sides are the sum of the σi(a).

The norm and trace down to Q of an algebraic integer a is an element of Z,
because the minimal polynomial of a has integer coefficients, and the characteristic
polynomial of a is a power of the minimal polynomial, as we saw in the proof of
Proposition 5.2.2.

Proposition 5.2.4. Let K be a number field. The ring of integers OK is a lattice
in K, i.e., QOK = K and OK is an abelian group of rank [K : Q].

Proof. We saw in Lemma 5.1.8 that QOK = K. Thus there exists a basis a1, . . . , an

for K, where each ai is in OK . Suppose that as x =
∑

ciai ∈ OK varies over all
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elements of OK the denominators of the coefficients ci are arbitrarily large. Then
subtracting off integer multiples of the ai, we see that as x =

∑

ciai ∈ OK varies
over elements of OK with ci between 0 and 1, the denominators of the ci are also
arbitrarily large. This implies that there are infinitely many elements of OK in the
bounded subset

S = {c1a1 + · · · + cnan : ci ∈ Q, 0 ≤ ci ≤ 1} ⊂ K.

Thus for any ε > 0, there are elements a, b ∈ OK such that the coefficients of a − b
are all less than ε (otherwise the elements of OK would all be a “distance” of least
ε from each other, so only finitely many of them would fit in S).

As mentioned above, the norms of elements of OK are integers. Since the norm
of an element is the determinant of left multiplication by that element, the norm is
a homogenous polynomial of degree n in the indeterminate coefficients ci. If the ci

get arbitrarily small for elements of OK , then the values of the norm polynomial get
arbitrarily small, which would imply that there are elements of OK with positive
norm too small to be in Z, a contradiction. So the set S contains only finitely many
elements of OK . Thus the denominators of the ci are bounded, so for some d, we
have that OK has finite index in A = 1

dZa1 + · · · + 1
dZan. Since A is isomorphic to

Zn, it follows from the structure theorem for finitely generated abelian groups that
OK is isomorphic as a Z-module to Zn, as claimed.

Corollary 5.2.5. The ring of integers OK of a number field is Noetherian.

Proof. By Proposition 5.2.4, the ring OK is finitely generated as a module over Z,
so it is certainly finitely generated as a ring over Z. By the Hilbert Basis Theorem,
OK is Noetherian.
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Chapter 6

Unique Factorization of Ideals

In this chapter we will deduce, with complete proofs, the most important basic
property of the ring of integers OK of an algebraic number, namely that every
nonzero ideals can be written uniquely as products of prime ideals. After proving
this fundamental theorem, we will compute some examples using Magma. The
next chapter will consist mostly of examples illustrating the substantial theory we
will have already developed, so hang in there!

6.1 Dedekind Domains

Recall (Corollary 5.2.5) that we proved that the ring of integers OK of a number
field is Noetherian. As we saw before using norms, the ring OK is finitely generated
as a module over Z, so it is certainly finitely generated as a ring over Z. By the
Hilbert Basis Theorem, OK is Noetherian.

If R is an integral domain, the field of fractions of R is the field of all elements
a/b, where a, b ∈ R. The field of fractions of R is the smallest field that contains R.
For example, the field of fractions of Z is Q and of Z[(1 +

√
5)/2] is Q(

√
5).

Definition 6.1.1 (Integrally Closed). An integral domain R is integrally closed
in its field of fractions if whenever α is in the field of fractions of R and α satisfies
a monic polynomial f ∈ R[x], then α ∈ R.

Proposition 6.1.2. If K is any number field, then OK is integrally closed. Also,
the ring Z of all algebraic integers is integrally closed.

Proof. We first prove that Z is integrally closed. Suppose c ∈ Q is integral over Z,
so there is a monic polynomial f(x) = xn + an−1x

n−1 + · · · + a1x + a0 with
ai ∈ Z and f(c) = 0. The ai all lie in the ring of integers OK of the num-
ber field K = Q(a0, a1, . . . an−1), and OK is finitely generated as a Z-module, so
Z[a0, . . . , an−1] is finitely generated as a Z-module. Since f(c) = 0, we can write cn

as a Z[a0, . . . , an−1]-linear combination of ci for i < n, so the ring Z[a0, . . . , an−1, c]
is also finitely generated as a Z-module. Thus Z[c] is finitely generated as Z-module
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because it is a submodule of a finitely generated Z-module, which implies that c is
integral over Z.

Suppose c ∈ K is integral over OK . Then since Z is integrally closed, c is an
element of Z, so c ∈ K ∩ Z = OK , as required.

Definition 6.1.3 (Dedekind Domain). An integral domain R is a Dedekind
domain if it is Noetherian, integrally closed in its field of fractions, and every nonzero
prime ideal of R is maximal.

The ring Q⊕Q is Noetherian, integrally closed in its field of fractions, and the
two prime ideals are maximal. However, it is not a Dedekind domain because it is
not an integral domain. The ring Z[

√
5] is not a Dedekind domain because it is not

integrally closed in its field of fractions, as (1 +
√

5)/2 is integrally over Z and lies
in Q(

√
5), but not in Z[

√
5]. The ring Z is a Dedekind domain, as is any ring of

integers OK of a number field, as we will see below. Also, any field K is a Dedekind
domain, since it is a domain, it is trivially integrally closed in itself, and there are
no nonzero prime ideals so that condition that they be maximal is empty.

Proposition 6.1.4. The ring of integers OK of a number field is a Dedekind do-
main.

Proof. By Proposition 6.1.2, the ring OK is integrally closed, and by Proposi-
tion 5.2.5 it is Noetherian. Suppose that p is a nonzero prime ideal of OK . Let
α ∈ p be a nonzero element, and let f(x) ∈ Z[x] be the minimal polynomial of α.
Then

f(α) = αn + an−1α
n−1 + · · · + a1α + a0 = 0,

so a0 = −(αn + an−1α
n−1 + · · · + a1α) ∈ p. Since f is irreducible, a0 is a nonzero

element of Z that lies in p. Every element of the finitely generated abelian group
OK/p is killed by a0, so OK/p is a finite set. Since p is prime, OK/p is an integral
domain. Every finite integral domain is a field, so p is maximal, which completes
the proof.

If I and J are ideals in a ring R, the product IJ is the ideal generated by all
products of elements in I with elements in J :

IJ = (ab : a ∈ I, b ∈ J) ⊂ R.

Note that the set of all products ab, with a ∈ I and b ∈ J , need not be an ideal, so
it is important to take the ideal generated by that set. (See the homework problems
for examples.)

Definition 6.1.5 (Fractional Ideal). A fractional ideal is an OK-submodule of
I ⊂ K that is finitely generated as an OK-module.

To avoid confusion, we will sometimes call a genuine ideal I ⊂ OK an integral
ideal. Also, since fractional ideals are finitely generated, we can clear denominators
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of a generating set to see that every fractional ideal is of the form aI = {ab : b ∈ I}
for some a ∈ K and ideal I ⊂ OK .

For example, the collection 1
2Z of rational numbers with denominator 1 or 2 is

a fractional ideal of Z.

Theorem 6.1.6. The set of nonzero fractional ideals of a Dedekind domain R is
an abelian group under ideal multiplication.

Before proving Theorem 6.1.6 we prove a lemma. For the rest of this section
OK is the ring of integers of a number field K.

Definition 6.1.7 (Divides for Ideals). Suppose that I, J are ideals of OK .
Then I divides J if I ⊃ J .

To see that this notion of divides is sensible, suppose K = Q, so OK = Z.
Then I = (n) and J = (m) for some integer n and m, and I divides J means that
(n) ⊃ (m), i.e., that there exists an integer c such that m = cn, which exactly
means that n divides m, as expected.

Lemma 6.1.8. Suppose I is an ideal of OK . Then there exist prime ideals p1, . . . , pn

such that p1 · p2 · · · pn ⊂ I. In other words, I divides a product of prime ideals. (By
convention the empty product is the unit ideal. Also, if I = 0, then we take p1 = (0),
which is a prime ideal.)

Proof. The key idea is to use that OK is Noetherian to deduce that the set S of
ideals that do not satisfy the lemma is empty. If S is nonempty, then because OK

is Noetherian, there is an ideal I ∈ S that is maximal as an element of S. If I were
prime, then I would trivially contain a product of primes, so I is not prime. By
definition of prime ideal, there exists a, b ∈ OK such that ab ∈ I but a 6∈ I and
b 6∈ I. Let J1 = I + (a) and J2 = I + (b). Then neither J1 nor J2 is in S, since I
is maximal, so both J1 and J2 contain a product of prime ideals. Thus so does I,
since

J1J2 = I2 + I(b) + (a)I + (ab) ⊂ I,

which is a contradiction. Thus S is empty, which completes the proof.

We are now ready to prove the theorem.

Proof of Theorem 6.1.6. The product of two fractional ideals is again finitely gen-
erated, so it is a fractional ideal, and IOK = OK for any nonzero ideal I, so to
prove that the set of fractional ideals under multiplication is a group it suffices to
show the existence of inverses. We will first prove that if p is a prime ideal, then
p has an inverse, then we will prove that nonzero integral ideals have inverses, and
finally observe that every fractional ideal has an inverse.

Suppose p is a nonzero prime ideal of OK . We will show that the OK-module

I = {a ∈ K : ap ⊂ OK}
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is a fractional ideal of OK such that Ip = OK , so that I is an inverse of p.

For the rest of the proof, fix a nonzero element b ∈ p. Since I is an OK-module,
bI ⊂ OK is an OK ideal, hence I is a fractional ideal. Since OK ⊂ I we have
p ⊂ Ip ⊂ OK , hence either p = Ip or Ip = OK . If Ip = OK , we are done since
then I is an inverse of p. Thus suppose that Ip = p. Our strategy is to show that
there is some d ∈ I not in OK ; such a d would leave p invariant (i.e., dp ⊂ p), so
since p is an OK-module it will follow that d ∈ OK , a contradiction.

By Lemma 6.1.8, we can choose a product p1, . . . , pm, with m minimal, such
that

p1p2 · · · pm ⊂ (b) ⊂ p.

If no pi is contained in p, then we can choose for each i an ai ∈ pi with ai 6∈ p;
but then

∏

ai ∈ p, which contradicts that p is a prime ideal. Thus some pi, say
p1, is contained in p, which implies that p1 = p since every nonzero prime ideal
is maximal. Because m is minimal, p2 · · · pm is not a subset of (b), so there exists
c ∈ p2 · · · pm that does not lie in (b). Then p(c) ⊂ (b), so by definition of I we have
d = c/b ∈ I. However, d 6∈ OK , since if it were then c would be in (b). We have
thus found our element d ∈ I that does not lie in OK . To finish the proof that p

has an inverse, we observe that d preserves the OK-module p, and is hence in OK ,
a contradiction. More precisely, if b1, . . . , bn is a basis for p as a Z-module, then the
action of d on p is given by a matrix with entries in Z, so the minimal polynomial of
d has coefficients in Z. This implies that d is integral over Z, so d ∈ OK , since OK

is integrally closed by Proposition 6.1.2. (Note how this argument depends strongly
on the fact that OK is integrally closed!)

So far we have proved that if p is a prime ideal of OK , then p−1 = {a ∈ K :
ap ⊂ OK} is the inverse of p in the monoid of nonzero fractional ideals of OK . As
mentioned after Definition 6.1.5 [on Tuesday], every nonzero fractional ideal is of the
form aI for a ∈ K and I an integral ideal, so since (a) has inverse (1/a), it suffices
to show that every integral ideal I has an inverse. If not, then there is a nonzero
integral ideal I that is maximal among all nonzero integral ideals that do not have
an inverse. Every ideal is contained in a maximal ideal, so there is a nonzero prime
ideal p such that I ⊂ p. Multiplying both sides of this inclusion by p−1 and using
that OK ⊂ p−1, we see that I ⊂ p−1I ⊂ OK . If I = p−1I, then arguing as in the
proof that p−1 is the inverse of p, we see that each element of p−1 preserves the
finitely generated Z-module I and is hence integral. But then p−1 ⊂ OK , which
implies that OK = pp−1 ⊂ p, a contradiction. Thus I 6= p−1I. Because I is maximal
among ideals that do not have an inverse, the ideal p−1I does have an inverse, call
it J . Then pJ is the inverse of I, since OK = (pJ)(p−1I) = JI.

We can finally deduce the crucial Theorem 6.1.10, which will allow us to show
that any nonzero ideal of a Dedekind domain can be expressed uniquely as a product
of primes (up to order). Thus unique factorization holds for ideals in a Dedekind
domain, and it is this unique factorization that initially motivated the introduction
of rings of integers of number fields over a century ago.
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Theorem 6.1.9. Suppose I is an integral ideal of OK . Then I can be written as a
product

I = p1 · · · pn

of prime ideals of OK , and this representation is unique up to order. (Exception:
If I = 0, then the representation is not unique.)

Proof. Suppose I is an ideal that is maximal among the set of all ideals in OK

that can not be written as a product of primes. Every ideal is contained in a
maximal ideal, so I is contained in a nonzero prime ideal p. If Ip−1 = I, then by
Theorem 6.1.6 we can cancel I from both sides of this equation to see that p−1 =
OK , a contradiction. Thus I is strictly contained in Ip−1, so by our maximality
assumption on I there are maximal ideals p1, . . . , pn such that Ip−1 = p1 · · · pn.
Then I = p ·p1 · · · pn, a contradiction. Thus every ideal can be written as a product
of primes.

Suppose p1 · · · pn = q1 · · · qm. If no qi is contained in p1, then for each i there is
an ai ∈ qi such that ai 6∈ p1. But the product of the ai is in the p1 · · · pn, which is
a subset of p1, which contradicts the fact that p1 is a prime ideal. Thus qi = p1 for
some i. We can thus cancel qi and p1 from both sides of the equation. Repeating
this argument finishes the proof of uniqueness.

Corollary 6.1.10. If I is a fractional ideal of OK then there exists prime ideals
p1, . . . , pn and q1, . . . , qm, unique up to order, such that

I = (p1 · · · pn)(q1 · · · qm)−1.

Proof. We have I = (a/b)J for some a, b ∈ OK and integral ideal J . Applying
Theorem 6.1.10 to (a), (b), and J gives an expression as claimed. For uniqueness, if
one has two such product expressions, multiply through by the denominators and
use the uniqueness part of Theorem 6.1.10

Example 6.1.11. The ring of integers of K = Q(
√
−6) is OK = Z[

√
−6]. In OK , we

have
6 = −

√
−6

√
−6 = 2 · 3.

If ab =
√
−6, with a, b ∈ OK and neither a unit, then Norm(a)Norm(b) = 6, so

without loss Norm(a) = 2 and Norm(b) = 3. If a = c + d
√
−6, then Norm(a) =

c2 + 6d2; since the equation c2 + 6d2 = 2 has no solution with c, d ∈ Z, there is
no element in OK with norm 2, so

√
−6 is irreducible. Also,

√
−6 is not a unit

times 2 or times 3, since again the norms would not match up. Thus 6 can not
be written uniquely as a product of irreducibles in OK . Theorem 6.1.9, however,
implies that the principal ideal (6) can, however, be written uniquely as a product
of prime ideals. Using Magma we find such a decomposition:

> R<x> := PolynomialRing(RationalField());

> K := NumberField(x^2+6);

> OK := MaximalOrder(K);
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> [K!b : b in Basis(OK)];

[

1,

K.1 // this is sqrt(-6)

]

> Factorization(6*OK);

[

<Prime Ideal of OK

Two element generators:

[2, 0]

[2, 1], 2>,

<Prime Ideal of OK

Two element generators:

[3, 0]

[3, 1], 2>

]

The output means that

(6) = (2, 2 +
√
−6)2 · (3, 3 +

√
−6)2,

where each of the ideals (2, 2 +
√
−6) and (3, 3 +

√
−6) is prime. I will discuss

algorithms for computing such a decomposition in detail, probably next week. The
first idea is to write (6) = (2)(3), and hence reduce to the case of writing the (p),
for p ∈ Z prime, as a product of primes. Next one decomposes the Artinian ring
OK ⊗ Fp as a product of local Artinian rings.



Chapter 7

Computing

7.1 Algorithms for Algebraic Number Theory

I think the best overall reference for algorithms for doing basic algebraic number
theory computations is [Coh93].

Our main long-term algorithmic goals for this book (which we won’t succeed at
reaching) are to understand good algorithms for solving the following problems in
particular cases:

• Ring of integers: Given a number field K (by giving a polynomial), compute
the full ring OK of integers.

• Decomposition of primes: Given a prime number p ∈ Z, find the decom-
position of the ideal pOK as a product of prime ideals of OK .

• Class group: Compute the group of equivalence classes of nonzero ideals of
OK , where I and J are equivalent if there exists α ∈ OK such that IJ−1 = (α).

• Units: Compute generators for the group of units of OK .

As we will see, somewhat surprisingly it turns out that algorithmically by far
the most time-consuming step in computing the ring of integers OK seems to be
to factor the discriminant of a polynomial whose root generates the field K. The
algorithm(s) for computing OK are quite complicated to describe, but the first step
is to factor this discriminant, and it takes much longer in practice than all the other
complicated steps.

7.2 Using Magma

This section is a first introduction to Magma for algebraic number theory. Magma

is a good general purpose package for doing algebraic number theory computations.
You can use it via the web page http://modular.fas.harvard.edu/calc. Magma

is not free, but student discounts are available.
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The following examples illustrate what we’ve done so far in the course using
Magma, and a little of where we are going. Feel free to ask questions as we go.

7.2.1 Smith Normal Form

On the first day of class we learned about Smith normal forms of matrices.

> A := Matrix(2,2,[1,2,3,4]);

> A;

[1 2]

[3 4]

> SmithForm(A);

[1 0]

[0 2]

[ 1 0]

[-1 1]

[-1 2]

[ 1 -1]

As you can see, Magma computed the Smith form, which is

(

1 0
0 2

)

. What are the

other two matrices it output? To see what any Magma command does, type the
command by itself with no arguments followed by a semicolon.

> SmithForm;

Intrinsic ’SmithForm’

Signatures:

(<Mtrx> X) -> Mtrx, AlgMatElt, AlgMatElt

[

k: RngIntElt,

NormType: MonStgElt,

Partial: BoolElt,

RightInverse: BoolElt

]

The smith form S of X, together with unimodular matrices

P and Q such that P * X * Q = S.

As you can see, SmithForm returns three arguments, a matrix and matrices P and
Q that transform the input matrix to Smith normal form. The syntax to “receive”
three return arguments is natural, but uncommon in other programming languages:
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> S, P, Q := SmithForm(A);

> S;

[1 0]

[0 2]

> P;

[ 1 0]

[-1 1]

> Q;

[-1 2]

[ 1 -1]

> P*A*Q;

[1 0]

[0 2]

Next, let’s test the limits. We make a 10 × 10 integer matrix with entries between
0 and 99, and compute its Smith normal form.

> A := Matrix(10,10,[Random(100) : i in [1..100]]);

> time B := SmithForm(A);

Time: 0.000

Let’s print the first row of A, the first and last row of B, and the diagonal of B:

> A[1];

( 4 48 84 3 58 61 53 26 9 5)

> B[1];

(1 0 0 0 0 0 0 0 0 0)

> B[10];

(0 0 0 0 0 0 0 0 0 51805501538039733)

> [B[i,i] : i in [1..10]];

[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 51805501538039733 ]

Let’s see how big we have to make A in order to slow down Magma. These timings
below are on a 1.6Ghz Pentium 4-M laptop running Magma V2.11 under VMware
Linux. I tried exactly the same computation running Magma V2.17 natively under
Windows XP on the same machine, and it takes twice as long to do each computa-
tion, which is strange.

> n := 50; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);

Time: 0.050

> n := 100; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);

Time: 0.800

> n := 150; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);
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Time: 4.900

> n := 200; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);

Time: 19.160

Magma can also work with finitely generated abelian groups.

> G := AbelianGroup([3,5,18]);

> G;

Abelian Group isomorphic to Z/3 + Z/90

Defined on 3 generators

Relations:

3*G.1 = 0

5*G.2 = 0

18*G.3 = 0

> #G;

270

> H := sub<G | [G.1+G.2]>;

> #H;

15

> G/H;

Abelian Group isomorphic to Z/18

7.2.2 Q and Number Fields

Magma has many commands for doing basic arithmetic with Q.

> Qbar := AlgebraicClosure(RationalField());

> Qbar;

> S<x> := PolynomialRing(Qbar);

> r := Roots(x^3-2);

> r;

[

<r1, 1>,

<r2, 1>,

<r3, 1>

]

> a := r[1][1];

> MinimalPolynomial(a);

x^3 - 2

> s := Roots(x^2-7);

> b := s[1][1];

> MinimalPolynomial(b);

x^2 - 7

> a+b;
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r4 + r1

> MinimalPolynomial(a+b);

x^6 - 21*x^4 - 4*x^3 + 147*x^2 - 84*x - 339

> Trace(a+b);

0

> Norm(a+b);

-339

There are few commands for general algebraic number fields, so usually we work in
specific finitely generated subfields:

> MinimalPolynomial(a+b);

x^6 - 21*x^4 - 4*x^3 + 147*x^2 - 84*x - 339

> K := NumberField($1) ; // $1 = result of previous computation.

> K;

Number Field with defining polynomial x^6 - 21*x^4 - 4*x^3 +

147*x^2 - 84*x - 339 over the Rational Field

We can also define relative extensions of number fields and pass to the corresponding
absolute extension.

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2); // a is the image of x in Q[x]/(x^3-2)

> a;

a

> a^3;

2

> S<y> := PolynomialRing(K);

> L<b> := NumberField(y^2-a);

> L;

Number Field with defining polynomial y^2 - a over K

> b^2;

a

> b^6;

2

> AbsoluteField(L);

Number Field with defining polynomial x^6 - 2 over the Rational

Field

7.2.3 Rings of integers

Magma computes rings of integers of number fields.

> RingOfIntegers(K);

Maximal Equation Order with defining polynomial x^3 - 2 over ZZ

> RingOfIntegers(L);
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Maximal Equation Order with defining polynomial x^2 + [0, -1, 0]

over its ground order

Sometimes the ring of integers of Q(a) isn’t just Z[a]. First a simple example, then
a more complicated one:

> K<a> := NumberField(2*x^2-3); // doesn’t have to be monic

> 2*a^2 - 3;

0

> K;

Number Field with defining polynomial x^2 - 3/2 over the Rational

Field

> O := RingOfIntegers(K);

> O;

Maximal Order of Equation Order with defining polynomial 2*x^2 -

3 over ZZ

> Basis(O);

[

O.1,

O.2

]

> [K!x : x in Basis(O)];

[

1,

2*a // this is Sqrt(3)

]

Here’s are some more examples:

> procedure ints(f) // (procedures don’t return anything; functions do)

K<a> := NumberField(f);

O := MaximalOrder(K);

print [K!z : z in Basis(O)];

end procedure;

> ints(x^2-5);

[

1,

1/2*(a + 1)

]

> ints(x^2+5);

[

1,

a

]

> ints(x^3-17);



7.2. USING MAGMA 43

[

1,

a,

1/3*(a^2 + 2*a + 1)

]

> ints(CyclotomicPolynomial(7));

[

1,

a,

a^2,

a^3,

a^4,

a^5

]

> ints(x^5+&+[Random(10)*x^i : i in [0..4]]); // RANDOM

[

1,

a,

a^2,

a^3,

a^4

]

> ints(x^5+&+[Random(10)*x^i : i in [0..4]]); // RANDOM

[

1,

a,

a^2,

1/2*(a^3 + a),

1/16*(a^4 + 7*a^3 + 11*a^2 + 7*a + 14)

]

Lets find out how high of a degree Magma can easily deal with.

> d := 10; time ints(x^10+&+[Random(10)*x^i : i in [0..d-1]]);

[

1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9

]

Time: 0.030

> d := 15; time ints(x^10+&+[Random(10)*x^i : i in [0..d-1]]);

[

1,

7*a,

7*a^2 + 4*a,

7*a^3 + 4*a^2 + 4*a,

7*a^4 + 4*a^3 + 4*a^2 + a,
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7*a^5 + 4*a^4 + 4*a^3 + a^2 + a,

7*a^6 + 4*a^5 + 4*a^4 + a^3 + a^2 + 4*a,

7*a^7 + 4*a^6 + 4*a^5 + a^4 + a^3 + 4*a^2,

7*a^8 + 4*a^7 + 4*a^6 + a^5 + a^4 + 4*a^3 + 4*a,

7*a^9 + 4*a^8 + 4*a^7 + a^6 + a^5 + 4*a^4 + 4*a^2 + 5*a,

7*a^10 + 4*a^9 + 4*a^8 + a^7 + a^6 + 4*a^5 + 4*a^3 + 5*a^2 + 4*a,

...

]

Time: 0.480

> d := 20; time ints(x^10+&+[Random(10)*x^i : i in [0..d-1]]);

[

1,

2*a,

4*a^2,

8*a^3,

8*a^4 + 2*a^2 + a,

8*a^5 + 2*a^3 + 3*a^2,

...]

Time: 3.940

> d := 25; time ints(x^10+&+[Random(10)*x^i : i in [0..d-1]]);

... I stopped it after a few minutes...

We can also define orders in rings of integers.

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2);

> O := Order([2*a]);

> O;

Transformation of Order over

Equation Order with defining polynomial x^3 - 2 over ZZ

Transformation Matrix:

[1 0 0]

[0 2 0]

[0 0 4]

> OK := MaximalOrder(K);

> Index(OK,O);

8

> Discriminant(O);

-6912

> Discriminant(OK);

-108

> 6912/108;

64 // perfect square...
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7.2.4 Ideals

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2);

> O := Order([2*a]);

> O;

Transformation of Order over

Equation Order with defining polynomial x^3 - 2 over ZZ

Transformation Matrix:

[1 0 0]

[0 2 0]

[0 0 4]

> OK := MaximalOrder(K);

> Index(OK,O);

8

> Discriminant(O);

-6912

> Discriminant(OK);

-108

> 6912/108;

64 // perfect square...

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^2-7);

> K<a> := NumberField(x^2-5);

> Discriminant(K);

20 // ????????? Yuck!

> OK := MaximalOrder(K);

> Discriminant(OK);

5 // better

> Discriminant(NumberField(x^2-20));

80

> I := 7*OK;

> I;

Principal Ideal of OK

Generator:

[7, 0]

> J := (OK!a)*OK; // the ! computes the natural image of a in OK

> J;

Principal Ideal of OK

Generator:

[-1, 2]

> I*J;

Principal Ideal of OK

Generator:
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[-7, 14]

> J*I;

Principal Ideal of OK

Generator:

[-7, 14]

> I+J;

Principal Ideal of OK

Generator:

[1, 0]

>

> Factorization(I);

[

<Principal Prime Ideal of OK

Generator:

[7, 0], 1>

]

> Factorization(3*OK);

[

<Principal Prime Ideal of OK

Generator:

[3, 0], 1>

]

> Factorization(5*OK);

[

<Prime Ideal of OK

Two element generators:

[5, 0]

[4, 2], 2>

]

> Factorization(11*OK);

[

<Prime Ideal of OK

Two element generators:

[11, 0]

[14, 2], 1>,

<Prime Ideal of OK

Two element generators:

[11, 0]

[17, 2], 1>

]

We can even work with fractional ideals in Magma.

> K<a> := NumberField(x^2-5);
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> OK := MaximalOrder(K);

> I := 7*OK;

> J := (OK!a)*OK;

> M := I/J;

> M;

Fractional Principal Ideal of OK

Generator:

-7/5*OK.1 + 14/5*OK.2

> Factorization(M);

[

<Prime Ideal of OK

Two element generators:

[5, 0]

[4, 2], -1>,

<Principal Prime Ideal of OK

Generator:

[7, 0], 1>

]

In the next chapter, we will learn about discriminants and an algorithm for
“factoring primes”, that is writing an ideal pOK as a product of prime ideals of OK .
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Chapter 8

Factoring Primes

First we will learn how, if p ∈ Z is a prime and OK is the ring of integers of a number
field, to write pOK as a product of primes of OK . Then I will sketch the main results
and definitions that we will study in detail during the next few chapters. We will
cover discriminants and norms of ideals, define the class group of OK and prove
that it is finite and computable, and define the group of units of OK , determine its
structure, and prove that it is also computable.

8.1 Factoring Primes

A diagram from [LL93].

“The obvious mathematical breakthrough would be develop-
ment of an easy way to factor large prime numbers.” –Bill
Gates, The Road Ahead, pg. 265
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Let K = Q(α) be a number field, and let OK be the ring of integers of K. To
employ our geometric intuition, as the Lenstras did on the cover of [LL93], it is
helpful to view OK as a one-dimensional scheme

X = Spec(OK) = { all prime ideals of OK }

over
Y = Spec(Z) = {(0)} ∪ {pZ : p ∈ Z is prime }.

There is a natural map π : X → Y that sends a prime ideal p ∈ X to p ∩ Z ∈ Y .
For much more on this point of view, see [EH00, Ch. 2].

Ideals were originally introduced by Kummer because, as we proved last Tuesday,
in rings of integers of number fields ideals factor uniquely as products of primes
ideals, which is something that is not true for general algebraic integers. (The
failure of unique factorization for algebraic integers was used by Liouville to destroy
Lamé’s purported 1847 “proof” of Fermat’s Last Theorem.)

If p ∈ Z is a prime number, then the ideal pOK of OK factors uniquely as
a product

∏

p
ei

i , where the pi are maximal ideals of OK . We may imagine the
decomposition of pOK into prime ideals geometrically as the fiber π−1(pZ) (with
multiplicities).

How can we compute π−1(pZ) in practice?

Example 8.1.1. The following Magma session shows the commands needed to com-
pute the factorization of pOK in Magma for K the number field defined by a root
of x5 + 7x4 + 3x2 − x + 1.

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^5 + 7*x^4 + 3*x^2 - x + 1);

> OK := MaximalOrder(K);

> I := 2*OK;

> Factorization(I);

[

<Principal Prime Ideal of OK

Generator:

[2, 0, 0, 0, 0], 1>

]

> J := 5*OK;

> Factorization(J);

[

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0]

[2, 1, 0, 0, 0], 1>,

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0]
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[3, 1, 0, 0, 0], 2>,

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0]

[2, 4, 1, 0, 0], 1>

]

> [K!OK.i : i in [1..5]];

[ 1, a, a^2, a^3, a^4 ]

Thus 2OK is already a prime ideal, and

5OK = (5, 2 + a) · (5, 3 + a)2 · (5, 2 + 4a + a2).

Notice that in this example OK = Z[a]. (Warning: There are examples of OK

such that OK 6= Z[a] for any a ∈ OK , as Example 8.1.6 below illustrates.) When
OK = Z[a] it is very easy to factor pOK , as we will see below. The following
factorization gives a hint as to why:

x5 + 7x4 + 3x2 − x + 1 ≡ (x + 2) · (x + 3)2 · (x2 + 4x + 2) (mod 5).

The exponent 2 of (5, 3 + a)2 in the factorization of 5OK above suggests “rami-
fication”, in the sense that the cover X → Y has less points (counting their “size”,
i.e., their residue class degree) in its fiber over 5 than it has generically. Here’s a
suggestive picture:
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� (5, 2 + 4a + a2)

(5, 3 + a)2

(5, 2 + a)

5Z

2OK

2Z
(0)

(0)

3Z 7Z 11Z

Diagram of Spec(OK) → Spec(Z)
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8.1.1 A Method for Factoring that Often Works

Suppose a ∈ OK is such that K = Q(a), and let g(x) be the minimal polynomial
of a. Then Z[a] ⊂ OK , and we have a diagram of schemes

(??) Â

Ä

//

²²

Spec(OK)

²²
⋃

Spec(Fp[x]/(gei

i )) Â

Ä

//

²²

Spec(Z[a])

²²
Spec(Fp)

Â

Ä

// Spec(Z)

where g =
∏

i g
ei

i is the factorization of the image of g in Fp[x].
The cover π : Spec(Z[a]) → Spec(Z) is easy to understand because it is defined

by the single equation g(x). To give a maximal ideal p of Z[a] such that π(p) = pZ is
the same as giving a homomorphism ϕ : Z[x]/(g) → Fp (up to automorphisms of the
image), which is in turn the same as giving a root of g in Fp (up to automorphism),
which is the same as giving an irreducible factor of the reduction of g modulo p.

Lemma 8.1.2. Suppose the index of Z[a] in OK is coprime to p. Then the primes pi

in the factorization of pZ[a] do not decompose further going from Z[a] to OK , so
finding the prime ideals of Z[a] that contain p yields the factorization of pOK .

Proof. Hi-brow argument: By hypothesis we have an exact sequence of abelian
groups

0 → Z[a] → OK → H → 0,

where H is a finite abelian group of order coprime to p. Tensor product is right
exact, and there is an exact sequence

Tor1(H,Fp) → Z[a] ⊗ Fp → OK ⊗ Fp → H ⊗ Fp → 0,

and Tor1(H,Fp) = H ⊗ Fp = 0, so Z[a] ⊗ Fp
∼= OK ⊗ Fp.

Low-brow argument: The inclusion map Z[a] ↪→ OK is defined by a matrix over Z
that has determinant ±[OK : Z[a]], which is coprime to p. The reduction of this
matrix modulo p is invertible, so it defines an isomorphism Z[a] ⊗ Fp → OK ⊗ Fp.
Any homomorphism OK → Fp is the composition of a homomorphism OK →
OK ⊗ Fp with a homomorphism OK ⊗ Fp → Fp. Since OK ⊗ Fp

∼= Z[a] ⊗ Fp, the
homomorphisms OK → Fp are in bijection with the homomorphisms Z[a] → Fp,
which proves the lemma.

As suggested in the proof of the lemma, we find all homomorphisms OK → Fp

by finding all homomorphism Z[a] → Fp. In terms of ideals, if p = (g(a), p)Z[a] is a
maximal ideal of Z[a], then the ideal p′ = (g(a), p)OK of OK is also maximal, since

OK/p′ ∼= (OK ⊗ Fp)/(g(ã)) ∼= (Z[a] ⊗ Fp)/(g(ã)) ⊂ Fp.

We formalize the above discussion in the following theorem:
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Theorem 8.1.3. Let f(x) denote the minimal polynomial of a over Q. Suppose
that p - [OK : Z[a]] is a prime. Let

f =
t

∏

i=1

f
ei

i ∈ Fp[x]

where the f i are distinct monic irreducible polynomials. Let pi = (p, fi(a)) where
fi ∈ Z[x] is a lift of f i in Fp[X]. Then

pOK =
t

∏

i=1

pei

i .

We return to the example from above, in which K = Q(a), where a is a root of
x5+7x4+3x2−x+1. According to Magma, the maximal order OK has discriminant
2945785:

> Discriminant(MaximalOrder(K));

2945785

The order Z[a] has the same discriminant as OK , so Z[a] = OK and we can apply
the above theorem.

> Discriminant(x^5 + 7*x^4 + 3*x^2 - x + 1);

2945785

We have

x5 + 7x4 + 3x2 − x + 1 ≡ (x + 2) · (x + 3)2 · (x2 + 4x + 2) (mod 5),

which yields the factorization of 5OK given before the theorem.
If we replace a by b = 7a, then the index of Z[b] in OK will be a power of 7,

which is coprime to 5, so the above method will still work.

> f:=MinimalPolynomial(7*a);

> f;

x^5 + 49*x^4 + 1029*x^2 - 2401*x + 16807

> Discriminant(f);

235050861175510968365785

> Discriminant(f)/Discriminant(MaximalOrder(K));

79792266297612001 // coprime to 5

> S<t> := PolynomialRing(GF(5));

> Factorization(S!f);

[

<t + 1, 2>,

<t + 4, 1>,

<t^2 + 3*t + 3, 1>

]
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Thus 5 factors in OK as

5OK = (5, 7a + 1)2 · (5, 7a + 4) · (5, (7a)2 + 3(7a) + 3).

If we replace a by b = 5a and try the above algorithm with Z[b], then the method
fails because the index of Z[b] in OK is divisible by 5.

> f:=MinimalPolynomial(5*a);

> f;

x^5 + 35*x^4 + 375*x^2 - 625*x + 3125

> Discriminant(f) / Discriminant(MaximalOrder(K));

95367431640625 // divisible by 5

> Factorization(S!f);

[

<t, 5>

]

8.1.2 A Method for Factoring that Always Works

There are numbers fields K such that OK is not of the form Z[a] for any a ∈ K.
Even worse, Dedekind found a field K such that 2 | [OK : Z[a]] for all a ∈ OK , so
there is no choice of a such that Theorem 8.1.3 can be used to factor 2 for K (see
Example 8.1.6 below).

Most algebraic number theory books do not describe an algorithm for decompos-
ing primes in the general case. Fortunately, Cohen’s book [Coh93, §6.2]) describes
how to solve the general problem. The solutions are somewhat surprising, since the
algorithms are much more sophisticated than the one suggested by Theorem 8.1.3.
However, these complicated algorithms all run very quickly in practice, even without
assuming the maximal order is already known.

For simplicity we consider the following slightly easier problem whose solution
contains the key ideas: Let O be any order in OK and let p be a prime of Z. Find
the prime ideals of O that contain p.

To go from this special case to the general case, given a prime p that we wish
to factor in OK , we find a p-maximal order O, i.e., an order O such that [OK : O]
is coprime to p. A p-maximal order can be found very quickly in practice using the
“round 2” or “round 4” algorithms. (Remark: Later we will see that to compute OK ,
we take the sum of p-maximal orders, one for every p such that p2 divides Disc(OK).
The time-consuming part of this computation of OK is finding the primes p such
that p2 | Disc(OK), not finding the p-maximal orders. Thus a fast algorithm for
factoring integers would not only break many cryptosystems, but would massively
speed up computation of the ring of integers of a number field.)

Algorithm 8.1.4. Suppose O is an order in the ring OK of integers of a number
field K. For any prime p ∈ Z, the following (sketch of an) algorithm computes the
set of maximal ideals of O that contain p.
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Sketch of algorithm. Let K = Q(a) be a number field given by an algebraic
integer a as a root of its minimal monic polynomial f of degree n. We assume that
an order O has been given by a basis w1, . . . , wn and that O that contains Z[a]. Each
of the following steps can be carried out efficiently using little more than linear algebra
over Fp. The details are in [Coh93, §6.2.5].

1. [Check if easy] If p - disc(Z[a])/ disc(O) (so p - [O : Z[a]]), then by a slight
modification of Theorem 8.1.3, we easily factor pO.

2. [Compute radical] Let I be the radical of pO, which is the ideal of elements x ∈ O
such that xm ∈ pO for some positive integer m. Using linear algebra over the
finite field Fp, we can quickly compute a basis for I/pO. (We never compute
I ⊂ O.)

3. [Compute quotient by radical] Compute an Fp basis for

A = O/I = (O/pO)/(I/pO).

The second equality comes from the fact that pO ⊂ I, which is clear by definition.
Note that O/pO ∼= O ⊗ Fp is obtained by simply reducing the basis w1, . . . , wn

modulo p.

4. [Decompose quotient] The ring A is a finite Artin ring with no nilpotents, so it
decomposes as a product A ∼=

∏

Fp[x]/gi(x) of fields. We can quickly find such
a decomposition explicitly, as described in [Coh93, §6.2.5].

5. [Compute the maximal ideals over p] Each maximal ideal pi lying over p is the
kernel of O → A → Fp[x]/gi(x).

The algorithm finds all primes of O that contain the radical I of pO. Every such
prime clearly contains p, so to see that the algorithm is correct, we must prove that
the primes p of O that contain p also contain I. If p is a prime of O that contains p,
then pO ⊂ p. If x ∈ I then xm ∈ pO for some m, so xm ∈ p which implies that
x ∈ p by primality of p. Thus p contains I, as required.

8.1.3 Essential Discriminant Divisors

Definition 8.1.5. A prime p is an essential discriminant divisor if p | [OK : Z[a]]
for every a ∈ OK .

Since [OK : Z[a]] is the absolute value of Disc(f(x))/ Disc(OK), where f(x) is
the characteristic polynomial of f(x), an essential discriminant divisor divides the
discriminant of the characteristic polynomial of any element of OK .

Example 8.1.6 (Dedekind). Let K = Q(a) be the cubic field defined by a root a of
the polynomial f = x3 +x2−2x+8. We will use Magma, which implements the al-
gorithm described in the previous section, to show that 2 is an essential discriminant
divisor for K.
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> K<a> := NumberField(x^3 + x^2 - 2*x + 8);

> OK := MaximalOrder(K);

> Factorization(2*OK);

[

<Prime Ideal of OK

Basis:

[2 0 0]

[0 1 0]

[0 0 1], 1>,

<Prime Ideal of OK

Basis:

[1 0 1]

[0 1 0]

[0 0 2], 1>,

<Prime Ideal of OK

Basis:

[1 0 1]

[0 1 1]

[0 0 2], 1>

]

Thus 2OK = p1p2p3, with the pi distinct. Moreover, one can check that OK/pi
∼=

F2. If OK = Z[a] for some a ∈ OK with minimal polynomial g, then g(x) ∈ F2[x]
must be a product of three distinct linear factors, which is impossible.



Chapter 9

Chinese Remainder Theorem

In this section we will prove the Chinese Remainder Theorem for rings of integers,
deduce several surprising and useful consequences, then learn about discriminants,
and finally norms of ideals. We will also define the class group of OK and state
the main theorem about it. The tools we develop here illustrate the power of what
we have already proved about rings of integers, and will be used over and over
again to prove other deeper results in algebraic number theory. It is essentially to
understand everything we discuss in this chapter very well.

9.1 The Chinese Remainder Theorem

Recall that the Chinese Remainder Theorem from elementary number theory asserts
that if n1, . . . , nr are integers that are coprime in pairs, and a1, . . . , ar are integers,
then there exists an integer a such that a ≡ ai (mod ni) for each i = 1, . . . , r. In
terms of rings, the Chinese Remainder Theorem asserts that the natural map

Z/(n1 · · ·nr)Z → (Z/n1Z) ⊕ · · · ⊕ (Z/nrZ)

is an isomorphism. This result generalizes to rings of integers of number fields.

Lemma 9.1.1. If I and J are coprime ideals in OK , then I ∩ J = IJ .

Proof. The ideal I ∩ J is the largest ideal of OK that is divisible by (contained in)
both I and J . Since I and J are coprime, I ∩ J is divisible by IJ , i.e., I ∩ J ⊂ IJ .
By definition of ideal IJ ⊂ I ∩ J , which completes the proof.

Remark 9.1.2. This lemma is true for any ring R and ideals I, J ⊂ R such that
I + J = R. For the general proof, choose x ∈ I and y ∈ J such that x + y = 1. If
c ∈ I ∩ J then

c = c · 1 = c · (x + y) = cx + cy ∈ IJ + IJ = IJ,

so I ∩ J ⊂ IJ , and the other inclusion is obvious by definition.
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Theorem 9.1.3 (Chinese Remainder Theorem). Suppose I1, . . . , Ir are ideals
of OK such that Im + In = OK for any m 6= n. Then the natural homomorphism
OK → ⊕r

n=1(OK/In) induces an isomorphism

OK/

(

r
∏

n=1

In

)

→
r

⊕

n=1

(OK/In).

Thus given any an ∈ In then there exists a ∈ OK such that a ≡ an (mod In) for
n = 1, . . . , r.

Proof. First assume that we know the theorem in the case when the In are powers
of prime ideals. Then we can deduce the general case by noting that each OK/In

is isomorphic to a product
∏OK/pem

m , where In =
∏

pem
m , and OK/(

∏

n In) is
isomorphic to the product of the OK/pe, where the p and e run through the same
prime powers as appear on the right hand side.

It thus suffices to prove that if p1, . . . , pr are distinct prime ideals of OK and
e1, . . . , er are positive integers, then

ψ : OK/

(

r
∏

n=1

pen
n

)

→
r

⊕

n=1

(OK/pen
n )

is an isomorphism. Let ϕ : OK → ⊕r
n=1(OK/pen

n ) be the natural map induced by
reduction mod pen

n . Then kernel of ϕ is ∩r
n=1p

en
n , which by Lemma 9.1.1 is equal to

∏r
n=1 pen

n , so ψ is injective. Note that the projection OK → OK/pen
n of ϕ onto each

factor is obviously surjective, so it suffices to show that the element (1, 0, . . . , 0) is in
the image of ϕ (and the similar elements for the other factors). Since J =

∏r
n=2 pen

n

is not divisible by p1, hence not contained in p1, there is an element a ∈ J with
a 6∈ p1. Since p1 is maximal, OK/p1 is a field, so there exists b ∈ OK such that
ab = 1 − c, for some c ∈ p1. Then

1 − cn1 = (1 − c)(1 + c + c2 + · · · + cn1−1) = ab(1 + c + c2 + · · · + cn1−1)

is congruent to 0 mod pen
n for each n ≥ 2 since it is in

∏r
n=2 pen

n , and it is congruent
to 1 modulo pn1

1 .

Remark 9.1.4. In fact, the surjectivity part of the above proof is easy to prove
for any commutative ring; indeed, the above proof illustrates how trying to prove
something in a special case can result in a more complicated proof!! Suppose R is
a ring and I, J are ideals in R such that I + J = R. Choose x ∈ I and y ∈ J such
that x + y = 1. Then x = 1 − y maps to (0, 1) in R/I ⊕ R/J and y = 1 − x maps
to (1, 0) in R/I ⊕ R/J . Thus the map R/(I ∩ J) → R/I ⊕ R/J is surjective. Also,
as mentioned above, R/(I ∩ J) = R/(IJ).

Example 9.1.5. The Magma command ChineseRemainderTheorem implements the
algorithm suggested by the above theorem. In the following example, we compute
a prime over (3) and a prime over (5) of the ring of integers of Q( 3

√
2), and find an

element of OK that is congruent to 3
√

2 modulo one prime and 1 modulo the other.
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> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2);

> OK := MaximalOrder(K);

> I := Factorization(3*OK)[1][1];

> J := Factorization(5*OK)[1][1];

> I;

Prime Ideal of OK

Two element generators:

[3, 0, 0]

[4, 1, 0]

> J;

Prime Ideal of OK

Two element generators:

[5, 0, 0]

[7, 1, 0]

> b := ChineseRemainderTheorem(I, J, OK!a, OK!1);

> b - a in I;

true

> b - 1 in J;

true

> K!b;

-4

The element found by the Chinese Remainder Theorem algorithm in this case is
−4.

The following lemma is a nice application of the Chinese Remainder Theorem.
We will use it to prove that every ideal of OK can be generated by two elements.
Suppose I is a nonzero integral ideals of OK . If a ∈ I, then (a) ⊂ I, so I divides (a)
and the quotient (a)/I is an integral ideal. The following lemma asserts that (a)
can be chosen so the quotient (a)/I is coprime to any given ideal.

Lemma 9.1.6. If I, J are nonzero integral ideals in OK , then there exists an a ∈ I
such that (a)/I is coprime to J .

Proof. Let p1, . . . , pr be the prime divisors of J . For each n, let vn be the largest
power of pn that divides I. Choose an element an ∈ pvn

n that is not in pvn+1
n (there

is such an element since pvn
n 6= pvn+1

n , by unique factorization). By Theorem 9.1.3,
there exists a ∈ OK such that

a ≡ an (mod pvn+1
n )

for all n = 1, . . . , r and also

a ≡ 0 (mod I/
∏

pvn
n ).

(We are applying the theorem with the coprime integral ideals pvn+1
n , for n = 1, . . . , r

and the integral ideal I/
∏

pvn
n .)
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To complete the proof we must show that (a)/I is not divisible by any pn, or
equivalently, that the pvn

n exactly divides (a). Because a ≡ an (mod pvn+1
n ), there

is b ∈ pvn+1
n such that a = an + b. Since an ∈ pvn

n , it follows that a ∈ pvn
n , so pvn

n

divides (a). If a ∈ pvn+1
n , then an = a − b ∈ pvn+1

n , a contradiction, so pvn+1
n does

not divide (a), which completes the proof.

Suppose I is a nonzero ideal of OK . As an abelian group OK is free of rank equal
to the degree [K : Q] of K, and I is of finite index in OK , so I can be generated as an
abelian group, hence as an ideal, by [K : Q] generators. The following proposition
asserts something much better, namely that I can be generated as an ideal in OK

by at most two elements.

Proposition 9.1.7. Suppose I is a fractional ideal in the ring OK of integers of a
number field. Then there exist a, b ∈ K such that I = (a, b).

Proof. If I = (0), then I is generated by 1 element and we are done. If I is not an
integral ideal, then there is x ∈ K such that xI is an integral ideal, and the number
of generators of xI is the same as the number of generators of I, so we may assume
that I is an integral ideal.

Let a be any nonzero element of the integral ideal I. We will show that there
is some b ∈ I such that I = (a, b). Let J = (b). By Lemma 9.1.6, there exists a ∈ I
such that (a)/I is coprime to (b). The ideal (a, b) = (a)+(b) is the greatest common
divisor of (a) and (b), so I divides (a, b), since I divides both (a) and (b). Suppose
pn is a prime power that divides (a, b), so pn divides both (a) and (b). Because
(a)/I and (b) are coprime and pn divides (b), we see that pn does not divide (a)/I,
so pn must divide I. Thus (a, b) divides I, so (a, b) = I as claimed.

We can also use Theorem 9.1.3 to determine the OK-module structure of the
successive quotients pn/pn+1.

Proposition 9.1.8. Let p be a nonzero prime ideal of OK , and let n ≥ 0 be an
integer. Then pn/pn+1 ∼= OK/p as OK-modules.

Proof. (Compare page 13 of Swinnerton-Dyer.) Since pn 6= pn+1 (by unique factor-
ization), we can fix an element b ∈ pn such that b 6∈ pn+1. Let ϕ : OK → pn/pn+1

be the OK-module morphism defined by ϕ(a) = ab. The kernel of ϕ is p since
clearly ϕ(p) = 0 and if ϕ(a) = 0 then ab ∈ pn+1, so pn+1 | (a)(b), so p | (a), since
pn+1 does not divide (b). Thus ϕ induces an injective OK-module homomorphism
OK/p ↪→ pn/pn+1.

It remains to show that ϕ is surjective, and this is where we will use Theo-
rem 9.1.3. Suppose c ∈ pn. By Theorem 9.1.3 there exists d ∈ OK such that

d ≡ c (mod pn+1) and d ≡ 0 (mod (b)/pn).

We have pn | (c) since c ∈ pn and (b)/pn | (d) by the second displayed condition, so
(b) = pn · (b)/pn | (d), hence d/b ∈ OK . Finally

ϕ

(

d

b

)

=
d

b
· b (mod pn+1) = b (mod pn+1) = c (mod pn+1),
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so ϕ is surjective.
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Chapter 10

Discrimannts, Norms, and
Finiteness of the Class Group

10.1 Preliminary Remarks

Let K be a number field of degree n. Then there are n embeddings

σ1, . . . , σn : K ↪→ C.

Let σ : K → Cn be the product map a 7→ (σ1(a), . . . , σn(a)). Let V = Rσ(K) be
the R-span of σ(K) inside Cn.

Proposition 10.1.1. The R-vector space V = Rσ(K) spanned by the image σ(K)
has dimension n.

Proof. We prove this by showing that the image σ(OK) is discrete. If σ(OK) were
not discrete it would contain elements all of whose coordinates are simultaneously
arbitrarily small. The norm of an element a ∈ OK is the product of the entries of
σ(a), so the norms of nonzero elements of OK would go to 0. This is a contradiction,
since the norms of elements of OK are integers.

The fact that σ(OK) is discrete in Cn implies that Rσ(OK) has dimension equal
to the rank n of σ(OK), as claimed. This last assertion is not obvious, and requires
observing that if L if a free abelian group that is discrete in a real vector space W
and RL = W , then the rank of L equals the dimension of W . Here’s why this is
true. If x1, . . . , xm ∈ L are a basis for RL, then Zx1 + · · · + Zxm has finite index
in L, since otherwise there would be infinitely many elements of L in a fundamental
domain for Zx1 + · · · + Zxm, which would contradict discreteness of L. Thus the
rank of L is m = dim(RL), as claimed.

Since σ(OK) is a lattice in V , the volume of V/σ(OK) is finite. Suppose
w1, . . . , wn is a basis for OK . Then if A is the matrix whose ith row is σ(wi),
then |Det(A)| is the volume of V/σ(OK). (Take this determinant as the definition
of the volume—we won’t be using “volume” here except in a formal motivating
way.)
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Example 10.1.2. Let OK = Z[i] be the ring of integers of K = Q(i). Then w1 = 1,
w2 = i is a basis for OK . The map σ : K → C2 is given by

σ(a + bi) = (a + bi, a − bi) ∈ C2.

The image σ(OK) is spanned by (1, 1) and (i,−i). The volume determinant is
∣

∣

∣

∣

(

1 1
i −i

)∣

∣

∣

∣

= | − 2i| = 2.

Let OK = Z[
√

2] be the ring of integers of K = Q(
√

2). The map σ is

σ(a + b
√

2) = (a + b
√

2, a − b
√

2) ∈ R2,

and

A =

(

1 1√
2 −

√
2

)

,

which has determinant −2
√

2, so the volume of the ring of integers is 2
√

2.

As the above example illustrates, the volume of the ring of integers is not a
great invariant of OK . For example, it need not be an integer. If we consider
Det(A)2 instead, we obtain a number that is a well-defined integer which can be
either positive or negative. In the next section we will do just this.

10.2 Discriminants

Suppose w1, . . . , wn are a basis for a number field K, which we view as a Q-vector
space. Let σ : K ↪→ Cn be the embedding σ(a) = (σ1(a), . . . , σn(a)), where
σ1, . . . , σn are the distinct embeddings of K into C. Let A be the matrix whose
rows are σ(w1), . . . , σ(wn). The quantity Det(A) depends on the ordering of the wi,
and need not be an integer.

If we consider Det(A)2 instead, we obtain a number that is a well-defined integer
which can be either positive or negative. Note that

Det(A)2 = Det(AA) = Det(AAt)

= Det





∑

k=1,...,n

σk(wi)σk(wj)





= Det(Tr(wiwj)1≤i,j≤n),

so Det(A)2 can be defined purely in terms of the trace without mentioning the
embeddings σi. Also, changing the basis for OK is the same as left multiplying A
by an integer matrix U of determinant ±1, which does not change the squared
determinant, since Det(UA)2 = Det(U)2 Det(A)2 = Det(A)2. Thus Det(A)2 is well
defined, and does not depend on the choice of basis.

If we view K as a Q-vector space, then (x, y) 7→ Tr(xy) defines a bilinear pairing
K × K → Q on K, which we call the trace pairing. The following lemma asserts
that this pairing is nondegenerate, so Det(Tr(wiwj)) 6= 0 hence Det(A) 6= 0.
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Lemma 10.2.1. The trace pairing is nondegenerate.

Proof. If the trace pairing is degenerate, then there exists a ∈ K such that for
every b ∈ K we have Tr(ab) = 0. In particularly, taking b = a−1 we see that
0 = Tr(aa−1) = Tr(1) = [K : Q] > 0, which is absurd.

Definition 10.2.2 (Discriminant). Suppose a1, . . . , an is any Q-basis of K. The
discriminant of a1, . . . , an is

Disc(a1, . . . , an) = Det(Tr(aiaj)1≤i,j≤n) ∈ Q.

The discriminant Disc(O) of an order O in OK is the discriminant of any basis
for O. The discriminant dK = Disc(K) of the number field K is the discrimimant
of OK .

Note that the discriminants defined above are all nonzero by Lemma 10.2.1.
Warning: In Magma Disc(K) is defined to be the discriminant of the polynomial

you happened to use to define K, which is (in my opinion) a poor choice and goes
against most of the literature.

The following proposition asserts that the discriminant of an order O in OK is
bigger than disc(OK) by a factor of the square of the index.

Proposition 10.2.3. Suppose O is an order in OK . Then

Disc(O) = Disc(OK) · [OK : O]2.

Proof. Let A be a matrix whose rows are the images via σ of a basis for OK ,
and let B be a matrix whose rows are the images via σ of a basis for O. Since
O ⊂ OK has finite index, there is an integer matrix C such that CA = B, and
|Det(C)| = [OK : O]. Then

Disc(O) = Det(B)2 = Det(CA)2 = Det(C)2 Det(A)2 = [OK : O]2 · Disc(OK).

This result is enough to give an algorithm for computing OK , albeit a potentially
slow one. Given K, find some order O ⊂ K, and compute d = Disc(O). Factor d,
and use the factorization to write d = s · f2, where f2 is the largest square that
divides d. Then the index of O in OK is a divisor of f , and we (tediously) can
enumerate all rings R with O ⊂ R ⊂ K and [R : O] | f , until we find the largest
one all of whose elements are integral.

Example 10.2.4. Consider the ring OK = Z[(1 +
√

5)/2] of integers of K = Q(
√

5).
The discriminant of the basis 1, a = (1 +

√
5)/2 is

Disc(OK) =

∣

∣

∣

∣

(

2 1
1 3

)∣

∣

∣

∣

= 5.

Let O = Z[
√

5] be the order generated by
√

5. Then O has basis 1,
√

5, so

Disc(O) =

∣

∣

∣

∣

(

2 0
0 10

)∣

∣

∣

∣

= 20 = [OK : O]2 · 5.
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10.3 Norms of Ideals

In this section we extend the notion of norm to ideals. This will be helpful in
proving of class groups in the next section. For example, we will prove that the
group of fractional ideals modulo principal fractional ideals of a number field is
finite by showing that every ideal is equivalent to an ideal with norm at most some
a priori bound.

Definition 10.3.1 (Lattice Index). If L and M are two lattices in vector space V ,
then the lattice index [L : M ] is by definition the absolute value of the determinant
of any linear automorphism A of V such that A(L) = M .

The lattice index has the following properties:

• If M ⊂ L, then [L : M ] = #(L/M).

• If M, L, N are lattices then [L : N ] = [L : M ] · [M : N ].

Definition 10.3.2 (Norm of Fractional Ideal). Suppose I is a fractional ideal
of OK . The norm of I is the lattice index

Norm(I) = [OK : I] ∈ Q≥0,

or 0 if I = 0.

Note that if I is an integral ideal, then Norm(I) = #(OK/I).

Lemma 10.3.3. Suppose a ∈ K and I is an integral ideal. Then

Norm(aI) = |NormK/Q(a)|Norm(I).

Proof. By properties of the lattice index mentioned above we have

[OK : aI] = [OK : I] · [I : aI] = Norm(I) · |NormK/Q(a)|.

Here we have used that [I : aI] = |NormK/Q(a)|, which is because left multiplication
`a is an automorphism of K that sends I onto aI, so [I : aI] = |Det(`a)| =
|NormK/Q(a)|.

Proposition 10.3.4. If I and J are fractional ideals, then

Norm(IJ) = Norm(I) · Norm(J).

Proof. By Lemma 10.3.3, it suffices to prove this when I and J are integral ideals.
If I and J are coprime, then Theorem 9.1.3 (Chinese Remainder Theorem) implies
that Norm(IJ) = Norm(I) ·Norm(J). Thus we reduce to the case when I = pm and
J = pk for some prime ideal p and integers m, k. By Proposition 9.1.8 (consequence
of CRT that OK/p ∼= pn/pn+1), the filtration of OK/pn given by powers of p has
successive quotients isomorphic to OK/p, so we see that #(OK/pn) = #(OK/p)n,
which proves that Norm(pn) = Norm(p)n.
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Lemma 10.3.5. Fix a number field K. Let B be a positive integer. There are only
finitely many integral ideals I of OK with norm at most B.

Proof. An integral ideal I is a subgroup of OK of index equal to the norm of I. If G
is any finitely generated abelian group, then there are only finitely many subgroups
of G of index at most B, since the subgroups of index dividing an integer n are all
subgroups of G that contain nG, and the group G/nG is finite. This proves the
lemma.

10.4 Finiteness of the Class Group via Geometry of
Numbers

We have seen examples in which OK is not a unique factorization domain. If OK is
a principal ideal domain, then it is a unique factorization domain, so it is of interest
to understand how badly OK fails to be a principal ideal domain. The class group
of OK measures this failure. As one sees in a course on Class Field Theory, the
class group and its generalizations also yield deep insight into the possible abelian
Galois extensions of K.

Definition 10.4.1 (Class Group). Let OK be the ring of integers of a number
field K. The class group CK of K is the group of nonzero fractional ideals modulo
the sugroup of principal fractional ideals (a), for a ∈ K.

Note that if we let Div(K) denote the group of nonzero fractional ideals, then
there is an exact sequence

0 → O∗
K → K∗ → Div(K) → CK → 0.

A basic theorem in algebraic number theory is that the class group CK is finite,
which follows from the first part of the following theorem and the fact that there
are only finitely many ideals of norm less than a given integer.

Theorem 10.4.2 (Finiteness of the Class Group). Let K be a number field.
There is a constant Cr,s that depends only on the number r, s of real and pairs
of complex conjugate embeddings of K such that every ideal class of OK contains
an integral ideal of norm at most Cr,s

√

|dK |, where dK = Disc(OK). Thus by
Lemma 10.3.5 the class group CK of K is finite. One can choose Cr,s such that
every ideal class in CK contains an integral ideal of norm at most

√

|dK | ·
(

4

π

)s n!

nn
.

The explicit bound in the theorem is called the Minkowski bound, and I think
it is the best known unconditional general bound (though there are better bounds
in certain special cases).



68CHAPTER 10. DISCRIMANNTS, NORMS, AND FINITENESS OF THE CLASS GROUP

Before proving Theorem 10.4.2, we prove a few lemmas. The strategy of the
proof will be to start with any nonzero ideal I, and prove that there is some nonzero
a ∈ K, with very small norm, such that aI is an integral ideal. Then Norm(aI) =
NormK/Q(a)Norm(I) will be small, since NormK/Q(a) is small. The trick is to
determine precisely how small an a we can choose subject to the condition that aI
be an integral ideal, i.e., that a ∈ I−1.

Let S be a subset of V = Rn. Then S is convex if whenever x, y ∈ S then the
line connecting x and y lies entirely in S. We say that S is symmetric about the
origin if whenever x ∈ S then −x ∈ S also. If L is a lattice in V , then the volume
of V/L is the volume of the compact real manifold V/L, which is the same thing as
the absolute value of the determinant of any matrix whose rows form a basis for L.

Lemma 10.4.3 (Blichfeld). Let L be a lattice in V = Rn, and let S be a bounded
closed convex subset of V that is symmetric about the origin. Assume that Vol(S) ≥
2n Vol(V/L). Then S contains a nonzero element of L.

Proof. First assume that Vol(S) > 2n · Vol(V/L). If the map π : 1
2S → V/L is

injective, then
1

2n
Vol(S) = Vol

(

1

2
S

)

≤ Vol(V/L),

a contradiction. Thus π is not injective, so there exist P1 6= P2 ∈ 1
2S such that

P1 − P2 ∈ L. By symmetry −P2 ∈ 1
2S. By convexity, the average 1

2(P1 − P2) of P1

and −P2 is also in 1
2S. Thus 0 6= P1 − P2 ∈ S ∩ L, as claimed.

Next assume that Vol(S) = 2n · Vol(V/L). Then for all ε > 0 there is 0 6= Qε ∈
L ∩ (1 + ε)S, since Vol((1 + ε)S) > Vol(S) = 2n · Vol(V/L). If ε < 1 then the Qε

are all in L∩ 2S, which is finite since 2S is bounded and L is discrete. Hence there
exists Q = Qε ∈ L∩(1+ε)S for arbitrarily small ε. Since S is closed, Q ∈ L∩S.

Lemma 10.4.4. If L1 and L2 are lattices in V , then

Vol(V/L2) = Vol(V/L1) · [L1 : L2].

Proof. Let A be an automorphism of V such that A(L1) = L2. Then A defines an
isomorphism of real manifolds V/L1 → V/L2 that changes volume by a factor of
|Det(A)| = [L1 : L2]. The claimed formula then follows.

Fix a number field K with ring of integers OK . Let σ : K → V = Rn be the
embedding

σ(x) =
(

σ1(x), σ2(x), . . . , σr(x),

Re(σr+1(x)), . . . ,Re(σr+s(x)), Im(σr+1(x)), . . . , Im(σr+s(x))
)

,

where σ1, . . . , σr are the real embeddings of K and σr+1, . . . , σr+s are half the com-
plex embeddings of K, with one representative of each pair of complex conjugate
embeddings. Note that this σ is not exactly the same as the one at the beginning
of Section 10.2.
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Lemma 10.4.5.

Vol(V/σ(OK)) = 2−s
√

|dK |.

Proof. Let L = σ(OK). From a basis w1, . . . , wn for OK we obtain a matrix A
whose ith row is

(σ1(wi), · · · , σr(wi), Re(σr+1(wi)), . . . ,Re(σr+s(w1)), Im(σr+1(wi)), . . . , Im(σr+s(w1)))

and whose determinant has absolute value equal to the volume of V/L. By doing
the following three column operations, we obtain a matrix whose rows are exactly
the images of the wi under all embeddings of K into C, which is the matrix that
came up when we defined dK .

1. Add i =
√
−1 times each column with entries Im(σr+j(wi)) to the column

with entries Re(σr+j(wi)).

2. Multiply all columns Im(σr+j(wi)) by −2i, thus changing the determinant by
(−2i)s.

3. Add each columns with entries Re(σr+j(wi)) to the the column with entries
−2iIm(σr+j(wi)).

Recalling the definition of discriminant, we see that if B is the matrix constructed
by the above three operations, then Det(B)2 = dK . Thus

Vol(V/L) = |Det(A)| = |(−2i)−s · Det(B)| = 2−s
√

|dK |.

Lemma 10.4.6. If I is a nonzero fractional ideal for OK , then σ(I) is a lattice in
V , and

Vol(V/σ(I)) = 2−s
√

|dK | · Norm(I).

Proof. We know that [OK : I] = Norm(I) is a nonzero rational number. Lemma 10.4.5
implies that σ(OK) is a lattice in V , since σ(OK) has rank n as abelian group and
spans V , so σ(I) is also a lattice in V . For the volume formula, combine Lem-
mas 10.4.4–10.4.5 to get

Vol(V/σ(I)) = Vol(V/σ(OK)) · [OK : I] = 2−s
√

|dK |Norm(I).

Proof of Theorem 10.4.2. Let K be a number field with ring of integers OK , let
σ : K ↪→ V ∼= Rn be as above, and let f : V → R be the function defined by

f(x1, . . . , xn) = |x1 · · ·xr · (x2
r+1 + x2

(r+1)+s) · · · (x2
r+s + x2

n).

Notice that if x ∈ K then f(σ(x)) = |NormK/Q(x)|.
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Let S ⊂ V be any closed, bounded, convex, subset that is symmetric with
respect to the origin and has positive volume. Since S is closed and bounded,

M = max{f(x) : x ∈ S}
exists.

Suppose I is any nonzero fractional ideal of OK . Our goal is to prove there is
an integral ideal aI with small norm. We will do this by finding an appropriate
a ∈ I−1. By Lemma 10.4.6,

c = Vol(V/I−1) =
2−s

√

|dK |
Norm(I)

.

Let λ = 2 ·
(

c
v

)1/n
, where v = Vol(S). Then

Vol(λS) = λn Vol(S) = 2n c

v
· v = 2n · c = 2n Vol(V/I−1),

so by Lemma 10.4.3 there exists 0 6= a ∈ I−1 ∩ λS. Since M is the largest norm of
an element of S, the largest norm of an element of I−1 ∩ λS is at most λnM , so

|NormK/Q(a)| ≤ λnM.

Since a ∈ I−1, we have aI ⊂ OK , so aI is an integral ideal of OK that is equivalent
to I, and

Norm(aI) = |NormK/Q(a)| · Norm(I)

≤ λnM · Norm(I)

≤ 2n c

v
M · Norm(I)

≤ 2n · 2−s
√

|dK | · M · v−1

= 2r+s
√

|dK | · M · v−1.

Notice that the right hand side is independent of I. It depends only on r, s, |dK |, and
our choice of S. This completes the proof of the theorem, except for the assertion
that S can be chosen to give the claim at the end of the theorem, which we leave
as an exercise.

Corollary 10.4.7. Suppose that K 6= Q is a number field. Then |dK | > 1.

Proof. Applying Theorem 10.4.2 to the unit ideal, we get the bound

1 ≤
√

|dK | ·
(

4

π

)s n!

nn
.

Thus
√

|dK | ≥
(π

4

)s nn

n!
,

and the right hand quantity is strictly bigger than 1 for any s ≤ n/2 and any n > 1
(exercise).
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10.4.1 An Open Problem

Conjecture 10.4.8. There are infinitely many number fields K such that the class
group of K has order 1.

For example, if we consider real quadratic fields K = Q(
√

d), with d positive
and square free, many class numbers are probably 1, as suggested by the Magma

output below. It looks like 1’s will keep appearing infinitely often, and indeed Cohen
and Lenstra conjecture that they do. Nobody has found a way to prove this yet.

> for d in [2..1000] do

if d eq SquareFree(d) then

h := ClassNumber(NumberField(x^2-d));

if h eq 1 then

printf "%o, ", d;

end if;

end if;

end for;

2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 31, 33, 37,

38, 41, 43, 46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83,

86, 89, 93, 94, 97, 101, 103, 107, 109, 113, 118, 127, 129, 131,

133, 134, 137, 139, 141, 149, 151, 157, 158, 161, 163, 166, 167,

173, 177, 179, 181, 191, 193, 197, 199, 201, 206, 209, 211, 213,

214, 217, 227, 233, 237, 239, 241, 249, 251, 253, 262, 263, 269,

271, 277, 278, 281, 283, 293, 301, 302, 307, 309, 311, 313, 317,

329, 331, 334, 337, 341, 347, 349, 353, 358, 367, 373, 379, 381,

382, 383, 389, 393, 397, 398, 409, 413, 417, 419, 421, 422, 431,

433, 437, 446, 449, 453, 454, 457, 461, 463, 467, 478, 479, 487,

489, 491, 497, 501, 502, 503, 509, 517, 521, 523, 526, 537, 541,

542, 547, 553, 557, 563, 566, 569, 571, 573, 581, 587, 589, 593,

597, 599, 601, 607, 613, 614, 617, 619, 622, 631, 633, 641, 643,

647, 649, 653, 661, 662, 669, 673, 677, 681, 683, 691, 694, 701,

709, 713, 717, 718, 719, 721, 734, 737, 739, 743, 749, 751, 753,

757, 758, 766, 769, 773, 781, 787, 789, 797, 809, 811, 813, 821,

823, 827, 829, 838, 849, 853, 857, 859, 862, 863, 869, 877, 878,

881, 883, 886, 887, 889, 893, 907, 911, 913, 917, 919, 921, 926,

929, 933, 937, 941, 947, 953, 958, 967, 971, 973, 974, 977, 983,

989, 991, 997, 998,

In contrast, if we look at class numbers of quadratic imaginary fields, only a few
at the beginning have class number 1.

> for d in [1..1000] do

if d eq SquareFree(d) then

h := ClassNumber(NumberField(x^2+d));
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if h eq 1 then

printf "%o, ", d;

end if;

end if;

end for;

1, 2, 3, 7, 11, 19, 43, 67, 163

It is a theorem that the above list of 9 fields is the complete list with class number 1.
More generally, it is possible (in theory), using deep work of Gross, Zagier, and
Goldfeld involving zeta functions and elliptic curves, to enumerate all quadratic
number fields with a given class number.



Chapter 11

Computing Class Groups

In this chapter we discuss how to compute class groups in some examples, then
introduce the group of units. We will prove the main structure theorem for the
group of units in the next chapter.

11.1 Remarks on Computing the Class Group

If p is a prime of OK , then the intersection p ∩ Z = pZ is a prime ideal of Z. We
say that p lies over p ∈ Z. Note p lies over p ∈ Z if and only if p is one of the
prime factors in the factorization of the ideal pOK . Geometrically, p is a point of
Spec(OK) that lies over the point pZ of Spec(Z) under the map induced by the
inclusion Z ↪→ OK .

Lemma 11.1.1. Let K be a number field with ring of integers OK . Then the class
group Cl(K) is generated by the prime ideals p of OK lying over primes p ∈ Z with
p ≤ BK =

√

|dK | ·
(

4
π

)s · n!
nn , where s is the number of complex conjugate pairs of

embeddings K ↪→ C.

Proof. We proved before that every ideal class in Cl(K) is represented by an ideal
I with Norm(I) ≤ BK . Write I =

∏m
i=1 pei

i , with each ei ≥ 1. Then by multi-
plicativity of the norm, each pi also satisfies Norm(pi) ≤ BK . If pi ∩ Z = pZ, then
p | Norm(pi), since p is the residue characteristic of OK/p, so p ≤ BK . Thus I is a
product of primes p that satisfies the norm bound of the lemma, whcih proves the
lemma.

This is a sketch of how to compute Cl(K):

1. Use the “factoring primes” algorithm to list all prime ideals p of OK that
appear in the factorization of a prime p ∈ Z with p ≤ BK .

2. Find the group generated by the ideal classes [p], where the p are the prime
ideals found in step 1. (In general, one must think more carefully about how
to do this step.)

73
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The following three examples illustrate computation of Cl(K) for K = Q(i),Q(
√

5)
and Q(

√
−6).

Example 11.1.2. We compute the class group of K = Q(i). We have

n = 2, r = 0, s = 1, dK = −4,

so

BK =
√

4 ·
(

4

π

)1

·
(

2!

22

)

=
8

π
< 3.

Thus Cl(K) is generated by the prime divisors of 2. We have

2OK = (1 + i)2,

so Cl(K) is generated by the principal prime ideal p = (1 + i). Thus Cl(K) = 0 is
trivial.

Example 11.1.3. We compute the class group of K = Q(
√

5). We have

n = 2, r = 2, s = 0, dK = 5,

so

B =
√

5 ·
(

4

π

)0

·
(

2!

22

)

< 3.

Thus Cl(K) is generated by the primes that divide 2. We have OK = Z[γ], where

γ = 1+
√

5
2 satisfies x2 − x − 1. The polynomial x2 − x − 1 is irreducible mod 2, so

2OK is prime. Since it is principal, we see that Cl(K) = 1 is trivial.

Example 11.1.4. In this example, we compute the class group of K = Q(
√
−6). We

have

n = 2, r = 0, s = 1, dK = −24,

so

B =
√

24 · 4

π
·
(

2!

22

)

∼ 3.1.

Thus Cl(K) is generated by the prime ideals lying over 2 and 3. We have OK =
Z[
√
−6], and

√
−6 satisfies x2 +6 = 0. Factoring x2 +6 modulo 2 and 3 we see that

the class group is generated by the prime ideals

p2 = (2,
√
−6) and p3 = (3,

√
−6).

Also, p2
2 = 2OK and p2

3 = 3OK , so p2 and p3 define elements of order dividing 2 in
Cl(K).

Is either p2 or p3 principal? Fortunately, there is an easier norm trick that allows
us to decide. Suppose p2 = (α), where α = a + b

√
−6. Then

2 = Norm(p2) = |Norm(α)| = (a + b
√
−6)(a − b

√
−6) = a2 + 6b2.
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Trying the first few values of a, b ∈ Z, we see that this equation has no solutions,
so p2 can not be principal. By a similar argument, we see that p3 is not principal
either. Thus p2 and p3 define elements of order 2 in Cl(K).

Does the class of p2 equal the class of p3? Since p2 and p3 define classes of
order 2, we can decide this by finding the class of p2 · p3. We have

p2 · p3 = (2,
√
−6) · (3,

√
−6) = (6, 2

√
−6, 3

√
−6) ⊂ (

√
−6).

The ideals on both sides of the inclusion have norm 6, so by multiplicativity of the
norm, they must be the same ideal. Thus p2 · p3 = (

√
−6) is principal, so p2 and p3

represent the same element of Cl(K). We conclude that

Cl(K) = 〈p2〉 = Z/2Z.
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Chapter 12

Dirichlet’s Unit Theorem

In this chapter we will prove the main structure theorem for the group of units of
the ring of integers of a number field. The answer is remarkably simple: if K has r
real and s complex embeddings, then

O∗
K ≈ Zr+s−1 ⊕ W,

where W is the finite cyclic group of roots of unity in K. Examples will follow on
Thursday (application: the solutions to Pell’s equation x2 − dy2 = 1, for d > 1
squarefree, form a free abelian group of rank 1).

12.1 The Group of Units

Definition 12.1.1 (Unit Group). The group of units UK associated to a number
field K is the group of elements of OK that have an inverse in OK .

Theorem 12.1.2 (Dirichlet). The group UK is the product of a finite cyclic group
of roots of unity with a free abelian group of rank r+s−1, where r is the number of
real embeddings of K and s is the number of complex conjugate pairs of embeddings.

We prove the theorem by defining a map ϕ : UK → Rr+s, and showing that
the kernel of ϕ is finite and the image of ϕ is a lattice in a hyperplane in Rr+s.
The trickiest part of the proof is showing that the image of ϕ spans a hyperplane,
and we do this by a clever application of Blichfeldt’s lemma (that if S is closed,
bounded, symmetric, etc., and has volume at least 2n ·Vol(V/L), then S∩L contains
a nonzero element).

Remark 12.1.3. Theorem 12.1.2 is due to Dirichlet who lived 1805–1859. Thomas
Hirst described Dirichlet as follows:

He is a rather tall, lanky-looking man, with moustache and beard about
to turn grey with a somewhat harsh voice and rather deaf. He was un-
washed, with his cup of coffee and cigar. One of his failings is forgetting
time, he pulls his watch out, finds it past three, and runs out without
even finishing the sentence.

77
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Koch wrote that:

... important parts of mathematics were influenced by Dirichlet. His
proofs characteristically started with surprisingly simple observations,
followed by extremely sharp analysis of the remaining problem.

I think Koch’s observation nicely describes the proof we will give of Theorem 12.1.2.

The following proposition explains how to think about units in terms of the
norm.

Proposition 12.1.4. An element a ∈ OK is a unit if and only if NormK/Q(a) =
±1.

Proof. Write Norm = NormK/Q. If a is a unit, then a−1 is also a unit, and 1 =
Norm(a)Norm(a−1). Since both Norm(a) and Norm(a−1) are integers, it follows
that Norm(a) = ±1. Conversely, if a ∈ OK and Norm(a) = ±1, then the equation
aa−1 = 1 = ±Norm(a) implies that a−1 = ±Norm(a)/a. But Norm(a) is the
product of the images of a in C by all embeddings of K into C, so Norm(a)/a is
also a product of images of a in C, hence a product of algebraic integers, hence an
algebraic integer. Thus a−1 ∈ OK , which proves that a is a unit.

Let r be the number of real and s the number of complex conjugate embeddings
of K into C, so n = [K : Q] = r + 2s. Define a map

ϕ : UK → Rr+s

by
ϕ(a) = (log |σ1(a)|, . . . , log |σr+s(a)|).

Lemma 12.1.5. The image of ϕ lies in the hyperplane

H = {(x1, . . . , xr+s) ∈ Rr+s : x1 + · · · + xr + 2xr+1 + · · · + 2xr+s = 0}. (12.1.1)

Proof. If a ∈ UK , then by Proposition 12.1.4,
(

r
∏

i=1

|σi(a)|
)

·
(

s
∏

i=r+1

|σi(a)|2
)

= 1.

Taking logs of both sides proves the lemma.

Lemma 12.1.6. The kernel of ϕ is finite.

Proof. We have

Ker(ϕ) ⊂ {a ∈ OK : |σi(a)| = 1 for all i = 1, . . . , r + 2s}
⊂ σ(OK) ∩ X,

where X is the bounded subset of Rr+2s of elements all of whose coordinates have
absolute value at most 1. Since σ(OK) is a lattice (see Proposition 5.2.4), the
intersection σ(OK) ∩ X is finite, so Ker(ϕ) is finite.
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Lemma 12.1.7. The kernel of ϕ is a finite cyclic group.

Proof. It is a general fact that any finite subgroup of the multiplicative group of a
field is cyclic. [Homework.]

To prove Theorem 12.1.2, it suffices to proove that Im(ϕ) is a lattice in the
hyperplane H from (12.1.1), which we view as a vector space of dimension r+s−1.

Define an embedding
σ : K ↪→ Rn (12.1.2)

given by σ(x) = (σ1(x), . . . , σr+s(x)), where we view C ∼= R×R via a+ bi 7→ (a, b).
Note that this is exactly the same as the embedding

x 7→
(

σ1(x), σ2(x), . . . , σr(x),

Re(σr+1(x)), . . . ,Re(σr+s(x)), Im(σr+1(x)), . . . , Im(σr+s(x))
)

,

from before, except that we have re-ordered the last s imaginary components to be
next to their corresponding real parts.

Lemma 12.1.8. The image of ϕ is discrete in Rr+s.

Proof. Suppose X is any bounded subset of Rr+s. Then for any u ∈ Y = ϕ−1(X)
the coordinates of σ(u) are bounded in terms of X (since log is an increasing func-
tion). Thus σ(Y ) is a bounded subset of Rn. Since σ(Y ) ⊂ σ(OK), and σ(OK) is
a lattice in Rn, it follows that σ(Y ) is finite. Since σ is injective, Y is finite, and ϕ
has finite kernel, so ϕ(UK) ∩ X is finite, which implies that ϕ(UK) is discrete.

To finish the proof of Theorem 12.1.2, we will show that the image of ϕ spans H.
Let W be the R-span of the image ϕ(UK), and note that W is a subspace of H.
We will show that W = H indirectly by showing that if v 6∈ H⊥, where ⊥ is with
respect to the dot product on Rr+s, then v 6∈ W⊥. This will show that W⊥ ⊂ H⊥,
hence that H ⊂ W , as required.

Thus suppose z = (z1, . . . , zr+s) 6∈ H⊥. Define a function f : K∗ → R by

f(x) = z1 log |σ1(x)| + · · · zr+s log |σr+s(x)|. (12.1.3)

To show that z 6∈ W⊥ we show that there exists some u ∈ UK with f(u) 6= 0.
Let

A =
√

|dK | ·
(

2

π

)s

∈ R>0.

Choose any positive real numbers c1, . . . , cr+s ∈ R>0 such that

c1 · · · cr · (cr+1 · · · cr+s)
2 = A.

Let

S = {(x1, . . . , xn) ∈ Rn :

|xi| ≤ ci for 1 ≤ i ≤ r,

|x2
i + x2

i+s| ≤ c2
i for r < i ≤ r + s} ⊂ Rn.
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Then S is closed, bounded, convex, symmetric with respect to the origin, and of
dimension r + 2s, since S is a product of r intervals and s discs, each of which has
these properties. Viewing S as a product of intervals and discs, we see that the
volume of S is

Vol(S) =
r

∏

i=1

(2ci) ·
s

∏

i=1

(πc2
i ) = 2r · πs · A.

Recall Blichfeldt’s lemma that if L is a lattice and S is closed, bounded, etc.,
and has volume at least 2n · Vol(V/L), then S ∩ L contains a nonzero element. To
apply this lemma, we take L = σ(OK) ⊂ Rn, where σ is as in (12.1.2). We showed,
when proving finiteness of the class group, that Vol(Rn/L) = 2−s

√

|dK |. To check
the hypothesis to Blichfeld’s lemma, note that

Vol(S) = 2r+s
√

|dK | = 2n2−s
√

|dK | = 2n Vol(Rn/L).

Thus there exists a nonzero element a ∈ S ∩ σ(OK), i.e., a nonzero a ∈ OK such
that |σi(a)| ≤ ci for 1 ≤ i ≤ r + s. We then have

|NormK/Q(a)| =

∣

∣

∣

∣

∣

r+2s
∏

i=1

σi(a)

∣

∣

∣

∣

∣

=
r

∏

i=1

|σi(a)| ·
s

∏

i=r+1

|σi(a)|2

≤ c1 · · · cr · (cr+1 · · · cr+s)
2 = A.

Since a ∈ OK is nonzero, we also have

|NormK/Q(a)| ≥ 1.

Moreover, if for any i ≤ r, we have |σi(a)| < ci

A , then

1 ≤ |NormK/Q(a)| < c1 · · ·
ci

A
· · · cr · (cr+1 · · · cr+s)

2 =
A

A
= 1,

a contradiction, so |σi(a)| ≥ ci

A for i = 1, . . . , r. Likewise, |σi(a)|2 ≥ c2i
A , for i =

r + 1, . . . , r + s. Rewriting this we have

ci

|σi(a)| ≤ A for i ≤ r and

(

ci

|σi(a)|

)2

≤ A for i = r + 1, . . . , r + s.

Our strategy is to use an appropriately chosen a to construct a unit u ∈ UK such
f(u) 6= 0. First, let b1, . . . , bm be representative generators for the finitely many
nonzero principal ideals of OK of norm at most A. Since |NormK/Q(a)| ≤ A, we
have (a) = (bj), for some j, so there is a unit u ∈ OK such that a = ubj .

Let
s = s(c1, . . . , cr+s) = z1 log(c1) + · · · + zr+s log(cr+s),
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and recall f : K∗ → R defined in (12.1.3) above. We first show that

|f(u) − s| ≤ B = |f(bj)| + log(A) ·
(

r
∑

i=1

|zi| +
1

2
·

s
∑

i=r+1

|zi|
)

. (12.1.4)

We have

|f(u) − s| = |f(a) − f(bj) − s|
≤ |f(bj)| + |s − f(a)|
= |f(bj)| + |z1(log(c1) − log(|σ1(a)|)) + · · · + zr+s(log(cr+s) − log(|σr+s(a)|))|
= |f(bj)| + |z1 · log(c1/|σ1(a)|) + · · · + zr+s

2
· log((cr+s/|σr+s(a)|)2)|

≤ |f(bj)| + log(A) ·
(

r
∑

i=1

|zi| +
1

2
·

s
∑

i=r+1

|zi|
)

.

The amazing thing about (12.1.4) is that the bound B on the right hand side
does not depend on the ci. Suppose we can choose positive real numbers ci such
that

c1 · · · cr · (cr+1 · · · cr+s)
2 = A

and s = s(c1, . . . , cr+s) is such that |s| > B. Then |f(u)− s| ≤ B would imply that
|f(u)| > 0, which is exactly what we aimed to prove. It is possible to choose such ci,
by proceeding as follows. If r + s = 1, then we are trying to prove that ϕ(UK) is
a lattice in R0 = Rr+s−1, which is automatically true, so assume r + s > 1. Then
there are at least two distinct ci. Let j be such that zj 6= 0 (which exists since
z 6= 0). Then |zj log(cj)| → ∞ as cj → ∞, so we choose cj very large and the other
ci, for i 6= j, in any way we want subject to the condition

r
∏

i=1,i6=j

ci ·
s

∏

i=r+1

c2
i =

A

cj
.

Since it is possible to choose the ci as needed, it is possible to find a unit u such
that f(u) > 0. We conclude that z 6∈ W⊥, so W⊥ ⊂ Z⊥, whence Z ⊂ W , which
finishes the proof Theorem 12.1.2.

12.2 Finishing the proof of Dirichlet’s Unit Theorem

We begin by finishing Dirichlet’s proof that the group of units UK of OK is isomor-
phic to Zr+s−1 ⊕ Z/mZ, where r is the number of real embeddings, s is half the
number of complex embeddings, and m is the number of roots of unity in K. Recall
that we defined a map ϕ : UK → Rr+s by

ϕ(x) = (log |σ1(x)|, . . . , log |σr+s(x)|).
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Without much trouble, we proved that the kernel of ϕ if finite and the image ϕ is
discrete, and in the last section we were finishing the proof that the image of ϕ spans
the subspace H of elements of Rr+s that are orthogonal to v = (1, . . . , 1, 2, . . . , 2),
where r of the entries are 1’s and s of them are 2’s. The somewhat indirect route
we followed was to suppose

z 6∈ H⊥ = Span(v),

i.e., that z is not a multiple of v, and prove that z is not orthogonal to some
element of ϕ(UK). Writing W = Span(ϕ(UK)), this would show that W⊥ ⊂ H⊥,
so H ⊂ W . We ran into two problems: (1) we ran out of time, and (2) the notes
contained an incomplete argument that a quantity s = s(c1, . . . , cr+s) can be chosen
to be arbitrarily large. We will finish going through a complete proof, then compute
many examples of unit groups using Magma.

Recall that f : K∗ → R was defined by

f(x) = z1 log |σ1(x)| + · · · + zr+s log |σr+s(x)| = z • ϕ(x) (dot product),

and our goal is to show that there is a u ∈ UK such that f(u) 6= 0.

Our strategy is to use an appropriately chosen a to construct a unit u ∈ UK

such f(u) 6= 0. Recall that we used Blichfeld’s lemma to find an a ∈ OK such that
1 ≤ |NormK/Q(a)| ≤ A, and

ci

|σi(a)| ≤ A for i ≤ r and

(

ci

|σi(a)|

)2

≤ A for i = r + 1, . . . , r + s.

(12.2.1)

Let b1, . . . , bm be representative generators for the finitely many nonzero princi-
pal ideals of OK of norm at most A = AK =

√

|dK | ·
(

2
π

)s
. Modify the bi to have the

property that |f(bi)| is minimal among generators of (bi) (this is possible because
ideals are discrete). Note that the set {|f(bi)| : i = 1, . . . , m} depends only on A.
Since |NormK/Q(a)| ≤ A, we have (a) = (bj), for some j, so there is a unit u ∈ OK

such that a = ubj .

Let

s = s(c1, . . . , cr+s) = z1 log(c1) + · · · + zr+s log(cr+s) ∈ R.

Lemma 12.2.1. We have

|f(u) − s| ≤ B = max
i

(|f(bi)|) + log(A) ·
(

r
∑

i=1

|zi| +
1

2
·

s
∑

i=r+1

|zi|
)

,

and B depends only on K and our fixed choice of z ∈ H⊥.

Proof. By properties of logarithms, f(u) = f(a/bj) = f(a) − f(bj). We next use
the triangle inequality |a + b| ≤ |a| + |b| in various ways, properties of logarithms,
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and the bounds (12.2.1) in the following computation:

|f(u) − s| = |f(a) − f(bj) − s|
≤ |f(bj)| + |s − f(a)|
= |f(bj)| + |z1(log(c1) − log(|σ1(a)|)) + · · · + zr+s(log(cr+s) − log(|σr+s(a)|))|

= |f(bj)| + |z1 · log(c1/|σ1(a)|) + · · · + 1

2
· zr+s log((cr+s/|σr+s(a)|)2)|

≤ |f(bj)| + log(A) ·
(

r
∑

i=1

|zi| +
1

2
·

s
∑

i=r+1

|zi|
)

.

The inequality of the lemma now follows. That B only depends on K and our choice
of z follows from the formula for A and how we chose the bi.

The amazing thing about Lemma 12.2.1 is that the bound B on the right hand
side does not depend on the ci. Suppose we could somehow cleverly choose the
positive real numbers ci in such a way that

c1 · · · cr · (cr+1 · · · cr+s)
2 = A and |s(c1, . . . , cr+s)| > B.

Then the facts that |f(u)−s| ≤ B and |s| > B would together imply that |f(u)| > 0
(since f(u) is closer to s than s is to 0), which is exactly what we aimed to prove.
We finish the proof by showing that it is possible to choose such ci. Note that if we
change the ci, then a could change, hence the j such that a/bj is a unit could change,
but the bj don’t change, just the subscript j. Also note that if r + s = 1, then we
are trying to prove that ϕ(UK) is a lattice in R0 = Rr+s−1, which is automatically
true, so we may assume that r + s > 1.

Lemma 12.2.2. Assume r + s > 1. Then there is a choice of c1, . . . , cr+s ∈ R>0

such that

|z1 log(c1) + · · · + zr+s log(cr+s)| > B.

Proof. It is easier if we write

z1 log(c1) + · · · + zr+s log(cr+s) =

z1 log(c1) + · · · + zr log(cr) +
1

2
· zr+1 log(c2

r+1) + · · · + 1

2
· zr+s log(c2

r+s)

= w1 log(d1) + · · · + wr log(dr) + wr+1 log(dr+1) + · · · + ·wr+s log(dr+s),

where wi = zi and di = ci for i ≤ r, and wi = 1
2zi and di = c2

i for r < i ≤ s,

The condition that z 6∈ H⊥ is that the wi are not all the same, and in our new
coordinates the lemma is equivalent to showing that |∑r+s

i=1 wi log(di)| > B, subject
to the condition that

∏r+s
i=1 di = A. Order the wi so that w1 6= 0. By hypothesis

there exists a wj such that wj 6= w1, and again re-ordering we may assume that
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j = 2. Set d3 = · · · = dr+s = 1. Then d1d2 = A and log(1) = 0, so

∣

∣

∣

∣

∣

r+s
∑

i=1

wi log(di)

∣

∣

∣

∣

∣

= |w1 log(d1) + w2 log(d2)|

= |w1 log(d1) + w2 log(A/d1)|
= |(w1 − w2) log(d1) + w2 log(A)|

Since w1 6= w2, we have |(w1 − w2) log(d1) + w2 log(A)| → ∞ as d1 → ∞.

12.3 Some Examples of Units in Number Fields

The classical Pell’s equation is, given square-free d > 0, to find all positive integer
solutions (x, y) to the equation x2 − dy2 = 1. Note that if x + y

√
d ∈ Q(

√
d), then

Norm(x + y
√

d) = (x + y
√

d)(x − y
√

d) = x2 − dy2.

The solutions to Pell’s equation thus form a finite-index subgroup of the group of
units in the ring of integers of Q(

√
d). Dirichlet’s unit theorem implies that for

any d the solutions to Pell’s equation form an infinite cyclic group, a fact that takes
substantial work to prove using only elementary number theory (for example, using
continued fractions).

We first solve the Pell equation x2 − 5y2 = 1 by finding the units of a field using
Magma (we will likely discuss algorithms for computing unit groups later in the
course...).

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^2-5);

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z

Defined on 2 generators

Relations:

2*G.1 = 0

> K!phi(G.1);

-1

> u := K!phi(G.2); u;

1/2*(a + 1)

> u^2;

1/2*(a + 3)

> u^3;

a + 2

> Norm(u);

-1

> Norm(u^3);
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-1

> Norm(u^6);

1

> fund := u^6;

> fund;

4*a + 9

> 9^2 - 5*4^2;

1

> fund^2;

72*a + 161

> fund^3;

1292*a + 2889

> fund^4;

23184*a + 51841

> fund^5;

416020*a + 930249

I think in practice for solving Pell’s equation it’s best to use the ideas in the
paper [Len02]. A review of this paper says: “This wonderful article begins with
history and some elementary facts and proceeds to greater and greater depth about
the existence of solutions to Pell equations and then later the algorithmic issues
of finding those solutions. The cattle problem is discussed, as are modern smooth
number methods for solving Pell equations and the algorithmic issues of representing
very large solutions in a reasonable way.” You can get the paper freely online from
the Notices web page.

The simplest solutions to Pell’s equation can be huge, even when d is quite small.
Read Lenstra’s paper for some awesome examples from antiquity.

K<a> := NumberField(x^2-NextPrime(10^7));

> G, phi := UnitGroup(K);

> K!phi(G.2);

1635802598803463282255922381210946254991426776931429155067472530\

003400641003657678728904388162492712664239981750303094365756\

106316392723776016806037958837914778176119741840754457028237\

899759459100428895693238165048098039*a +

517286692885814967470170672368346798303629034373575202975075\

605058714958080893991274427903448098643836512878351227856269\

086856679078304979321047765031073345259902622712059164969008\

6336036036403311756634562204182936222240930

The Magma Signature command returns the number of real and complex
conjugate embeddings of K into C. The command UnitGroup, which we used
above, returns the unit group UK as an abstract abelian group and a homomorphism
UK → OK . Note that we have to bang (!) into K to get the units as elements of
K.
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First we consider K = Q(i).

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^2+1);

> Signature(K);

0 1 // r=0, s=1

> G,phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/4

Defined on 1 generator

Relations:

4*G.1 = 0

> K!phi(G.1);

-a

Next we consider K = Q( 3
√

2).

> K<a> := NumberField(x^3-2);

> Signature(K);

1 1

> G,phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z

Defined on 2 generators

Relations:

2*G.1 = 0

> K!phi(G.2);

-a + 1

The Conjugates command returns the sequence (σ1(x), . . . , σr+2s(x)) of all embed-
dings of x ∈ K into C. The Logs command returns the sequence

(log(|σ1(x)|), . . . , log(|σr+s(x)|)).

Continuing the above example, we have

> Conjugates(K!phi(G.2));

[ -0.25992104989487316476721060727822835057025146470099999999995,

1.6299605249474365823836053036391141752851257323513843923104 -

1.09112363597172140356007261418980888132587333874018547370560*i,

1.6299605249474365823836053036391141752851257323513843923104 +

1.09112363597172140356007261418980888132587333874018547370560*i ]

> Logs(K!phi(G.2)); // image of infinite order unit -- generates a lattice

[ -1.34737734832938410091818789144565304628306227332099999999989\

, 0.6736886741646920504590939457228265231415311366603288999999 ]

> Logs(K!phi(G.1)); // image of -1

[ 0.E-57, 0.E-57 ]
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Let’s try a field such that r + s − 1 = 2. First, one with r = 0 and s = 3:

> K<a> := NumberField(x^6+x+1);

> Signature(K);

0 3

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z + Z

Defined on 3 generators

Relations:

2*G.1 = 0

> u1 := K!phi(G.2); u1;

a

> u2 := K!phi(G.3); u2;

-2*a^5 - a^3 + a^2 + a

> Logs(u1);

[ 0.11877157353322375762475480482285510811783185904379239999998,

0.048643909752673399635150940533329986148342128393119899999997,

-0.16741548328589715725990574535618509426617398743691229999999 ]

> Logs(u2);

[ 1.6502294567845884711894772749682228152154948421589999999997,

-2.09638539134527779532491660083370951943382108902299999999997,

0.44615593456068932413543932586548670421832624686433469999994 ]

Notice that the log image of u1 is clearly not a real multiple of the log image of
u2 (e.g., the scalar would have to be positive because of the first coefficient, but
negative because of the second). This illustrates the fact that the log images of u1

and u2 span a two-dimensional space.
Next we compute a field with r = 3 and s = 0. (A field with s = 0 is called

“totally real”.)

> K<a> := NumberField(x^3 + x^2 - 5*x - 1);

> Signature(K);

3 0

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z + Z

Defined on 3 generators

Relations:

2*G.1 = 0

> u1 := K!phi(G.2); u1;

1/2*(a^2 + 2*a - 1)

> u2 := K!phi(G.3); u2;

a

> Logs(u1);
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[ 1.16761574692758757159598251863681302946987760474899999999995,

-0.39284872458139826129179862583435951875841422643044369999996,

-0.7747670223461893103041838928024535107114633783181766999998 ]

> Logs(u2);

[ 0.6435429462288618773851817227686467257757954024463081999999,

-1.6402241503223171469101505551700850575583464226669999999999,

0.9966812040934552695249688324014383317825510202205498999998 ]

A family of fields with r = 0 (totally complex) is the cyclotomic fields Q(ζn).
The degree of Q(ζn) over Q is ϕ(n) and r = 0, so s = ϕ(n)/2 (assuming n > 2).

> K := CyclotomicField(11); K;

Cyclotomic Field of order 11 and degree 10

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/22 + Z + Z + Z + Z

Defined on 5 generators

Relations:

22*G.1 = 0

> u := K!phi(G.2); u;

zeta_11^9 + zeta_11^8 + zeta_11^7 + zeta_11^6 + zeta_11^5 +

zeta_11^3 + zeta_11^2 + zeta_11 + 1

> Logs(u);

[ -1.25656632417872848745322215929976803991663080388899999999969,

0.6517968940331400079717923884685099182823284402303273999999,

-0.18533004655986214094922163920197221556431542171819269999999,

0.5202849820300749393306985734118507551388955065272236999998,

0.26981449467537568109995283662137958205972227885009159999993 ]

> K!phi(G.3);

zeta_11^9 + zeta_11^7 + zeta_11^6 + zeta_11^5 + zeta_11^4 +

zeta_11^3 + zeta_11^2 + zeta_11 + 1

> K!phi(G.4);

zeta_11^9 + zeta_11^8 + zeta_11^7 + zeta_11^6 + zeta_11^5 +

zeta_11^4 + zeta_11^3 + zeta_11^2 + zeta_11

> K!phi(G.5);

zeta_11^9 + zeta_11^8 + zeta_11^7 + zeta_11^6 + zeta_11^5 +

zeta_11^4 + zeta_11^2 + zeta_11 + 1

How far can we go computing unit groups of cyclotomic fields directly with
Magma?

> time G,phi := UnitGroup(CyclotomicField(13));

Time: 2.210

> time G,phi := UnitGroup(CyclotomicField(17));

Time: 8.600
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> time G,phi := UnitGroup(CyclotomicField(23));

.... I waited over 10 minutes (usage of 300MB RAM) and gave up.

12.4 Preview

In the next chapter we will study extra structure in the case when K is Galois over Q;
the results are nicely algebraic, beautiful, and have interesting ramifications. We’ll
learn about Frobenius elements, the Artin symbol, decomposition groups, and how
the Galois group of K is related to Galois groups of residue class fields. These are
the basic structures needed to make any sense of representations of Galois groups,
which is at the heart of much of number theory.
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Chapter 13

Decomposition and Inertia
Groups

13.1 Galois Extensions

Suppose K ⊂ C is a number field. Then K is Galois if every field homomorphism
K → C has image K, or equivalently, # Aut(K) = [K : Q]. More generally, we
have the following definition.

Definition 13.1.1 (Galois). An extension K/L of number fields is Galois if
# Aut(K/L) = [K : L], where Aut(K/L) is the group of automorphisms of K
that fix L. We write Gal(K/L) = Aut(K/L).

For example, Q is Galois (over itself), any quadratic extension K/L is Galois,
since it is of the form L(

√
a), for some a ∈ L, and the nontrivial embedding is

induced by
√

a 7→ −√
a, so there is always one nontrivial automorphism. If f ∈ L[x]

is an irreducible cubic polynomial, and a is a root of f , then one proves in a course
in Galois theory that L(a) is Galois over L if and only if the discriminant of f is a
perfect square in L. Random number fields of degree bigger than 2 are rarely Galois
(I will not justify this claim further in this course).

If K/Q is a number field, then the Galois closure Kgc of K is the field generated
by all images of K under all embeddings in C (more generally, if K/L is an extension,
the Galois closure of K over L is the field generated by images of embeddings K → C
that are the identity map on L). If K = Q(a), then Kgc is generated by each of the
conjugates of a, and is hence Galois over Q, since the image under an embedding
of any polynomial in the conjugates of a is again a polynomial in conjugates of a.

How much bigger can the degree of Kgc be as compared to the degree of K =
Q(a)? There is a natural embedding of Gal(Kgc/Q) into the group of permutations
of the conjugates of a. If there are n conjugates of a, then this is an embedding
Gal(Kgc/Q) ↪→ Sn, where Sn is the symmetric group on n symbols, which has order
n!. Thus the degree of the Kgc over Q is a divisor of n!. Also the Galois group
is a transitive subgroup of Sn, which constrains the possibilities further. When

91
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n = 2, we recover the fact that quadratic extensions are Galois. When n = 3, we
see that the Galois closure of a cubic extension is either the cubic extension or a
quadratic extension of the cubic extension. It turns out that that Galois closure of a
cubic extension is obtained by adjoining the square root of the discriminant. For an
extension K of degree 5, it is “frequently” the case that the Galois closure has degree
120, and in fact it is a difficult and interesting problem to find examples of degree
5 extension in which the Galois closure has degree smaller than 120 (according to
Magma: the only possibilities for the order of a transitive proper subgroup of S5

are 5, 10, 20, and 60; there are five transitive subgroups of S5 out of the total of 19
subgroups of S5).

Let n be a positive integer. Consider the field K = Q(ζn), where ζn = e2πi/n is
a primitive nth root of unity. If σ : K → C is an embedding, then σ(ζn) is also an
nth root of unity, and the group of nth roots of unity is cyclic, so σ(ζn) = ζm

n for
some m which is invertible modulo n. Thus K is Galois and Gal(K/Q) ↪→ (Z/nZ)∗.
However, [K : Q] = n, so this map is an isomorphism. (Side note: Taking a p-adic
limit and using the maps Gal(Q/Q) → Gal(Q(ζpr)/Q), we obtain a homomorphism
Gal(Q/Q) → Z∗

p, which is called the p-adic cyclotomic character.)

Compositums of Galois extensions are Galois. For example, the biquadratic field
K = Q(

√
5,
√
−1) is a Galois extension of Q of degree 4.

Fix a number field K that is Galois over a subfield L. Then the Galois group
G = Gal(K/L) acts on many of the object that we have associated to K, including:

• the integers OK ,

• the units UK ,

• the group of nonzero fractional ideals of OK ,

• the class group Cl(K), and

• the set Sp of prime ideals P lying over a given prime p of OL.

In the next section we will be concerned with the action of Gal(K/L) on Sp, though
actions on each of the other objects, especially Cl(K), will be of further interest.

13.2 Decomposition of Primes

Fix a prime p ⊂ OK and write pOK = Pe1
1 · · ·Peg

g , so Sp = {P1, . . . ,Pg}.

Definition 13.2.1 (Residue class degree). Suppose P is a prime of OK lying
over p. Then the residue class degree of P is

fP/p = [OK/P : OL/p],

i.e., the degree of the extension of residue class fields.
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If M/K/L is a tower of field extensions and q is a prime of M over P, then

fq/p = [OM/q : OL/p] = [OM/q : OK/P] · [OK/P : OL/p] = fq/P · fP/p,

so the residue class degree is multiplicative in towers.
Note that if σ ∈ Gal(K/L) and P ∈ Sp, then σ induces an isomorphism of finite

fields OK/P → OK/σ(P) that fixes the common subfield OL/p. Thus the residue
class degrees of P and σ(P) are the same. In fact, much more is true.

Theorem 13.2.2. Suppose K/L is a Galois extension of number fields, and let p be
a prime of OL. Write pOK =

∏g
i=1 P

ei

i , and let fi = fPi/p. Then G = Gal(K/L)
acts transitively on the set Sp of primes Pi,

e1 = · · · = eg, f1 = · · · = fg,

and efg = [K : L], where e is the common value of the ei and f is the common
value of the fi.

Proof. For simplicity, we will give the proof only in the case L = Q, but the proof
works in general. Suppose p ∈ Z and pOK = pe1

1 · · · peg
g , and S = {p1, . . . , pg}. We

will first prove that G acts transitively on S. Let p = pi for some i. Recall that
we proved long ago, using the Chinese Remainder Theorem (Theorem 9.1.3) that
there exists a ∈ p such that (a)/p is an integral ideal that is coprime to pOK . The
product

I =
∏

σ∈G

σ((a)/p) =
∏

σ∈G

(σ(a))OK

σ(p)
=

(NormK/Q(a))OK
∏

σ∈G

σ(p)
(13.2.1)

is a nonzero integral OK ideal since it is a product of nonzero integral OK ideals.
Since a ∈ p we have that NormK/Q(a) ∈ p ∩ Z = pZ. Thus the numerator of the
rightmost expression in (13.2.1) is divisible by pOK . Also, because (a)/p is coprime
to pOK , each σ((a)/p) is coprime to pOK as well. Thus I is coprime to pOK . Thus
the denominator of the rightmost expression in (13.2.1) must also be divisibly by
pOK in order to cancel the pOK in the numerator. Thus for any i we have

g
∏

j=1

p
ej

j = pOK

∣

∣

∣

∏

σ∈G

σ(pi),

which in particular implies that G acts transitively on the pi.
Choose some j and suppose that k 6= j is another index. Because G acts

transitively, there exists σ ∈ G such that σ(pk) = pj . Applying σ to the factorization
pOK =

∏g
i=1 p

ei

i , we see that

g
∏

i=1

pei

i =

g
∏

i=1

σ(pi)
ei .
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Taking ordpj
on both sides we get ej = ek. Thus e1 = e2 = · · · = eg.

As was mentioned right before the statement of the theorem, for any σ ∈ G we
have OK/pi

∼= OK/σ(pi), so by transitivity f1 = f2 = · · · = fg. Since OK is a
lattice in K, we have

[K : Q] = dimZ OK = dimFp OK/pOK

= dimFp

(

g
⊕

i=1

OK/p
ei

i

)

=

g
∑

i=1

eifi = efg,

which completes the proof.

The rest of this section illustrates the theorem for quadratic fields and a cubic
field and its Galois closure.

13.2.1 Quadratic Extensions

Suppose K/Q is a quadratic field. Then K is Galois, so for each prime p ∈ Z we
have 2 = efg. There are exactly three possibilties:

• Ramified: e = 2, f = g = 1: The prime p ramifies in OK , so pOK =
p2. There are only finitely many such primes, since if f(x) is the minimal
polynomial of a generator for OK , then p ramifies if and only if f(x) has a
multiple root modulo p. However, f(x) has a multiple root modulo p if and
only if p divides the discriminant of f(x), which is nonzero because f(x) is
irreducible over Z. (This argument shows there are only finitely many ramified
primes in any number field. In fact, we will later show that the ramified primes
are exactly the ones that divide the discriminant.)

• Inert: e = 1, f = 2, g = 1: The prime p is inert in OK , so pOK = p is prime.
This happens 50% of the time, which is suggested by quadratic reciprocity
(but not proved this way), as we will see illustrated below for a particular
example.

• Split: e = f = 1, g = 2: The prime p splits in OK , in the sense that
pOK = p1p2 with p1 6= p2. This happens the other 50% of the time.

Suppose, in particular, that K = Q(
√

5), so OK = Z[γ], where γ = (1 +
√

5)/2.
Then p = 5 is ramified, since pOK = (

√
5)2. More generally, the order Z[

√
5] has

index 2 in OK , so for any prime p 6= 2 we can determine the factorization of p in
OK by finding the factorization of the polynomial x2 − 5 ∈ Fp[x]. The polynomial
x2 − 5 splits as a product of two distinct factors in Fp[x] if and only if e = f = 1
and g = 2. For p 6= 2, 5 this is the case if and only if 5 is a square in Fp, i.e., if
(

5
p

)

= 1, where
(

5
p

)

is +1 if 5 is a square mod p and −1 if 5 is not. By quadratic

reciprocity,

(

5

p

)

= (−1)
5−1
2

· p−1
2 ·

(p

5

)

=
(p

5

)

=

{

+1 if p ≡ ±1 (mod 5)

−1 if p ≡ ±2 (mod 5).
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Thus whether p splits or is inert in OK is determined by the residue class of p
modulo 5.

13.2.2 The Cube Roots of Two

Suppose K/Q is not Galois. Then ei, fi, and g are defined for each prime p ∈ Z,
but we need not have e1 = · · · = eg or f1 = · · · = fg. We do still have that
∑g

i=1 eifi = n, by the Chinese Remainder Theorem.
For example, let K = Q( 3

√
2). We know that OK = Z[ 3

√
2]. Thus 2OK = ( 3

√
2)3,

so for 2 we have e = 3 and f = g = 1. To factor 3OK , we note that working modulo
3 we have

x3 − 2 = (x − 2)(x2 + 2x + 1) = (x − 2)(x + 1)2 ∈ F3[x],

so
3OK = (3,

3
√

2 − 2) · (3,
3
√

2 + 1)2.

Thus e1 = 1, e2 = 2, f1 = f2 = 1, and g = 2. Next, working modulo 5 we have

x3 − 2 = (x + 2)(x2 + 3x + 4) ∈ F5[x],

and the quadratic factor is irreducible. Thus

5OK = (5,
3
√

2 + 2) · (5,
3
√

2
2
+ 3

3
√

2 + 4).

Thus here e1 = e2 = 1, f1 = 1, f2 = 2, and g = 2.
Next we consider what happens in the Galois closure of K. Since the three

embeddings of 3
√

2 in C are 3
√

2, ζ3
3
√

2, and ζ2
3

3
√

2, we have

M = Kgc = Q(
3
√

2, ζ3) = K.L,

where L = Q(ζ3) = Q(
√
−3), since ζ3 = (−1 +

√
−3)/2 is a primitive cube root

of unity. The notation K.L means the “compositum of K and L”, which is the
smallest field generated by K and L.

Let’s figure out e, f , and g for the prime p = 3 relative to the degree six Galois
field M/Q by using Theorem 13.2.2 and what we can easily determine about K and
L. First, we know that efg = 6. We have 3OK = p1p

2
2, so 3OM = p1OM · (p2OM )2,

and the prime factors of p1OM are disjoint from the prime factors of p2OM . Thus
e > 1 is even and also g > 1. The only possibility for e, f, g satisfying these two
conditions is e = 2, f = 1, g = 3, so we conclude that 3OM = q2

1q
2
2q

2
3 without doing

any further work, and without actually knowing the qi explicitly.
Here’s another interesting deduction that we can make “by hand”. Suppose

for the moment that OM = Z[ 3
√

2, ζ3] (this will turn out to be false). Then the
factorization of (

√
−3) ⊂ OL in OM would be exactly reflected by the factorization

of x3 − 2 in F3 = OL/(
√
−3). Modulo 3 we have x3 − 2 = x3 + 1 = (x + 1)3,

which would imply that (
√
−3) = q3 for some prime q of OM , i.e., that e = 6 and

f = g = 1, which is incorrect. Thus OM 6= Z[ 3
√

2, ζ3]. Indeed, this conclusion agrees
with the following Magma computation, which asserts that [OM : Z[ 3

√
2, ζ3]] = 24:
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> R<x> := PolynomialRing(RationalField());

> K := NumberField(x^3-2);

> L := NumberField(x^2+3);

> M := CompositeFields(K,L)[1];

> O_M := MaximalOrder(M);

> a := M!K.1;

> b := M!L.1;

> O := Order([a,b]);

> Index(O_M,O);

24



Chapter 14

Decomposition Groups and
Galois Representations

14.1 The Decomposition Group

Suppose K is a number field that is Galois over Q with group G = Gal(K/Q). Fix
a prime p ⊂ OK lying over p ∈ Z.

Definition 14.1.1 (Decomposition group). The decomposition group of p is the
subgroup

Dp = {σ ∈ G : σ(p) = p} ≤ G.

(Note: The decomposition group is called the “splitting group” in Swinnerton-
Dyer. Everybody I know calls it the decomposition group, so we will too.)

Let Fp = OK/p denote the residue class field of p. In this section we will prove
that there is a natural exact sequence

1 → Ip → Dp → Gal(Fp/Fp) → 1,

where Ip is the inertia subgroup of Dp, and #Ip = e. The most interesting part of
the proof is showing that the natural map Dp → Gal(Fp/Fp) is surjective.

We will also discuss the structure of Dp and introduce Frobenius elements, which
play a crucial roll in understanding Galois representations.

Recall that G acts on the set of primes p lying over p. Thus the decomposition
group is the stabilizer in G of p. The orbit-stabilizer theorem implies that [G : Dp]
equals the orbit of p, which by Theorem 13.2.2 equals the number g of primes lying
over p, so [G : Dp] = g.

Lemma 14.1.2. The decomposition subgroups Dp corresponding to primes p lying
over a given p are all conjugate in G.

Proof. We have τ(σ(τ−1(p))) = p if and only if σ(τ−1(p)) = τ−1p. Thus τστ−1 ∈ Dp

if and only if σ ∈ Dτ−1p, so τ−1Dpτ = Dτ−1p. The lemma now follows because, by
Theorem 13.2.2, G acts transitively on the set of p lying over p.

97
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The decomposition group is extremely useful because it allows us to see the
extension K/Q as a tower of extensions, such that at each step in the tower we
understand well the splitting behavior of the primes lying over p. Now might be a
good time to glance ahead at Figure 14.1.2 on page 101.

We characterize the fixed field of D = Dp as follows.

Proposition 14.1.3. The fixed field KD of D

KD = {a ∈ K : σ(a) = a for all σ ∈ D}

is the smallest subfield L ⊂ K such that p∩L does not split in K (i.e., g(K/L) = 1).

Proof. First suppose L = KD, and note that by Galois theory Gal(K/L) ∼= D, and
by Theorem 13.2.2, the group D acts transitively on the primes of K lying over
p ∩ L. One of these primes is p, and D fixes p by definition, so there is only one
prime of K lying over p ∩ L, i.e., p ∩ L does not split in K. Conversely, if L ⊂ K
is such that p ∩ L does not split in K, then Gal(K/L) fixes p (since it is the only
prime over p ∩ L), so Gal(K/L) ⊂ D, hence KD ⊂ L.

Thus p does not split in going from KD to K—it does some combination of
ramifying and staying inert. To fill in more of the picture, the following proposition
asserts that p splits completely and does not ramify in KD/Q.

Proposition 14.1.4. Let L = KD for our fixed prime p and Galois extension K/Q.
Let e = e(L/Q), f = f(L/Q), g = g(L/Q) be for L/Q and p. Then e = f = 1 and
g = [L : Q], i.e., p does not ramify and splits completely in L. Also f(K/Q) =
f(K/L) and e(K/Q) = e(K/L).

Proof. As mentioned right after Definition 14.1.1, the orbit-stabilizer theorem im-
plies that g(K/Q) = [G : D], and by Galois theory [G : D] = [L : Q]. Thus

e(K/L) · f(K/L) = [K : L] = [K : Q]/[L : Q]

=
e(K/Q) · f(K/Q) · g(K/Q)

[L : Q]
= e(K/Q) · f(K/Q).

Now e(K/L) ≤ e(K/Q) and f(K/L) ≤ f(K/Q), so we must have e(K/L) =
e(K/Q) and f(K/L) = f(K/Q). Since e(K/Q) = e(K/L) · e(L/Q) and f(K/Q) =
f(K/L) · f(L/Q), the proposition follows.

14.1.1 Galois groups of finite fields

Each σ ∈ D = Dp acts in a well-defined way on the finite field Fp = OK/p, so we
obtain a homomorphism

ϕ : Dp → Gal(Fp/Fp).

We pause for a moment and derive a few basic properties of Gal(Fp/Fp), which are
in fact general properties of Galois groups for finite fields. Let f = [Fp : Fp].
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The group Aut(Fp/Fp) contains the element Frobp defined by

Frobp(x) = xp,

because (xy)p = xpyp and

(x + y)p = xp + pxp−1y + · · · + yp ≡ xp + yp (mod p).

By Exercise 29 (see Chapter 22), the group F∗
p is cyclic, so there is an element

a ∈ F∗
p of order pf − 1, and Fp = Fp(a). Then Frobn

p (a) = apn
= a if and only

if (pf − 1) | pn − 1 which is the case preciselywhen f | n, so the order of Frobp

is f . Since the order of the automorphism group of a field extension is at most the
degree of the extension, we conclude that Aut(Fp/Fp) is generated by Frobp. Also,
since Aut(Fp/Fp) has order equal to the degree, we conclude that Fp/Fp is Galois,
with group Gal(Fp/Fp) cyclic of order f generated by Frobp. (Anther general fact:
Up to isomorphism there is exactly one finite field of each degree. Indeed, if there
were two of degree f , then both could be characterized as the set of roots in the
compositum of xpf − 1, hence they would be equal.)

14.1.2 The Exact Sequence

There is a natural reduction homomorphism

ϕ : Dp → Gal(Fp/Fp).

Theorem 14.1.5. The homomorphism ϕ is surjective.

Proof. Let ã ∈ Fp be an element such that Fp = Fp(a). Lift ã to an algebraic integer
a ∈ OK , and let f =

∏

σ∈Dp
(x−σ(a)) ∈ KD[x] be the characteristic polynomial of a

over KD. Using Proposition 14.1.4 we see that f reduces to the minimal polynomial
f̃ =

∏

(x − ˜σ(a)) ∈ Fp[x] of ã (by the Proposition the coefficients of f̃ are in Fp,
and ã satisfies f̃ , and the degree of f̃ equals the degree of the minimal polynomial
of ã). The roots of f̃ are of the form σ̃(a), and the element Frobp(a) is also a root

of f̃ , so it is of the form ˜σ(a). We conclude that the generator Frobp of Gal(Fp/Fp)
is in the image of ϕ, which proves the theorem.

Definition 14.1.6 (Inertia Group). The inertia group is the kernel Ip of Dp →
Gal(Fp/Fp).

Combining everything so far, we find an exact sequence of groups

1 → Ip → Dp → Gal(Fp/Fp) → 1. (14.1.1)

The inertia group is a measure of how p ramifies in K.

Corollary 14.1.7. We have #Ip = e(p/p), where p is a prime of K over p.
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Proof. The sequence (14.1.1) implies that #Ip = #Dp/f(K/Q). Applying Propo-
sitions 14.1.3–14.1.4, we have

#Dp = [K : L] =
[K : Q]

g
=

efg

g
= ef.

Dividing both sides by f = f(K/Q) proves the corollary.

We have the following characterization of Ip.

Proposition 14.1.8. Let K/Q be a Galois extension with group G, let p be a prime
lying over a prime p. Then

Ip = {σ ∈ G : σ(a) = a (mod p) for all a ∈ OK}.

Proof. By definition Ip = {σ ∈ Dp : σ(a) = a (mod p) for all a ∈ OK}, so it suffices
to show that if σ 6∈ Dp, then there exists a ∈ OK such that σ(a) = a (mod p). If
σ 6∈ Dp, we have σ−1(p) 6= p, so since both are maximal ideals, there exists a ∈ p

with a 6∈ σ−1(p), i.e., σ(a) 6∈ p. Thus σ(a) 6≡ a (mod p).

Figure 14.1.2 is a picture of the splitting behavior of a prime p ∈ Z.

14.2 Frobenius Elements

Suppose that K/Q is a finite Galois extension with group G and p is a prime
such that e = 1 (i.e., an unramified prime). Then I = Ip = 1 for any p | p, so
the map ϕ of Theorem 14.1.5 is a canonical isomorphism Dp

∼= Gal(Fp/Fp). By
Section 14.1.1, the group Gal(Fp/Fp) is cyclic with canonical generator Frobp. The
Frobenius element corresponding to p is Frobp ∈ Dp. It is the unique element of G
such that for all a ∈ OK we have

Frobp(a) ≡ ap (mod p).

(To see this argue as in the proof of Proposition 14.1.8.) Just as the primes p

and decomposition groups D are all conjugate, the Frobenius elements over a given
prime are conjugate.

Proposition 14.2.1. For each σ ∈ G, we have

Frobσp = σ Frobp σ−1.

In particular, the Frobenius elements lying over a given prime are all conjugate.

Proof. Fix σ ∈ G. For any a ∈ OK we have Frobp(σ
−1(a)) − σ−1(a) ∈ p. Multiply

by σ we see that σ Frobp(σ
−1(a)) − a ∈ σp, which proves the proposition.
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Figure 14.1.1: The Splitting of Behavior of a Prime in a Galois Extension
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Thus the conjugacy class of Frobp in G is a well defined function of p. For
example, if G is abelian, then Frobp does not depend on the choice of p lying over p

and we obtain a well defined symbol
(

K/Q
p

)

= Frobp ∈ G called the Artin symbol.

It extends to a map from the free abelian group on unramified primes to the group
G (the fractional ideals of Z). Class field theory (for Q) sets up a natural bijection
between abelian Galois extensions of Q and certain maps from certain subgroups
of the group of fractional ideals for Z. We have just described one direction of
this bijection, which associates to an abelian extension the Artin symbol (which
induces a homomorphism). The Kronecker-Weber theorem asserts that the abelian
extensions of Q are exactly the subfields of the fields Q(ζn), as n varies over all
positive integers. By Galois theory there is a correspondence between the subfields
of Q(ζn) (which has Galois group (Z/nZ)∗) and the subgroups of (Z/nZ)∗. Giving
an abelian extension of Q is exactly the same as giving an integer n and a subgroup

of (Z/nZ)∗. Even more importantly, the reciprocity map p 7→
(

Q(ζn)/Q
p

)

is simply

p 7→ p ∈ (Z/nZ)∗. This is a nice generalization of quadratic reciprocity: for Q(ζn),
the efg for a prime p depends in a simple way on nothing but p mod n.

14.3 Galois Representations and a Conjecture of Artin

The Galois group Gal(Q/Q) is an object of central importance in number theory,
and I’ve often heard that in some sense number theory is the study of this group.
A good way to study a group is to study how it acts on various objects, that is, to
study its representations.

Endow Gal(Q/Q) with the topology which has as a basis of open neighborhoods
of the origin the subgroups Gal(Q/K), where K varies over finite Galois extensions
of Q. (Note: This is not the topology got by taking as a basis of open neighborhoods
the collection of finite-index normal subgroups of Gal(Q/Q).) Fix a positive integer
n and let GLn(C) be the group of n×n invertible matrices over C with the discrete
topology.

Definition 14.3.1. A complex n-dimensional representation of Gal(Q/Q) is a con-
tinuous homomorphism

ρ : Gal(Q/Q) → GLn(C).

For ρ to be continuous means that there is a finite Galois extension K/Q such
that ρ factors through Gal(K/Q):

Gal(Q/Q)
ρ

//

''NNNNNNNNNNN
GLn(C)

Gal(K/Q)

ρ′

88qqqqqqqqqqq

For example, one could take K to be the fixed field of ker(ρ). (Note that continous
implies that the image of ρ is finite, but using Zorn’s lemma one can show that there
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are homomorphisms Gal(Q/Q) → {±1} with finite image that are not continuous,
since they do not factor through the Galois group of any finite Galois extension.)

Fix a Galois representation ρ and a finite Galois extension K such that ρ factors
through Gal(K/Q). For each prime p ∈ Z that is not ramified in K, there is an
element Frobp ∈ Gal(K/Q) that is well-defined up to conjugation by elements of
Gal(K/Q). This means that ρ′(Frobp) ∈ GLn(C) is well-defined up to conjugation.
Thus the characteristic polynomial Fp ∈ C[x] is a well-defined invariant of p and ρ.
Let

Rp(x) = xdeg(Fp) · Fp(1/x) = 1 + · · · + Det(Frobp) · xdeg(Fp)

be the polynomial obtain by reversing the order of the coefficients of Fp. Following
E. Artin, set

L(ρ, s) =
∏

p unramified

1

Rp(p−s)
. (14.3.1)

We view. L(ρ, s) as a function of a single complex variable s. One can prove that
L(ρ, s) is holomorphic on some right half plane, and extends to a meromorphic
function on all C.

Conjecture 14.3.2 (Artin). The L-series of any continuous representation

Gal(Q/Q) → GLn(C)

is an entire function on all C, except possibly at 1.

This conjecture asserts that there is some way to analytically continue L(ρ, s)
to the whole complex plane, except possibly at 1. (A standard fact from complex
analysis is that this analytic continuation must be unique.) The simple pole at
s = 1 corresponds to the trivial representation (the Riemann zeta function), and if
n ≥ 2 and ρ is irreducible, then the conjecture is that ρ extends to a holomorphic
function on all C.

The conjecture follows from class field theory for Q when n = 1. When n = 2
and the image of ρ in PGL2(C) is a solvable group, the conjecture is known, and is
a deep theorem of Langlands and others (see [Lan80]), which played a crucial roll
in Wiles’s proof of Fermat’s Last Theorem. When n = 2 and the projective image
is not solvable, the only possibility is that the projective image is isomorphic to the
alternating group A5. Because A5 is the symmetric group of the icosahedron, these
representations are called icosahedral. In this case, Joe Buhler’s Harvard Ph.D.
thesis gave the first example, there is a whole book [Fre94], which proves Artin’s
conjecture for 7 icosahedral representation (none of which are twists of each other).
Kevin Buzzard and I (Stein) proved the conjecture for 8 more examples. Subse-
quently, Richard Taylor, Kevin Buzzard, and Mark Dickinson proved the conjecture
for an infinite class of icosahedral Galois representations (disjoint from the exam-
ples). The general problem for n = 2 is still open, but perhaps Taylor and others
are still making progress toward it.
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Chapter 15

Valuations

The rest of this book is a partial rewrite of [Cas67] meant to make it more accessible.
I have attempted to add examples and details of the implicit exercises and remarks
that are left to the reader.

15.1 Valuations

Definition 15.1.1 (Valuation). A valuation | · | on a field K is a function defined
on K with values in R≥0 satisfying the following axioms:

(1) |a| = 0 if and only if a = 0,

(2) |ab| = |a| |b|, and

(3) there is a constant C ≥ 1 such that |1 + a| ≤ C whenever |a| ≤ 1.

The trivial valuation is the valuation for which |a| = 1 for all a 6= 0. We will
often tacitly exclude the trivial valuation from consideration.

From (2) we have

|1| = |1| · |1| ,

so |1| = 1 by (1). If w ∈ K and wn = 1, then |w| = 1 by (2). In particular, the
only valuation of a finite field is the trivial one. The same argument shows that
| − 1| = |1|, so

| − a| = |a| all a ∈ K.

Definition 15.1.2 (Equivalent). Two valuations | · | 1 and | · | 2 on the same field
are equivalent if there exists c > 0 such that

|a|2 = |a|c1

for all a ∈ K.

107
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Note that if | · | 1 is a valuation, then | · | 2 = | · | c
1 is also a valuation. Also,

equivalence of valuations is an equivalence relation.
If | · | is a valuation and C is the constant from Axiom (3), then there is a c > 0

such that Cc = 2 (i.e., c = log(C)/ log(2)). Then we can take 2 as constant for the
equivalent valuation | · | c. Thus every valuation is equivalent to a valuation with
C = 2. Note that if C = 1, e.g., if | · | is the trivial valuation, then we could simply
take C = 2 in Axiom (3).

Proposition 15.1.3. Suppose | · | is a valuation with C = 2. Then for all a, b ∈ K
we have

|a + b| ≤ |a| + |b| (triangle inequality). (15.1.1)

Proof. Suppose a1, a2 ∈ K with |a1| ≥ |a2|. Then a = a2/a1 satisfies |a| ≤ 1. By
Axiom (3) we have |1 + a| ≤ 2, so multiplying by a1 we see that

|a1 + a2| ≤ 2|a1| = 2 · max{|a1|, |a2|}.

Also we have

|a1 + a2 + a3 + a4| ≤ 2 · max{|a1 + a2|, |a3 + a4|} ≤ 4 · max{|a1|, |a2|, |a3|, |a4|},

and inductively we have for any r > 0 that

|a1 + a2 + · · · + a2r | ≤ 2r · max |aj |.

If n is any positive integer, let r be such that 2r−1 ≤ n ≤ 2r. Thenn

|a1 + a2 + · · · + an| ≤ 2r · max{|aj |} ≤ 2n · max{|aj |},

since 2r ≤ 2n. In particular,

|n| ≤ 2n · |1| = 2n (for n > 0). (15.1.2)

Applying (15.1.2) to

∣

∣

∣

∣

(

n

j

)∣

∣

∣

∣

and using the binomial expansion, we have for any

a, b ∈ K that

|a + b|n =

∣

∣

∣

∣

∣

∣

n
∑

j=0

(

n

j

)

ajbn−j

∣

∣

∣

∣

∣

∣

≤ 2(n + 1)max
j

{∣

∣

∣

∣

(

n

j

)∣

∣

∣

∣

|a|j |b|n−j

}

≤ 2(n + 1)max
j

{

2

(

n

j

)

|a|j |b|n−j

}

≤ 4(n + 1)max
j

{(

n

j

)

|a|j |b|n−j

}

≤ 4(n + 1)(|a| + |b|)n.
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Now take nth roots of both sides to obtain

|a + b| ≤ n
√

4(n + 1) · (|a| + |b|).

We have by elementary calculus that

lim
n→∞

n
√

4(n + 1) = 1,

so |a + b| ≤ |a| + |b|. (The “elementary calculus”: We instead prove that n
√

n → 1,
since the argument is the same and the notation is simpler. First, for any n ≥ 1 we
have n

√
n ≥ 1, since upon taking nth powers this is equivalent to n ≥ 1n, which is

true by hypothesis. Second, suppose there is an ε > 0 such that n
√

n ≥ 1 + ε for all
n ≥ 1. Then taking logs of boths sides we see that 1

n log(n) ≥ log(1 + ε) > 0. But
log(n)/n → 0, so there is no such ε. Thus n

√
n → 1 as n → ∞.)

Note that Axioms (1), (2) and Equation (15.1.1) imply Axiom (3) with C = 2.
We take Axiom (3) instead of Equation (15.1.1) for the technical reason that we will
want to call the square of the absolute value of the complex numbers a valuation.

Lemma 15.1.4. Suppose a, b ∈ K, and | · | is a valuation on K with C ≤ 2. Then

∣

∣

∣
|a| − |b|

∣

∣

∣
≤ |a − b| .

(Here the big absolute value on the outside of the left-hand side of the inequality
is the usual absolute value on real numbers, but the other absolute values are a
valuation on an arbitrary field K.)

Proof. We have

|a| = |b + (a − b)| ≤ |b| + |a − b|,

so |a| − |b| ≤ |a − b|. The same argument with a and b swapped implies that
|b| − |a| ≤ |a − b|, which proves the lemma.

15.2 Types of Valuations

We define two important properties of valuations, both of which apply to equivalence
classes of valuations (i.e., the property holds for | · | if and only if it holds for a
valuation equivalent to | · | ).

Definition 15.2.1 (Discrete). A valuation | · | is discrete if there is a δ > 0 such
that for any a ∈ K

1 − δ < |a| < 1 + δ =⇒ |a| = 1.

Thus the absolute values are bounded away from 1.
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To say that | · | is discrete is the same as saying that the set

G =
{

log |a| : a ∈ K, a 6= 0
}

⊂ R

forms a discrete subgroup of the reals under addition (because the elements of the
group G are bounded away from 0).

Proposition 15.2.2. A nonzero discrete subgroup G of R is free on one generator.

Proof. Since G is discrete there is a positive m ∈ G such that for any positive x ∈ G
we have m ≤ x. Suppose x ∈ G is an arbitrary positive element. By subtracting off
integer multiples of m, we find that there is a unique n such that

0 ≤ x − nm < m.

Since x − nm ∈ G and 0 < x − nm < m, it follows that x − nm = 0, so x is a
multiple of m.

By Proposition 15.2.2, the set of log |a| for nonzero a ∈ K is free on one gen-
erator, so there is a c < 1 such that |a|, for a 6= 0, runs precisely through the
set

cZ = {cm : m ∈ Z}

(Note: we can replace c by c−1 to see that we can assume that c < 1).

Definition 15.2.3 (Order). If |a| = cm, we call m = ord(a) the order of a.

Axiom (2) of valuations translates into

ord(ab) = ord(a) + ord(b).

Definition 15.2.4 (Non-archimedean). A valuation | · | is non-archimedean if
we can take C = 1 in Axiom (3), i.e., if

|a + b| ≤ max
{

|a|, |b|
}

. (15.2.1)

If | · | is not non-archimedean then it is archimedean.

Note that if we can take C = 1 for | · | then we can take C = 1 for any valuation
equivalent to | · | . To see that (15.2.1) is equivalent to Axiom (3) with C = 1,
suppose |b| ≤ |a|. Then |b/a| ≤ 1, so Axiom (3) asserts that |1 + b/a| ≤ 1, which
implies that |a + b| ≤ |a| = max{|a|, |b|}, and conversely.

We note at once the following consequence:

Lemma 15.2.5. Suppose | · | is a non-archimedean valuation. If a, b ∈ K with
|b| < |a|, then |a + b| = |a|.
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Proof. Note that |a + b| ≤ max{|a|, |b|} = |a|, which is true even if |b| = |a|. Also,

|a| = |(a + b) − b| ≤ max{|a + b|, |b|} = |a + b|,

where for the last equality we have used that |b| < |a| (if max{|a + b|, |b|} = |b|,
then |a| ≤ |b|, a contradiction).

Definition 15.2.6 (Ring of Integers). Suppose | · | is a non-archimedean absolute
value on a field K. Then

O = {a ∈ K : |a| ≤ 1}

is a ring called the ring of integers of K with respect to | · | .

Lemma 15.2.7. Two non-archimedean valuations | · | 1 and | · | 2 are equivalent if
and only if they give the same O.

We will prove this modulo the claim (to be proved later in Section 16.1) that
valuations are equivalent if (and only if) they induce the same topology.

Proof. Suppose suppose | · | 1 is equivalent to | · | 2, so | · | 1 = | · | c
2, for some c > 0.

Then |c|1 ≤ 1 if and only if |c|c2 ≤ 1, i.e., if |c|2 ≤ 11/c = 1. Thus O1 = O2.

Conversely, suppose O1 = O2. Then |a|1 < |b|1 if and only if a/b ∈ O1 and
b/a 6∈ O1, so

|a|1 < |b|1 ⇐⇒ |a|2 < |b|2. (15.2.2)

The topology induced by | |1 has as basis of open neighborhoods the set of open
balls

B1(z, r) = {x ∈ K : |x − z|1 < r},

for r > 0, and likewise for | |2. Since the absolute values |b|1 get arbitrarily close to
0, the set U of open balls B1(z, |b|1) also forms a basis of the topology induced by
| |1 (and similarly for | |2). By (15.2.2) we have

B1(z, |b|1) = B2(z, |b|2),

so the two topologies both have U as a basis, hence are equal. That equal topologies
imply equivalence of the corresponding valuations will be proved in Section 16.1.

The set of a ∈ O with |a| < 1 forms an ideal p in O. The ideal p is maximal,
since if a ∈ O and a 6∈ p then |a| = 1, so |1/a| = 1/|a| = 1, hence 1/a ∈ O, so a is a
unit.

Lemma 15.2.8. A non-archimedean valuation | · | is discrete if and only if p is a
principal ideal.
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Proof. First suppose that | · | is discrete. Choose π ∈ p with |π| maximal, which we
can do since

S = {log |a| : a ∈ p} ⊂ (−∞, 1],

so the discrete set S is bounded above. Suppose a ∈ p. Then
∣

∣

∣

a

π

∣

∣

∣ =
|a|
|π| ≤ 1,

so a/π ∈ O. Thus

a = π · a

π
∈ πO.

Conversely, suppose p = (π) is principal. For any a ∈ p we have a = πb with
b ∈ O. Thus

|a| = |π| · |b| ≤ |π| < 1.

Thus {|a| : |a| < 1} is bounded away from 1, which is exactly the definition of
discrete.

Example 15.2.9. For any prime p, define the p-adic valuation | · | p : Q → R as
follows. Write a nonzero α ∈ K as pn · a

b , where gcd(a, p) = gcd(b, p) = 1. Then

∣

∣

∣
pn · a

b

∣

∣

∣

p
:= p−n =

(

1

p

)n

.

This valuation is both discrete and non-archimedean. The ring O is the local ring

Z(p) =
{a

b
∈ Q : p - b

}

,

which has maximal ideal generated by p. Note that ord(pn · a
b ) = pn.

We will using the following lemma later (e.g., in the proof of Corollary 16.2.4
and Theorem 15.3.2).

Lemma 15.2.10. A valuation | · | is non-archimedean if and only if |n| ≤ 1 for all
n in the ring generated by 1 in K.

Note that we cannot identify the ring generated by 1 with Z in general, be-
cause K might have characteristic p > 0.

Proof. If | · | is non-archimedean, then |1| ≤ 1, so by Axiom (3) with a = 1, we have
|1 + 1| ≤ 1. By induction it follows that |n| ≤ 1.

Conversely, suppose |n| ≤ 1 for all integer multiples n of 1. This condition is
also true if we replace | · | by any equivalent valuation, so replace | · | by one with
C ≤ 2, so that the triangle inequality holds. Suppose a ∈ K with |a| ≤ 1. Then by
the triangle inequality,

|1 + a|n = |(1 + a)n|

≤
n

∑

j=0

∣

∣

∣

∣

(

n

j

)∣

∣

∣

∣

|a|

≤1 + 1 + · · · + 1 = n.
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Now take nth roots of both sides to get

|1 + a| ≤ n
√

n,

and take the limit as n → ∞ to see that |1 + a| ≤ 1. This proves that one can take
C = 1 in Axiom (3), hence that | · | is non-archimedean.

15.3 Examples of Valuations

The archetypal example of an archimedean valuation is the absolute value on the
complex numbers. It is essentially the only one:

Theorem 15.3.1 (Gelfand-Tornheim). Any field K with an archimedean valua-
tion is isomorphic to a subfield of C, the valuation being equivalent to that induced
by the usual absolute value on C.

We do not prove this here as we do not need it. For a proof, see [Art59, pg. 45,
67].

There are many non-archimedean valuations. On the rationals Q there is one
for every prime p > 0, the p-adic valuation, as in Example 15.2.9.

Theorem 15.3.2 (Ostrowski). The nontrivial valuations on Q are those equiva-
lent to | · |p, for some prime p, and the usual absolute value | · |∞.

Remark 15.3.3. Before giving the proof, we pause with a brief remark about Os-
trowski. According to

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Ostrowski.html

Ostrowski was a Ukrainian mathematician who lived 1893–1986. Gautschi writes
about Ostrowski as follows: “... you are able, on the one hand, to emphasise the
abstract and axiomatic side of mathematics, as for example in your theory of general
norms, or, on the other hand, to concentrate on the concrete and constructive
aspects of mathematics, as in your study of numerical methods, and to do both
with equal ease. You delight in finding short and succinct proofs, of which you have
given many examples ...” [italics mine]

We will now give an example of one of these short and succinct proofs.

Proof. Suppose | · | is a nontrivial valuation on Q.
Nonarchimedean case: Suppose |c| ≤ 1 for all c ∈ Z, so by Lemma 15.2.10, | · |

is nonarchimedean. Since | · | is nontrivial, the set

p = {a ∈ Z : |a| < 1}

is nonzero. Also p is an ideal and if |ab| < 1, then |a| |b| = |ab| < 1, so |a| < 1 or
|b| < 1, so p is a prime ideal of Z. Thus p = pZ, for some prime number p. Since
every element of Z has valuation at most 1, if u ∈ Z with gcd(u, p) = 1, then u 6∈ p,
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so |u| = 1. Let α = log|p|
1
p , so |p|α = 1

p . Then for any r and any u ∈ Z with
gcd(u, p) = 1, we have

|upr|α = |u|α |p|αr = |p|αr = p−r = |upr|p .

Thus | · |α = | · |p on Z, hence on Q by multiplicativity, so | · | is equivalent to | · |p,
as claimed.

Archimedean case: By replacing | · | by a power of | · |, we may assume without
loss that | · | satisfies the triangle inequality. We first make some general remarks
about any valuation that satisfies the triangle inequality. Suppose a ∈ Z is greater
than 1. Consider, for any b ∈ Z the base-a expansion of b:

b = bmam + bm−1a
m−1 + · · · + b0,

where
0 ≤ bj < a (0 ≤ j ≤ m),

and bm 6= 0. Since am ≤ b, taking logs we see that m log(a) ≤ log(b), so

m ≤ log(b)

log(a)
.

Let M = max
1≤d<a

|d|. Then by the triangle inequality for | · |, we have

|b| ≤ |bm| am + · · · + |b1| |a| + |b0|
≤ M · (|a|m + · · · + |a| + 1)

≤ M · (m + 1) · max(1, |a|m)

≤ M ·
(

log(b)

log(a)
+ 1

)

· max
(

1, |a|log(b)/ log(a)
)

,

where in the last step we use that m ≤ log(b)
log(a) . Setting b = cn, for c ∈ Z, in the

above inequality and taking nth roots, we have

|c| ≤
(

M ·
(

log(cn)

log(a)
+ 1

)

· max(1, |a|log(cn)/ log(a))

)1/n

= M1/n ·
(

log(cn)

log(a)
+ 1

)1/n

· max
(

1, |a|log(cn)/ log(a)
)1/n

.

The first factor M1/n converges to 1 as n → ∞, since M ≥ 1 (because |1| = 1). The
second factor is

(

log(cn)

log(a)
+ 1

)1/n

=

(

n · log(c)

log(a)
+ 1

)1/n

which also converges to 1, for the same reason that n1/n → 1 (because log(n1/n) =
1
n log(n) → 0 as n → ∞). The third factor is

max
(

1, |a|log(cn)/ log(a)
)1/n

=

{

1 if |a| < 1,

|a|log(c)/ log(a) if |a| ≥ 1.



15.3. EXAMPLES OF VALUATIONS 115

Putting this all together, we see that

|c| ≤ max

(

1, |a|
log(c)
log(a)

)

.

Our assumption that | · | is nonarchimedean implies that there is c ∈ Z with
c > 1 and |c| > 1. Then for all a ∈ Z with a > 1 we have

1 < |c| ≤ max

(

1, |a|
log(c)
log(a)

)

, (15.3.1)

so 1 < |a|log(c)/ log(a), so 1 < |a| as well (i.e., any a ∈ Z with a > 1 automatically
satisfies |a| > 1). Also, taking the 1/ log(c) power on both sides of (15.3.1) we see
that

|c|
1

log(c) ≤ |a|
1

log(a) . (15.3.2)

Because, as mentioned above, |a| > 1, we can interchange the roll of a and c to
obtain the reverse inequality of (15.3.2). We thus have

|c| = |a|
log(c)
log(a) .

Letting α = log(2) · log|2|(e) and setting a = 2, we have

|c|α = |2|
α

log(2)
·log(c)

=
(

|2|log|2|(e)
)log(c)

= elog(c) = c = |c|∞ .

Thus for all integers c ∈ Z with c > 1 we have |c|α = |c|∞, which implies that | · | is
equivalent to | · |∞.

Let k be any field and let K = k(t), where t is transcendental. Fix a real number
c > 1. If p = p(t) is an irreducible polynomial in the ring k[t], we define a valuation
by

∣

∣

∣
pa · u

v

∣

∣

∣

p
= c−deg(p)·a, (15.3.3)

where a ∈ Z and u, v ∈ k[t] with p - u and p - v.

Remark 15.3.4. This definition differs from the one page 46 of [Cassels-Frohlich,
Ch. 2] in two ways. First, we assume that c > 1 instead of c < 1, since otherwise
| · |p does not satisfy Axiom 3 of a valuation. Also, we write c− deg(p)·a instead of

c−a, so that the product formula will hold. (For more about the product formula,
see Section 20.1.)

In addition there is a a non-archimedean valuation | · |∞ defined by

∣

∣

∣

u

v

∣

∣

∣

∞
= cdeg(u)−deg(v). (15.3.4)

This definition differs from the one in [Cas67, pg. 46] in two ways. First, we
assume that c > 1 instead of c < 1, since otherwise | · |p does not satisfy Axiom 3
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of a valuation. Here’s why: Recall that Axiom 3 for a non-archimedean valuation
on K asserts that whenever a ∈ K and |a| ≤ 1, then |a + 1| ≤ 1. Set a = p − 1,
where p = p(t) ∈ K[t] is an irreducible polynomial. Then |a| = c0 = 1, since
ordp(p− 1) = 0. However, |a + 1| = |p − 1 + 1| = |p| = c1 < 1, since ordp(p) = 1. If
we take c > 1 instead of c < 1, as I propose, then |p| = c1 > 1, as required.

Note the (albeit imperfect) analogy between K = k(t) and Q. If s = t−1, so
k(t) = k(s), the valuation | · |∞ is of the type (15.3.3) belonging to the irreducible
polynomial p(s) = s.

The reader is urged to prove the following lemma as a homework problem.

Lemma 15.3.5. The only nontrivial valuations on k(t) which are trivial on k are
equivalent to the valuation (15.3.3) or (15.3.4).

For example, if k is a finite field, there are no nontrivial valuations on k, so the
only nontrivial valuations on k(t) are equivalent to (15.3.3) or (15.3.4).



Chapter 16

Topology and Completeness

16.1 Topology

A valuation | · | on a field K induces a topology in which a basis for the neighbor-
hoods of a are the open balls

B(a, d) = {x ∈ K : |x − a| < d}

for d > 0.

Lemma 16.1.1. Equivalent valuations induce the same topology.

Proof. If | · |1 = | · |r2, then |x − a|1 < d if and only if |x − a|r2 < d if and only if
|x − a|2 < d1/r so B1(a, d) = B2(a, d1/r). Thus the basis of open neighborhoods of
a for | · |1 and | · |2 are identical.

A valuation satisfying the triangle inequality gives a metric for the topology on
defining the distance from a to b to be |a − b|. Assume for the rest of this section
that we only consider valuations that satisfy the triangle inequality.

Lemma 16.1.2. A field with the topology induced by a valuation is a topological
field, i.e., the operations sum, product, and reciprocal are continuous.

Proof. For example (product) the triangle inequality implies that

|(a + ε)(b + δ) − ab| ≤ |ε| |δ| + |a| |δ| + |b| |ε|

is small when |ε| and |δ| are small (for fixed a, b).

Lemma 16.1.3. Suppose two valuations | · |1 and | · |2 on the same field K induce
the same topology. Then for any sequence {xn} in K we have

|xn|1 → 0 ⇐⇒ |xn|2 → 0.

117
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Proof. It suffices to prove that if |xn|1 → 0 then |xn|2 → 0, since the proof of
the other implication is the same. Let ε > 0. The topologies induced by the two
absolute values are the same, so B2(0, ε) can be covered by open balls B1(ai, ri).
One of these open balls B1(a, r) contains 0. There is ε′ > 0 such that

B1(0, ε′) ⊂ B1(a, r) ⊂ B2(0, ε).

Since |xn|1 → 0, there exists N such that for n ≥ N we have |xn|1 < ε′. For such n,
we have xn ∈ B1(0, ε′), so xn ∈ B2(0, ε), so |xn|2 < ε. Thus |xn|2 → 0.

Proposition 16.1.4. If two valuations | · |1 and | · |2 on the same field induce the
same topology, then they are equivalent in the sense that there is a positive real α
such that | · |1 = | · |α2 .

Proof. If x ∈ K and i = 1, 2, then |xn|i → 0 if and only if |x|ni → 0, which is the
case if and only if |x|i < 1. Thus Lemma 16.1.3 implies that |x|1 < 1 if and only
if |x|2 < 1. On taking reciprocals we see that |x|1 > 1 if and only if |x|2 > 1, so
finally |x|1 = 1 if and only if |x|2 = 1.

Let now w, z ∈ K be nonzero elements with |w|i 6= 1 and |z|i 6= 1. On applying
the foregoing to

x = wmzn (m, n ∈ Z)

we see that

m log |w|1 + n log |z|1 ≥ 0

if and only if

m log |w|2 + n log |z|2 ≥ 0.

Dividing through by log |z|i, and rearranging, we see that for every rational number
α = −n/m,

log |w|1
log |z|1

≥ α ⇐⇒ log |w|2
log |z|2

≥ α.

Thus
log |w|1
log |z|1

=
log |w|2
log |z|2

,

so
log |w|1
log |w|2

=
log |z|1
log |z|2

.

Since this equality does not depend on the choice of z, we see that there is a
constant c (= log |z|1 / log |z|2) such that log |w|1 / log |w|2 = c for all w. Thus
log |w|1 = c ·log |w|2, so |w|1 = |w|c2, which implies that | · |1 is equivalent to | · |2.
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16.2 Completeness

We recall the definition of metric on a set X.

Definition 16.2.1 (Metric). A metric on a set X is a map

d : X × X → R

such that for all x, y, z ∈ X,

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x), and

3. d(x, z) ≤ d(x, y) + d(y, z).

A Cauchy sequence is a sequence (xn) in X such that for all ε > 0 there exists M
such that for all n, m > M we have d(xn, xm) < ε. The completion of X is the set of
Cauchy sequences (xn) in X modulo the equivalence relation in which two Cauchy
sequences (xn) and (yn) are equivalent if limn→∞ d(xn, yn) = 0. A metric space is
complete if every Cauchy sequence converges, and one can show that the completion
of X with respect to a metric is complete.

For example, d(x, y) = |x − y| (usual archimedean absolute value) defines a
metric on Q. The completion of Q with respect to this metric is the field R of real
numbers. More generally, whenever | · | is a valuation on a field K that satisfies the
triangle inequality, then d(x, y) = |x − y| defines a metric on K. Consider for the
rest of this section only valuations that satisfy the triangle inequality.

Definition 16.2.2 (Complete). A field K is complete with respect to a valuation
| · | if given any Cauchy sequence an, (n = 1, 2, . . .), i.e., one for which

|am − an| → 0 (m, n → ∞,∞),

there is an a∗ ∈ K such that

an → a∗ w.r.t. | · |

(i.e., |an − a∗| → 0).

Theorem 16.2.3. Every field K with valuation v = | · | can be embedded in a
complete field Kv with a valuation | · | extending the original one in such a way that
Kv is the closure of K with respect to | · | . Further Kv is unique up to a unique
isomorphism fixing K.

Proof. Define Kv to be the completion of K with respect to the metric defined by | · |.
Thus Kv is the set of equivalence classes of Cauchy sequences, and there is a natural
injective map from K to Kv sending an element a ∈ K to the constant Cauchy
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sequence (a). Because the field operations on K are continuous, they induce well-
defined field operations on equivalence classes of Cauchy sequences componentwise.
Also, define a valuation on Kv by

|(an)∞n=1| = lim
n→∞

|an| ,

and note that this is well defined and extends the valuation on K.
To see that Kv is unique up to a unique isomorphism fixing K, we observe that

there are no nontrivial continuous automorphisms Kv → Kv that fix K. This is
because, by denseness, a continuous automorphism σ : Kv → Kv is determined by
what it does to K, and by assumption σ is the identity map on K. More precisely,
suppose a ∈ Kv and n is a positive integer. Then by continuity there is δ > 0 (with
δ < 1/n) such that if an ∈ Kv and |a − an| < δ then |σ(a) − σ(an)| < 1/n. Since
K is dense in Kv, we can choose the an above to be an element of K. Then by
hypothesis σ(an) = an, so |σ(a) − an| < 1/n. Thus σ(a) = limn→∞ an = a.

Corollary 16.2.4. The valuation | · | is non-archimedean on Kv if and only if it is
so on K. If | · | is non-archimedean, then the set of values taken by | · | on K and
Kv are the same.

Proof. The first part follows from Lemma 15.2.10 which asserts that a valuation is
non-archimedean if and only if |n| < 1 for all integers n. Since the valuation on Kv

extends the valuation on K, and all n are in K, the first statement follows.
For the second, suppose that | · | is non-archimedean (but not necessarily dis-

crete). Suppose b ∈ Kv with b 6= 0. First I claim that there is c ∈ K such that
|b − c| < |b|. To see this, let c′ = b− b

a , where a is some element of Kv with |a| > 1,

note that |b − c′| =
∣

∣

b
a

∣

∣ < |b|, and choose c ∈ K such that |c − c′| < |b − c′|, so

|b − c| =
∣

∣b − c′ − (c − c′)
∣

∣ ≤ max
(∣

∣b − c′
∣

∣ ,
∣

∣c − c′
∣

∣

)

=
∣

∣b − c′
∣

∣ < |b| .

Since | · | is non-archimedean, we have

|b| = |(b − c) + c| ≤ max (|b − c| , |c|) = |c| ,

where in the last equality we use that |b − c| < |b|. Also,

|c| = |b + (c − b)| ≤ max (|b| , |c − b|) = |b| ,

so |b| = |c|, which is in the set of values of | · | on K.

16.2.1 p-adic Numbers

This section is about the p-adic numbers Qp, which are the completion of Q with
respect to the p-adic valuation. Alternatively, to give a p-adic integer in Zp is the
same as giving for every prime power pr an element ar ∈ Z/prZ such that if s ≤ r
then as is the reduction of ar modulo ps. The field Qp is then the field of fractions
of Zp.
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We begin with the definition of the N -adic numbers for any positive integer N .
Section 16.2.1 is about the N -adics in the special case N = 10; these are fun because
they can be represented as decimal expansions that go off infinitely far to the left.
Section 16.2.3 is about how the topology of QN is nothing like the topology of R.
Finally, in Section 16.2.4 we state the Hasse-Minkowski theorem, which shows how
to use p-adic numbers to decide whether or not a quadratic equation in n variables
has a rational zero.

The N-adic Numbers

Lemma 16.2.5. Let N be a positive integer. Then for any nonzero rational num-
ber α there exists a unique e ∈ Z and integers a, b, with b positive, such that
α = N e · a

b with N - a, gcd(a, b) = 1, and gcd(N, b) = 1.

Proof. Write α = c/d with c, d ∈ Z and d > 0. First suppose d is exactly divisible
by a power of N , so for some r we have N r | d but gcd(N, d/N r) = 1. Then

c

d
= N−r c

d/N r
.

If N s is the largest power of N that divides c, then e = s − r, a = c/N s, b = d/N r

satisfy the conclusion of the lemma.
By unique factorization of integers, there is a smallest multiple f of d such that

fd is exactly divisible by N . Now apply the above argument with c and d replaced
by cf and df .

Definition 16.2.6 (N-adic valuation). Let N be a positive integer. For any
positive α ∈ Q, the N -adic valuation of α is e, where e is as in Lemma 16.2.5. The
N -adic valuation of 0 is ∞.

We denote the N -adic valuation of α by ordN (α). (Note: Here we are using
“valuation” in a different way than in the rest of the text. This valuation is not an
absolute value, but the logarithm of one.)

Definition 16.2.7 (N-adic metric). For x, y ∈ Q the N -adic distance between x
and y is

dN (x, y) = N− ordN (x−y).

We let dN (x, x) = 0, since ordN (x − x) = ordN (0) = ∞.

For example, x, y ∈ Z are close in the N -adic metric if their difference is divisible
by a large power of N . E.g., if N = 10 then 93427 and 13427 are close because their
difference is 80000, which is divisible by a large power of 10.

Proposition 16.2.8. The distance dN on Q defined above is a metric. Moreover,
for all x, y, z ∈ Q we have

d(x, z) ≤ max(d(x, y), d(y, z)).

(This is the “nonarchimedean” triangle inequality.)
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Proof. The first two properties of Definition 16.2.1 are immediate. For the third,
we first prove that if α, β ∈ Q then

ordN (α + β) ≥ min(ordN (α), ordN (β)).

Assume, without loss, that ordN (α) ≤ ordN (β) and that both α and β are nonzero.
Using Lemma 16.2.5 write α = N e(a/b) and β = Nf (c/d) with a or c possibly
negative. Then

α + β = N e
(a

b
+ Nf−e c

d

)

= N e

(

ad + bcNf−e

bd

)

.

Since gcd(N, bd) = 1 it follows that ordN (α + β) ≥ e. Now suppose x, y, z ∈ Q.
Then

x − z = (x − y) + (y − z),

so
ordN (x − z) ≥ min(ordN (x − y), ordN (y − z)),

hence dN (x, z) ≤ max(dN (x, y), dN (y, z)).

We can finally define the N -adic numbers.

Definition 16.2.9 (The N-adic Numbers). The set of N -adic numbers, denoted
QN , is the completion of Q with respect to the metric dN .

The set QN is a ring, but it need not be a field as you will show in Exercises 57
and 58. It is a field if and only if N is prime. Also, QN has a “bizarre” topology,
as we will see in Section 16.2.3.

The 10-adic Numbers

It’s a familiar fact that every real number can be written in the form

dn . . . d1d0.d−1d−2 . . . = dn10n + · · · + d110 + d0 + d−110−1 + d−210−2 + · · ·
where each digit di is between 0 and 9, and the sequence can continue indefinitely
to the right.

The 10-adic numbers also have decimal expansions, but everything is backward!
To get a feeling for why this might be the case, we consider Euler’s nonsensical
series ∞

∑

n=1

(−1)n+1n! = 1! − 2! + 3! − 4! + 5! − 6! + · · · .

One can prove (see Exercise 55) that this series converges in Q10 to some element
α ∈ Q10.

What is α? How can we write it down? First note that for all M ≥ 5, the terms
of the sum are divisible by 10, so the difference between α and 1! − 2! + 3! − 4! is
divisible by 10. Thus we can compute α modulo 10 by computing 1! − 2! + 3! − 4!
modulo 10. Likewise, we can compute α modulo 100 by compute 1!−2!+· · ·+9!−10!,
etc. We obtain the following table:
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α mod 10r

1 mod 10
81 mod 102

981 mod 103

2981 mod 104

22981 mod 105

422981 mod 106

Continuing we see that

1! − 2! + 3! − 4! + · · · = . . . 637838364422981 in Q10 !

Here’s another example. Reducing 1/7 modulo larger and larger powers of 10
we see that

1

7
= . . . 857142857143 in Q10.

Here’s another example, but with a decimal point.

1

70
=

1

10
· 1

7
= . . . 85714285714.3

We have
1

3
+

1

7
= . . . 66667 + . . . 57143 =

10

21
= . . . 23810,

which illustrates that addition with carrying works as usual.

Fermat’s Last Theorem in Z10

An amusing observation, which people often argued about on USENET news back
in the 1990s, is that Fermat’s last theorem is false in Z10. For example, x3 +y3 = z3

has a nontrivial solution, namely x = 1, y = 2, and z = . . . 60569. Here z is a cube
root of 9 in Z10. Note that it takes some work to prove that there is a cube root of
9 in Z10 (see Exercise 56).

16.2.2 The Field of p-adic Numbers

The ring Q10 of 10-adic numbers is isomorphic to Q2×Q5 (see Exercise 58), so it is
not a field. For example, the element . . . 8212890625 corresponding to (1, 0) under
this isomorphism has no inverse. (To compute n digits of (1, 0) use the Chinese
remainder theorem to find a number that is 1 modulo 2n and 0 modulo 5n.)

If p is prime then Qp is a field (see Exercise 57). Since p 6= 10 it is a little more
complicated to write p-adic numbers down. People typically write p-adic numbers
in the form

a−d

pd
+ · · · + a−1

p
+ a0 + a1p + a2p

2 + a3p
3 + · · ·

where 0 ≤ ai < p for each i.
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16.2.3 The Topology of QN (is Weird)

Definition 16.2.10 (Connected). Let X be a topological space. A subset S of X
is disconnected if there exist open subsets U1, U2 ⊂ X with U1 ∩ U2 ∩ S = ∅ and
S = (S ∩U1)∪ (S ∩U2) with S ∩U1 and S ∩U2 nonempty. If S is not disconnected
it is connected.

The topology on QN is induced by dN , so every open set is a union of open balls

B(x, r) = {y ∈ QN : dN (x, y) < r}.

Recall Proposition 16.2.8, which asserts that for all x, y, z,

d(x, z) ≤ max(d(x, y), d(y, z)).

This translates into the following shocking and bizarre lemma:

Lemma 16.2.11. Suppose x ∈ QN and r > 0. If y ∈ QN and dN (x, y) ≥ r, then
B(x, r) ∩ B(y, r) = ∅.

Proof. Suppose z ∈ B(x, r) and z ∈ B(y, r). Then

r ≤ dN (x, y) ≤ max(dN (x, z), dN (z, y)) < r,

a contradiction.

You should draw a picture to illustrates Lemma 16.2.11.

Lemma 16.2.12. The open ball B(x, r) is also closed.

Proof. Suppose y 6∈ B(x, r). Then r ≤ d(x, y) so

B(y, d(x, y)) ∩ B(x, r) ⊂ B(y, d(x, y)) ∩ B(x, d(x, y)) = ∅.

Thus the complement of B(x, r) is a union of open balls.

The lemmas imply that QN is totally disconnected, in the following sense.

Proposition 16.2.13. The only connected subsets of QN are the singleton sets {x}
for x ∈ QN and the empty set.

Proof. Suppose S ⊂ QN is a nonempty connected set and x, y are distinct elements
of S. Let r = dN (x, y) > 0. Let U1 = B(x, r) and U2 be the complement of
U1, which is open by Lemma 16.2.12. Then U1 and U2 satisfies the conditions of
Definition 16.2.10, so S is not connected, a contradiction.
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16.2.4 The Local-to-Global Principle of Hasse and Minkowski

Section 16.2.3 might have convinced you that QN is a bizarre pathology. In fact,
QN is omnipresent in number theory, as the following two fundamental examples
illustrate.

In the statement of the following theorem, a nontrivial solution to a homogeneous
polynomial equation is a solution where not all indeterminates are 0.

Theorem 16.2.14 (Hasse-Minkowski). The quadratic equation

a1x
2
1 + a2x

2
2 + · · · + anx2

n = 0, (16.2.1)

with ai ∈ Q×, has a nontrivial solution with x1, . . . , xn in Q if and only if (16.2.1)
has a solution in R and in Qp for all primes p.

This theorem is very useful in practice because the p-adic condition turns out to
be easy to check. For more details, including a complete proof, see [Ser73, IV.3.2].

The analogue of Theorem 16.2.14 for cubic equations is false. For example,
Selmer proved that the cubic

3x3 + 4y3 + 5z3 = 0

has a solution other than (0, 0, 0) in R and in Qp for all primes p but has no solution
other than (0, 0, 0) in Q (for a proof see [Cas91, §18]).

Open Problem. Give an algorithm that decides whether or not a cubic

ax3 + by3 + cz3 = 0

has a nontrivial solution in Q.

This open problem is closely related to the Birch and Swinnerton-Dyer Conjec-
ture for elliptic curves. The truth of the conjecture would follow if we knew that
“Shafarevich-Tate Groups” of elliptic curves were finite.

16.3 Weak Approximation

The following theorem asserts that inequivalent valuations are in fact almost totally
indepedent. For our purposes it will be superseded by the strong approximation
theorem (Theorem 20.4.4).

Theorem 16.3.1 (Weak Approximation). Let | · |n, for 1 ≤ n ≤ N , be inequiv-
alent nontrivial valuations of a field K. For each n, let Kn be the topological space
consisting of the set of elements of K with the topology induced by | · |n. Let ∆ be
the image of K in the topological product

A =
∏

1≤n≤N

Kn

equipped with the product topology. Then ∆ is dense in A.
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The conclusion of the theorem may be expressed in a less topological manner as
follows: given any an ∈ K, for 1 ≤ n ≤ N , and real ε > 0, there is an b ∈ K such
that simultaneously

|an − b|n < ε (1 ≤ n ≤ N).

If K = Q and the | · | are p-adic valuations, Theorem 16.3.1 is related to the Chi-
nese Remainder Theorem (Theorem 9.1.3), but the strong approximation theorem
(Theorem 20.4.4) is the real generalization.

Proof. We note first that it will be enough to find, for each n, an element cn ∈ K
such that

|cn|n > 1 and |cn|m < 1 for n 6= m,

where 1 ≤ n, m ≤ N . For then as r → +∞, we have

cr
n

1 + cr
n

=
1

1 +
(

1
cn

)r →
{

1 with respect to | · |n and

0 with respect to | · |m , for m 6= n.

It is then enough to take

b =
N

∑

n=1

cr
n

1 + cr
n

· an

By symmetry it is enough to show the existence of c = c1 with

|c|1 > 1 and |c|n < 1 for 2 ≤ n ≤ N.

We will do this by induction on N .
First suppose N = 2. Since | · |1 and | · |2 are inequivalent (and all absolute

values are assumed nontrivial) there is an a ∈ K such that

|a|1 < 1 and |a|2 ≥ 1 (16.3.1)

and similarly a b such that

|b|1 ≥ 1 and |b|2 < 1.

Then c =
b

a
will do.

Remark 16.3.2. It is not completely clear that one can choose an a such that (16.3.1)
is satisfied. Suppose it were impossible. Then because the valuations are nontrivial,
we would have that for any a ∈ K if |a|1 < 1 then |a|2 < 1. This implies the
converse statement: if a ∈ K and |a|2 < 1 then |a|1 < 1. To see this, suppose there
is an a ∈ K such that |a|2 < 1 and |a|1 ≥ 1. Choose y ∈ K such that |y|1 < 1.
Then for any integer n > 0 we have |y/an|1 < 1, so by hypothesis |y/an|2 < 1. Thus
|y|2 < |a|n2 < 1 for all n. Since |a|2 < 1 we have |a|n2 → 0 as n → ∞, so |y|2 = 0, a
contradiction since y 6= 0. Thus |a|1 < 1 if and only if |a|2 < 1, and we have proved
before that this implies that | · |1 is equivalent to | · |2.
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Next suppose N ≥ 3. By the case N − 1, there is an a ∈ K such that

|a|1 > 1 and |a|n < 1 for 2 ≤ n ≤ N − 1.

By the case for N = 2 there is a b ∈ K such that

|b|1 > 1 and |b|N < 1.

Then put

c =















a if |a|N < 1

ar · b if |a|N = 1
ar

1 + ar
· b if |a|N > 1

where r ∈ Z is sufficiently large so that |c|1 > 1 and |c|n < 1 for 2 ≤ n ≤ N .

Example 16.3.3. Suppose K = Q, let | · |1 be the archimedean absolute value and
let | · |2 be the 2-adic absolute value. Let a1 = −1, a2 = 8, and ε = 1/10, as in
the remark right after Theorem 16.3.1. Then the theorem implies that there is an
element b ∈ Q such that

|−1 − b|1 <
1

10
and |8 − b|2 <

1

10
.

As in the proof of the theorem, we can find such a b by finding a c1, c2 ∈ Q such
that |c1|1 > 1 and |c1|2 < 1, and a |c2|1 < 1 and |c2|2 > 1. For example, c1 = 2
and c2 = 1/2 works, since |2|1 = 2 and |2|2 = 1/2 and |1/2|1 = 1/2 and |1/2|2 = 2.
Again following the proof, we see that for sufficiently large r we can take

br =
cr
1

1 + cr
1

· a1 +
cr
2

1 + cr
2

· a2

=
2r

1 + 2r
· (−1) +

(1/2)r

1 + (1/2)r
· 8.

We have b1 = 2, b2 = 4/5, b3 = 0, b4 = −8/17, b5 = −8/11, b6 = −56/55. None of
the bi work for i < 6, but b6 works.
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Chapter 17

Adic Numbers: The Finite
Residue Field Case

17.1 Finite Residue Field Case

Let K be a field with a non-archimedean valuation v = | · |. Recall that the set of
a ∈ K with |a| ≤ 1 forms a ring O, the ring of integers for v. The set of u ∈ K
with |u| = 1 are a group U under multiplication, the group of units for v. Finally,
the set of a ∈ K with |a| < 1 is a maximal ideal p, so the quotient ring O/p is a
field. In this section we consider the case when O/p is a finite field of order a prime
power q. For example, K could be Q and | · | could be a p-adic valuation, or K
could be a number field and | · | could be the valuation corresponding to a maximal
ideal of the ring of integers. Among other things, we will discuss in more depth the
topological and measure-theoretic nature of the completion of K at v.

Suppose further for the rest of this section that | · | is discrete. Then by
Lemma 15.2.8, the ideal p is a principal ideal (π), say, and every a ∈ K is of
the form a = πnε, where n ∈ Z and ε ∈ U is a unit. We call

n = ord(a) = ordπ(a) = ordp(a) = ordv(a)

the ord of a at v. (Some authors, including me (!) also call this integer the valuation
of a with respect to v.) If p = (π′), then π/π′ is a unit, and conversely, so ord(a) is
independent of the choice of π.

Let Ov and pv be defined with respect to the completion Kv of K at v.

Lemma 17.1.1. There is a natural isomorphism

ϕ : Ov/pv → O/p,

and pv = (π) as an Ov-ideal.

Proof. We may view Ov as the set of equivalence classes of Cauchy sequences (an)
in K such that an ∈ O for n sufficiently large. For any ε, given such a sequence

129
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(an), there is N such that for n, m ≥ N , we have |an − am| < ε. In particular, we
can choose N such that n, m ≥ N implies that an ≡ am (mod p). Let ϕ((an)) =
aN (mod p), which is well-defined. The map ϕ is surjective because the constant
sequences are in Ov. Its kernel is the set of Cauchy sequences whose elements are
eventually all in p, which is exactly pv. This proves the first part of the lemma. The
second part is true because any element of pv is a sequence all of whose terms are
eventually in p, hence all a multiple of π (we can set to 0 a finite number of terms
of the sequence without changing the equivalence class of the sequence).

Assume for the rest of this section that K is complete with respect to | · |.

Lemma 17.1.2. Then ring O is precisely the set of infinite sums

a =
∞

∑

j=0

aj · πj (17.1.1)

where the aj run independently through some set R of representatives of O in O/p.

By (17.1.1) is meant the limit of the Cauchy sequence
∑n

j=0 aj · πj as j → ∞.

Proof. There is a uniquely defined a0 ∈ R such that |a − a0| < 1. Then a′ =
π−1 · (a − a0) ∈ O. Now define a1 ∈ R by |a′ − a1| < 1. And so on.

Example 17.1.3. Suppose K = Q and | · | = | · |p is the p-adic valuation, for some
prime p. We can take R = {0, 1, . . . , p − 1}. The lemma asserts that

O = Zp =







∞
∑

j=0

anpn : 0 ≤ an ≤ p − 1







.

Notice that O is uncountable since there are p choices for each p-adic “digit”. We
can do arithmetic with elements of Zp, which can be thought of “backwards” as
numbers in base p. For example, with p = 3 we have

(1 + 2 · 3 + 32 + · · · ) + (2 + 2 · 3 + 32 + · · · )
= 3 + 4 · 3 + 2 · 32 + · · · not in canonical form

= 0 + 2 · 3 + 3 · 3 + 2 · 32 + · · · still not canonical

= 0 + 2 · 3 + 0 · 32 + · · ·

Basic arithmetic with the p-adics in Magma is really weird (even weirder than it
was a year ago... There are presumably efficiency advantages to using the Magma

formalization, and it’s supposed to be better for working with extension fields. But
I can’t get it to do even the calculation below in a way that is clear.) In PARI (gp)
the p-adics work as expected:
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? a = 1 + 2*3 + 3^2 + O(3^3);

? b = 2 + 2*3 + 3^2 + O(3^3);

? a+b

%3 = 2*3 + O(3^3)

? sqrt(1+2*3+O(3^20))

%5 = 1 + 3 + 3^2 + 2*3^4 + 2*3^7 + 3^8 + 3^9 + 2*3^10 + 2*3^12

+ 2*3^13 + 2*3^14 + 3^15 + 2*3^17 + 3^18 + 2*3^19 + O(3^20)

? 1/sqrt(1+2*3+O(3^20))

%6 = 1 + 2*3 + 2*3^2 + 2*3^7 + 2*3^10 + 2*3^11 + 2*3^12 + 2*3^13

+ 2*3^14 + 3^15 + 2*3^16 + 2*3^17 + 3^18 + 3^19 + O(3^20)

Theorem 17.1.4. Under the conditions of the preceding lemma, O is compact with
respect to the | · | -topology.

Proof. Let Vλ, for λ running through some index set Λ, be some family of open sets
that cover O. We must show that there is a finite subcover. We suppose not.

Let R be a set of representatives for O/p. Then O is the union of the finite
number of cosets a + πO, for a ∈ R. Hence for at lest one a0 ∈ R the set a0 + πO
is not covered by finitely many of the Vλ. Then similarly there is an a1 ∈ R such
that a0 + a1π + π2O is not finitely covered. And so on. Let

a = a0 + a1π + a2π
2 + · · · ∈ O.

Then a ∈ Vλ0 for some λ0 ∈ Λ. Since Vλ0 is an open set, a+πJ ·O ⊂ Vλ0 for some J
(since those are exactly the open balls that form a basis for the topology). This is
a contradiction because we constructed a so that none of the sets a + πn · O, for
each n, are not covered by any finite subset of the Vλ.

Definition 17.1.5 (Locally compact). A topological space X is locally compact
at a point x if there is some compact subset C of X that contains a neighborhood
of x. The space X is locally compact if it is locally compact at each point in X.

Corollary 17.1.6. The complete local field K is locally compact.

Proof. If x ∈ K, then x ∈ C = x + O, and C is a compact subset of K by
Theorem 17.1.4. Also C contains the neighborhood x + πO = B(x, 1) of x. Thus
K is locally compact at x.

Remark 17.1.7. The converse is also true. If K is locally compact with respect to a
non-archimedean valuation | · | , then

1. K is complete,

2. the residue field is finite, and

3. the valuation is discrete.
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For there is a compact neighbourhood C of 0. Let π be any nonzero with |π| < 1.
Then πn ·O ⊂ C for sufficiently large n, so πn ·O is compact, being closed. Hence O
is compact. Since | · | is a metric, O is sequentially compact, i.e., every fundamental
sequence in O has a limit, which implies (1). Let aλ (for λ ∈ Λ) be a set of
representatives in O of O/p. Then Oλ = {z : |z − aλ| < 1} is an open covering of
O. Thus (2) holds since O is compact. Finally, p is compact, being a closed subset
of O. Let Sn be the set of a ∈ K with |a| < 1 − 1/n. Then Sn (for 1 ≤ n < ∞) is
an open covering of p, so p = Sn for some n, i.e., (3) is true.

If we allow | · | to be archimedean the only further possibilities are k = R and
k = C with | · | equivalent to the usual absolute value.

We denote by K+ the commutative topological group whose points are the
elements of K, whose group law is addition and whose topology is that induced by
| · |. General theory tells us that there is an invariant Haar measure defined on K+

and that this measure is unique up to a multiplicative constant.

Definition 17.1.8 (Haar Measure). A Haar measure on a locally compact topo-
logical group G is a translation invariant measure such that every open set can be
covered by open sets with finite measure.

Lemma 17.1.9. Haar measure of any compact subset C of G is finite.

Proof. The whole group G is open, so there is a covering Uα of G by open sets each
of which has finite measure. Since C is compact, there is a finite subset of the Uα

that covers C. The measure of C is at most the sum of the measures of these finitely
many Uα, hence finite.

Remark 17.1.10. Usually one defined Haar measure to be a translation invariant
measure such that the measure of compact sets is finite. Because of local com-
pactness, this definition is equivalent to Definition 17.1.8. We take this alternative
viewpoint because Haar measure is constructed naturally on the topological groups
we will consider by defining the measure on each member of a basis of open sets for
the topology.

We now deduce what any such measure µ on G = K+ must be. Since O
is compact (Theorem 17.1.4), the measure of O is finite. Since µ is translation
invariant,

µn = µ(a + πnO)

is independent of a. Further,

a + πnO =
⋃

1≤j≤q

a + πnaj + πn+1O, (disjoint union)

where aj (for 1 ≤ j ≤ q) is a set of representatives of O/p. Hence

µn = q · µn+1.
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If we normalize µ by putting

µ(O) = 1

we have µ0 = 1, hence µ1 = q, and in general

µn = q−n.

Conversely, without the theory of Haar measure, we could define µ to be the
necessarily unique measure on K+ such that µ(O) = 1 that is translation invariant.
This would have to be the µ we just found above.

Everything so far in this section has depended not on the valuation | · | but only
on its equivalence class. The above considerations now single out one valuation in
the equivalence class as particularly important.

Definition 17.1.11 (Normalized valuation). Let K be a field equipped with a
discrete valuation | · | and residue class field with q < ∞ elements. We say that | · |
is normalized if

|π| =
1

q
,

where p = (π) is the maximal ideal of O.

Example 17.1.12. The normalized valuation on the p-adic numbers Qp is |u · pn| =
p−n, where u is a rational number whose numerator and denominator are coprime
to p.

Next suppose K = Qp(
√

p). Then the p-adic valuation on Qp extends uniquely

to one on K such that
∣

∣

√
p
∣

∣

2
= |p| = 1/p. Since π =

√
p for K, this valuation is

not normalized. (Note that the ord of π =
√

p is 1/2.) The normalized valuation is

v = | · |′ = | · |2. Note that | · |′ p = 1/p2, or ordv(p) = 2 instead of 1.

Finally suppose that K = Qp(
√

q) where x2 − q has not root mod p. Then the
residue class field degree is 2, and the normalized valuation must satisfy

∣

∣

√
q
∣

∣ = 1/p2.

The following proposition makes clear why this is the best choice of normaliza-
tion.

Theorem 17.1.13. Suppose further that K is complete with respect to the normal-
ized valuation | · | . Then

µ(a + bO) = |b| ,

where µ is the Haar measure on K+ normalized so that µ(O) = 1.

Proof. Since µ is translation invariant, µ(a + bO) = µ(bO). Write b = u · πn, where
u is a unit. Then since u · O = O, we have

µ(bO) = µ(u · πn · O) = µ(πn · u · O) = µ(πn · O) = q−n = |πn| = |b| .

Here we have µ(πn · O) = q−n by the discussion before Definition 17.1.11.
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We can express the result of the theorem in a more suggestive way. Let b ∈ K
with b 6= 0, and let µ be a Haar measure on K+ (not necessarily normalized as
in the theorem). Then we can define a new Haar measure µb on K+ by putting
µb(E) = µ(bE) for E ⊂ K+. But Haar measure is unique up to a multiplicative
constant and so µb(E) = µ(bE) = c · µ(E) for all measurable sets E, where the
factor c depends only on b. Putting E = O, shows that the theorem implies that c
is just |b|, when | · | is the normalized valuation.

Remark 17.1.14. The theory of locally compact topological groups leads to the
consideration of the dual (character) group of K+. It turns out that it is isomorphic
to K+. We do not need this fact for class field theory, so do not prove it here. For
a proof and applications see Tate’s thesis or Lang’s Algebraic Numbers, and for
generalizations see Weil’s Adeles and Algebraic Groups and Godement’s Bourbaki
seminars 171 and 176. The determination of the character group of K∗ is local class
field theory.

The set of nonzero elements of K is a group K∗ under multiplication. Multipli-
cation and inverses are continuous with respect to the topology induced on K∗ as
a subset of K, so K∗ is a topological group with this topology. We have

U1 ⊂ U ⊂ K∗

where U is the group of units of O ⊂ K and U1 is the group of 1-units, i.e., those
units ε ∈ U with |ε − 1| < 1, so

U1 = 1 + πO.

The set U is the open ball about 0 of radius 1, so is open, and because the metric
is nonarchimedean U is also closed. Likewise, U1 is both open and closed.

The quotient K∗/U = {πn · U : n ∈ Z} is isomorphic to the additive group Z+

of integers with the discrete topology, where the map is

πn · U 7→ n for n ∈ Z.

The quotient U/U1 is isomorphic to the multiplicative group F∗ of the nonzero
elements of the residue class field, where the finite gorup F∗ has the discrete topol-
ogy. Note that F∗ is cyclic of order q − 1, and Hensel’s lemma implies that K∗

contains a primitive (q− 1)th root of unity ζ. Thus K∗ has the following structure:

K∗ = {πnζmε : n ∈ Z, m ∈ Z/(q − 1)Z, ε ∈ U1} ∼= Z × Z/(q − 1)Z × U1.

(How to apply Hensel’s lemma: Let f(x) = xq−1 − 1 and let a ∈ O be such that a
mod p generates K∗. Then |f(a)| < 1 and |f ′(a)| = 1. By Hensel’s lemma there is
a ζ ∈ K such that f(ζ) = 0 and ζ ≡ a (mod p).)

Since U is compact and the cosets of U cover K, we see that K∗ is locally
compact.
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Lemma 17.1.15. The additive Haar measure µ on K+, when restricted to U1 gives
a measure on U1 that is also invariant under multiplication, so gives a Haar measure
on U1.

Proof. It suffices to show that

µ(1 + πnO) = µ(u · (1 + πnO)),

for any u ∈ U1 and n > 0. Write u = 1 + a1π + a2π
2 + · · · . We have

u · (1 + πnO) = (1 + a1π + a2π
2 + · · · ) · (1 + πnO)

= 1 + a1π + a2π
2 + · · · + πnO

= a1π + a2π
2 + · · · + (1 + πnO),

which is an additive translate of 1 + πnO, hence has the same measure.

Thus µ gives a Haar measure on K∗ by translating U1 around to cover K∗.

Lemma 17.1.16. The topological spaces K+ and K∗ are totally disconnected (the
only connected sets are points).

Proof. The proof is the same as that of Proposition 16.2.13. The point is that the
non-archimedean triangle inequality forces the complement an open disc to be open,
hence any set with at least two distinct elements “falls apart” into a disjoint union
of two disjoint open subsets.

Remark 17.1.17. Note that K∗ and K+ are locally isomorphic if K has character-
istic 0. We have the exponential map

a 7→ exp(a) =
∞

∑

n=0

an

n!

defined for all sufficiently small a with its inverse

log(a) =

∞
∑

n=1

(−1)n−1(a − 1)n

n
,

which is defined for all a sufficiently close to 1.



136 CHAPTER 17. ADIC NUMBERS: THE FINITE RESIDUE FIELD CASE



Chapter 18

Normed Spaces and Tensor
Products

Much of this chapter is preparation for what we will do later when we will prove
that if K is complete with respect to a valuation (and locally compact) and L is
a finite extension of K, then there is a unique valuation on L that extends the
valuation on K. Also, if K is a number field, v = | · | is a valuation on K, Kv is
the completion of K with respect to v, and L is a finite extension of K, we’ll prove
that

Kv ⊗K L =
J

⊕

j=1

Lj ,

where the Lj are the completions of L with respect to the equivalence classes of
extensions of v to L. In particular, if L is a number field defined by a root of
f(x) ∈ Q[x], then

Qp ⊗Q L =
J

⊕

j=1

Lj ,

where the Lj correspond to the irreducible factors of the polynomial f(x) ∈ Qp[x]
(hence the extensions of | · |p correspond to irreducible factors of f(x) over Qp[x]).

In preparation for this clean view of the local nature of number fields, we will
prove that the norms on a finite-dimensional vector space over a complete field are
all equivalent. We will also explicitly construct tensor products of fields and deduce
some of their properties.

18.1 Normed Spaces

Definition 18.1.1 (Norm). Let K be a field with valuation | · | and let V be a
vector space over K. A real-valued function ‖ · ‖ on V is called a norm if

1. ‖v‖ > 0 for all nonzero v ∈ V (positivity).

137
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2. ‖v + w‖ ≤ ‖v‖ + ‖w‖ for all v, w ∈ V (triangle inequality).

3. ‖av‖ = |a| ‖v‖ for all a ∈ K and v ∈ V (homogeneity).

Note that setting ‖v‖ = 1 for all v 6= 0 does not define a norm unless the absolute
value on K is trivial, as 1 = ‖av‖ = |a| ‖v‖ = |a|. We assume for the rest of this
section that | · | is not trivial.

Definition 18.1.2 (Equivalent). Two norms ‖ · ‖1 and ‖ · ‖2 on the same vector
space V are equivalent if there exists positive real numbers c1 and c2 such that for
all v ∈ V

‖v‖1 ≤ c1 ‖v‖2 and ‖v‖2 ≤ c2 ‖v‖1 .

Lemma 18.1.3. Suppose that K is a field that is complete with respect to a valua-
tion | · | and that V is a finite dimensional K vector space. Continue to assume, as
mentioned above, that K is complete with respect to | · | . Then any two norms on
V are equivalent.

Remark 18.1.4. As we shall see soon (see Theorem 19.1.8), the lemma is usually
false if we do not assume that K is complete. For example, when K = Q and | · |p is
the p-adic valuation, and V is a number field, then there may be several extensions
of | · |p to inequivalent norms on V .

If two norms are equivalent then the corresponding topologies on V are equal,
since very open ball for ‖ · ‖1 is contained in an open ball for ‖ · ‖2, and conversely.
(The converse is also true, since, as we will show, all norms on V are equivalent.)

Proof. Let v1, . . . , vN be a basis for V . Define the max norm ‖ · ‖0 by

∥

∥

∥

∥

∥

N
∑

n=1

anvn

∥

∥

∥

∥

∥

0

= max {|an| : n = 1, . . . , N} .

It is enough to show that any norm ‖ · ‖ is equivalent to ‖ · ‖0. We have

∥

∥

∥

∥

∥

N
∑

n=1

anvn

∥

∥

∥

∥

∥

≤
N

∑

n=1

|an| ‖vn‖

≤
N

∑

n=1

max |an| ‖vn‖

= c1 ·
∥

∥

∥

∥

∥

N
∑

n=1

anvn

∥

∥

∥

∥

∥

0

,

where c1 =
∑N

n=1 ‖vn‖.
To finish the proof, we show that there is a c2 ∈ R such that for all v ∈ V ,

‖v‖0 ≤ c2 · ‖v‖ .
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We will only prove this in the case when K is not just merely complete with respect
to | · | but also locally compact. This will be the case of primary interest to us. For
a proof in the general case, see the original article by Cassels (page 53).

By what we have already shown, the function ‖v‖ is continuous in the ‖ · ‖0-
topology, so by local compactness it attains its lower bound δ on the unit circle
{v ∈ V : ‖v‖0 = 1}. (Why is the unit circle compact? With respect to ‖ · ‖0, the
topology on V is the same as that of a product of copies of K. If the valuation
is archimedean then K ∼= R or C with the standard topology and the unit circle
is compact. If the valuation is non-archimedean, then we saw (see Remark 17.1.7)
that if K is locally compact, then the valuation is discrete, in which case we showed
that the unit disc is compact, hence the unit circle is also compact since it is closed.)
Note that δ > 0 by part 1 of Definition 18.1.1. Also, by definition of ‖ · ‖0, for any
v ∈ V there exists a ∈ K such that ‖v‖0 = |a| (just take the max coefficient in
our basis). Thus we can write any v ∈ V as a · w where a ∈ K and w ∈ V with
‖w‖0 = 1. We then have

‖v‖0

‖v‖ =
‖aw‖0

‖aw‖ =
|a| ‖w‖0

|a| ‖w‖ =
1

‖w‖ ≤ 1

δ
.

Thus for all v we have
‖v‖0 ≤ c2 · ‖v‖ ,

where c2 = 1/δ, which proves the theorem.

18.2 Tensor Products

We need only a special case of the tensor product construction. Let A and B be
commutative rings containing a field K and suppose that B is of finite dimension N
over K, say, with basis

1 = w1, w2, . . . , wN .

Then B is determined up to isomorphism as a ring over K by the multiplication
table (ci,j,n) defined by

wi · wj =
N

∑

n=1

ci,j,n · wn.

We define a new ring C containing K whose elements are the set of all expressions

N
∑

n=1

anwn

where the wn have the same multiplication rule

wi · wj =
N

∑

n=1

ci,j,n · wn
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as the wn.
There are injective ring homomorphisms

i : A ↪→ C, i(a) = aw1 (note that w1 = 1)

and

j : B ↪→ C, j

(

N
∑

n=1

cnwn

)

=
N

∑

n=1

cnwn.

Moreover C is defined, up to isomorphism, by A and B and is independent of the
particular choice of basis wn of B (i.e., a change of basis of B induces a canonical
isomorphism of the C defined by the first basis to the C defined by the second
basis). We write

C = A ⊗K B

since C is, in fact, a special case of the ring tensor product.
Let us now suppose, further, that A is a topological ring, i.e., has a topology

with respect to which addition and multiplication are continuous. Then the map

C → A ⊕ · · · ⊕ A,
N

∑

m=1

amwm 7→ (a1, . . . , aN )

defines a bijection between C and the product of N copies of A (considered as
sets). We give C the product topology. It is readily verified that this topology is
independent of the choice of basis w1, . . . , wN and that multiplication and addition
on C are continuous, so C is a topological ring. We call this topology on C the
tensor product topology.

Now drop our assumption that A and B have a topology, but suppose that A
and B are not merely rings but fields. Recall that a finite extension L/K of fields
is separable if the number of embeddings L ↪→ K that fix K equals the degree of L
over K, where K is an algebraic closure of K. The primitive element theorem from
Galois theory asserts that any such extension is generated by a single element, i.e.,
L = K(a) for some a ∈ L.

Lemma 18.2.1. Let A and B be fields containing the field K and suppose that B is
a separable extension of finite degree N = [B : K]. Then C = A ⊗K B is the direct
sum of a finite number of fields Kj, each containing an isomorphic image of A and
an isomorphic image of B.

Proof. By the primitive element theorem, we have B = K(b), where b is a root of
some separable irreducible polynomial f(x) ∈ K[x] of degree N . Then 1, b, . . . , bN−1

is a basis for B over K, so

A ⊗K B = A[b] ∼= A[x]/(f(x))

where 1, b, b2, . . . , bN−1 are linearly independent over A and b satisfies f(b) = 0.
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Although the polynomial f(x) is irreducible as an element of K[x], it need not
be irreducible in A[x]. Since A is a field, we have a factorization

f(x) =
J

∏

j=1

gj(x)

where gj(x) ∈ A[x] is irreducible. The gj(x) are distinct because f(x) is separable
(i.e., has distinct roots in any algebraic closure).

For each j, let bj ∈ A be a root of gj(x), where A is a fixed algebraic closure of
the field A. Let Kj = A(bj). Then the map

ϕj : A ⊗K B → Kj (18.2.1)

given by sending any polynomial h(b) in b (where h ∈ A[x]) to h(bj) is a ring
homomorphism, because the image of b satisfies the polynomial f(x), and A⊗K B ∼=
A[x]/(f(x)).

By the Chinese Remainder Theorem, the maps from (18.2.1) combine to define
a ring isomorphism

A ⊗K B ∼= A[x]/(f(x)) ∼=
J

⊕

j=1

A[x]/(gj(x)) ∼=
J

⊕

j=1

Kj .

Each Kj is of the form A[x]/(gj(x)), so contains an isomorphic image of A. It
thus remains to show that the ring homomorphisms

λj : B
b 7→1⊗b−−−−→ A ⊗K B

ϕj−→ Kj

are injections. Since B and Kj are both fields, λj is either the 0 map or injective.
However, λj is not the 0 map since λj(1) = 1 ∈ Kj .

Example 18.2.2. If A and B are finite extensions of Q, then A ⊗Q B is an algebra
of degree [A : Q] · [B : Q]. For example, suppose A is generated by a root of
x2 + 1 and B is generated by a root of x3 − 2. We can view A ⊗Q B as either
A[x]/(x3 − 2) or B[x]/(x2 + 1). The polynomial x2 + 1 is irreducible over Q, and if
it factored over the cubic field B, then there would be a root of x2 +1 in B, i.e., the
quadratic field A = Q(i) would be a subfield of the cubic field B = Q( 3

√
2), which

is impossible. Thus x2 + 1 is irreducible over B, so A ⊗Q B = A.B = Q(i, 3
√

2) is
a degree 6 extension of Q. Notice that A.B contains a copy A and a copy of B.
By the primitive element theorem the composite field A.B can be generated by the
root of a single polynomial. For example, the minimal polynomial of i + 3

√
2 is

x6 + 3x4 − 4x3 + 3x2 + 12x + 5, hence Q(i + 3
√

2) = A.B.

Example 18.2.3. The case A ∼= B is even more exciting. For example, suppose
A = B = Q(i). Using the Chinese Remainder Theorem we have that

Q(i) ⊗Q Q(i) ∼= Q(i)[x]/(x2 + 1) ∼= Q(i)[x]/((x − i)(x + i)) ∼= Q(i) ⊕ Q(i),
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since (x − i) and (x + i) are coprime. The last isomorphism sends a + bx, with
a, b ∈ Q(i), to (a + bi, a − bi). Since Q(i) ⊕ Q(i) has zero divisors, the tensor
product Q(i) ⊗Q Q(i) must also have zero divisors. For example, (1, 0) and (0, 1)
is a zero divisor pair on the right hand side, and we can trace back to the elements
of the tensor product that they define. First, by solving the system

a + bi = 1 and a − bi = 0

we see that (1, 0) corresponds to a = 1/2 and b = −i/2, i.e., to the element

1

2
− i

2
x ∈ Q(i)[x]/(x2 + 1).

This element in turn corresponds to

1

2
⊗ 1 − i

2
⊗ i ∈ Q(i) ⊗Q Q(i).

Similarly the other element (0, 1) corresponds to

1

2
⊗ 1 +

i

2
⊗ i ∈ Q(i) ⊗Q Q(i).

As a double check, observe that

(

1

2
⊗ 1 − i

2
⊗ i

)

·
(

1

2
⊗ 1 +

i

2
⊗ i

)

=
1

4
⊗ 1 +

i

4
⊗ i − i

4
⊗ i − i2

4
⊗ i2

=
1

4
⊗ 1 − 1

4
⊗ 1 = 0 ∈ Q(i) ⊗Q Q(i).

Clearing the denominator of 2 and writing 1⊗1 = 1, we have (1−i⊗i)(1+i⊗i) = 0,
so i⊗ i is a root of the polynomimal x2 − 1, and i⊗ i is not ±1, so x2 − 1 has more
than 2 roots.

In general, to understand A ⊗K B explicitly is the same as factoring either the
defining polynomial of B over the field A, or factoring the defining polynomial of A
over B.

Corollary 18.2.4. Let a ∈ B be any element and let f(x) ∈ K[x] be the char-
acteristic polynomials of a over K and let gj(x) ∈ A[x] (for 1 ≤ j ≤ J) be the
characteristic polynomials of the images of a under B → A ⊗K B → Kj over A,
respectively. Then

f(x) =
J

∏

j=1

gj(X). (18.2.2)

Proof. We show that both sides of (18.2.2) are the characteristic polynomial T (x) of
the image of a in A ⊗K B over A. That f(x) = T (x) follows at once by computing
the characteristic polynomial in terms of a basis w1, . . . , wN of A ⊗K B, where
w1, . . . , wN is a basis for B over K (this is because the matrix of left multiplication
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by b on A⊗K B is exactly the same as the matrix of left multiplication on B, so the
characteristic polynomial doesn’t change). To see that T (X) =

∏

gj(X), compute
the action of the image of a in A ⊗K B with respect to a basis of

A ⊗K B ∼=
J

⊕

j=1

Kj (18.2.3)

composed of basis of the individual extensions Kj of A. The resulting matrix will
be a block direct sum of submatrices, each of whose characteristic polynomials is
one of the gj(X). Taking the product gives the claimed identity (18.2.2).

Corollary 18.2.5. For a ∈ B we have

NormB/K(a) =
J

∏

j=1

NormKj/A(a),

and

TrB/K(a) =
J

∑

j=1

TrKj/A(a),

Proof. This follows from Corollary 18.2.4. First, the norm is ± the constant term of
the characteristic polynomial, and the constant term of the product of polynomials is
the product of the constant terms (and one sees that the sign matches up correctly).
Second, the trace is minus the second coefficient of the characteristic polynomial,
and second coefficients add when one multiplies polynomials:

(xn+an−1x
n−1+· · · )·(xm+am−1x

m−1+· · · ) = xn+m+xn+m−1(am−1+an−1)+· · · .

One could also see both the statements by considering a matrix of left multiplication
by a first with respect to the basis of wn and second with respect to the basis coming
from the left side of (18.2.3).
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Chapter 19

Extensions and Normalizations
of Valuations

19.1 Extensions of Valuations

In this section we continue to tacitly assume that all valuations are nontrivial. We
do not assume all our valuations satisfy the triangle

Suppose K ⊂ L is a finite extension of fields, and that | · | and ‖ · ‖ are valuations
on K and L, respectively.

Definition 19.1.1 (Extends). We say that ‖ · ‖ extends | · | if |a| = ‖a‖ for all
a ∈ K.

Theorem 19.1.2. Suppose that K is a field that is complete with respect to | · | and
that L is a finite extension of K of degree N = [L : K]. Then there is precisely one
extension of | · | to K, namely

‖a‖ =
∣

∣NormL/K(a)
∣

∣

1/N
, (19.1.1)

where the N th root is the non-negative real N th root of the nonnegative real number
∣

∣NormL/K(a)
∣

∣.

Proof. We may assume that | · | is normalized so as to satisfy the triangle inequality.
Otherwise, normalize | · | so that it does, prove the theorem for the normalized
valuation | · |c, then raise both sides of (19.1.1) to the power 1/c. In the uniqueness
proof, by the same argument we may assume that ‖ · ‖ also satisfies the triangle
inequality.

Uniqueness. View L as a finite-dimensional vector space over K. Then ‖ · ‖ is a
norm in the sense defined earlier (Definition 18.1.1). Hence any two extensions ‖ · ‖1

and ‖ · ‖2 of | · | are equivalent as norms, so induce the same topology on K. But as
we have seen (Proposition 16.1.4), two valuations which induce the same topology
are equivalent valuations, i.e., ‖ · ‖1 = ‖ · ‖c

2, for some positive real c. Finally c = 1
since ‖a‖1 = |a| = ‖a‖2 for all a ∈ K.
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Existence. We do not give a proof of existence in the general case. Instead we give
a proof, which was suggested by Dr. Geyer at the conference out of which [Cas67]
arose. It is valid when K is locally compact, which is the only case we will use later.

We see at once that the function defined in (19.1.1) satisfies the condition (i)
that ‖a‖ ≥ 0 with equality only for a = 0, and (ii) ‖ab‖ = ‖a‖ · ‖b‖ for all a, b ∈ L.
The difficult part of the proof is to show that there is a constant C > 0 such that

‖a‖ ≤ 1 =⇒ ‖1 + a‖ ≤ C.

Note that we do not know (and will not show) that ‖ · ‖ as defined by (19.1.1) is a
norm as in Definition 18.1.1, since showing that ‖ · ‖ is a norm would entail showing
that it satisfies the triangle inequality, which is not obvious.

Choose a basis b1, . . . , bN for L over K. Let ‖ · ‖0 be the max norm on L, so for

a =
∑N

i=1 cibi with ci ∈ K we have

‖a‖0 =

∥

∥

∥

∥

∥

N
∑

i=1

cibi

∥

∥

∥

∥

∥

0

= max{|ci| : i = 1, . . . , N}.

(Note: in Cassels’s original article he let ‖ · ‖0 be any norm, but we don’t because
the rest of the proof does not work, since we can’t use homogeneity as he claims
to do. This is because it need not be possible to find, for any nonzero a ∈ L some
element c ∈ K such that ‖ac‖0 = 1. This would fail, e.g., if ‖a‖0 6= |c| for any
c ∈ K.) The rest of the argument is very similar to our proof from Lemma 18.1.3
of uniqueness of norms on vector spaces over complete fields.

With respect to the ‖ · ‖0-topology, L has the product topology as a product of
copies of K. The function a 7→ ‖a‖ is a composition of continuous functions on L
with respect to this topology (e.g., NormL/K is the determinant, hence polynomial),
hence ‖ · ‖ defines nonzero continuous function on the compact set

S = {a ∈ L : ‖a‖0 = 1}.

By compactness, there are real numbers δ, ∆ ∈ R>0 such that

0 < δ ≤ ‖a‖ ≤ ∆ for all a ∈ S.

For any nonzero a ∈ L there exists c ∈ K such that ‖a‖0 = |c|; to see this take c to

be a ci in the expression a =
∑N

i=1 cibi with |ci| ≥ |cj | for any j. Hence ‖a/c‖0 = 1,
so a/c ∈ S and

0 ≤ δ ≤ ‖a/c‖
‖a/c‖0

≤ ∆.

Then by homogeneity

0 ≤ δ ≤ ‖a‖
‖a‖0

≤ ∆.
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Suppose now that ‖a‖ ≤ 1. Then ‖a‖0 ≤ δ−1, so

‖1 + a‖ ≤ ∆ · ‖1 + a‖0

≤ ∆ · (‖1‖0 + ‖a‖0)

≤ ∆ ·
(

‖1‖0 + δ−1
)

= C (say),

as required.

Example 19.1.3. Consider the extension C of R equipped with the archimedean
valuation. The unique extension is the ordinary absolute value on C:

‖x + iy‖ =
(

x2 + y2
)1/2

.

Example 19.1.4. Consider the extension Q2(
√

2) of Q2 equipped with the 2-adic
absolute value. Since x2 − 2 is irreducible over Q2 we can do some computations
by working in the subfield Q(

√
2) of Q2(

√
2).

> K<a> := NumberField(x^2-2);

> K;

Number Field with defining polynomial x^2 - 2 over the Rational Field

> function norm(x) return Sqrt(2^(-Valuation(Norm(x),2))); end function;

> norm(1+a);

1.0000000000000000000000000000

> norm(1+a+1);

0.70710678118654752440084436209

> z := 3+2*a;

> norm(z);

1.0000000000000000000000000000

> norm(z+1);

0.353553390593273762200422181049

Remark 19.1.5. Geyer’s existence proof gives (19.1.1). But it is perhaps worth
noting that in any case (19.1.1) is a consequence of unique existence, as follows.
Suppose L/K is as above. Suppose M is a finite Galois extension of K that con-
tains L. Then by assumption there is a unique extension of | · | to M , which we
shall also denote by ‖ · ‖. If σ ∈ Gal(M/K), then

‖a‖σ := ‖σ(a)‖

is also an extension of | · | to M , so ‖ · ‖σ = ‖ · ‖, i.e.,

‖σ(a)‖ = ‖a‖ for all a ∈ M.

But now
NormL/K(a) = σ1(a) · σ2(a) · · ·σN (a)
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for a ∈ K, where σ1, . . . , σN ∈ Gal(M/K) extend the embeddings of L into M .
Hence

∣

∣NormL/K(a)
∣

∣ =
∥

∥NormL/K(a)
∥

∥

=
∏

1≤n≤N

‖σn(a)‖

= ‖a‖N ,

as required.

Corollary 19.1.6. Let w1, . . . , wN be a basis for L over K. Then there are positive
constants c1 and c2 such that

c1 ≤

∥

∥

∥

∥

∥

N
∑

n=1

bnwn

∥

∥

∥

∥

∥

max{|bn| : n = 1, . . . , N} ≤ c2

for any b1, . . . , bN ∈ K not all 0.

Proof. For
∣

∣

∣

∑N
n=1 bnwn

∣

∣

∣
and max |bn| are two norms on L considered as a vector

space over K.

I don’t believe this proof, which I copied from Cassels’s article. My problem
with it is that the proof of Theorem 19.1.2 does not give that C ≤ 2, i.e., that the
triangle inequality holds for ‖ · ‖. By changing the basis for L/K one can make any
nonzero vector a ∈ L have ‖a‖0 = 1, so if we choose a such that |a| is very large,
then the ∆ in the proof will also be very large. One way to fix the corollary is to
only claim that there are positive constants c1, c2, c3, c4 such that

c1 ≤

∥

∥

∥

∥

∥

N
∑

n=1

bnwn

∥

∥

∥

∥

∥

c3

max{|bn|c4 : n = 1, . . . , N} ≤ c2.

Then choose c3, c4 such that ‖ · ‖c3 and | · |c4 satisfies the triangle inequality, and
prove the modified corollary using the proof suggested by Cassels.

Corollary 19.1.7. A finite extension of a completely valued field K is complete
with respect to the extended valuation.

Proof. By the proceeding corollary it has the topology of a finite-dimensional vector
space over K. (The problem with the proof of the previous corollary is not an issue,
because we can replace the extended valuation by an inequivalent one that satisfies
the triangle inequality and induces the same topology.)

When K is no longer complete under | · | the position is more complicated:
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Theorem 19.1.8. Let L be a separable extension of K of finite degree N = [L : K].
Then there are at most N extensions of a valuation | · | on K to L, say ‖ · ‖j, for
1 ≤ j ≤ J . Let Kv be the completion of K with respect to | · |, and for each j let Lj

be the completion of L with respect to ‖ · ‖j. Then

Kv ⊗K L ∼=
⊕

1≤j≤J

Lj (19.1.2)

algebraically and topologically, where the right hand side is given the product topol-
ogy.

Proof. We already know (Lemma 18.2.1) that Kv ⊗K L is of the shape (19.1.2),
where the Lj are finite extensions of Kv. Hence there is a unique extension | · |∗j
of | · | to the Lj , and by Corollary 19.1.7 the Lj are complete with respect to the
extended valuation. Further, the ring homomorphisms

λj : L → Kv ⊗K L → Lj

are injections. Hence we get an extension ‖ · ‖j of | · | to L by putting

‖b‖j = |λj(b)|∗j .

Further, L ∼= λj(L) is dense in Lj with respect to ‖ · ‖j because L = K ⊗K L is
dense in Kv ⊗K L (since K is dense in Kv). Hence Lj is exactly the completion of
L.

It remains to show that the ‖ · ‖j are distinct and that they are the only exten-
sions of | · | to L.

Suppose ‖ · ‖ is any valuation of L that extends | · |. Then ‖ · ‖ extends by
continuity to a real-valued function on Kv ⊗K L, which we also denote by ‖ · ‖.
(We are again using that L is dense in Kv ⊗K L.) By continuity we have for all
a, b ∈ Kv ⊗K L,

‖ab‖ = ‖a‖ · ‖b‖
and if C is the constant in axiom (iii) for L and ‖ · ‖, then

‖a‖ ≤ 1 =⇒ ‖1 + a‖ ≤ C.

(In Cassels, he inexplicable assume that C = 1 at this point in the proof.)
We consider the restriction of ‖ · ‖ to one of the Lj . If ‖a‖ 6= 0 for some a ∈ Lj ,

then ‖a‖ = ‖b‖ ·
∥

∥ab−1
∥

∥ for every b 6= 0 in Lj so ‖b‖ 6= 0. Hence either ‖ · ‖ is
identically 0 on Lj or it induces a valuation on Lj .

Further, ‖ · ‖ cannot induce a valuation on two of the Lj . For

(a1, 0, . . . , 0) · (0, a2, 0, . . . , 0) = (0, 0, 0, . . . , 0),

so for any a1 ∈ L1, a2 ∈ L2,
‖a1‖ · ‖a2‖ = 0.
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Hence ‖ · ‖ induces a valuation in precisely one of the Lj , and it extends the given
valuation | · | of Kv. Hence ‖ · ‖ = ‖ · ‖j for precisely one j.

It remains only to show that (19.1.2) is a topological homomorphism. For

(b1, . . . , bJ) ∈ L1 ⊕ · · · ⊕ LJ

put
‖(b1, . . . , bJ)‖0 = max

1≤j≤J
‖bj‖j .

Then ‖ · ‖0 is a norm on the right hand side of (19.1.2), considered as a vector space
over Kv and it induces the product topology. On the other hand, any two norms
are equivalent, since Kv is complete, so ‖ · ‖0 induces the tensor product topology
on the left hand side of (19.1.2).

Corollary 19.1.9. Suppose L = K(a), and let f(x) ∈ K[x] be the minimal polyno-
mial of a. Suppose that

f(x) =
∏

1≤j≤J

gj(x)

in Kv[x], where the gj are irreducible. Then Lj = Kv(bj), where bj is a root of gj.

19.2 Extensions of Normalized Valuations

Let K be a complete field with valuation | · |. We consider the following three cases:

(1) | · | is discrete non-archimedean and the residue class field is finite.

(2i) The completion of K with respect to | · | is R.

(2ii) The completion of K with respect to | · | is C.

(Alternatively, these cases can be subsumed by the hypothesis that the completion
of K is locally compact.)

In case (1) we defined the normalized valuation to be the one such that if Haar
measure of the ring of integers O is 1, then µ(aO) = |a| (see Definition 17.1.11). In
case (2i) we say that | · | is normalized if it is the ordinary absolute value, and in
(2ii) if it is the square of the ordinary absolute value:

|x + iy| = x2 + y2 (normalized).

In every case, for every a ∈ K, the map

a : x 7→ ax

on K+ multiplies any choice of Haar measure by |a|, and this characterizes the
normalized valuations among equivalent ones.

We have already verified the above characterization for non-archimedean valu-
ations, and it is clear for the ordinary absolute value on R, so it remains to verify
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it for C. The additive group C+ is topologically isomorphic to R+ ⊕ R+, so a
choice of Haar measure of C+ is the usual area measure on the Euclidean plane.
Multiplication by x + iy ∈ C is the same as rotation followed by scaling by a factor
of

√

x2 + y2, so if we rescale a region by a factor of x + iy, the area of the region
changes by a factor of the square of

√

x2 + y2. This explains why the normalized
valuation on C is the square of the usual absolute value. Note that the normalized
valuation on C does not satisfy the triangle inequality:

|1 + (1 + i)| = |2 + i| = 22 + 12 = 5 6≤ 3 = 12 + (12 + 12) = |1| + |1 + i| .

The constant C in axiom (3) of a valuation for the ordinary absolute value on C is
2, so the constant for the normalized valuation | · | is C ≤ 4:

|x + iy| ≤ 1 =⇒ |x + iy + 1| ≤ 4.

Note that x2 + y2 ≤ 1 implies

(x + 1)2 + y2 = x2 + 2x + 1 + y2 ≤ 1 + 2x + 1 ≤ 4

since x ≤ 1.

Lemma 19.2.1. Suppose K is a field that is complete with respect to a normalized
valuation | · | and let L be a finite extension of K of degree N = [L : K]. Then the
normalized valuation ‖ · ‖ on L which is equivalent to the unique extension of | · |
to L is given by the formula

‖a‖ =
∣

∣NormL/K(a)
∣

∣ all a ∈ L. (19.2.1)

Proof. Let ‖ · ‖ be the normalized valuation on L that extends | · |. Our goal is to
identify ‖ · ‖, and in particular to show that it is given by (19.2.1).

By the preceding section there is a positive real number c such that for all a ∈ L
we have

‖a‖ =
∣

∣NormL/K(a)
∣

∣

c
.

Thus all we have to do is prove that c = 1. In case 2 the only nontrivial situation
is L = C and K = R, in which case

∣

∣NormC/R(x + iy)
∣

∣ =
∣

∣x2 + y2
∣

∣, which is the
normalized valuation on C defined above.

One can argue in a unified way in all cases as follows. Let w1, . . . , wN be a basis
for L/K. Then the map

ϕ : L+ →
N

⊕

n=1

K+,
∑

anwn 7→ (a1, . . . , aN )

is an isomorphism between the additive group L+ and the direct sum ⊕N
n=1K

+,
and this is a homeomorphism if the right hand side is given the product topology.
In particular, the Haar measures on L+ and on ⊕N

n=1K
+ are the same up to a

multiplicative constant in Q∗.
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Let b ∈ K. Then the left-multiplication-by-b map

b :
∑

anwn 7→
∑

banwn

on L+ is the same as the map

(a1, . . . , aN ) 7→ (ba1, . . . , baN )

on ⊕N
n=1K

+, so it multiplies the Haar measure by |b|N , since | · | on K is assumed
normalized (the measure of each factor is multiplied by |b|, so the measure on the
product is multiplied by |b|N ). Since ‖ · ‖ is assumed normalized, so multiplication
by b rescales by ‖b‖, we have

‖b‖ = |b|N .

But b ∈ K, so NormL/K(b) = bN . Since | · | is nontrivial and for a ∈ K we have

‖a‖ = |a|N =
∣

∣aN
∣

∣ =
∣

∣NormL/K(a)
∣

∣ ,

so we must have c = 1 in (19.2.1), as claimed.

In the case when K need not be complete with respect to the valuation | · | on K,
we have the following theorem.

Theorem 19.2.2. Suppose | · | is a (nontrivial as always) normalized valuation of
a field K and let L be a finite extension of K. Then for any a ∈ L,

∏

1≤j≤J

‖a‖j =
∣

∣NormL/K(a)
∣

∣

where the ‖ · ‖j are the normalized valuations equivalent to the extensions of | · |
to K.

Proof. Let Kv denote the completion of K with respect to | · |. Write

Kv ⊗K L =
⊕

1≤j≤J

Lj .

Then Theorem 19.2.2 asserts that

NormL/K(a) =
∏

1≤j≤J

NormLj/Kv
(a). (19.2.2)

By Theorem 19.1.8, the ‖ · ‖j are exactly the normalizations of the extensions of | · |
to the Lj (i.e., the Lj are in bijection with the extensions of valuations, so there are
no other valuations missed). By Lemma 19.1.1, the normalized valuation ‖ · ‖j on

Lj is |a| =
∣

∣NormLJ/Kv
(a)

∣

∣. The theorem now follows by taking absolute values of
both sides of (19.2.2).

What next?! We’ll building up to giving a new proof of finiteness of the class
group that uses that the class group naturally has the discrete topology and is the
continuous image of a compact group.



Chapter 20

Global Fields and Adeles

20.1 Global Fields

Definition 20.1.1 (Global Field). A global field is a number field or a finite
separable extension of F(t), where F is a finite field, and t is transcendental over F.

Below we will focus attention on number fields leaving the function field case to
the reader.

The following lemma essentially says that the denominator of an element of a
global field is only “nontrivial” at a finite number of valuations.

Lemma 20.1.2. Let a ∈ K be a nonzero element of a global field K. Then there
are only finitely many inequivalent valuations | · | of K for which

|a| > 1.

Proof. If K = Q or F(t) then the lemma follows by Ostrowski’s classification of all
the valuations on K (see Theorem 15.3.2). For example, when a = n

d ∈ Q, with
n, d ∈ Z, then the valuations where we could have |a| > 1 are the archimedean one,
or the p-adic valuations | · |p for which p | d.

Suppose now that K is a finite extension of Q, so a satisfies a monic polynomial

an + cn−1a
n−1 + · · · + c0 = 0,

for some n and c0, . . . , cn−1 ∈ Q. If | · | is a non-archimedean valuation on K, we
have

|a|n =
∣

∣−(cn−1a
n−1 + · · · + c0)

∣

∣

≤ max(1, |a|n−1) · max(|c0| , . . . , |cn−1|).

Dividing each side by |a|n−1, we have that

|a| ≤ max(|c0| , . . . , |cn−1|),

153
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so in all cases we have

|a| ≤ max(1, |c0| , . . . , |cn−1|)1/(n−1). (20.1.1)

We know the lemma for Q, so there are only finitely many valuations | · | on Q such
that the right hand side of (20.1.1) is bigger than 1. Since each valuation of Q
has finitely many extensions to K, and there are only finitely many archimedean
valuations, it follows that there are only finitely many valuations on K such that
|a| > 1.

Any valuation on a global field is either archimedean, or discrete non-archimedean
with finite residue class field, since this is true of Q and F(t) and is a property pre-
served by extending a valuation to a finite extension of the base field. Hence it
makes sense to talk of normalized valuations. Recall that the normalized p-adic
valuation on Q is |x|p = p− ordp(x), and if v is a valuation on a number field K
equivalent to an extension of | · |p, then the normalization of v is the composite of
the sequence of maps

K ↪→ Kv
Norm−−−→ Qp

| · |p−−→ R,

where Kv is the completion of K at v.

Example 20.1.3. Let K = Q(
√

2), and let p = 2. Because
√

2 6∈ Q2, there is exactly
one extension of | · |2 to K, and it sends a = 1/

√
2 to

∣

∣

∣
NormQ2(

√
2)/Q2

(1/
√

2)
∣

∣

∣

1/2

2
=

√
2.

Thus the normalized valuation of a is 2.
There are two extensions of | · |7 to Q(

√
2), since Q(

√
2) ⊗Q Q7

∼= Q7 ⊕ Q7, as
x2 − 2 = (x − 3)(x − 4) (mod 7). The image of

√
2 under each embedding into Q7

is a unit in Z7, so the normalized valuation of a = 1/
√

2 is, in both cases, equal
to 1. More generally, for any valuation of K of characteristic an odd prime p, the
normalized valuation of a is 1.

Since K = Q(
√

2) ↪→ R in two ways, there are exactly two normalized archimedean
valuations on K, and both of their values on a equal 1/

√
2. Notice that the product

of the absolute values of a with respect to all normalized valuations is

2 · 1√
2
· 1√

2
· 1 · 1 · 1 · · · = 1.

This “product formula” holds in much more generality, as we will now see.

Theorem 20.1.4 (Product Formula). Let a ∈ K be a nonzero element of a
global field K. Let | · |v run through the normalized valuations of K. Then |a|v = 1
for almost all v, and

∏

all v

|a|v = 1 (the product formula).
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We will later give a more conceptual proof of this using Haar measure (see
Remark 20.3.9).

Proof. By Lemma 20.1.2, we have |a|v ≤ 1 for almost all v. Likewise, 1/ |a|v =
|1/a|v ≤ 1 for almost all v, so |a|v = 1 for almost all v.

Let w run through all normalized valuations of Q (or of F(t)), and write v | w
if the restriction of v to Q is equivalent to w. Then by Theorem 19.2.2,

∏

v

|a|v =
∏

w





∏

v|w
|a|v



 =
∏

w

∣

∣NormK/Q(a)
∣

∣

w
,

so it suffices to prove the theorem for K = Q.

By multiplicativity of valuations, if the theorem is true for b and c then it is
true for the product bc and quotient b/c (when c 6= 0). The theorem is clearly true
for −1, which has valuation 1 at all valuations. Thus to prove the theorem for Q
it suffices to prove it when a = p is a prime number. Then we have |p|∞ = p,
|p|p = 1/p, and for primes q 6= p that |p|q = 1. Thus

∏

v

|p|v = p · 1

p
· 1 · 1 · 1 · · · = 1,

as claimed.

If v is a valuation on a field K, recall that we let Kv denote the completion of
K with respect to v. Also when v is non-archimedean, let

Ov = OK,v = {x ∈ Kv : |x| ≤ 1}

be the ring of integers of the completion.

Definition 20.1.5 (Almost All). We say a condition holds for almost all elements
of a set if it holds for all but finitely many elements.

We will use the following lemma later (see Lemma 20.3.3) to prove that formation
of the adeles of a global field is compatible with base change.

Lemma 20.1.6. Let ω1, . . . , ωn be a basis for L/K, where L is a finite separable
extension of the global field K of degree n. Then for almost all normalized non-
archimedean valuations v on K we have

ω1Ov ⊕ · · · ⊕ ωnOv = Ow1 ⊕ · · · ⊕ Owg ⊂ Kv ⊗K L, (20.1.2)

where w1, . . . , wg are the extensions of v to L. Here we have identified a ∈ L with
its canonical image in Kv ⊗K L, and the direct sum on the left is the sum taken
inside the tensor product (so directness means that the intersections are trivial).
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Proof. The proof proceeds in two steps. First we deduce easily from Lemma 20.1.2
that for almost all v the left hand side of (20.1.2) is contained in the right hand
side. Then we use a trick involving discriminants to show the opposite inclusion for
all but finitely many primes.

Since Ov ⊂ Owi
for all i, the left hand side of (20.1.2) is contained in the right

hand side if |ωi|wj
≤ 1 for 1 ≤ i ≤ n and 1 ≤ j ≤ g. Thus by Lemma 20.1.2, for all

but finitely many v the left hand side of (20.1.2) is contained in the right hand side.
We have just eliminated the finitely many primes corresponding to “denominators”
of some ωi, and now only consider v such that ω1, . . . , ωn ∈ Ow for all w | v.

For any elements a1, . . . , an ∈ Kv ⊗K L, consider the discriminant

D(a1, . . . , an) = Det(Tr(aiaj)) ∈ Kv,

where the trace is induced from the L/K trace. Since each ωi is in each Ow, for
w | v, the traces lie in Ov, so

d = D(ω1, . . . , ωn) ∈ Ov.

Also note that d ∈ K since each ωi is in L. Now suppose that

α =
n

∑

i=1

aiωi ∈ Ow1 ⊕ · · · ⊕ Owg ,

with ai ∈ Kv. Then by properties of determinants for any m with 1 ≤ m ≤ n, we
have

D(ω1, . . . , ωm−1, α, ωm+1, . . . , ωn) = a2
mD(ω1, . . . , ωn). (20.1.3)

The left hand side of (20.1.3) is in Ov, so the right hand side is well, i.e.,

a2
m · d ∈ Ov, (for m = 1, . . . , n),

where d ∈ K. Since ω1, . . . , ωn are a basis for L over K and the trace pairing is
nondegenerate, we have d 6= 0, so by Theorem 20.1.4 we have |d|v = 1 for all but
finitely many v. Then for all but finitely many v we have that a2

m ∈ Ov. For these
v, that a2

m ∈ Ov implies am ∈ Ov since am ∈ Kv, i.e., α is in the left hand side of
(20.1.2).

Example 20.1.7. Let K = Q and L = Q(
√

2). Let ω1 = 1/3 and ω2 = 2
√

2. In the
first stage of the above proof we would eliminate | · |3 because ω2 is not integral at
3. The discriminant is

d = D

(

1

3
, 2
√

2

)

= Det

(

2
9 0
0 16

)

=
32

9
.

As explained in the second part of the proof, as long as v 6= 2, 3, we have equality
of the left and right hand sides in (20.1.2).
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20.2 Restricted Topological Products

In this section we describe a topological tool, which we need in order to define adeles
(see Definition 20.3.1).

Definition 20.2.1 (Restricted Topological Products). Let Xλ, for λ ∈ Λ, be
a family of topological spaces, and for almost all λ let Yλ ⊂ Xλ be an open subset
of Xλ. Consider the space X whose elements are sequences x = {xλ}λ∈Λ, where
xλ ∈ Xλ for every λ, and xλ ∈ Yλ for almost all λ. We give X a topology by taking
as a basis of open sets the sets

∏

Uλ, where Uλ ⊂ Xλ is open for all λ, and Uλ = Yλ

for almost all λ. We call X with this topology the restricted topological product of
the Xλ with respect to the Yλ.

Corollary 20.2.2. Let S be a finite subset of Λ, and let XS be the set of x ∈ X
with xλ ∈ Yλ for all λ 6∈ S, i.e.,

XS =
∏

λ∈S

Xλ ×
∏

λ6∈S

Yλ ⊂ X.

Then XS is an open subset of X, and the topology induced on XS as a subset of X
is the same as the product topology.

The restricted topological product depends on the totality of the Yλ, but not on
the individual Yλ:

Lemma 20.2.3. Let Y ′
λ ⊂ Xλ be open subsets, and suppose that Yλ = Y ′

λ for
almost all λ. Then the restricted topological product of the Xλ with respect to the
Y ′

λ is canonically isomorphic to the restricted topological product with respect to the
Yλ.

Lemma 20.2.4. Suppose that the Xλ are locally compact and that the Yλ are com-
pact. Then the restricted topological product X of the Xλ is locally compact.

Proof. For any finite subset S of Λ, the open subset XS ⊂ X is locally compact,
because by Lemma 20.2.2 it is a product of finitely many locally compact sets with
an infinite product of compact sets. (Here we are using Tychonoff’s theorem from
topology, which asserts that an arbitrary product of compact topological spaces is
compact (see Munkres’s Topology, a first course, chapter 5).) Since X = ∪SXS ,
and the XS are open in X, the result follows.

The following measure will be extremely important in deducing topological prop-
erties of the ideles, which will be used in proving finiteness of class groups. See, e.g.,
the proof of Lemma 20.4.1, which is a key input to the proof of strong approximation
(Theorem 20.4.4).
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Definition 20.2.5 (Product Measure). For all λ ∈ Λ, suppose µλ is a measure
on Xλ with µλ(Yλ) = 1 when Yλ is defined. We define the product measure µ on X
to be that for which a basis of measurable sets is

∏

λ

Mλ

where each Mλ ⊂ Xλ has finite µλ-measure and Mλ = Yλ for almost all λ, and
where

µ

(

∏

λ

Mλ

)

=
∏

λ

µλ(Mλ).

20.3 The Adele Ring

Let K be a global field. For each normalization | · |v of K, let Kv denote the
completion of K. If | · |v is non-archimedean, let Ov denote the ring of integers of
Kv.

Definition 20.3.1 (Adele Ring). The adele ring AK of K is the topological
ring whose underlying topological space is the restricted topological product of
the Kv with respect to the Ov, and where addition and multiplication are defined
componentwise:

(xy)v = xvyv (x + y)v = xv + yv for x,y ∈ AK . (20.3.1)

It is readily verified that (i) this definition makes sense, i.e., if x,y ∈ AK ,
then xy and x + y, whose components are given by (20.3.1), are also in AK , and
(ii) that addition and multiplication are continuous in the AK-topology, so AK

is a topological ring, as asserted. Also, Lemma 20.2.4 implies that AK is locally
compact because the Kv are locally compact (Corollary 17.1.6), and the Ov are
compact (Theorem 17.1.4).

There is a natural continuous ring inclusion

K ↪→ AK (20.3.2)

that sends x ∈ K to the adele every one of whose components is x. This is an adele
because x ∈ Ov for almost all v, by Lemma 20.1.2. The map is injective because
each map K → Kv is an inclusion.

Definition 20.3.2 (Principal Adeles). The image of (20.3.2) is the ring of prin-
cipal adeles.

It will cause no trouble to identify K with the principal adeles, so we shall speak
of K as a subring of AK .

Formation of the adeles is compatibility with base change, in the following sense.
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Lemma 20.3.3. Suppose L is a finite (separable) extension of the global field K.
Then

AK ⊗K L ∼= AL (20.3.3)

both algebraically and topologically. Under this isomorphism,

L ∼= K ⊗K L ⊂ AK ⊗K L

maps isomorphically onto L ⊂ AL.

Proof. Let ω1, . . . , ωn be a basis for L/K and let v run through the normalized
valuations on K. The left hand side of (20.3.3), with the tensor product topology,
is the restricted product of the tensor products

Kv ⊗K L ∼= Kv · ω1 ⊕ · · · ⊕ Kv · ωn

with respect to the integers

Ov · ω1 ⊕ · · · ⊕ Ov · ωn. (20.3.4)

(An element of the left hand side is a finite linear combination
∑

xi ⊗ ai of adeles
xi ∈ AK and coefficients ai ∈ L, and there is a natural isomorphism from the ring
of such formal sums to the restricted product of the Kv ⊗K L.)

We proved before (Theorem 19.1.8) that

Kv ⊗K L ∼= Lw1 ⊕ · · · ⊕ Lwg ,

where w1, . . . , wg are the normalizations of the extensions of v to L. Furthermore, as
we proved using discriminants (see Lemma 20.1.6), the above identification identifies
(20.3.4) with

OLw1
⊕ · · · ⊕ OLwg

,

for almost all v. Thus the left hand side of (20.3.3) is the restricted product of
the Lw1 ⊕ · · · ⊕Lwg with respect to the OLw1

⊕ · · · ⊕ OLwg
. But this is canonically

isomorphic to the restricted product of all completions Lw with respect to Ow, which
is the right hand side of (20.3.3). This establishes an isomorphism between the two
sides of (20.3.3) as topological spaces. The map is also a ring homomorphism, so
the two sides are algebraically isomorphic, as claimed.

Corollary 20.3.4. Let A+
K denote the topological group obtained from the additive

structure on AK . Suppose L is a finite seperable extension of K. Then

A+
L = A+

K ⊕ · · · ⊕ A+
K , ([L : K] summands).

In this isomorphism the additive group L+ ⊂ A+
L of the principal adeles is mapped

isomorphically onto K+ ⊕ · · · ⊕ K+.



160 CHAPTER 20. GLOBAL FIELDS AND ADELES

Proof. For any nonzero ω ∈ L, the subgroup ω · A+
K of A+

L is isomorphic as a topo-
logical group to A+

K (the isomorphism is multiplication by 1/ω). By Lemma 20.3.3,
we have isomorphisms

A+
L = A+

K ⊗K L ∼= ω1 · A+
K ⊕ · · · ⊕ ωn · A+

K
∼= A+

K ⊕ · · · ⊕ A+
K .

If a ∈ L, write a =
∑

biωi, with bi ∈ K. Then a maps via the above map to

x = (ω1 · {b1}, . . . , ωn · {bn}),

where {bi} denotes the principal adele defined by bi. Under the final map, x maps
to the tuple

(b1, . . . , bn) ∈ K ⊕ · · · ⊕ K ⊂ A+
K ⊕ · · · ⊕ A+

K .

The dimensions of L and of K ⊕ · · · ⊕ K over K are the same, so this proves the
final claim of the corollary.

Theorem 20.3.5. The global field K is discrete in AK and the quotient A+
K/K+

of additive groups is compact in the quotient topology.

At this point Cassels remarks

“It is impossible to conceive of any other uniquely defined topology on
K. This metamathematical reason is more persuasive than the argument
that follows!”

Proof. Corollary 20.3.4, with K for L and Q or F(t) for K, shows that it is enough
to verify the theorem for Q or F(t), and we shall do it here for Q.

To show that Q+ is discrete in A+
Q it is enough, because of the group structure,

to find an open set U that contains 0 ∈ A+
Q, but which contains no other elements

of Q+. (If α ∈ Q+, then U + α is an open subset of A+
Q whose intersection with

Q+ is {α}.) We take for U the set of x = {xv}v ∈ A+
Q with

|x∞|∞ < 1 and |xp|p ≤ 1 (all p),

where | · |p and | · |∞ are respectively the p-adic and the usual archimedean absolute
values on Q. If b ∈ Q ∩ U , then in the first place b ∈ Z because |b|p ≤ 1 for all

p, and then b = 0 because |b|∞ < 1. This proves that K+ is discrete in A+
Q. (If

we leave out one valuation, as we will see later (Theorem 20.4.4), this theorem is
false—what goes wrong with the proof just given?)

Next we prove that the quotient A+
Q/Q+ is compact. Let W ⊂ A+

Q consist of

the x = {xv}v ∈ A+
Q with

|x∞|∞ ≤ 1

2
and |xp|p ≤ 1 for all primes p.

We show that every adele y = {yv}v is of the form

y = a + x, a ∈ Q, x ∈ W,
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which will imply that the compact set W maps surjectively onto A+
Q/Q+. Fix an

adele y = {yv} ∈ A+
Q. Since y is an adele, for each prime p we can find a rational

number

rp =
zp

pnp
with zp ∈ Z and np ∈ Z≥0

such that

|yp − rp|p ≤ 1,

and

rp = 0 almost all p.

More precisely, for the finitely many p such that

yp =
∑

n≥−|s|
anpn 6∈ Zp,

choose rp to be a rational number that is the value of an appropriate truncation of
the p-adic expansion of yp, and when yp ∈ Zp just choose rp = 0. Hence r =

∑

p rp ∈
Q is well defined. The rq for q 6= p do not mess up the inequality |yp − r|p ≤ 1
since the valuation | · |p is non-archimedean and the rq do not have any p in their
denominator:

|yp − r|p =

∣

∣

∣

∣

∣

∣

yp − rp −
∑

q 6=p

rq

∣

∣

∣

∣

∣

∣

p

≤ max



|yp − rp|p ,

∣

∣

∣

∣

∣

∣

∑

q 6=p

rq

∣

∣

∣

∣

∣

∣

p



 ≤ max(1, 1) = 1.

Now choose s ∈ Z such that

|b∞ − r − s| ≤ 1

2
.

Then a = r + s and x = y − a do what is required, since y − a = y − r − s has the
desired property (since s ∈ Z and the p-adic valuations are non-archimedean).

Hence the continuous map W → A+
Q/Q+ induced by the quotient map A+

Q →
A+

Q/Q+ is surjective. But W is compact (being the topological product of the

compact spaces |x∞|∞ ≤ 1/2 and the Zp for all p), hence A+
Q/Q+ is also compact.

Corollary 20.3.6. There is a subset W of AK defined by inequalities of the type
|xv|v ≤ δv, where δv = 1 for almost all v, such that every y ∈ AK can be put in the
form

y = a + x, a ∈ K, x ∈ W,

i.e., AK = K + W .

Proof. We constructed such a set for K = Q when proving Theorem 20.3.5. For
general K the W coming from the proof determines compenent-wise a subset of
A+

K
∼= A+

Q ⊕ · · · ⊕ A+
Q that is a subset of a set with the properties claimed by the

corollary.
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As already remarked, A+
K is a locally compact group, so it has an invariant

Haar measure. In fact one choice of this Haar measure is the product of the Haar
measures on the Kv, in the sense of Definition 20.2.5.

Corollary 20.3.7. The quotient A+
K/K+ has finite measure in the quotient measure

induced by the Haar measure on A+
K .

Remark 20.3.8. This statement is independent of the particular choice of the multi-
plicative constant in the Haar measure on A+

K . We do not here go into the question
of finding the measure A+

K/K+ in terms of our explicitly given Haar measure. (See
Tate’s thesis, [Cp86, Chapter XV].)

Proof. This can be reduced similarly to the case of Q or F(t) which is immediate,
e.g., the W defined above has measure 1 for our Haar measure.

Alternatively, finite measure follows from compactness. To see this, cover AK/K+

with the translates of U , where U is a nonempty open set with finite measure. The
existence of a finite subcover implies finite measure.

Remark 20.3.9. We give an alternative proof of the product formula
∏ |a|v = 1

for nonzero a ∈ K. We have seen that if xv ∈ Kv, then multiplication by xv

magnifies the Haar measure in K+
v by a factor of |xv|v. Hence if x = {xv} ∈ AK ,

then multiplication by x magnifies the Haar measure in A+
K by

∏ |xv|v. But now
multiplication by a ∈ K takes K+ ⊂ A+

K into K+, so gives a well-defined bijection
of A+

K/K+ onto A+
K/K+ which magnifies the measure by the factor

∏ |a|v. Hence
∏ |a|v = 1 Corollary 20.3.7. (The point is that if µ is the measure of A+

K/K+, then
µ =

∏ |a|v · µ, so because µ is finite we must have
∏ |a|v = 1.)

20.4 Strong Approximation

We first prove a technical lemma and corollary, then use them to deduce the strong
approximation theorem, which is an extreme generalization of the Chinese Remain-
der Theorem; it asserts that K+ is dense in the analogue of the adeles with one
valuation removed.

The proof of Lemma 20.4.1 below will use in a crucial way the normalized Haar
measure on AK and the induced measure on the compact quotient A+

K/K+. Since
I am not formally developing Haar measure on locally compact groups, and since I
didn’t explain induced measures on quotients well in the last chapter, hopefully the
following discussion will help clarify what is going on.

The real numbers R+ under addition is a locally compact topological group.
Normalized Haar measure µ has the property that µ([a, b]) = b − a, where a ≤ b
are real numbers and [a, b] is the closed interval from a to b. The subset Z+ of R+

is discrete, and the quotient S1 = R+/Z+ is a compact topological group, which
thus has a Haar measure. Let µ be the Haar measure on S1 normalized so that the
natural quotient π : R+ → S1 preserves the measure, in the sense that if X ⊂ R+

is a measurable set that maps injectively into S1, then µ(X) = µ(π(X)). This



20.4. STRONG APPROXIMATION 163

determine µ and we have µ(S1) = 1 since X = [0, 1) is a measurable set that maps
bijectively onto S1 and has measure 1. The situation for the map AK → AK/K+

is pretty much the same.

Lemma 20.4.1. There is a constant C > 0 that depends only on the global field K
with the following property:

Whenever x = {xv}v ∈ AK is such that
∏

v

|xv|v > C, (20.4.1)

then there is a nonzero principal adele a ∈ K ⊂ AK such that

|a|v ≤ |xv|v for all v.

Proof. This proof is modelled on Blichfeldt’s proof of Minkowski’s Theorem in the
Geometry of Numbers, and works in quite general circumstances.

First we show that (20.4.1) implies that |xv|v = 1 for almost all v. Because x is
an adele, we have |xv|v ≤ 1 for almost all v. If |xv|v < 1 for infinitely many v, then
the product in (20.4.1) would have to be 0. (We prove this only when K is a finite
extension of Q.) Excluding archimedean valuations, this is because the normalized
valuation |xv|v = |Norm(xv)|p, which if less than 1 is necessarily ≤ 1/p. Any infinite
product of numbers 1/pi must be 0, whenever pi is a sequence of primes.

Let c0 be the Haar measure of A+
K/K+ induced from normalized Haar measure

on A+
K , and let c1 be the Haar measure of the set of y = {yv}v ∈ A+

K that satisfy

|yv|v ≤ 1

2
if v is real archimedean,

|yv|v ≤ 1

2
if v is complex archimedean,

|yv|v ≤ 1 if v is non-archimedean.

(As we will see, any positive real number ≤ 1/2 would suffice in the definition of
c1 above. For example, in Cassels’s article he uses the mysterious 1/10. He also
doesn’t discuss the subtleties of the complex archimedean case separately.)

Then 0 < c0 < ∞ since AK/K+ is compact, and 0 < c1 < ∞ because the
number of archimedean valuations v is finite. We show that

C =
c0

c1

will do. Thus suppose x is as in (20.4.1).
The set T of t = {tv}v ∈ A+

K such that

|tv|v ≤ 1

2
|xv|v if v is real archimedean,

|tv|v ≤ 1

2

√

|xv|v if v is complex archimedean,

|tv|v ≤ |xv|v if v is non-archimedean
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has measure
c1 ·

∏

v

|xv|v > c1 · C = c0. (20.4.2)

(Note: If there are complex valuations, then the some of the |xv|v’s in the product
must be squared.)

Because of (20.4.2), in the quotient map A+
K → A+

K/K+ there must be a pair of
distinct points of T that have the same image in A+

K/K+, say

t′ = {t′v}v ∈ T and t′′ = {t′′v}v ∈ T

and
a = t′ − t′′ ∈ K+

is nonzero. Then

|a|v =
∣

∣t′v − t′′v
∣

∣

v
≤

{

|t′v| + |t′′v | ≤ 2 · 1
2 |xv|v ≤ |xv|v if v is real archimedean, or

max(|t′v| , |t′′v |) ≤ |xv|v if v is non-archimedean,

for all v. In the case of complex archimedean v, we must be careful because the
normalized valuation | · |v is the square of the usual archimedean complex valuation
| · |∞ on C, so e.g., it does not satisfy the triangle inequality. In particular, the
quantity |t′v − t′′v |v is at most the square of the maximum distance between two
points in the disc in C of radius 1

2

√

|xv|v, where by distance we mean the usual

distance. This maximum distance in such a disc is at most
√

|xv|v, so |t′v − t′′v |v is
at most |xv|v, as required. Thus a satisfies the requirements of the lemma.

Corollary 20.4.2. Let v0 be a normalized valuation and let δv > 0 be given for all
v 6= v0 with δv = 1 for almost all v. Then there is a nonzero a ∈ K with

|a|v ≤ δv (all v 6= v0).

Proof. This is just a degenerate case of Lemma 20.4.1. Choose xv ∈ Kv with
0 < |xv|v ≤ δv and |xv|v = 1 if δv = 1. We can then choose xv0 ∈ Kv0 so that

∏

all v including v0

|xv|v > C.

Then Lemma 20.4.1 does what is required.

Remark 20.4.3. The character group of the locally compact group A+
K is isomorphic

to A+
K and K+ plays a special role. See Chapter XV of [Cp86], Lang’s [Lan64],

Weil’s [Wei82], and Godement’s Bourbaki seminars 171 and 176. This duality lies
behind the functional equation of ζ and L-functions. Iwasawa has shown [Iwa53]
that the rings of adeles are characterized by certain general topologico-algebraic
properties.

We proved before that K is discrete in AK . If one valuation is removed, the
situation is much different.
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Theorem 20.4.4 (Strong Approximation). Let v0 be any normalized nontrivial
valuation of the global field K. Let AK,v0 be the restricted topological product of the
Kv with respect to the Ov, where v runs through all normalized valuations v 6= v0.
Then K is dense in AK,v0 .

Proof. This proof was suggested by Prof. Kneser at the Cassels-Frohlich conference.
Recall that if x = {xv}v ∈ AK,v0 then a basis of open sets about x is the

collection of products
∏

v∈S

B(xv, εv) ×
∏

v 6∈S, v 6=v0

Ov,

where B(xv, εv) is an open ball in Kv about xv, and S runs through finite sets of
normalized valuations (not including v0). Thus denseness of K in AK,v0 is equivalent
to the following statement about elements. Suppose we are given (i) a finite set S
of valuations v 6= v0, (ii) elements xv ∈ Kv for all v ∈ S, and (iii) an ε > 0. Then
there is an element b ∈ K such that |b − xv|v < ε for all v ∈ S and |b|v ≤ 1 for all
v 6∈ S with v 6= v0.

By the corollary to our proof that A+
K/K+ is compact (Corollary 20.3.6), there

is a W ⊂ AK that is defined by inequalities of the form |yv|v ≤ δv (where δv = 1 for
almost all v) such that ever z ∈ AK is of the form

z = y + c, y ∈ W, c ∈ K. (20.4.3)

By Corollary 20.4.2, there is a nonzero a ∈ K such that

|a|v <
1

δv
· ε for v ∈ S,

|a|v ≤ 1

δv
for v 6∈ S, v 6= v0.

Hence on putting z = 1
a · x in (20.4.3) and multiplying by a, we see that every

x ∈ AK is of the shape

x = w + b, w ∈ a · W, b ∈ K,

where a ·W is the set of ay for y ∈ W . If now we let x have components the given
xv at v ∈ S, and (say) 0 elsewhere, then b = x−w has the properties required.

Remark 20.4.5. The proof gives a quantitative form of the theorem (i.e., with a
bound for |b|v0

). For an alternative approach, see [Mah64].

In the next chapter we’ll introduce the ideles A∗
K . Finally, we’ll relate ideles to

ideals, and use everything so far to give a new interpretation of class groups and
their finiteness.
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Chapter 21

Ideles and Ideals

In this chapter, we introduce the ideles IK , and relate ideles to ideals, and use what
we’ve done so far to give an alternative interpretation of class groups and their
finiteness, thus linking the adelic point of view with the classical point of view of
the first part of this course.

21.1 The Idele Group

The invertible elements of any commutative topological ring R are a group R∗ under
multiplication. In general R∗ is not a topological group if it is endowed with the
subset topology because inversion need not be continuous (only multiplication and
addition on R are required to be continuous). It is usual therefore to give R∗ the
following topology. There is an injection

x 7→
(

x,
1

x

)

(21.1.1)

of R∗ into the topological product R × R. We give R∗ the corresponding subset
topology. Then R∗ with this topology is a topological group and the inclusion map
R∗ ↪→ R is continous. To see continuity of inclusion, note that this topology is finer
(has at least as many open sets) than the subset topology induced by R∗ ⊂ R, since
the projection maps R × R → R are continuous.

Example 21.1.1. This is a “non-example”. The inverse map on Z∗
p is continuous

with respect to the p-adic topology. If a, b ∈ Z∗
p, then |a| = |b| = 1, so if |a − b| < ε,

then
∣

∣

∣

∣

1

a
− 1

b

∣

∣

∣

∣

=

∣

∣

∣

∣

b − a

ab

∣

∣

∣

∣

=
|b − a|
|ab| <

ε

1
= ε.

Definition 21.1.2 (Idele Group). The idele group IK of K is the group A∗
K of

invertible elements of the adele ring AK .

We shall usually speak of IK as a subset of AK , and will have to distinguish
between the IK and AK-topologies.

167
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Example 21.1.3. For a rational prime p, let xp ∈ AQ be the adele whose pth compo-
nent is p and whose vth component, for v 6= p, is 1. Then xp → 1 as p → ∞ in AQ,
for the following reason. We must show that if U is a basic open set that contains
the adele 1 = {1}v, the xp for all sufficiently large p are contained in U . Since U
contains 1 and is a basic open set, it is of the form

∏

v∈S

Uv ×
∏

v 6∈S

Zv,

where S if a finite set, and the Uv, for v ∈ S, are arbitrary open subsets of Qv

that contain 1. If q is a prime larger than any prime in S, then xp for p ≥ q, is in
U . This proves convergence. If the inverse map were continuous on IK , then the
sequence of x−1

p would converge to 1−1 = 1. However, if U is an open set as above
about 1, then for sufficiently large p, none of the adeles xp are contained in U .

Lemma 21.1.4. The group of ideles IK is the restricted topological project of the
K∗

v with respect to the units Uv = O∗
v ⊂ Kv, with the restricted product topology.

We omit the proof of Lemma 21.1.4, which is a matter of thinking carefully
about the definitions. The main point is that inversion is continuous on O∗

v for
each v. (See Example 21.1.1.)

We have seen that K is naturally embedded in AK , so K∗ is naturally embedded
in IK .

Definition 21.1.5 (Principal Ideles). We call K∗, considered as a subgroup of
IK , the principal ideles.

Lemma 21.1.6. The principal ideles K∗ are discrete as a subgroup of IK .

Proof. For K is discrete in AK , so K∗ is embedded in AK × AK by (21.1.1) as
a discrete subset. (Alternatively, the subgroup topology on IK is finer than the
topology coming from IK being a subset of AK , and K is already discrete in AK .)

Definition 21.1.7 (Content of an Idele). The content of x = {xv}v ∈ IK is

c(x) =
∏

all v

|xv|v ∈ R>0.

Lemma 21.1.8. The map x → c(x) is a continuous homomorphism of the topo-
logical group IK into R>0, where we view R>0 as a topological group under multi-
plication. If K is a number field, then c is surjective.

Proof. That the content map c satisfies the axioms of a homomorphisms follows
from the multiplicative nature of the defining formula for c. For continuity, suppose
(a, b) is an open interval in R>0. Suppose x ∈ IK is such that c(x) ∈ (a, b). By
considering small intervals about each non-unit component of x, we find an open
neighborhood U ⊂ IK of x such that c(U) ⊂ (a, b). It follows the c−1((a, b)) is open.

For surjectivity, use that each archimedean valuation is surjective, and choose
an idele that is 1 at all but one archimedean valuation.
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Remark 21.1.9. Note also that the IK-topology is that appropriate to a group of
operators on A+

K : a basis of open sets is the S(C, U), where C, U ⊂ A+
K are, re-

spectively, AK-compact and AK-open, and S consists of the x ∈ IJ such that
(1 − x)C ⊂ U and (1 − x−1)C ⊂ U .

Definition 21.1.10 (1-Ideles). The subgroup I1K of 1-ideles is the subgroup of
ideles x = {xv} such that c(x) = 1. Thus I1K is the kernel of c, so we have an exact
sequence

1 → I1K → IK
c−→ R>0 → 1,

where the surjectivity on the right is only if K is a number field.

Lemma 21.1.11. The subset I1K of AK is closed as a subset, and the AK-subset
topology on I1K coincides with the IK-subset topology on I1K .

Proof. Let x ∈ AK with x 6∈ I1K . To prove that I1K is closed in AK , we find an
AK-neighborhood W of x that does not meet I1K .

1st Case. Suppose that
∏

v |xv|v < 1 (possibly = 0). Then there is a finite set S
of v such that

1. S contains all the v with |xv|v > 1, and

2.
∏

v∈S |xv|v < 1.

Then the set W can be defined by

|wv − xv|v < ε v ∈ S

|wv|v ≤ 1 v 6∈ S

for sufficiently small ε.

2nd Case. Suppose that C :=
∏

v |xv|v > 1. Then there is a finite set S of v
such that

1. S contains all the v with |xv|v > 1, and

2. if v 6∈ S an inequality |wv|v < 1 implies |wv|v < 1
2C . (This is because for a non-

archimedean valuation, the largest absolute value less than 1 is 1/p, where p
is the residue characteristic. Also, the upper bound in Cassels’s article is 1

2C
instead of 1

2C , but I think he got it wrong.)

We can choose ε so small that |wv − xv|v < ε (for v ∈ S) implies 1 <
∏

v∈S |wv|v <
2C. Then W may be defined by

|wv − xv|v < ε v ∈ S

|wv|v ≤ 1 v 6∈ S.
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This works because if w ∈ W , then either |wv|v = 1 for all v 6∈ S, in which case
1 < c(w) < 2c, so w 6∈ I1K , or |wv0 |v0

< 1 for some v0 6∈ S, in which case

c(w) =

(

∏

v∈S

|wv|v

)

· |wv0 | · · · < 2C · 1

2C
· · · < 1,

so again w 6∈ I1K .
We next show that the IK- and AK-topologies on I1K are the same. If x ∈ I1K ,

we must show that every AK-neighborhood of x contains an AK-neighborhood and
vice-versa.

Let W ⊂ I1K be an AK-neighborhood of x. Then it contains an AK-neighborhood
of the type

|wv − xv|v < ε v ∈ S (21.1.2)

|wv|v ≤ 1 v 6∈ S (21.1.3)

where S is a finite set of valuations v. This contains the IK-neighborhood in which
≤ in (21.1.2) is replaced by =.

Next let H ⊂ I1K be an IK-neighborhood. Then it contains an IK-neighborhood
of the form

|wv − xv|v < ε v ∈ S (21.1.4)

|wv|v = 1 v 6∈ S, (21.1.5)

where the finite set S contains at least all archimedean valuations v and all valua-
tions v with |xv|v 6= 1. Since

∏ |xv|v = 1, we may also suppose that ε is so small
that (21.1.4) implies

∏

v

|wv|v < 2.

Then the intersection of (21.1.4) with I1K is the same as that of (21.1.2) with I1K ,
i.e., (21.1.4) defines an AK-neighborhood.

By the product formula we have that K∗ ⊂ I1K . The following result is of vital
importance in class field theory.

Theorem 21.1.12. The quotient I1K/K∗ with the quotient topology is compact.

Proof. After the preceeding lemma, it is enough to find an AK-compact set W ⊂ AK

such that the map
W ∩ I1K → I1K/K∗

is surjective. We take for W the set of w = {wv}v with

|wv|v ≤ |xv|v ,

where x = {xv}v is any idele of content greater than the C of Lemma 20.4.1.
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Let y = {yv}v ∈ I1K . Then the content of x/y equals the content of x, so by
Lemma 20.4.1 there is an a ∈ K∗ such that

|a|v ≤
∣

∣

∣

∣

xv

yv

∣

∣

∣

∣

v

all v.

Then ay ∈ W , as required.

Remark 21.1.13. The quotient I1K/K∗ is totally disconnected in the function field
case. For the structure of its connected component in the number field case, see
papers of Artin and Weil in the “Proceedings of the Tokyo Symposium on Algebraic
Number Theory, 1955” (Science Council of Japan) or [AT90]. The determination
of the character group of IK/K∗ is global class field theory.

21.2 Ideals and Divisors

Suppose that K is a finite extension of Q. Let FK be the the free abelian group on
a set of symbols in bijection with the non-archimedean valuation v of K. Thus an
element of FK is a formal linear combination

∑

v non arch.

nv · v

where nv ∈ Z and all but finitely many nv are 0.

Lemma 21.2.1. There is a natural bijection between FK and the group of nonzero
fractional ideals of OK . The correspondence is induced by

v 7→ ℘v = {x ∈ OK : v(x) < 1},

where v is a non-archimedean valuation.

Endow FK with the discrete topology. Then there is a natural continuous map
π : IK → FK given by

x = {xv}v 7→
∑

v

ordv(xv) · v.

This map is continuous since the inverse image of a valuation v (a point) is the
product

π−1(v) = πO∗
v ×

∏

w archimedean

K∗
w ×

∏

w 6=v non-arch.

O∗
w,

which is an open set in the restricted product topology on IK . Moreover, the image
of K∗ in FK is the group of nonzero principal fractional ideals.

Recall that the class group CK of the number field K is by definition the quotient
of FK by the image of K∗.

Theorem 21.2.2. The class group CK of a number field K is finite.
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Proof. We first prove that the map I1K → FK is surjective. Let ∞ be an archimedean
valuation on K. If v is a non-archimedean valuation, let x ∈ I1K be a 1-idele such that
xw = 1 at ever valuation w except v and ∞. At v, choose xv = π to be a generator
for the maximal ideal of Ov, and choose x∞ to be such that |x∞|∞ = 1/ |xv|v. Then
x ∈ IK and

∏

w |xw|w = 1, so x ∈ I1K . Also x maps to v ∈ FK .
Thus the group of ideal classes is the continuous image of the compact group

I1K/K∗ (see Theorem 21.1.12), hence compact. But a compact discrete group is
finite.

21.2.1 The Function Field Case

When K is a finite separable extension of F(t), we define the divisor group DK

of K to be the free abelian group on all the valuations v. For each v the number
of elements of the residue class field Fv = Ov/℘v of v is a power, say qnv , of the
number q of elements in Fv. We call nv the degree of v, and similarly define

∑

nvdv

to be the degree of the divisor
∑

nv · v. The divisors of degree 0 form a group D0
K .

As before, the principal divisor attached to a ∈ K∗ is
∑

ordv(a) · v ∈ DK . The
following theorem is proved in the same way as Theorem 21.2.2.

Theorem 21.2.3. The quotient of D0
K modulo the principal divisors is a finite

group.

21.2.2 Jacobians of Curves

For those familiar with algebraic geometry and algebraic curves, one can prove
Theorem 21.2.3 from an alternative point of view. There is a bijection between
nonsingular geometrically irreducible projective curves over F and function fields K
over F (which we assume are finite separable extensions of F(t) such that F∩K = F).
Let X be the curve corresponding to K. The group D0

K is in bijection with the
divisors of degree 0 on X, a group typically denoted Div0(X). The quotient of
Div0(X) by principal divisors is denoted Pic0(X). The Jacobian of X is an abelian
variety J = Jac(X) over the finite field F whose dimension is equal to the genus
of X. Moreover, assuming X has an F-rational point, the elements of Pic0(X)
are in natural bijection with the F-rational points on J . In particular, with these
hypothesis, the class group of K, which is isomorphic to Pic0(X), is in bijection
with the group of F-rational points on an algebraic variety over a finite field. This
gives an alternative more complicated proof of finiteness of the degree 0 class group
of a function field.

Without the degree 0 condition, the divisor class group won’t be finite. It is an
extension of Z by a finite group.

0 → Pic0(X) → Pic(X)
deg−−→ nZ → 0,

where n is the greatest common divisor of the degrees of elements of Pic(X), which
is 1 when X has a rational point.
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Exercises

1. Let A =





4 7 2
2 4 6
0 0 0



.

(a) Find invertible integer matrices P and Q such that PAQ is in Smith
normal form.

(b) What is the group structure of the cokernel of the map Z3 → Z3 defined
by multiplication by A?

2. Let G be the abelian group generated by x, y, z with relatoins 2x + y = 0 and
x − y + 3z = 0. Find a product of cyclic groups that is isomorphic to G.

3. Prove that each of the following rings have infinitely many prime ideals:

(a) The integers Z. [Hint: Euclid gave a famous proof of this long ago.]

(b) The ring Q[x] of polynomials over Q.

(c) The ring Z[x] of polynomials over Z.

(d) The ring Z of all algebraic integers. [Hint: Use Zorn’s lemma, which
implies that every ideal is contained in a maximal ideal. See, e.g., Prop
1.12 on page 589 of Artin’s Algebra.]

4. (This problem was on the graduate qualifying exam on Tuesday.) Let Z
denote the subset of all elements of Q that satisfy a monic polynomial with
coefficients in the ring Z of integers. We proved in class that Z is a ring.

(a) Show that the ideals (2) and (
√

2) in Z are distinct.

(b) Prove that Z is not Noetherian.

5. Show that neither Z[
√
−6] nor Z[

√
5] is a unique factorization domain. [Hint:

Consider the factorization into irreducible elements of 6 in the first case and 4
in the second. A nonzero element a in a ring R is an irreducible element if it
is not a unit and if whenever a = qr, then one of q or r is a unit.]

173
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6. Find the ring of integers of each of the following number fields:

(a) Q(
√
−3),

(b) Q(
√

3), and

(c) Q( 3
√

2).

Do not use a computer for the first two.

7. Find the discriminants of the rings of integers of the numbers fields in the
previous problem. (Do not use a computer.)

8. Let R be a finite integral domain. Prove that R is a field. [Hint: Show that
if x is a nonzero element, then x has an inverse by considering powers of x.]

9. Suppose K ⊂ L ⊂ M is a tower of number fields and let σ : L ↪→ Q be a
field embedding of L into Q that fixes K elementwise. Show that σ extends
in exactly [M : L] ways to a field embedding M ↪→ Q.

10. (a) Suppose I and J are principal ideals in a ring R. Show that the set
{ab : a ∈ I, b ∈ J} is an ideal.

(b) Give an example of ideals I and J in the polynomial ring Q[x, y] in two
variables such that {ab : a ∈ I, b ∈ J} is not an ideal. Your example
illustrates why it is necessary to define the product of two ideals to be
the ideal generated by {ab : a ∈ I, b ∈ J}.

(c) Give an example of a ring of integers OK of a number field, and ideals I
and J such that {ab : a ∈ I, b ∈ J} is not an ideal.

11. (a) Let k be a field. Prove that k[x] is a Dedekind domain.

(b) (Problem 1.12 from Swinnerton-Dyer) Let x be an indeterminate. Show
that the ring Z[x] is Noetherian and integrally closed in its field of frac-
tions, but is not a Dedekind domain.

12. Use Magma to write each of the following (fractional) ideals as a product of
explicitly given prime ideals:

(a) The ideal (2004) in Q(
√
−1).

(b) The ideals I = (7) and J = (3) in the ring of integers of Q(ζ7), where ζ7

is a root of the irreducible polynomial x6 + x5 + x4 + x3 + x2 + x + 1.
(The field Q(ζ7) is called the 7th cyclotomic field.)

(c) The principal fractional ideal (3/8) in Q(
√

5).

13. Suppose R is an order in the ring OK of integers of a number field. (Recall
that an order is a subring of finite index in OK .) For each of the following
questions, either explain why the answer is yes for any possible order R in any
OK , or find one specific counterexample:
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(a) Is R necessarily Noetherian?

(b) Is R necessarily integrally closed in its field of fractions?

(c) Is every nonzero prime ideal of R necessarily maximal?

(d) Is it always possible to write every ideal of R uniquely as a product of
prime ideals of R?

14. Let OK be the ring of integers of a number field K. Prove that the group of
fractional ideals of OK , under multiplication is (non-canonically) isomorphic
to the group of positive rational numbers under multiplication.

15. (a) Suppose K is a number field of degree 2. Prove that OK = Z[a] for some
a ∈ OK .

(b) Prove that if K and K ′ are two number fields of degree 2 and Disc(OK) =
Disc(OK′) then K = K ′.

16. (*) Does there exist a number field K of degree 4 such that OK 6= Z[a] for all
a ∈ OK? If so, give an explicit example.

17. Let K be the quintic number field generated by a root of x5+7x4+3x2−x+1.
Draw a diagram (be creative) that illustrates the factorization of every prime
p ∈ Z, with p < 100, in OK .

18. (Problem 1.9 in Swinnerton-Dyer) Show that the only solutions x, y ∈ Z to
y2 = x3 − 13 are given by x = 17, y = ±70, as follows. Factor the equation
y2 + 13 = x3 in the number field Q(

√
−13), which has class number 2. Show

that if x, y is an integer solution then the ideal (y +
√
−13) must be the cube

of an ideal, and hence y +
√
−13 = (a + b

√
−13)3; thus 1 = b(3a2 − 13b2).

19. Suppose I and J are ideals in the ring OK of integers of a number field K.
Does IJ = I ∩ J? Prove or give a counterexample.

20. Let OK be the ring of integers Q(
√

5), and let

I = (5, 2 +
√

5) and J = (209, (389 +
√

5)/2)

be integral ideals of OK .

(a) Find an element of OK that is congruent to
√

5 modulo I and is congruent
to 1 −

√
5 modulo J .

(b) What is the cardinality of (OK/I) ⊕ (OK/J)?

(c) Find an element a ∈ I such that (a)/I is coprime to J .

21. Let OK be the ring of integers of a number field K, and suppose K has exactly
2s complex embeddings. Prove that the sign of Disc(OK) is (−1)s.
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22. (*) Suppose O is an order in the ring of integers OK of a number field. Is every
ideal in O necessarily generated by two elements? (Answer: No. Challenge:
Given an example.)

23. Find representative ideals for each element of the class group of Q(
√
−23).

Illustrate how to use the Minkowski bound to prove that your list of repre-
sentatives is complete.

24. Suppose O is an order in the ring of integers OK of a number field. Is every
ideal in O necessarily generated by two elements?

25. Let K be a number field of degree n > 1 with s pairs of complex conjugate
embeddings. Prove that

(π

4

)s
· nn

n!
> 1.

26. Do the exercise on page 19 of Swinnerton-Dyer, which shows that the quantity
Cr,s in the finiteness of class group theorem can be taken to be

(

4
π

)s n!
nn .

27. Let α denote a root of x3 − x + 2 and let K = Q(α). Show that OK = Z[α]
and that K has class number 1 (don’t just read this off from the output of the
Magma commands MaximalOrder and ClassNumber). [Hint: consider the
square factors of the discriminant of x3 −x+2 and show that 1

2(a+ bα+ cα2)
is an algebra integer if and only if a, b, and c are all even.]

28. If S is a closed, bounded, convex, symmetric set in Rn with Vol(S) ≥ m2n,
for some positive integer m, show that S contains at least 2m nonzero points
in Zn.

29. Prove that any finite subgroup of the multiplicative group of a field is cyclic.

30. For a given number field K, which seems more difficult for Magma to com-
pute, the class groups or explicit generators for the group of units? It is very
difficult (but not impossible) to not get full credit on this problem. Play
around with some examples, see what seems more difficult, and justify your
response with examples. (This problem might be annoying to do using the
Magma web page, since it kills your Magma job after 30 seconds. Feel free
to request a binary of Magma from me, or an account on MECCAH (Math-
ematics Extreme Computation Cluster at Harvard).)

31. (a) Prove that there is no number field K such that UK
∼= Z/10Z.

(b) Is there a number field K such that UK
∼= Z × Z/6Z?

32. Prove that the rank of UK is unbounded as K varies over all number fields.

33. Let K = Q(ζ5).

(a) Show that r = 0 and s = 2.
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(b) Find explicitly generators for the group of units of UK (you can use
Magma for this).

(c) Draw an illustration of the log map ϕ : UK → R2, including the hyper-
plane x1+x2 = 0 and the lattice in the hyperplane spanned by the image
of UK .

34. Find the group of units of Q(ζn) as an abstract group as a function of n. (I.e.,
find the number of cyclic factors and the size of the torsion subgroup. You do
not have to find explicit generators!)

35. Let K = Q(a), where a is a root x3 − 3x + 1.

(a) Show that r = 3.

(b) Find explicitly the log embedding of UK into a 2-dimensional hyperplane
in R3, and draw a picture.

36. Prove that if K is a quadratic field and the torsion subgroup of UK has order
bigger than 2, then K = Q(

√
−3) or K = Q(

√
−1).

37. A Salem number is a real algebraic integer, greater than 1, with the property
that all of its conjugates lie on or within the unit circle, and at least one
conjugate lies on the unit circle. By any method (including “google”), give
two examples of Salem numbers.

38. Let p ∈ Z and let K be a number field. Show that NormK/Q(pOK) = p[K:Q].

39. A totally real number field is a number field in which all embeddings into
C have image in R. Prove there are totally real number fields of degree p,
for every prime p. [Hint: Let ζn denote a primitive nth root of unity. For
n ≥ 3, show that Q(ζn + 1/ζn) is totally real of degree ϕ(n)/2. Now prove
that ϕ(n)/2 can be made divisible by any prime.]

40. Give an example of a number field K/Q and a prime p such that the ei in the
factorization of pOK are not all the same.

41. Let K be a number field. Give the “simplest” proof you can think of that
there are only finitely many primes that ramify (i.e., have some ei > 1) in K.
[The meaning of “simplest” is a matter of taste.]

42. Give examples to show that for K/Q a Galois extension, the quantity e can
be arbirarily large and f can be arbitrarily large.

43. Suppose K/Q is Galois and p is a prime such that pOK is also prime (i.e., p
is inert in K). Show that Gal(K/Q) is a cyclic group.

44. (Problem 7, page 116, from Marcus Number Fields) For each of the following,
find a prime p and quadratic extensions K and L of Q that illustrates the
assertion:
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(a) The prime p can be totally ramified in K and L without being totally
ramified in KL.

(b) The fields K and L can each contain unique primes lying over p while
KL does not.

(c) The prime p can be inert in K and L without being inert in KL.

(d) The residue field extensions of Fp can be trivial for K and L without
being trivial for KL.

45. Let S3 by the symmetric group on three symbols, which has order 6.

(a) Observe that S3
∼= D3, where D3 is the dihedral group of order 6, which

is the group of symmetries of an equilateral triangle.

(b) Use (45a) to write down an explicit embedding S3 ↪→ GL2(C).

(c) Let K be the number field Q( 3
√

2, ω), where ω3 = 1 is a nontrivial cube
root of unity. Show that K is a Galois extension with Galois group
isomorphic to S3.

(d) We thus obtain a 2-dimensional irreducible complex Galois representation

ρ : Gal(Q/Q) → Gal(K/Q) ∼= S3 ⊂ GL2(C).

Compute a representative matrix of Frobp and the characteristic polyno-
mial of Frobp for p = 5, 7, 11, 13.

46. Let K = Q(
√

2,
√

3,
√

5,
√

7). Show that K is Galois over Q, compute the
Galois group of K, and compute Frob37.

47. Let k be any field. Prove that the only nontrivial valuations on k(t) which are
trivial on k are equivalent to the valuation (15.3.3) or (15.3.4) of page 115.

48. A field with the topology induced by a valuation is a topological field, i.e., the
operations sum, product, and reciprocal are continuous.

49. Give an example of a non-archimedean valuation on a field that is not discrete.

50. Prove that the field Qp of p-adic numbers is uncountable.

51. Prove that the polynomial f(x) = x3 − 3x2 + 2x + 5 has all its roots in Q5,
and find the 5-adic valuations of each of these roots. (You might need to use
Hensel’s lemma, which we don’t discuss in detail in this book. See [Cas67,
App. C].)

52. In this problem you will compute an example of weak approximation, like I
did in the Example 16.3.3. Let K = Q, let | · |7 be the 7-adic absolute value,
let | · |11 be the 11-adic absolute value, and let | · |∞ be the usual archimedean
absolute value. Find an element b ∈ Q such that |b − ai|i < 1

10 , where a7 = 1,
a11 = 2, and a∞ = −2004.
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53. Prove that −9 has a cube root in Q10 using the following strategy (this is a
special case of Hensel’s Lemma, which you can read about in an appendix to
Cassel’s article).

(a) Show that there is an element α ∈ Z such that α3 ≡ 9 (mod 103).

(b) Suppose n ≥ 3. Use induction to show that if α1 ∈ Z and α3 ≡ 9
(mod 10n), then there exists α2 ∈ Z such that α3

2 ≡ 9 (mod 10n+1).
(Hint: Show that there is an integer b such that (α1 + b · 10n)3 ≡ 9
(mod 10n+1).)

(c) Conclude that 9 has a cube root in Q10.

54. Compute the first 5 digits of the 10-adic expansions of the following rational
numbers:

13

2
,

1

389
,

17

19
, the 4 square roots of 41.

55. Let N > 1 be an integer. Prove that the series

∞
∑

n=1

(−1)n+1n! = 1! − 2! + 3! − 4! + 5! − 6! + · · · .

converges in QN .

56. Prove that −9 has a cube root in Q10 using the following strategy (this is a
special case of “Hensel’s Lemma”).

(a) Show that there is α ∈ Z such that α3 ≡ 9 (mod 103).

(b) Suppose n ≥ 3. Use induction to show that if α1 ∈ Z and α3 ≡ 9
(mod 10n), then there exists α2 ∈ Z such that α3

2 ≡ 9 (mod 10n+1).
(Hint: Show that there is an integer b such that (α1 + b10n)3 ≡ 9
(mod 10n+1).)

(c) Conclude that 9 has a cube root in Q10.

57. Let N > 1 be an integer.

(a) Prove that QN is equipped with a natural ring structure.

(b) If N is prime, prove that QN is a field.

58. (a) Let p and q be distinct primes. Prove that Qpq
∼= Qp × Qq.

(b) Is Qp2 isomorphic to either of Qp × Qp or Qp?

59. Prove that every finite extension of Qp “comes from” an extension of Q, in
the following sense. Given an irreducible polynomial f ∈ Qp[x] there exists an
irreducible polynomial g ∈ Q[x] such that the fields Qp[x]/(f) and Qp[x]/(g)
are isomorphic. [Hint: Choose each coefficient of g to be sufficiently close to
the corresponding coefficient of f , then use Hensel’s lemma to show that g
has a root in Qp[x]/(f).]



180 CHAPTER 22. EXERCISES

60. Find the 3-adic expansion to precision 4 of each root of the following polyno-
mial over Q3:

f = x3 − 3x2 + 2x + 3 ∈ Q3[x].

Your solution should conclude with three expressions of the form

a0 + a1 · 3 + a2 · 32 + a3 · 33 + O(34).

61. (a) Find the normalized Haar measure of the following subset of Q+
7 :

U = B

(

28,
1

50

)

=

{

x ∈ Q7 : |x − 28| <
1

50

}

.

(b) Find the normalized Haar measure of the subset Z∗
7 of Q∗

7.

62. Suppose that K is a finite extension of Qp and L is a finite extension of Qq,
with p 6= q and assume that K and L have the same degree. Prove that there
is a polynomial g ∈ Q[x] such that Qp[x]/(g) ∼= K and Qq[x]/(g) ∼= L. [Hint:
Combine your solution to 59 with the weak approximation theorem.]

63. Prove that the ring C defined in Section 9 really is the tensor product of A
and B, i.e., that it satisfies the defining universal mapping property for tensor
products. Part of this problem is for you to look up a functorial definition of
tensor product.

64. Find a zero divisor pair in Q(
√

5) ⊗Q Q(
√

5).

65. (a) Is Q(
√

5) ⊗Q Q(
√
−5) a field?

(b) Is Q( 4
√

5) ⊗Q Q( 4
√
−5) ⊗Q Q(

√
−1) a field?

66. Suppose ζ5 denotes a primitive 5th root of unity. For any prime p, consider
the tensor product Qp ⊗Q Q(ζ5) = K1 ⊕ · · · ⊕ Kn(p). Find a simple formula
for the number n(p) of fields appearing in the decomposition of the tensor
product Qp ⊗Q Q(ζ5). To get full credit on this problem your formula must
be correct, but you do not have to prove that it is correct.

67. Suppose ‖ · ‖1 and ‖ · ‖2 are equivalent norms on a finite-dimensional vector
space V over a field K (with valuation | · |). Carefully prove that the topology
induced by ‖ · ‖1 is the same as that induced by ‖ · ‖2.

68. Suppose K and L are number fields (i.e., finite extensions of Q). Is it possible
for the tensor product K ⊗Q L to contain a nilpotent element? (A nonzero
element a in a ring R is nilpotent if there exists n > 1 such that an = 0.)

69. Let K be the number field Q( 5
√

2).

(a) In how many ways does the 2-adic valuation | · |2 on Q extend to a valu-
ation on K?
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(b) Let v = | · | be a valuation on K that extends | · |2. Let Kv be the
completion of K with respect to v. What is the residue class field F of
Kv?

70. Prove that the product formula holds for F(t) similar to the proof we gave
in class using Ostrowski’s theorem for Q. You may use the analogue of Os-
trowski’s theorem for F(t), which you had on a previous homework assignment.
(Don’t give a measure-theoretic proof.)

71. Prove Theorem 20.3.5, that “The global field K is discrete in AK and the
quotient A+

K/K+ of additive groups is compact in the quotient topology.” in
the case when K is a finite extension of F(t), where F is a finite field.
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Visibility of Mordell-Weil Groups

William A. Stein1

Abstract.

We introduce a notion of visibility for Mordell-Weil groups, make a
conjecture about visibility, and support it with theoretical evidence
and data. These results shed new light on relations between Mordell-
Weil and Shafarevich-Tate groups.

1 Introduction

Consider an exact sequence 0 → C → B → A → 0 of abelian varieties over a
number field K. We say that the covering B → A is optimal since its kernel C
is connected. As introduced in [LT58], there is a corresponding long exact
sequence of Galois cohomology

0 → C(K) → B(K) → A(K)
δ
−→ H1(K,C) → H1(K,B) → H1(K,A) → · · ·

The study of the Mordell-Weil group A(K) is central in arithmetic geometry.
For example, the Birch and Swinnerton-Dyer conjecture (BSD conjecture) of
[Bir71, Tat66]), which is one of the Clay Math Problems [Wil00], asserts that
the rank r of A(K) equals the ordering vanishing of L(A, s) at s = 1, and also
gives a conjectural formula for L(r)(A, 1) in terms of the invariants of A.

The group H1(K,A) is also of interest in connection with the BSD conjec-
ture, because it contains the Shafarevich-Tate group

X(A/K) = Ker

(

H1(K,A) →
⊕

v

H1(Kv, A)

)

,

which is the most mysterious object appearing in the BSD conjecture.

1This material is based upon work supported by the National Science Foundation under

Grant No. 0400386.
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Definition 1.0.1 (Visibility). The visible subgroup of H1(K,C) relative to
the embedding C ↪→ B is

VisB H1(K,C) = Ker(H1(K,C) → H1(K,B))
∼= Coker(B(K) → A(K)).

The visible quotient of A(K) relative to the optimal covering B → A is

VisB(A(K)) = Coker(B(K) → A(K))

∼= VisB H1(K,C).

We say an abelian variety over Q is modular if it is a quotient of the modular
Jacobian J1(N) = Jac(X1(N)), for some N . For example, every elliptic curve
over Q is modular [BCDT01].

This paper gives evidence toward the following conjecture that Mordell-Weil
groups should give rise to many visible Shafarevich-Tate groups.

Conjecture 1.0.2. Let A be an abelian variety over a number field K. For
every integer m, there is an exact sequence 0 → C → B → A → 0 such that:

1. The image of B(K) in A(K) is contained in mA(K), so A(K)/mA(K)
is a quotient of VisB(A(K)).

2. If K = Q and A is modular, then B is modular.

3. The rank of C is zero.

4. We have Coker(B(K) → A(K)) ⊂ X(C/K), via the connecting homo-
morphism.

In [Ste04] we give the following computational evidence for this conjecture.

Theorem 1.0.3. Let E be the rank 1 elliptic curve y2 +y = x3−x of conductor
37. Then Conjecture 1.0.2 is true for all primes m = p < 25000 with p 6= 2, 37.

Let f =
∑

anqn be the newform associated to the elliptic curve E of The-
orem 1.0.3. Suppose p is one of the primes in the theorem. Then there is an
` ≡ 1 (mod p) and a surjective Dirichlet character χ : (Z/`Z)∗ → µp such that
L(f ⊗ χ, 1) 6= 0. The C of the theorem is, up to isogeny, the abelian variety
associated to fχ, which has dimension p − 1.

In general, we expect the construction of [Ste04] to work for any elliptic
curve and any odd prime p of good reduction. The main obstruction to proving
that it does work is proving a nonvanishing result for the special values L(fχ, 1).
In [Ste04], we verified this hypothesis using modular symbols for p < 25000.

A surprising observation that comes out of the construction of [Ste04] is
that #X(A) = p ·n2, where n2 is an integer square. We thus obtained the first
ever examples of abelian varieties whose Shafarevich-Tate groups have order
neither a square nor twice a square.
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1.1 Contents

In Section 2, we give a brief review of results about visibility of Shafarevich-
Tate groups. In Section 3, we give evidence for Conjecture 1.0.2 using results
of Kato, Lichtenbaum and Mazur. Section 4 is about bounding the dimension
of the abelian varieties in which Mordell-Weil groups are visible. We prove that
every Mordell-Weil group is 2-visible relative to an abelian surface. In Section 5,
we describe how to construct visible quotients of Mordell-Weil groups, and carry
out a computational study of relations between Mordell-Weil groups of elliptic
curves and the arithmetic of rank 0 factors of J0(N).

1.2 Acknowledgement

The author had extremely helpful conversations with Barry Mazur and Grigor
Grigorov. Proposition 3.0.3 was proved jointly with Ken Ribet. The author
was supported by NSF grant DMS-0400386. He used Magma [BCP97] and
Python [Ros] for computing the data in Section 5.

2 Review of Visibility of Galois Cohomology

In this section, we briefly review visibility of elements of H1(K,A), as first
introduced by Mazur in [CM00, Maz99], and later developed by Agashe and
Stein in [Aga99a, AS05, AS02]. We describe two basic results about visibility,
and in Section 2.2 we discuss modularity of elements of H1(K,A).

Consider an exact sequence of abelian varieties

0 → A → B → C → 0

over a number field K. Elements of H0(K,C) are points, so they are relatively
easy to “visualize”, but elements of H1(K,A) are mysterious.

There is a geometric way to view elements of H1(K,A). The Weil-Chatalet
group WC(A/K) of A over K is the group of isomorphism classes of principal
homogeneous spaces for A, where a principal homogeneous space is a variety X
and a simply-transitive action A×X → X. Thus X is a twist of A as a variety,
but X(K) = ∅, unless X is isomorphic to A. Also, the elements of X(A)
correspond to the classes of X that have a Kv-rational point for all places v.
By [LT58, Prop. 4], there is an isomorphism between H1(K,A) and WC(A/K).

In [CM00], Mazur introduced the visible subgroup of H1 as in Defini-
tion 1.0.1 in order to help unify diverse constructions of principal homoge-
neous spaces. Many papers were subsequently written about visibility, includ-
ing [Aga99b, Maz99, Kle01, AS02, MO03, DWS03, AS05, Dum01].

Remark 2.0.1. Note that VisB H1(K,A) depends on the embedding of A into B.
For example, if B = B1 ×A. Then there could be nonzero visible elements if A
is embedded into the first factor, but there will be no nonzero visible elements
if A is embedded into the second factor.
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A connection between visibility and WC(A/K) is as follows. Suppose

0 → A → B
π
−→ C → 0

is an exact sequence of abelian varieties and that c ∈ H1(K,A) is visible in B.
Thus there exists x ∈ C(K) such that δ(x) = c, where δ : C(K) → H1(K,A)
is the connecting homomorphism. Then X = π−1(x) ⊂ B is a translate of A
in B, so the group law on B gives X the structure of principal homogeneous
space for A, and this homogeneous space in WC(A/K) corresponds to c.

2.1 Basic Facts

Two basic facts about visibility are that the visible subgroup of H1(K,A) in B
is finite, and that each element of H1(K,A) is visible in some B.

Lemma 2.1.1. The group VisB H1(K,A) is finite.

Proof. Let C = B/A. By the Mordell-Weil theorem C(K) is finitely generated.
The group VisB H1(K,A) is a homomorphic image of C(K) so it is finitely
generated. On the other hand, it is a subgroup of H1(K,A), so it is a torsion
group. But a finitely generated torsion abelian group is finite.

Proposition 2.1.2. Let c ∈ H1(K,A). Then there exists an abelian variety B
and an embedding A ↪→ B such that c is visible in B. Moreover, B can be
chosen to be a twist of a power of A.

Proof. See [AS02, Prop. 1.3] for a cohomological proof or [JS05, §5] for an
equivalent geometric proof. Johan de Jong also proved that everything is visible
somewhere in the special case dim(A) = 1 using Azumaya algebras, Néron
models, and étale cohomology, as explained in [CM00, pg. 17–18], but his proof
gives no (obvious) specific information about the structure of B.

2.2 Modularity

Usually one focuses on visibility of elements in X(A) ⊂ H1(K,A). The papers
[CM00, AS02, AS05] contain a number of results about visibility in various
special cases, and tables involving elliptic curves and modular abelian varieties.

For example, if A ⊂ J0(389) is the 20-dimensional simple newform abelian
variety, then we show that

Z/5Z × Z/5Z ∼= E(Q)/5E(Q) ⊂ X(A),

where E is the elliptic curve of conductor 389. The divisibility 52 | #X(A) is
as predicted by the BSD conjecture. The paper [AS05] contains a few dozen
other examples like this; in most cases, explicit computational construction of
the Shafarevich-Tate group seems hopeless using any other known techniques.

The author has conjectured that if A is a modular abelian variety, then
every element of X(A) is modular, i.e., visible in a modular abelian variety.
It is a theorem that if c ∈ X(A) has order either 2 or 3 and A is an elliptic
curve, then c is modular (see [JS05]).
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3 Results Toward Conjecture 1.0.2

The main result of this section is a proof of parts 1 and 2 of Conjecture 1.0.2
for elliptic curves over Q. We prove more generally that Mazur’s conjecture on
finite generatedness of Mordell-Weil groups over cyclotomic Zp-extensions im-
plies part 1 of Conjecture 1.0.2. Then we observe that for elliptic curves over Q,
Mazur’s conjecture is known, and prove that the abelian varieties that appear
in our visibility construction are modular, so parts 1 and 2 of Conjecture 1.0.2
are true for elliptic curves over Q.

For a prime p, the cyclotomic Zp-extension of Q is an extension Qp∞ of Q
with Galois group Zp; also Qp∞ is contained in the cyclotomic field Q(µp∞).
We let Qpn denote the unique subfield of Qp∞ of degree pn over Q. If K is an
arbitrary number field, the cyclotomic Zp-extension of K is Kp∞ = K ·Qp∞ . We
denote by Kpn the unique subfield of Kp∞ of degree pn over K. The extension
Kp∞ of K decomposes as a tower

K = Kp0 ⊂ Kp1 ⊂ · · · ⊂ Kpn ⊂ · · · ⊂ Kp∞ =

∞
⋃

n=0

Kpn .

Mazur hints at the following conjecture in [Maz78] and [RM05, §3]:

Conjecture 3.0.1 (Mazur). If A is an abelian variety over a number field K
and p is a prime, then A(Kp∞) is a finitely generated abelian group.

Let L/K be a finite extension of number fields and A an abelian variety
over K. In much of the rest of this paper we will use the restriction of scalars
R = ResL/K(AL) of A viewed as an abelian variety over L. Thus R is an
abelian variety over K of dimension [L : K], and R represents the following
functor on the category of K-schemes:

S 7→ EL(SL).

If L/K is Galois, then we have an isomorphism of Gal(Q/K)-modules

R(Q) = A(Q) ⊗Z Z[Gal(L/K)],

where τ ∈ Gal(Q/K) acts on
∑

Pσ ⊗ σ by

τ
(

∑

Pσ ⊗ σ
)

=
∑

τ(Pσ) ⊗ τ|L · σ,

where τ|L is the image of τ in Gal(L/K).

Theorem 3.0.2. Conjecture 3.0.1 implies part 1 of Conjecture 1.0.2. More
precisely, if A/K is an abelian variety, m is a positive integer, and A(Kp∞) is
finitely generated for each p | m, then there is an optimal covering of the form
B = ResL/K(AL) → A such that L is abelian over K and the image of B(K)
in A(K) is contained in mA(K).
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Proof. Fix a prime p | m. Let M = Kp∞ . Because A(M) is finitely generated,
some finite set of generators must be in a single sufficiently large A(Kpn), and
for this n we have A(M) = A(Kpn). For any integer j > 0 let

Rj = ResK
pj /K(AK

pj
).

Then, as explained in [Ste04], the trace map induces an exact sequence

0 → Bj → Rj
πj

−→ A → 0,

with Bj an abelian variety. Then for any j ≥ n, A(Kpj ) = A(Kpn), so

VisBj (A(K)) ∼= A(K)/πj(Rj(K))

= A(K)/TrK
pj /K(A(Kpj ))

= A(K)/TrKpn/K(TrK
pj /Kpn (A(Kpj )))

= A(K)/TrKpn/K(TrK
pj /Kpn (A(Kpn)))

= A(K)/TrKpn/K(pj−nA(Kpn))

= A(K)/pj−n TrKpn /K(A(Kpn))

→ A(K)/pj−nA(K),

where the last map is surjective since

TrKpn /K(A(Kpn)) ⊂ A(K).

Arguing as above, for each prime p | m, we find an extension Lp of K of
degree a power of p such that TrLp/K(A(Lp)) ⊂ pνpA(K), where νp = ordp(m).
Let L be the compositum of the fields Lp. Then for each p | m,

TrL/K(A(L)) = TrLp/K(TrL/Lp
(A(L))) ⊂ TrLp/K(A(Lp)) ⊂ pνpA(K).

Thus
TrL/K(A(L)) ⊂

⋂

p|m

pνpA(K) = mA(K), (1)

where for the last equality we view A(K) as a finite direct sum of cyclic groups.
Let R = ResL/K(AL). Then trace induces an optimal cover R → A, and

(1) implies that we have the required surjective map

VisR(A(K)) = A(K)/TrL/K(A(L)) →→ A(K)/mA(K).

We will next prove parts 1 and 2 of Conjecture 1.0.2 for elliptic curves
over Q by observing that Conjecture 3.0.1 is a theorem of Kato in this case.
We first prove a modularity property for restriction of scalars. Recall that a
modular abelian variety is a quotient of J1(N).
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Proposition 3.0.3. If A is a modular abelian variety over Q and K is an
abelian extension of Q, then ResK/Q(AK) is also a modular abelian variety.

Proof. Since A is modular, A is isogenous to a product of abelian varieties Af

attached to newforms in S2(Γ1(N)), for various N . Since the formation of re-
striction of scalars commutes with products, it suffices to prove the proposition
under the hypothesis that A = Af for some newform f . Let R = ResK/Q(Af ).
As discussed in [Mil72, pg. 178], for any prime p there is an isomorphism of
Qp-adic Tate modules

Vp(R) ∼= Ind
GQ

GK
Vp(AK).

The induced representation on the right is the direct sum of twists of Vp(AK)
by characters of Gal(K/Q). This is isomorphic to the Qp-adic Tate module
of some abelian variety P =

∏

χ Agχ , where χ runs through certain Dirichlet
characters corresponding to the abelian extension K/Q, and g runs through
certain Gal(Q/Q)-conjugates of f , and gχ denotes the twist of g by χ. Falting’s
theorem (see e.g., [Fal86, §5]) then gives us the desired isogeny R → P.

It is not necessary to use the full power of Falting’s theorem to prove this
proposition, since Ribet [Rib80] gave a more elementary proof of Falting’s the-
orem in the case of modular abelian varieties. However, we must work some to
apply Ribet’s theorem, since we do not know yet that R is modular.

Let R and P be as above. Over Q, the abelian variety A is isogenous to
a power of a simple abelian variety B, since if more than one non-isogenous
simple occurred in the decomposition of A/Q, then End(A/Q) would not be a
matrix ring over a (possibly skew) field (see [Rib92, §5]). For any character χ,
by the (3) =⇒ (2) assertion of [Rib80, Thm. 4.7], the abelian varieties Af

and Afχ are isogenous over Q to powers of the same abelian variety A′, hence
to powers of the simple B. A basic property of restriction of scalars is that
RK is isomorphic to a power of (Af )K , hence RK is isogenous over Q to a
power of B. Thus R and P are both isogenous over Q to a power of B, so R
is isogenous to P over Q, since they have the same dimension, as their Tate
modules are isomorphic. Let L be a Galois number field over which such an
isogeny is defined. Consider the natural Gal(Q/Q)-equivariant inclusion

Hom(RQ, PQ)⊗Qp
↪→ HomGal(Q/Q)(Vp(R), Vp(P )). (2)

By Ribet’s proof of the Tate conjecture for modular abelian varieties [Rib80],
the inclusion

Hom(RL, PL)⊗Qp
↪→ HomGal(Q/L)(Vp(R), Vp(P )) (3)

is an isomorphism, since there is an isogeny PL → RL and P is modular.
But then (2) must also be an isomorphism, since (2) is the result of taking
Gal(L/Q)-invariants of both sides of (3).

By construction of P , there is an isomorphism Vp(R) ∼= Vp(P ) of Gal(Q/Q)-
modules, so by (2) there is an isomorphism in Hom(RQ, PQ)⊗Qp. Thus there is
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a Qp-linear combination of elements of Hom(RQ, PQ) that has nonzero determi-
nant. However, if a Qp-linear combination of matrices has nonzero determinant,
then some Q-linear combination does, since the determinant is a polynomial
function of the coefficients and Q is dense in Qp. Thus there is an isogeny
R → P defined over Q, so R is modular.

Corollary 3.0.4. Parts 1 and 2 of Conjecture 1.0.2 are true for every elliptic
curve E over Q.

Proof. Suppose p is a prime, and let Qp∞ be the cyclotomic Zp extension of Q.
By [BCDT01], E is a modular elliptic curve, so Rohrlich [Roh84] implies that
all but finitely many special values L(E,χ, 1) are nonzero, where χ runs over all
Dirichlet characters of p-power order. Kato proved (see, e.g., [Kat04, Sch98])
that if L(E,χ, 1) 6= 0, then the χ part of E(Qp∞)⊗Q vanishes. Combining these
results, we see that E(Qp∞) is finitely generated, so we can apply Theorem 3.0.2
to conclude that if x ∈ E(Q) and m | order(x), then x is m-visible relative to
an optimal cover of E by a restriction of scalars B from an abelian extension.
Then Proposition 3.0.3 implies that B is modular.

4 The Visibility Dimension

The visibility dimension is analogous to the visibility dimension for elements of
H1(K,A) introduced in [AS02, §2]. We prove below that elements of order 2 in
Mordell-Weil groups of elliptic curves over Q are 2-visible relative to an abelian
surface. Along the way, we make a general conjecture about stability of rank
and show that it implies a general bound on the visibility dimension.

Definition 4.0.5 (Visibility Dimension). Let A be an abelian variety over
a number field K and suppose m is an integer. Then A has m-visibility dimen-
sion n if there is an optimal cover B → A with n = dim(B) and the image
of B(K) in A(K) is contained in mA(K), so A(K)/mA(K) is a quotient of
VisB(A(K)).

The following rank-stability conjecture is motivated by its usefulness for
proving a result about m-visibility.

Conjecture 4.0.6. Suppose A is an abelian variety over a number field K,
that L is a finite extension of K, and m > 0 is an integer. Then there is
an extension M of K of degree m such that rank(A(K)) = rank(A(M)) and
M ∩ L = K.

The following proposition describes how Conjecture 4.0.6 can be used to
find an extension where the index of A(K) in A(M) is coprime to m.

Proposition 4.0.7. Let A be an abelian variety over a number field K and
suppose m is a positive integer. If Conjecture 4.0.6 is true for A and m, then
there is an extension M of K of degree m such that A(M)/A(K) is of order
coprime to m.
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Proof. Choose a finite set P1, . . . , Pn of generators for A(K). Let

L = K

(

1

m
P1, . . . ,

1

m
Pn

)

be the extension of K generated by all mth roots of each Pi. Since the set of
mth roots of a point is closed under the action of Gal(K/K), the extension
L/K is Galois. Note also that the m torsion of A is defined over L, since the
differences of conjugates of a given 1

mPi are exactly the elements of A[m]. Let S
be the set of primes of K that ramify in L.

By our hypothesis that Conjecture 4.0.6 is true for A and m, there is an
extension M of K of degree m such that

rank(A(K)) = rank(A(M))

and M ∩ L = K. In particular, C = A(M)/A(K) is a finite group. Suppose,
for the sake of contradiction, that gcd(m,#C) 6= 1, so there is some prime
divisor p | m and an element [Q] ∈ C of exact order p. Here Q ∈ A(M) is
such that pQ ∈ A(K) but Q 6∈ A(K). Because P1, . . . , Pn generate A(K) and
pQ ∈ A(K), there are integers a1, . . . an such that

pQ =

n
∑

i=1

aiPi.

Then for any fixed choice of the 1
pPi, we have

Q −
n

∑

i=1

ai ·
1

p
Pi ∈ A[p],

since

p

(

Q −
n

∑

i=1

ai ·
1

p
Pi

)

= pQ −
n

∑

i=1

ai · Pi = 0.

Thus Q ∈ A(L). But then since L∩M = K, so we obtain a contradiction from

Q ∈ A(L) ∩ A(M) = A(K).

With Proposition 4.0.7 in hand, we show that Conjecture 4.0.6 bounds
the visibility dimension of Mordell-Weil groups. In particular, we see that
Conjecture 4.0.6 implies that for any abelian variety A over a number field K,
and any m, there is an embedding A(K)/mA(K) ↪→ H1(K,C) coming from
a δ map, where C is an abelian variety over K of rank 0.

Theorem 4.0.8. Let A be an abelian variety over a number field K and suppose
m is a positive integer. If Conjecture 4.0.6 is true for A and m, then there is
an optimal covering B → A with B of dimension m such that

VisB(A(K)) ∼= A(K)/mA(K).
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Proof. By Proposition 4.0.7, there is an extension M of K of degree m such
that the quotient A(M)/A(K) is finite of order coprime to m. Then, as in
[Ste04], the restriction of scalars B = ResM/K(AM ) is an optimal cover of A
and

VisB(A(K)) ∼= A(K)/Tr(A(M)).

However, there is also an inclusion A ↪→ B from which one sees that

mA(M) ⊂ Tr(A(M)),

so VisB(A(K)) is an m-torsion group.
We have

[Tr(A(M)) : Tr(A(K))]
∣

∣

∣
[A(M) : A(K)].

We showed above that gcd([A(M) : A(K)],m) = 1, so since

Tr(A(M))/Tr(A(K))

is killed by m, it follows that Tr(A(M)) = Tr(A(K)). We conclude that

VisB(A(K)) = A(K)/mA(K).

Proposition 4.0.9. If E is an elliptic curve over Q and m = 2, then Conjec-
ture 4.0.6 is true for E and m.

Proof. Let L be as in Conjecture 4.0.6, so L is an extension of Q of possibly
large degree. Let D be the discriminant of L. By [MM97, BFH90] there are
infinitely many quadratic imaginary extensions M of Q such that L(EM , 1) 6= 0,
where EM is the quadratic twist of E by M . By [Kol91, Kol88] all these curves
have rank 0. Since there are only finitely many quadratic fields ramified only
at the primes that divide D, there must be some field M that is ramified at
a prime p - D. If M is contained in L, then all the primes that ramify in M
divide D, so M is not contained in L. Since M is quadratic, it follows that
M ∩L = Q, as required. Since the image of E(Q)+EM (Q) in E(M) has finite
index, it follows that E(M)/E(Q) is finite.

Corollary 4.0.10. If E is an elliptic curve over Q, then there is an optimal
cover B → E, with B a 2-dimension modular abelian variety, such that

VisB(E(Q)) ∼= E(Q)/2E(Q).

Proof. Combine Proposition 4.0.9 with Theorem 4.0.8. Also B is modular since
it is isogenous to E × E′, where E′ is a quadratic twist of E.

Note that the B of Corollary 4.0.10 is isomorphic to (E × ED)/Φ, where
ED is a rank 0 quadratic imaginary twist of E and Φ ∼= E[2] is embedded
antidiagonally in E ×ED. Note that ED also has analytic rank 0, since it was
constructed using the theorems of [Kol91, Kol88] and [MM97, BFH90]. Thus
our construction is compatible with the one of Proposition 5.1.1 below.
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5 Some Data About Visibility and Modularity

This section contains a computational investigation of modularity of Mordell-
Weil groups of elliptic curves relative to abelian varieties that are quotients
of J0(N). One reason that we restrict to J0(N) is so that computations are
more tractable. Also, for m > 2, the twisting constructions that we have
given in previous sections are no longer allowed since they take place in J1(N).
Furthermore, the work of [KL89] suggests that we understand the arithmetic
of J0(N) better than that of J1(N).

5.1 A Visibility Construction for Mordell-Weil Groups

The following proposition is an analogue of [AS02, Thm. 3.1] but for visibility
of Mordell-Weil groups (compare also [CM00, pg. 19]).

Proposition 5.1.1. Let E be an elliptic curve over a number field K, and let
Φ = E[m] as a Gal(K/K)-module. Suppose A is an abelian variety over K
such that Φ ⊂ A, as GQ-modules. Let B = (A × E)/Φ, where Φ is embedded
anti-diagonally. Then there is an exact sequence

0 → B(K)/(A(K) + E(K)) → E(K)/mE(K) → VisB(E(K)) → 0.

Moreover, if (A/E[m])(K) is finite of order coprime to m, then the first term
of the sequence is 0, so

VisB(E(K)) ∼= E(K)/mE(K).

Proof. Using the definition of B and multiplication by m on E, we obtain the
following commutative diagram, whose rows and columns are exact:

0

²²

0

²²

0

²²

0 // E[m] //

²²

E
m

//

²²

E

∼=
²²

// 0

0 // A //

²²

B //

²²

E //

²²

0

0 // A/E[m]
∼=

//

²²

B/E //

²²

0

0 0

Taking K-rational points we arrive at the following diagram with exact rows
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and columns:

0 // E(K)/E(K)[m]
m

//

²²

E(K) //

∼=
²²

E(K)/mE(K) //

²²

0

0 // B(K)/A(K) //

²²

E(K) //

²²

VisB(E(K)) // 0

B(K)/(A(K) + E(K)) 0

The snake lemma and the fact that the middle vertical map is an isomorphism
implies that the right vertical map is a surjection with kernel isomorphic to
B(K)/(A(K) + E(K)). Thus we obtain an exact sequence

0 → B(K)/(A(K) + E(K)) → E(K)/mE(K) → VisB(E(K)) → 0.

This proves the first statement of the proposition. For the second, note
that we have an exact sequence 0 → E → B → A/E[m] → 0. Taking Galois
cohomology yields an exact sequence

0 → E(K) → B(K) → (A/E[m])(K) → · · · ,

so #(B(K)/E(K)) | #(A/E[m])(K). If (A/E[m])(K) is finite of order coprime
to m, then B(K)/(A(K) + E(K)) has order dividing #(A/E[m])(K), so the
quotient B(K)/(A(K) + E(K)) is trivial, since it injects into E(K)/mE(K).

5.2 Tables

The data in this section suggests the following conjecture.

Conjecture 5.2.1. Suppose E is an elliptic curve over Q and p is a prime
such that E[p] is irreducible. Then there exists infinitely many newforms g ∈
S2(Γ0(N)), for various integers N , such that L(g, 1) 6= 0 and E[p] ⊂ Ag and

VisB(E(Q)) = E(Q)/pE(Q), where B = (Ag × E)/E[p].

Let E be the elliptic curve y2 + y = x3 − x. This curve has conductor 37
and Mordell-Weil group free of rank 1. According to [Cre97], E is isolated in
its isogeny class, so each E[p] is irreducible.

Table 1 gives for each N the odd primes p such that there is a mod p
congruence between fE and some newform g in S2(Γ0(37N)) such that Ag has
rank 0 and the isogeny class of Ag contains no abelian variety with rational p
torsion. The first time a p occurs, it is in bold. We bound the torsion in the
isogeny class using the algorithm from [AS05, §3.5] with primes up to 17. Thus
by Proposition 5.1.1, the Mordell-Weil group of E is p-modular of level 37N . A
− means there are no such p. Table 2, which was derived directly from Table 1,
gives for a prime p, all integers N such that E(Q) is p-modular of level 37N .
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Table 1: Visibility of Mordell-Weil for y2 + y = x3 − x

N p′s
2 5
3 7
4 −
5 −
6 −
7 3
8 −
9 −
10 −
11 17
12 −
13 −
14 −
15 −
16 −
17 3
18 −

N p′s
19 5
20 −
21 7
22 −
23 11
24 −
25 −
26 −
27 3
28 −
29 3
30 −
31 3
32 −
33 7
34 −
35 −

N p′s
36 −
37 −
38 5
39 −
40 −
41 3, 17
42 −
43 7
44 −
45 −
46 −
47 3
48 −
49 −
50 5
51 −
52 −

N p′s
53 53
54 −
55 −
56 −
57 −
58 −
59 13
60 −
61 5, 7
62 −
63 3
64 −
65 −
66 −
67 3, 5
68 −
69 −

N p′s
70 −
71 3, 7
72 −
73 3, 5
74 −
75 −
76 −
77 −
78 −
79 −
80 −
81 3
82 −
83 3, 11
84 −
85 −
86 −

N p′s
87 −
88 −
89 43
90 −
91 3
92 −
93 7
94 −
95 −
96 −
97 47
98 −
99 −
100 −
101 3, 11
102 −
103 43

N p′s
104 −
105 −
106 5
107 3, 5
108 −
109 3, 7
110 −
111 −
112 −
113 3, 11
114 −
115 −
116 −
117 −
118 −
119 3
120 −

N p′s
121 −
122 −
123 −
124 −
125 5
126 −
127 127
128 −
129 −
130 −
131 3
132 −
133 −
134 −
135 −
136 −
137 3

N p′s
138 −
139 17
140 −
141 −
142 −
143 −
144 −
145 −
146 −
147 7
148 −
149 5,31
150 −
151 17
152 −
153 3
154 −

N p′s
155 −
156 −
157 3, 5
158 −
159 −
160 −
161 −
162 −
163 7, 13
164 −
165 −
166 −
167 3, 5
168 −
169 −
170 −
171 −

N p′s
172 −
173 3, 5, 11
174 −
175 −
176 −
177 −
178 −
179 3
180 −
181 3,59
182 −
183 −
184 −
185 −
186 −
187 −
188 −

N p′s
189 3
190 −
191 7
192 −
193 5, 11
194 −
195 −
196 −
197 3, 5, 13
198 −
199 3, 11
200 −
201 −
202 5
203 3
204 −
205 −

N p′s
206 −
207 −
208 −
209 −
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Table 2: Levels Where Mordell-Weil is p-Visible for y2 + y = x3 − x

p N such that 37N is a level of p-modularity of E(Q)

3
7, 17, 27, 29, 31, 41, 47, 63, 67, 71, 73, 81, 83, 91, 101, 107,
109, 113, 119, 131, 137, 153, 157, 167, 173, 179, 181, 189,
197, 199, 203

5
2, 19, 38, 50, 61, 67, 73, 106, 107, 125, 149, 157, 167, 173,
193, 197, 202

7 3, 21, 33, 43, 61, 71, 93, 109, 147, 163, 191

11 23, 83, 101, 113, 173, 193, 199

13 59, 163, 197

17 11, 41, 139, 151

19 − 29 -

31 149
37 − 41 -

43 89, 103

47 97
53 53
59 181

61 − 113 -

127 127



Visibility of Mordell-Weil Groups 15

Table 3: Visibility of Mordell-Weil for y2 + y = x3 + x2

N p′s
2 5
3 3
4 −
5 5
6 −
7 −
8 −
9 −
10 −
11 3
12 −
13 19
14 −
15 −
16 −

N p′s
17 3,7
18 −
19 −
20 −
21 −
22 5
23 5
24 −
25 −
26 −
27 3
28 −
29 3
30 −
31 −

N p′s
32 −
33 3
34 5
35 −
36 −
37 19
38 −
39 3
40 −
41 37
42 −
43 −
44 −
45 −
46 −

N p′s
47 −
48 −
49 −
50 5
51 3
52 −
53 59
54 −
55 5
56 −
57 3
58 −
59 3
60 −
61 5

N p′s
62 −
63 −
64 −
65 −
66 −
67 71
68 −
69 −
70 −
71 5, 7
72 −
73 3
74 −
75 −
76 −

N p′s
77 −
78 −
79 −
80 −
81 3
82 −
83 3,23
84 −
85 5
86 −
87 3
88 −
89 47
90 −
91 −

N p′s
92 −
93 −
94 −
95 −
96 −
97 7,13
98 −
99 3
100 −

Ribet’s level raising theorem [Rib90] gives necessary and sufficient condi-
tions on a prime N for there to be a newform g of level 37N that is congruent
to fE modulo p. Note that the form g is new rather than just p-new since 37 is
prime and there are no modular forms of level 1 and weight 2. If, moreover, we
impose the condition L(g, 1) 6= 0, then Ribet’s condition requires that p divides
N + 1 + εaN , where ε is the root number of E. Since E has odd analytic rank,
in this case ε = −1. For each primes p ≤ 127 and each N ≤ 203, were find the
levels of such g. The only cases in which we don’t already find a congruence
level already listed in Table 2 corresponding to a newform with torsion multiple
coprime to p are

p = 3, N = 43 and p = 19, N = 47, 79.

In all other cases in which Ribet’s theorem produces a congruent g with
ordL(g, s) even (hence possibly 0), we actually find a g with L(g, 1) 6= 0 and
can show that #Ag(Q)tor is coprime to p.

For p = 3 and N = 43 we find a unique newform g ∈ S2(Γ0(1591)) that is
congruent to fE modulo 3. This form is attached to the elliptic curve y2 + y =
x3 − 71x + 552 of conductor 1591, which has Mordell-Weil groups Z⊕Z. Thus
this is an example of a congruence relating a rank 1 curve to a rank 2 curve.
For p = 19 and N = 47, the g has degree 43, so Ag has dimension 43, we have
L(g, 1) 6= 0, but the torsion multiple is 76 = 19 ·4, which is divisible by 19. For
p = 19 and N = 79, the Ag has dimension 57, we have L(g, 1) 6= 0, but the
torsion multiple is 76 again.

Tables 3–4 are the analogues of Tables 1–2 but for the elliptic curve y2+y =
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Table 4: Levels Where Mordell-Weil is p-Visible for y2 + y = x3 + x2

p N such that 43N is a level of p-modularity of E(Q)

3 3, 11, 17, 27, 29, 33, 39, 51, 57, 59, 73, 81, 83, 87, 99

5 2, 5, 22, 23, 34, 50, 55, 61, 71, 85

7 17, 71, 97

11 -

13 97
17 -

19 13, 37

23 83
29, 31 -

37 41
41, 43 -

47 89
53 -

59 53
61, 67 -

71 67

Table 5: Visibility of Mordell-Weil for y2 + y = x3 + x2 − 2x

N p′s
1 5
2 −
3 −
4 −
5 3
6 −

N p′s
7 3
8 −
9 3
10 −
11 −
12 −

N p′s
13 11
14 −
15 3
16 −
17 −
18 −

N p′s
19 −
20 −
21 −
22 −
23 5
24 −

N p′s
25 −
26 −
27 3
28 −
29 3

Table 6: Levels Where Mordell-Weil is p-Visible for y2 + y = x3 + x2 − 2x

p N such that 389N is a level of p-modularity of E(Q)

3 5, 7, 9, 15, 27, 29

5 1, 23

7 -

11 13
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x3 + x2 of conductor 43. This elliptic curve also has rank 1 and all mod p
representations are irreducible. The primes p and N such that Ribet’s theorem
produces a congruent g with ords=1 L(g, s) even, yet we do not find one with
L(g, 1) 6= 0 and the torsion multiple coprime to p are

p = 3, N = 31, 61 and p = 11, N = 19, 31, 47, 79.

The situation for p = 11 is interesting since in this case all the g with
ords=1 L(g, s) even fail to satisfy our hypothesis. At level 19 · 43 we find that g
has degree 18 and L(g, 1) 6= 0, but the torsion multiple is divisible by 11.

Let E be the elliptic curve y2 + y = x3 + x2 − 2x of conductor 389. This
curve has Mordell-Weil group free of rank 2. Tables 5–6 are the analogues of
Tables 1–2 but for E. The primes p and N such that Ribet’s theorem produces
a congruent g with ords=1 L(g, s) even, yet we do not find one with L(g, 1) 6= 0
and the torsion multiple coprime to p are

p = 3, N = 17 and p = 5, N = 19.

For p = 3, there is a unique g of level 6613 = 37 · 17 with ords=1 L(g, s) even
and E[3] ⊂ Ag. This form has degree 5 and L(g, 1) = 0, so this is another
example where the rank 0 hypothesis of Proposition 5.1.1 is not satisfied. Note
that the torsion multiple in this case is 1. For p = 5, there is a unique g of level
7391 = 37 · 19, with ords=1 L(g, s) even and E[5] ⊂ Ag. This form has degree 4
and L(g, 1) 6= 0, but the torsion multiple is divisible by 5.
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pp. 53–79. MR 94g:11042

[RM05] K. Rubin and B. Mazur, Finding large selmer groups, in prepara-
tion.

[Roh84] D.E. Rohrlich, On L-functions of elliptic curves and cyclotomic
towers, Invent. Math. 75 (1984), no. 3, 409–423. MR 86g:11038b



20 William A. Stein11

[Ros] Guido van Rossum, Python,
http://www.python.org.

[Sch98] A. J. Scholl, An introduction to Kato’s Euler systems, Galois Rep-
resentations in Arithmetic Algebraic Geometry, Cambridge Univer-
sity Press, 1998, pp. 379–460.

[Ste04] W. A. Stein, Shafarevich-Tate Groups of Nonsquare Order, Modular
Curves and Abelian Varieties, Progress of Mathematics (2004), 277–
289.

[Tat66] J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a
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Visibility of the Shafarevich-Tate Group at Higher Level

Dimitar P. Jetchev William A. Stein

Abstract. We study visibility of Shafarevich-Tate groups of
modular abelian varieties in Jacobians of modular curves of higher
level. We prove a theorem about the existence of visible elements at a
specific higher level under hypotheses that can be verified explicitely.
We also provide a table of examples of visible subgroups at higher
level and state conjectures inspired by our data.

1 Introduction

1.1 Motivation

Mazur suggested that the Shafarevich-Tate group X(K,E) of an abelian
variety A over a number field K could be studied via a collection of finite
subgroups (the visible subgroups) corresponding to different embeddings of
the variety into larger abelian varieties C over K (see [Maz99] and [CM00]).
The advantage of this approach is that the isomorphism classes of principal
homogeneous spaces, for which one has à priori little geometric information,
can be given a much more explicit description as K-rational points on the
quotient abelian variety C/A (the reason why they are called visible elements).

Agashe, Cremona, Klenke and the second author built upon the ideas
of Mazur and developed a systematic theory of visibility of Shafarevich-Tate
groups of abelian varieties over number fields (see [Aga99b, AS02, AS05, CM00,
Kle01, Ste00]). More precisely, Agashe and Stein provided sufficient conditions
for the existence of visible sugroups of certain order in the Shafarevich-Tate
group and applied their general theory to the case of newform subvarieties Af /Q
of the Jacobian J0(N)/Q of the modular curve X0(N)/Q (here, f is a newform
of level N and weight 2 which is an eigenform for the Hecke operators acting
on the space S2(Γ0(N)) of cuspforms of level N and weight 2). Unfortunately,
there is no guarantee that a non-trivial element of X(Q, Af ) is visible for the
embedding Af ↪→ J0(N).
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In this paper we consider the case of modular abelian varieties over Q
and make use of the algebraic and arithmetic properties of the corresponding
newforms to provide sufficient conditions for the existence of visible elements of
X(Q, Af ) in modular Jacobians of level a multiple of the base level N . More

precisely, we consider morphism of the form Af ↪→ J0(N)
φ−→ J0(MN), where

φ is a suitable linear combination of degeneracy maps which makes the kernel
of the composition morphism almost trivial (i.e., trivial away from the 2-part).
For specific examples, the sufficient conditions can be verified explicitely. We
also provide a table of examples where certain elements of X(Q, Af ) which are
invisible in J0(N) become visible at a suitably chosen higher level. At the end,
we state some general conjectures inspired by our results.

1.2 Organization of the paper

Section 2 discusses the basic definitions and notation for modular abelian
varieties, modular forms, Hecke algebras, the Shimura construction and
modular degrees. Section 3 is a brief introduction to visibility theory for
Shafarevich-Tate groups. In Section 4 we state and prove an equivariant version
of a theorem of Agashe-Stein (see [AS05, Thm 3.1]) which guarantees existence
of visible elements. The theorem is more general because it makes use of the
action of the Hecke algebra on the modular Jacobian.

In Section 5 we introduce the notion of strong visibility which is relevant for
visualizing cohomology classes in Jacobians of modular curves whose level is a
multiple of the level of the original abelian variety. Theorem 5.1.3 guarantees
existence of strongly visible elements of the Shafarevich-Tate group under some
hypotheses on the component groups, a congruence condition between modular
forms, and irreducibility of the Galois representation. In Section 5.4 we prove
a variant of the same theorem (Theorem 5.4.2) with more stringent hypotheses
that are easier to verify in specific cases.

Section 6 discusses in detail two computational examples for which strongly
visible elements of certain order exist which provides evidence for the Birch and
Swinnerton-Dyer conjecture. We state a general conjecture (Conjecture 7.1.1)
in Section 7 according to which every element of the Shafarevich-Tate group
of a modular abelian variety becomes visible at higher level. We provide
evidence for the the conjecture in Section 7.2 and tables of computational data
in Section 7.4.

Acknowledgement: The authors would like to thank David Helm, Ben
Howard, Barry Mazur, Bjorn Poonen and Ken Ribet for discussions and
comments on the paper.

2 Notation

1. Abelian varieties. For a number field K, A/K denotes an abelian variety over
K. We denote the dual of A by A∨/K . If ϕ : A → B is an isogeny of degree n,
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we denote the complementary isogeny by ϕ′; this is the isogeny φ′ : B → A,
such that ϕ ◦ ϕ′ = ϕ′ ◦ ϕ = [n], the multiplication-by-n map on A. Unless
otherwise specified, Néron models of abelian varieties will be denoted by the
corresponding caligraphic letters, e.g., A denotes the Néron model of A.

2. Galois cohomology. For a fixed algebraic closure K of K, GK will be the
Galois group Gal(K/K). If v is any non-archimedean place of K, Kv and kv
will always mean the completion and the residue field of K at v, respectively.
By Kur

v we always mean the maximal unramified extension of the completion
Kv. Given a GK-module M , we let H1(K,M) denote the Galois cohomology
group H1(GK ,M).

3. Component groups. The component group of A at v is the finite group
ΦA,v = Akv/A0

kv
which also has a structure of a finite group scheme over kv.

The Tamagawa number of A at v is cA,v = #ΦA,v(kv), and the component
group order of A at v is cA,v = #ΦA,v(kv).

4. Modular abelian varieties. Let h = 0 or 1. A Jh-modular abelian variety
is an abelian variety A/K which is a quotient of Jh(N) for some N , i.e., there
exists a surjective morphism Jh(N) ³ A defined over K. We define the level
of a modular abelian variety A to be the minimal N , such that A is a quotient
of Jh(N). The modularity theorem of Wiles et al. (see [BCDT01]) implies that
all elliptic curves over Q are modular. Serre’s modularity conjecture implies
that the modular abelian varieties over Q are precisely the abelian varieties
over Q of GL2-type (see [Rib92, §4]).

5. Shimura construction. Let f =
∞∑

n=1

anq
n ∈ S2(Γ0(N)) be a newform of level

N and weight 2 for Γ0(N) which is an eigenform for all Hecke operators in
the Hecke algebra T(N). Shimura (see [Shi94, Thm. 7.14]) associated to f an
abelian subvariety Af /Q of J0(N), simple over Q, of dimension d = [K : Q],

where K = Q(. . . , an, . . . ) is the Hecke eigenvalue field. More precisely, if
If = AnnT(N)(f) then Af is the connected component containing the identity of
the If -torsion subgroup of J0(N), i.e., Af = J0(N)[If ]0 ⊂ J0(N). The quotient
T(N)/If of the Hecke algebra T(N) is a subalgebra of the endomorphism ring

EndQ(A/Q). Also L(Af , s) =

d∏

i=1

L(fi, s), where the fi are the GQ-conjugates

of f . We also consider the dual abelian variety A∨f which is a quotient variety
of J0(N).

6. I-torsion submodules. If M is a module over a commutative ring R and I
is an ideal of R, let

M [I] = {x ∈M : mx = 0 all m ∈ I}

be the I-torsion submodule of M .
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7. Hecke algebras. Let S2(Γ) denote the space of cusp forms of weight 2 for
any congruence subgroup Γ of SL2(Z). Let

T(N) = Z[. . . , Tn, . . .] ⊆ EndQ(J0(N))

be the Hecke algebra, where Tn is the nth Hecke operator. T(N) also acts on
S2(Γ0(N)) and the integral homology H1(X0(N),Z).

8. Modular degree. If A is an abelian subvariety of J0(N), let

θ : A→ J0(N) ∼= J0(N)∨ → A∨

be the induced polarization. The modular degree of A is

mA =

√
# Ker(A

θ−→ A∨).

See [AS02] for why mA is an integer and for an algorithm to compute it.

3 Visible Subgroups of Shafarevich-Tate Groups

Let K be a number field and ι : A/K ↪→ C/K be an embedding of an abelian
variety into another abelian variety over K.

Definition 3.0.1. The visible subgroup of H1(K,A) relative to ι is

VisC H1(K,A) = Ker
(
ι∗ : H1(K,A)→ H1(K,C)

)
.

The visible subgroup of X(K,A) relative to the embedding ι is

VisCX(K,A) = X(K,A) ∩VisC H1(K,A)

= Ker (X(K,A)→X(K,C))

Let Q be the abelian variety C/ι(A), which is defined over K. The long
exact sequence of Galois cohomology corresponding to the short exact sequence
0→ A→ C → Q→ 0 gives rise to the following exact sequence

0→ A(K)→ C(K)→ Q(K)→ VisC H1(K,A)→ 0.

The last map being surjective means that the cohomology classes of
VisC H1(K,A) are images of K-rational points on Q, which explains the
meaning of the word visible in the definition. The group VisC H1(K,A) is finite
since it is torsion and since the Mordell-Weil group Q(K) is finitely generated.

Remark 3.0.2. If A/K is an abelian variety and c ∈ H1(K,A) is any cohomology
class, there exists an abelian variety C/K and an embedding ι : A ↪→ C

defined over K, such that c ∈ VisC H1(K,A), i.e., c is visible in C (see [AS02,
Prop. 1.3]). The C of [AS02, Prop. 1.3] is the restriction of scalars of
AL = A×K L down to K, where L is any finite extension of K such that c has
trivial image in H1(L,A).
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4 Equivariant Visibility

Let K be a number field, let A/K and B/K be abelian subvarieties of an abelian
variety C/K , such that C = A + B and A ∩ B is finite. Let Q/K denotes the
quotient C/B. Let N be a positive integer divisible by all primes of bad
reduction for C.

Let ` be a prime such that B[`] ⊂ A and e < ` − 1, where e is the largest
ramification index of any prime of K lying over `. Suppose that

` - N ·#B(K)tor ·#Q(K)tor ·
∏

v|N
cA,vcB,v.

Under those conditions, Agashe and Stein (see [AS02, Thm. 3.1]) construct a
homomorphism B(K)/`B(K) → X(K,A)[`] whose kernel has F`-dimension
bounded by the Mordell-Weil rank of A(K).

In this paper, we refine [AS02, Prop. 1.3] by taking into account the
algebraic structure coming from the endomorphism ring EndK(C). In
particular, when we apply the theory to modular abelian varieties, we would
like to use the additional structure coming from the Hecke algebra. There are
numerous example (see [AS05]) where [AS02, Prop. 1.3] does not apply, but
nevertheless, we can use our refinement to prove existence of visible elements
of X(Q, Af ) at higher level (e.g., see Propositions 6.1.3 and 6.2.1 below).

4.1 The main theorem

Let A/K , B/K , C/K , Q/K , N and ` be as above. Let R be a commutative
subring of EndK(C) that leaves A and B stable and let m be a maximal ideal
of R of residue characteristic `. By the Néron mapping property, the subgroups
ΦA,v(kv) and ΦB,v(kv) of kv-points of the corresponding component groups can
be viewed as R-modules.

Theorem 4.1.1 (Equivariant Visibility Theorem). Suppose that A(K) has rank
zero and that the groups Q(K)[m], B(K)[m], ΦA,v(kv)[m] and ΦB,v(kv)[`] are
all trivial for all nonarchimedean places v of K. Then there is an injective
homomorphism of R/m-vector spaces

(B(K)/`B(K))[m] ↪→ VisC(X(K,A))[m]. (1)

Remark 4.1.2. Applying the above result for R = Z, we recover the result
of Agashe and Stein in the case when A(K) has Mordell-Weil rank zero. We
could relax the hypothesis that A(K) is finite and instead give a bound on the
dimension of the kernel of (1) in terms of the rank of A(K) similar to the bound
in [AS02, Thm. 3.1]. We will not need this stronger result in our paper.

4.2 Some commutative algebra

Before proving Theorem 4.1.1 we recall some well-known lemmas from
commutative algebra. Let M be a module over a commutative ring R and
let m be a finitely generated prime ideal of R.
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Lemma 4.2.1. If Mm is Artinian, then Mm 6= 0 ⇐⇒ M [m] 6= 0.

Proof. (⇐=) We first prove that Mm = 0 implies M [m] = 0 by a slight
modification of the proof of [AM69, Prop. I.3.8]. Suppose Mm = 0, yet there is
a nonzero x ∈M [m]. Let I = AnnR(x). Then I 6= (1) is an ideal that contains
m, so I = m. Consider x

1 ∈ Mm. Since Mm = 0, we have x/1 = 0, hence by
definition of localization, x is killed by some element of R − m (set-theoretic
difference). But this is impossible since AnnR(x) = m.

(=⇒) Next we prove that Mm 6= 0 implies M [m] 6= 0. Since Mm is an
Artinian module over the (local) ring Rm, by [AM69, Prop. 6.8], Mm has a
composition series:

Mm = M0 ⊃M1 ⊃ · · · ⊃Mn−1 ⊃Mn = 0,

where by definition each quotient Mi/Mi+1 is a simple Rm-module. In
particular, Mn−1 is a simple Rm-module. Suppose x ∈ Mn−1 is nonzero, and
let I = AnnRm

(x). Then

Rm/I ∼= Rm · x ⊂Mn−1,

so by simplicity Rm/I ∼= Mn−1 is simple. Thus I = m, otherwise Rm/I would
have m/I as a proper submodule. Thus x ∈Mn−1[m] is nonzero.

Write x = [y, a] with y ∈M and a ∈ R−m, where [y/a] means the class of
y/a in the localization (same as (y, a) on page 36 of [AM69]). Since a ∈ R−m,
the element a acts as a unit on Mm, hence ax = [y/1] ∈ Mn−1 is nonzero and
also still annihilated by m (by commutativity).

To say that [y/1] is annihilated by m means that for all α ∈ m there exists
t ∈ R−m such that tαy = 0 in M . Since m is finitely generated, we can write
m = (α1, . . . , αn) and for each αi we get corresponding elements t1, . . . , tn and
a product t = t1 · · · tn. Also t 6∈ m since m is a prime ideal and each ti 6∈ m.
Let z = ty. Then for all α ∈ m we have αz = tαy = 0. Also z 6= 0 since t acts
as a unit on Mn−1. Thus z ∈M [m], and is nonzero, which completes the proof
of the lemma.

Lemma 4.2.2. Suppose 0 → M1 → N → M2 → 0 is an exact sequence of
R-modules each of whose localization at m is Artinian. Then N [m] 6= 0 ⇐⇒
(M1 ⊕M2)[m] 6= 0.

Proof. By Lemma 4.2.1 we have N [m] 6= 0 if and only if Nm 6= 0. By
Proposition 3.3 on page 39 of [AM69], the localized sequence

0→ (M1)m → Nm → (M2)m → 0

is exact. Thus Nm 6= 0 if and only if at least one of (M1)m or (M2)m is nonzero.
Again by Lemma 4.2.1, at least one of (M1)m or (M2)m is nonzero if and only
if at least one of M1[m] or M2[m] is nonzero. The latter is the case if and only
if (M1 ⊕M2)[m] 6= 0.
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Remark 4.2.3. One could also prove the lemmas using the isomorphism M [m] ∼=
HomR(R/m,M) and exactness properties of Hom, but even with this approach
many of the details in Lemma 4.2.1 still have to be checked.

Remark 4.2.4. In Theorem 4.1.1, we have R ⊂ End(C), hence R is finitely
generated as a Z-module, so R is noetherian.

Lemma 4.2.5. Let G be a finite cyclic group, M be a finite G-module that is
also a module over a commutative ring R such that the action of G and R
commute (i.e., M is an R[G]-module). Suppose p is a finitely-generated prime
ideal of R, and H0(G,M)[p] = 0. Then H1(G,M)[p] = 0.

Proof. Argue as in [Se79, Prop. VIII.4.8], but noting that all modules are
modules over R and maps are morphisms of R-modules.

4.3 Proof of Theorem 4.1.1

Proof of Theorem 4.1.1. We argue as in the proof of [AS02, Thm. 3.1]. The
construction of the map (1) is similar to the one in the proof of [AS02, Lem. 3.6].
We have the commutative diagram

0 // B[`] //

²²

B

²²

` //

ψ

ÁÁ>
>>

>>
>>

> B

π

²²

// 0

0 // A // C // Q // 0,

where ψ : B → Q is the composition of the inclusion B ↪→ C with the quotient
map C → Q, and the existence of the morphism π : B → Q follows from the
inclusion B[`] ⊂ Ker(ψ) = A∩B. By naturality for the long exact sequence of
Galois cohomology we obtain the following commutative diagram with exact
rows and columns

M0

²²

M1

²²

M2

²²
0 // B(K)/(B(K)[`])

` //

²²

B(K)

π

''NNNNNNNNNNN
//

²²

B(K)/`B(K) //

ϕ

²²

0

0 // C(K)/A(K) //

²²

Q(K) // VisC(H1(K,A)) // 0

M3.

Here, M0, M1 and M2 denote the kernels of the corresponding vertical maps
and M3 denotes the cokernel of the first map. Since R preserves A, B, and
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B[`], all objects in the diagram are R-module and the morphisms of abelian
varieties are also R-module homomorphisms.

The snake lemma yields an exact sequence

0→M0 →M1 →M2 →M3.

By hypothesis, B(K)[m] = 0, so N0 = Ker(B(K) → C(K)/A(K)) has no m
torsion. Noting that B(K)[`] ⊂ N0, it follows that M0 = N0/(B(K)[`]) has
no m torsion either, by Lemma 4.2.2. Also, M1[m] = 0 again since B(K)[m] = 0.

By the long exact sequence on Galois cohomology, the quotient C(K)/B(K)
is isomorphic to a subgroup of Q(K) and by hypothesis Q(K)[m] = 0, so
(C(K)/B(K))[m] = 0. Since Q is isogenous to A and A(K) is finite and
C(K)/B(K) ↪→ Q(K), we see that C(K)/B(K) is finite. Thus M3 is a quotient
of the finite R-module C(K)/B(K), which has no m-torsion, so Lemma 4.2.2
implies that M3[m] = 0. The same lemma implies that M1/M0 has no m-
torsion, since it is a quotient of the finite module M1, which has no m-torsion.
Thus, we have an exact sequence

0→M1/M0 →M2 →M3 → 0,

and both of M1/M0 and M3 have trivial m-torsion. It follows by Lemma 4.2.2,
that M2[m] = 0. Therefore, we have an injective morphism of R/m-vector
spaces

ϕ : (B(K)/`B(K))[m] ↪→ VisC(H1(K,A))[m].

It remains to show that for any x ∈ B(K), we have ϕ(x) ∈ VisC(X(K,A)),
i.e., that ϕ(x) is locally trivial.

We proceed exactly as in Section 3.5 of [AS05]. In both cases char(v) 6= `
and char(v) = ` we arrive at the conclusion that the restriction of ϕ(x) to
H1(Kv, A) is an element c ∈ H1(Kur

v /Kv, A(Kur
v )). (Note that in the case

char(v) 6= ` the proof uses our hypothesis that ` - #ΦB,v(kv).) By [Mil86,
Prop I.3.8], there is an isomorphism

H1(Kur
v /Kv, A(Kur

v )) ∼= H1(kv/kv,ΦA,v(kv)). (2)

We will use our hypothesis that

ΦA,v(kv)[m] = ΦB,v(kv)[`] = 0

for all v of bad reduction to deduce that the image of ϕ lies in
VisC(X(K,A))[m]. Let d denote the image of c in H1(kv/kv,ΦA,v(kv)). The
construction of d is compatible with the action of R on Galois cohomology,
since (as is explained in the proof of [Mil86, Prop. I.3.8]) the isomorphism (2)
is induced from the exact sequence of Gal(Kur

v /Kv)-modules

0→ A0(Kur
v )→ A(Kur

v )→ ΦA,v(kv)→ 0,
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where A is the Néron model of A and A0 is the subgroup scheme whose generic
fiber is A and whose closed fiber is the identity component of Akv . Since
ϕ(x) ∈ H1(K,A)[m], it follows that

d ∈ H1(kv/kv,ΦA,v(kv))[m].

Lemma 4.2.5, our hypothesis that ΦA,v(kv)[m] = 0, and that

H1(kv/kv,ΦA,v(kv)) = lim−→H1(Gal(k′v/kv),ΦA,v(k
′
v))),

together imply that H1(kv/kv,ΦA,v(kv))[m] = 0, hence d = 0. Thus c = 0, so
ϕ(x) is locally trivial, which completes the proof.

5 Strong Visibility at Higher Level

5.1 Strongly visible subgroups

Let A/Q be an abelian subvariety of J0(N)/Q and let p - N be a prime. Let

ϕ = δ∗1 + δ∗p : J0(N)→ J0(pN), (3)

where δ∗1 and δ∗p are the pullback maps on equivalence classes of degree-zero

divisors of the degeneracy maps δ1, δp : X0(pN) → X0(N). Let H1(Q, A)odd

be the prime-to-2-part of the group H1(Q, A).

Definition 5.1.1 (Strongly Visibility). The strongly visible subgroup of
H1(Q, A) for J0(pN) is

VispN H1(Q, A) = Ker
(

H1(Q, A)odd ϕ∗−−→ H1(Q, J0(pN))
)
⊂ H1(Q, A).

Also,
VispN X(Q, A) = X(Q, A) ∩VispN H1(Q, A).

The reason we replace H1(Q, A) by H1(Q, A)odd is that the kernel of ϕ is a
2-group (see [Rib90b]).

Remark 5.1.2. We could obtain more visible subgroups by considering the map
δ∗1 − δ∗p in Definition 5.1.1. However, the methods of this paper do not apply
to this map.

For a positive integer N , let

ν(N) =
1

6
·
∏

qr‖N
(qr + qr−1) =

1

6
· [SL2(Z) : Γ0(N)].

We call the number ν(N) the Sturm bound (see [Stu87]).

Theorem 5.1.3. Let A/Q = Af be a newform abelian subvariety of J0(N) for
which L(A/Q, 1) 6= 0 and let p - N be a prime. Suppose that there is a maximal
ideal λ ⊂ T(N) and an elliptic curve E/Q of conductor pN such that:
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1. [Nondivisibility] The residue characteristic ` of λ satisfies

` - 2 ·N · p ·
∏

q|N
cE,q.

2. [Component Groups] For each prime q | N ,

ΦA,q(Fq)[λ] = 0.

3. [Fourier Coefficients] Let an(E) be the n-th Fourier coefficient of the
modular form attached to E, and an(f) the n-th Fourier coefficient of f .
Assume that ap(E) = −1,

ap(f) ≡ −(p+ 1) (mod λ) and aq(f) ≡ aq(E) (mod λ),

for all primes q 6= p with q ≤ ν(pN).

4. [Irreducibility] The mod ` representation ρE,` is irreducible.

Then there is an injective homomorphism

E(Q)/`E(Q) ↪→ VispN (X(Q, Af ))[λ].

Remark 5.1.4. In fact, we have

E(Q)/`E(Q) ↪→ Ker(X(Q, Af )→X(Q, C))[λ] ⊂ VispN (X(Q, Af ))[λ],

where C ⊂ J0(pN) is isogenous to Af × E.

5.2 Some auxiliary lemmas

We will use the following lemmas in the proof of Theorem 5.1.3. The notation
is as in the previous section. In addition, if f ∈ S2(Γ0(N)), we denote by an(f)
the n-th Fourier coefficient of f and by Kf and Of the Hecke eigenvalue field
and its ring of integers, respectively.

Lemma 5.2.1. Suppose Af ⊂ J0(N) and Ag ⊂ J0(pN) are attached to
newforms f and g of level N and pN , respectively, with p - N . Suppose
that there is a prime ideal λ of residue characteristic ` - 2pN in an integrally
closed subring O of Q that contains the ring of integers of the composite field
K = KfKg such that for q ≤ ν(pN),

aq(f) ≡
{
aq(g) (mod λ) if q 6= p,

(p+ 1)ap(g) (mod λ) if q = p.

Assume that ap(g) = −1. Let λf = Of ∩ λ and λg = Og ∩ λ and assume that
Af [λf ] is an irreducible GQ-module. Then we have an equality

ϕ(Af [λf ]) = Ag[λg]

of subgroups of J0(pN), where ϕ is as in (3).
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Proof. Our hypothesis that ap(f) ≡ −(p+ 1) (mod λf ) implies, by the proofs
in [Rib90b], that

ϕ(Af [λf ]) ⊂ ϕ(Af ) ∩ J0(pN)p-new,

where J0(pN)p-new is the p-new abelian subvariety of J0(N).
By [Rib90b, Lem. 1], the operator Up = Tp on J0(pN) acts as −1 on

ϕ(Af [λf ]). Consider the action of Up on the 2-dimensional vector space spanned
by {f(q), f(qp)}. The matrix of Up with respect to this basis is

Up =

(
ap(f) p
−1 0

)
.

In particular, neither of f(q) and f(qp) is an eigenvector for Up. The
characteristic polynomial of Up acting on the span of f(q) and f(qp) is
x2 − ap(f)x+ p. Using our hypothesis on ap(f) again, we have

x2 − ap(f)x+ p ≡ x2 + (p+ 1)x+ p ≡ (x+ 1)(x+ p) (mod λ).

Thus we can choose an algebraic integer α such that

f1(q) = f(q) + αf(qp)

is an eigenvector of Up with eigenvalue congruent to −1 modulo λ. (It does not
matter for our purposes whether x2 +ap(f)x+p has distinct roots; nonetheless,
since p - N , [CV92, Thm. 2.1] implies that it does have distinct roots.) The
cusp form f1 has the same prime-indexed Fourier coefficients as f at primes
other than p. Enlarge O if necessary so that α ∈ O. The p-th coefficient of f1

is congruent modulo λ to −1 and f1 is an eigenvector for the full Hecke algebra.
It follows from the recurrence relation for coefficients of the eigenforms that

an(g) ≡ an(f1) (mod λ)

for all integers n ≤ ν(pN).
By [Stu87], we have g ≡ f1 (mod λ), so aq(g) ≡ aq(f) (mod λ) for all

primes q 6= p. Thus by the Brauer-Nesbitt theorem [CR62], the 2-dimensional
GQ-representations ϕ(Af [λf ]) and Ag[λg] are isomorphic.

Let m be a maximal ideal of the Hecke algebra T(pN) that annihilates
the module Ag[λg]. Note that Ag[m] = Ag[λg] since Ag[m] ⊂ Ag[λg] and
Ag[λg] ∼= ϕ(Af [λf ]) is irreducible as a GQ-module. The maximal ideal m
gives rise to a Galois representation ρm : GQ → GL2(T(pN)/m) isomorphic
to Ag[λg], which is irreducible since the Galois module Af [λf ] is irreducible.
Finally, we apply [Wil95, Thm. 2.1(i)] for H = (Z/NZ)× (i.e., JH = J0(N)) to
conclude that J0(N)(Q)[m] ∼= (T(pN)/m)2, i.e., the representation ρm occurs
with multiplicity one in J0(pN). Thus

Ag[λg] = ϕ(Af [λf ]).



12 Dimitar P. Jetchev William A. Stein

Lemma 5.2.2. Suppose ϕ : A → B and ψ : B → C are homomorphisms of
abelian varieties over a number field K, with ϕ an isogeny and ψ injective.
Suppose n is an integer that is relatively prime to the degree of ϕ. If G =
VisC(X(Q, B))[n∞], then there is some injective homomorphism

f : G ↪→ Ker {(ψ ◦ ϕ)∗ : X(Q, A) −→X(Q, C)} ,
such that ϕ∗(f(G)) = G.

Proof. Let m be the degree of the isogeny ϕ : A → B. Consider the
complementary isogeny ϕ′ : B → A, which satisfies ϕ ◦ ϕ′ = ϕ′ ◦ ϕ = [m].
By hypothesis m is coprime to n, so gcd(m,#G) = gcd(m,n∞) = 1, hence

ϕ∗(ϕ
′
∗(G)) = [m]G = G.

Thus ϕ′∗(G) maps, via ϕ∗, to G ⊂ X(Q, B), which in turn maps to 0 in
X(Q, C).

Lemma 5.2.3. Let M be an odd integer coprime to N and let R be the subring
of T(N) generated by all Hecke operators Tn with gcd(n,M) = 1. Then R =
T(N).

Proof. See the lemma on page 491 of [Wil95]. (The condition that M is odd is
necessary, as there is a counterexample when N = 23 and M = 2.)

Lemma 5.2.4. Suppose λ is a maximal ideal of T(N) with generators a prime `
and Tn − an (for all n ∈ Z), with an ∈ Z. For each integer p - N , let λp be
the ideal in T(N) generated by ` and all Tn − an, where n varies over integers
coprime to p. Then λ = λp.

Proof. Since λp ⊂ λ and λ is maximal, it suffices to prove that λp is maximal.
Let R be the subring of T(N) generated by Hecke operators Tn with p - n.
The quotient R/λp is a quotient of Z since each generator Tn is equivalent to
an integer. Also, ` ∈ λp, so R/λp = F`. But by Lemma 5.2.3, R = T(N), so
T(N)/λp = F`, hence λp is a maximal ideal.

Lemma 5.2.5. Suppose that A is an abelian variety over a field K. Let R be a
commutative subring of End(A) and I an ideal of R. Then

(A/A[I])[I] ∼= A[I2]/A[I],

where the isomorphism is an isomorphism of R[GK ]-modules.

Proof. Let a+ A[I], for some a ∈ A, be an I-torsion element of A/A[I]. Then
by definition, xa ∈ A[I] for each x ∈ I. Therefore, a ∈ A[I2]. Thus a+A[I] 7→
a+A[I] determines a well-defined homomorphism of R[GK ]-modules

ϕ : (A/A[I])[I]→ A[I2]/A[I].

Clearly this homomorphism is injective. It is also surjective as every element
a + A[I] ∈ A[I2]/A[I] is I-torsion as an element of A/A[I], as Ia ∈ A[I].
Therefore, ϕ is an isomorphism of R[GK ]-modules.
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Lemma 5.2.6. Let ` be a prime and let φ : E → E′ be an isogeny of elliptic
curves of degree coprime to ` defined over a number field K. If v is any place
of K then ` | cE,v if and only if ` | cE′,v.

Proof. Consider the complementary isogeny φ′ : E′ → E. Both φ and φ′ induce
homomorphisms φ : ΦE,v(kv) → ΦE′,v(kv) and φ′ : ΦE′,v(kv) → ΦE,v(kv) and
φ ◦ φ′ and φ′ ◦ φ are multiplication-by-n maps. Since (n, `) = 1 then # kerφ
and # kerφ′ must be coprime to ` which implies the statement.

5.3 Proof of Theorem 5.1.3

Proof of Theorem 5.1.3. By [BCDT01] E is modular, so there is a rational
newform f ∈ Snew

2 (pN) which is an eigenform for the Hecke operators and an
isogeny E → Ef defined over Q, which by Hypothesis 4 can be chosen to have
degree coprime to `. Indeed, every cyclic rational isogeny is a composition of
rational isogenies of prime degree, and E admits no rational `-isogeny since
ρE,` is irreducible.

By Hypothesis 1 the Tamagawa numbers of E are coprime to `. Since E
and Ef are related by an isogeny of degree coprime to `, the Tamagawa numbers
of Ef are also not divisible by ` by Lemma 5.2.6. Moreover, note that

E(Q)⊗ F` ∼= Ef (Q)⊗ F`.

Let m be the ideal of T(pN) generated by ` and Tn − an(E) for all integers
n coprime to p. Note that m is maximal by Lemma 5.2.4.

Let ϕ be as in (3), and let A = ϕ(Af ). Note that if Tn ∈ T(pN) then
Tn(Ef ) ⊂ Ef since Ef is attached to a newform, and if, moreover p - n, then
Tn(A) ⊂ A since the Hecke operators with index coprime to p commute with
the degeneracy maps. Lemma 5.2.1 implies that

Ef [`] = Ef [m] = ϕ(Af [λ]) ⊂ A,

so Ψ = Ef [`] is a subgroup of A as a GQ-module. Let

C = (A× Ef )/Ψ,

where we embed Ψ in A × Ef anti-diagonally, i.e., by the map x 7→ (x,−x).
The antidiagonal map Ψ→ A×Ef commutes with the Hecke operators Tn for
p - n, so (A × Ef )/Ψ is preserved by the Tn with p - n. Let R be the subring
of End(C) generated by the action of all Hecke operators Tn, with p - n. Also
note that Tp ∈ End(J0(pN)) acts by Hypothesis 3 as −1 on Ef , but Tp need
not preserve A.

Suppose for the moment that we have verified that the hypothesis of
Theorem 4.1.1 are satisfied with A, B = Ef , C, Q = C/B, R as above and
K = Q. Then we obtain an injective homomorphism

E(Q)/`E(Q) ∼= Ef (Q)/`Ef (Q) ↪→ Ker(X(Q, A)→X(Q, C))[m].
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We then apply Lemma 5.2.2 with n = `, Af , A, and C, respectively, to see
that

Ef (Q)/`Ef (Q) ⊂ Ker(X(Q, Af )→X(Q, C))[λ].

That Ef (Q)/`Ef (Q) lands in the λ-torsion is because the subgroup of
VisC(X(Q, Ef )) that we constructed is m-torsion.

Finally, consider A × Ef → J0(pN) given by (x, y) 7→ x + y. Note that Ψ
maps to 0, since (x,−x) 7→ 0 and the elements of Ψ are of the form (x,−x).
We have a (not-exact!) sequence of maps

X(Q, Af )→X(Q, C)→X(Q, J0(pN)),

hence inclusions

Ef (Q)/`Ef (Q) ⊆ Ker(X(Q, Af )→X(Q, C))

⊆ Ker(X(Q, Af )→X(Q, J0(pN))),

which gives the conclusion of the theorem.
It remains to verify the hypotheses of Theorem 4.1.1. That C = A + B

is clear from the definition of C. Also, A ∩ Ef = Ef [`], which is finite. We
explained above when defining R that each of A and Ef is preserved by R.
Since K = Q and ` is odd the condition 1 = e < `− 1 is satisfied. That A(Q)
is finite follows from our hypothesis that L(Af , 1) 6= 0 (by [KL89]).

It remains is to verify that the groups

Q(Q)[m], Ef (Q)[m], ΦA,q(Fq)[m], and ΦEf ,q(Fq)[`],

are 0 for all primes q | pN . Since ` ∈ m, we have by Hypothesis 4 that

Ef (Q)[m] = Ef (Q)[`] = 0.

We will now verify that Q(Q)[m] = 0. From the definition of C and Ψ we
have Q ∼= A/Ψ. Let λp be as in Lemma 5.2.4 with an = an(E). The map ϕ
induces an isogeny of 2-power degree

Af/(Af [λ])→ A/Ψ.

Thus there is λp-torsion in (Af/(Af [λ]))(Q) if and only if there is m-torsion in
(A/Ψ)(Q). Thus it suffices to prove that (Af/Af [λ])(Q)[λp] = 0.

By Lemma 5.2.4, we have λp = λ, and by Lemma 5.2.5,

(Af/Af [λ])[λ] ∼= Af [λ2]/Af [λ].

By [Maz77, §II.14], the quotient Af [λ2]/Af [λ] injects into a direct sum of
copies of Af [λ] as Galois modules. But Af [λ] ∼= E[`] is irreducible, so
(Af [λ2]/Af [λ])(Q) = 0, as required.

By Hypothesis 2, we have ΦAf ,q(Fq)[λ] = 0 for each prime divisor q |
N .Since A is 2-power isogenous to Af and ` is odd, this verifies the Tamagawa
number hypothesis for A. Our hypothesis that ap(E) = −1 implies that Frobp
acts on ΦEf ,p(Fp) as −1. Thus ΦEf ,p(Fp)[`] = 0 since ` is odd. This completes
the proof.
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Remark 5.3.1. An essential ingrediant in the proof of the above theorem is the
multiplicity one result used in the paper of Wiles (see [Wil95, Thm. 2.1.]). Since
this result holds for Jacobians JH of the curves XH(N) that are intermediate
covers for the covering X1(N) → X0(N) corresponding to subgroups H ⊆
(Z/NZ)× (i.e., the Galois group of X1(N)→ XH is H), one should be able to
give a generalization of Theorem 5.1.3 which holds for newform subvarieties of
JH . This requires generalizing some results from [Rib90b] to arbitrary H.

5.4 A Variant of Theorem 5.1.3 with Simpler Hypothesis

Proposition 5.4.1. Suppose A = Af ⊂ J0(N) is a newform abelian variety
and q is a prime that exactly divides N . Suppose m ⊂ T(N) is a non-Eisenstein
maximal ideal of residue characteristic ` and that ` - mA, where mA is the
modular degree of A. Then ΦA,q(Fq)[m] = 0.

Proof. The component group of ΦJ0(N),q(Fq) is Eisenstein by [Rib87], so

ΦJ0(N),q(Fq)[m] = 0.

By Lemma 4.2.2, the image of ΦJ0(N),q(Fq) in ΦA∨,q(Fq) has no m torsion.

By the main theorem of [CS01], the cokernel ΦJ0(N),q(Fq) in ΦA∨,q(Fq) has
order that divides mA. Since ` - mA, it follows that the cokernel also has
no m torsion. Thus Lemma 4.2.2 implies that ΦA∨,q(Fq)[m] = 0. Finally, the
modular polarization A → A∨ has degree mA, which is coprime to `, so the
induced map ΦA,q(Fq)→ ΦA∨,q(Fq) is an isomorphism on ` primary parts. In
particular, that ΦA∨,q(Fq)[m] = 0 implies that ΦA,q(Fq)[m] = 0.

If E is a semistable elliptic curve over Q with discriminant ∆, then we see
using Tate curves that cp = ordp(∆).

Theorem 5.4.2. Suppose A = Af ⊂ J0(N) is a newform abelian variety with
L(A/Q, 1) 6= 0 and N square free, and let ` be a prime. Suppose that p - N is
a prime, and that there is an elliptic curve E of conductor pN such that:

1. [Rank] The Mordell-Weil rank of E(Q) is positive.

2. [Divisibility] We have ap(E) = −1, ` | cE,p, and

` - 2 ·N · p · cE,p ·
∏

q|N
cE,q.

3. [Irreducibility] The mod ` representation ρE,` is irreducible.

4. [Noncongruence] The representation ρE,` is not isomorphic to any
representation ρg,λ where g ∈ S2(Γ0(N)) is a newform of level dividing
N that is not conjugate to f .
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Then there is an element of order ` in X(Q, Af ) that is not visible in J0(N)
but is strongly visible in J0(pN). More precisely, there is an inclusion

E(Q)/`E(Q) ↪→ Ker(X(Q, Af )→X(Q, C))[λ] ⊂ VispN (X(Q, Af ))[λ],

where C ⊂ J0(pN) is isogenous to Af × E, the homomorphism Af → C has
degree a power of 2, and λ is the maximal ideal of T(N) corresponding to ρE,`.

Proof. The divisibility assumptions of Hypothesis 2 on the cE,q imply that the
Serre level of ρE,` is N and since ` - N , the Serre weight is 2 (see [RS01,
Thm. 2.10]). Since ` is odd, Ribet’s level lowering theorem [Rib91] implies that
there is some newform h =

∑
bnq

n ∈ S2(Γ0(N)) and a maximal ideal λ over `
such that aq(E) ≡ bq (mod λ) for all primes q 6= p. By our non-congruence
hypothesis, the only possibility is that h is a GQ-conjugate of f . Since we can
replace f by any Galois conjugate of f without changing Af , we may assume
that f = h. Also ap(f) ≡ −(p+ 1) (mod λ), as explained in [Rib83, pg. 506].

Hypothesis 3 implies that λ is not Eisenstein, and by assumption ` - mA,
so Proposition 5.4.1 implies that ΦA,q(Fq)[λ] = 0 for each q | N .

The theorem now follows from Theorem 5.1.3.

Remark 5.4.3. The condition ap(E) = −1 is redundant. Indeed, we have
cE,p 6= cE,p since cE,p is divisible by ` and cE,p is not. By studying the action
of Frobenius on the component group at p one can show that this implies that E
has nonsplit multiplicative reduction, so ap(E) = −1.

Remark 5.4.4. The non-congruence hypothesis of Theorem 5.4.2 can be verified
using modular symbols as follows. Let W ⊂ H1(X0(N),Z)new be the saturated
submodule of H1(X0(N),Z) that corresponds to all newforms in S2(Γ0(N))
that are not Galois conjugate to f . Let W = W ⊗ F`. We require that the
intersection of the kernels of Tq|W − aq(E), for q 6= p, has dimension 0.

6 Computational Examples

In this section we give examples that illustrate how to use Theorem 5.4.2
to prove existence of elements of the Shafarevich-Tate group of a newform
subvariety of J0(N) (for 767 and 959) which are invisible at the base level, but
become visible in a modular Jacobian of higher level.

Hypothesis 6.0.5. The statements in this section all make the hypothesis that
certain commands of the computer algebra system Magma [BCP97] produce
correct output.

6.1 Level 767

Consider the modular Jacobian J0(767). Using the modular symbols package in
Magma, one decomposes J0(767) (up to isogeny) into a product of six optimal
quotients of dimensions 2, 3, 4, 10, 17 and 23. The duals of these quotients
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are subvarieties A2, A3, A4, A10, A17 and A23 defined over Q, where Ad has
dimension d. Consider the subvariety A23.

We first show that the Birch and Swinnerton-Dyer conjectural formula
predicts that the orders of the groups X(Q, A23) and X(Q, A∨23) are both
divisible by 9.

Proposition 6.1.1. Assume [AS05, Conj. 2.2]. Then

32 | #X(Q, A23) and 32 | #X(Q, A∨23).

Proof. Let A = A∨23. We use [AS05, §3.5 and §3.6] (see also [Ka81]) to compute
a multiple of the order of the torsion subgroup A(Q)tor. This multiple is
obtained by injecting the torsion subgroup into the group of Fp-rational points
on the reduction of A for odd primes p of good reduction and then computing
the order of that group. Hence, the multiple is an isogeny invariant, so one gets
the same multiple for A∨(Q)tor. For producing a divisor of #A(Q)tor, we use
the injection of the subgroup of rational cuspidal divisor classes of degree 0 into
A(Q)tor. Using the implementation in Magma we obtain 120 | #A(Q)tor | 240.
To compute a divisor of A∨(Q)tor, we use the algorithm described in [AS05,
§3.3] to find that the modular degree mA = 234, which is not divisible by any
odd primes, hence 15 | #A∨(Q)tor | 240.

Next, we use [AS05, §4] to compute the ratio of the special value of
the L-function of A/Q at 1 over the real Néron period ΩA. We obtain
L(A/Q, 1)

ΩA
= cA ·

29 · 3
5

, where cA ∈ Z is the Manin constant. Since cA | 2dim(A)

by [ARS06] then
L(A/Q, 1)

ΩA
=

2n+2 · 3
5

,

for some 0 ≤ n ≤ 23. In particular, the modular abelian variety A/Q has rank
zero over Q.

Next, using the algorithms from [CS01, KS00] we compute the Tamagawa
number cA,13 = 1920 = 23 · 3 · 5. We also find that 2 | cA,59 is a power of 2
because W59 acts as 1 on A, and on the component group Frob59 = −W59, so
the fixed subgroup ΦA,59(F59) of Frobenius is a 2-group (for more details, see
[Rib90a, Prop. 3.7–8]).

Finally, the Birch and Swinnerton-Dyer conjectural formula for abelian
varieties of Mordell-Weil rank zero (see [AS05, Conj. 2.2]) asserts that

L(A/Q, 1)

ΩA
=

#X(Q, A) · cA,13 · cA,59

#A(Q)tor ·#A∨(Q)tor
.

By substituting what we computed above, we obtain 32 | #X(Q, A). Since
L(A/Q, 1) 6= 0, [KL89] implies that X(Q, A) is finite. By the nondegeneracy
of the Cassels-Tate pairing, #X(Q, A) = #X(A∨/Q). Thus, if the BSD
conjectural formula is true then 32 | #X(Q, A) = #X(Q, A∨).
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We next observe that there are no visible elements of odd order for the
embedding A23/Q ↪→ J0(767)/Q.

Lemma 6.1.2. Any element of X(Q, A23) which is visible in J0(767) has order
a power of 2.

Proof. Since mA23 = 234, [AS05, Prop. 3.15] implies that any element of
X(Q, A23) that is visible in J0(767) has order a power of 2.

Finally, we use Theorem 5.4.2 to prove the existence of non-trivial elements
of order 3 in X(Q, A23) which are invisible at level 767, but become visible at
higher level. In particular, we prove unconditionally that 3 | #X(Q, A23)
which provides evidence for the Birch and Swinnerton-Dyer conjectural
formula.

Proposition 6.1.3. There is an element of order 3 in X(Q, A23) which is not
visible in J0(767) but is strongly visible in J0(2 · 767).

Proof. Let A = A23, and note that A has rank 0, since L(A/Q, 1) 6= 0. Using
Cremona’s database [Cre] we find that the elliptic curve

E : y2 + xy = x3 − x2 + 5x+ 37

has conductor 2 · 767 and Mordell-Weil group E(Q) = Z⊕ Z. Also

c2 = 2, c13 = 2, c59 = 1, c2 = 6, c13 = 2, c59 = 1.

We apply Theorem 5.4.2 with ` = 3 and p = 2. Since E does not admit any
rational 3-isogeny (by [Cre]), Hypothesis 3 is satisfied. The level is square free
and the modular degree of A is a power of 2, so Hypothesis 2 is satisfied.

We have a3(E) = −3. Using Magma we find

det(T3|W − (−3)) ≡ 1 (mod 3),

which verifies the noncongruence hypothesis and completes the proof.

6.2 Level 959

We do similar computations for a 24-dimensional abelian subvariety of J0(959).
We have 959 = 7 · 137, which is square free. There are five newform abelian
subvarieties of the Jacobian, A2, A7, A10, A24 and A26, whose dimensions are
the corresponding subscripts. Let Af = A24 be the 24-dimensional newform
abelian subvariety.

Proposition 6.2.1. There is an element of order 3 in X(Af/Q) which is not
visible in J0(959) but is strongly visible in J0(2 · 959).
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Proof. Using Magma we find that mA = 232 · 583673, which is coprime to 3.
Thus we apply Theorem 5.4.2 with ` = 3 and p = 2. Consulting [Cre] we find
the curve E=1918C1, with Weierstrass equation

y2 + xy + y = x3 − 22x− 24,

with Mordell-Weil group E(Q) ∼= Z⊕ Z⊕ (Z/2Z), and

c2 = 2, c7 = 2, c137 = 1, c2 = 6, c7 = 2, c137 = 1.

Using [Cre] we find that E has no rational 3-isogeny. The modular form
attached to E is

g = q − q2 − 2q3 + q4 − 2q5 + · · · ,

and we have

det(T2|W − (−2)) = 2177734400 ≡ 2 (mod 3),

which completes the verification.

7 Conjecture, evidence and more computational data

We state several conjectures, provide some evidence and finally, provide a table
that we computed using similar techniques to those in Section 6

7.1 The conjecture

The two examples computed in Section 6 show that for an abelian subvariety
A of J0(N) an invisible element of X(Q, A) at the base level N might become
visible at a multiple level NM . We state a general conjecture according to
which any element of X(Q, A) should have such a property.

Conjecture 7.1.1. Let h = 0 or 1. Suppose A is a Jh-modular abelian variety
and c ∈ X(Q, A). Then there is a Jh-modular abelian variety C and an
inclusion ι : A→ C such that ι∗c = 0.

Remark 7.1.2. For any prime `, the Jacobian Jh(N) comes equipped with two
morphisms α∗, β∗ : Jh(N) → Jh(N`) induced by the two degeneracy maps
α, β : Xh(`N) → Xh(N) between the modular curves of levels `N and N ,
and it is natural to consider visibility of X(Q, A) in Jh(N`) via morphisms ι
constructed from these degeneracy maps.

Remark 7.1.3. It would be interesting to understand the set of all levels N of
Jh-modular abelian varieties C that satisfy the conclusion of the conjecture.
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7.2 Theoretical Evidence for the Conjectures

The first piece of theoretical evidence for Conjecture 7.1.1 is Remark 3.0.2,
according to which any cohomology class c ∈ H1(K,A) is visible in some abelian
variety C/K .

The next proposition gives evidence for elements of X(Q, E) for an elliptic
curve E and elements of order 2 or 3.

Proposition 7.2.1. Suppose E is an elliptic curve over Q. Then
Conjecture 7.1.1 for h = 0 is true for all elements of order 2 and 3 in
X(Q, E).

Proof. We first show that there is an abelian variety C of dimension 2 and an
injective homomorphism i : E ↪→ C such that c ∈ VisC(X(Q, E)). If c has
order 2, this follows from [AS02, Prop. 2.4] or [Kle01], and if c has order 3, this
follows from [Maz99, Cor. pg. 224]. The quotient C/E is an elliptic curve, so
C is isogenous to a product of two elliptic curves. Thus by [BCDT01], C is a
quotient of J0(N), for some N .

We also prove that Conjecture 7.1.1 is true with h = 1 for all elements of
X(Q, A) which split over abelian extensions.

Proposition 7.2.2. Suppose A/Q is a J1-modular abelian variety over Q and
c ∈X(Q, A) splits over an abelian extension of Q. Then Conjecture 7.1.1 is
true for c with h = 1.

Proof. Suppose K is an abelian extension such that resK(c) = 0 and let C =
ResK/Q(AK). Then c is visible in C (see Section 3.0.2). It remains to verify
that C is modular. As discussed in [Mil72, pg. 178], for any abelian variety B
over K, we have an isomorphism of Tate modules

Tate`(ResK/Q(BK)) ∼= Ind
GQ
GK

Tate`(BK),

and by Faltings’s isogeny theorem [Fal86], the Tate module determines an
abelian variety up to isogeny. Thus if B = Af is an abelian variety attached to
a newform, then ResK/Q(BK) is isogenous to a product of abelian varieties Afχ ,
where χ runs through Dirichlet characters attached to the abelian extension
K/Q. Since A is isogenous to a product of abelian varieties of the form Af (for
various f), it follows that the restriction of scalars C is modular.

Remark 7.2.3. Suppose that E is an elliptic curve and c ∈X(Q, E). Is there
an abelian extension K/Q such that resK(c) = 0? The answer is “yes” if
and only if there is a K-rational point (with K-abelian) on the locally trivial
principal homogeneous space corresponding to c (this homogenous space is
a genus one curve). Recently, M. Ciperiani and A. Wiles proved that any
genus one curve over Q which has local points everywhere and whose Jacobian
is a semistable elliptic curve admits a point over a solvable extension of Q
(see [CW06]). Unfortunately, this paper does not answer our question about
the existence of abelian points.
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Remark 7.2.4. As explained in [Ste04], if K/Q is an abelian extension of prime
degree then there is an exact sequence

0→ A→ ResK/Q(EK)
Tr−→ E → 0,

where A is an abelian variety with L(A/Q, s) =
∏
L(fi, s) (here, the fi’s are the

GQ-conjugates of the twist of the newform fE attached to E by the Dirichlet
character associated to K/Q). Thus one could approach the question in the
previous remark by investigating whether or not L(fE , χ, 1) = 0 which one
could do using modular symbols (see [CFK06]). The authors expect that L-
functions of twists of degree larger than three are very unlikely to vanish at
s = 1 (see [CFK06]), which suggests that in general, the question might have
a negative answer for cohomology classes of order larger than 3.

7.3 Visibility of Kolyvagin cohomology classes

It would also be interesting to study visibility at higher level of Kolyvagin
cohomology classes. The following is a first “test question” in this direction.

Question 7.3.1. Suppose E ⊂ J0(N) is an elliptic curve with conductor N ,
and fix a prime ` such that ρE,` is surjective. Fix a quadratic imaginary field
K that satisfies the Heegner hypothesis for E. For any prime p satisfying
the conditions of [Rub89, Prop. 5], let cp ∈ H1(Q, E)[`] be the corresponding
Kolyvagin cohomology class. There are two natural homomorphisms δ∗1 , δ

∗
p :

E → J0(Np). When is

(δ∗1 ± δ∗` )∗(c`) = 0 ∈ H1(Q, J0(Np))?

When is
resv((δ

∗
1 ± δ∗` )∗(c`)) = 0 ∈ H1(Qv, J0(Np))?

7.4 Table of Strong Visibility at Higher Level

The following is a table that gives the known examples of Af /Q with square

free conductor N ≤ 1339, such that the Birch and Swinnerton-Dyer conjectural
formula predicts an odd prime divisor ` of X(Q, Af ), but ` does not divide the
modular degree of Af . These were taken from [AS05]. If there is an entry in the
fourth column, this means we have verified the hypothesis of Theorem 5.4.2,
hence there really is a nonzero element in X(Q, Af ) that is not visible in
J0(N), but is strongly visible in J0(pN). The notation in the fourth column
is (p,E, q), where p is the prime used in Theorem 5.4.2, E is an elliptic curve,
denoted using a Cremona label, and q 6= p is a prime such that

⋂

q′≤q
Ker(T ′q|W − aq′(E)) = 0.
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Af dim ` |X(Af )? moddeg (p,E, q)’s

551H 18 3 2? · 132 (2, 1102A1, -)

767E 23 3 234 (2, 1534B1, 3)

959D 24 3 232 · 583673 (2, 1918C1, 5), (7, 5369A1,2)

1337E 33 3 259 · 71 (2, 2674A1, 5)

1339G 30 3 248 · 5776049 (2, 2678B1, 3), (11, 14729A1,2)
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1 Introduction

Let p be an odd prime number, and E an elliptic curve over a global field K
that has good ordinary reduction at p. Let L be any (infinite degree) Galois
extension with a continuous injective homomorphism ρ of its Galois group to
Qp. To the data (E,K, ρ), one associates2 a canonical (bilinear, symmetric)
(p-adic) height pairing

( , )ρ : E(K)× E(K) −→ Qp.

Such pairings are of great interest for the arithmetic of E overK, and they arise
specifically in p-adic analogues of the Birch and Swinnerton-Dyer conjecture.3

The goal of this paper is to discuss some computational questions regarding
p-adic height pairings. The main stumbling block to computing them efficiently
is in calculating, for each of the completions Kv at the places v of K dividing p,
the value of the p-adic modular form E2 associated to the elliptic curve with a
chosen Weierstrass form of good reduction over Kv.

We shall offer an algorithm for computing these quantities, i.e., for com-
puting the value of E2 of an elliptic curve (that builds on the works of Katz
and Kedlaya listed in our bibliography) and we also discuss the p-adic conver-
gence rate of canonical expansions of the p-adic modular form E2 on the Hasse
domain, where for p ≥ 5 we view E2 as an infinite sum of classical modular
forms divided by powers of the (classical) modular form Ep−1, while for p ≤ 5
we view it as a sum of classical modular forms divided by powers of E4.

We were led to our fast method of computing E2 by our realization that the
more naive methods, of computing it by integrality or by approximations to it
as function on the Hasse domain, were not practical, because the convergence
is “logarithmic” in the sense that the nth convergent gives only an accuracy
of logp(n). We make this notion of log convergence precise in Part II, where
we also prove that E2 is log convergent.

The reason why this constant E2 enters the calculation is because it is
needed for the computation of the p-adic sigma function [MT91], which in turn
is the critical element in the formulas for height pairings.

For example, let us consider the cyclotomic p-adic height pairing in the
special case where K = Q and p ≥ 5.

If GQ is the Galois group of an algebraic closure of Q over Q, we have the
natural surjective continuous homomorphism χ : GQ → Z∗

p pinned down by the

standard formula g(ζ) = ζχ(g) where g ∈ GQ and ζ is any p-power root of unity.
The p-adic logarithm logp : Q∗

p → (Qp,+) is the unique group homomorphism
with logp(p) = 0 that extends the homomorphism logp : 1 + pZp → Qp defined
by the usual power series of log(x) about 1. Explicitly, if x ∈ Q∗

p, then

logp(x) =
1

p− 1
· logp(up−1),

2See [MT83], [Sch82] [Sch85], [Zar90], [Col91], [Nek93], [Pla94], [IW03], and [Bes04].
3See [Sch82], [Sch85] [MT83], [MT87], [PR03a]. See also the important recent work of

Jan Nekovář [Nek03].

Documenta Mathematica · Extra Volume Coates (2006) 585–622



p-Adic Heights and Log Convergence 587

where u = p− ordp(x) · x is the unit part of x, and the usual series for log
converges at up−1.

The composition ( 1p · logp) ◦ χ is a cyclotomic linear functional GQ → Qp

which, in the body of our text, will be dealt with (thanks to class field theory)

as the idele class functional that we denote ρcyclQ .
Let E denote the Néron model of E over Z. Let P ∈ E(Q) be a non-torsion

point that reduces to 0 ∈ E(Fp) and to the connected component of EF`
at all

primes ` of bad reduction for E. Because Z is a unique factorization domain,
any nonzero point P = (x(P ), y(P )) ∈ E(Q) can be written uniquely in the
form (a/d2, b/d3), where a, b, d ∈ Z, gcd(a, d) = gcd(b, d) = 1, and d > 0. The
function d(P ) assigns to P this square root d of the denominator of x(P ).

Here is the formula for the cyclotomic p-adic height of P , i.e., the value of

hp(P ) := −1

2
(P, P )p ∈ Qp

where ( , )p is the height pairing attached to GQ → Qp, the cyclotomic linear
functional described above:

hp(P ) =
1

p
· logp

(
σ(P )

d(P )

)
∈ Qp. (1.1)

Here σ = σp is the p-adic sigma function of [MT91] associated to the
pair (E,ω). The σ-function depends only on (E,ω) and not on a choice
of Weierstrass equation, and behaves like a modular form of weight −1, that is
σE,cω = c · σE,ω. It is “quadratic” the sense that for any m ∈ Z and point Q
in the formal group Ef (Zp), we have

σ(mQ) = σ(Q)m
2 · fm(Q), (1.2)

where fm is the mth division polynomial of E relative to ω (as in [MT91,
App. 1]). The σ-function is “bilinear” in that for any P,Q ∈ Ef (Zp), we have

σ(P −Q) · σ(P +Q)

σ2(P ) · σ2(Q)
= x(Q)− x(P ). (1.3)

See [MT91, Thm. 3.1] for proofs of the above properties of σ.
The height function hp of (1.1) extends uniquely to a function on the full

Mordell-Weil group E(Q) that satisfies hp(nQ) = n2hp(Q) for all integers n
and Q ∈ E(Q). For P,Q ∈ E(Q), setting

(P,Q)p = hp(P ) + hp(Q)− hp(P +Q),

we obtain a pairing on E(Q). The p-adic regulator of E is the discriminant
of the induced pairing on E(Q)/ tor (well defined up to sign), and we have the
following standard conjecture about this height pairing.

Conjecture 1.1. The cyclotomic height pairing ( , )p is nondegenerate; equiv-
alently, the p-adic regulator is nonzero.
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Remark 1.2. Height pairings attached to other p-adic linear functionals can be
degenerate; in fact, given an elliptic curve defined over Q with good ordinary
reduction at p, and K a quadratic imaginary field over which the Mordell-Weil
group E(K) is of odd rank, the p-adic anticyclotomic height pairing for E over
K is always degenerate.

The p-adic σ function is the most mysterious quantity in (1.1). There are
many ways to define σ, e.g., [MT91] contains 11 different characterizations
of σ! We now describe a characterization that leads directly to an algorithm
(see Algorithm 3.3) to compute σ(t). Let

x(t) =
1

t2
+ · · · ∈ Zp((t)) (1.4)

be the formal power series that expresses x in terms of the local parameter
t = −x/y at infinity. The following theorem, which is proved in [MT91],
uniquely determines σ and c.

Theorem 1.3. There is exactly one odd function σ(t) = t+ · · · ∈ tZp[[t]] and
constant c ∈ Zp that together satisfy the differential equation

x(t) + c = − d

ω

(
1

σ

dσ

ω

)
, (1.5)

where ω is the invariant differential dx/(2y + a1x + a3) associated with our
chosen Weierstrass equation for E.

Remark 1.4. The condition that σ is odd and that the coefficient of t is 1 are
essential.

In (1.1), by σ(P ) we mean σ(−x/y), where P = (x, y). We have thus given
a complete definition of hp(Q) for any point Q ∈ E(Q) and a prime p ≥ 5 of
good ordinary reduction for E.

1.1 The p-adic σ-function

The differential equation (1.5) leads to a slow algorithm to compute σ(t) to
any desired precision. This is Algorithm 3.3 below, which we now summarize.
If we expand (1.5), we can view c as a formal variable and solve for σ(t) as
a power series with coefficients that are polynomials in c. Each coefficient of
σ(t) must be in Zp, so we obtain conditions on c modulo powers of p. Taking
these together for many coefficients must eventually yield enough information
to compute c (mod pn), for a given n, hence σ(t) (mod pn). This integrality
algorithm is hopelessly slow in general.

Another approach to computing σ is to observe that, up to a constant, c is
closely related to the value of a certain p-adic modular form. More precisely,
suppose that E is given by a (not necessarily minimal) Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1.6)
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and let ω = dx/(2y + a1x+ a3). Let x(t) be as in (1.4). Then the series

℘(t) = x(t) +
a21 + 4a2

12
∈ Q((t)) (1.7)

satisfies (℘′)2 = 4℘3 − g2℘− g3. In [MT91] we find4 that

x(t) + c = ℘(t)− 1

12
·E2(E,ω), (1.8)

where E2(E,ω) is the value of the Katz p-adic weight 2 Eisenstein series at
(E,ω), and the equality is of elements of Qp((t)). Using the definition of ℘(t)
and solving for c, we find that

c =
a21 + 4a2

12
− 1

12
E2(E,ω). (1.9)

Thus computing c is equivalent to computing the p-adic number E2(E,ω).
Having computed c to some precision, we then solve for σ in (1.5) using Algo-
rithm 3.1 below.

1.2 p-adic analogues of the Birch and Swinnerton-Dyer conjec-
ture

One motivation for this paper is to provide tools for doing computations in
support of p-adic analogues of the BSD conjectures (see [MTT86]), especially
when E/Q has rank at least 2. For example, in [PR03b], Perrin-Riou uses her
results about the p-adic BSD conjecture in the supersingular case to prove that
X(E/Q)[p] = 0 for certain p and elliptic curves E of rank > 1, for which the
work of Kolyvagin and Kato does not apply.

Another motivation for this work comes from the study of the fine structure
of Selmer modules. Let K be a number field and Λ the p-adic integral group
ring of the Galois group of the maximal Zp-power extension of K. Making
use of fundamental results of Nekovář [Nek03] and of Greenberg [Gre03] one
can construct (see [RM05]) for certain elliptic curves defined over K, a skew-
Hermitian matrix with coefficients in Λ from which one can read off a free
Λ-resolution of the canonical Selmer Λ-module of the elliptic curve in question
over K. To compute the entries of this matrix modulo the square of the aug-
mentation ideal in Λ one must know all the p-adic height pairings of the elliptic
curve over K. Fast algorithms for doing this provide us with an important first
stage in the computation of free Λ-resolutions of Selmer Λ-modules.

The paper [GJP+05] is about computational verification of the full Birch
and Swinnerton-Dyer conjecture for specific elliptic curves E. There are many
cases in which the rank of E is 1 and the upper bound on #X(E/Q) coming
from Kolyvagin’s Euler system is divisible by a prime p ≥ 5 that also divides a
Tamagawa number. In such cases, theorems of Kolyvagin and Kato combined

4There is a sign error in [MT91].
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with explicit computation do not give a sufficiently sharp upper bound on
#X(E/Q). However, it should be possible in these cases to compute p-adic
heights and p-adic L-functions, and use results of Kato, Schneider, and others to
obtain better bounds on #X(E/Q). Wuthrich and the second author (Stein)
are writing a paper on this.

1.3 Sample computations

In Section 4 we illustrate our algorithms with curves of ranks 1, 2, 3, 4 and 5,
and two twists of X0(11) of rank 2.

Acknowledgement: It is a pleasure to thank Nick Katz for feedback that
led to Section 3. We would also like to thank Mike Harrison for discussions
about his implementation of Kedlaya’s algorithm in Magma, Kiran Kedlaya
for conversations about his algorithm, Christian Wuthrich for feedback about
computing p-adic heights, Alan Lauder for discussions about computing E2 in
families, and Fernando Gouvea for remarks about non-overconvergence of E2.
We would also like to thank all of the above people for comments on early drafts
of the paper. Finally, we thank Jean-Pierre Serre for the proof of Lemma 6.6.

Part I

Heights, σ-functions, and E2

2 The Formulas

In this section we give formulas for the p-adic height pairing in terms of the σ
function. We have already done this over Q in Section 1. Let p be an (odd)
prime number, K a number field, and E an elliptic curve over K with good
ordinary reduction at all places ofK above p. For any non-archimedean place w
of K, let kw denote the residue class field at w.

2.1 General global height pairings

By the idele class Qp-vector space of K let us mean

I(K) = Qp ⊗Z



A∗

K/


K∗ ·

∏

v - p
O∗

v · C





 ,

where A∗
K is the group of ideles of K, and C denotes its connected com-

ponent containing the identity. Class field theory gives us an identification
I(K) = Γ(K) ⊗Zp

Qp, where Γ(K) is the Galois group of the maximal Zp-
power extension of K. For every (nonarchimedean) place v of K, there is a
natural homomorphism ιv : K∗

v → I(K).
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For K-rational points α, β ∈ E(K) we want to give explicit formulas for an
element that we might call the “universal” p-adic height pairing of α and β;
denote it (α, β) ∈ I(K). If ρ : I(K) → Qp is any linear functional, then the
ρ-height pairing is a symmetric bilinear pairing

( , )ρ : E(K)× E(K)→ Qp,

defined as the composition of the universal pairing with the linear functional ρ:

(α, β)ρ = ρ(α, β) ∈ Qp.

We define the ρ-height of a point α ∈ E(K) by:

hρ(α) = −
1

2
(α, α)ρ ∈ Qp.

Of course, any such (nontrivial) linear functional ρ uniquely determines
a Zp-extension, and we sometimes refer to the ρ-height pairing in terms of
this Zp-extension. E.g., if ρ cuts out the cyclotomic Zp-extension, then the
ρ-height pairing is a normalization of the cyclotomic height pairing that has,
for the rational field, already been discussed in the introduction.

If K is quadratic imaginary, and ρ is the anti-cyclotomic linear functional,
meaning that it is the unique linear functional (up to normalization) that has
the property that ρ(x̄) = −ρ(x) where x̄ is the complex conjugate of x, then
we will be presently obtaining explicit formulas for this anti-cyclotomic height
pairing.

We will obtain a formula for (α, β) ∈ I(K) by defining, for every nonar-
chimedean place, v, of K a “local height pairing,” (α, β)v ∈ K∗

v . These local
pairings will be very sensitive to some auxiliary choices we make along the way,
but for a fixed α and β the local height pairings (α, β)v will vanish for all but
finitely many places v; the global height is the sum of the local ones and will
be independent of all the choices we have made.

2.2 Good representations

Let α, β ∈ E(K). By a good representation of the pair α, β we mean that we
are given a four-tuple of points (P,Q,R, S) in E(K) (or, perhaps, in E(K ′)
where K ′/K is a number field extension of K) such that

• α is the divisor class of the divisor [P ] − [Q] of E, and β is the divisor
class of the divisor [R]− [S],

• P,Q,R, S are four distinct points,

• for each v | p all four points P,Q,R, S specialize to the same point on
the fiber at v of the Néron model of E.

• at all places v ofK the points P,Q,R, S specialize to the same component
of the fiber at v of the Néron model of E.
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We will show how to erase these special assumptions later, but for now, let
us assume all this, fix a choice of a good representation, P,Q,R, S, of (α, β) as
above, and give the formulas in this case.

2.3 Local height pairings when v | p

Let σv be the canonical p-adic σ-function attached to the elliptic curve E
over Kv given in Weierstrass form. We may view σv as a mapping from E1(Kv)
to K∗

v , where E1(Kv) is the kernel of the reduction map E(Kv)→ E(kv), and
E(kv) denotes the group of points on the reduction of E modulo v. Define
(α, β)v ∈ K∗

v by the formula,

(α, β)v =
σv(P −R)σv(Q− S)

σv(P − S)σv(Q−R)
∈ K∗

v .

The dependence of σ on the Weierstrass equation is through the differential
ω = dx/(2y + a1x + a3), and σcω = cσω, so this depends upon the choice of
P,Q,R, S, but does not depend on the choice of Weierstrass equation for E.

2.4 Local height pairings when v - p

First let x denote the “x-coordinate” in some minimal Weierstrass model for A
at v. Define for a point T in E(Kv) the rational number λv(T ) to be zero if
x(T ) ∈ Ov, and to be − 1

2v(x(T )) if x(T ) 6∈ Ov.

Next, choose a uniformizer πv of Kv and define:

σ̃v(T ) = πλv(T )
v ,

the square of which is in K∗
v . We think of σ̃v as a rough replacement for σv in

the following sense. The v-adic valuation of σ̃v is the same as v-adic valuation
of the v-adic sigma function (if such a function is definable at v) and therefore,
even if σv cannot be defined, σ̃v is a perfectly serviceable substitute at places v
at which our p-adic idele class functionals ρ are necessarily unramified, and
therefore sensitive only to the v-adic valuation.

For v - p, put:

(α, β)v =
σ̃v(P −R)σ̃v(Q− S)

σ̃v(P − S)σ̃v(Q−R)
.

The square of this is in K∗
v . However, note that π

λv(T )
v really means

√
πv

2λv(T ),
for a fixed choice of

√
πv and that the definition of (α, β)v is independent of

the choice of square root and therefore that (α, β)v, not only its square, is in
K∗

v .

Our local height (α, β)v, depends upon the choice of P,Q,R, S and of the
uniformizer πv.
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2.5 How the local heights change, when we change our choice
of divisors

Let β ∈ E(K) be represented by both [R]− [S] and [R′]− [S′]. Let α ∈ E(K)
be represented by [P ] − [Q]. Moreover let both four-tuples P,Q,R, S and
P,Q,R′, S′ satisfy the good representation hypothesis described at the begin-
ning of Section 2.2. Since, by hypothesis, [R] − [S] − [R′] + [S′] is linearly
equivalent to zero, there is a rational function f whose divisor of zeroes and
poles is

(f) = [R]− [S]− [R′] + [S′].

If v is a nonarchimedean place of K define (α, β)v to be as defined in the
previous sections using the choice of four-tuple of points P,Q,R, S, (and of
uniformizer πv when v - p). Similarly, define (α, β)′v to be as defined in the
previous sections using the choice of four-tuple of points P,Q,R′, S′, (and of
uniformizer πv when v - p).

Proposition 2.1. 1. If v | p then

(α, β)v =
f(P )

f(Q)
· (α, β)′v ∈ K∗

v .

2. If v - p then there is a unit u in the ring of integers of Kv such that

(α, β)2v = u ·
(
f(P )

f(Q)
· (α, β)′v

)2

∈ K∗
v .

2.6 The global height pairing more generally

We can then form the sum of local terms to define the global height

(α, β) =
1

2

∑

v

ιv((α, β)
2
v) ∈ I(K).

This definition is independent of any of the (good representation) choices
P,Q,R, S and the πv’s made. It is independent of the choice of πv’s because the
units in the ring of integers of Kv is in the kernel of ιv if v - p. It is independent
of the choice of P,Q,R, S because by the previous proposition, a change (an
allowable one, given our hypotheses) of P,Q,R, S changes the value of (α, β)
by a factor that is a principal idele, which is sent to zero in I(K).

What if, though, our choice of P,Q,R, S does not have the property that α
and β reduce to the same point in the Néron fiber at v for all v | p, or land
in the same connected component on each fiber of the Néron model? In this
case the pair α, β do not have a good representation. But replacing α, β by
m · α, n · β for sufficiently large positive integers m,n we can guarantee that
the pair m ·α, n ·β does possess a good representation, and obtain formulas for
(α, β) by:

(α, β) =
1

mn
(m · α, n · β).
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Note in passing that to compute the global height pairing (α, α) for a non-
torsion point α ∈ E(K) that specializes to 0 in the Néron fiber at v for all
v | p, and that lives in the connected component containing the identity in all
Néron fibers, we have quite a few natural choices of good representations. For
example, for positive integers m 6= n, take

P = (m+ 1) · α; Q = m · α; R = (n+ 1) · α; S = n · α.

Then for any p-adic idele class functional ρ the global ρ-height pairing (α, α)ρ
is given by

∑

v | p

ρv

{
σv((m− n)α)2

σv((m− n+ 1)α) · σv((m− n− 1)α)

}

+
∑

v - p

ρv

{
σ̃v((m− n)α)2

σ̃v((m− n+ 1)α) · σ̃v((m− n− 1)α)

}
,

which simplifies to

(2(m− n)2 − (m− n+ 1)2 − (m− n− 1)2) ·




∑

v | p

ρvσv(α) +
∑

v - p

ρvσ̃v(α)



 .

Since (2(m−n)2− (m−n+1)2− (m−n− 1)2) = −2 we have the formula

hρ(α) = −
1

2
(α, α)ρ

quoted earlier.

2.7 Formulas for the ρ-height

For each v, let σv be the canonical p-adic σ-function of E over Kv given in
Weierstrass form. Suppose P ∈ E(K) is a (non-torsion) point that reduces
to 0 in E(kv) for each v | p, and to the connected component of all special
fibers of the Néron model of E. Locally at each place w of K, we have a
denominator dw(P ), well defined up to units.

We have

hρ(P ) =
∑

v | p

ρv(σv(P ))−
∑

w - p
ρw(dw(P )).

Note that hρ is quadratic because of the quadratic property of σ from (1.2),
and the hρ-pairing is then visibly bilinear. See also property (1.3).
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2.8 Cyclotomic p-adic heights

The idele class Qp-vector space I(Q) attached to Q is canonically isomorphic
to Qp ⊗ Z∗

p. Composition of this canonical isomorphism with the mapping

1× 1
p logp induces an isomorphism

ρQcycl : I(Q) = Qp ⊗ Z∗
p

∼=−−−→ Qp.

For K any number field, consider the homomorphism on idele class Qp-
vector spaces induced by the norm NK/Q : I(K)→ I(Q), and define

ρKcycl : I(K)→ Qp

as the composition
ρKcycl = ρQcycl ◦NK/Q.

By the cyclotomic height pairing for an elliptic curve E over K (of good
ordinary reduction at all places v ofK above p) we mean the ρKcycl-height pairing
E(K)× E(K)→ Qp. We put

hp(P ) = hρK
cycl

(P )

for short. Here is an explicit formula for it.

hp(P ) =
1

p
·


∑

v|p
logp(NKv/Qp

(σv(P )))−
∑

w-p
ordw(dw(P )) · logp(#kw)


 .

If we assume that P lies in a sufficiently small (finite index) subgroup of E(K)
(see [Wut04, Prop. 2]), then there will be a global choice of denominator d(P ),
and the formula simplifies to

hp(P ) =
1

p
· logp


∏

v|p
NKv/Qp

(
σv(P )

d(P )

)
 .

2.9 Anti-cyclotomic p-adic heights

Let K be a quadratic imaginary field in which p splits as (p) = π · π̄. Suppose
ρ : A∗

K/K∗ → Zp is a nontrivial anti-cyclotomic idele class character, meaning
that if c : A∗

K/K∗ → A∗
K/K∗ denotes the involution of the idele class group

induced by complex conjugation x 7→ x̄ in K, then ρ · c = −ρ. Then the term
∑

v | p

ρv(σv(P ))

in the formula for the ρ-height at the end of Section 2.7 is just
∑

v | p

ρv(σv(P )) = ρπ(σπ(P ))− ρπ(σπ(P̄ )),
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so we have the following formula for the ρ-height of P :

hρ(P ) = ρπ(σπ(P ))− ρπ(σπ(P̄ ))−
∑

w - p
ρw(dw(P )).

Remark 2.2. The Galois equivariant property of the p-adic height pairing
implies that if P is a Q-rational point, its anti-cyclotomic height is 0. Specif-
ically, let K/k be any Galois extension of number fields, with Galois group
G = Gal(K/k). Let V = V (K) be the Qp-vector space (say) defined as
(GK)ab ⊗ Qp, so that V is naturally a G-representation space. Let E be an
elliptic curve over k and view the Mordell-Weil group E(K) as equipped with
its natural G-action. Then (if p is a good ordinary prime for E) we have the
p-adic height pairing

〈P,Q〉 ∈ V,

for P,Q ∈ E(K) and we have Galois equivariance,

〈g · P, g ·Q〉 = g · 〈P,Q〉,

for any g in the Galois group.
Put k = Q, K/k a quadratic imaginary field. Then V is of dimension

two, with V = V + ⊕ V − each of the V ± being of dimension one, with the
action of complex conjugation, g ∈ G on V ± being given by the sign; so that
V + corresponds to the cyclotomic Zp-extension and V − corresponds to the
anticyclotomic Zp- extension. In the notation above, the anticyclotomic height
of P and Q is just 〈g · P, g ·Q〉− where the superscript − means projection to
V −. Suppose that P ∈ E(Q), so that g · P = P . Then we have by Galois
equivariance

〈P, P 〉− = 〈g · P, g · P 〉− = −〈P, P 〉−,
so 〈P, P 〉− = 0. More generally, the anticyclotomic height is zero as a pairing
on either E(K)+ × E(K)+ or E(K)− × E(K)− and can only be nonzero on
E(K)+×E(K)−. If E(K) is of odd rank, then the ranks of E(K)+ and E(K)−

must be different, which obliges the pairing on E(K)+ × E(K)− to be either
left-degenerate or right-degenerate (or, of course, degenerate on both sides).
Rubin and the first author conjecture that it is nondegenerate on one side (the
side, of course having smaller rank); for more details see, e.g., [MR04, Conj. 11].

3 The Algorithms

Fix an elliptic curve E over Q and a good ordinary prime p ≥ 5. In this section
we discuss algorithms for computing the cyclotomic p-adic height of elements
of E(Q).

3.1 Computing the p-adic σ-function

First we explicitly solve the differential equation (1.5). Let z(t) be the formal
logarithm on E, which is given by z(t) =

∫
ω
dt = t + · · · (here the symbol

∫
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means formal integration with 0 constant term). There is a unique function
F (z) ∈ Q((z)) such that t = F (z(t)). Set x(z) = x(F (z)). Rewrite (1.5) as

x(z) + c = − d

ω

(
d log(σ)

ω

)
. (3.1)

A crucial observation is that

x(z) + c =
1

z2
− a21 + 4a2

12
+ c+ · · · ;

in particular, the coefficient of 1/z in the expansion of g(z) = x(z) + c is 0.
Since z =

∫
(ω/dt) we have dz = (ω/dt)dt = ω, hence dz/ω = 1, so

− d

ω

(
d log(σ)

ω

)
= −dz

ω

d

dz

(
d log(σ)

ω

)
= − d

dz

(
d log(σ)

dz

)
. (3.2)

Write σ(z) = zσ0(z) where σ0(z) has nonzero constant term. Then

− d

dz

(
d log(σ)

dz

)
=

1

z2
− d

dz

(
d log(σ0)

dz

)
. (3.3)

Thus combining (3.1)–(3.3) and changing sign gives

1

z2
− x(z)− c =

d

dz

(
d log(σ0)

dz

)
.

This is particularly nice, since g(z) = 1
z2 −x(z)− c ∈ Q[[z]]. We can thus solve

for σ0(z) by formally integrating twice and exponentiating:

σ0(z) = exp

(∫ ∫
g(z)dzdz

)
,

where we choose the constants in the double integral to be 0, so
∫ ∫

g = 0 +
0z + · · · . Using (1.8) we can rewrite g(z) in terms of e2 = E2(E,ω) and ℘(z)
as

g(z) =
1

z2
− (x(z) + c) =

1

z2
− ℘(z) +

e2
12

.

Combining everything and using that σ(z) = zσ0(z) yields

σ(z) = z · exp
(∫ ∫ (

1

z2
− ℘(z) +

e2
12

)
dzdz

)
,

Finally, to compute σ(t) we compute σ(z) and obtain σ(t) as σ(z(t)).
We formalize the resulting algorithm below.

Algorithm 3.1 (The Canonical p-adic Sigma Function). Given an elliptic
curve E over Q, a good ordinary prime p for E, and an approximation e2 for
E2(E,ω), this algorithm computes an approximation to σ(t) ∈ Zp[[t]].
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1. [Compute Formal Log] Compute the formal logarithm z(t) = t+· · · ∈ Q((t))
using that

z(t) =

∫
dx/dt

2y(t) + a1x(t) + a3
, (0 constant term) (3.4)

where x(t) = t/w(t) and y(t) = −1/w(t) are the local expansions of x and y
in terms of t = −x/y, and w(t) =

∑
n≥0 snt

n is given by the following
explicit inductive formula (see, e.g., [Blu, pg. 18]):

s0 = s1 = s2 = 0, s3 = 1, and for n ≥ 4,

sn = a1sn−1+a2sn−2+a3
∑

i+j=n

sisj+a4
∑

i+j=n−1

sisj+a6
∑

i+j+k=n

sisjsk.

2. [Reversion] Using a power series “reversion” (functional inverse) algorithm,
find the unique power series F (z) ∈ Q[[z]] such that t = F (z). Here F is
the reversion of z, which exists because z(t) = t+ · · · .

3. [Compute ℘] Compute α(t) = x(t) + (a21 + 4a2)/12 ∈ Q[[t]], where the ai
are as in (1.6). Then compute the series ℘(z) = α(F (z)) ∈ Q((z)).

4. [Compute σ(z)] Set g(z) =
1

z2
− ℘(z) +

e2
12
∈ Qp((z)), and compute

σ(z) = z · exp
(∫ ∫

g(z)dzdz

)
∈ Qp[[z]].

5. [Compute σ(t)] Set σ(t) = σ(z(t)) ∈ t · Zp[[t]], where z(t) is the formal
logarithm computed in Step 1. Output σ(t) and terminate.

3.2 Computing E2(E,ω) using cohomology

This section is about a fast method of computation of E2(E,ω) for individual
ordinary elliptic curves, “one at a time”. The key input is [Kat73, App. 2] (see
also [Kat76]), which gives an interpretation of E2(E,ω) as the “direction” of
the unit root eigenspace (cf. formula A.2.4.1 of [Kat73, App. 2]) of Frobenius
acting on the one-dimensional de Rham cohomology of E.

Concretely, consider an elliptic curve E over Zp with good ordinary re-
duction. Assume that p ≥ 5. Fix a Weierstrass equation for E of the form
y2 = 4x3−g2x−g3, The differentials ω = dx/y and η = xdx/y form a Zp-basis
for the first p-adic de Rham cohomology group H1 of E, and we wish to com-
pute the matrix F of absolute Frobenius with respect to this basis. Frobenius
is Zp-linear, since we are working over Zp; if we were working over the Witt
vectors of Fq, then Frobenius would only be semi-linear.

We explicitly calculate F (to a specified precision) using Kedlaya’s algo-
rithm, which makes use of Monsky-Washnitzer cohomology of the affine curve
E − O. Kedlaya designed his algorithm for computation of zeta functions of
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hyperelliptic curves over finite fields. An intermediate step in Kedlaya’s algo-
rithm is computation of the matrix of absolute Frobenius on p-adic de Rham
cohomology, via Monsky-Washnitzer cohomology. For more details see [Ked01]
and [Ked03]. For recent formulations and applications of fast algorithms to
compute Frobenius eigenvalues, see [LW02].

Now that we have computed F , we deduce E2(E,ω) as follows. The unit
root subspace is a direct factor, call it U , of H1, and we know that a comple-
mentary direct factor is the Zp span of ω. We also know that F (ω) lies in pH1,
and this tells us that, mod pn, the subspace U is the span of Fn(η). Thus if
for each n, we write Fn(η) = anω + bnη, then bn is a unit (congruent (mod p)
to the nth power of the Hasse invariant) and E2(E,ω) ≡ −12an/bn (mod pn).
Note that an and bn are the entries of the second column of the matrix Fn.

Algorithm 3.2 (Evaluation of E2(E,ω)). Given an elliptic curve over Q and a
good ordinary prime p ≥ 5, this algorithm approximates E2(E,ω) ∈ Zp modulo
pn.

1. [Invariants] Let c4 and c6 be the c-invariants of a minimal model of E. Set

a4 = − c4
24 · 3 and a6 = − c6

25 · 33 .

2. [Kedlaya] Apply Kedlaya’s algorithm to the hyperelliptic curve y2 = x3 +
a4x+ a6 (which is isomorphic to E) to obtain the matrix F (modulo pn) of
the action of absolute Frobenius on the basis

ω =
dx

y
, η =

xdx

y
.

We view F as acting from the left.

3. [Iterate Frobenius] Compute the second column

(
a
b

)
of Fn, so Frobn(η) =

aω + bη.

4. [Finished] Output −12a/b (which is a number modulo pn, since b is a unit).

3.3 Computing E2(E,ω) using integrality

The algorithm in this section is more elementary than the one in Section 3.2,
and is directly motivated by Theorem 1.3. In practice it is very slow, except
if p is small (e.g., p = 5) and we only require E2(E,ω) to very low precision.
Our guess is that it should be exponentially hard to compute a quantity using
a log convergent series for it, and that this “integrality” method is essentially
the same as using log convergent expansions.

Let c be an indeterminate and in view of (1.9), write e2 = −12c+a21+4a2 ∈
Q[c]. If we run Algorithm 3.1 with this (formal) value of e2, we obtain a
series σ(t, c) ∈ Q[c][[t]]. For each prime p ≥ 5, Theorem 1.3 implies that
there is a unique choice of cp ∈ Zp such that σ(t, cp) = t + · · · ∈ tZp[[t]]
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is odd. Upon fixing a prime p, we compute the coefficients of σ(t, c), which
are polynomials in Q[c]; integrality of σ(t, cp) then imposes conditions that
together must determine cp up to some precision, which depends on the number
of coefficients that we consider. Having computed cp to some precision, we
recover E2(E,ω) as −12cp+a21+4a2. We formalize the above as an algorithm.

Algorithm 3.3 (Integrality). Given an elliptic curve over Q and a good ordinary
prime p ≥ 5, this algorithm approximates the associated p-adic σ-function.

1. [Formal Series] Use Algorithm 3.1 with e2 = −12c + a21 + 4a2 to compute
σ(t) ∈ Q[c][[t]] to some precision.

2. [Approximate cp] Obtain constraints on c using that the coefficients of σ
must be in Zp. These determine c to some precision. (For more details see
the example in Section 4.1).

3.4 Computing cyclotomic p-adic heights

Finally we give an algorithm for computing the cyclotomic p-adic height hp(P )
that combines Algorithm 3.2 with the discussion elsewhere in this paper. We
have computed σ and hp in numerous cases using the algorithm described
below, and implementations of the “integrality” algorithm described above,
and the results match.

Algorithm 3.4 (The p-adic Height). Given an elliptic curve E over Q, a good
ordinary prime p, and a non-torsion element P ∈ E(Q), this algorithm approxi-
mates the p-adic height hp(P ) ∈ Qp.

1. [Prepare Point] Compute a positive integer m such that mP reduces to
O ∈ E(Fp) and to the connected component of EF`

at all bad primes `. For
example, m could be the least common multiple of the Tamagawa numbers
of E and #E(Fp). Set Q = mP and write Q = (x, y).

2. [Denominator] Let d be the positive integer square root of the denominator
of x.

3. [Compute σ] Approximate σ(t) using Algorithm 3.1 together with either
Algorithm 3.2 or Algorithm 3.3, and set s = σ(−x/y) ∈ Qp.

4. [Height] Compute hp(Q) =
1

p
logp

( s
d

)
, then hp(P ) =

1

m2
·hp(Q). Output

hp(P ) and terminate.

4 Sample Computations

We did the calculations in this section using SAGE [SJ05] and Magma [BCP97].
In particular, SAGE includes an optimized implementation due to J. Balakr-
ishnan, R. Bradshaw, D. Harvey, Y. Qiang, and W. Stein of our algorithm
for computing p-adic heights for elliptic curves over Q. This implementation
includes further tricks, e.g., for series manipulation, which are not described in
this paper.
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4.1 The rank one curve of conductor 37

Let E be the rank 1 curve y2 + y = x3 − x of conductor 37. The point
P = (0, 0) is a generator for E(Q). We illustrate the above algorithms in detail
by computing the p-adic height of P for the good ordinary prime p = 5. The
steps of Algorithm 3.4 are as follows:

1. [Prepare Point] The component group of EF37
is trivial. The group E(F5)

has order 8 and the reduction of P to E(F5) also has order 8, so let

Q = 8P =

(
21

25
, − 69

125

)
.

2. [Denominator] We have d = 5.

3. [Compute σ] We illustrate computation of σ(t) using both Algorithm 3.2
and Algorithm 3.3.

(a) [Compute σ(t, c)] We use Algorithm 3.1 with e2 = 12c − a21 − 4a2
to compute σ as a series in t with coefficients polynomials in c, as
follows:

i. [Compute Formal Log] Using the recurrence, we find that

w(t) = t3 + t6 − t7 + 2t9 − 4t10 + 2t11 + 5t12 − 5t13 + 5t14 + · · ·

Thus

x(t) = t−2 − t+ t2 − t4 + 2t5 − t6 − 2t7 + 6t8 − 6t9 − 3t10 + · · ·
y(t) = −t−3 + 1− t+ t3 − 2t4 + t5 + 2t6 − 6t7 + 6t8 + 3t9 + · · ·

so integrating (3.4) we see that the formal logarithm is

z(t) = t+
1

2
t4− 2

5
t5+

6

7
t7− 3

2
t8+

2

3
t9+2t10− 60

11
t11+5t12+ · · ·

ii. [Reversion] Using reversion, we find F with F (z(t)) = t:

F (z) = z− 1

2
z4+

2

5
z5+

1

7
z7− 3

10
z8+

2

15
z9− 1

28
z10+

54

385
z11+· · ·

iii. [Compute ℘] We have a1 = a2 = 0, so

α(t) = x(t) + (a21 + 4a2)/12 = x(t),

so

℘(z) = x(F (z)) = z−2 +
1

5
z2 − 1

28
z4 +

1

75
z6 − 3

1540
z8 + · · ·

Note that the coefficient of z−1 is 0 and all exponents are even.
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iv. [Compute σ(t, c)] Noting again that a1 = a2 = 0, we have

g(z, c) =
1

z2
− ℘(z) +

12c− a21 − 4a2
12

= c− 1

5
z2 +

1

28
z4 − 1

75
z6 +

3

1540
z8 − 1943

3822000
z10 + · · ·

Formally integrating twice and exponentiating, we obtain

σ(z, c) = z · exp
(∫ ∫

g(z, c)dzdz

)

= z · exp
( c
2
· z2 − 1

60
z4 +

1

840
z6 − 1

4200
z8 +

1

46200
z10

− 1943

504504000
z12 + · · ·

)

= z +
1

2
cz3 +

(
1

8
c2 − 1

60

)
z5 +

(
1

48
c3 − 1

120
c+

1

840

)
z7+

(
1

384
c4 − 1

480
c2 +

1

1680
c− 1

10080

)
z9 + · · ·

Finally,

σ(t) = σ(z(t)) = t+
1

2
ct3 +

1

2
t4 +

(
1

8
c2 − 5

12

)
t5 +

3

4
ct6+

(
1

48
c3 − 73

120
c+

103

120

)
t7 + · · ·

(b) [Approximate] The first coefficient of σ(t) that gives integrality in-
formation is the coefficient of t7. Since

1

48
c3 − 73

120
c+

103

120
∈ Z5,

multiplying by 5 we see that

5

48
c3 − 73

24
c+

103

24
≡ 0 (mod 5).

Thus

c ≡ 103

24
· 24
73
≡ 1 (mod 5).

The next useful coefficient is the coefficient of t11, which is

1

3840
c5 − 169

2880
c3 +

5701

6720
c2 +

127339

100800
c− 40111

7200

Multiplying by 25, reducing coefficients, and using integrality yields
the congruence

10c5 + 5c3 + 20c2 + 2c+ 3 ≡ 0 (mod 25).
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Writing c = 1+5d and substituting gives the equation 10d+15 ≡ 0
(mod 25), so 2d + 3 ≡ 0 (mod 5). Thus d ≡ 1 (mod 5), hence
c = 1+5+O(52). Repeating the procedure above with more terms,
we next get new information from the coefficient of t31, where we
deduce that c = 1 + 5 + 4 · 52 +O(53).

Using Algorithm 3.2: Using Kedlaya’s algorithm (as implemented in
[BCP97]) we find almost instantly that

E2(E,ω) = 2+4 · 5+2 · 53 +54 +3 · 55 +2 · 56 +58 +3 · 59 +4 · 510 + · · · .

Thus

c =
1

12
E2(E,ω) = 1+5+4·52+53+54+56+4·57+3·58+2·59+4·510+· · · ,

which is consistent with what we found above using integrality.

4. [Height] For Q = (x, y) = 8(0, 0) as above, we have

s = σ

(
−x

y

)
= σ

(
35

23

)
= 4 · 5 + 52 + 53 + 54 + · · · ,

so

h5(Q) =
1

5
· log5

(s
5

)
=

1

5
· log5(4 + 5 + 52 + 53 + 2 · 55 + · · · )

= 3 + 5 + 2 · 53 + 3 · 54 + · · · .

Finally,

h5(P ) =
1

82
· h5(Q) = 2 + 4 · 5 + 52 + 2 · 53 + 2 · 54 + · · · .

Remark 4.1. A very good check to see whether or not any implementation of
the algorithms in this paper is really correct, is just to make control experiments
every once in a while, by computing h(P ) and then comparing it with h(2P )/4,
h(3P )/9, etc. In particular, compute h(P )−h(nP )/n2 for several n and check
that the result is p-adically small. We have done this in many cases for the
implementation used to compute the tables in this section.

4.2 Curves of ranks 1, 2, 3, 4, and 5

4.2.1 Rank 1

The first (ordered by conductor) curve of rank 1 is the curve with Cremona
label 37A, which we considered in Section 4.1 above.
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p p-adic regulator of 37A
5 1 + 5 + 52 + 3 · 55 + 4 · 56 +O(57)
7 1 + 7 + 3 · 72 + 73 + 6 · 74 + 2 · 75 + 4 · 76 +O(77)
11 7 + 9 · 11 + 7 · 112 + 8 · 113 + 9 · 114 + 2 · 115 + 7 · 116 +O(117)
13 12 · 13 + 5 · 132 + 9 · 133 + 10 · 134 + 4 · 135 + 2 · 136 +O(137)
23 20 + 10 · 23 + 18 · 232 + 16 · 233 + 13 · 234 + 4 · 235 + 15 · 236 +O(237)
29 19 + 4 · 29 + 26 · 292 + 2 · 293 + 26 · 294 + 26 · 295 + 17 · 296 +O(297)
31 15 + 10 · 31 + 13 · 312 + 2 · 313 + 24 · 314 + 9 · 315 + 8 · 316 +O(317)
41 30 + 2 · 41 + 23 · 412 + 15 · 413 + 27 · 414 + 8 · 415 + 17 · 416 +O(417)
43 30 + 30 · 43 + 22 · 432 + 38 · 433 + 11 · 434 + 29 · 435 +O(436)
47 11 + 37 · 47 + 27 · 472 + 23 · 473 + 22 · 474 + 34 · 475 + 3 · 476 +O(477)
53 26 · 53−2 + 30 · 53−1 + 20 + 47 · 53 + 10 · 532 + 32 · 533 +O(534)

Note that when p = 53 we have #E(Fp) = p, i.e., p is anomalous.

4.3 Rank 2

The first curve of rank 2 is the curve 389A of conductor 389. The p-adic
regulators of this curve are as follows:

p p-adic regulator of 389A
5 1 + 2 · 5 + 2 · 52 + 4 · 53 + 3 · 54 + 4 · 55 + 3 · 56 +O(57)
7 6 + 3 · 72 + 2 · 73 + 6 · 74 + 75 + 2 · 76 +O(77)
11 4 + 7 · 11 + 6 · 112 + 113 + 9 · 114 + 10 · 115 + 3 · 116 +O(117)
13 9 + 12 · 13 + 10 · 132 + 5 · 133 + 5 · 134 + 135 + 9 · 136 +O(137)
17 4 + 8 · 17 + 15 · 172 + 11 · 173 + 13 · 174 + 16 · 175 + 6 · 176 +O(177)
19 3 + 5 · 19 + 8 · 192 + 16 · 193 + 13 · 194 + 14 · 195 + 11 · 196 +O(197)
23 17 + 23 + 22 · 232 + 16 · 233 + 3 · 234 + 15 · 235 +O(237)
29 9 + 14 · 29 + 22 · 292 + 293 + 22 · 294 + 295 + 20 · 296 +O(297)
31 1 + 17 · 31 + 4 · 312 + 16 · 313 + 18 · 314 + 21 · 315 + 8 · 316 +O(317)
37 28 + 37 + 11 · 372 + 7 · 373 + 3 · 374 + 24 · 375 + 17 · 376 +O(377)
41 20 + 26 · 41 + 412 + 29 · 413 + 38 · 414 + 31 · 415 + 23 · 416 +O(417)
43 40 + 25 · 43 + 15 · 432 + 18 · 433 + 36 · 434 + 35 · 435 +O(436)
47 25 + 24 · 47 + 7 · 472 + 11 · 473 + 35 · 474 + 3 · 475 + 9 · 476 +O(477)

4.4 Rank 3

The first curve of rank 3 is the curve 5077A of conductor 5077. The p-adic
regulators of this curve are as follows:
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p p-adic regulator of 5077A
5 5−2 + 5−1 + 4 + 2 · 5 + 2 · 52 + 2 · 53 + 4 · 54 + 2 · 55 + 56 +O(57)
7 1 + 3 · 7 + 3 · 72 + 4 · 73 + 4 · 75 +O(77)
11 6 + 11 + 5 · 112 + 113 + 114 + 8 · 115 + 3 · 116 +O(117)
13 2 + 6 · 13 + 133 + 6 · 134 + 135 + 4 · 136 +O(137)
17 11 + 15 · 17 + 8 · 172 + 16 · 173 + 9 · 174 + 5 · 175 + 11 · 176 +O(177)
19 17 + 9 · 19 + 10 · 192 + 15 · 193 + 6 · 194 + 13 · 195 + 17 · 196 +O(197)
23 7 + 17 · 23 + 19 · 233 + 21 · 234 + 19 · 235 + 22 · 236 +O(237)
29 8 + 16 · 29 + 11 · 292 + 20 · 293 + 9 · 294 + 8 · 295 + 24 · 296 +O(297)
31 17 + 11 · 31 + 28 · 312 + 3 · 313 + 17 · 315 + 29 · 316 +O(317)
43 9 + 13 · 43 + 15 · 432 + 32 · 433 + 28 · 434 + 18 · 435 + 3 · 436 +O(437)
47 29 + 3 · 47 + 46 · 472 + 4 · 473 + 23 · 474 + 25 · 475 + 37 · 476 +O(477)

For p = 5 and E the curve 5077A, we have #E(F5) = 10, so ap ≡ 1 (mod 5),
hence p is anamolous.

4.5 Rank 4

Next we consider the curve of rank 4 with smallest known conductor (234446 =
2 · 117223):

y2 + xy = x3 − x2 − 79x+ 289.

Note that computation of the p-adic heights is just as fast for this curve as
the above curves, i.e., our algorithm for computing heights is insensitive to
the conductor, only the prime p (of course, computing the Mordell-Weil group
could take much longer if the conductor is large).

p p-adic regulator of rank 4 curve
5 2 · 5−2 + 2 · 5−1 + 3 · 5 + 52 + 4 · 53 + 4 · 54 + 3 · 55 + 3 · 56 +O(57)
7 6 · 7 + 4 · 72 + 5 · 73 + 5 · 75 + 3 · 76 +O(77)
11 5 + 10 · 11 + 5 · 112 + 113 + 3 · 115 + 116 +O(117)
13 12 + 2 · 13 + 4 · 132 + 10 · 133 + 3 · 134 + 5 · 135 + 7 · 136 +O(137)
17 15 + 8 · 17 + 13 · 172 + 5 · 173 + 13 · 174 + 7 · 175 + 14 · 176 +O(177)
19 14 + 16 · 19 + 15 · 192 + 6 · 193 + 10 · 194 + 7 · 195 + 13 · 196 +O(197)
23 3 + 15 · 23 + 15 · 232 + 12 · 234 + 20 · 235 + 7 · 236 +O(237)
29 25 + 4 · 29 + 18 · 292 + 5 · 293 + 27 · 294 + 23 · 295 + 27 · 296 +O(297)
31 21 + 26 · 31 + 22 · 312 + 25 · 313 + 314 + 3 · 315 + 14 · 316 +O(317)
37 34 + 14 · 37 + 32 · 372 + 25 · 373 + 28 · 374 + 36 · 375 +O(376)
41 33 + 38 · 41 + 9 · 412 + 35 · 413 + 25 · 414 + 15 · 415 + 30 · 416 +O(417)
43 14 + 34 · 43 + 12 · 432 + 26 · 433 + 32 · 434 + 26 · 435 +O(436)
47 43 + 47 + 17 · 472 + 28 · 473 + 40 · 474 + 6 · 475 + 7 · 476 +O(477)
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4.6 Rank 5

Next we consider the curve of rank 5 with smallest known conductor, which is
the prime 19047851. The curve is

y2 + y = x3 − 79x+ 342

p p-adic regulator of rank 5 curve
5 2 · 5 + 52 + 53 + 2 · 54 + 55 + 56 +O(57)
7 2 + 6 · 7 + 4 · 72 + 3 · 73 + 6 · 74 + 2 · 75 + 4 · 76 +O(77)
11 10 + 11 + 6 · 112 + 2 · 113 + 6 · 114 + 7 · 115 + 5 · 116 +O(117)
13 11 + 8 · 13 + 3 · 132 + 4 · 133 + 10 · 134 + 5 · 135 + 6 · 136 +O(137)
17 4 + 11 · 17 + 4 · 172 + 5 · 173 + 13 · 174 + 5 · 175 + 2 · 176 +O(177)
19 11 + 7 · 19 + 11 · 192 + 7 · 193 + 9 · 194 + 6 · 195 + 10 · 196 +O(197)
23 14 + 14 · 23 + 20 · 232 + 6 · 233 + 19 · 234 + 9 · 235 + 15 · 236 +O(237)
29 3 + 5 · 29 + 20 · 293 + 21 · 294 + 18 · 295 + 11 · 296 +O(297)
31 4 + 26 · 31 + 11 · 312 + 12 · 313 + 3 · 314 + 15 · 315 + 22 · 316 +O(317)
37 3 + 20 · 37 + 11 · 372 + 17 · 373 + 33 · 374 + 5 · 375 +O(377)
41 3 + 41 + 35 · 412 + 29 · 413 + 22 · 414 + 27 · 415 + 25 · 416 +O(417)
43 35 + 41 · 43 + 432 + 11 · 433 + 32 · 434 + 11 · 435 + 18 · 436 +O(437)
47 25 + 39 · 47 + 45 · 472 + 25 · 473 + 42 · 474 + 13 · 475 +O(476)

Note that the regulator for p = 5 is not a unit, and #E(F5) = 9. This is the
only example of a regulator in our tables with positive valuation.

Part II
Computing expansions for E2 in terms of classical modular forms

We next study convergence of E2 in the general context of p-adic and overcon-
vergent modular forms. Coleman, Gouvea, and Jochnowitz prove in [CGJ95]
that E2 is transcendental over the ring of overconvergent modular forms, so E2

is certainly non-overconvergent. However, E2 is log convergent in a sense that
we make precise in this part of the paper.

5 Questions about rates of convergence

Fix p a prime number, which, in this section, we will assume is ≥ 5. We only
consider modular forms of positive even integral weight, on Γ0(M) for some M ,
and with Fourier coefficients in Cp. By a classical modular form we will mean
one with these properties, and by a Katz modular form we mean a p-adic
modular form in the sense of Katz ([Kat73]), again with these properties, i.e.,
of integral weight k ≥ 0, of tame level N for a positive integer N prime to p,
and with Fourier coefficients in Cp. A p-integral modular form is a modular
form with Fourier coefficients in Zp. Note that throughout Sections 5 and 6,
all our modular forms can be taken to be with coefficients in Qp.
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If f is a classical, or Katz, modular form, we will often simply identify the
form f with its Fourier expansion, f =

∑
n≥0 cf (n)q

n. By ordp(f) we mean the
greatest lower bound of the non-negative integers ordp(cf (n)) for n ≥ 0. The
valuation ordp on Cp here is given its natural normalization, i.e., ordp(p) = 1.

We say two p-integral modular forms are congruent modulo pn, denoted

f ≡ g (mod pn),

if their corresponding Fourier coefficients are congruent modulo pn. Equiva-
lently, f ≡ g (mod pn) if ordp(f − g) ≥ n.

Recall the traditional notation,

σk−1(n) =
∑

0 < d | n

dk−1,

and put σ(n) = σ1(n).
Let Ek = −bk/2k+

∑∞
n=0 σk−1(n)q

n be the Eisenstein series of even weight
k ≥ 2, and denote by Ek the “other natural normalization” of the Eisenstein
series,

Ek = 1− 2k

bk
·

∞∑

n=0

σk−1(n)q
n,

for k ≥ 2. We have
Ep−1 ≡ 1 (mod p).

(Note that Ek is the q-expansion of the Katz modular form that we denote by
Ek elsewhere in this paper.)

For k > 2 these are classical modular forms of level 1, while the Fourier series
E2 = −1/24 +∑∞

n=0 σ(n)q
n, and the corresponding E2, are not; nevertheless,

they may all be viewed as Katz modular forms of tame level 1.
Put

σ(p)(n) =
∑

0 < d | n; (p,d)=1

d,

so that we have:

σ(n) = σ(p)(n) + pσ(p)(n/p) + p2σ(p)(n/p2) + · · · (5.1)

where the convention is that σ(p)(r) = 0 if r is not an integer.
Let V = Vp be the operator on power series given by the rule:

V


∑

n≥0

cnq
n


 =

∑

n≥0

cnq
pn.

If F =
∑

n≥0 cnq
n is a classical modular form of weight k on Γ0(M), then V (F )

is (the Fourier expansion of) a classical modular form of weight k on Γ0(Mp)
(cf. [Lan95, Ch. VIII]).
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The Fourier series

E
(p)
2 = (1− pV )E2 =

p− 1

24
+
∑

σ
(p)
1 (n)qn

is, in contrast to E2, a classical modular form (of weight 2 on Γ0(p)) and we
can invert the formula of its definition to give the following equality of Fourier
series:

E2 =
∑

ν≥0

pνV νE
(p)
2 , (5.2)

this equality being, for the corresponding Fourier coefficients other than the
constant terms, another way of phrasing (5.1).

Definition 5.1 (Convergence Rate). We call a function α(ν) taking values that
are either positive integers or +∞ on integers ν = 0,±1,±2, . . . a convergence
rate if α(ν) is a non-decreasing function such that α(ν) = 0 for ν ≤ 0, α(ν+µ) ≤
α(ν) + α(µ), and α(ν) tends to +∞ as ν does.

A simple nontrivial example of a convergence rate is

α(ν) =

{
0 for ν ≤ 0,

ν for ν ≥ 0.

If α(ν) is a convergence rate, put Tα(ν) = α(ν − 1); note that Tα(ν) is also a
convergence rate (T translates the graph of α one to the right). Given a collec-
tion {αj}j∈J of convergence rates, the “max” function α(ν) = maxj∈J αj(ν)
is again a convergence rate.

Definition 5.2 (α-Convergent). Let α be a convergence rate. A Katz modular
form f is α-convergent if there is a function a : Z≥0 → Z≥0 such that

f =
∞∑

ν=0

pa(ν)fνE−ν
p−1 (5.3)

with fν a classical p-integral modular form (of weight k + ν(p − 1) and level
N) and a(ν) ≥ α(ν) for all ν ≥ 0.

If α′ ≤ α are convergence rates and a modular form f is α-convergent
then it is also α′-convergent. As formulated, an expansion of the shape of
(5.3) for a given f is not unique but [Kat73] and [Gou88] make a certain
sequence of choices that enable them to get canonical expansions of the type
(5.3), dependent on those initial choices. Specifically, let Mclassical(N, k,Zp)
denote the Zp-module of classical modular forms on Γ0(N) of weight k and
with Fourier coefficients in Zp. Multiplication by Ep−1 allows one to identify
Mclassical(N, k,Zp) with a saturated Zp-lattice in Mclassical(N, k + p − 1,Zp).
(The lattice is saturated because multiplication by Ep−1(mod p) is injective,
since it is the identity map on q-expansions.) Fix, for each k, a Zp-module,

C(N, k + p− 1,Zp) ⊂Mclassical(N, k + p− 1,Zp)
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that is complementary to Ep−1 ·Mclassical(N, k,Zp) ⊂Mclassical(N, k+p−1,Zp).
Requiring the classical modular forms fν of the expansion (5.3) to lie in these
complementary submodules, i.e., fν ∈ C(N, k + ν(p − 1),Zp) for all ν, pins
down the expansion uniquely. Let us call an expansion of the form

f =
∞∑

ν=0

pa(ν)fνE−ν
p−1

pinned down by a choice of complementary submodules as described above a
Katz expansion of f .

A classical p-integral modular form is, of course, α-convergent for every α.
For any given convergence rate α, the α-convergent Katz modular forms of
tame level N are closed under multiplication, and the collection of them forms
an algebra over the ring of classical modular forms of level N (with Fourier
coefficients in Zp). Any Katz p-integral modular form is α-convergent, for
some convergence rate α (see [Gou88]).

Proposition 5.3. A Katz p-integral modular form f of weight k and tame
level N as above is α-convergent if and only if the Fourier series of fEνp−1 is
congruent to the Fourier series of a classical p-integral modular form (of weight
k + ν(p− 1) and level N) modulo pα(ν+1) for every integer ν ≥ 0.

Proof. We use the q-expansion principle. Specifically, if Gν is a classical modu-
lar form such that fEνp−1 ≡ Gν (mod pα(ν+1)) then gν = p−α(ν+1)(fEνp−1−Gν)
is again a Katz modular form, and we can produce the requisite α-convergent
Katz expansion by inductive consideration of these gν ’s. (Note that the other
implication is trivial. Also note our running hypothesis that p ≥ 5.)

In view of this, we may define, for any f as in Proposition 5.3, the function
af (ν) (for ν ≥ 0) as follows: af (0) = 0, and for ν ≥ 1, af (ν) is the largest
integer a such that fEν−1

p−1 is congruent to a classical p-integral modular form
(of weight k + (ν − 1)(p− 1) and level N) modulo pa.

Corollary 5.4. The Katz p-integral modular form f is α-convergent for any
convergence rate α that is majorized by the function af . (I.e., for which α(ν) ≤
af (ν) for all ν ≥ 0.)

Definition 5.5 (Overconvergent of Radius r). Let r ∈ Q be a positive rational
number. A Katz p-integral modular form f of tame level N is overconvergent
of radius r if and only if it is α-convergent for some function α such that
α(ν) ≥ r · ν for all ν, and α(ν)− r · ν tends to infinity with ν.

Remarks 5.6. It is convenient to say, for two function α(ν) and α′(ν), that

α(ν) � α′(ν)

if α(ν) ≥ α′(ν) and α(ν)−α′(ν) tends to infinity with ν. So, we may rephrase
the above definition as saying that f is overconvergent with radius r if it is
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α-convergent with α(ν) � r · ν. The above definition is equivalent to the
definition of [Kat73, Gou88] except for the fact that the word radius in these
references does not denote the rational number r above, but rather a choice of
p-adic number whose ordp is r. We may think of our manner of phrasing the
definition as being a definition by Katz expansion convergence rate as opposed to
what one might call the definition by rigid analytic geometric behavior, meaning
the equivalent, and standard, formulation (cf. [Kat73]) given by considering f
as a rigid analytic function on an appropriate extension of the Hasse domain
in the (rigid analytic space associated to) X0(N).

Definition 5.7 ((Precisely) Log Convergent). A Katz p-integral modular form
f is log-convergent if c · log(ν) ≤ af (ν) for some positive constant c and all but
finitely many ν (equivalently: if it is α-convergent for α(ν) = c · log(ν) for some
positive constant c). We will say that f is precisely log-convergent if there are
positive constants c, C such that c · log(ν) ≤ af (ν) ≤ C · log(ν) for all but
finitely many ν.

Remark 5.8. As in Definition 5.1 above, we may think of this manner of
phrasing the definition as being a definition by Katz expansion convergence
rate. This seems to us to be of some specific interest in connection with the
algorithms that we present in this article for the computation of E2. For
more theoretical concerns, however, we think it would be interesting to give, if
possible, an equivalent definition by rigid analytic geometric behavior: is there
some explicit behavior at the “rim” of the Hasse domain that characterizes
log-convergence?

Proposition 5.9. Let p ≥ 5. Let f be a Katz p-integral modular form of
weight k and tame level N that admits an expansion of the type

f =
∞∑

ν=0

pνFνE−ν
p−1

where, for all ν ≥ 0, Fν is a classical p-integral modular form (of weight k +
ν(p− 1)) on Γ0(p

ν+1). Then f is log-convergent and

lim inf
n→∞

af (n)

log(n)
≥ 1

log(p)
.

Proof. The classical modular form Fν on Γ0(p
ν+1) is an overconvergent Katz

modular form of radius r for any r such that r < 1
pν−1(p+1) (cf. [Kat73], [Gou88,

Cor. II.2.8]). Let

Fν =
∞∑

µ=0

f (ν)
µ E−µ

p−1

be its Katz expansion. So,

ordp(f
(ν)
µ ) �

(
1

pν−1(p+ 1)
− εµ,ν

)
· µ
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for any choice of positive εµ,ν . We have

f =
∞∑

ν=0

pν
∞∑

µ=0

f (ν)
µ E−(µ+ν)

p−1 ,

or (substituting γ = µ+ ν)

f =
∞∑

γ=0

{
γ∑

ν=0

pν f
(ν)
γ−ν

}
E−γ
p−1.

Putting Gγ =
∑γ

ν=0 p
ν f

(ν)
γ−ν we may write the above expansion as

f =
∞∑

γ=0

GγE−γ
p−1,

and we must show that
ordp(Gγ) ≥ c · log(γ)

for some positive constant c.
For any ν ≤ γ we have

ordp

(
pν f

(ν)
γ−ν

)
� ν +

(
1

pν−1(p+ 1)
− εγ−ν,ν

)
(γ − ν).

We need to find a lower bound for the minimum value achieved by the right-
hand side of this equation. To prepare for this, first note that at the extreme

value ν = 0 we compute ordp( f
(0)
γ ) ≥

(
p

(p+1) − εγ,0

)
· γ, and to study the

remaining cases, ν = 1, . . . , γ, we look at the function

R(t) = t+

(
1

pt−1(p+ 1)

)
(γ − t)

in the range 1 ≤ t ≤ γ. This, by calculus, has a unique minimum at t = tγ ∈
(1, γ) given by the equation

p+ 1

p
· ptγ = log(p) · (γ − tγ) + 1. (5.4)

Define eγ = tγ − logp(γ) and substituting, we get:

peγ =
p log(p)

p+ 1
− p log(p)

p+ 1

eγ
γ

+Aγ (5.5)

where Aγ goes to zero, as γ goes to ∞.
If eγ is positive we get that

peγ ≤ p log(p)

p+ 1
+Aγ
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and so eγ is bounded from above, independent of γ, while if eγ = −dγ with dγ
positive, we have

1

pdγ
=

p log(p)

p+ 1
+

p log(p)

p+ 1

dγ
γ

+Aγ .

Recall that since tγ > 0 we also have dγ < logp(γ), so that the right hand

side of the displayed equation tends to p log(p)
p+1 as γ goes to ∞, so the equation

forces dγ to be bounded from above, as γ tends to ∞.
This discussion gives:

Lemma 5.10. The quantity |tγ − logp(γ)| is bounded independent of γ.

Substituting tγ = logp(γ) + eγ in the defining equation for R(t) and noting
the boundedness of |eγ |, we get that |R(tγ) − logp(γ)| is bounded as γ goes
to ∞, thereby establishing our proposition.

Corollary 5.11. For all p ≥ 5, the Katz modular form f = E2 is log-
convergent and

lim inf
n→∞

af (n)

log(n)
≥ 1

log(p)
.

Proof. The modular forms V νE
(p)
2 are classical modular forms on Γ0(p

ν+1) and
therefore formula (5.1) exhibits E2 as having a Katz expansion of the shape of
(5.3). Proposition 5.9 then implies the corollary.

Remark 5.12. Is E2 precisely log-convergent? The minimal c (cf. Def-
inition 5.7) that can be taken in the log-convergence rate for f = E2 is
lim supn→∞(af (n)/ log(n)). Is this minimal c equal to 1/ log(p)? It is for
p = 5, as we will show in Section 6. The previous discussion tells us that, as a
kind of generalization of the well-known congruence

E2Ep−1 ≡ Ep+1 (mod p),

we have that for any ε > 0, and all but finitely many ν, there are classical
modular forms Gν of level 1 and weight 2 + ν(p− 1) such that

E2Eνp−1 ≡ Gν (mod pb(1−ε)logp(ν)c).

Let θ = qd/dq denote the standard shift operator; so that if f =
∑

n≥0 cnq
n,

then θ(f) =
∑

n≥0 ncnq
n. We have ordp(θ(f)) ≥ ordp(f). The operator θ

preserves Katz modular forms, and almost preserves classical modular forms
in the sense that if f is a classical modular form of weight k ≥ 2 then so is
F = θ(f)− kfE2/12 (cf. [Kat73]). Note, also, that ordp(F ) ≥ ordp(f).

Corollary 5.13. The operator θ preserves log-convergent Katz modular
forms.
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Proof. Let f be a log-convergent Katz p-integral modular form of weight k, of
tame conductor N with a Katz expansion,

f =
∞∑

ν=0

pa(ν)fνE−ν
p−1 (5.6)

where a(ν) ≥ c · log(ν) for some positive c, and the fν ’s are classical p-integral
modular forms on Γ0(N). Let Fν = θ(fν)− (k + ν(p− 1))fνE2/12 (which is a
classical modular form of weight k + 2 + ν(p− 1) on Γ0(N)). Put

G = θ(Ep−1)−
p− 1

12
Ep−1E2.

Apply the derivation θ to (5.6) to get

θ(f) =
∞∑

ν=0

pa(ν)
{
(Fν + (k + ν(p− 1))fνE2/12)E−ν

p−1−

νfνE−ν−1
p−1

(
G+

p− 1

12
Ep−1E2

)}
.

or:
θ(f) = A+BE2 − C −DE2,

where

A =
∞∑

ν=0

pa(ν)FνE−ν
p−1,

B =
∞∑

ν=0

pa(ν)(k + ν(p− 1))fν/12)E−ν
p−1,

C =
∞∑

ν=0

pa(ν)νfνGE−ν−1
p−1 ,

D =
∞∑

ν=0

pa(ν)
p− 1

12
νfνEp−1.

Now A,B,C,D are all log-convergent, as is E2 by Corollary 5.11. Therefore so
is θ(f).

6 Precise log convergence of E2 for p = 2, 3, 5

In this section we assume p = 2, 3 or 5 and let P,Q,R denote the Eisenstein
series of level 1 of weights 2, 4, 6, respectively, normalized so that the constant
term in its Fourier expansion is 1. Let f be a Katz form of tame level 1 and
weight k. Write k = 4d + 6e, with d an integer ≥ −1 and e = 0 or 1. Then
fQ−dR−e is a Katz form of weight 0, that is, a Katz function. Since 0 is the
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only supersingular value of j for p = 2, 3, 5, a Katz function has an expansion
in powers of j−1 convergent everywhere on the disc |j−1| ≤ 1. Hence, putting
z = j−1, we can write

f = QdRe
∞∑

n=0

cf (n)z
n =

∞∑

n=0

Re∆nQ−3n+d.

with cf (n) ∈ Qp and cf (n)→ 0 as n→∞. Let

Cf,p(N) = min
n>N

(ordp(cf (n))).

Theorem 6.1. For p = 5, we have Cf,5(N) = af (3N +1− d), for all large N .

Proof. Notice that for p = 5, Ep−1 = Q. Let ν = 3N +1− d for large N . Then

Qν−1f =
N∑

n=0

c(n)Re∆nQ3(N−n) +ReQd
∑

n>N

c(n)zn = F +G,

say. We have ord5(G) = minn>N (ord5(c(n)) = Cf,5(N). 5

Since F is a classical modular form of weight 12N + 6e it follows from
the definition of af that af (ν) ≥ Cf,5(N). On the other hand, since
{Re∆nQ3(N−n) : 0 ≤ n ≤ N} is a basis for the space of classical modular
forms of weight 12N + 6e, it is clear that for any such classical form F ′, the
difference Qν−1f − F ′ is a 5-adic Katz form which can be written as ReQ3Ng
with g a Katz function whose z-expansion coefficients are c(n) for n > N . Thus
ord5(Q

ν−1f − F ′) ≤ Cf,5(N).

We have defined f to be log convergent if

lim inf
n→∞

af (n)

log(n)
> 0,

and to be precisely log convergent if in addition

lim sup
n→∞

af (n)

log(n)
<∞.

Lemma 6.2. Suppose h(n) and H(n) are nondecreasing funcions defined for all
sufficiently large positive integers n. If for some integers r > 0 and s we have
H(N) = h(rN + s) for all sufficiently large integers N, then

lim inf
n→∞

h(n)

log(n)
= lim inf

N→∞
H(N)

log(N)
,

5To justify this claim we extend our definition of ordp from the ring of Katz forms
with Fourier coefficients in Z to the ring Zp[[q]] of all formal power series with coefficients
in Z. Moreover, since z ∈ q + q2Zp[[q]], we have Zp[[q]] = Zp[[z]], and for a formal series
g =

P
anqn =

P
bnzn, we have ordp(g) = min(ordp(an)) = min(ordp(bn)). Also (Gauss

Lemma) the rule ord(g1g2) = ord(g1) + ord(g2) holds. Since ord5(R) = ord5(Q) = 0, it
follows that ord5(G) = Cf,5(N) as claimed.

Documenta Mathematica · Extra Volume Coates (2006) 585–622



p-Adic Heights and Log Convergence 615

and

lim sup
n→∞

h(n)

log(n)
= lim sup

N→∞

H(N)

log(N)
.

Proof. We use the fact that log(rx+s)
log(x) → 1 as x→∞. For n and N related by

rN + s ≤ n ≤ r(N + 1) + s

we have

h(n)

log(n)
≤ h(r(N + 1) + s

log(rN + s)
=

H(N + 1)

log(N + 1)
· log(N + 1)

log(rN + s)
.

Similarly,

h(n)

log(n)
≥ h(rN + s

log(r(N + 1) + s)
=

H(N)

log(N)
· log(N)

log(r(N + 1) + s)
.

This proves the lemma, because the second factor of the right hand term in
each line approaches 1 as N goes to infinity.

Theorem 6.1 and Lemma 6.2 show that for p = 5 we can replace af by Cf

in the definition of log convergent and precisely log convergent. Therefore we
define log convergent and precisely log convergent for p = 2 and p = 3 by using
Cf,p as a replacement for af .

Theorem 6.3. For p = 2, 3 or 5, the weight 2 Eisenstein series P = E2 is
precisely log convergent. In fact,

lim
n→∞

CP,p(n)

log(n)
=

1

log(p)
.

During the proof of this theorem we write c(n) = cP (n) and Cp(n) = CP,p.
The cases p = 2, 3 follow immediately from results of Koblitz (cf. [Kob77]).

Koblitz writes P =
∑

anj
−n qdj

jdq . Since dj/j = −dz/z, and as we will see later

in this proof, qdz/zdq = R/Q, Koblitz’s an is the negative of our c(n), hence
ordp(c(n)) = ordp(an). Koblitz shows that if we let lp(n) = 1+blog(n)/ log(p)c,
the number of digits in the expression of n in base p, and let sp(n) denote
the sum of those digits, then ord2(c(n)) = l2(n) + 3s2(n) and ord3(c(n)) =
l3(n) + s3(n). From this it is an easy exercise to show

C2(n) = blog(n+ 1)/ log(2)c+ 4 and C3(n) = b(log(n+ 1)/ log(3)c+ 2,

formulas from which cases p = 2 and p = 3 of the theorem are evident.
Investigating the case p = 5 we found experimentally with a PARI program

that the following conjecture holds for n < 1029.

Conjecture 6.4. We have ord5(c(n)) ≥ l5(2n), with equality if n written in
base 5 contains only the digits 0,1 or 2, but no 3 or 4.
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It is easy to see that Conjecture 6.4 implies that

lim sup
n→∞

C5(n)

log(n)
=

1

log(5)
.

We already know from Corollary 5.11 that

lim inf
n→∞

aP (n)

log(n)
≥ 1

log(5)
.

By Lemma 6.2, this is equivalent to

lim inf
n→∞

CP,5(n)

log(n)
≥ 1

log(5)
.

Hence to finish the proof of Theorem 6.3, we need only prove

lim sup
n→∞

CP,5(n)

log(n)
≤ 1

log(5)
. (6.1)

To prove (6.1) it is enough to prove that Conjecture 6.4 holds for n = 5m, that
is, ord5(c(n)) = m + 1. Indeed that equality implies that C5(n) ≤ m + 1 for
n < 5m and, choosing m such that 5m−1 ≤ n < 5m, shows that for every n we
have C5(n) ≤ m+ 1 ≤ log(n)/ log(5) + 2.

To prove ord5(c(n)) = m+ 1 we use two lemmas.

Lemma 6.5. We have PQ
R − 1 = 3 zdQ

Qdz .

Proof. Let θ denote the classical operator qd/dq. From the formula ∆ =
q
∏

n≥1(1− qn)24 we get by logarithmic differentiation the classical formula

θ∆

∆
= P.

From z = 1/j = ∆/Q3 we get by logarithmic differentiation that

θz

z
=

θ∆

∆
− 3

θQ

Q
= P − 3

θQ

Q
.

By a formula of Ramanujan (cf. [Ser73, Thm. 4]) we have

3
θQ

Q
= P − R

Q
.

Substituting gives
θz

z
=

R

Q
,

and dividing the next to last equation by the last proves the lemma.

Lemma 6.6. Let F =
∑

n≥1 σ3(n)q
n, so that Q = 1 + 240F . Then F ≡∑

m≥0(z
5m + z2·5

m

) (mod 5).
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Proof. Guessing this result by computer experiment, we asked Serre for a proof.
He immediately supplied two, one of which is the following. During the rest
of this proof all congruences are understood to be modulo 5. Since F = z +
3z2 + · · · , the statement to be proved is equivalent to F −F 5 ≡ z+3z2. Using
the trivial congruence Q ≡ 1 and the congruence P ≡ R (the case p = 5 of a
congruence of Swinnerton-Dyer, (cf. [Ser73, Thm. 5]), we note that

z = ∆/Q3 ≡ ∆ = (Q3 −R2)/1728 ≡ 2− 2R2.

The case p = 5, k = 4 of formula (**) in section 2.2 of [Ser73] reads F − F 5 ≡
θ3R. By Ramanujan’s formula

θR = (PR−Q2)/2 ≡ 3R2 − 3,

one finds that indeed

θ3R ≡ 2R4 −R2 − 1 ≡ z + 3z2,

which proves Lemma 6.6.

Let F =
∑

n≥1 b(n)z
n. By Lemma 6.6, b(5m) and b(2 · 5m) are not divisible

by 5. Therefore the 5mth and 2 · 5mth coefficients of zdF/dz =
∑

n≥1 nb(n)z
n

are divisible exactly by 5m. By Lemma 6.5 we have

∑

n≥1

c(n)zn =
PQ

R
− 1 = 3

zdQ

Qdz
= 3

240zdF

(1 + 240F )dz
.

This shows that ord5(c(5
m)) = ord5(c(2 · 5m)) = m+1 thereby completing the

proof of Theorem 6.3.

Remark 6.7. For p = 2 or 3 a simple analogue of Lemma 6.6 holds, namely
F ≡ ∑m≥0 z

pm

(mod p). This can be used to obtain Koblitz’s result for the
very special case n = pm.

7 Discussion

7.1 Log convergence

The running hypothesis in Section 5 is that p ≥ 5, but in Section 6 we con-
sidered only p = 2, 3, 5. In dealing with the different primes, our discussion
changes strikingly, depending on the three slightly different cases:

(1) p = 2, 3

(2) p = 5

(3) p ≥ 5
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For (7.1), in Section 6 we used expansions in powers of z = 1/j to give a
careful analysis of convergence rates, and in contrast, the general discussion
of Section 5 must keep away from those cases p = 2, 3, in order to maintain
the formulation that it currently has. The prime p = 5 is in a very fortunate
position because it can be covered by the general discussion a la (7.1); but we
have also given a precise “power series in 1/j” treatment of p = 5. These issues
suggest four questions:

1. Is there any relationship between the convergence rate analysis we give,
and computation-time estimates for the actual algorithms?

2. We have produced an algebra of log-convergent modular forms, and it
has at least one new element that the overconvergent forms do not have,
namely E2. Moreover, it is closed under the action of θ, i.e., “Tate
twist”. Are there other interesting Hecke eigenforms in this algebra that
we should know about? Going the other way, are there any Hecke eigen-
forms that are not log-convergent? Is there something corresponding to
the “eigencurve” (it would have to be, at the very least, a surface) that
p-adically interpolates log-convergent eigenforms? Is a limit (in the sense
of ordp’s of Fourier coefficients) of log-convergent eigenforms again log-
convergent? For this last question to make sense, we probably need to
know the following:

3. Is there a rigid-analytic growth type of definition (growth at the rim of
the Hasse domain) that characterizes log-convergence, just as there is
such a definition characterizing overconvergence?

4. Almost certainly one could treat the case p = 7 by expansions in powers
of 1/(j − 1728) = ∆/R2 in the same way that we did p = 5 with powers
of 1/j = ∆/Q3. The case p = 13 might be more interesting.

7.2 Uniformity in the algorithms

We are most thankful to Kiran Kedlaya and Alan Lauder for some e-mail
communications regarding an early draft of our article. The topic they address
is the extent to which the algorithms for the computation of E2 of an elliptic
curve are “uniform” in the elliptic curve, and, in particular, whether one can
get fast algorithms for computing E2 of specific families of elliptic curves. In
this section we give a brief synopsis of their comments.

A “reason” why E2 should turn out not to be overconvergent is that Katz’s
formula relates it to the direction of the unit-root subspace in one-dimensional
de Rham cohomology, and that seems only to make (at least naive) sense in the
ordinary case (and not for points in a supersingular disc, not even ones close
to the boundary).

Nevertheless, part of the algorithm has good uniformity properties.
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1. Calculating the matrix of Frobenius: One can calculate the matrix of
Frobenius for, say, all elliptic curves in the Legendre family (or any one-
parameter family) and the result is overconvergent everywhere, so this
should be relatively efficient. This can be done either by the algorithm
developed by Kedlaya, or also using the Gauss-Manin connection, as in
Lauder’s work, which is probably faster. An approach to computing the
“full” Frobenius matrix “all at once” for elliptic curves in the Legendre
family has been written up and implemented in Magma by Ralf Gerk-
mann: See [Ger05] for the paper and program. Lauder’s paper [Lau03]
also discusses Kedlaya’s algorithm “all at once” for a one-parameter fam-
ily of hyperelliptic curves using the Gauss-Manin connection.

2. Extracting the unit root subspace in de Rham cohomology: To compute E2

for an individual elliptic curve, one can specialize the Frobenius matrix
and extract the unit root. But extracting only the unit root part over
the entire family at once would involve non-overconvergent series, and
consequently might be slow. The unit root zeta function, which encodes
the unit root of Frobenius over a family of ordinary elliptic curves, has
been very well studied by Dwork and Wan (cf. [Wan99]).

7.3 Other future projects

1. Explicitly compute anticyclotomic p-adic heights, and apply this to the
study of universal norm questions that arise in [RM05].

2. Further investigate Kedlaya’s algorithm with a parameter in connection
with log convergence and computation of heights.

3. Determine if the equality limn→∞ aP (n)/ log(n) = 1/ log(p) holds for all
primes p, as it does for p = 5 by Theorem 6.3.
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vol. 224, Birkhäuser, Basel, 2004, pp. 151–163. MR MR2058649
(2005g:11095)

[MT83] B. Mazur and J. Tate, Canonical height pairings via biextensions,
Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser
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1. Introduction

Let E be an elliptic curve over Q. The L-function L(E, s) of E is a holomorphic
function on C that encodes deep arithmetic information about E. This paper is
about a connection between the behavior of L(E, s) at s = 1 and the arithmetic
of E.

We use theorems and computation to attack the following conjecture for many
specific elliptic curves of conductor ≤ 1000:

Conjecture 1.1 (Birch and Swinnerton-Dyer). The order of vanishing ords=1 L(E, s)
equals the rank r of E, the group X(E) is finite, and

L(r)(E, 1)

r!
=

ΩE · RegE ·∏p cp · #X(E)

(#E(Q)tor)2
.

For more about Conjecture 1.1, see [Lan91, Wil00] and the papers they reference.
See also Section 1.2 below for the notation used in the conjecture. Henceforth we
call it the BSD conjecture.

Definition 1.2 (Analytic X). If E has rank r, let

#X(E)an =
L(r)(E, 1) · (#E(Q)tor)

2

r! · ΩE · RegE ·∏p cp

denote the order of X(E) predicted by Conjecture 1.1. We call this the analytic
order of X(E).

Conjecture 1.3 (BSD(E, p)). Let (E, p) denote a pair consisting of an elliptic
curve E over Q and a prime p. We also call the assertion that ords=1 L(E, s)
equals the rank r, that X(E)[p∞] is finite, and

ordp(#X(E)[p∞]) = ordp(#X(E)an)

the BSD conjecture at p, and denote it BSD(E, p).

The BSD conjecture is invariant under isogeny.

Theorem 1.4 (Cassels). If E and F are Q-isogeneous and p is a prime, then
BSD(E, p) is true if and only if BSD(F, p) is true.

Proof. See [Cas65, Mil86, Jor05]. �

One way to give evidence for the conjecture is to compute #X(E)an and note
that it is a perfect square, in accord with the following theorem:

Theorem 1.5 (Cassels). If E is an elliptic curve over Q and p is a prime such
that X(E)[p∞] is finite, then #X(E)[p∞] is a perfect square.

Proof. See [Cas62, PS99]. �

We use the notation of [Crea] to refer to specific elliptic curves over Q.

Conjecture 1.6 (Birch and Swinnerton-Dyer ≤ 1000). For all optimal curves of
conductor ≤ 1000 we have X(E) = 0, except for the following four rank 0 elliptic
curves, where X(E) has the indicated order:

Curve 571A 681B 960D 960N
#X(E)an 4 9 4 4
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Theorem 1.7 (Cremona). Conjecture 1.1 is true for all elliptic curves of conduc-
tor ≤ 1000 if and only if Conjecture 1.6 is true.

Proof. In the book [Cre97], Cremona computed #X(E)an for every curve of con-
ductor ≤ 1000. By Theorem 1.4 it suffices to consider only the optimal ones, and
the four listed are the only ones with nontrivial #X(E)an. �

In view of Theorem 1.7, the main goal of this paper is to obtain results in support
of Conjecture 1.6. The results of Section 4.2 below together imply the theorem we
claimed in the abstract:

Theorem 1.8. Suppose that E is a non-CM elliptic curve of rank ≤ 1, conductor
≤ 1000 and that p is a prime. If p is odd, assume further that the mod p represen-
tation ρE,p is irreducible and p does not divide any Tamagawa number of E. Then
BSD(E, p) is true.

Proof. Combine Theorem 3.27, Theorem 3.31, and Theorem 4.4. �

For example, if E is the elliptic curve 37A, then according to [Cre97], all ρE,p
are irreducible and the Tamagawa numbers of E are 1. Thus Theorem 1.8 asserts
that the full BSD conjecture for E is true.

There are 18 optimal curves of conductor ≤ 1000 of rank 2 (and none of rank
> 2). For these E of rank 2, nobody has proved that X(E) is finite in even a
single case. We exclude CM elliptic curves from most of our computations. The
methods for dealing with the BSD conjecture for CM elliptic curves are different
than for general curves, and will be the subject of another paper. The same is true
for BSD(E, p) when ρE,p is reducible.

1.1. Acknowledgement. We thank Michael Stoll for suggesting this project at an
American Institute of Mathematics meeting and for initial feedback and ideas, and
Stephen Donnelly and Michael Stoll for key ideas about Section 5. We thank John
Cremona for many discussions and his immensely useful computer software. Finally
we thank Benedict Gross and Noam Elkies for helpful feedback and encouragement
throughout the project.

We thank the Harvard College Research Program for funding Pătraşcu’s work
on this paper, and the Herchel Smith Harvard Undergraduate Research Fellowship
for supporting Patrikis. Jorza and Stein were supported by the National Science
Foundation under Grant No. 0400386.

1.2. Notation and Background. If G is an abelian group, let Gtor denote the
torsion subgroup and G/ tor denote the quotient G/Gtor. For an integer m, let G[m]
be the kernel of multiplication by m on G. For a commutative ring R, we let R∗

denote the group of units in R.

1.2.1. Galois Cohomology of Elliptic Curves. For a number field K, let GK =
Gal(Q/K). Let E be an elliptic curve defined over a number field K, and consider
the first Galois cohomology group H1(K,E) = H1(GK , E(K)), and the local Galois
cohomology groups H1(Kv, E) = H1(Gal(Kv/Kv), E(Kv)), for each place v of K.

Definition 1.9 (Shafarevich-Tate group). The Shafarevich-Tate group

X(E/K) = Ker
(
H1(K,E) →

⊕

v

H1(Kv, E)
)
,
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of E measures the failure of global cohomology classes to be determined by their
localizations at all places.

If E is an elliptic curve over a field F and the field F is clear from context, we
write X(E) = X(E/F ). For example, if E is an elliptic curve over Q, then X(E)
means X(E/Q).

Definition 1.10 (Selmer group). For each positive integer m, the m-Selmer group
is

Sel(m)(E/K) = Ker
(
H1(K,E[m]) →

⊕

v

H1(Kv, E)
)
.

The Selmer group relates the Mordell-Weil and Shafarevich-Tate groups of E via
the exact sequence

0 → E(K)/mE(K) → Sel(m)(E/K) → X(E/K)[m] → 0,

where X(E/K)[m] denotes them-torsion subgroup of X(E/K). Note that X(E/K)
is a torsion group since H1(K,E) is torsion.

1.2.2. Elliptic Curves over Q. See [Sil92, pp. 360–361] for the definition of L(E, s)
and [Wil95, BCDT01] for why L(E, s) is entire.

Let E be an elliptic curve over Q. We use the notation of [Crea] to refer to
certain elliptic curves. Thus, e.g., 37B3 refers to the third elliptic curve in the second
isogeny class of elliptic curves of conductor 37, i.e., the curve y2+y = x3+x2−3x+1.
The ordering of isogeny classes and curves in isogeny classes is as specified in [Cre97].
If the last number is omitted, it is assumed to be 1, so 37B refers to the first curve
in the second isogeny class of curves of conductor 37.

Let RegE be the absolute value of the discriminant of the canonical height pairing
on E(Q)/ tor. Let cp = [E(Qp) : E0(Qp)] be the Tamagawa number of E at p, where
E0(Qp) is the subgroup of points that reduce to a nonsingular point modulo p. Let
ΩE =

∫
E(R)

|ω|, where

ω =
dx

2y + a1x+ a3

is the invariant differential attached to a minimal Weierstrass model for E.
For any prime p, let ρE,p : GQ → Aut(E[p]) denote the mod p representation and

ρE,p : GQ → Aut(TpE) the representation on the p-adic Tate module TpE of E.
It follows from [BCDT01] that every elliptic curve E over Q is a factor of the

modular curve X0(N), where N is the conductor of E.

Definition 1.11 (Optimal). An elliptic curve E over Q is optimal if for every
elliptic curve F and surjective morphisms X0(N) → F → E, we have E ∼= F .
(Optimal curves are also called “strong Weil curves” in the literature.)

We say E is a complex multiplication (CM) curve, if End(E/Q) 6= Z.

2. Elliptic Curve Algorithms

2.1. Images of Galois Representations. Let E be an elliptic curve over Q.
Many theorems that provide explicit bounds on #X(E)[p∞] have as a hypothesis
that ρE,p or ρE,p be either surjective or irreducible. In this section we explain how
to prove that ρE,p or ρE,p is surjective or irreducible, in particular cases.
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2.1.1. Irreducibility. Regarding irreducibility, note that ρE,p is irreducible if and
only if there is no isogeny E → F over Q of degree p. The degrees of all such isoge-
nies for curves of conductor ≤ 1000 are recorded in [Cre97], which were computed
using Cremona’s program allisog. This program uses results of Mazur [Maz78]
along with computations involving modular curves of genus 0.

2.1.2. Surjectivity. We discuss surjectivity of ρE,p in the rest of this section.

Theorem 2.1 (Mazur). If E is semistable and p ≥ 11, then ρE,p is surjective.

Proof. See [Maz78, Thm. 4]. �

Example 2.2. Mazur’s theorem implies that the representations ρE,p attached to
the semistable elliptic curve E = X0(11) are surjective for p ≥ 11. Note that ρE,5
is reducible.

Theorem 2.3 (Cojocaru, Kani, and Serre). If E is a non-CM elliptic curve of
conductor N , and

p ≥ 1 +
4
√

6

3
·N ·

∏

prime ℓ|N

(
1 +

1

ℓ

)1/2

,

then ρE,p is surjective.

Proof. See Theorem 2 of [CK], whose proof relies on the results of [Ser72]. �

Example 2.4. When N = 11, the bound of Theorem 2.3 is ∼ 38.52. When
N = 997, the bound is ∼ 3258.8. For N = 40000, the bound is ∼ 143109.35.

Proposition 2.5. Let E be a non-CM elliptic curve over Q of conductor N and
let p ≥ 5 be a prime. For each prime ℓ ∤ p ·N with aℓ 6≡ 0 (mod p), let

s(ℓ) =

(
a2
ℓ − 4ℓ

p

)
∈ {0,−1,+1},

where the symbol
( ·

·
)

is the Legendre symbol. If −1 and +1 both occur as values of
s(ℓ), then ρE,p is surjective. If s(ℓ) ∈ {0, 1} for all ℓ, then Im(ρE,p) is contained in
a Borel subgroup (i.e., reducible), and if s(ℓ) ∈ {0,−1} for all ℓ, then Im(ρE,p) is
a nonsplit torus.

Proof. This is an application of [Ser72, §4], where we use the quadratic formula to
convert the condition that certain polynomials modulo p be reducible or irreducible
into a quadratic residue symbol. �

For computational applications we apply Proposition 2.5 as follows. We choose
a bound B and compute values s(ℓ); if both −1 and +1 occur as values of s(ℓ),
we stop computing s(ℓ) and conclude that ρE,p is surjective. If for ℓ ≤ B we find
that s(ℓ) ∈ {0, 1}, we suspect that Im(ρE,p) is Borel, and attempt to show this (see
Section 2.1.1). If for ℓ ≤ B, we have s(ℓ) ∈ {0,−1}, we suspect that Im(ρE,p) is
contained in a nonsplit torus, and try to show this by computing and analyzing
the p-division polynomial of E. If this approach is inconclusive, we can alway
increase B and eventually the process terminates. In practice we often apply some
theorem under the hypothesis that ρE,p is surjective, which is something that in
practice we verify for a particular p using Proposition 2.5.
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Example 2.4 suggests that the bound of Theorem 2.3 is probably far larger than
necessary. Nonetheless, it is small enough that in a reasonable amount of time we
can determine whether ρE,p is surjective, using the above process, for all p up to
the bound. In this way we determine the exact image of Galois.

Remark 2.6. We can also determine surjectivity of the mod 2 and mod 3 repre-
sentations directly using the 3-division polynomial of E. For p ≤ 3 one can show
that ρE,p is surjective if and only if the p-division polynomial (of degree n) has
Galois group Sn.

Theorem 2.7 (Serre). If p ≥ 5 is a prime of good reduction, then ρE,p is surjective
if and only if ρE,p is surjective.

Proof. This is proved in greater generality as [Ser72, Thm. 4′, pg. 300]. �

Remark 2.8. This result does not extend to p = 3 (see [Ser98, Ex. 3, pg IV-28]).
In fact, there are infinitely many elliptic curves with ρE,p surjective, but ρE,p not
surjective (see forthcoming work of Noam Elkies).

2.2. Special Values of L-Functions. Let E be an elliptic curve over Q of con-
ductor N , and let f =

∑
anq

n be the corresponding cusp form.
The following lemma will be useful in determining how many terms of the L-

series of E are needed to compute the L-series to a given precision. (We could give
a strong bound, but for our application this will be enough, and is simplest to apply
in practice.)

Lemma 2.9. For any positive integer n, we have |an| ≤ n.

Proof. For p prime we know that ap = α + β, where α and β are the roots of
x2 − apx+ p = 0. Note that |α| = |β| =

√
p.

Since an is multiplicative, it is enough to show |an| ≤ n for prime powers pr. Let
r > 1. Then apr = apapr−1 − papr−2 , and by induction,

apr =
αr+1 − βr+1

α− β
.

Then

|apr | ≤ 2p(r+1)/2

|α− β| =
2p(r+1)/2

∣∣∣
√

4p− a2
p

∣∣∣
.

Note that the sign is changed since we only deal with absolute values. We need to
show that this is ≤ pr. This happens if

2√
4p− a2

p

≤ p(r−1)/2.

Since a2
p < 4p the difference is at least 1 so it is enough to show that 2 ≤ p(r−1)/2.

This is true as long as p > 3. For p = 2 and p = 3 note that ap is an integer with
|ap| < 2

√
p. For p = 2 this integer is at most 2 and so 4p − a2

p ≥ 4. Similarly for

p = 3 this is at most 3 and so 4p − a2
p ≥ 4. Therefore it is enough to show that

1 ≤ p(r−1)/2, which is true for all r > 1. �
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Suppose E has even analytic rank. By [Cre97, §2.13] or [Coh93, Prop. 7.5.8], we
have

(2.1) L(E, 1) = 2

∞∑

n=1

an
n
e−2πn/

√
N ,

where an are the Fourier coefficients of the normalized eigenform associated with E.
Using the bound |an| ≤ n of Lemma 2.9, we see that if we truncate the series (2.1)
at the kth term, the error is at most

ε = 2
∞∑

n=k

e−2πn/
√
N =

2e−2πk/
√
N

1 − e−2π/
√
N
,

and the quantity on the right can easily be evaluated.
Next suppose E has odd analytic rank. In [Cre97, §2.13] or [Coh93, Prop. 7.5.9]

we find that

L′(E, 1) = 2

∞∑

n=1

an
n
G1(2πn/

√
N).

We have

G1(x) =

∫ ∞

1

e−xy dy
y

=

∫ ∞

x

e−y dy
y

≤ e−x,

and we obtain the same error bound as for L(E, 1). (In fact, G1(x) ≤ e−x/x but
we will not need this stronger bound.)

2.3. Mordell-Weil Groups. If E is an elliptic curve over Q of analytic rank ≤
1, there are algorithms to compute E(Q) that are guaranteed to succeed. This
is because #X(E) is finite, by [Kol91]. Independent implementations of these
algorithms are available as part of mwrank [Creb] and MAGMA [BCP97]. We did
most of our computations of E(Q) using mwrank, but use MAGMA in a few cases,
since it implements 3-descents, 4-descents and Heegner points methods (thanks to
work of Tom Womack, Mark Watkins, and others).

2.4. Other Algorithms. We use many other elliptic curves algorithms, for ex-
ample, for computing root numbers and the coefficients an of the modular form
associated to E. For the most part, we used the PARI (see [ABC+]) C-library via
SAGE (see [Ste]). For descriptions of these general elliptic curves algorithms, see
[Coh93, Cre97].

3. The Kolyvagin Bound

In this section we describe a bound due to Kolyvagin on #X(E), and compute
it for many specific elliptic curves over Q. In fact, the bound is on #X(E/K),
where K is a quadratic imaginary field; this is not a problem, because the natural
map X(E/Q) → X(E/K) has kernel of order a power of 2, so the bound is also a
bound on the odd part of #X(E).

Let E be an elliptic curve over Q of conductor N . For any quadratic imaginary
field K = Q(

√
−D), let ED denote the twist of E by D. If E is defined by

y2 = x3 + ax+ b, then ED is defined by y2 = x3 +D2ax+D3b, and

L(E/K, s) = L(E, s) · L(ED, s).
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Definition 3.1 (Heegner Hypothesis). We say that K satisfies the Heegner hy-
pothesis for E if K 6= Q(

√
−1),Q(

√
−3), and every prime factor of N splits as

a product of two distinct primes in the ring of integers of K. (The condition
K 6= Q(

√
−1),Q(

√
−3) is not necessary for some of the results below, but we in-

clude it for simplicity.)

If K satisfies the Heegner hypothesis for E, then there is a Heegner point yK ∈
E(K), which is the sum of images of certain complex multiplication (CM) points
on X0(N) (see [GZ86, §I.3]). Properties of this point impact the arithmetic of E
over K.

3.1. Bounds on #X(E/K). Suppose that K is an imaginary quadratic extension
of Q that satisfies the Heegner hypothesis for E. Kolyvagin proved the following
theorem in [Kol90]:

Theorem 3.2 (Kolyvagin). Let R = End(E/C) and let F = Frac(R), so if
E is non-CM then F = Q. If p is an odd prime unramified in F such that
Gal(F (E[p])/F ) = AutR(E[p]), i.e., Im(ρE,p) is as large as possible, then

ordp(#X(E/K)) ≤ 2 · ordp([E(K) : ZyK ]).

Note that if E does not have complex multiplication, the hypotheses of both
these theorems imply that p ∤ #E(K)tor (see Lemma 5.7).

Cha [Cha03, Cha05] extended Kolyvagin’s method to provide better bounds on
X(E/K) in some cases. Let K be a number field, let DK be the discriminant of K,
and let N be the conductor of E.

Theorem 3.3 (Cha). If p ∤ DK , p2 ∤ N , and ρE,p is irreducible, then

ordp(#X(E/K)) ≤ 2 · ordp([E(K) : ZyK ]).

As we will see in the proof of Theorem 4.3 below, there is one curve that satisfies
the hypotheses of that theorem, but for which we cannot use Theorem 3.2 to prove
BSD(E, 5). The problem is that ρE,5 is not surjective. We can use Cha’s theorem
though:

Lemma 3.4. Let E be the elliptic curve 608B, which has rank 0. Then BSD(E, 5)
is true for E.

Proof. Since E admits no 5-isogeny (see [Cre97]), ρE,5 is irreducible. Also, 52 ∤ 608,
so for any Heegner K of discriminant coprime to 5 we can apply Theorem 3.3.
Taking K = Q(

√
−79), we find that the odd part of [E(K) : ZyK ] is 1, so

5 ∤ #X(E/K). It follows that 5 ∤ #X(E), so BSD(E, 5) is true, according to
Theorem 1.7. �

Cha’s assumption on the reduction of E at p and that p ∤ DK is problematic
when there is a prime p ≥ 5 of additive reduction or one uses only one K. This
situation does occur in several cases, which motivated us to prove the following
theorem:

Theorem 3.5. Suppose E is a non-CM elliptic curve over Q. Suppose K is a
quadratic imaginary field that satisfies the Heegner hypothesis and p is an odd prime
such that p ∤ #E′(K)tor for any curve E′ that is Q-isogenous to E. Then

ordp(#X(E)) ≤ 2 ordp([E(K) : ZyK ]),
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unless disc(K) is divisible by exactly one prime ℓ, in which case the conclusion is
only valid if p 6= ℓ.

Since the proof of Theorem 3.5 is somewhat long and technical, we defer the
proof until Section 5.

Remark 3.6. If in Theorem 3.5, ρE,p is irreducible, then p ∤ #E′(K)tor for all E′

isogenous to E. This is because the isogeny E → E′ has degree coprime to p, so
E[p] ∼= E′[p]. Also, since E[p] is irreducible, if E′(K) were to contain a p-torsion
point, it would have to contain all of them, a contradiction since µp 6⊂ K (recall

that we exclude Q(
√

−3) and Q(
√

−4)).

Theorem 3.7 (Bump-Friedberg-Hoffstein, Murty-Murty, Waldspurger). There are
infinitely many quadratic imaginary extensions K/Q such that K satisfies the Heeg-
ner hypothesis and ords=1 L(E/K) = 1.

Proof. If ords=1L(E, s) = 0, then the papers [MM91] and [BFH90] both imply the
existence of infinitely many K such that yK has infinite order. If ords=1L(E, s) = 1,
then a result of Waldspurger ([Wal85]) applies, as does [BFH90]. �

Theorem 3.7 is not used in our computations, but ensures that our procedure for
bounding #X(E), when E has analytic rank ≤ 1, is an algorithm, i.e., it always
terminates with a nontrivial upper bound.

3.2. The Gross-Zagier Formula. We use the Gross-Zagier formula to compute
the index [E(K) : ZyK ] without explicitly computing yK .

The modularity theorem of [BCDT01] asserts that there exists a surjective mor-
phism π : X0(N) → E. Choose π to have minimal degree among all such mor-
phisms. Let π∗(ω) be the pullback of a minimal invariant differential ω on E. Then
π∗(ω) = α · f , for some constant α and some normalized cusp form f . By [Edi91,
Prop. 2], we know that α ∈ Z.

Definition 3.8 (Manin Constant). The Manin constant of E is c = |α|.
Manin conjectured in [Man72, §5] that c = 1 for the optimal curve in the Q-

isogeny class of E.

Theorem 3.9 (Gross-Zagier). If K satisfies the Heegner hypothesis for E, then
the Néron-Tate canonical height of yK is

h(yK) =

√
D

c2 ·
∫
E(C)

ω ∧ iω · L′(E/K, 1).

Proof. Gross and Zagier proved the following formula in [GZ86] under the hypoth-
esis that D is odd. For the general assertion see [Zha04, Thm. 6.1]. �
3.3. Remarks on the Index. Suppose that E is an elliptic curve over Q of con-
ductor N and that E has analytic rank 1 over a quadratic imaginary field K that
satisfies the Heegner hypothesis. In [McC91], McCallum rephrases the analogue of
Conjecture 1.1 for E over K using the Gross-Zagier formula as follows:

Conjecture 3.10 (Birch and Swinnerton-Dyer). Suppose K is a quadratic imagi-
nary field that satisfies the Heegner hypothesis, and that E has analytic rank 1 over
K. Then

#X(E/K) =

(
[E(K) : ZyK ]

c2 ·∏p|N cp

)2

.
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Here the cp are the Tamagawa numbers of E over Q, c is the Manin constant of E,
and ZyK is the cyclic group generated by yK .

Remark 3.11. A serious issue is that Conjecture 3.10 implies that the index IK =
[E(K) : ZyK ] will be divisible by the Tamagawa numbers cp. One sees using Tate
curves that these Tamagawa numbers can be arbitrarily large. In many cases when
E has analytic rank 0, we could instead apply Theorem 4.1 below, but when E has
analytic rank 1 a new approach is required, e.g., computation of p-adic regulators
and use of results of P. Schneider and others toward p-adic analogues of the BSD
conjecture. This will be the subject of a future paper.

Remark 3.12. Conjecture 3.10 has interesting implications in certain special cases.
For example, if E is the curve 91B, then c7 = c13 = 1. Also c = 1, as Cremona
has verified, and #E(Q)tor = 3. Thus for any K, we have 3 | [E(K) : ZyK ].
If yK has infinite order, then Conjecture 3.10 implies that 32 | #X(E/K). For
K = Q(

√
−103), the point yK is torsion, and in this case E(K) has rank 3 and

(conjecturally) X(E/K)[3] = 0. See Remark 3.23 for another example along these
lines.

3.4. Mordell-Weil Groups and Quadratic Imaginary Fields. Let E be an
elliptic curve over Q and K = Q(

√
D) a quadratic imaginary field such that E(K)

has rank 1. In this section we explain how to understand E(K) in terms of E(Q)
and ED(Q).

Proposition 3.13. Let R = Z[1/2] and K = Q(
√
D). For any squarefree inte-

ger D 6= 1, we have

E(K) ⊗R = (E(Q) ⊗R) ⊕ (ED(Q) ⊗R).

Proof. Let τ be the complex conjugation automorphism on E(K) ⊗ R. The char-
acteristic polynomial of τ is x2 − 1, which is squarefree, so E(K) ⊗ R is a direct
sum of its +1 and −1 eigenspaces for τ . The natural map E(Q) →֒ E(K) iden-
tifies E(Q) ⊗ R with the +1 eigenspace for τ since E(K)GQ = E(Q); likewise,
ED(Q) →֒ E(K) identifies ED(Q) ⊗R with the −1 eigenspace for τ . �

The following slightly more refined proposition will be important for certain
explicit Heegner point computations (directly after Equation 3.1).

Proposition 3.14. Suppose E(K) has rank 1. Then the image of either E(Q)/ tor

or ED(Q)/ tor has index at most 2 in E(K)/ tor.

Proof. Since E(K) has rank 1, Proposition 3.13 implies that exactly one of E(Q)
and ED(Q) has rank 1 and the other has rank 0. We may assume that E(Q) has
rank 1 (otherwise, swap E and ED). Let i be the natural inclusion E(Q) →֒ E(K),
and let τ denote the automorphism of E(K) induced by complex conjugation. Then
P 7→ (1+ τ)P induces a map E(K) → E(K)+ = E(Q) that, upon taking quotients
by torsion, induces a map ψ : E(K)/ tor → E(Q)/ tor. Let P1 be a generator for
E(Q)/ tor and P2 a generator for E(K)/ tor, and write i(P1) = nP2, for some nonzero
integer n. Then

[2]P1 = ψ(i(P1)) = ψ(nP2) = [n]ψ(P2) = [nm]P1 (mod E(Q)tor),

for some nonzero integer m. Thus 2 = nm, so n ≤ 2. �
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If D satisfies the Heegner hypothesis, then by computing the residue symbol
(
N
D

)

and understanding how the sign of the functional equation changes under twist, we
see that

ords=1 L(E, s) 6≡ ords=1 L(E(D), s) (mod 2).

Suppose K satisfies the Heegner hypothesis and ords=1 L(E/K, s) = 1. Then work
of Kolyvagin (see [Kol91, Kol88]) implies that E(K) has rank 1.

The root number εE = ±1 of E is the sign of the functional equation of L(E, s).
If εE = +1, then the analytic rank ords=1 L(E, s) is even, and if εE = −1, then it
is odd.

Proposition 3.15. Let E be an elliptic curve, let D = DK be a discriminant that
satisfies the Heegner hypothesis such that ords=1 L(E/K, s) = 1, and let R = Z[1/2].
Then

(1) If εE = +1, then a generator of E(K) ⊗ R is the image of a generator of
ED(Q) ⊗R and L′(E/K, 1) = L(E, 1) · L′(ED, 1).

(2) If εE = −1, then a generator of E(K) ⊗ R is the image of a generator of
E(Q) ⊗R and L′(E/K, 1) = L′(E, 1) · L(ED, 1).

We will use the above proposition to relate computation of E(K) ⊗ R to com-
putation of Mordell-Weil groups of elliptic curves defined over Q.

3.5. Computing the Index of the Heegner Point. A key input to the theorems
of Section 3.1 is computation of the index [E(K) : ZyK ]. We have

(3.1) [E(K)/tor : ZyK ]2 = h(yK)/h(z),

where z is a generator of E(K)/ tor.
In the Gross-Zagier formula we have h = hK , the Néron-Tate canonical height

on E(K) = ED(K) relative to K. Let hQ denote the height on E(Q) or ED(Q).
Note that if P ∈ E(Q) or ED(Q), then

(3.2) hQ(P ) =
1

[K : Q]
· hK(P ) =

hK(P )

2
.

Using Proposition 3.14 and algorithms for computing Mordell-Weil groups (see
Section 2.3), we can compute z or 2z, so we can compute h(z) or 2h(z). In practice,
even for curves of conductor up to 1000, it can take a huge amount of time to
compute z. This section about practical methods to either compute the index or
at least bound it.

It is not difficult to compute h(yK), without computing yK itself, using the Gross-
Zagier formula (Section 3.2). We compute L′(E/K, 1) by computing L-functions
of elliptic curves defined over Q as explained in Proposition 3.15. It remains to
compute

(3.3) α =

√
|D|

c2
∫
E(C)

ω ∧ iω .

3.5.1. The Manin Constant. Manin conjectured that the Manin constant c for any
optimal elliptic curve factor E of X0(N) is 1, and there are bounds on the pos-
sibilities for c (see, e.g., [Edi91, ARS05]). There is an algorithm to verify in any
particular case that c = 1, as explained in the proof of the following proposition.

Proposition 3.16 (Cremona). If E is an optimal elliptic curve of conductor at
most 80000, then the Manin constant of E is 1.
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Proof. For each level N ≤ 80000 we do the following. Using the modular symbols
algorithms of [Cre97], we enumerate the rational newforms f1, . . . , fd, which cor-
respond (via the modularity theorem) to the optimal elliptic curves E1, . . . , Ed of
conductor N , respectively. For each fi we compute approximations to xxx decimal
digits of the c4 and c6 invariants of the lattice ΛEi

attached to the optimal curve in
the isogeny class. We then guess integers c′4 and c′6 that are close to the computed
approximations, and verify that the elliptic curve E′

i with invariants c′4, c
′
6 is an

elliptic curve of conductor N . We also compute the full isogeny class of E′
i using

the program allisog. Repeating this procedure for each newform f , we obtain d
distinct isogeny classes of elliptic curves of conductor N , and by modularity these
must be in bijection with the newforms fi. However, at this point we have not
proved that Ei = E′

i or even that E′
i is an optimal quotient. However, we have

provably found all elliptic curves over Q of conductor N .
We next compute the c4 and c6 invariants of all curves of conductor N , and

observe that the first 12 digits of the c-invariants for these curves are sufficient to
distinguish them. (12 digits is enough for every curve up to conductor 80000.) If
we had guessed c′4 and c′6 incorrectly above, so that E′

i 6= Ei, there would be two
curves of conductor N both of whose c-invariants have the same initial xxx decimal
digits, which is impossible since 12 digits of precision are sufficient to distinguish
any two. Thus E′

i = Ei, and the c′4, c
′
6 we computed are the correct invariants of

the optimal quotient attached to fi.
Finally, we observe that c′4 and c′6 are the invariants of a minimal Weierstrass

equation, which implies that the Manin constant of Ei is 1. �

3.5.2. The Integral. We have the following lemma regarding the integral in (3.3):

Lemma 3.17. We have
∫
E(C)

ω∧ iω = 2 ·Vol(C/Λ), where the volume Vol(C/Λ) is

the absolute value of the determinant of a matrix formed from a basis for the lattice
in C obtained by integrating the Néron differential ωE against all homology classes
in H1(E,Z).

Proof. Fix the Weierstrass equation y2 = 4x3 + g4x + g6 for E, so x = ℘(z) and
y = ℘′(z). First note that

ω =
dx

y
=
d℘(z)

℘′(z)
=
℘′(z)dz
℘′(z)

= dz.

Thus
∫

E(C)

ω ∧ iω =

∫

C/Λ
dz ∧ idz

= −i
∫

C/Λ
(dx+ idy) ∧ (dx− idy)

= −i(2i)
∫

C/Λ
dx ∧ dy = 2 · Vol(C/Λ).

�

Note that Vol(C/Λ) can be computed to high precision using the Gauss arithmetic-
geometric mean, as described in [Cre97, §3.7].
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3.5.3. Mordell-Weil Groups and Heights. For the curves that we run our computa-
tion on, we use [Creb] (via [Ste]), which computes a basis for ED(Q), and not just
a basis for a subgroup of finite index.

Cremona describes the computation of heights of points on curves defined over Q
in detail in [Cre97, §3.4]. There is an explicit bound on the error in the height
computation, which shrinks exponentially in terms of the precision of approximating
series, and can be made arbitrarily small. For the L-function computations, see
Section 2.2.

3.5.4. Indexes of Heegner Points on Rank 1 Curves. Suppose E is an elliptic curve
over Q of analytic rank 1, and we wish to compute indexes iK = [E(K)/ tor :
ZyK ] for various K. Assume that E(Q) is known, so we can compute h(z) to
high precision, where z generates E(Q)/tor. Then computing the indexes iK is
relatively easy. For each K, compute h(yK) as described above using the Gross-
Zagier formula, so

h(yK) = α · L′(E, 1) · L(ED, 1).

Then

iK =

√
h(yK)

h(z)
=

√
h(yK)

2hQ(z)
.

We emphasize that computation of the Heegner point itself is not necessary. For
the results of this index computation for E of conductor ≤ 1000, see Section 3.6.1.

Example 3.18. Let E be the elliptic curve 540B, which has rank 1, and conductor
540 = 22 ·33 ·5. The first K that satisfies the Heegner hypothesis is Q(

√
−71). The

group E(Q) is generated by z = (0, 1), and we have hQ(z) ∼ 0.656622630. We have

α ∼
√

71

2 · 3.832955
∼ 1.09917,

so

h(yK) ∼ 1.09917 · 1.9340458 · 5.559761726 ∼ 11.819.

Thus

iK =

√
11.819

2 · 0.656622630
∼

√
8.99999 ∼ 3.

3.5.5. Indexes of Heegner Points on Rank 0 Curves. Assume that the analytic rank
of E is 0. In practice, computing the indexes of Heegner points in this case is
substantially more difficult than the rank 1 case. For a Heegner quadratic imaginary
field K = Q(

√
D), we have

iK = [E(K)/ tor : ZyK ]2 =
h(yK)

h(z)
= α · L(E, 1) · L′(ED, 1)

h(z)
,

so one method to find iK is to find a generator z ∈ ED(Q) exactly using descent al-
gorithms, which will terminate since we know that X(ED) is finite, by Kolyvagin’s
theorem. However, since ED has potentially large conductor and rank 1, in prac-
tice the Mordell-Weil group will sometimes be generated by a point of large height,
hence be extremely time consuming to find. One can use 2-descent, 3-descent, 4-
descent, and Heegner points methods (i.e., explicitly compute the coordinates of
the Heegner point as decimals and try to recognize them using continued fractions.)
In some cases these methods produce in a reasonable amount of time an element of
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ED(Q) of infinite order, and one can then saturate the point using [Creb] to find a
generator z.

Example 3.19. Let E be the curve 11A. The first field that satisfies the Heegner
hypothesis is K = Q(

√
−7). The conductor of F = E−7 is 539, and we find a

generator z ∈ F (Q) for the Mordell-Weil group of this twist. This point has height
hQ(z) ∼ 0.1111361471. We have

α ∼
√

7

2 · 1.8515436234
∼ 0.71447177.

The height over K of the Heegner point is thus

h(yK) ∼ 0.71447177 · 0.25384186 · 1.225566874 ∼ 0.2222722925.

Thus by (3.2)

iK =
h(z)

h(yK)
=

2hQ(z)

h(yK)
∼ 1.

There is a trick to bound the index iK without computing any elements of E(K).
This is useful when the algorithms mentioned above for computing a generator of
ED(Q) produce no information in a reasonable amount of time. First compute the
height h(yK) using the Gross-Zagier formula. Next compute the Cremona-Prickett-
Siksek [Pri04, Ch. 4] bound B for ED, which is a number such that if P ∈ ED(Q),
then the naive logarithmetic height of P is off from the canonical height of P by
at most B. Using standard sieving methods implemented in [Creb], we compute
all points on E of naive logarithmic height up to some number h0. If we find any
point of infinite order, we saturate, and hence compute ED(Q), then use the above
methods. If we find no point of infinite order, we conclude that there is no point
in ED(Q) of canonical height ≤ h0 −B. If h0 −B > 0, we obtain an upper bound
on iK as follows. If z is a generator for ED(Q), then hQ(z) > h0 −B, so using (3.2)
we have

hQ(z) =
1

2
· hK(z) =

h(yK)

2 · i2K
> h0 −B.

Solving for iK gives

(3.4) iK <

√
h(yK)

2(h0 −B)
,

so to bound iK we consider many K (e.g., the first 30), and for each compute the
quantity on the right side of (3.4) for a fixed choice of h0. We then use a K that
minimizes this quantity.

Remark 3.20. Another approach to finding some Heegner point, which we dis-
cussed with Noam Elkies, is to search for small points on E(K) over various fieldsK,
until finding a K that satisfies the Heegner hypothesis and is such that E(K) has
rank 1. For example, if E is given by y2 = x3 + ax + b, and x0 is a small integer,
write y2

0 ·D = x3
0 +ax0 +b, where y0 and D are integers, and D is square free. Then

(x0, y0) is a point on the quadratic twist of E by D. We did not use this approach,
since it was not necessary in order to prove Theorem 1.8.

Example 3.21. Let E be the elliptic curve 546E. Then K = Q(
√

−311) satisfies
the Heegner hypothesis, since the prime divisors of 546 = 2 ·3 ·7 ·13 split completely
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in K. We compute the height of the Heegner point yK . Let F be the quadratic
twist of E by −311. We have

α ∼
√

311

2 · 0.0340964942689662168001
∼ 258.60711587

Thus

h(yK) ∼ α · L(E, 1) · L′(F, 1)

∼ 258.60711587 · 2.2783578 · 12.41550 ∼ 7315.20688,

where in each case we compute the L-series using enough terms to obtain a value cor-
rect to ±10−5. Thus 7320 is a conservative upper bound on h(yK). The Cremona-
Prickett-Siksek bound for F is B = 13.0825747. We search for points on F of naive
logarithmic height ≤ 18, and find no points. Thus (3.4) implies that

iK <
√

7320/(2 · (18 − 13.0825747)) ∼ 27.28171 < 28.

It follows that if p | iK , then p ≤ 23. Searching up to height 21 would (presumably)
allow us to remove 23, but this might take much longer.

For the results of our computations for all E of conductor ≤ 1000, see Sec-
tion 3.6.2.

3.6. Results of Computations.

3.6.1. Curves of Rank 1. First we consider curves of rank 1. Recall from Conjec-
ture 1.6 that we expect X to be trivial for all optimal rank 1 curves of conductor
at most 1000.

Proposition 3.22. Suppose (E, p) is a pair with E an optimal elliptic curve of
conductor up to 1000 of rank 1. Let I be the greatest common divisor of [E(K)/ tor :

ZyK ] for the first four quadratic imaginary fields K = Q(
√
D) that satisfy the

Heegner hypothesis. If p | I, then

p | 2 · #E(Q)tor ·
∏

q|N
cE,q,

except if (E, p) is (540B, 3) or (756B, 3).

Proof. For each rank 1 curve E of conductor up to 1000 we perform the following
computation.

(1) Let RE be the regulator of E, correct to precision at least 10−10, which we
look up in the allbsd table of [Crea].

(2) List the first four discriminants D = D0,D1,D2,D3 such that K = Q(
√
D)

satisfies the Heegner hypothesis. For each D = Di do the following com-
putation:
(a) Compute L′(E, 1) to some bounded precision ε, using 2

√
N+10 terms.

The bound ε is determined as explained in Section 2.2.
(b) Compute L(ED, 1) to some bounded precision ε′ using 2

√
N+10 terms.

(c) Compute α =
√

|D|/(2Vol(C/Λ)) to precision at least 10−10 using
PARI.
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(d) Using a simple implementation of classical interval arithmetic (in [Ste])
and the bounds above, we compute an interval in which the real num-
ber

α · L′(E, 1) · L′(ED, 1)/(RegE /2)

must lie. If there is a unique integer in this interval, by Theorem 3.9
this must be the square of the index [E(K) : ZyK ]2. If there is no
unique integer in this interval, we increase the precision of the com-
putation of L′ and L and repeat the above steps. In all cases in the
range of our computation, we find a unique integer in the interval; as a
double check on our calculations we verify that the integer is a perfect
square.

�

Remark 3.23. For the curves 540B and 756B there is no 3-torsion, but there is
a rational 3-isogeny. In each case we verified in addition that 3 divides the GCD
of the indexes for at least the first 16 fields K that satisfy the Heegner hypothesis.
Thus as in Remark 3.12, Conjecture 3.10 asserts that 9 | #X(E/K) for the first
sixteen K. This illustrates that not only Tamagawa numbers but also isogenies can
be an obstruction to applying Kolyvagin’s theorem to bound #X(E), even if the
irreducibility hypothesis on ρE,p is removed.

Proposition 3.24. Suppose E is a non-CM optimal curve of conductor ≤ 1000
and p is an odd prime such that ρE,p is irreducible but not surjective. If E has
rank 0 then (E, p) is one of the following: (245B,3), (338D,3), (352E,3), (608B,5),
(675D,5), (675F,5), (704H,3), (722D,3), (726F,3), (800E,5), (800F,5), (864D,3),
(864F,3), (864G,3), (864I,3). If E has rank 1, then (E, p) is one of the follow-
ing: (245A,3), (338E,3), (352F,3), (608E,5), (675B,5), (675I,5), (704L,3), (722B,3),
(726A,3), (800B,5), (800I,5), (864A,3), (864B,3), (864J,3), (864L,3). There are no
curves of rank ≥ 2 with the above property.

Proof. Using Proposition 2.5 we make a list of pairs (E, p) such that ρE,p might
not be surjective, and such that if (E, p) is not in this list, then ρE,p is surjective.
Then using the program allisog, we compute for each curve E, a list of all degrees
of isogenies emanating from E, and remove those pairs (E, p) for which p divides
the degree of one of those isogenies. The curves listed above are the ones that
remain. �

Remark 3.25. In Proposition 3.24, the non-surjective irreducible (E, p) come in
pairs, one of rank 0 and one of rank 1 having the same conductor. Each pair of
curves are related by a quadratic twist. This pattern is common, but does not
always occur. For example, (1184F,3) and (1184H,3) are both of rank 0 and have
non-surjective irreducible representation, and no curve of conductor 1184 and rank 1
has this property. Note that 1184 = 25 · 37 and 1184F and 1184H are quadratic
twists of each other by −1.

Remark 3.26. Proposition 3.24 suggests that it is rare for ρE,p to be non-surjective

yet irreducible. When this does occur, frequently p2 | N , though not always.
Continuing the computation to conductor 10000 we find that p2 | N about half the
time in which ρE,p is non-surjective yet irreducible. This gives a sense of the extent
to which Theorem 3.3 improves on Theorem 3.2.



COMPUTATIONAL VERIFICATION OF THE BIRCH AND SWINNERTON-DYER CONJECTURE FOR INDIVIDUAL ELLIPTIC CUR

Theorem 3.27. Suppose (E, p) is a pair consisting of a rank 1 non-CM elliptic
curve E of conductor ≤ 1000 and a prime p such that ρE,p is irreducible and p does
not divide any Tamagawa number of E. Then BSD(E, p) is true.

Proof. By Theorem 3.31 we may assume that p is odd. The pairs that do not
satisfy the Heegner point divisibility hypothesis in Proposition 3.22 are those in
S = {(540B, 3), (756B, 3)}. However, both of these curves admit a rational 3-
isogeny, so are excluded by the hypothesis of Theorem 3.27.

Let

T = {(245A, 3), (338E, 3), (352F, 3), (608E, 5), (675B, 5), (675I, 5),

(704L, 3), (722B, 3), (726A, 3), (800B, 5), (800I, 5), (864A, 3),

(864B, 3), (864J, 3), (864L, 3)}.

Then Proposition 3.24, Theorem 1.7, and Theorem 3.2 together imply BSD(E, p)
for all pairs as in the hypothesis of Theorem 3.27, except the pairs in S ∪ T . Note
that for each (E, p) ∈ T , we have p2 | N , so Theorem 3.3 does not apply either.
We eliminate the pairs

(245A, 3), (338E, 3), (352F, 3), (608E, 5), (704L, 3), (864J, 3), (864L, 3)

from consideration because in each case p |∏ cℓ.
For each (E, p) ∈ T the representation ρE,p is irreducible and E does not have

CM, so the hypothesis of Theorem 3.5 are satisfied. For the pairs

{((245A, 3), (338E, 3), (352F, 3), (608E, 5), (704L, 3), (864J, 3), (864L, 3)}

we have p | [E(K) : ZyK ] for the first six Heegner K, but that is not a problem
since we eliminated these pairs from consideration. For the remaining pairs, in each
case we find a K such that p ∤ [E(K) : ZyK ] · disc(K), so Theorem 3.5 implies that
p ∤ #X(E), so BSD(E, p) is true. �

3.6.2. Curves of Rank 0.

Proposition 3.28. Suppose (E, p) is a pair with E an optimal elliptic curve of con-
ductor ≤ 1000 of rank 0. Let I be the greatest common divisor of [E(K)/ tor : ZyK ]
as K varies over quadratic imaginary fields that satisfy the Heegner hypothesis.
If p | I and ρE,p is irreducible, then

p | 2 · #E(Q)tor ·
∏

q|N
cE,q,

except possibly for the curves in the following table:
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E p | I? D used
258E 3 −983
378G 3 −47
594F 3 −359
600G 3 −71
612D 3 −359
626B 3 −39
658A 3 −31
676E 5 −23
681B 3 −8
735B 3 −479
738B 3 −23
742F 3, 5 −199

E p | I? D used
777B 3 −215
780B 3,7 −191
819D 3,5 −404
850I 3 −151
858D 5, 7 −95
858K 7 −1031
900A 3 −71
906E p ≤ 19 −23
924A 5 −1679
978C 3 −431
980I 3 −671

In this table, the first column gives an elliptic curve, the second column gives the
primes p (with ρE,p irreducible) that might divide the GCD of indexes, and the third
column gives the discriminant used to make this deduction.

Proof. We use the methods described in Section 3.5.5, and precision bounds as
in the proof of Proposition 3.22. In many cases we combined explicit computa-
tion of a Heegner point for one prime, with the bounding technique explained in
Section 3.5.5, or only computed information using the bound.

For the curve 910E, we used four-descent via MAGMA to compute the point
(3257919871/16641, 133897822473008/2146689) on the −159 twist ED, found using
[Creb] that it generates ED(Q), and obtained an index that is a power of 2 and 3.
Since 3 divides a Tamagawa number, we do not include 910E in our table. Likewise,
for 930F and D = −119, we used MAGMA’s four-descent commands to find a point
of height ∼ 85.3, and deduced that the only odd prime that divides the index is 11;
since 11 is a Tamagawa number, we do not include 930F. Similar remarks apply
for 966J with D = −143. We were unable to use 4-descent to find a generator for
a twist of 906E1. (Fortunately, 906 = 2 · 3 · 151, so Theorem 4.3 implies BSD(E, p)
except for p = 2, 3, 151, and for our purposes we will only need that 151 does not
divide the Heegner point index.) �
Remark 3.29. We could likely shrink the table in Proposition 3.28 further using
MAGMA’s four descent command. However, we will not need a smaller table for
our ultimate application to the BSD conjecture (Theorem 4.4).

Theorem 3.30. Suppose (E, p) is a pair with E a rank 0 non-CM curve of con-
ductor ≤ 1000 and p a prime such that ρE,p is irreducible and p does not divide any
Tamagawa number of E. Then BSD(E, p) is true except possibly if (E, p) appears
in the table in the statement of Proposition 3.22, i.e., E appears in column 1 and p
appears in the column directly to the right of p.

Proof. The argument is similar to the proof of Theorem 3.27. By Theorem 3.31
we may assume that p is odd. Let S be the set of pairs (E, p) in the table in
Proposition 3.22. Let

T = {(245B, 3), (338D, 3), (352E, 3), (608B, 5), (675D, 5), (675F, 5),

(704H, 3), (722D, 3), (726F, 3), (800E, 5), (800F, 5), (864D, 3),

(864F, 3), (864G, 3), (864I, 3)}.
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Then Proposition 3.24, Theorem 1.7, and Theorem 3.2 together imply BSD(E, p)
for all pairs as in the hypothesis of Theorem 3.27, except the pairs in S ∪ T , since
the representation ρE,p is surjective and we have verified that p ∤ [E(K) : ZyK ]
for some K. We eliminate the pairs (722D, 3) and (726F, 3) from consideration
because in each case p |∏ cℓ.

For each (E, p) ∈ T the representation ρE,p is irreducible and E does not have
CM, so the hypotheses of Theorem 3.5 are satisfied. Next for each pair (E, p) ∈ T
except for (722D, 3) and (726F, 3), which we eliminated already, we find a K such
that p ∤ [E(K) : ZyK ] and disc(K) is not divisible only be p. Theorem 3.5 implies
that p ∤ #X(E), hence BSD(E, p) is true. �

3.6.3. Two Descent. In this section, we explain how descent computations imply
that BSD(E, 2) is true for curves of conductor N ≤ 1000.

Theorem 3.31. If E is an elliptic curve with N ≤ 1000, then BSD(E, 2) is true.

Proof. According to Theorem 1.4, it suffices to prove the theorem for the set S of
optimal elliptic curves with N ≤ 1000. By doing an explicit 2-descent, Cremona

computed Sel(2)(E/Q) for every curve E ∈ S, as explained in [Cre97]. This implies
that X(E)[2] has order the predicted order of X(E)[2∞] for all E ∈ S. Using

MAGMA’s FourDescent command, we compute Sel(4)(E/Q) in the three cases in
which X(E)[2] 6= 0, and find that X(E)[4] = X(E)[2]. By Theorem 1.7, it follows
that BSD(E, 2) is true for all E ∈ S. �

3.6.4. Three Descent. We sharpen Theorem 3.30 using Stoll’s 3-descent package
(see [Sto05]).

Proposition 3.32. We have 3 ∤ #X(E) for each of the curves listed in the Table
in Proposition 3.28 with 3 in the second column and ρE,3 irreducible, except for
681B where #X(E)[3∞] = 9.

Proof. We use Stoll’s package [Sto05] to compute each of the Selmer groups

Sel(3)(E) ∼= X(E)[3],

and obtain the claimed dimensions. When computing class groups in Stoll’s package
one must take care to not assume any conjectures (by slightly modifying the call
to ClassGroup in 3descent.m). Finally, that X(E)[3∞] = 9 follows by applying
Theorem 3.2 with K = Q(

√
−8), and noting that ρE,3 is surjective and the index

is exactly divisible by 3. �

4. The Kato Bound

Kato proved a theorem that bounds X(E) from above when L(E, 1) 6= 0.

Theorem 4.1 (Kato). Let E be an optimal elliptic curve over Q of conductor N ,
and let p be a prime such that p ∤ 6N and ρE,p is surjective. If L(E, 1) 6= 0, then
X(E) is finite and

ordp(#X(E)) ≤ ordp

(
L(E, 1)

ΩE

)
.

This theorem follows from the existence of an “optimal” Kato Euler system (see
[Kat04] and [MR04]) combined with a recent result of Matsuno [Mat03] on finite
submodules of Selmer groups over Zp-extensions. For more details, look at the
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proof of [Rub98, Cor. 8.9] where one replaces an unknown module with the module
Matsuno computes. See also [Gri05] for further discussion and recent results on
lower bounds on X(E) that make use of optimal Kato Euler systems.

4.1. Computations. When L(E, 1) 6= 0 the group X(E) is finite, so ordp(#X(E))

is even. Thus if ordp

(
L(E,1)

ΩE

)
is odd, we conclude that

ordp(#X(E)) ≤ ordp

(
L(E, 1)

ΩE

)
− 1.

Lemma 4.2. There are no pairs (E, p) that satisfy the conditions of Theorem 4.1
with N ≤ 1000, such that

ordp(#X(E)an) < ordp

(
L(E, 1)

ΩE

)
− 1.

Proof. First we make a table of ratios L(E, 1)/ΩE for all curves of conductor ≤
1000. For each of these with L(E, 1) 6= 0, we factor the numerator of the rational
number L(E, 1)/ΩE . We then observe that the displayed inequality in the statement
of the proposition does not occur. �

Theorem 4.3. Suppose (E, p) is a pair such that N ≤ 1000, p ∤ 3N , E is a non-CM
elliptic curve of rank 0, and ρE,p is irreducible. Then BSD(E, p) is true.

Proof. The statement for p = 2 follows from Theorem 3.31.
Let S be the set of pairs (E, p) as in the statement of Theorem 4.3 for which E

is optimal and p > 2. By Theorem 1.7 it suffices to prove that p ∤ #X(E) for
all (E, p) ∈ S. Using Proposition 2.5 with A = 1000, we compute for each rank 0
non-CM elliptic curve of conductor N ≤ 1000, all primes p ∤ 6N such that ρE,p
might not be surjective. This occurs for 53 pairs (E, p), with the E’s all distinct.
For these 53 pairs (E, p), we find that the representation ρE,p is reducible (since
there is an explicit p isogeny listed in [Cre97]), except for the pair (608B, 5), for
which ρE,5 is irreducible.

Thus Theorem 4.1 implies that for each pair (E, p) ∈ S, except (608B, 5), we
have the bound

ordp(#X(E)) ≤ ordp(L(E, 1)/ΩE).

By Theorem 1.5, ordp(#X(E)) is even, so X(E)[p∞] is trivial whenever

ordp(L(E, 1)/ΩE) ≤ 1.

By Theorem 1.7, ordp(#X(E)an) = 0 for all p ≥ 5. Thus by Lemma 4.2,
there are no pairs (E, p) ∈ S with ordp(L(E, 1)/ΩE) > 1 (since otherwise some
ordp(#X(E)an) would be nontrivial).

Finally, note that we dealt with (608B, 5) in Lemma 3.4 using Cha’s theorem.
This completes the proof. �

4.2. Combining Kato and Kolyvagin. In this section we bound X(E) for
rank 0 curves by combining the Kato and Kolyvagin approaches.

Theorem 4.4. Suppose E is a non-CM elliptic curve of rank 0 with conductor
N ≤ 1000, that ρE,p is irreducible, and that p does not divide any Tamagawa
number of E. Then BSD(E, p) is true.
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Proof. Let (E, p) be as in the hypothesis to Theorem 4.4. By Theorem 4.3, BSD(E, p)
is true, except possibly if p | 3N . Theorem 3.30 implies BSD(E, p), except if (E, p)
appear in the Table of Proposition 3.28. Inspecting the table, we see that whenever
a prime p ≥ 5 is in the second column, then p does not divide the conductor N
of E. This proves BSD(E, p) for p ≥ 5.

Let E be the curve 681B. Then BSD(E, 3) asserts that #X(E)[3∞] = 9. It
follows from [CM00] and [AS05, App.], or from the 3-descent of Section 3.6.4 that
#X(E)[3] = 9. Also, ρE,3 is surjective and for D = −8 we have ord3([E(K) :
ZyK ]) = 1, so #X(E)[3∞] | 9, which proves BSD(E, 3).

Finally Proposition 3.32 implies BSD(E, 3) for the remaining curves, which
proves the theorem. �

5. Proof of Theorem 3.5

In this section we prove Theorem 3.5. Assume that E and K are as in the state-
ment of the theorem, and assume that ords=1 L(E/K, 1) = 1. Then the Heegner
point yK has infinite order. Kolyvagin ([Kol90]) shows that in this case the rank
of E(K) is 1 and X(E/K) is finite.

5.1. Gross’s Account. Gross’s account of Kolyvagin’s work in [Gro91] contains a
proof that if E does not have complex multiplication, then

#X(E/K) | t · [E(K) : ZyK ]2,

where t is an integer divisible only by primes p such that the representation ρE,p :

Gal(Q/Q) → Aut(E[p]) is not surjective. Gross makes no claim about the powers
of primes that divide t (though Kolyvagin does in his papers). Our Theorem 3.5
provides a better bound, which removes the condition that E not have CM, and
relaxes the surjectivity hypothesis on ρE,p.

Gross uses surjectivity of ρE,p as a hypothesis only to prove the following two
propositions. We will prove analogous propositions below, but under weaker hy-
potheses, which yields our claimed improvement to [Gro91].

Proposition 5.1 (Gross). Assume that ρE,p is surjective. For any integer n, let
Kn be the ring class field of K of conductor n. The restriction map

Res : H1(K,E[p]) → H1(Kn, E[p])Gal(Kn/K)

is an isomorphism.

Proof. That ρE,p is surjective implies that E(Kn)[p] = 0. The inflation-restriction-
transgression sequence then implies that Res is an isomorphism. �

Gross also uses surjectivity of ρE,p when proving that the pairing

H1(K,E[p]) ⊗ Gal(K(E[p])/K) → E[p]

is nondegenerate, as follows. Setting L = K(E[p]), we have that

H1(L/K,E(L)[p]) → H1(K,E[p]) → H1(L,E[p])Gal(L/K) → H2(L/K,E(L)[p]).

To see that the pairing is nondegenerate, it suffices to know that the groups
Hi(L/K,E[p]) vanish for i = 1, 2. This is because we have

H1(L,E[p])Gal(L/K) = Hom(GL, E[p])Gal(L/K)
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since K(E[p]) ⊂ L and the pairing is (c, σ) = resL(c)(σ). Thus nondegeneracy of
the pairing then follows from the following proposition.

Proposition 5.2 (Gross). Let E be an elliptic curve over a number field K and
let p be a prime. Assume that ρE,p is surjective. Then

Hi(K(E[p])/K,E[p]) = 0 for all i ≥ 1.

Proof. As above set L = K(E[p]). The surjectivity of ρE,p implies that

G = Gal(L/K) ∼= Gal(Q(E[p])/Q) ∼= GL2(Fp).
If Z ⊂ G is the subgroup corresponding to the scalars in GL2(Fp), then the
Hochschild-Serre spectral sequence implies that

Hi(G/Z,Hj(Z,E(L)[p])) =⇒ Hi+j(L/K,E(L)[p]).

Since #Z = p−1, and E(L)[p] is a p-group, and p is odd, we have Hj(Z,E(L)[p]) = 0
for all j ≥ 1. Also, since p is odd, and non-identity scalars have no nonzero fixed
points, H0(Z,E(L)[p]) = 0. Thus for all i, j we have

Hi(G/Z,Hj(Z,E(L)[p])) = 0,

which implies that the groups Hi+j(L/K,E(L)[p]) are all 0. �

Thus our goal is to prove analogues of Propositions 5.1–5.2 under hypotheses
that are more amenable to computation.

5.2. Preliminaries.

Lemma 5.3. The determinant of ρE,p is the cyclotomic character, hence det(ρE,p)
is surjective.

Proof. For the convenience of the reader, we give a proof here. The Weil pairing
induces an isomorphism of Gal(Q/Q)-modules E[p]∧E[p] ∼= µp. Fix a basis {e1, e2}
of E[p], with respect to which ρp(σ) has the form

(
a b
c d

)
. Then

σ(e1 ∧ e2) = (ae1 + ce2) ∧ (be1 + de2) = det(ρp(σ)) · e1 ∧ e2.
It follows that composition with the determinant gives the cyclotomic character
(i.e., the action of Gal(Q/Q) on µp), which is surjective since no nontrivial roots of
unity lie in Q. �

We will choose the quadratic field K to be linearly disjoint from Q(E[p]), so
Gal(K(E[p])/K) ∼= Gal(Q(E[p])/Q). Thus, for our application, it will suffice to
show vanishing of Hi(Q(E[p])/Q, E[p]), for i > 0.

Let G ⊆ Gal(Q(E[p])/Q) be the image of ρE,p. If p ∤ #G, then for i > 0 we have

Hi(G,E[p]) = 0 since E[p] is a p-group. Therefore we may assume that p | #G. By
[Ser72, Prop. 15], the image G either contains SL2(Fp) or is contained in a Borel
subgroup of GL2(Fp). If G contains SL2(Fp) then properties of the Weil pairing
imply that

det : G → F∗
p

is surjective, so G = GL2(Fp). In this case, we already know Propositions 5.1–5.2.

Lemma 5.4. Assume that G is contained in a Borel subgroup of GL2(Fp). More-

over, assume that there is a basis of E[p] so that G acts as
( χ ∗

0 ψ

)
where χ and ψ

are nontrivial characters. Then Hi(G,E[p]) = 0.
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Proof. Let W = ( 1 ∗
0 1 ) be the unique p-Sylow subgroup of ( ∗ ∗

0 ∗ ) ⊂ GL2(Fp). We
may assume W ⊂ G, for otherwise G has order prime to p, and the cohomology
vanishes.

We begin by explicitly computing Hj(W,E[p]) using the fact that W is cyclic,
generated by w = ( 1 1

0 1 ). Recall that for cyclic groups we can compute cohomology
using the projective resolution

· · · → Z[W ] → Z[W ] → Z → 0

where the boundary maps alternate between multiplication by w − 1 and Norm =∑p−1
i=0 w

i.
Then we see that

Hj(W,E[p]) =

{
Ker(1 − w)/ Im(Norm(w)) = 〈( 1

0 )〉 , if j is even,

Ker(Norm(w))/ Im(1 − w) = F2
p/ 〈( 1

0 )〉 , if j is odd.

Since χ and ψ are nontrivial by assumption, the G/W -invariants for both of these
groups are trivial. Thus Hj(W,E[p])G/W = 0 for j ≥ 0. Consider the Hochschild-
Serre spectral sequence

Hi(G/W,Hj(W,E[p])) ⇒ Hi+j(G,E[p]).

For i > 0, since #(G/W ) is prime to p, and Hj(W,E[p]) is a p-group for all j,
the group Hi(G/W,Hj(W,E[p])) is trivial. But when i = 0 we have just computed
that Hi(G/W,Hj(W,E[p])) = Hj(W,E[p])G/W = 0, so the entire spectral sequence
is trivial, and we conclude that Hn(G,E[p]) = 0 for all n ≥ 0. �

5.3. Analogue of Proposition 5.1. In this section we verify that Hi(Kn/K,E(Kn)[p]) =
0 under a simple condition on p-torsion over K.

Proposition 5.5. Let E be an elliptic curve over Q and K be a quadratic imaginary
extension of Q. Assume that p is a prime with p ∤ #E(K)tor and if p = 3 assume
that K 6= Q(ζ3). Then for every finite abelian extension L of K we have

Hi(L/K,E(L)[p]) = 0 for all i ≥ 1.

Proof. Write the abelian group Gal(L/K) as a direct sum P ⊕ P ′, where P is its
Sylow p-subgroup, so p ∤ #P ′. First we show that the subgroup of E(L)[p] invariant
under P ′ is trivial. Let G = Gal(L/K)/H, where H is the subgroup of Gal(L/K)
that acts trivially on E(L)[p]. Thus G ⊂ Aut(E(L)[p]).

Case 1. If p ∤ #G, then P ⊆ H, so P ′ surjects onto G. There is no nonzero
element of E(L)[p] invariant under Gal(L/K) by our assumption that p ∤ #E(K),
so the same holds for P ′.

Case 2. If p | #G, we cannot have E(L)[p] = Fp, since Fp has automorphism group
isomorphic to F∗

p, of order p − 1, but G ⊂ Aut(E(L)[p]) and #G > p − 1. Thus,
E(L)[p] is the full p-torsion subgroup of E, and we identify G with a subgroup of
GL2(Fp) acting on E(L)[p] = F2

p.

We can choose a basis of F2
p so that G contains the subgroup generated by ( 1 1

0 1 ).
Since G is abelian, it must be contained in the normalizer of this subgroup, so
G ⊆ {( a b0 a ) : a ∈ F∗

p, b ∈ Fp}. We claim that G contains an element with a 6= 1.

Since E[p] = E(L)[p], the representation Gal(Q/K) → Aut(E[p]) factors through
Gal(L/K). The determinant of ρE,p : GQ → Aut(E[p]) is surjective onto F∗

p, and

[K : Q] = 2, so the character Gal(K/K) → F∗
p has image of index at most 2 in
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F ∗
p . That is, it contains at least (p − 1)/2 elements, the squares in F∗

p. Thus, for
p > 3, the group G contains an element with non-trivial determinant having the
form ( a b0 a ) with a 6= 1. Now, ( a b0 a )

p
= ( a 0

0 a ) since a, b ∈ Fp, so Gal(L/K) contains
an element that acts as a nontrivial scalar. Since the group of scalars in GL2(Fp)
has p− 1) elements, this nontrivial scalar must be in P ′, so E(L)[p]P

′
= 0.

We have shown in each case that E(L)[p]P
′

= 0. Because p ∤ #P ′ we have

Hi(P ′, E(L)[p]) = 0 for all i ≥ 1, so for each i ≥ 1 there is an exact inflation-
restriction sequence

0 → Hi(P,E(L)[p]P
′
) → Hi(L/K,E(L)[p]) → Hi(P ′, E(L)[p]).

The first group vanishes since E(L)[p]P
′

= 0, and the third group vanishes as
mentioned above. We conclude that Hi(L/K,E(L)[p]) = 0, as claimed.

Finally we deal with the case p = 3. The only situation in the above argument
where p = 3 is relevant is in Case 2, when 3 | #G. Our hypothesis that K 6= Q(ζ3)
implies that det(ρE,3) : Gal(K/K) → F∗

3 is surjective, since the fixed field of the
kernel of the mod 3 cyclotomic character is Q(ζ3). If we are in Case 2, then the
image of Gal(K/K) in GL2(F3) is contained in {( a b0 a ) : a ∈ F∗

p, b ∈ Fp}. Since no
upper triangular matrix has determinant 2, this contradicts surjectivity of det(ρE,3).
Thus our hypothesis that K 6= Q(ζ3) implies that Case 2 does not occur. �
Corollary 5.6. Let E be an elliptic curve with p ∤ #E(K)tor, where p > 3 or,
if p = 3, K 6= Q(ζ3). Let Kn be the ring class field of conductor n of K. Then
Hi(Kn/K,E(Kn)[p]) = 0 for all i ≥ 1.

Lemma 5.7. Let E be an elliptic curve over Q, let K be a quadratic imaginary
extension, and let p | #E(K)tor an odd prime. If p = 3, assume K 6= Q(ζ3). Then
ρE,p is reducible.

Proof. Let P ∈ E(K)[p] be nonzero, and let τ be a lift of the generator of Gal(K/Q)
to GQ. If τP is a multiple of P , then the one-dimensional subspace of E[p] generated
by P is GQ-stable, so ρE,p : GQ → Aut(E[p]) is is reducible. If τP is not a
multiple of P , then P and τP generate all of E[p]. Since τP ∈ E(K), we have
E(K)[p] = E(Q)[p]. Because the Weil pairing in nondegenerate we have µp ⊂ K.
This is a contradiction by our hypothesis on K and p. Since p > 3, this is a
contradiction. �
5.4. Analogue of Proposition 5.2. In this section we show how vanishing of
Hi(Q(E[p])/Q, E[p]) follows from a statement about torsion and rational isogenies.

Note that E has no Q-rational p-isogeny if and only if ρE,p is irreducible.

Proposition 5.8. If p is an odd prime and E has no Q-rational p-isogeny, then
Hi(Q(E[p])/Q, E[p]) = 0 for all i > 0.

Proof. Our hypothesis that E has no Q-rational p-isogeny implies that ρE,p is
irreducible. As we already noted, the problem reduces to the case when either G
is contained in a Borel subgroup or G = GL2(Fp). The latter case follows from
Proposition 5.2. The former case contradicts the hypothesis since the module E[p]
is reducible as a module over a Borel subgroup. �

For the above result, we used the irreducibility of the representation to deal with
the case when G was contained in a Borel subgroup. The following proposition
completes the proof of the general case:
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Proposition 5.9. Suppose p is an odd prime and that E(Q)[p] = 0 and for all
elliptic curves E′ that are p-isogenous to E over Q we have E′(Q)[p] = 0. Then

Hi(Q(E[p])/Q, E[p]) = 0 for all i > 0.

Proof. If E admits no p-isogeny, then Proposition 5.8 implies the required vanishing.
Thus E admits a rational p-isogeny, so E[p] is reducible, and G = Im(ρE,p) is
contained in a Borel subgroup. In particular, for some basis of E[p], the image G
acts as

( χ ∗
0 ψ

)
for characters χ and ψ. If both χ and ψ are nontrivial, then Lemma

5.4 implies the proposition and we are done. Thus assume that either χ or ψ is
trivial.

First suppose that χ is trivial. Then all matrices of the above form fix ( 1
0 ).

Therefore there is a point of E[p] fixed by the action of G, which contradicts the
assumption that E(Q)[p] = 0.

Next suppose that ψ is trivial. Matrices of the above form preserve the line gen-
erated by ( 1

0 ), so this line forms a Gal(Q/Q)-stable subspace of E[p]. In particular,
there exists an isogeny over Q to a curve E′ having this line as kernel. The image
under this isogeny of the line generated by ( 0

1 ) is a 1-dimensional subspace of E′[p],
and since ψ = 1, Gal(Q/Q) acts trivially on this subspace (we have an isomorphism
of Galois modules E/ 〈( 1

0 )〉 ∼= E′). Thus, E′(Q)[p] is nontrivial, contradicting our
assumption.

�
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Abstract: The Manin constant of an elliptic curve is an invariant that
arises in connection with the conjecture of Birch and Swinnerton-Dyer. One
conjectures that this constant is 1; it is known to be an integer. After
surveying what is known about the Manin constant, we establish a new
sufficient condition that ensures that the Manin constant is an odd integer.
Next, we generalize the notion of the Manin constant to certain abelian
variety quotients of the Jacobians of modular curves; these quotients are
attached to ideals of Hecke algebras. We also generalize many of the results
for elliptic curves to quotients of the new part of J0(N), and conjecture
that the generalized Manin constant is 1 for newform quotients. Finally an
appendix by John Cremona discusses computation of the Manin constant
for all elliptic curves of conductor up to 130000.

1. Introduction

Let E be an elliptic curve over Q, and and let N be the conductor of E.
By [BCDT01], we may view E as a quotient of the modular Jacobian J0(N).
After possibly replacing E by an isogenous curve, we may assume that the kernel
of the map J0(N)→ E is connected, i.e., that E is an optimal quotient of J0(N).

Let ω be the unique (up to sign) rational 1-form on a minimal Weierstrass
model of E over Z that restricts to a nowhere-vanishing 1-form on the smooth
locus. The pullback of ω is a rational multiple of the differential associated to
the normalized new cuspidal eigenform fE ∈ S2(Γ0(N)) associated to E. The
Manin constant cE of is E is the absolute value of this rational multiple. The
Manin constant plays a role in the conjecture of Birch and Swinnerton-Dyer (see,
e.g., [GZ86, p. 310]) and in work on modular parametrizations (see [Ste89, SW04,
Vat05]). It is known that the Manin constant is an integer; this fact is important
to Cremona’s computations of elliptic curves (see [Cre97, pg. 45]), and algorithms
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Stein was supported by the National Science Foundation by Grant No. 0400386.
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for computing special values of elliptic curve L-functions. Manin conjectured that
cE = 1. In Section 2, we summarize known results about cE , and give the new
result that 2 - cE if 2 is not a congruence prime and 4 - N .

In Section 3, we generalize the definition of the Manin constant and many
of the results mentioned so far to optimal quotients of J0(N) and J1(N) of any
dimension associated to ideals of the Hecke algebra. The generalized Manin
constant comes up naturally in studying the conjecture of Birch and Swinnerton-
Dyer for such quotients (see [AS05, §4]), which is our motivation for studying
the generalization. We state what we can prove about the generalized Manin
constant, and make a conjecture that the constant is also 1 for quotients
associated to newforms. The proofs of the theorems stated in Section 3 are in
Section 4. Section 5 is an appendix written by J. Cremona about computational
verification that the Manin constant is 1 for many elliptic curves.

Acknowledgments. The authors are grateful to A. Abbes, K. Buzzard,
R. Coleman, B. Conrad, B. Edixhoven, A. Joyce, L. Merel, and R. Taylor for
discussions and advice regarding this paper. The authors wish to thank the
referee for helpful comments and suggestions.

2. Optimal Elliptic Curve Quotients

Let N be a positive integer and let X0(N) be the modular curve over Q that
classifies isomorphism classes of elliptic curves with a cyclic subgroup of order N .
The Hecke algebra T of level N is the subring of the ring of endomorphisms
of J0(N) = Jac(X0(N)) generated by the Hecke operators Tn for all n ≥ 1.
Suppose f is a newform of weight 2 for Γ0(N) with integer Fourier coefficients,
and let If be kernel of the homomorphism T → Z[. . . , an(f), . . .] that sends Tn
to an(f). Then the quotient E = J0(N)/IfJ0(N) is an elliptic curve over Q. We
call E the optimal quotient associated to f . Composing the embedding X0(N) ↪→
J0(N) that sends x to (∞) − (x) with the quotient map J0(N) → E, we obtain
a surjective morphism of curves φE : X0(N) → E. The modular degree mE of E
is the degree of φE.

Let EZ denote the Néron model of E over Z. A general reference for
Néron models is [BLR90]; for the special case of elliptic curves, see, e.g., [Sil92,
App. C, §15], and [Sil94]. Let ω be a generator for the rank 1 Z-module of
invariant differential 1-forms on EZ. The pullback of ω to X0(N) is a differential
φ∗Eω on X0(N). The newform f defines another differential 2πif(z)dz = f(q)dq/q
on X0(N). Because the action of Hecke operators is compatible with the map
X0(N) → E, the differential φ∗Eω is a T-eigenvector with the same eigenvalues
as f(z), so by [AL70] we have φ∗Eω = c · 2πif(z)dz for some c ∈ Q∗ (see also
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[Man72, §5]). The Manin constant cE of E is the absolute value of the rational
number c defined above.

The following conjecture is implicit in [Man72, §5].

Conjecture 2.1 (Manin). We have cE = 1.

Significant progress has been made towards this conjecture. In the following
theorems, p denotes a prime and N denotes the conductor of E.

Theorem 2.2 (Edixhoven [Edi91, Prop. 2]). The constant cE is an integer.

Edixhoven proved this using an integral q-expansion map, whose existence
and properties follow from results in [KM85]. We generalize his theorem to
quotients of arbitrary dimension in Theorem 3.4.

Theorem 2.3 (Mazur, [Maz78, Cor. 4.1]). If p | cE, then p2 | 4N .

Mazur proved this by applying theorems of Raynaud about exactness
of sequences of differentials, then using the “q-expansion principle” in
characteristic p and a property of the Atkin-Lehner involution. We generalize
Mazur’s theorem in Corollary 3.7.

The following two results refine the above results at p = 2.

Theorem 2.4 (Raynaud [AU96, Prop. 3.1]). If 4 | cE, then 4 | N .

Theorem 2.5 (Abbes-Ullmo [AU96, Thm. A]). If p | cE, then p | N .

We generalize Theorem 2.4 in Theorem 3.10. However, it is not clear if
Theorem 2.5 generalizes to dimension greater than 1. It would be fantastic if the
theorem could be generalized. It would imply that the Manin constant is 1 for
newform quotients Af of J0(N), with N odd and square free, which be useful for
computations regarding the conjecture of Birch and Swinnerton-Dyer.

B. Edixhoven also has unpublished results (see [Edi89]) which assert that the
only primes that can divide cE are 2, 3, 5, and 7; he also gives bounds that are
independent of E on the valuations of cE at 2, 3, 5, and 7. His arguments rely
on the construction of certain stable integral models for X0(p2).

See Section 5 for more details about the following computation:

Theorem 2.6 (Cremona). If E is an optimal elliptic curve over Q with conductor
at most 130000, then cE = 1.

To the above list of theorems we add the following:

Theorem 2.7. If p | cE then p2 | N or p | mE.
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This theorem is a special case of Theorem 3.11 below. In view of Theorem 2.3,
our new contribution is that if mE is odd and ord2(N) = 1, then cE is odd. This
hypothesis is very stringent—of the optimal elliptic curve quotients of conductor
≤ 120000, only 56 of them satisfy the hypothesis.

3. Quotients of arbitrary dimension

For N ≥ 4, let Γ a subgroup of Γ1(N) that contains Γ0(N), let X be the
modular curve over Q associated to Γ, and let J be the Jacobian of X. Let I be
a saturated ideal of the corresponding Hecke algebra T, so T/I is torsion free.
Then A = AI = J/IJ is an optimal quotient of J .

For a newform f =
∑
an(f)qn ∈ S2(Γ), consider the ring homomorphism

T → Z[. . . , an(f), . . .] that sends Tn to an(f). The kernel If ⊂ T of this
homomorphism is a saturated prime ideal of T. The newform quotient Af
associated to f is the quotient J/IfJ . Shimura introduced Af in [Shi73] where
he proved that Af is an abelian variety over Q of dimension equal to the degree
of the field Q(. . . , an(f), . . .). He also observed that there is a natural map
T→ End(Af ) with kernel If .

For the rest of this section, fix a quotient A associated to a saturated ideal I
of T; note that A may or may not be attached to a newform.

3.1. Generalization to quotients of arbitrary dimension. If R is a subring
of C, let S2(R) = S2(Γ;R) denote the T-submodule of S2(Γ; C) of modular forms
whose Fourier expansions have all coefficients in R.

Lemma 3.1. The Hecke operators leave S2(R) stable.

Proof. If Γ = Γ0(N), then by the explicit description of the Hecke operators
on Fourier expansions (e.g., see [DI95, Prop. 3.4.3]), it is clear that the Hecke
operators leave S2(R) stable. For a general Γ, by [DI95, (12.4.1)], one just has to
check in addition that the diamond operators also leave S2(R) stable, which in
turn follows from [DI95, Prop. 12.3.11]. ¤
Lemma 3.2. We have S2(R) ∼= S2(Z)⊗R.

Proof. This is [DI95, Thm. 12.3.2] when our spaces S2(R) and S2(Z) are replaced
by their algebraic analogues (see [DI95, pg. 111]). Our spaces and their algebraic
analogues are identified by the natural q-expansion maps according to [DI95,
Thm. 12.3.7]. ¤

If B is an abelian variety over Q and S is a Dedekind domain with field of
fractions Q, then we denote by BS the Néron model of B over S; also, for ease
of notation, we will abbreviate H0(BS ,Ω

1
BS/S

) by H0(BS ,Ω
1
B/S).
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The inclusion X ↪→ J that sends the cusp ∞ to 0 induces an isomorphism

H0(X,Ω1
X/Q) ∼= H0(J,Ω1

J/Q).

Let φ2 be the optimal quotient map J → A. Then φ∗2 induces an inclusion
ψ : H0(AZ,Ω

1
A/Z) ↪→ H0(J,Ω1

J/Q)[I] ∼= S2(Q)[I], and we have the following

commutative diagram:

H0(A,Ω1
A/Q) Â Ä ∼= // H0(J,Ω1

J/Q)[I]
∼= // S2(Q)[I]

H0(AZ,Ω
1
A/Z)

?Â

OO

% ¦ ψ

33gggggggggggggggggggggggggg
S2(Z)[I]

?Â

OO

Definition 3.3. The Manin constant of A is the (lattice) index

cA = [S2(Z)[I] : ψ(H0(AZ,Ω
1
A/Z))].

Theorem 3.4 below asserts that cA ∈ Z, so we may also consider the Manin
module of A, which is the quotient M = S2(Z)[I]/ψ(H0(AZ,Ω

1
A/Z)), and the

Manin ideal of A, which is the annihilator of M in T.

If A is an elliptic curve, then cA is the usual Manin constant. The
constant c as defined above was also considered by Gross [Gro82, 2.5, p.222] and
Lang [Lan91, III.5, p.95]. The constant cA was defined for the winding quotient
in [Aga99], where it was called the generalized Manin constant. A Manin constant
is defined in the context of Q-curves in [GL01].

3.2. Motivation: connection with the conjecture of Birch and
Swinnerton-Dyer. On a Néron model, the global differentials are the
same as the invariant differentials, so H0(AZ,Ω

1
A/Z) is a free Z-module of

rank d = dim(A). The real measure ΩA of A is the measure of A(R) with respect

to the volume given by a generator of
∧dH0(AZ,Ω

1
A/Z) ' H0(AZ,Ω

d
AZ/Z

).

This quantity is of interest because it appears in the conjecture of Birch and
Swinnerton-Dyer, which expresses the ratio L(r)(A, 1)/ΩA, in terms of arithmetic
invariants of A, where r = ords=1 L(A, s) (see, e.g., [Lan91, Chap. III, §5] and
[AS05, §2.3]).

If we take a Z-basis of S2(Z)[I] and take the inverse image via the top chain of
arrows in the commutative diagram above, we get a Q-basis of H0(A,Ω1

A/Q); let

Ω′A denote the volume of A(R) with respect to the wedge product of the elements
in the latter basis (this is independent of the choice of the former basis). In doing
calculations or proving formulas regarding the ratio in the Birch and Swinnerton-
Dyer conjecture mentioned above, it is easier to work with the volume Ω′A instead
of working with ΩA. If one works with the easier-to-compute volume Ω′A instead
of ΩA, it is necessary to obtain information about cA in order to make conclusions
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regarding the conjecture of Birch and Swinnerton-Dyer, since ΩA = cA ·Ω′A. For
example, see [AS05, §4.2] when r = 0 and [GZ86, p. 310–311] when r = 1;
in each case, one gets a formula for computing the Birch and Swinnerton-Dyer
conjectural order of the Shafarevich-Tate group, and the formula contains the
Manin constant (see, e.g., [Mc91]).

The method of Section 5 for verifying that cA = 1 for specific elliptic
curves is of little use when applied to general abelian varieties, since there is
no simple analogue of the minimal Weierstrass model (but see [GL01] for Q-
curves). This emphasizes the need for general theorems regarding the Manin
constant of quotients of dimension bigger than one.

3.3. Results and a conjecture. We start by giving several results regarding
the Manin constant for quotients of arbitrary dimension. The proofs of most of
the theorems are given in Section 4.

Let Γ be a subgroup of Γ0(N) that contains Γ1(N). We have the following
generalization of Edixhoven’s Theorem 2.2.

Theorem 3.4. The Manin constant cA is an integer. (In the notation of
Section 3.1 we even have that ψ(H0(AZ,Ω

1
A/Z)) ⊆ S2(Z)[I].)

Proof. Let J = Jac(XΓ) and J ′ = J1(N). Suppose A is an optimal quotient of J .

We have natural maps H0(J ′Z,Ω
1
J ′/Z) ↪→ H0(J ′,Ω1

J ′/Q)
∼=→ S2(Γ1(N); Q); from

the proof of Lemma 6.1.6 of [CES03], the image of the composite is contained
in S2(Γ1(N); Z). The maps J ′ → J → A induce a chain of inclusions

H0(AZ,Ω
1
A/Z) ↪→ H0(JZ,Ω

1
J/Z) ↪→ H0(J ′Z,Ω

1
J ′/Z) ↪→ S2(Γ1(N); Z) ↪→ Z[[q]].

Combining this chain of inclusions with commutativity of the diagram

S2(Γ1(N))
F -exp

&&LLLLLLLLLL

S2(Γ)

f(q)7→f(q)
99rrrrrrrrrr F -exp // C[[q]],

where F -exp is the Fourier expansion map, we see that the image of H0(AZ,Ω
1
A/Z)

lies in S2(Z)[I], as claimed. ¤

For the rest of the paper, we take Γ = Γ0(N). For each prime ` | N with
ord`(N) = 1, let W` be the `th Atkin-Lehner operator. Let J = J0(N) and
A = AI = J/IJ be an optimal quotient of J attached to a saturated ideal I. If `
is a prime, then as usual, Z(`) will denote the localization of Z at `.
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Theorem 3.5. Suppose that ` is an odd prime such that `2 - N , and that if ` | N ,
then A∨ ⊂ J is stable under W`. Then ` | cA if and only if ` | N and S2(Z(`))[I]
is not stable under the action of W`.

We will prove this theorem in Section 4.2.

Remark 3.6. The condition that S2(Z(`))[I] is stable under W` can be verified
using standard algorithms. Thus in light of Theorem 3.5, if A is stable under all
Atkin-Lehner operators and N is square free, then one can compute the set of
odd primes that divide cA. It would be interesting to refine the arguments of this
paper to find an algorithm to compute cA exactly.

Let Jold denote the abelian subvariety of J generated by the images of the
degeneracy maps from levels that properly divideN (see, e.g., [Maz78, §2(b)]) and
let Jnew denote the quotient of J by Jold. A new quotient is a quotient J → A
that factors through the map J → Jnew. The following corollary generalizes
Mazur’s Theorem 2.3:

Corollary 3.7. If A = Af is an optimal newform quotient of J0(N) and ` | cA
is a prime, then ` = 2 or `2 | N .

Proof. Since f is a newform, W` acts as either 1 or −1 on A hence on S2(Z(`))[I].
Thus S2(Z(`))[I] is W`-stable. ¤
Corollary 3.8. If A = J0(N)new is the new subvariety of J0(N) and ` | cA is
a prime, then ` = 2 or `2 | N . (In particular, if N is prime then the Manin
constant of J0(N) is a power of 2, since A = J0(N)[I] for I = 0.)

Proof. We have W` = −T` on A (e.g., see the end of [DI95, §6.3]). Also the new
subspace S2(Z)new of S2(Γ0(N)) is T`-stable. ¤
Remark 3.9. If A = J0(33), then

W3 =




1 0 0
1
3

1
3 −4

3
1
3 −2

3 −1
3




with respect to the basis

f1 = q − q5 − 2q6 + 2q7 + · · · ,
f2 = q2 − q4 − q5 − q6 + 2q7 + · · · ,
f3 = q3 − 2q6 + · · ·

for S2(Z). Thus W3 does not preserve S2(Z(3)). In fact, the Manin constant of
J0(33) is not 1 in this case (see Section 3.4).

The hypothesis of Theorem 3.5 sometimes holds for non-new A. For example,
take J = J0(33) and ` = 3. Then W3 acts as an endomorphism of J , and
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a computation shows that the characteristic polynomial of W3 on S2(33)new is
x − 1 and on S2(33)old is (x − 1)(x + 1), where S2(33)old is the old subspace of
S2(33). Consider the optimal elliptic curve quotient A = J/(W3 + 1)J , which
is isogenous to J0(11). Then A is an optimal old quotient of J , and W3 acts
as −1 on A, so W3 preserves the corresponding spaces of modular forms. Thus
Theorem 3.5 implies that 3 - cA.

The following theorem generalizes Raynaud’s Theorem 2.4 (see also [GL01]
for generalizations to Q-curves).

Theorem 3.10. If f ∈ S2(Γ0(N)) is a newform and ` is a prime such that
`2 - N , then ord`(cAf ) ≤ dimAf .

Note that in light of Theorem 3.5, this theorem gives new information only
at ` = 2, when 2 ‖ N . We prove the theorem in Section 4.4

Let π denote the natural quotient map J → A. When we compose π with
its dual A∨ → J∨ (identifying J∨ with J using the inverse of the principal
polarization of J), we get an isogeny φ : A∨ → A. The modular exponent mA of
A is the exponent of the group ker(φ). When A is an elliptic curve, the modular
exponent is just the modular degree of A (see, e.g., [AU96, p. 278]).

Theorem 3.11. If f ∈ S2(Γ0(N)) is a newform and ` | cAf is a prime, then

`2 | N or ` | mA.

Again, in view of Corollary 3.7, this theorem gives new information only at
` = 2, when ord2(N) ≤ 1. We prove the theorem in Section 4.3.

The theorems above suggest that the Manin constant is 1 for quotients
associated to newforms of square-free level. In the case when the level is not
square free, computations of [FpS+01] involving Jacobians of genus 2 curves that
are quotients of J0(N)new show that cA = 1 for 28 two-dimensional newform
quotients. These include quotients having the following non-square-free levels:

32 · 7, 32 · 13, 53, 33 · 5, 3 · 72, 52 · 7, 22 · 47, 33 · 7.

The above observations suggest the following conjecture, which generalizes
Conjecture 2.1:

Conjecture 3.12. If f is a newform on Γ0(N) then cAf = 1.

It is plausible that cAf = 1 for any newform on any congruence subgroup

between Γ0(N) and Γ1(N). However, we do not have enough data to justify
making a conjecture in this context.
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3.4. Examples of nontrivial Manin constants. We present two sets of
examples in which the Manin constant is not 1.

Using results of [Kil02], Adam Joyce [Joy05] proves that there is a new
optimal quotient of J0(431) with Manin constant 2. Joyce’s methods also produce
examples with Manin constant 2 at levels 503 and 2089. For the convenience of
the reader, we breifly discuss his example at level 431. There are exactly two
elliptic curves E1 and E2 of prime conductor 431, and E1∩E2 = 0 as subvarieties
of J0(431), so A = E1 × E2 is an optimal quotient of J0(431) attached to a
saturated ideal I. If fi is the newform corresponding to Ei, then one finds that
f1 ≡ f2 (mod 2), and so g = (f1 − f2)/2 ∈ S2(Z)[I]. However g is not in the
image of H0(AZ,Ω

1
A/Z). Thus the Manin constant of A is divisible by 2.

As another class of examples, one finds by computation for each prime ` ≤ 100
that W` does not leave S2(Γ0(11`); Z(`)) stable. Theorem 3.5 (with I = 0) then
implies that the Manin constant of J0(11`) is divisible by ` for these values of `.

4. Proofs of some of the Theorems

In Sections 4.2, 4.3, and 4.4, we prove Theorems 3.5, 3.11, and 3.10
respectively. In Section 4.1, we state two lemmas that will be used in these
proofs. The proofs of the theorems may be read independently of each other,
after reading Section 4.1.

4.1. Two lemmas. The following lemma is a standard fact; we state it as a
lemma merely because it is used several times.

Lemma 4.1. Suppose i : A ↪→ B is an injective homomorphism of torsion-free
abelian groups. If p is a prime, then B/i(A) has no nonzero p-torsion if and only
if the induced map A⊗ Fp → B ⊗ Fp is injective.

Proof. Let Q denote the quotient B/i(A). Tensor the exact sequence 0 → A →
B → Q → 0 with Fp. The associated long exact sequences reveal that ker(A ⊗
Fp → B ⊗ Fp) ∼= Qtor[p]. ¤

Suppose ` is a prime such that `2 - N . In what follows, we will be stating
some standard facts taken from [Maz78, §2(e)] (which in turn relies on [DR73]).
Let XZ(`)

be the minimal regular resolution of the coarse moduli scheme associated

to Γ0(N) (as in [DR73, § VI.6.9]) over Z(`), and let ΩX/Z(`)
denote the relative

dualizing sheaf of XZ(`)
over Z(`). The Tate curve over Z(`)[[q]] gives rise to a

morphism from Spec Z(`)[[q]] to the smooth locus of XZ(`)
→ Spec Z(`). Since the

module of completed Kahler differentials for Z(`)[[q]] over Z(`) is free of rank 1 on

the basis dq, we obtain a map q-exp : H0(XZ(`)
,ΩX/Z(`)

)→ Z(`)[[q]].
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The natural morphism Pic0
X/Z(`)

→ JZ(`)
identifies Pic0

X/Z(`)
with the identity

component of JZ(`)
(see, e.g., [BLR90, §9.4–9.5]). Passing to tangent spaces along

the identity section over Z(`), we obtain an isomorphism H1(XZ(`)
,OXZ(`)

) ∼=
Tan(JZ(`)

). Using Grothendieck duality, one gets an isomorphism Cot(JZ(`)
)
∼=→

H0(XZ(`)
,ΩX/Z(`)

), where Cot(JZ(`)
) is the cotangent space at the identity section.

On the Néron model JZ(`)
, the group of global differentials is the same as the group

of invariant differentials, which in turn is naturally isomorphic to Cot(JZ(`)
). Thus

we obtain an isomorphism H0(JZ(`)
,Ω1

J/Z(`)
) ∼= H0(XZ(`)

,ΩX/Z(`)
).

Let G be a T-module equipped with an injection G ↪→ H0(JZ(`)
,Ω1

J/Z(`)
) of

T-modules such that G is annihilated by I. If ` | N , assume moreover that G is a
T[W`]-module and that the inclusion in the previous sentence is a homomorphism
of T[W`]-modules. As a typical example, G = H0(AZ(`)

,Ω1
A/Z(`)

), with the

injection π∗ : H0(AZ(`)
,Ω1

A/Z(`)
) ↪→ H0(JZ(`)

,Ω1
J/Z(`)

). Let Φ be the composition

of the inclusions

(1) G ↪→ H0(JZ(`)
,Ω1

J/Z(`)
) ∼= H0(XZ(`)

,ΩX/Z(`)
)

q-exp−−−−→ Z(`)[[q]],

and let ψ′ be the composition of

G ↪→ H0(JZ(`)
,Ω1

J/Z(`)
)[I] ↪→ S2(Z(`))[I],

where the last inclusion follows from a “local” version of Theorem 3.4. The maps
Φ and ψ′ are related by the commutative diagram

(2) S2(Z(`))[I]

F -exp

&&MMMMMMMMMM

G

ψ′
::vvvvvvvvvv Φ // Z(`)[[q]],

where F -exp is the Fourier expansion map (at infinity), as before.

We say that a subgroup B of an abelian group C is saturated (in C) if the
quotient C/B is torsion free.

Lemma 4.2. Recall that ` is a prime such that `2 - N . If ` divides N , suppose
that S2(Z(`))[I] is stable under the action of W`; if ` = 2 assume moreover that
W` acts as a scalar on A. Consider the map

G⊗ F` → H0(JZ(`)
,Ω1

J/Z(`)
)⊗ F`,

which is obtained by tensoring the inclusion G ↪→ H0(JZ(`)
,Ω1

J/Z(`)
) with F`. If

this map is injective, then the image of G under the map Φ of (2) is saturated
in Z(`)[[q]].
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Proof. By Lemma 4.1, it suffices to prove that the map

Φ` : G⊗ F` → Z(`)[[q]]⊗ F` = F`[[q]]

obtained by tensoring (1) with F` is injective. Let XF` denote the special fiber
of XZ(`)

and let ΩX/F` denote the relative dualizing sheaf of XF` over F`.

First suppose that ` does not divide N . Then XZ(`)
is smooth and proper over

Z(`). Thus the formation of H0(XZ(`)
,ΩXZ(`)

) is compatible with any base change

on Z(`) (such as reduction modulo `). The injectivity of Φ` now follows since by

hypothesis the induced map G⊗ F` → H0(JZ(`)
,Ω1

J/Z(`)
)⊗ F` is injective, and

H0(JZ(`)
,Ω1

J/Z(`)
)⊗ F`

∼= H0(XZ(`)
,ΩX/Z(`)

)⊗ F`
∼= H0(XF` ,ΩX/F`)→ F`[[q]]

is injective by the q-expansion principle (which is easy in this setting, since XF`
is a smooth and geometrically connected curve).

Next suppose that ` divides N . First we verify that ker(Φ`) is stable under W`.
Suppose ω ∈ ker(Φ`). Choose ω′ ∈ G such that the image of ω′ in G ⊗ F` is ω,
and let f = ψ′(ω′). Because Φ`(ω) = 0 in F`[[q]], there exists h ∈ Z(`)[[q]] such
that `h = F -exp(f). Let f ′ = f/` ∈ S2(Q); then f ′ is actually in S2(Z(`)) (since
F -exp(f/`) = h ∈ Z(`)[[q]]). Now `f ′ = f is annihilated by every element of I,
hence so is f ′; thus f ′ ∈ S2(Z(`))[I]. By hypothesis, W`(f

′) ∈ S2(Z(`))[I]. Then

Φ(W`ω
′) = F -exp(W`f) = ` · F -exp(W`f

′) ∈ `Z(`)[[q]].

Reducing modulo `, we get Φ`(W`ω) = 0 in F`[[q]]. Thus W`ω ∈ ker(Φ`), which
proves that ker(Φ`) is stable under W`.

Since W` is an involution, and by hypothesis either ` is odd or W` is a scalar,
the space ker(Φ`) breaks up into a direct sum of eigenspaces under W` with
eigenvalues ±1. It suffices to show that if ω ∈ ker(Φ`) is an element of either
eigenspace, then ω = 0. For this, we use a standard argument that goes back to
Mazur (see, e.g., the proof of Prop. 22 in [MR91]); we give some details to clarify
the argument in our situation.

Following the proof of Prop. 3.3 on p. 68 of [Maz77], we have

H0(XZ(`)
,ΩX/Z(`)

)⊗ F`
∼= H0(XF` ,ΩX/F`).

In the following, we shall think of G⊗F` as a subgroup of H0(XF` ,ΩX/F`), which

we can do by the hypothesis that the induced map G⊗F` → H0(JZ(`)
,Ω1

J/Z(`)
)⊗

F` is injective and that

H0(JZ(`)
,Ω1

J/Z(`)
)⊗ F`

∼= H0(XZ(`)
,ΩX/Z(`)

)⊗ F`
∼= H0(XF` ,ΩX/F`).

Suppose ω ∈ ker(Φ`) is in the ±1 eigenspace (we will treat the cases of
+1 and −1 eigenspaces together). We will show that ω is trivial over XF`

, the
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base change of XF` to an algebraic closure F`, which suffices for our purposes.
Since `2 - N , we have ` || N , and so the special fiber XF`

is as depicted on

p. 177 of [Maz77]: it consists of the union of two copies of X0(N/`)F`
identified

transversely at the supersingular points, and some copies of P1, each of which
intersects exactly one of the two copies of X0(N/`)F`

and perhaps another P1,
all of them transversally. All the singular points are ordinary double points, and
the cusp ∞ lies on one of the two copies of X0(N/`)F`

.

In particular, XF`
→ Spec F` is locally a complete intersection, hence

Gorenstein, and so by [DR73, § I.2.2, p. 162], the sheaf ΩX/F` = ΩX/F` ⊗ F`

is invertible. Since ω ∈ ker(Φ`), the differential ω vanishes on the copy
of X0(N/`)F`

containing the cusp ∞ by the q-expansion principle (which is easy
in this case, since all that is being invoked here is that on an integral curve,
the natural map from the group of global sections of an invertible sheaf into
the completion of the sheaf’s stalk at a point is injective). The two copies
of X0(N/`)F`

are swapped under the action of the Atkin-Lehner involution W`,

and thus W`(ω) vanishes on the other copy that does not contain the cusp ∞.
Since W`(ω) = ±ω, we see that ω is zero on both copies of X0(N/`)F`

. Also,

by the description of the relative dualizing sheaf in [DR73, § I.2.3, p. 162],

if π : X̃F`
→ XF`

is a normalization, then ω correponds to a meromorphic

differential ω̃ on X̃F`
which is regular outside the inverse images (under π) of the

double points on XF`
and has at worst a simple pole at any point that lies over a

double point on XF`
. Moreover, on the inverse image of any double point on XF`

,

the residues of ω̃ add to zero. For any of the P1’s, above a point of intersection
of the P1 with a copy of X0(N/`)F`

, the residue of ω̃ on the inverse image of the

copy of X0(N/`)F`
is zero (since ω is trivial on both copies of X0(N/`)F`

), and

thus the residue of ω̃ on the inverse image of P1 is zero. Thus ω̃ restricted to the
inverse image of P1 is regular away from the inverse image of any point where
the P1 meets another P1 (recall that there can be at most one such point). Hence
the restriction of ω̃ to the inverse image of the P1 is either regular everywhere or
is regular away from one point where it has at most a simple pole; in the latter
case, the residue is zero by the residue theorem. Thus in either case, ω̃ restricted
to the inverse image of the P1 is regular, and therefore is zero. Thus ω is trivial
on all the copies of P1 as well. Hence ω = 0, as was to be shown. ¤

4.2. Proof of Theorem 3.5. We continue to use the notation of Section 4.1.

First suppose that ` | N and S2(Z(`))[I] is not stable under the action of W`.

Relative differentials and Néron models are functorial, so H0(AZ(`)
,Ω1

A/Z(`)
) is

W`-stable. Thus the map H0(AZ(`)
,Ω1

A/Z(`)
)→ S2(Z(`))[I] is not surjective. But

cA is the order of the cokernel, so ` | cA.
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Next we prove the other implication, namely that if ` | cA, then ` | N
and S2(Z(`))[I] is not stable under W`. We will prove this by proving the
contrapositive, i.e., that if either ` - N or S2(Z(`))[I] is stable under W`, then
` - cA.

We now follow the discussion preceding Lemma 4.2, taking G =
H0(AZ(`)

,Ω1
A/Z(`)

). To show that ` - cA, we have to show that cA is a unit in Z(`).

For this, it suffices to check that in diagram (2), the image of H0(AZ(`)
,Ω1

A/Z(`)
)

in Z(`)[[q]] under Φ is saturated, since the image of S2(Γ0(N); Z(`))[I] under
F -exp is saturated in Z(`)[[q]]. In view of Lemma 4.2, it suffices to show that the
map

H0(AZ(`)
,Ω1

A/Z(`)
)⊗ F` → H0(JZ(`)

,Ω1
J/Z(`)

)⊗ F`

is injective.

Since A is an optimal quotient, ` 6= 2, and J has good or semistable reduction
at `, [Maz78, Cor 1.1] yields an exact sequence

0→ H0(AZ(`)
,Ω1

A/Z(`)
)→ H0(JZ(`)

,Ω1
J/Z(`)

)→ H0(BZ(`)
,Ω1

B/Z(`)
)→ 0

where B = ker(J → A). Since H0(BZ(`)
,Ω1

B/Z(`)
) is torsion free, by Lemma 4.1

the map H0(AZ(`)
,Ω1

A/Z(`)
)⊗F` → H0(JZ(`)

,Ω1
J/Z(`)

)⊗F` is injective, as was to

be shown.

4.3. Proof of Theorem 3.11. We continue to use the notation and hypotheses
of Section 4.1 (so `2 - N) and assume in addition that A is a newform quotient,
and that ` - mA. We have to show that then ` - cA. Just as in the previous proof,
it suffices to check that the image of H0(AZ(`)

,Ω1
A/Z(`)

) in Z(`)[[q]] is saturated.

Since A is a newform quotient, if ` | N , then W` acts as a scalar on A and
on S2(Γ0(N); Z(`))[I]. So again, using Lemma 4.2, it suffices to show that the

map H0(AZ(`)
,Ω1

A/Z(`)
)⊗ F` → H0(JZ(`)

,Ω1
J/Z(`)

)⊗ F` is injective.

The composition of pullback and pushforward in the following diagram is
multiplication by the modular exponent of A:

H0(JZ(`)
,Ω1

J/Z(`)
)

π∗

))RRRRRRRRRRRRR

H0(AZ(`)
,Ω1

A/Z(`)
)

π∗
55lllllllllllll

mA // H0(AZ(`)
,Ω1

A/Z(`)
)

Since mA ∈ Z(`)
×, the map π∗ is a section to the map π∗ up to a unit and hence

its reduction modulo ` is injective, which is what was left to be shown.
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4.4. Proof of Theorem 3.10. Theorem 3.10 asserts that if A = Af is a quotient
of J = J0(N) attached to a newform f , and ` is a prime such that `2 - N , then
ord`(cA) ≤ dim(A). Our proof follows [AU96], except at the end we argue using
lattice indices instead of multiples.

Let B denote the kernel of the quotient map J → A. Consider the exact
sequence 0→ B → J → A→ 0, and the corresponding complex BZ(`)

→ JZ(`)
→

AJZ(`)
of Néron models. Because JZ(`)

has semiabelian reduction (since `2 - N),

Theorem A.1 of the appendix of [AU96, pg. 279–280], due to Raynaud, implies
that there is an integer r and an exact sequence

0→ Tan(BZ(`)
)→ Tan(JZ(`)

)→ Tan(AZ(`)
)→ (Z/`Z)r → 0.

Here Tan is the tangent space at the 0 section; it is a finite free Z(`)-module of
rank equal to the dimension. In particular, we have r ≤ d = dim(A). Note that
Tan is Z(`)-dual to the cotangent space, and the cotangent space is isomorphic
to the space of global differential 1-forms. The theorem of Raynaud mentioned
above is the generalization to e = `−1 of [Maz78, Cor. 1.1], which we used above
in the proof of Theorem 3.5.

Let C be the cokernel of Tan(BZ(`)
)→ Tan(JZ(`)

). We have a diagram

(3) 0 // Tan(BZ(`)
) // Tan(JZ(`)

) //

%% %%LLL
LLL

Tan(AZ(`)
) // (Z/`Z)r // 0.

C
+ ®

88rrrrrr

Since C ⊂ Tan(AZ(`)
), so C is torsion free, we see that C is a free Z(`)-module

of rank d. Let C∗ = HomZ(`)
(C,Z(`)) be the Z(`)-linear dual of C. Applying the

HomZ(`)
(−,Z(`)) functor to the two short exact sequences in (3), we obtain exact

sequences

0→ C∗ → H0(JZ(`)
,Ω1

J/Z(`)
)→ H0(BZ(`)

,Ω1
B/Z(`)

)→ 0,

and

(4) 0→ H0(AZ(`)
,Ω1

A/Z(`)
)→ C∗ → (Z/`Z)r → 0.

The (Z/`Z)r on the right in (4) occurs as Ext1
Z(`)

((Z/`Z)r,Z(`)).

Since H0(BZ(`)
,Ω1

B/Z(`)
) is torsion free, by Lemma 4.1, the induced map

C∗ ⊗ F` → H0(JZ(`)
,Ω1

J/Z(`)
)⊗ F`

is injective. Since A is a newform quotient, if ` | N then W` acts as a scalar on C∗

and on S2(Γ0(N); Z(`))[I]. Using Lemma 4.2, with G = C∗, we see that the image
of C∗ in Z(`)[[q]] under the composite of the maps in (1) is saturated. The Manin

constant for A at ` is the index of the image via q-expansion of H0(AZ(`)
,Ω1

A/Z(`)
)

in Z(`)[[q]] in its saturation. Since the image of C∗ in Z(`)[[q]] is saturated, the
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image of C∗ is the saturation of the image of H0(AZ(`)
,Ω1

A/Z(`)
), so the Manin

constant at ` is the index of H0(AZ(`)
,Ω1

A/Z(`)
) in C∗, which is `r by (4), hence is

at most `d.

5. Appendix by J. Cremona: Verifying that c = 1

Let f be a normalised rational newform for Γ0(N). Let Λf be its period
lattice; that is, the lattice of periods of 2πif(z)dz over H1(X0(N),Z).

We know that Ef = C/Λf is an elliptic curve Ef defined over Q and of
conductor N . This is the optimal quotient of J0(N) associated to f . Our goal
is two-fold: to identify Ef (by giving an explicit Weierstrass model for it with
integer coeffients); and to show that the associated Manin constant for Ef is 1.
In this section we will give an algorithm for this; our algorithm applies equally
to optimal quotients of J1(N).

As input to our algorithm, we have the following data:

(1) a Z-basis for Λf , known to a specific precision;
(2) the type of the lattice Λf (defined below); and
(3) a complete isogeny class of elliptic curves {E1, . . . , Em} of conductor N ,

given by minimal models, all with L(Ej , s) = L(f, s).

So Ef is isomorphic over Q to Ej0 for a unique j0 ∈ {1, . . . ,m}.
The justification for this uses the full force of the modularity of elliptic curves

defined over Q: we have computed a full set of newforms f at level N , and the
same number of isogeny classes of elliptic curves, and the theory tells us that
there is a bijection between these sets. Checking the first few terms of the L-
series (i.e., comparing the Hecke eigenforms of the newforms with the traces of
Frobenius for the curves) allows us to pair up each isogeny class with a newform.

We will assume that one of the Ej , which we always label E1, is such that
Λf and Λ1 (the period lattice of E1) are approximately equal. This is true in
practice, because our method of finding the curves in the isogeny class is to
compute the coefficients of a curve from numerical approximations to the c4 and
c6 invariants of C/Λf ; in all cases these are very close to integers which are the
invariants of the minimal model of an elliptic curve of conductor N , which we
call E1. The other curves in the isogeny class are then computed from E1. For
the algorithm described here, however, it is irrelevant how the curves Ej were
obtained, provided that Λ1 and Λf are close (in a precise sense defined below).

Normalisation of lattices: every lattice Λ in C which defined over R has a
unique Z-basis ω1, ω2 satisfying one of the following:

• Type 1: ω1 and (2ω2 − ω1)/i are real and positive; or
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• Type 2: ω1 and ω2/i are real and positive.

For Λf we know the type from modular symbol calculations, and we know
ω1, ω2 to a certain precision by numerical integration; modular symbols provide
us with cycles γ1, γ2 ∈ H1(X0(N),Z) such that the integral of 2πif(z)dz over
γ1, γ2 give ω1, ω2.

For each curve Ej we compute (to a specific precision) a Z-basis for its period
lattice Λj using the standard AGM method. Here, Λj is the lattice of periods
of the Néron differential on Ej . The type of Λj is determined by the sign of
the discriminant of Ej : type 1 for negative discriminant, and type 2 for positive
discriminant.

For our algorithm we will need to know that Λ1 and Λf are approximately
equal. To be precise, we know that they have the same type, and also we verify,
for a specific positive ε, that

(*)

∣∣∣∣
ω1,1

ω1,f
− 1

∣∣∣∣ < ε and

∣∣∣∣
im(ω2,1)

im(ω2,f )
− 1

∣∣∣∣ < ε.

Here ω1,j , ω2,j denote the normalised generators of Λj , and ω1,f , ω2,f those of Λf .

Pulling back the Néron differential on Ej0 to X0(N) gives c ·2πif(z)dz where
c ∈ Z is the Manin constant for f . Hence

cΛf = Λj0 .

Our task is now to

(1) identify j0, to find which of the Ej is (isomorphic to) the “optimal” curve
Ef ; and

(2) determine the value of c.

Our main result is that j0 = 1 and c = 1, provided that the precision bound
ε in (*) is sufficiently small (in most cases, ε < 1 suffices). In order to state this
precisely, we need some further definitions.

A result of Stevens says that in the isogeny class there is a curve, say Ej1 ,
whose period lattice Λj1 is contained in every Λj ; this is the unique curve in
the class with minimal Faltings height. (It is conjectured that Ej1 is the Γ1(N)-
optimal curve, but we do not need or use this fact. In many cases, the Γ0(N)-
and Γ1(N)-optimal curves are the same, so we expect that j0 = j1 often; indeed,
this holds for the vast majority of cases.)

For each j, we know therefore that aj = ω1,j1/ω1,j ∈ N and also bj =
im(ω2,j1)/im(ω2,j) ∈ N. Let B be the maximum of a1 and b1.

Proposition 5.1. Suppose that (*) holds with ε = B−1; then j0 = 1 and c = 1.
That is, the curve E1 is the optimal quotient and its Manin constant is 1.
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Proof. Let ε = B−1 and λ =
ω1,1

ω1,f
, so |λ− 1| < ε. For some j we have cΛf = Λj .

The idea is that lcm(a1, b1)Λ1 ⊆ Λj1 ⊆ Λj = cΛf ; if a1 = b1 = 1, then the
closeness of Λ1 and Λf forces c = 1 and equality throughout. To cover the
general case it is simpler to work with the real and imaginary periods separately.

Firstly,
ω1,j

ω1,f
= c ∈ Z.

Then

c =
ω1,1

ω1,f

ω1,j

ω1,1
=
a1

aj
λ.

Hence

0 ≤ |λ− 1| = |ajc− a1|
a1

< ε.

If λ 6= 1, then ε > |λ − 1| ≥ a−1
1 ≥ B−1 = ε, contradiction. Hence λ = 1, so

ω1,1 = ω1,f . Similarly, we have

im(ω2,j)

im(ω2,f )
= c ∈ Z

and again we can conclude that im(ω2,1) = im(ω2,f ), and hence ω2,1 = ω2,f .

Thus Λ1 = Λf , from which the result follows. ¤
Theorem 5.2. For all N < 60000, every optimal elliptic quotient of J0(N) has
Manin constant equal to 1. Moreover, the optimal curve in each class is the one
whose identifying number on the tables [Cre] is 1 (except for class 990h where the
optimal curve is 990h3).

Proof. For all N < 60000 we used modular symbols to find all newforms f and
their period lattices, and also the corresponding isogeny classes of curves. In all
cases we verified that (*) held with the appropriate value of ε. (The case of 990h
is only exceptional on account of an error in labelling the curves several years
ago, and is not significant.) ¤
Remark 5.3. In the vast majority of cases, the value of B is 1, so the precision
needed for the computation of the periods is very low. For N < 60000, out
of 258502 isogeny classes, only 136 have B > 1: we found a1 = 2 in 13 cases,
a1 = 3 in 29 cases, and a1 = 4 and a1 = 5 once each (for N = 15 and N = 11
respectively); b1 = 2 in 93 cases; and no larger values. Class 17a is the only one
for which both a1 and b1 are greater than 1 (both are 2).

Finally, we give a slightly weaker result for 60000 < N < 130000; in this
range we do not know Λf precisely, but only its projection onto the real line.
(The reason for this is that we can find the newforms using modular symbols for
H+

1 (X0(N),Z), which has half the dimension of H1(X0(N),Z); but to find the
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exact period lattice requires working in H1(X0(N),Z).) The argument is similar
to the one given above, using B = a1.

Theorem 5.4. For all N in the range 60000 < N < 130000, every optimal
elliptic quotient of J0(N) has Manin constant equal to 1.

Proof. We continue to use the notation above. We do not know the lattice Λf
but only (to a certain precision) a positive real number ω+

1,f such that either Λf

has type 1 and ω1,f = 2ω+
1,f , or Λf has type 2 and ω1,f = ω+

1,f . Curve E1 has

lattice Λ1, and the ratio λ = ω+
1,1/ω

+
1,f satisfies |λ− 1| < ε. In all cases this holds

with ε = 1
3 , which will suffice.

First assume that a1 = 1.

If the type of Λf is the same as that of Λ1 (for example, this must be the
case if all the Λj have the same type, which will hold whenever all the isogenies
between the Ej have odd degree) then from cΛf = Λj we deduce as before that
λ = 1 exactly, and c = a1/aj = 1/aj , hence c = aj = 1. So in this case we have
that c = 1, though there might be some ambiguity in which curve is optimal if
aj = 1 for more than one value of j.

Assume next that Λ1 has type 1 but Λf has type 2. Now λ = ω1,1/2ω1,f .
The usual argument now gives caj = 2. Hence either c = 1 and aj = 2, or c = 2
and aj = 1. To see if the latter case could occur, we look for classes in which
a1 = 1 and Λ1 has type 1, while for some j > 1 we also have aj = 1 and Λj of
type 2. This occurs 28 times for 60000 < N < 130000, but for 15 of these the
level N is odd, so we know that c must be odd. The remaining 13 cases are

62516a, 67664a, 71888e, 72916a, 75092a, 85328d, 86452a, 96116a,

106292b, 111572a, 115664a, 121168e, 125332a;

we have been able to eliminate these by carrying out the extra computations
necessary as in the proof of Theorem 5.2. We note that in all of these 13 cases,
the isogeny class consists of two curves, E1 of type 1 and E2 of type 2, with
[Λ1 : Λ2] = 2, so that E2 rather than E1 has minimal Faltings height.

Next suppose that Λ1 has type 2 but Λf has type 1. Now λ = 2ω1,1/ω1,f .
The usual argument now gives 2caj = 1, which is impossible; so this case cannot
occur.

Finally we consider the cases where a1 > 1. There are only three of these for
60000 < N < 130000: namely, 91270a, 117622a and 124973b, where a1 = 3. In
each case the Λj all have the same type (they are linked via 3-isogenies) and the
usual argument shows that caj = 3. But none of these levels is divisible by 3, so
c = 1 in each case. ¤
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AVERAGE RANKS OF ELLIPTIC CURVES: TENSION

BETWEEN DATA AND CONJECTURE

BAUR BEKTEMIROV, BARRY MAZUR, WILLIAM STEIN AND MARK WATKINS

Abstract. Rational points on elliptic curves are the gems of arithmetic: they
are, to diophantine geometry, what units in rings of integers are to algebraic
number theory, what algebraic cycles are to algebraic geometry. A rational
point in just the right context, at one place in the theory, can inhibit and
control—thanks to ideas of Kolyvagin [Kol88]—the existence of rational points
and other mathematical structures elsewhere. Despite all that we know about
these objects, the initial mystery and excitement that drew mathematicians
to this arena in the first place remains in full force today.

We have a network of heuristics and conjectures regarding rational points,
and we have massive data accumulated to exhibit instances of the phenomena.
Generally, we would expect that our data support our conjectures; and if not,
we lose faith in our conjectures. But here there is a somewhat more surprising
interrelation between data and conjecture: they are not exactly in open conflict
one with the other, but they are no great comfort to each other either. We
discuss various aspects of this story, including recent heuristics and data that
attempt to resolve this mystery. We shall try to convince the reader that,
despite seeming discrepancy, data and conjecture are, in fact, in harmony.

1. Introduction

Suppose you are given an algebraic curve C defined, let us say, as the locus of
zeroes of a polynomial f(x, y) in two variables with rational coefficients. Suppose
you are told that C has at least one rational point, i.e., there is a pair of rational
numbers (a, b) such that f(a, b) = 0. How likely is it that C will have infinitely
many rational points?

Such a question, on the one hand, clearly touches on a fundamental issue in
diophantine geometry, and on the other, is somewhat meaningless until it is made
more precise and appropriately organized. The question we have just asked has
distinctly different features when considered for each of the three basic “types” of
algebraic curves: curves of (geometric) genus 0, 1, and > 1. Curves of genus 0
possessing a rational point always have infinitely many rational points (an easy
fact; indeed, even known to the ancient Greeks, since our curve can be written as
a conic in this case); curves of genus > 1 never do (a hard fact; indeed a theorem
of Faltings [Fal86], for which he received the Fields Medal).

This leaves curves of genus 1 as the unresolved, and thus most interesting, case
of the problem we posed, since some elliptic curves, like

x3 + y3 = 1,

only have finitely many rational points (two, in this instance) and others, like

y2 + y = x3 − x,
1
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have infinitely many, starting with (0, 0), (1, 0), (−1, −1), (2, −3), (1/4, −5/8),
(6, 14), (−5/9, 8/27), (21/25, −69/125), (−20/49, −435/343), . . ..

If we are to try to extract an actual number between 0 and 1 that will describe
“the” probability that a curve of genus 1 possessing at least one rational point has
infinitely many, we have to be precise about exactly which curves we want to count,
and how we propose to “sort” them. Let us agree, then (with details later):

• to deal only with the smooth projective models of the curves of genus 1
possessing a rational point (these being precisely the elliptic curves defined
over Q),

• to count their isomorphism classes over Q, and
• to list them in order of increasing conductor, banking on the theorem that

tells us that there are only finitely many isomorphism classes of elliptic
curves over Q with any given conductor.

We can now pose our question. Does

P (X) =
#{elliptic curves of conductor ≤ X with infinitely many rational points}

#{elliptic curves of conductor ≤ X}
converge as X tends to infinity, and if so, what is the limit

P = lim
X→∞

P (X)?

In this way we have made our initial question precise:

What is the probability P that an elliptic curve has infinitely many rational points?

It is extraordinary how much vacillation there has been in the past three decades,
in the various guesses about the answer to this—clearly basic—question. The sub-
ject of this paper is to discuss aspects of this drama. Its see-saw history, involving
a network of heuristics and conjectures and massive data that seemed not to offer
much comfort to the conjecturers, comes in four parts.

(1) The minimalist conjecture. The “classical” Birch and Swinnerton-Dyer
conjecture (see Section 2) suggests that the probability P described by our
question is at least 1/2. The reason for this is the (heuristic) phenomenon of
parity: elliptic curves can be sorted into two classes, those of even parity,
where the “sign in the functional equation of the L-function” is +1, and
those of odd parity, where the “sign” is −1. The (conjectural) probability
that an elliptic curve is of even parity is 1/2, and the same—of course—for
odd parity. A consequence of the Birch and Swinnerton-Dyer conjecture is
that all elliptic curves of odd parity have infinitely many rational points.
This is why no one doubts that the probability P described above is ≥ 1/2.

It has long been a folk conjecture that P is exactly 1/2—let us call this the
minimalist conjecture. Given the Birch and Swinnerton-Dyer conjecture
and the Parity Principle, an equivalent, and cleaner, way of stating it is as
follows:

Conjecture 1.1. An elliptic curve of even parity has probability zero of
having infinitely many rational points.

This minimalist conjecture might seem appealing purely on the grounds
that rational points of elliptic curves are accidental gems of mathemat-
ics, and it is hard to imagine that there could be bulk occurrence of these
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precious accidents—or at least substantially more bulk than is already pre-
dicted.

It seems that one cannot find such a minimalist conjecture explicitly in
the literature until very recently (see [Wat06] and Conjecture 3.4). Nev-
ertheless, for some particular families of elliptic curves (the “quadratic
twist” families—see Section 3.3 below) the conjecture is much older. Over
a quarter of a century ago, Dorian Goldfeld conjectured that for any elliptic
curve E, the probability

G(D) =
#{quadratic twists up to D of E with infinitely many rational points}

#{quadratic twists up to D of E}

has G = 1/2 as its limit as D → ∞.
(2) Contrary numerical data. The next phase of our story involves the

accumulation of numerical data regarding this probability P taken over the
entirety of elliptic curves, and also over various selected families of elliptic
curves. The short description of this data (but see the detailed discussion in
the body of our article) is the following. Over every data set accumulated
so far, about 2/3 (or sometimes more) of the curves in the families being
considered have had infinitely many rational points, and rather flatly so over
the range of conductors involved in the computations; these now include a
large set (over 100 million curves) of elliptic curves of conductor < 108.

(3) A gross heuristic, for special families. To get the most precise re-
sults we change the data set, and restrict attention to the probability that
a member of even parity of a quadratic twist family of elliptic curves has
infinitely many rational points. As a refinement to Goldfeld’s conjecture,
Peter Sarnak gave a heuristic that predicts that among the first D members
of such a quadratic twist family (essentially arranged in order of increasing
conductor) the number of those with even parity and infinitely many ratio-
nal points is caught between D3/4−ǫ and D3/4+ǫ for any positive ǫ and D
sufficiently large. This guess, based on consideration of the size of Fourier
coefficients of modular forms of half-integral weight, revived the minimalist
conjecture: if Sarnak’s estimate is correct, we would indeed have G = 1/2 in
Goldfeld’s conjecture, and even-parity members of a quadratic twist family
would have probability zero of having infinitely many rational points.

At this point in our story, there is decided friction between accumulated
data which suggests something like 2/3 as the probability for the general
member to have infinitely many rational points, and a reasoned theoreti-
cal expectation, which suggests exactly 1/2 for that probability. Generally,
the least we would expect of our data is that they either support our con-
jectures, or overthrow them. Here there was a somewhat more surprising
interrelation between data and conjecture: a kind of truce between them:
we believed our guesses, we believed the data, and acknowledged the ap-
parent gap between them.

(4) A refined heuristic, for special families. More recently, another twist
to this story has developed. The work of Katz and Sarnak [KaSa99] re-
garding symmetry groups of the analogous families of curves over function
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fields1 gave impetus to the random matrix theory calculations of Keating
and Snaith [KeSn00] regarding moments of L-functions and their value dis-
tribution. This was then combined with a discretization process by Conrey,
Keating, Rubinstein, and Snaith in [CKRS02] to give a more precise guess
for the (asymptotic) number of even parity curves with infinitely many
rational points in a given quadratic twist family. For example, for the
quadratic twist family y2 = x3 − d2x, the prediction is that among the
first D members of this family, the number of those with even parity and
infinitely many rational points is asymptotic to

(1) F (D) = c · D3/4 log(D)11/8

for some (positive) constant c.

0 1088·1076·1074·1072·107

Figure 1. Plots of D3/4 log(D)11/8 (upper) and ∆19/24(log ∆)3/8

(lower) up to 108

On the one hand, this is a sharpening of the prior heuristic, for F (D)
is comfortably sandwiched between D3/4±ǫ. On the other hand, we may
be in for a surprise when we actually plot the graph of the function F (D).
See Figure 1. The striking aspect of the graph in Figure 1 is how “linear”
it looks. Indeed, if F (D) were replaced by a linear function with roughly
the slope that appears in Figure 1, it would predict something closer to 2/3
than 1/2 for the proportion of curves in the family with infinitely many
rational points.

Similarly—cf. Section 3.5 below—if we order all elliptic curves by dis-
criminant, one of us (see [Wat06]) has conjectured that the number of even

1More recently, Kowalski [KowB] has used monodromy results of Katz to prove upper bounds
for average ranks in the function field analogues.
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parity elliptic curves with infinitely many rational points and absolute dis-
criminant less than X is asymptotically given by

Φ(X) = cX19/24(log X)3/8.

See Figure 1.

Here, roughly speaking, is where the story is at present, as we will explain in
detail in the body of this article. The curious last phase of it, focussing on special
families, makes it seem now that data for these families is (a) more closely adhering
to the refined guess than one might expect, even for relatively small values of the
conductor, and (b) a refined guess predicts an asymptotic behavior that is far
from linear, but within the currently attainable range is so close to linear, that
the numerical evidence elucidating these phenomena (even the very large data sets
that computers have amassed) seem indecisive when it comes to distinguishing
convincingly between such gross questions as: is the probability closer to 1/2 or
to 2/3?

It may very well be that until we actually prove our conjectures, no data that we
can accumulate, however massive it may appear, will give even lukewarm comfort
to the conjecturers.2 This conflict raises the question of whether we as mathemati-
cians may, at times, face a situation where the substance we study has one shape
asymptotically, and yet all computational evidence elucidating this substance, even
up to the very large numbers that computers today, or in our lifetime, can com-
pute, seems consistent with the possibility that the data have a different asymptotic
shape.

But, of course, our story will continue. We would hope for

• a refined heuristic that covers the full set of elliptic curves, and not just
quadratic twist families,

• an extension of the numerical computation to conductors < 1010, which is
a range where we may begin to see some significant differences between the
graph of F (D) and a linear function,

• a conceptual understanding of how to obtain—by more unified means—
this impressive bulk of rational points that we see occurring for even parity
elliptic curves, at least for curves of “small” conductor.

We find it useful to compare our question what is the probability that an elliptic
curve has infinitely many points with some of the other counting problems of current
interest. Specifically, consider the problem of counting quartic fields and sorting
them into classes corresponding to the isomorphy type of the Galois group of their
Galois closure. We have to be exceedingly careful when choosing the coefficients of
a degree 4 polynomial if we want a root of that polynomial to generate anything
other than a field whose Galois group is S4. Hilbert’s irreducibility theorem provides
corroboration of this with a proof that if you rank algebraic numbers of degree 4
by the size of the coefficients of their minimal polynomial (monic, over Q) then
100% of them have Galois group S4. But consider the problem of counting quartic

2 We are reminded of the challenge of Shanks [Sha85, §69] regarding Carmichael numbers; with
respect to the conjecture of Erdős that, for every ǫ > 0, there are, for sufficiently large X, at least
X1−ǫ Carmichael numbers up to X, Shanks (essentially) noted that the data for small X did not
remotely conform to this, and proposed giving an explicit X for which there were at least (say)√

X Carmichael numbers up to X, suspecting that exhibiting such an X would be much beyond
the capabilities of computers.
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fields (rather than the algebraic numbers that generate them) listed by the size
(absolute value) of their discriminant. Counting field extensions of a given field
whose Galois closure has its Galois group of a particular isomorphy type has been
the subject of a number of precise conjectures (initially [CDO], and then successively
refined in [Mal02, Mal04]). Bhargava’s remarkable paper [Bha05], which is further
evidence for these conjectures, proves that when we count quartic fields, nested by
absolute discriminant, we do not get that 100% of them have Galois group S4.

Bhargava regards the problem of counting quartic fields as a problem purely in
the Geometry of Numbers, and proves the following theorem:

Theorem 1.2. [Bhargava]. When ordered by absolute discriminant, a positive pro-
portion (approximately 0.17111) of quartic fields have associated Galois group D4

(the dihedral group). The remaining approximately 0.82889 of quartic fields have
Galois group S4, and the other three transitive subgroups occur with probability 0
asymptotically.

It should be noted that these are Bhargava’s percentages when counting fields
up to isomorphism; when working in a fixed algebraic closure of the rationals, the
percentages are not the same.

We would be more than delighted to see unconditional results of this precision
established for questions such as the one motivating this survey article.

Acknowledgment. We thank Armand Brumer, Frank Calegari, Noam Elkies and
Oisin McGuinness for stimulating conversations. We used PARI [ABCRZ] and
SAGE [SJ05] to compute and analyze the data, and matplotlib [Mpl05] to draw
the graphs. We thank Bob Guralnik for references to work about distributions of
Galois groups. Similar surveys to this are those of Rubin and Silverberg [RS02]
and Kowalski [KowA], the latter of which also relates random matrix theory to
the theory of elliptic curves, and then discusses questions related to the inability
of reconciling experimental data with theoretical asymptotics, particularly with
respect to the work of Heath-Brown [HB93] on the 2-Selmer rank of the congruent
number curves.

2. Elliptic Curves

An elliptic curve E over Q is a projective nonsingular curve defined as the pro-
jective closure of the zero locus of an equation of the form

(2) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

with the ai in Q. The set E(Q) of rational points on E is equipped with an abelian
group structure (see [Sil92]).

Via completing the square in the y-variable, translating to eliminate the quadra-
tic x-term, and then re-scaling, we find that the equation (2) is rationally equivalent
to exactly one of the form

(3) y2 = x3 − 27c4x − 54c6,

with c4, c6, ∆ = (c3
4 − c2

6)/1728 ∈ Z and for which there is no prime p with p4 | c4

and p12 | ∆. We call ∆ the minimal discriminant of E. (For example, the minimal
discriminant of the curve y2 + y = x3 − x mentioned in Section 1 is ∆ = 37; also
c4 = 48 and c6 = −216 for this curve.)
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The conductor of an elliptic curve E over Q is a positive integer N = NE that
is a measure of the nature of the reduction of the elliptic curve modulo the prime
divisors of ∆. For example, a prime p ≥ 5 divides the conductor N only if there is
no way of finding another defining equation (2) of E so that when reduced modulo p
we obtain an equation over the field Fp without multiple roots; the maximal power
of such a prime p dividing N is 2 and whether it is 1 or 2 is determined by the nature
of the best reduction of E modulo p, i.e., whether its defining cubic polynomial has a
double or a triple root modulo p. There is a slightly more involved, but elementary,
recipe to give the power of the primes 2 and 3 dividing the conductor (see [Tat75]).

Mordell proved in 1922 (see [Mor22]) that the Mordell-Weil group E(Q) of ra-
tional points on E is a finitely generated abelian group, so E(Q) ≈ Zr ⊕ E(Q)tor.
The integer r is the rank of E, and is the main statistic that we will discuss below;
in contrast, the torsion group is rather well-understood, and is thus of less interest.

Let ∆ be the minimal discriminant of E. The L-function L(E, s) of E is a
Dirichlet series given by a simple recipe in terms of the number of points Np of the
reduction of E over Fp for all primes p. Specifically,
(4)

L(E, s) =
∏

p∤∆

1

1 − (1 + p − Np)p−s + p1−2s
·
∏

p|∆

1

1 − (1 + p − Np)p−s
=

∞∑

n=1

an

ns
.

The integers an are defined by expanding the Euler product; e.g., ap = p + 1 − Np

and ap2 = a2
p − p when p ∤ ∆, etc. As an example, if E is y2 + y = x3 − x then

L(E, s) = 1 − 2

2s
− 3

3s
+

2

4s
− 2

5s
+

6

6s
− 1

7s
+

6

9s
+

4

10s
− 5

11s
+ · · · .

For any elliptic curve E, the celebrated papers of Wiles [Wil95] and others
[BCDT01] imply that L(E, s) extends to an entire analytic function on the com-
plex plane. Moreover these results imply that the completed L-function Λ(E, s) =
Ns/2 · (2π)−s · Γ(s) · L(E, s) satisfies the functional equation

Λ(E, s) = uE · Λ(E, 2 − s),

where uE is either −1 or 1, and is called the sign in the functional equation for E.
Note that uE = 1 if and only if L(E, s) vanishes to even order at s = 1.

The classical Birch and Swinnerton-Dyer Conjecture [BSD] asserts that the order
of vanishing of Λ(E, s) at the point s = 1 is equal to the rank of the Mordell-Weil
group E(Q). In the data regarding rank that we will be reporting below, at times
the Mordell-Weil rank r has been computed directly by finding r rational points
of E that are linearly independent and span a subgroup of finite index in E(Q)
and we will refer to this r as the arithmetic rank of E. At times, however, what is
computed is the apparent order of vanishing of L(E, s) at s = 1; we refer to this
order of vanishing as the analytic rank of E. The BSD conjecture asserts that the
ranks are in fact equal. We say a curve has even parity if the analytic rank is even,
and odd parity if it is odd.

We now state the refined BSD conjecture for curves of rank 0. When E is given
by (3), the real period Ωre is, up to easily determined factors of 2 and 3, equal to
the integral

∫
E(R)

dx/y. For a prime p, the Tamagawa number Ωp is the index in

E(Qp) of the subgroup of p-adic points that reduce to a nonsingular point in E(Fp).
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Conjecture 2.1. [Birch and Swinnerton-Dyer]. If L(E, 1) 6= 0, then

(5) L(E, 1) =
Ω(E) · #X(E)

#E(Q)2tor
,

where X(E), the Shafarevich-Tate group of E, is a certain (mysterious) group
associated to E (it measures the failure of a local-global principle), and

Ω(E) = Ωre ·
∏

p

Ωp.

Since L(E, 1) 6= 0, the group X(E) is known to be finite [Kol88] of order a
perfect square [Cas62].

For any r = 0, 1, 2, . . . the question we now may ask is: what percentage of
elliptic curves (nested according to size of conductor) have rank r? More correctly,
we should ask: do these percentages exist, and if so what are they?

3. Conjectures

One fairly firm anchor in the study of elliptic curves is a principle that goes under
the heading of parity. This principle is still only conjectural, but is amply confirmed
numerically in our accumulated data, and we also have theoretical reasons to believe
it.3 The parity principle is that 50% of the members of any of the sets of elliptic
curves we will be considering have even parity, and 50% have odd parity (under
reasonable orderings). So by BSD, 50% should have even rank, and 50% should
have odd rank.

In general terms, the minimalist principle proclaims that from the rough view-
point of percentages, there are as few rational points on elliptic curves as is possible,
given the constraint of the parity principle. That is, 50% of the members of any of
the families of elliptic curves we will be considering have rank r = 0, and 50% have
rank r = 1, and the remaining ranks r ≥ 2 account for 0% of the family.

As one thing or another things comes to light in the subject, the minimalist
position is sometimes favored, and sometimes not. For certain special families of
elliptic curves this minimalist conjecture has long been in print, and has had a wild
ride in terms of its being believed, and doubted.

3.1. The form of the conjectures. There are two types of asymptotic conjectures
that we encounter in discussions regarding rank statistics. The first we might call
a rough conjecture where it is asserted, or conjectured, for a certain collection F(x)
of items indexed by a variable x that there is an exponent a and a function x(ǫ)
such that the cardinality of F(x) is bounded above by xa+ǫ and below by xa−ǫ for
any positive ǫ and any x ≥ x(ǫ).

We also will be discussing fine conjectures where such collections F(x) will be
conjectured to have asymptotic estimates of the form

#F(x) ∼ xa · (log x)b · c,
for constants a, b, c; the delicacy, of course, of these constants is inversely related
to their alphabetical order.

What seems to be a pattern is that the exponent a, appearing in both rough and
fine versions, in specific contexts under discussion, can usually be guessed by more

3In particular, the sign of the functional equation is a product of local signs for primes p|∆,
each of which is ±1 with equal proportion. See the work of Helfgott [Hel04] for the latest results.
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old-fashioned heuristics. But—at present, at least—the on-going work regarding
random matrix eigenvalues is the only source of heuristics that lead us to formulate
specific “fine conjectures” regarding ranks, and specifically for guesses regarding
the exponent b of the log x term. The fact that the graphs of some of the specific
concoctions of the form xa ·(log x)b ·c predicted by random matrix statistics can look
deceivingly like x1 even though a < 1 (and for a significant range of the variable x)
is one of the curiosities of our story.

3.2. Random matrix statistics. Originally developed in mathematical physics,
random matrix theory [Meh04] has now found many applications in number theory,
the first being the oft-told story [Dy] of Dyson’s remark to Montgomery regarding
the pair-correlation of zeros of the Riemann ζ-function. Based on substantial nu-
merical evidence, random matrix theory appears to give reasonable models for the
distribution of L-values in families, though the issue of what constitutes a proper
“family” can be delicate. The work of Katz and Sarnak [KaSa99] regarding families
of curves over function fields implies that for quadratic twists of even parity, we
should expect orthogonal symmetry with even parity. Though we have no func-
tion field analogue when considering all curves of even parity, we still brazenly
assume (largely from looking at the sign in the functional equation) that the sym-
metry is orthogonal with even parity. What this means is that we want to model
properties of the L-function via random matrices taken from SO(2M) with respect
to Haar measure, for an appropriate value of M .4 We suspect that the L-value
distribution is approximately given by the distribution of the evaluations at 1 of
the characteristic polynomials of our random matrices. In the large, this distribu-
tion is determined entirely by the symmetry type, while finer considerations are
distinguished via arithmetic considerations.

Via the moment conjectures [KeSn00] of random matrix theory and then using
Mellin inversion, we expect that (for some constant c > 0)

(6) Prob[L(E, 1) < t] ∼ ct1/2(log N)3/8 as t → 0,

when the curves E are taken from a suitable family.

3.3. Conjectures about twist families. Let E be an elliptic curve over Q defined
by an equation y2 = x3 +ax+b. The quadratic twist Ed of E by a nonzero integer d
is the elliptic curve defined by y2 = x3 + ad2x + bd3. The twist Ed is isomorphic
to E over the field Q(

√
d), and (when d is a fundamental discriminant relatively

prime to NE) the conductor of Ed is d2 · NE .

Conjecture 3.1. [Goldfeld, [Gol79]]. The average rank of the curves Ed is 1
2 , in

the sense that

lim
D→∞

∑
|d|<D rank(Ed)

#{d : |d| < D} =
1

2
.

(Here the integers d are fundamental discriminants.)

There are many conditional and unconditional results regarding Goldfeld’s con-
jecture. For a survey, see the papers of Rubin and Silverberg [RS02, Sil01].

The values L(Ed, 1) of quadratic twists Ed of a given curve E essentially appear
in a single object, as the coefficients (weighted by the real period and Tamagawa

4Here we wish the mean density of zeros of the L-functions to match the mean density of
eigenvalues of our matrices, and so, as in [KeSn00], we should take 2M ≈ 2 log N .
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numbers) of an integral modular form gE of weight 3/2 (this follows from work of
Waldspurger, see [Wal81]). In particular, for many d, we have that L(Ed, 1) = 0
precisely when the dth (or −dth, depending on the case) coefficient of gE is zero.
This object gE does not give us values of L(Ed, 1) for all d, but does provide
a large proportion of them. The Ramunajan conjecture for modular forms im-
plies that the coefficients of gE should be bounded by about |d|1/4, and so if we
assume a coefficient distribution that is somewhat uniform, we approximate the
count F (D) of quadratic twists up to D with even parity that have L(Ed, 1) = 0
by

∑
|d|<D 1/|d|1/4. Sarnak’s rough heuristic asserts that this count lies between

D3/4−ε and D3/4+ε. Using random matrix theory, the paper [CKRS06] gets the
refined heuristic that

F (D) ∼ D3/4 · (log D)b · c,

where there are four possibilities for b (depending on the Galois group of the cubic
polynomial x3 − 27c4x − 54c6), and c is still mysterious.

In [CKRS06], Rubinstein used weight 3/2 forms to give data about L(Ed, 1) for
over 2000 elliptic curves E. For each of these he computed L(Ed, 1) for a substantial
subset of the quadratic twists by fundamental discriminants d with |d| < 108. (For
example, for the curve E given by y2 + y = x3 − x2 of conductor 11, the only twist
E−d of even parity with L(E−d, 1) = 0 for 3 < d < 91 is d = 47.) The data of
Rubinstein agree fairly well with predictions such as (1).

It is possible, however, to ameliorate the effects of b and c (and the 3/4-exponent
for that matter) via the ratio conjecture of [CKRS02]. Fix an elliptic curve E and
a modulus q, prime for simplicity. Consider the d with gcd(q, d) = 1 for which Ed

has even parity and L(Ed, 1) = 0, and divide these into two classes depending on
whether d is a square modulo q. The ratio conjecture asserts that the (asymptotic)

ratio of the sizes of these two classes is
( q+1+aq

q+1−aq

)−1/2
, where the exponent −1/2

comes from the arguments leading to (6). In essence, the d’s that are squares should
give cSX3/4(log X)bE while those that are not should yield cNX3/4(log X)bE , and
[CKRS02] predicts cS/cN via a clever methodology. The data match this prediction
fairly well,5 especially for aq = 0, when the convergence is quite rapid.

We can also consider other twist families. For example, Kramarz and Za-
gier [ZK87] considered cubic twists x3 + y3 = m of the Fermat cubic6 x3 + y3 = 1
and found in their data that 23.3% of the curves with even parity have rank at
least 2, and 2.2% of those with odd parity have rank at least 3. One of the authors
of the present article [Wat04] and independently Fermigier (unpublished) have fol-
lowed up on these computations. Also, Patricia Quattrini (Universidad de Buenos
Aires) as part of her thesis work (to appear in Experimental Mathematics) did
some extensive calculations of the analytic rank for the curves y2 = x3 − nx. As
in the Kramarz-Zagier case, the percentage of curves with analytic rank ≥ 2 was
in the 20% range but did seem to be going down. Similar computations [DFK04]
have also been undertaken for twists by other (complex) Dirichlet characters, which
are related to ranks over number fields. Finally, Fermigier [Fer96] investigated spe-
cializations of various (about 100) elliptic curves defined over Q(t), and found that

5In [CPRW] a secondary term is computed, and the fit to the data becomes even better. The
paper [Wat04] notes similar data for cubic twists, while [CRSW] analyses the data of Elkies for
the congruent number curve in the odd parity case.

6Note that this is rationally isomorphic to the elliptic curve in the form (3) given by the
equation Y 2 = X3 − 54 · 5832 via the map (X, Y ) =

`

108/(x + y), 972(y − x)/(y + x)
´

.
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typically 10-20% of the specializations had excess rank that could not be explained
simply from parity.

3.4. Conjectures when counting all elliptic curves. Before we can count
curves with even parity and infinitely many points, we might first take a step
back, and just try to count curves. Though before we ordered curves by conductor,
when deriving heuristics it is often easier to sort by discriminant. Indeed, Brumer
and McGuinness [BM90, §5] state a heuristic estimate for the number of minimal
discriminants of elliptic curves up to a given bound:

Conjecture 3.2. [Brumer-McGuinness]. We have the following estimates for the
number of positive or negative minimal discriminants of elliptic curves of absolute
value at most X (respectively):

A±(X) ∼ α±
ζ(10)

X5/6

where α+ = 0.4206 . . . and α− =
√

3α+ = 0.7285 . . . are given by

α± =

√
3

10

∫ ∞

±1

du√
u3 ∓ 1

.

Brumer and McGuinness say little about their derivation of this heuristic, but
remark that it suggests a heuristic for prime discriminants that matches very well
with their data. We can derive their heuristic by counting lattice points in the
(c4, c6)-plane, restricting to congruence classes modulo powers of 2 and 3 to ensure
that ∆ is integral. Because ∆ = (c3

4 − c2
6)/1728, we heuristically have that A+(X)

is proportional to the area of the region 0 < c3
4 − c2

6 < 1728X , and similarly
with A−(X). This gives α±X5/6; the extra factor of ζ(10) comes about since we
need (for p ≥ 5, and similarly for p = 2, 3) to eliminate (c4, c6) pairs with p4|c4

and p6|c6. For a more complete derivation of the value of α± see [Wat06].
We expect that half of these curves have even parity. Now we wish to estimate

how many of the curves with even parity have L(E, 1) = 0.

3.5. Rank conjectures for all curves. To make use of the heuristic (6), we in-
troduce a discretization process. We want to connect L(E, 1) with the winding
number W = W (E) = |L(E, 1)/Ωre| (see [MSD74, §2.2]),7 and measure the like-
lihood that W is 0. Ignoring torsion (so that W is an integer) we are trying to
estimate the probability that L(E, 1) < Ω(E). If we consider only elliptic curves
for which Ω(E) lies in a fixed interval c1 < Ω(E) < c2 then we get a neat estimate of
this probability. So this line of reasoning leads one to try to deal with the statistics
of the invariant Ω(E) for varying E.

Next, we simplify matters by restricting to curves with prime positive discrimi-
nant (and even parity). Three nice things about these curves are that (except for
a sparse subset): all have trivial torsion; all have Ωp = 1 for all (finite) primes p;
and all have that N = ∆. The idea of our discretization is that W can only take on
integral values (note that when W 6= 0, Conjecture 2.1 implies that W = #X(E),
which is a perfect square, but we will not use this). Thus, in terms of our proba-
bility distribution of L-values, we get that L(E, 1) < Ωre if and only if L(E, 1) = 0;

7We could relate W to the Birch and Swinnerton-Dyer conjecture, but the (topological) winding
number interpretation is rigorous and sufficient for our needs.
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this is because

0 ≤ W =

∣∣∣∣
L(E, 1)

Ωre

∣∣∣∣ < 1

and W is an integer.
Putting t = Ωre and N = ∆ in (6) we get:

Heuristic 3.3. A curve with positive prime discriminant and even parity has in-

finitely many points with probability cΩ
1/2
re (log ∆)3/8.

Using the above, the number B(X) of such curves up to X with even parity and

infinitely many points is estimated by integrating
∫ ∫

cΩ
1/2
re (log ∆)3/8−1du4du6 over

the region |u3
4−u2

6| < 1728X , where the “−1” in the exponent of log ∆ comes about
from the prime number theorem. Also, the integral makes sense because Ωre and ∆
are smooth functions of c4 and c6, that is, we can define Ωre and ∆ for c4 and c6 that
are not necessarily integral (or even rational). So, similar to the above discussion
of the Brumer-McGuinness heuristic, we have replaced a (weighted) lattice-point
problem with the area of a region in a plane, weighted by a factor depending on
the real period and the discriminant (and congruence restrictions as before).

We expect that the typical size8 of the real period Ωre is 1/|∆|1/12, and so, from
the above heuristic,9 we thus get a crude estimate that B(X) is of size X19/24.

The preprint [Wat06] handles more of the details, and considers all curves, not
only those with prime discriminant. Indeed, if F (X) is the number of elliptic
curves E with even parity and L(E, 1) = 0 and |∆| ≤ X then [Wat06] predicts

F (X) ∼ c1X
19/24(log X)3/8,

with a computable10 positive constant c1.
In any case, since we expect cX5/6 curves with |∆| ≤ X , this heuristic says that

100% of the even parity curves have rank 0.
The best known results (conditional on a Generalized Riemann Hypothesis and

a Parity Principle analogue) on nonvanishing of even parity L-functions appear in
the work of Young [YouB], and results about average (analytic) ranks and their
relation to random matrix theory appear in [YouA].

3.6. Ordering by conductor. The predictions become more difficult to derive
when we order by conductor instead of discriminant, as this introduces arithmetic
considerations related to the ABC-conjecture (see [GT02]) in the accounting. Even
giving a heuristic for the number C(X) of curves of conductor less than X is
nontrivial. The preprint [Wat06] asserts heuristic asymptotics of c2X

5/6 for C(X)
and similarly c3X

19/24(log X)3/8 for the number of rank 2 curves with conductor
less than X . However, Cremona’s data (see below) might suggest linear growth

8This is also an upper bound; the ABC conjecture says Ωre is never much smaller than 1/|∆|1/2.
9Note that random matrix theory is largely used to determine the power of logarithm in

this heuristic. The cruder estimate of X19/24 can alternatively be obtained by assuming that

the winding number is a random square integer of size up to 1/Ωre (this is similar to Sarnak’s
heuristic); indeed this was probably known to Brumer and McGuinness, as they conclude their
paper with

While our data may seem massive, N = 108 is not sufficient to distinguish growth
laws of log log N , N1/12 or N1/24 from constants. So we have to be cautious in
formulating conjectures based on the numerical evidence.

10Our imprecise discretization might make the computed value of c1 not too relevant.



AVERAGE RANKS OF ELLIPTIC CURVES 13

for C(X). In any event, in all cases we expect that 100% of the even parity curves
have rank 0. Despite our lack of numerical confirmation, we label these guesses as
“conjectures”:

Conjecture 3.4. The number of even parity elliptic curves with infinitely many
rational points and absolute discriminant less than X is asymptotically given by
c1X

19/24(log X)3/8 for some positive computable constant c1 as X → ∞. If we re-
place absolute discriminant by conductor, we get an asymptotic of c3X

19/24(log X)3/8.
In particular, asymptotically almost all elliptic curves with even parity have finitely
many rational points.

See [Wat06] for more details.

4. Data

The opinion had been expressed that, in general, an elliptic curve
might tend to have the smallest possible rank, namely 0 or 1, com-
patible with the rank parity predictions of Birch and Swinnerton-
Dyer. We present evidence that this may not be the case. [...] This
proportion of rank 2 curves seemed too large to conform to the
conventional wisdom. – Brumer and McGuinness [BM90]

In [BM90], Brumer and McGuinness considered over 310000 curves of prime con-
ductor ≤ 108. In this section we discuss extensions of their data, and answer in the
affirmative that there is a similar large proportion of rank 2 curves for compos-
ite conductor ≤ 108, and for prime conductor ≤ 1010. More precisely, we consider
136832795 curves of all conductors ≤ 108, and 11378911 curves of prime conduc-
tor ≤ 1010. The results of the rank computation we describe are similar to those
of Brumer and McGuinness, which appear to suggest that if one orders all elliptic
curves over Q by conductor, then the average rank is bigger than 0.5. However, as
discussed above, we conjecture that the average rank is 0.5.

4.1. Brumer-McGuinness. In [BM90], Brumer and McGuinness found, by thou-
sands of hours of computer search, 311219 curves of prime conductor ≤ 108. For
310716 of these curves they computed the probable rank by a combination of point
searches and computation of apparent order of vanishing of L-functions. Table 1
(expanded from [BM90]) summarizes the rank distribution that they found.11

Table 1. Brumer-McGuinness Rank Distribution

Rank 0 1 2 3 4 5
∆ > 0 31748 51871 24706 5267 377 0
∆ < 0 61589 91321 36811 6594 427 5
Total # Curves 93337 143192 61517 11861 804 5
Proportion 0.300 0.461 0.198 0.038 0.0026 0.00002
Proportion ∆ > 0 0.279 0.455 0.217 0.046 0.0033 0.00000
Proportion ∆ < 0 0.313 0.464 0.187 0.034 0.0022 0.00003

11Some of their counts were computed incorrectly (for instance, they only used 4000 terms
of the L-series, and thus mis-identified 11 curves of rank 0 as having rank 2), but this has little
influence on the overall statistics.
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In Table 1, note that curves with ∆ > 0 are more likely to have large rank. Let
rε(X) be the average rank of elliptic curves in [BM90] with conductor at most X
and discriminant sign ε. They observe that in their data, r+ climbs to 1.04 and
r− climbs to 0.94, and they remark that “An interesting phenomenon was the
systematic influence of the discriminant sign on all aspects of the arithmetic of the
curve.” The more extensive computations do not always find this to be the case;
see, in particular, Figure 3 below, where the graphs split by discriminant cross.

4.2. The Stein-Watkins Database. Brumer and McGuinness fixed the a1, a2, a3

invariants (12 total possibilities, as (2) can be modified first to be integral, and then
to ensure that a1, a3 ∈ {0, 1} and |a2| ≤ 1) and then searched for a4 and a6 that
made |∆| small. Stein and Watkins [SW02] broke the c4 and c6 invariants into
congruence classes, and then found small solutions to c3

4 − c2
6 = 1728∆, with c4, c6

minimal in the sense of (3). There is little theoretical advantage in this approach;
more computing power and disk space were the main advances in [SW02]. Stein and
Watkins searched for curves with prime conductor up to 1010, and for composite
conductor chose |∆| < 1012 and N ≤ 108 as search bounds, and then included
isogenous curves and twists (with N ≤ 108) of the curves they found.

4.3. Completeness of the Databases. Note that neither the method of Brumer-
McGuinness nor Stein-Watkins is guaranteed to find all curves of prime (absolute)
discriminant up to a given bound (indeed, it is more likely that they miss a few
curves), but we think that their data sets are reasonable surrogates, and should
exhibit validity when compared to the predictions of the theoretical model.

For curves of composite conductor, the Stein-Watkins database is much more
likely to miss curves. Here the comparison is to the data set of Cremona [Cre],
who used the algorithms of [Cre97] and the modularity theorem of [BCDT01] to
find every elliptic curve of conductor up to 120000. Cremona found 782493 curves
up to conductor 120000. In the Stein-Watkins computation, they found 614442
curves of conductor up to 120000, so they found over 78.5% of the curves. The
first case in which Cremona has a curve and Stein-Watkins do not is the curve
y2 + xy + y = x3 − 7705x + 1226492 of conductor 174, which has discriminant
−621261297432576 = −211 · 321 · 29, whose absolute value is substantially larger
than 1012. The conductors up to 500 where they miss curves are

174, 222, 273, 291, 330, 354, 357, 390, 420, 442, 462, 493.

Figure 2 shows the proportion of the number of curves in the Stein-Watkins data-
base to the number of curves in Cremona’s database, as a function of the conductor.

The rank distribution of Cremona’s curves is given in Table 2. The average rank
for Cremona’s curves is about 0.688. This is smaller than the average rank in other
data sets we consider (and is probably explainable via the real period considerations
of the last section), but we prefer to highlight the results from other data sets.

Table 2. Rank Distribution of All Curves of Conductor ≤ 120000

Rank 0 1 2 3
Proportion 0.404 0.505 0.090 0.001
Proportion ∆ > 0 0.408 0.503 0.087 0.001
Proportion ∆ < 0 0.401 0.506 0.092 0.001
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Figure 2. Proportion of Cremona’s Curves obtained by Stein
and Watkins for N ≤ 120000

As noted above, when ordering by conductor there is presently no consensus
guesstimate for the number of curves up to X . Cremona has commented that
there is approximately linear growth in the number of curves of conductor less
than 120000, and extrapolating this gives a prediction close to 650 million for the
number of curves with N ≤ 108.

D. J. Bernstein suggested that we try to quantify the completeness of the Stein-
Watkins database by considering what percentage of Cremona’s curves would be ob-
tained by using their search methods with a smaller discriminant bound. That is, for
a parameter B, if we find all curves with N ≤ B2, |∆| ≤ B3, and c4 ≤ 100 · (12B)2,
and then take all isogenous curves and twists of these with conductor less than B2,
what percentage of Cremona’s curves do we obtain? With B = 300, we get 246532
curves, while Cremona has 592519 curves of conductor ≤ 90000 = 3002, so we get
about 42%. Applying this percentage to the Stein-Watkins database with B = 104,
this would suggest that there are about 325 million elliptic curves with conduc-
tor less than 108. So the two guesses differ by a factor of two, exemplifying our
ignorance on so basic an issue.

5. Average Ranks: Graphs of Data

This section contains graphs that at a glance suggest that the minimalist princi-
ple is contradicted by the data for curves of conductor ≤ 108; indeed, particularly
in Figure 3, we see that the average rank is increasing! However, for prime con-
ductor ≤ 1010 the average rank drops, though only slightly from 0.978 to 0.964.
With some imagination, the distribution of rank for prime conductor might appear
to support the minimalist conjecture that the average rank is 0.5. Table 3 gives
the average rank for various collections of curves that are described in more detail
elsewhere in this paper and section.
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Table 3. Average Ranks

Cremona’s curves of conductor ≤ 120000 0.688
All Stein-Watkins curves of conductor ≤ 108 0.865

Brumer-McGuinness curves of prime conductor ≤ 108 0.982
Stein-Watkins curves of prime conductor ≤ 1010 0.964
Selected curves of prime conductor near 1014 with ∆ < 0 0.869
Selected curves of prime conductor near 1014 with ∆ > 0 0.938

In this section when we write elliptic curves with property P , we mean elliptic
curves in the Stein-Watkins database with property P .

0.70  -

0.75  -

0.80  -

0.85  -

e11 e12 e13 e14 e15 e16 e17 e18 e19

∆ < 0

∆ > 0

Figure 3. Average Rank of Stein-Watkins Curves of Conductor ≤ 108

5.1. Curves Ordered By Conductor. The average rank of all Stein-Watkins
curves with conductor ≤ 108 is about 0.87. Figure 3 gives the average rank as a
function of log of the conductor, and also the average rank for curves of positive
and negative discriminant. We created this graph by computing the average rank of
curves of conductor up to n · 105 for 1 ≤ n ≤ 1000. Figure 4 graphs the proportion
of curves with each rank 0, 1, 2, and 3, as a function of log of the conductor, all on
a single graph. The overall rank proportions are in Table 4.

Table 4. Rank Distribution for Stein-Watkins Curves with N ≤ 108

Rank 0 1 2 3 ≥ 4
Proportion 0.336 0.482 0.163 0.019 0.000
Proportion ∆ > 0 0.331 0.480 0.168 0.020 0.000
Proportion ∆ < 0 0.339 0.482 0.160 0.018 0.000
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Figure 4. Rank Distribution of Stein-Watkins Curves with N ≤ 108
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Figure 5. Average Rank of Curves with prime N ≤ 1010

5.2. Prime Conductor Curves. The average rank for the curves of prime con-
ductor ≤ 1010 is about 0.964; see Table 5 for the rank distribution. Figure 5 plots
the average rank of curves of prime conductor ≤ 1010 as a function of log of the
conductor. Note that here the average ranks are decreasing, unlike in Figure 3.

5.2.1. An experiment. The data of [BM90] and [SW02] for curves of prime con-
ductor up to 108 and 1010 show very little drop in the observed average rank.
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Figure 6. Rank Distribution of Curves with prime N ≤ 1010

Table 5. Rank Distribution for Prime Conductor ≤ 1010

Rank 0 1 2 3 ≥ 4
Proportion 0.309 0.462 0.188 0.037 0.004
Proportion ∆ > 0 0.291 0.457 0.204 0.044 0.004
Proportion ∆ < 0 0.320 0.465 0.179 0.033 0.003

To investigate the possibility that the average rank might not decrease much be-
low 0.964 we chose a selection of curves with prime conductor of size 1014. It is
non-trivial to get a good data set, since we must take congruence conditions on
the elliptic curve coefficients and the variation of the size of the real period into
account; see [Wat06] for more details on how to account for this.

Our data sets contained 89913 curves of positive prime discriminant, and 89749
similar curves with negative discriminant, with |∆| near 1014 for all the curves.
It then took a few months to compute the analytic rank for these curves. We
found that for positive discriminant the average analytic rank is approximately
0.937 and for negative discriminant it is approximately 0.869 (see Table 6 for more
details). Note that this is significantly less than the average rank found in [BM90]
and [SW02]. It could be said that this is the strongest numerical evidence yet for
the Minimalist Conjecture, though, it is still very weak. Incidentally, the largest
rank found in any of these data sets is 6.

Let f(∆) be the “probability” that L(E, 1) = 0 for an even parity curve of
discriminant near ∆ for ∆ positive. For example, Tables 5 and 6 suggests that

f(1010) ∼ 0.204 + 0.004

0.291 + 0.204 + 0.004
= 0.417 . . .

f(1014) ∼ 0.176 + 0.004

0.319 + 0.176 + 0.004
= 0.361 . . .
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Table 6. Rank Distribution For a Selection of Curves With
Prime Conductor Near 1014

Rank 0 1 2 3 ≥ 4
Proportion ∆ > 0 0.319 0.467 0.176 0.034 0.004
Proportion ∆ < 0 0.343 0.475 0.154 0.025 0.002

(Note that we approximated f(1010) using data for all |∆| < 1010.) Motivated
by the discussion in Section 3, we might heuristically approximate this probability

function by f̂(∆) = c · (log ∆)3/8/∆1/24, where ∆1/24 comes about as the square

root of the “typical” real period. The value of f̂(1010)/f̂(1014) is about 1.29, which
is not ridiculously far from the observed ratio of

f(1010)

f(1014)
∼ 0.417

0.361
∼ 1.16.

5.3. Variants. We also carried out computations similar to the ones described
above when counting isogeny classes instead of isomorphism classes of curves (isogeny
is a coarser equivalence relation than isomorphism, grouping together curves be-
tween which there is a finite degree morphism). In our data the average size of
isogeny classes for all curves of conductor up to X converges reasonably quickly
to 1 (Duke has shown [Duk97] that this is indeed the case under a different order-
ing). Thus the data and graphs look almost identical to those presented above.
Table 7 gives rank data for other subsets of the Stein-Watkins database of curves
of conductor ≤ 108. In the table, “has CM” refers to curves that have complex
multiplication, i.e., whose endomorphism ring (over C) is bigger than Z.

Table 7. Distribution of Rank in Various Subsets of the
Stein-Watkins Database with Conductor N < 108

Description Number Rank 0 Rank 1 Rank 2 Rank ≥ 3
All Curves 136832795 0.336 0.482 0.163 0.019
All Isogeny Classes 115821258 0.328 0.480 0.171 0.021
Has Isogeny 38599162 0.375 0.492 0.125 0.008
Has nontrivial torsion 35249448 0.373 0.492 0.127 0.008
N squarefree 21841534 0.296 0.467 0.202 0.034
Has Full 2-torsion 1674285 0.392 0.496 0.107 0.005
N is square 538558 0.416 0.496 0.084 0.004
N is prime 312435 0.303 0.460 0.197 0.041
Has 3-torsion 184590 0.422 0.498 0.078 0.002
Has CM 135226 0.411 0.498 0.087 0.005
N is prime squared 517 0.439 0.480 0.072 0.010

6. How can we systematically account for the Mordell-Weil rank we
have already computed?

Forget all questions of asymptotics. Consider only the curves of prime conductor
up to 1010 in our data. Is there an argument other than just computing ranks for
each of the elliptic curves in the databases—is there a pure thought heuristic—that
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explains why we are witnessing so much Mordell-Weil rank? In a sense, these ratio-
nal points are both analogous, and not analogous, to the physicist’s dark matter.12

This large mass of rational points for elliptic curves of prime conductor ≤ 1010

is palpably there. We aren’t in the dark about that. We are merely in the dark
about how to give a satisfactory account of it being there, other than computing
instances, one after another.

We are, in a word, just at the very beginning of this story.
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Preface

This is a graduate-level textbook about algorithms for computing with mod-
ular forms. It is nontraditional in that the primary focus is not on underly-
ing theory; instead, it answers the question “how do you use a computer to
explicitly compute spaces of modular forms?”

This book emerged from notes for a course the author taught at Harvard
University in 2004, a course at UC San Diego in 2005, and a course at the
University of Washington in 2006.

The author has spent years trying to find good practical ways to compute
with classical modular forms for congruence subgroups of SL2(Z) and has
implemented most of these algorithms several times, first in C++ [Ste99b],
then in MAGMA [BCP97], and as part of the free open source computer
algebra system SAGE (see [Ste06]). Much of this work has involved turning
formulas and constructions buried in obscure research papers into precise
computational recipes then testing these and eliminating inaccuracies.

The author is aware of no other textbooks on computing with modular
forms, the closest work being Cremona’s book [Cre97a], which is about
computing with elliptic curves, and Cohen’s book [Coh93] about algebraic
number theory.

In this book we focus on how to compute in practice the spaces Mk(N, ε)
of modular forms, where k ≥ 2 is an integer and ε is a Dirichlet character
of modulus N (the appendix treats modular forms for higher rank groups).
We spend the most effort explaining the general algorithms that appear so
far to be the best (in practice!) for such computations. We will not dis-
cuss in any detail computing with quaternion algebras, half-integral weight
forms, weight 1 forms, forms for noncongruence subgroups or groups other

xi
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than GL2, Hilbert and Siegel modular forms, trace formulas, p-adic modular
forms, and modular abelian varieties, all of which are topics for additional
books. We also rarely analyze the complexity of the algorithms, but instead
settle for occasional remarks about their practical efficiency.

For most of this book we assume the reader has some prior exposure to
modular forms (e.g., [DS05]), though we recall many of the basic defini-
tions. We cite standard books for proofs of the fundamental results about
modular forms that we will use. The reader should also be familiar with
basic algebraic number theory, linear algebra, complex analysis (at the level
of [Ahl78]), and algorithms (e.g., know what an algorithm is and what big
oh notation means). In some of the examples and applications we assume
that the reader knows about elliptic curves at the level of [Sil92].

Chapter 1 is foundational for the rest of this book. It introduces congru-
ence subgroups of SL2(Z) and modular forms as functions on the complex
upper half plane. We discuss q-expansions, which provide an important
computational handle on modular forms. We also study an algorithm for
computing with congruence subgroups. The chapter ends with a list of ap-
plications of modular forms throughout mathematics.

In Chapter 2 we discuss level 1 modular forms in much more detail. In
particular, we introduce Eisenstein series and the cusp form ∆ and describe
their q-expansions and basic properties. Then we prove a structure theorem
for level 1 modular forms and use it to deduce dimension formulas and give
an algorithm for explicitly computing a basis. We next introduce Hecke
operators on level 1 modular forms, prove several results about them, and
deduce multiplicativity of the Ramanujan τ function as an application. We
also discuss explicit computation of Hecke operators. In Section 2.6 we make
some brief remarks on recent work on asymptotically fast computation of
values of τ . Finally, we describe computation of constant terms of Eisenstein
series using an analytic algorithm. We generalize many of the constructions
in this chapter to higher level in subsequent chapters.

In Chapter 3 we turn to modular forms of higher level but restrict for
simplicity to weight 2 since much is clearer in this case. (We remove the
weight restriction later in Chapter 8.) We describe a geometric way of view-
ing cuspidal modular forms as differentials on modular curves, which leads
to modular symbols, which are an explicit way to present a certain homol-
ogy group. This chapter closes with methods for explicitly computing cusp
forms of weight 2 using modular symbols, which we generalize in Chapter 9.

In Chapter 4 we introduce Dirichlet characters, which are important
both in explicit construction of Eisenstein series (in Chapter 5) and in de-
composing spaces of modular forms as direct sums of simpler spaces. The
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main focus of this chapter is a detailed study of how to explicitly represent
and compute with Dirichlet characters.

Chapter 5 is about how to explicitly construct the Eisenstein subspace
of modular forms. First we define generalized Bernoulli numbers attached to
a Dirichlet character and an integer then explain a new analytic algorithm
for computing them (which generalizes the algorithm in Chapter 2). Finally
we give without proof an explicit description of a basis of Eisenstein series,
explain how to compute it, and give some examples.

Chapter 6 records a wide range of dimension formulas for spaces of
modular forms, along with a few remarks about where they come from and
how to compute them.

Chapter 7 is about linear algebra over exact fields, mainly the rational
numbers. This chapter can be read independently of the others and does not
require any background in modular forms. Nonetheless, this chapter occu-
pies a central position in this book, because the algorithms in this chapter
are of crucial importance to any actual implementation of algorithms for
computing with modular forms.

Chapter 8 is the most important chapter in this book; it generalizes
Chapter 3 to higher weight and general level. The modular symbols for-
mulation described here is central to general algorithms for computing with
modular forms.

Chapter 9 applies the algorithms from Chapter 8 to the problem of
computing with modular forms. First we discuss decomposing spaces of
modular forms using Dirichlet characters, and then explain how to compute
a basis of Hecke eigenforms for each subspace using several approaches.
We also discuss congruences between modular forms and bounds needed to
provably generate the Hecke algebra.

Chapter 10 is about computing analytic invariants of modular forms.
It discusses tricks for speeding convergence of certain infinite series and
sketches how to compute every elliptic curve over Q with given conductor.

Chapter 11 contains detailed solutions to most of the exercises in this
book. (Many of these were written by students in a course taught at the
University of Washington.)

Appendix A deals with computational techniques for working with gen-
eralizations of modular forms to more general groups than SL2(Z), such as
SLn(Z) for n ≥ 3. Some of this material requires more prerequisites than
the rest of the book. Nonetheless, seeing a natural generalization of the
material in the rest of this book helps to clarify the key ideas. The topics in
the appendix are directly related to the main themes of this book: modular
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symbols, Manin symbols, cohomology of subgroups of SL2(Z) with various
coefficients, explicit computation of modular forms, etc.

Software. We use SAGE, Software for Algebra and Geometry Experimen-
tation (see [Ste06]), to illustrate how to do many of the examples. SAGE
is completely free and packages together a wide range of open source math-
ematics software for doing much more than just computing with modular
forms. SAGE can be downloaded and run on your computer or can be used
via a web browser over the Internet. The reader is encouraged to experi-
ment with many of the objects in this book using SAGE. We do not describe
the basics of using SAGE in this book; the reader should read the SAGE
tutorial (and other documentation) available at the SAGE website [Ste06].
All examples in this book have been automatically tested and should work
exactly as indicated in SAGE version at least 1.5.

Acknowledgements. David Joyner and Gabor Wiese carefully read the
book and provided a huge number of helpful comments.

John Cremona and Kevin Buzzard both made many helpful remarks that
were important in the development of the algorithms in this book. Much of
the mathematics (and some of the writing) in Chapter 10 is joint work with
Helena Verrill.

Noam Elkies made remarks about Chapters 1 and 2. Sándor Kovács
provided interesting comments on Chapter 1. Allan Steel provided helpful
feedback on Chapter 7. Jordi Quer made useful remarks about Chapter 4
and Chapter 6.

The students in the courses that I taught on this material at Harvard,
San Diego, and Washington provided substantial feedback: in particular,
Abhinav Kumar made numerous observations about computing widths of
cusps (see Section 1.4.1) and Thomas James Barnet-Lamb made helpful re-
marks about how to represent Dirichlet characters. James Merryfield made
helpful remarks about complex analytic issues and about convergence in Stir-
ling’s formula. Robert Bradshaw, Andrew Crites (who wrote Exercise 7.5),
Michael Goff, Dustin Moody, and Koopa Koo wrote most of the solutions
included in Chapter 11 and found numerous typos throughout the book.
Dustin Moody also carefully read through the book and provided feedback.

H. Stark suggested using Stirling’s formula in Section 2.7.1, and Mark
Watkins and Lynn Walling made comments on Chapter 3.

Justin Walker found typos in the first published version of the book.
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Parts of Chapter 1 follow Serre’s beautiful introduction to modular forms
[Ser73, Ch. VII] closely, though we adjust the notation, definitions, and
order of presentation to be consistent with the rest of this book.

I would like to acknowledge the partial support of NSF Grant DMS 05-
55776. Gunnells was supported in part by NSF Grants DMS 02-45580 and
DMS 04-01525.

Notation and Conventions. We denote canonical isomorphisms by ∼=
and noncanonical isomorphisms by ≈. If V is a vector space and s denotes
some sort of construction involving V , we let Vs denote the corresponding
subspace and V s the quotient space. E.g., if ι is an involution of V , then
V+ is Ker(ι − 1) and V + = V/Im(ι − 1). If A is a finite abelian group, then
Ator denotes the torsion subgroup and A/tor denotes the quotient A/Ator.
We denote right group actions using exponential notation. Everywhere in
this book, N is a positive integer and k is an integer.

If N is an integer, a divisor t of N is a positive integer such that N/t is
an integer.





Chapter 1

Modular Forms

This chapter introduces modular forms and congruence subgroups, which
are central objects in this book. We first introduce the upper half plane and
the group SL2(Z) then recall some definitions from complex analysis. Next
we define modular forms of level 1 followed by modular forms of general
level. In Section 1.4 we discuss congruence subgroups and explain a simple
way to compute generators for them and determine element membership.
Section 1.5 lists applications of modular forms.

We assume familiarity with basic number theory, group theory, and com-
plex analysis. For a deeper understanding of modular forms, the reader is
urged to consult the standard books in the field, e.g., [Lan95, Ser73, DI95,
Miy89, Shi94, Kob84]. See also [DS05], which is an excellent first intro-
duction to the theoretical foundations of modular forms.

1.1. Basic Definitions

The group

SL2(R) =

{(
a b
c d

)
: ad − bc = 1 and a, b, c, d ∈ R

}

acts on the complex upper half plane

h = {z ∈ C : Im(z) > 0}

by linear fractional transformations, as follows. If γ =
(

a b
c d

)
∈ SL2(R), then

for any z ∈ h we let

(1.1.1) γ(z) =
az + b

cz + d
∈ h.

1



2 1. Modular Forms

Since the determinant of γ is 1, we have
(

d

dz
γ

)
(z) =

1

(cz + d)2
.

Definition 1.1 (Modular Group). The modular group is the group of all
matrices

(
a b
c d

)
with a, b, c, d ∈ Z and ad − bc = 1.

For example, the matrices

(1.1.2) S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)

are both elements of SL2(Z); the matrix S induces the function z 7→ −1/z
on h, and T induces the function z 7→ z + 1.

Theorem 1.2. The group SL2(Z) is generated by S and T .

Proof. See e.g. [Ser73, §VII.1]. ¤

In SAGE we compute the group SL2(Z) and its generators as follows:

sage: G = SL(2,ZZ); G

Modular Group SL(2,Z)

sage: S, T = G.gens()

sage: S

[ 0 -1]

[ 1 0]

sage: T

[1 1]

[0 1]

Definition 1.3 (Holomorphic and Meromorphic). Let R be an open subset
of C. A function f : R → C is holomorphic if f is complex differentiable at
every point z ∈ R, i.e., for each z ∈ R the limit

f ′(z) = lim
h→0

f(z + h) − f(z)

h

exists, where h may approach 0 along any path. A function f : R → C∪{∞}
is meromorphic if it is holomorphic except (possibly) at a discrete set S of
points in R, and at each α ∈ S there is a positive integer n such that
(z − α)nf(z) is holomorphic at α.

The function f(z) = ez is a holomorphic function on C; in contrast,
1/(z − i) is meromorphic on C but not holomorphic since it has a pole at i.

The function e−1/z is not even meromorphic on C.
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Modular forms are holomorphic functions on h that transform in a par-
ticular way under a certain subgroup of SL2(Z). Before defining general
modular forms, we define modular forms of level 1.

1.2. Modular Forms of Level 1

Definition 1.4 (Weakly Modular Function). A weakly modular function of
weight k ∈ Z is a meromorphic function f on h such that for all γ =

(
a b
c d

)
∈

SL2(Z) and all z ∈ h we have

(1.2.1) f(z) = (cz + d)−kf(γ(z)).

The constant functions are weakly modular of weight 0. There are no
nonzero weakly modular functions of odd weight (see Exercise 1.4), and it
is not obvious that there are any weakly modular functions of even weight
k ≥ 2 (but there are, as we will see!). The product of two weakly modular
functions of weights k1 and k2 is a weakly modular function of weight k1+k2

(see Exercise 1.3).

When k is even, (1.2.1) has a possibly more conceptual interpretation;
namely (1.2.1) is the same as

f(γ(z))(d(γ(z)))k/2 = f(z)(dz)k/2.

Thus (1.2.1) simply says that the weight k “differential form” f(z)(dz)k/2 is
fixed under the action of every element of SL2(Z).

By Theorem 1.2, the group SL2(Z) is generated by the matrices S and
T of (1.1.2), so to show that a meromorphic function f on h is a weakly
modular function, all we have to do is show that for all z ∈ h we have

(1.2.2) f(z + 1) = f(z) and f(−1/z) = zkf(z).

Suppose f is a weakly modular function of weight k. A Fourier expansion
of f , if it exists, is a representation of f as f(z) =

∑∞
n=m ane2πinz, for all

z ∈ h. Let q = q(z) = e2πiz, which we view as a holomorphic function on
C. Let D′ be the open unit disk with the origin removed, and note that
q defines a map h → D′. By (1.2.2) we have f(z + 1) = f(z), so there is
a function F : D′ → C such that F (q(z)) = f(z). This function F is a
complex-valued function on D′, but it may or may not be well behaved at 0.

Suppose that F is well behaved at 0, in the sense that for some m ∈ Z
and all q in a neighborhood of 0 we have the equality

(1.2.3) F (q) =
∞∑

n=m

anqn.
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If this is the case, we say that f is meromorphic at ∞. If, moreover, m ≥ 0,
we say that f is holomorphic at ∞. We also call (1.2.3) the q-expansion of f
about ∞.

Definition 1.5 (Modular Function). A modular function of weight k is a
weakly modular function of weight k that is meromorphic at ∞.

Definition 1.6 (Modular Form). A modular form of weight k (and level 1)
is a modular function of weight k that is holomorphic on h and at ∞.

If f is a modular form, then there are numbers an such that for all z ∈ h,

(1.2.4) f(z) =
∞∑

n=0

anqn.

Proposition 1.7. The above series converges for all z ∈ h.

Proof. The function f(q) is holomorphic on D, so its Taylor series converges
absolutely in D. ¤

Since e2πiz → 0 as z → i∞, we set f(∞) = a0.

Definition 1.8 (Cusp Form). A cusp form of weight k (and level 1) is a
modular form of weight k such that f(∞) = 0, i.e., a0 = 0.

Let C[[q]] be the ring of all formal power series in q. If k = 2, then

dq = 2πiqdz, so dz = 1
2πi

dq
q . If f(q) is a cusp form of weight 2, then

2πif(z)dz = f(q)
dq

q
=

f(q)

q
dq ∈ C[[q]]dq.

Thus the differential 2πif(z)dz is holomorphic at ∞, since q is a local pa-
rameter at ∞.

1.3. Modular Forms of Any Level

In this section we define spaces of modular forms of arbitrary level.

Definition 1.9 (Congruence Subgroup). A congruence subgroup of SL2(Z)
is any subgroup of SL2(Z) that contains

Γ(N) = Ker(SL2(Z) → SL2(Z/NZ))

for some positive integer N . The smallest such N is the level of Γ.

The most important congruence subgroups in this book are

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 ∗
0 1

)
(mod N)

}
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and

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
∗ ∗
0 ∗

)
(mod N)

}
,

where ∗ means any element. Both groups have level N (see Exercise 1.6).

Let k be an integer. Define the weight k right action of GL2(Q) on the
set of all functions f : h → C as follows. If γ =

(
a b
c d

)
∈ GL2(Q), let

(1.3.1) (f [γ]k)(z) = det(γ)k−1(cz + d)−kf(γ(z)).

Proposition 1.10. Formula (1.3.1) defines a right action of GL2(Z) on the
set of all functions f : h → C; in particular,

f [γ1γ2]k = (f [γ1]k)[γ2]k .

Proof. See Exercise 1.7. ¤

Definition 1.11 (Weakly Modular Function). A weakly modular function of
weight k for a congruence subgroup Γ is a meromorphic function f : h → C
such that f [γ]k = f for all γ ∈ Γ.

A central object in the theory of modular forms is the set of cusps

P1(Q) = Q ∪ {∞}.

An element γ =
(

a b
c d

)
∈ SL2(Z) acts on P1(Q) by

γ(z) =

{
az+b
cz+d if z 6= ∞,
a
c if z = ∞.

Also, note that if the denominator c or cz + d is 0 above, then

γ(z) = ∞ ∈ P1(Q).

The set of cusps for a congruence subgroup Γ is the set C(Γ) of Γ-orbits
of P1(Q). (We will often identify elements of C(Γ) with a representative
element from the orbit.) For example, the lemma below asserts that if
Γ = SL2(Z), then there is exactly one orbit, so C(SL2(Z)) = {[∞]}.

Lemma 1.12. For any cusps α, β ∈ P1(Q) there exists γ ∈ SL2(Z) such
that γ(α) = β.

Proof. This is Exercise 1.8. ¤

Proposition 1.13. For any congruence subgroup Γ, the set C(Γ) of cusps
is finite.

Proof. This is Exercise 1.9. ¤
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See [DS05, §3.8] and Algorithm 8.12 below for more discussion of cusps
and results relevant to their enumeration.

In order to define modular forms for general congruence subgroups, we
next explain what it means for a function to be holomorphic on the extended
upper half plane

h∗ = h ∪ P1(Q).

See [Shi94, §1.3–1.5] for a detailed description of the correct topology
to consider on h∗. In particular, a basis of neighborhoods for α ∈ Q is given
by the sets {α}∪D, where D is an open disc in h that is tangent to the real
line at α.

Recall from Section 1.2 that a weakly modular function f on SL2(Z) is
holomorphic at ∞ if its q-expansion is of the form

∑∞
n=0 anqn.

In order to make sense of holomorphicity of a weakly modular function f
for an arbitrary congruence subgroup Γ at any α ∈ Q, we first prove a lemma.

Lemma 1.14. If f : h → C is a weakly modular function of weight k for
a congruence subgroup Γ and if δ ∈ SL2(Z), then f [δ]k is a weakly modular
function for δ−1Γδ.

Proof. If s = δ−1γδ ∈ δ−1Γδ, then

(f [δ]k)[s]k = f [δs]k = f [δδ−1γδ]k = f [γδ]k = f [δ]k .

¤

Fix a weakly modular function f of weight k for a congruence subgroup
Γ, and suppose α ∈ Q. In Section 1.2 we constructed the q-expansion of

f by using that f(z) = f(z + 1), which held since T =

(
1 1
0 1

)
∈ SL2(Z).

There are congruence subgroups Γ such that T 6∈ Γ. Moreover, even if we
are interested only in modular forms for Γ1(N), where we have T ∈ Γ1(N)
for all N , we will still have to consider q-expansions at infinity for modular
forms on groups δ−1Γ1(N)δ, and these need not contain T . Fortunately,
TN =

(
1 N
0 1

)
∈ Γ(N), so a congruence subgroup of level N contains TN .

Thus we have f(z + H) = f(H) for some positive integer H, e.g., H = N
always works, but there may be a smaller choice of H. The minimal choice of
H > 0 such that

(
1 H
0 1

)
∈ δ−1Γδ, where δ(∞) = α, is called the width of the

cusp α relative to the group Γ (see Section 1.4.1). When f is meromorphic
at infinity, we obtain a Fourier expansion

(1.3.2) f(z) =
∞∑

n=m

anqn/H
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in powers of the function q1/H = e2πiz/H . We say that f is holomorphic at
∞ if in (1.3.2) we have m ≥ 0.

What about the other cusps α ∈ P1(Q)? By Lemma 1.12 there is a
γ ∈ SL2(Z) such that γ(∞) = α. We declare f to be holomorphic at the

cusp α if the weakly modular function f [γ]k is holomorphic at ∞.

Definition 1.15 (Modular Form). A modular form of integer weight k for
a congruence subgroup Γ is a weakly modular function f : h → C that is
holomorphic on h∗. We let Mk(Γ) denote the space of weight k modular
forms of weight k for Γ.

Proposition 1.16. If a weakly modular function f is holomorphic at a set
of representative elements for C(Γ), then it is holomorphic at every element
of P1(Q).

Proof. Let c1, . . . , cn ∈ P1(Q) be representatives for the set of cusps for
Γ. If α ∈ P1(Q), then there is γ ∈ Γ such that α = γ(ci) for some i. By
hypothesis f is holomorphic at ci, so if δ ∈ SL2(Z) is such that δ(∞) = ci,

then f [δ]k is holomorphic at ∞. Since f is a weakly modular function for Γ,

(1.3.3) f [δ]k = (f [γ]k)[δ]k = f [γδ]k .

But γ(δ(∞)) = γ(ci) = α, so (1.3.3) implies that f is holomorphic at α. ¤

1.4. Remarks on Congruence Subgroups

Recall that a congruence subgroup is a subgroup of SL2(Z) that contains
Γ(N) for some N . Any congruence subgroup has finite index in SL2(Z),
since Γ(N) does. What about the converse: is every finite index subgroup
of SL2(Z) a congruence subgroup? This is the congruence subgroup problem.
One can ask about the congruence subgroup problem with SL2(Z) replaced
by many similar groups. If p is a prime, then one can prove that every finite
index subgroup of SL2(Z[1/p]) is a congruence subgroup (i.e., contains the
kernel of reduction modulo some integer coprime to p), and for any n > 2, all
finite index subgroups of SLn(Z) are congruence subgroups (see [Hum80]).
However, there are numerous finite index subgroups of SL2(Z) that are not
congruence subgroups. The paper [Hsu96] contains an algorithm to decide
if certain finite index subgroups are congruence subgroups and gives an
example of a subgroup of index 12 that is not a congruence subgroup.

One can consider modular forms even for noncongruence subgroups. See,
e.g., [Tho89] and the papers it references for work on this topic. We will not
consider such modular forms further in this book. Note that modular sym-
bols (which we define later in this book) are computable for noncongruence
subgroups.
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Finding coset representatives for Γ0(N), Γ1(N) and Γ(N) in SL2(Z) is
straightforward and will be discussed at length later in this book. To make
the problem more explicit, note that you can quotient out by Γ(N) first.
Then the question amounts to finding coset representatives for a subgroup
of SL2(Z/NZ) (and lifting), which is reasonably straightforward.

Given coset representatives for a finite index subgroup G of SL2(Z), we
can compute generators for G as follows. Let R be a set of coset represen-
tatives for G. Let σ, τ ∈ SL2(Z) be the matrices denoted by S and T in
(1.1.2). Define maps s, t : R → G as follows. If r ∈ R, then there exists a
unique αr ∈ R such that Grσ = Gαr. Let s(r) = rσα−1

r . Likewise, there is
a unique βr such that Grτ = Gβr and we let t(r) = rτβ−1

r . Note that s(r)
and t(r) are in G for all r. Then G is generated by s(R) ∪ t(R).

Proposition 1.17. The above procedure computes generators for G.

Proof. Without loss of generality, assume that I = ( 1 0
0 1 ) represents the

coset of G. Let g be an element of G. Since σ and τ generate SL2(Z), it is
possible to write g as a product of powers of σ and τ . There is a procedure,
which we explain below with an example in order to avoid cumbersome
notation, which writes g as a product of elements of s(R) ∪ t(R) times a
right coset representative r ∈ R. For example, if

g = στ2στ,

then g = Iστ2στ = s(I)yτ2στ for some y ∈ R. Continuing,

s(I)yτ2στ = s(I)(yτ)τστ = s(I)(t(y)z)τστ

for some z ∈ R. Again,

s(I)(t(y)z)τστ = s(I)t(y)(zτ)στ = · · · .

The procedure illustrated above (with an example) makes sense for arbitrary
g and, after carrying it out, writes g as a product of elements of s(R)∪ t(R)
times a right coset representative r ∈ R. But g ∈ G and I is the right coset
representative for G, so this right coset representative must be I. ¤

Remark 1.18. We could also apply the proof of Proposition 1.17 to write
any element of G in terms of the given generators. Moreover, we could use
it to write any element γ ∈ SL2(Z) in the form gr, where g ∈ G and r ∈ R,
so we can decide whether or not γ ∈ G.

1.4.1. Computing Widths of Cusps. Let Γ be a congruence subgroup
of level N . Suppose α ∈ C(Γ) is a cusp, and choose γ ∈ SL2(Z) such that
γ(∞) = α. Recall that the minimal h such that

(
1 h
0 1

)
∈ γ−1Γγ is called

the width of the cusp α for the group Γ. In this section we discuss how to
compute h.
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Algorithm 1.19 (Width of Cusp). Given a congruence subgroup Γ of level
N and a cusp α for Γ, this algorithm computes the width h of α. We assume
that Γ is given by congruence conditions, e.g., Γ = Γ0(N) or Γ1(N).

(1) [Find γ] Use the extended Euclidean algorithm to find γ ∈ SL2(Z)
such that γ(∞) = α, as follows. If α = ∞, set γ = 1; otherwise,
write α = a/b, find c, d such that ad − bc = 1, and set γ =

(
a b
c d

)
.

(2) [Compute Conjugate Matrix] Compute the following element of
Mat2(Z[x]):

δ(x) = γ

(
1 x
0 1

)
γ−1.

Note that the entries of δ(x) are constant or linear in x.

(3) [Solve] The congruence conditions that define Γ give rise to four
linear congruence conditions on x. Use techniques from elementary
number theory (or enumeration) to find the smallest simultaneous
positive solution h to these four equations.

Example 1.20. (1) Suppose α = 0 and Γ = Γ0(N) or Γ1(N). Then
γ =

(
0 −1
1 0

)
has the property that γ(∞) = α. Next, the congruence

condition is

δ(x) = γ

(
1 x
0 1

)
γ−1 =

(
1 0

−x 1

)
≡

(
1 ∗
0 1

)
(mod N).

Thus the smallest positive solution is h = N , so the width of 0
is N .

(2) Suppose N = pq where p, q are distinct primes, and let α = 1/p.
Then γ =

(
1 0
p 1

)
sends ∞ to α. The congruence condition for Γ0(pq)

is

δ(x) = γ

(
1 x
0 1

)
γ−1 =

(
1 − px x
−p2x px + 1

)
≡

(
∗ ∗
0 ∗

)
(mod pq).

Since p2x ≡ 0 (mod pq), we see that x = q is the smallest solution.
Thus 1/p has width q, and symmetrically 1/q has width p.

Remark 1.21. For Γ0(N), once we enforce that the bottom left entry is 0
(mod N) and use that the determinant is 1, the coprimality from the other
two congruences is automatic. So there is one congruence to solve in the
Γ0(N) case. There are two congruences in the Γ1(N) case.

1.5. Applications of Modular Forms

The above definition of modular forms might leave the impression that mod-
ular forms occupy an obscure corner of complex analysis. This is not the
case! Modular forms are highly geometric, arithmetic, and topological ob-
jects that are of extreme interest all over mathematics:
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(1) Fermat’s last theorem: Wiles’ proof [Wil95] of Fermat’s last
theorem uses modular forms extensively. The work of Wiles et al.
on modularity also massively extends computational methods for
elliptic curves over Q, because many elliptic curve algorithms, e.g.,
for computing L-functions, modular degrees, Heegner points, etc.,
require that the elliptic curve be modular.

(2) Diophantine equations: Wiles’ proof of Fermat’s last theorem
has made available a wide array of new techniques for solving cer-
tain diophantine equations. Such work relies crucially on having
access to tables or software for computing modular forms. See,
e.g., [Dar97, Mer99, Che05, SC03]. (Wiles did not need a com-
puter, because the relevant spaces of modular forms that arise in
his proof have dimension 0!) Also, according to Siksek (personal
communication) the paper [BMS06] would “have been entirely im-
possible to write without [the algorithms described in this book].”

(3) Congruent number problem: This ancient open problem is to
determine which integers are the area of a right triangle with ra-
tional side lengths. There is a potential solution that uses modular
forms (of weight 3/2) extensively (the solution is conditional on
truth of the Birch and Swinnerton-Dyer conjecture, which is not
yet known). See [Kob84].

(4) Topology: Topological modular forms are a major area of current
research.

(5) Construction of Ramanujan graphs: Modular forms can be
used to construct almost optimal expander graphs, which play a
role in communications network theory.

(6) Cryptography and Coding Theory: Point counting on elliptic
curves over finite fields is crucial to the construction of elliptic curve
cryptosystems, and modular forms are relevant to efficient algo-
rithms for point counting (see [Elk98]). Algebraic curves that are
associated to modular forms are useful in constructing and studying
certain error-correcting codes (see [Ebe02]).

(7) The Birch and Swinnerton-Dyer conjecture: This central
open problem in arithmetic geometry relates arithmetic proper-
ties of elliptic curves (and abelian varieties) to special values of
L-functions. Most deep results toward this conjecture use modu-
lar forms extensively (e.g., work of Kolyvagin, Gross-Zagier, and
Kato). Also, modular forms are used to compute and prove results
about special values of these L-functions. See [Wil00].
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(8) Serre’s Conjecture on modularity of Galois representation:
Let GQ = Gal(Q/Q) be the Galois group of an algebraic closure
of Q. Serre conjectured and many people have (nearly!) proved
that every continuous homomorphism ρ : GQ → GL2(Fq), where
Fq is a finite field and det(ρ(complex conjugation)) = −1, “arises”
from a modular form. More precisely, for almost all primes p the
coefficients ap of a modular (eigen-)form

∑
anqn are congruent to

the traces of elements ρ(Frobp), where Frobp are certain special
elements of GQ called Frobenius elements. See [RS01] and [DS05,
Ch. 9].

(9) Generating functions for partitions: The generating functions
for various kinds of partitions of an integer can often be related to
modular forms. Deep theorems about modular forms then translate
into results about partitions. See work of Ramanujan, Gordon,
Andrews, and Ahlgren and Ono (e.g., [AO01]).

(10) Lattices: If L ⊂ Rn is an even unimodular lattice (the basis matrix
has determinant ±1 and λ · λ ∈ 2Z for all λ ∈ L), then the theta
series

θL(q) =
∑

λ∈L

qλ·λ

is a modular form of weight n/2. The coefficient of qm is the num-
ber of lattice vectors with squared length m. Theorems and com-
putational methods for modular forms translate into theorems and
computational methods for lattices. For example, the 290 theorem
of M. Bharghava and J. Hanke is a theorem about lattices, which
asserts that an integer-valued quadratic form represents all posi-
tive integers if and only if it represents the integers up to 290; it
is proved by doing many calculations with modular forms (both
theoretical and with a computer).

1.6. Exercises

1.1 Suppose γ =
(

a b
c d

)
∈ GL2(R) has positive determinant. Prove that

if z ∈ C is a complex number with positive imaginary part, then
the imaginary part of γ(z) = (az + b)/(cz + d) is also positive.

1.2 Prove that every rational function (quotient of two polynomials) is
a meromorphic function on C.

1.3 Suppose f and g are weakly modular functions for a congruence
subgroup Γ with f 6= 0.
(a) Prove that the product fg is a weakly modular function for Γ.
(b) Prove that 1/f is a weakly modular function for Γ.
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(c) If f and g are modular functions, show that fg is a modular
function for Γ.

(d) If f and g are modular forms, show that fg is a modular form
for Γ.

1.4 Suppose f is a weakly modular function of odd weight k and level
Γ0(N) for some N . Show that f = 0.

1.5 Prove that SL2(Z) = Γ0(1) = Γ1(1) = Γ(1).

1.6 (a) Prove that Γ1(N) is a group.
(b) Prove that Γ1(N) has finite index in SL2(Z) (Hint: It contains

the kernel of the homomorphism SL2(Z) → SL2(Z/NZ).)
(c) Prove that Γ0(N) has finite index in SL2(Z).
(d) Prove that Γ0(N) and Γ1(N) have level N .

1.7 Let k be an integer, and for any function f : h∗ → C and γ =(
a b
c d

)
∈ GL2(Q), set f [γ]k(z) = det(γ)k−1 · (cz + d)−k · f(γ(z)).

Prove that if γ1, γ2 ∈ GL2(Z), then for all z ∈ h∗ we have

f [γ1γ2]k(z) = ((f [γ1]k)[γ2]k)(z).

1.8 Prove that for any α, β ∈ P1(Q), there exists γ ∈ SL2(Z) such that
γ(α) = β.

1.9 Prove Proposition 1.13, which asserts that the set of cusps C(Γ),
for any congruence subgroup Γ, is finite.

1.10 Use Algorithm 1.19 to give an example of a group Γ and cusp α
with width 2.



Chapter 2

Modular Forms of
Level 1

In this chapter we study in detail the structure of level 1 modular forms,
i.e., modular forms on SL2(Z) = Γ0(1) = Γ1(1). We assume some complex
analysis (e.g., the residue theorem), linear algebra, and that the reader has
read Chapter 1.

2.1. Examples of Modular Forms of Level 1

In this section we will finally see some examples of modular forms of level 1!
We first introduce the Eisenstein series and then define ∆, which is a cusp
form of weight 12. In Section 2.2 we prove the structure theorem, which
says that all modular forms of level 1 are polynomials in Eisenstein series.

For an even integer k ≥ 4, the nonnormalized weight k Eisenstein series
is the function on the extended upper half plane h∗ = h ∪ P1(Q) given by

(2.1.1) Gk(z) =
∗∑

m,n∈Z

1

(mz + n)k
.

The star on top of the sum symbol means that for each z the sum is over
all m, n ∈ Z such that mz + n 6= 0.

Proposition 2.1. The function Gk(z) is a modular form of weight k, i.e.,
Gk ∈ Mk(SL2(Z)).

13
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Proof. See [Ser73, § VII.2.3] for a proof that Gk(z) defines a holomorphic
function on h∗. To see that Gk is modular, observe that

Gk(z + 1) =
∗∑ 1

(m(z + 1) + n)k
=

∗∑ 1

(mz + (n + m))k
=

∗∑ 1

(mz + n)k
,

where for the last equality we use that the map (m, n + m) 7→ (m, n) on
Z × Z is invertible. Also,

Gk(−1/z) =

∗∑ 1

(−m/z + n)k

=
∗∑ zk

(−m + nz)k

= zk
∗∑ 1

(mz + n)k
= zkGk(z),

where we use that (n, −m) 7→ (m, n) is invertible. ¤

Proposition 2.2. Gk(∞) = 2ζ(k), where ζ is the Riemann zeta function.

Proof. As z → ∞ (along the imaginary axis) in (2.1.1), the terms that
involve z with m 6= 0 go to 0. Thus

Gk(∞) =
∗∑

n∈Z

1

nk
.

This sum is twice ζ(k) =
∑

n≥1
1

nk , as claimed. ¤

2.1.1. The Cusp Form ∆. Suppose E = C/Λ is an elliptic curve over C,
viewed as a quotient of C by a lattice Λ = Zω1 + Zω2, with ω1/ω2 ∈ h (see
[DS05, §1.4]). The Weierstrass ℘-function of the lattice Λ is

℘ = ℘Λ(u) =
1

u2
+

∑

k=4,6,8,...

(k − 1)Gk(ω1/ω2)u
k−2,

where the sum is over even integers k ≥ 4. It satisfies the differential equa-
tion

(℘′)2 = 4℘3 − 60G4(ω1/ω2)℘ − 140G6(ω1/ω2).

If we set x = ℘ and y = ℘′, the above is an (affine) equation of the form
y2 = ax3+bx+c for an elliptic curve that is complex analytically isomorphic
to C/Λ (see [Ahl78, pg. 277] for why the cubic has distinct roots).

The discriminant of the cubic

4x3 − 60G4(ω1/ω2)x − 140G6(ω1/ω2)

is 16D(ω1/ω2), where

D(z) = (60G4(z))3 − 27(140G6(z))2.
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Since D(z) is the difference of two modular forms of weight 12 it has weight
12. Moreover,

D(∞) = (60G4(∞))3 − 27 (140G6(∞))2

=

(
60

32 · 5
π4

)3

− 27

(
140 · 2

33 · 5 · 7
π6

)2

= 0,

so D is a cusp form of weight 12. Let

∆ =
D

(2π)12
.

Lemma 2.3. If z ∈ h, then ∆(z) 6= 0.

Proof. Let ω1 = z and ω2 = 1. Since E = C/(Zω1 + Zω2) is an elliptic
curve, it has nonzero discriminant ∆(z) = ∆(ω1/ω2) 6= 0. ¤

Proposition 2.4. We have ∆ = q · ∏∞
n=1(1 − qn)24.

Proof. See [Ser73, Thm. 6, pg. 95]. ¤

Remark 2.5. SAGE computes the q-expansion of ∆ efficiently to high pre-
cision using the command delta qexp:

sage: delta_qexp(6)

q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)

2.1.2. Fourier Expansions of Eisenstein Series. Recall from (1.2.4)
that elements f of Mk(SL2(Z)) can be expressed as formal power series in
terms of q(z) = e2πiz and that this expansion is called the Fourier expansion
of f . The following proposition gives the Fourier expansion of the Eisenstein
series Gk(z).

Definition 2.6 (Sigma). For any integer t ≥ 0 and any positive integer n,
the sigma function

σt(n) =
∑

1≤d|n
dt

is the sum of the tth powers of the positive divisors of n. Also, let d(n) =
σ0(n), which is the number of divisors of n, and let σ(n) = σ1(n). For
example, if p is prime, then σt(p) = 1 + pt.

Proposition 2.7. For every even integer k ≥ 4, we have

Gk(z) = 2ζ(k) + 2 · (2πi)k

(k − 1)!
·

∞∑

n=1

σk−1(n)qn.
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Proof. See [Ser73, Section VII.4], which uses clever manipulations of series,
starting with the identity

π cot(πz) =
1

z
+

∞∑

m=1

(
1

z + m
+

1

z − m

)
.

¤

From a computational point of view, the q-expansion of Proposition 2.7
is unsatisfactory because it involves transcendental numbers. To understand
these numbers, we introduce the Bernoulli numbers Bn for n ≥ 0 defined by
the following equality of formal power series:

(2.1.2)
x

ex − 1
=

∞∑

n=0

Bn
xn

n!
.

Expanding the power series, we have

x

ex − 1
= 1 − x

2
+

x2

12
− x4

720
+

x6

30240
− x8

1209600
+ · · · .

As this expansion suggests, the Bernoulli numbers Bn with n > 1 odd are 0
(see Exercise 1.2). Expanding the series further, we obtain the following
table:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
,

B10 =
5

66
, B12 = − 691

2730
, B14 =

7

6
, B16 = −3617

510
, B18 =

43867

798
,

B20 = −174611

330
, B22 =

854513

138
, B24 = −236364091

2730
, B26 =

8553103

6
.

See Section 2.7 for a discussion of fast (analytic) methods for computing
Bernoulli numbers.

We compute some Bernoulli numbers in SAGE:

sage: bernoulli(12)

-691/2730

sage: bernoulli(50)

495057205241079648212477525/66

sage: len(str(bernoulli(10000)))

27706

A key fact is that Bernoulli numbers are rational numbers and they are
connected to values of ζ at positive even integers.
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Proposition 2.8. If k ≥ 2 is an even integer, then

ζ(k) = −(2πi)k

2 · k!
· Bk.

Proof. This is proved by manipulating a series expansion of z cot(z) (see
[Ser73, Section VII.4]). ¤

Definition 2.9 (Normalized Eisenstein Series). The normalized Eisenstein
series of even weight k ≥ 4 is

Ek =
(k − 1)!

2 · (2πi)k
· Gk.

Combining Propositions 2.7 and 2.8, we see that

(2.1.3) Ek = −Bk

2k
+ q +

∞∑

n=2

σk−1(n)qn.

Warning 2.10. Our series Ek is normalized so that the coefficient of q
is 1, but often in the literature Ek is normalized so that the constant coef-
ficient is 1. We use the normalization with the coefficient of q equal to 1,
because then the eigenvalue of the nth Hecke operator (see Section 2.4) is
the coefficient of qn. Our normalization is also convenient when considering
congruences between cusp forms and Eisenstein series.

2.2. Structure Theorem for Level 1 Modular Forms

In this section we describe a structure theorem for modular forms of level 1.
If f is a nonzero meromorphic function on h and w ∈ h, let ordw(f) be
the largest integer n such that f(z)/(w − z)n is holomorphic at w. If f =∑∞

n=m anqn with am 6= 0, we set ord∞(f) = m. We will use the following
theorem to give a presentation for the vector space of modular forms of
weight k; this presentation yields an algorithm to compute this space.

Let Mk = Mk(SL2(Z)) denote the complex vector space of modular
forms of weight k for SL2(Z). The standard fundamental domain F for

SL2(Z) is the set of z ∈ h with |z| ≥ 1 and |Re(z)| ≤ 1/2. Let ρ = e2πi/3.

Theorem 2.11 (Valence Formula). Let k be any integer and suppose f ∈
Mk(SL2(Z)) is nonzero. Then

ord∞(f) +
1

2
ordi(f) +

1

3
ordρ(f) +

∗∑

w∈F
ordw(f) =

k

12
,

where
∗∑

w∈F
is the sum over elements of F other than i and ρ.
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Proof. The proof in [Ser73, §VII.3] uses the residue theorem. ¤

Let Sk = Sk(SL2(Z)) denote the subspace of weight k cusp forms for
SL2(Z). We have an exact sequence

0 → Sk → Mk
ι∞−−→ C

that sends f ∈ Mk to f(∞). When k ≥ 4 is even, the space Mk contains
the Eisenstein series Gk, and Gk(∞) = 2ζ(k) 6= 0, so the map Mk → C is
surjective. This proves the following lemma.

Lemma 2.12. If k ≥ 4 is even, then Mk = Sk ⊕ CGk and the following
sequence is exact:

0 → Sk → Mk
ι∞−−→ C → 0.

Proposition 2.13. For k < 0 and k = 2, we have Mk = 0.

Proof. Suppose f ∈ Mk is nonzero yet k = 2 or k < 0. By Theorem 2.11,

ord∞(f) +
1

2
ordi(f) +

1

3
ordρ(f) +

∗∑

w∈D

ordw(f) =
k

12
≤ 1

6
.

This is not possible because each quantity on the left is nonnegative so
whatever the sum is, it is too big (or 0, in which case k = 0). ¤

Theorem 2.14. Multiplication by ∆ defines an isomorphism Mk−12 → Sk.

Proof. By Lemma 2.3, ∆ is not identically 0, so because ∆ is holomorphic,
multiplication by ∆ defines an injective map Mk−12 →֒ Sk. To see that this
map is surjective, we show that if f ∈ Sk, then f/∆ ∈ Mk−12. Since ∆ has
weight 12 and ord∞(∆) ≥ 1, Theorem 2.11 implies that ∆ has a simple zero
at ∞ and does not vanish on h. Thus if f ∈ Sk and if we let g = f/∆,
then g is holomorphic and satisfies the appropriate transformation formula,
so g ∈ Mk−12. ¤

Corollary 2.15. For k = 0, 4, 6, 8, 10, 14, the space Mk has dimension 1,
with basis 1, G4, G6, G8, G10, and G14, respectively, and Sk = 0.

Proof. Combining Proposition 2.13 with Theorem 2.14, we see that the
spaces Mk for k ≤ 10 cannot have dimension greater than 1, since otherwise
Mk′ 6= 0 for some k′ < 0. Also M14 has dimension at most 1, since M2

has dimension 0. Each of the indicated spaces of weight ≥ 4 contains the
indicated Eisenstein series and so has dimension 1, as claimed. ¤

Corollary 2.16. dimMk =





0 if k is odd or negative,

⌊k/12⌋ if k ≡ 2 (mod 12),

⌊k/12⌋ + 1 if k 6≡ 2 (mod 12).

Here ⌊x⌋ is the biggest integer ≤ x.
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Proof. As we have already seen above, the formula is true when k ≤ 12. By
Theorem 2.14, the dimension increases by 1 when k is replaced by k+12. ¤

Theorem 2.17. The space Mk has as basis the modular forms Ga
4G

b
6, where

a, b run over all pairs of nonnegative integers such that 4a + 6b = k.

Proof. Fix an even integer k. We first prove by induction that the modular
forms Ga

4G
b
6 generate Mk; the cases k ≤ 10 and k = 14 follow from the

above arguments (e.g., when k = 0, we have a = b = 0 and basis 1). Choose
some pair of nonnegative integers a, b such that 4a + 6b = k. The form
g = Ga

4G
b
6 is not a cusp form, since it is nonzero at ∞. Now suppose f ∈ Mk

is arbitrary. Since g(∞) 6= 0, there exists α ∈ C such that f − αg ∈ Sk.
Then by Theorem 2.14, there is h ∈ Mk−12 such that f − αg = ∆ · h. By
induction, h is a polynomial in G4 and G6 of the required type, and so is ∆,
so f is as well. Thus

{Ga
4G

b
6 | a ≥ 0, b ≥ 0, 4a + 6b = k}

spans Mk.

Suppose there is a nontrivial linear relation between the Ga
4G

b
6 for a

given k. By multiplying the linear relation by a suitable power of G4 and G6,
we may assume that we have such a nontrivial relation with k ≡ 0 (mod 12).

Now divide the linear relation by the weight k form G
k/6
6 to see that G3

4/G2
6

satisfies a polynomial with coefficients in C (see Exercise 2.4). Hence G3
4/G2

6

is a root of a polynomial, hence a constant, which is a contradiction since
the q-expansion of G3

4/G2
6 is not constant. ¤

Algorithm 2.18 (Basis for Mk). Given integers n and k, this algorithm
computes a basis of q-expansions for the complex vector space Mk mod qn.
The q-expansions output by this algorithm have coefficients in Q.

(1) [Simple Case] If k = 0, output the basis with just 1 in it and
terminate; otherwise if k < 4 or k is odd, output the empty basis
and terminate.

(2) [Power Series] Compute E4 and E6 mod qn using the formula from
(2.1.3) and Section 2.7.

(3) [Initialize] Set b = 0.

(4) [Enumerate Basis] For each integer b between 0 and ⌊k/6⌋, compute
a = (k − 6b)/4. If a is an integer, compute and output the basis
element Ea

4Eb
6 mod qn. When computing Ea

4 , find Em
4 (mod qn)

for each m ≤ a, and save these intermediate powers, so they can
be reused later, and likewise for powers of E6.



20 2. Modular Forms of Level 1

Proof. This is simply a translation of Theorem 2.17 into an algorithm,
since Ek is a nonzero scalar multiple of Gk. That the q-expansions have
coefficients in Q follows from (2.1.3). ¤

Example 2.19. We compute a basis for M24, which is the space with small-
est weight whose dimension is greater than 1. It has as basis E6

4 , E3
4E2

6 , and
E4

6 , whose explicit expansions are

E6
4 =

1

191102976000000
+

1

132710400000
q +

203

44236800000
q2 + · · · ,

E3
4E2

6 =
1

3511517184000
− 1

12192768000
q − 377

4064256000
q2 + · · · ,

E4
6 =

1

64524128256
− 1

32006016
q +

241

10668672
q2 + · · · .

We compute this basis in SAGE as follows:

sage: E4 = eisenstein_series_qexp(4, 3)

sage: E6 = eisenstein_series_qexp(6, 3)

sage: E4^6

1/191102976000000 + 1/132710400000*q

+ 203/44236800000*q^2 + O(q^3)

sage: E4^3*E6^2

1/3511517184000 - 1/12192768000*q

- 377/4064256000*q^2 + O(q^3)

sage: E6^4

1/64524128256 - 1/32006016*q + 241/10668672*q^2 + O(q^3)

In Section 2.3, we will discuss the reduced echelon form basis for Mk.

2.3. The Miller Basis

Lemma 2.20 (V. Miller). The space Sk has a basis f1, . . . , fd such that if
ai(fj) is the ith coefficient of fj, then ai(fj) = δi,j for i = 1, . . . , d. Moreover
the fj all lie in Z[[q]]. We call this basis the Miller basis for Sk.

This is a straightforward construction involving E4, E6 and ∆. The
following proof very closely follows [Lan95, Ch. X, Thm. 4.4], which in turn
follows the first lemma of V. Miller’s thesis.

Proof. Let d = dimSk. Since B4 = −1/30 and B6 = 1/42, we note that

F4 = − 8

B4
· E4 = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + · · ·
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and

F6 = − 12

B6
· E6 = 1 − 504q − 16632q2 − 122976q3 − 532728q4 + · · ·

have q-expansions in Z[[q]] with leading coefficient 1. Choose integers a, b ≥
0 such that

4a + 6b ≤ 14 and 4a + 6b ≡ k (mod 12),

with a = b = 0 when k ≡ 0 (mod 12), and let

gj = ∆jF
2(d−j)+b
6 F a

4 =

(
∆

F 2
6

)j

F 2d+b
6 F a

4 , for j = 1, . . . , d.

Then it is elementary to check that gj has weight k

aj(gj) = 1 and ai(gj) = 0 when i < j.

Hence the gj are linearly independent over C, so form a basis for Sk. Since
F4, F6, and ∆ are all in Z[[q]], so are the gj . The fi may then be constructed
from the gj by Gauss elimination. The coefficients of the resulting power
series lie in Z because each time we clear a column we use the power series
gj whose leading coefficient is 1 (so no denominators are introduced). ¤

Remark 2.21. The basis coming from Miller’s lemma is “canonical”, since
it is just the reduced row echelon form of any basis. Also the set of all
integral linear combinations of the elements of the Miller basis are precisely
the modular forms of level 1 with integral q-expansion.

We extend the Miller basis to all Mk by taking a multiple of Gk with
constant term 1 and subtracting off the fi from the Miller basis so that the
coefficients of q, q2, . . . qd of the resulting expansion are 0. We call the extra
basis element f0.

Example 2.22. If k = 24, then d = 2. Choose a = b = 0, since k ≡ 0
(mod 12). Then

g1 = ∆F 2
6 = q − 1032q2 + 245196q3 + 10965568q4 + 60177390q5 − · · ·

and

g2 = ∆2 = q2 − 48q3 + 1080q4 − 15040q5 + · · · .

We let f2 = g2 and

f1 = g1 + 1032g2 = q + 195660q3 + 12080128q4 + 44656110q5 − · · · .
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Example 2.23. When k = 36, the Miller basis including f0 is

f0 = 1 + 6218175600q4 + 15281788354560q5 + · · · ,

f1 = q + 57093088q4 + 37927345230q5 + · · · ,

f2 = q2 + 194184q4 + 7442432q5 + · · · ,

f3 = q3 − 72q4 + 2484q5 + · · · .

Example 2.24. The SAGE command victor miller basis computes the
Miller basis to any desired precision for a given k.

sage: victor_miller_basis(28,5)

[

1 + 15590400*q^3 + 36957286800*q^4 + O(q^5),

q + 151740*q^3 + 61032448*q^4 + O(q^5),

q^2 + 192*q^3 - 8280*q^4 + O(q^5)

]

Remark 2.25. To write f ∈ Mk as a polynomial in E4 and E6, it is wasteful
to compute the Miller basis. Instead, use the upper triangular (but not

echelon!) basis ∆jF
2(d−j)+a
6 F b

4 , and match coefficients from q0 to qd.

2.4. Hecke Operators

In this section we define Hecke operators on level 1 modular forms and derive
their basic properties. We will not give proofs of the analogous properties for
Hecke operators on higher level modular forms, since the proofs are clearest
in the level 1 case, and the general case is similar (see, e.g., [Lan95]).

For any positive integer n, let

Xn =

{(
a b
0 d

)
∈ Mat2(Z) : a ≥ 1, ad = n, and 0 ≤ b < d

}
.

Note that the set Xn is in bijection with the set of subgroups of Z2 of
index n, where

(
a b
c d

)
corresponds to L = Z · (a, b) + Z · (0, d), as one can see

using Hermite normal form, which is the analogue over Z of echelon form
(see Exercise 7.5).

Recall from (1.3.1) that if γ =
(

a b
c d

)
∈ GL2(Q), then

f [γ]k = det(γ)k−1(cz + d)−kf(γ(z)).

Definition 2.26 (Hecke Operator Tn,k). The nth Hecke operator Tn,k of
weight k is the operator on the set of functions on h defined by

Tn,k(f) =
∑

γ∈Xn

f [γ]k .
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Remark 2.27. It would make more sense to write Tn,k on the right, e.g.,
f |Tn,k, since Tn,k is defined using a right group action. However, if n, m
are integers, then the action of Tn,k and Tm,k on weakly modular functions
commutes (by Proposition 2.29 below), so it makes no difference whether
we view the Hecke operators of given weight k as acting on the right or left.

Proposition 2.28. If f is a weakly modular function of weight k, then so
is Tn,k(f); if f is a modular function, then so is Tn,k(f).

Proof. Suppose γ ∈ SL2(Z). Since γ induces an automorphism of Z2,

Xn · γ = {δγ : δ ∈ Xn}
is also in bijection with the subgroups of Z2 of index n. For each element
δγ ∈ Xn · γ, there is σ ∈ SL2(Z) such that σδγ ∈ Xn (the element σ
transforms δγ to Hermite normal form), and the set of elements σδγ is thus
equal to Xn. Thus

Tn,k(f) =
∑

σδγ∈Xn

f [σδγ]k =
∑

δ∈Xn

f [δγ]k = Tn,k(f)[γ]k .

A finite sum of meromorphic function is meromorphic, so Tn,k(f) is weakly

modular. If f is holomorphic on h, then each f [δ]k is holomorphic on h for
δ ∈ Xn. A finite sum of holomorphic functions is holomorphic, so Tn,k(f) is
holomorphic.

¤

We will frequently drop k from the notation in Tn,k, since the weight k
is implicit in the modular function to which we apply the Hecke operator.
Henceforth we make the convention that if we write Tn(f) and if f is mod-
ular, then we mean Tn,k(f), where k is the weight of f .

Proposition 2.29. On weight k modular functions we have

(2.4.1) Tmn = TmTn if (m, n) = 1,

and

(2.4.2) Tpn = Tpn−1Tp − pk−1Tpn−2 if p is prime.

Proof. Let L be a subgroup of index mn. The quotient Z2/L is an abelian
group of order mn, and (m, n) = 1, so Z2/L decomposes uniquely as a
direct sum of a subgroup of order m with a subgroup of order n. Thus there
exists a unique subgroup L′ such that L ⊂ L′ ⊂ Z2, and L′ has index m
in Z2. The subgroup L′ corresponds to an element of Xm, and the index n
subgroup L ⊂ L′ corresponds to multiplying that element on the right by
some uniquely determined element of Xn. We thus have

SL2(Z) · Xm · Xn = SL2(Z) · Xmn,
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i.e., the set products of elements in Xm with elements of Xn equal the
elements of Xmn, up to SL2(Z)-equivalence. Thus for any f , we have
Tmn(f) = Tn(Tm(f)). Applying this formula with m and n swapped yields
the equality Tmn = TmTn.

We will show that Tpn + pk−1Tpn−2 = TpTpn−1 . Suppose f is a weight k

weakly modular function. Using that f
[
“

p 0
0 p

”
]k = (p2)k−1p−kf = pk−2f , we

have ∑

x∈Xpn

f [x]k + pk−1
∑

x∈Xpn−2

f [x]k =
∑

x∈Xpn

f [x]k + p
∑

x∈pXpn−2

f [x]k .

Also
TpTpn−1(f) =

∑

y∈Xp

∑

x∈Xpn−1

(f [x]k)[y]k =
∑

x∈Xpn−1 ·Xp

f [x]k .

Thus it suffices to show that Xpn disjoint union p copies of pXpn−2 is equal
to Xpn−1 · Xp, where we consider elements with multiplicities and up to left
SL2(Z)-equivalence (i.e., the left action of SL2(Z)).

Suppose L is a subgroup of Z2 of index pn, so L corresponds to an
element of Xpn . First suppose L is not contained in pZ2. Then the image
of L in Z2/pZ2 = (Z/pZ)2 is of order p, so if L′ = pZ2 +L, then [Z2 : L′] = p
and [L : L′] = pn−1, and L′ is the only subgroup with this property. Second,
suppose that L ⊂ pZ2 if of index pn and that x ∈ Xpn corresponds to L.
Then every one of the p + 1 subgroups L′ ⊂ Z2 of index p contains L. Thus
there are p + 1 chains L ⊂ L′ ⊂ Z2 with [Z2 : L′] = p.

The chains L ⊂ L′ ⊂ Z2 with [Z2 : L′] = p and [Z2 : L] = pn−1 are in
bijection with the elements of Xpn−1 · Xp. On the other hand the union of
Xpn with p copies of pXpn−2 corresponds to the subgroups L of index pn,

but with those that contain pZ2 counted p + 1 times. The structure of the
set of chains L ⊂ L′ ⊂ Z2 that we derived in the previous paragraph gives
the result. ¤
Corollary 2.30. The Hecke operator Tpn, for prime p, is a polynomial in
Tp with integer coefficients, i.e., Tpn ∈ Z[Tp]. If n, m are any integers, then
TnTm = TmTn.

Proof. The first statement follows from (2.4.2) of Proposition 2.29. It then
follows that TnTm = TmTn when m and n are both powers of a single prime p.
Combining this with (2.4.1) gives the second statement in general. ¤
Proposition 2.31. Let f =

∑
n∈Z anqn be a modular function of weight k.

Then

Tn(f) =
∑

m∈Z


 ∑

1≤d | gcd(n,m)

dk−1amn/d2


 qm.
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In particular, if n = p is prime, then

Tp(f) =
∑

m∈Z

(
amp + pk−1am/p

)
qm,

where am/p = 0 if m/p 6∈ Z.

Proof. This is proved in [Ser73, §VII.5.3] by writing out Tn(f) explicitly

and using that
∑

0≤b<d e2πibm/d is d if d | m and 0 otherwise. ¤

Corollary 2.32. The Hecke operators preserve Mk and Sk.

Remark 2.33. Alternatively, for Mk the above corollary is Proposition 2.28,
and for Sk we see from the definitions that if f(∞) = 0, then Tnf also
vanishes at ∞.

Example 2.34. Recall from (2.1.3) that

E4 =
1

240
+ q + 9q2 + 28q3 + 73q4 + 126q5 + 252q6 + 344q7 + · · · .

Using the formula of Proposition 2.31, we see that

T2(E4) = (1/240 + 23 · (1/240)) + 9q + (73 + 23 · 1)q2 + · · · .

Since M4 has dimension 1 and since we have proved that T2 preserves M4,
we know that T2 acts as a scalar. Thus we know just from the constant
coefficient of T2(E4) that

T2(E4) = 9E4.

More generally, for p prime we see by inspection of the constant coefficient
of Tp(E4) that

Tp(E4) = (1 + p3)E4.

In fact Tn(Ek) = σk−1(n)Ek, for any integer n ≥ 1 and even weight k ≥ 4.

Example 2.35. By Corollary 2.32, the Hecke operators Tn also preserve
the subspace Sk of Mk. Since S12 has dimension 1 (spanned by ∆), we
see that ∆ is an eigenvector for every Tn. Since the coefficient of q in the
q-expansion of ∆ is 1, the eigenvalue of Tn on ∆ is the nth coefficient of ∆.
Since Tnm = TnTm for gcd(n, m) = 1, we have proved the nonobvious fact
that the Ramanujan function τ(n) that gives the nth coefficient of ∆ is a
multiplicative function, i.e., if gcd(n, m) = 1, then τ(nm) = τ(n)τ(m).

Remark 2.36. The Hecke operators respect the decomposition Mk = Sk ⊕
CEk, i.e., for all k the series Ek are eigenvectors for all Tn.
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2.5. Computing Hecke Operators

This section is about how to compute matrices of Hecke operators on Mk.

Algorithm 2.37 (Hecke Operator). This algorithm computes the matrix of
the Hecke operator Tn on the Miller basis for Mk.

(1) [Dimension] Compute d = dim(Mk) − 1 using Corollary 2.16.

(2) [Basis] Using Lemma 2.20, compute the echelon basis f0, . . . , fd for
Mk (mod qdn+1).

(3) [Hecke operator] Using Proposition 2.31, compute for each i the
image Tn(fi) (mod qd+1) .

(4) [Write in terms of basis] The elements Tn(fi) (mod qd+1) determine
linear combinations of

f0, f1, . . . , fd (mod qd).

These linear combinations are easy to find once we compute Tn(fi)
(mod qd+1), since our basis of fi is in echelon form. The linear
combinations are just the coefficients of the power series Tn(fi) up
to and including qd.

(5) [Write down matrix] The matrix of Tn acting from the right rela-
tive to the basis f0, . . . , fd is the matrix whose rows are the linear
combinations found in the previous step, i.e., whose rows are the
coefficients of Tn(fi).

Proof. By Proposition 2.31, the dth coefficient of Tn(f) involves only adn

and smaller-indexed coefficients of f . We need only compute a modular
form f modulo qdn+1 in order to compute Tn(f) modulo qd+1. Uniqueness
in step (4) follows from Lemma 2.20 above. ¤

Example 2.38. We compute the Hecke operator T2 on M12 using the above
algorithm.

(1) [Compute dimension] We have d = 2 − 1 = 1.

(2) [Compute basis] Compute up to (but not including) the coefficient
of qdn+1 = q1·2+1 = q3. As given in the proof of Lemma 2.20, we
have

F4 = 1 + 240q + 2160q2 + · · · and F6 = 1 − 504q − 16632q2 + · · · .

Thus M12 has basis

F 3
4 = 1+720q+179280q2+· · · and ∆ = (F 3

4 −F 2
6 )/1728 = q−24q2+· · · .

Subtracting 720∆ from F 3
4 yields the echelon basis, which is

f0 = 1 + 196560q2 + · · · and f1 = q − 24q2 + · · · .

SAGE does the arithmetic in the above calculation as follows:



2.5. Computing Hecke Operators 27

sage: R.<q> = QQ[[’q’]]

sage: F4 = 240 * eisenstein_series_qexp(4,3)

sage: F6 = -504 * eisenstein_series_qexp(6,3)

sage: F4^3

1 + 720*q + 179280*q^2 + O(q^3)

sage: Delta = (F4^3 - F6^2)/1728; Delta

q - 24*q^2 + O(q^3)

sage: F4^3 - 720*Delta

1 + 196560*q^2 + O(q^3)

(3) [Compute Hecke operator] In each case letting an denote the nth
coefficient of f0 or f1, respectively, we have

T2(f0) = T2(1 + 196560q2 + · · · )
= (a0 + 211a0)q

0 + (a2 + 211a1/2)q
1 + · · ·

= 2049 + 196560q + · · · ,

and

T2(f1) = T2(q − 24q2 + · · · )
= (a0 + 211a0)q

0 + (a2 + 211a1/2)q
1 + · · ·

= 0 − 24q + · · · .

(Note that a1/2 = 0.)

(4) [Write in terms of basis] We read off at once that

T2(f0) = 2049f0 + 196560f1 and T2(f1) = 0f0 + (−24)f1.

(5) [Write down matrix] Thus the matrix of T2, acting from the right
on the basis f0, f1, is

T2 =

(
2049 196560

0 −24

)
.

As a check note that the characteristic polynomial of T2 is (x−2049)(x+24)
and that 2049 = 1 + 211 is the sum of the 11th powers of the divisors of 2.

Example 2.39. The Hecke operator T2 on M36 with respect to the echelon
basis is 



34359738369 0 6218175600 9026867482214400
0 0 34416831456 5681332472832
0 1 194184 −197264484
0 0 −72 −54528


 .

It has characteristic polynomial

(x − 34359738369) · (x3 − 139656x2 − 59208339456x − 1467625047588864),
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where the cubic factor is irreducible.

The echelon form() command creates the space of modular forms but
with basis in echelon form (which is not the default).

sage: M = ModularForms(1,36, prec=6).echelon_form()

sage: M.basis()

[

1 + 6218175600*q^4 + 15281788354560*q^5 + O(q^6),

q + 57093088*q^4 + 37927345230*q^5 + O(q^6),

q^2 + 194184*q^4 + 7442432*q^5 + O(q^6),

q^3 - 72*q^4 + 2484*q^5 + O(q^6)

]

Next we compute the matrix of the Hecke operator T2.

sage: T2 = M.hecke_matrix(2); T2

[34359738369 0 6218175600 9026867482214400]

[ 0 0 34416831456 5681332472832]

[ 0 1 194184 -197264484]

[ 0 0 -72 -54528]

Finally we compute and factor its characteristic polynomial.

sage: T2.charpoly().factor()

(x - 34359738369) *

(x^3 - 139656*x^2 - 59208339456*x - 1467625047588864)

The following is a famous open problem about Hecke operators on mod-
ular forms of level 1. It generalizes our above observation that the charac-
teristic polynomial of T2 on Mk, for k = 12, 36, factors as a product of a
linear factor and an irreducible factor.

Conjecture 2.40 (Maeda). The characteristic polynomial of T2 on Sk is
irreducible for any k.

Kevin Buzzard observed that in several specific cases the Galois group of
the characteristic polynomial of T2 is the full symmetric group (see [Buz96]).
See also [FJ02] for more evidence for the following conjecture:

Conjecture 2.41. For all primes p and all even k ≥ 2 the characteristic
polynomial of Tp,k acting on Sk is irreducible.
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2.6. Fast Computation of Fourier Coefficients

How difficult is it to compute prime-indexed coefficients of

∆ =
∞∑

n=1

τ(n)qn = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 + · · ·?

Theorem 2.42 (Bosman, Couveignes, Edixhoven, de Jong, Merkl). Let p
be a prime. There is a probabilistic algorithm to compute τ(p), for prime p,
that has expected running time polynomial in log(p).

Proof. See [ECdJ+06]. ¤

More generally, if f =
∑

anqn is an eigenform in some space Mk(Γ1(N)),
where k ≥ 2, then one expects that there is an algorithm to compute ap

in time polynomial in log(p). Bas Edixhoven, Jean-Marc Couveignes and
Robin de Jong have proved that τ(p) can be computed in polynomial time;
their approach involves sophisticated techniques from arithmetic geometry
(e.g., étale cohomology, motives, Arakelov theory). The ideas they use are
inspired by the ones introduced by Schoof, Elkies and Atkin for quickly
counting points on elliptic curves over finite fields (see [Sch95]).

Edixhoven describes (in an email to the author) the strategy as follows:

(1) We compute the mod ℓ Galois representation ρ associated to ∆.
In particular, we produce a polynomial f such that Q[x]/(f) is the
fixed field of ker(ρ). This is then used to obtain τ(p) (mod ℓ) and
to do a Schoof-like algorithm for computing τ(p).

(2) We compute the field of definition of suitable points of order ℓ on
the modular Jacobian J1(ℓ) to do part (1) (see [DS05, Ch. 6] for
the definition of J1(ℓ)).

(3) The method is to approximate the polynomial f in some sense (e.g.,
over the complex numbers or modulo many small primes r) and to
use an estimate from Arakelov theory to determine a precision that
will suffice.

2.7. Fast Computation of Bernoulli Numbers

This section, which was written jointly with Kevin McGown, is about com-
puting the Bernoulli numbers Bn, for n ≥ 0, defined in Section 2.1.2 by

(2.7.1)
x

ex − 1
=

∞∑

n=0

Bn
xn

n!
.



30 2. Modular Forms of Level 1

One way to compute Bn is to multiply both sides of (2.7.1) by ex − 1
and equate coefficients of xn+1 to obtain the recurrence

B0 = 1, Bn = − 1

n + 1
·

n−1∑

k=0

(
n + 1

k

)
Bk.

This recurrence provides a straightforward and easy-to-implement method
for calculating Bn if one is interested in computing Bn for all n up to some
bound. For example,

B1 = −1

2
·
((

2

0

)
B0

)
= −1

2

and

B2 = −1

3
·
((

3

0

)
B0 +

(
3

1

)
B1

)
= −1

3
·
(

1 − 3

2

)
=

1

6
.

However, computing Bn via the recurrence is slow; it requires summing over
many large terms, it requires storing the numbers B0, . . . , Bn−1, and it takes
only limited advantage of asymptotically fast arithmetic algorithms. There
is also an inductive procedure to compute Bernoulli numbers that resembles
Pascal’s triangle called the Akiyama-Tanigawa algorithm (see [Kan00]).

Another approach to computing Bn is to use Newton iteration and
asymptotically fast polynomial arithmetic to approximate 1/(ex − 1). This
method yields a very fast algorithm to compute B0, B2, . . . , Bp−3 modulo
p. See [BCS92] for an application of this method modulo a prime p to the
verification of Fermat’s last theorem for irregular primes up to one million.

Example 2.43. David Harvey implemented the algorithm of [BCS92] in
SAGE as the command bernoulli mod p:

sage: bernoulli_mod_p(23)

[1, 4, 13, 17, 13, 6, 10, 5, 10, 9, 15]

A third way to compute Bn uses an algorithm based on Proposition 2.8,
which we explain below (Algorithm 2.45). This algorithm appears to have
been independently invented by several people: by Bernd C. Kellner (see
[Kel06]); by Bill Dayl; and by H. Cohen and K. Belabas.

We compute Bn as an exact rational number by approximating ζ(n) to
very high precision using Proposition 2.8, the Euler product

ζ(s) =

∞∑

m=1

m−s =
∏

p prime

(1 − p−s)−1,

and the following theorem:
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Theorem 2.44 (Clausen, von Staudt). For even n ≥ 2,

denom(Bn) =
∏

p−1 | n
p.

Proof. See [Lan95, Ch. X, Thm. 2.1]. ¤

2.7.1. The Number of Digits of Bn. The following is a new quick way
to compute the number of digits of the numerator of Bn. For example, using
it we can compute the number of digits of B1050 in less than a second.

By Theorem 2.44 we have dn = denom(Bn) =
∏

p−1|n p. The number of

digits of the numerator is thus

⌈log10(dn · |Bn|)⌉.
But

log(|Bn|) = log

(
2 · n!

(2π)n
ζ(n)

)

= log(2) + log(n!) − n log(2) − n log(π) + log(ζ(n)),

and ζ(n) ∼ 1 so log(ζ(n)) ∼ 0. Finally, Stirling’s formula (see [Ahl78,
pg. 198–206]) gives a fast way to compute log(n!) = log(Γ(n + 1)):
(2.7.2)

log(Γ(z))“ = ”
log(2π)

2
+

(
z − 1

2

)
log(z) − z +

∞∑

m=1

B2m

2m(2m − 1)z2m−1
.

We put quotes around the equality sign because log(Γ(z)) does not converge
to its Laurent series. Indeed, note that for any fixed value of z the summands
on the right side go to ∞ as m → ∞! Nonetheless, we can use this formula
to very efficiently compute log(Γ(z)), since if we truncate the sum, then the
error is smaller than the next term in the infinite sum.

2.7.2. Computing Bn Exactly. We return to the problem of computing
Bn. Let

K =
2 · n!

(2π)n

so that |Bn| = Kζ(n). Write

Bn =
a

d
,

with a, d ∈ Z, d ≥ 1, and gcd(a, d) = 1. It is elementary to show that

a = (−1)n/2+1 |a| for even n ≥ 2. Suppose that using the Euler product we
approximate ζ(n) from below by a number z such that

0 ≤ ζ(m) − z <
1

Kd
.
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Then 0 ≤ |Bn| − zK < d−1; hence 0 ≤ |a| − zKd < 1. It follows that

|a| = ⌈zKd⌉ and hence a = (−1)n/2+1 ⌈zKd⌉.
It remains to compute z. Consider the following problem: given s > 1

and ε > 0, find M ∈ Z+ so that

z =
∏

p≤M

(1 − p−s)−1

satisfies 0 ≤ ζ(s) − z < ε. We always have 0 ≤ ζ(s) − z. Also,
∑

n≤M

n−s ≤
∏

p≤M

(1 − p−s)−1,

so

ζ(s) − z ≤
∞∑

n=M+1

n−s ≤
∫ ∞

M
x−s dx =

1

(s − 1)M s−1
.

Thus if M > ε−1/(s−1), then

1

(s − 1)M s−1
≤ 1

M s−1
< ε ,

so ζ(s) − z < ε, as required. For our purposes, we have s = n and ε =

(Kd)−1, so it suffices to take M > (Kd)1/(n−1).

Algorithm 2.45 (Bernoulli Number Bn). Given an integer n ≥ 0, this
algorithm computes the Bernoulli number Bn as an exact rational number.

(1) [Special cases] If n = 0, return 1; if n = 1, return −1/2; if n ≥ 3 is
odd, return 0.

(2) [Factorial factor] Compute K =
2 · n!

(2π)n
to sufficiently many digits

of precision so the ceiling in step (6) is uniquely determined (this
precision can be determined using Section 2.7.1).

(3) [Denominator] Compute d =
∏

p−1|n
p.

(4) [Bound] Compute M =
⌈
(Kd)1/(n−1)

⌉
.

(5) [Approximate ζ(n)] Compute z =
∏

p≤M

(1 − p−n)−1.

(6) [Numerator] Compute a = (−1)n/2+1 ⌈dKz⌉.
(7) [Output Bn] Return

a

d
.

In step (5) use a sieve to compute all primes p ≤ M efficiently (which
is fast, since M is so small). In step (4) we may replace M by any integer
greater than the one specified by the formula, so we do not have to compute
(Kd)1/(n−1) to very high precision.

In Section 5.2.2 below we will generalize the above algorithm.
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Example 2.46. We illustrate Algorithm 2.45 by computing B50. Using 135
binary digits of precision, we compute

K = 7500866746076957704747736.71552473164563479.

The divisors of n are 1, 2, 5, 10, 25, 50, so

d = 2 · 3 · 11 = 66.

We find M = 4 and compute

z = 1.00000000000000088817842109308159029835012.

Finally we compute

dKz = 495057205241079648212477524.999999994425778,

so

B50 =
495057205241079648212477525

66
.

2.8. Exercises

2.1 Using Proposition 2.8 and the table on page 16, compute
∑∞

n=1
1

n26

explicitly.

2.2 Prove that if n > 1 is odd, then the Bernoulli number Bn is 0.

2.3 Use (2.1.3) to write down the coefficients of 1, q, q2, and q3 of the
Eisenstein series E8.

2.4 Suppose k is a positive integer with k ≡ 0 (mod 12). Suppose
a, b ≥ 0 are integers with 4a + 6b = k.
(a) Prove 3 | a.

(b) Show that Ga
4 · Gb

6 / G
k
6
6 =

(
G3

4/G2
6

)a
3 .

2.5 Compute the Miller basis for M28(SL2(Z)) with precision O(q8).
Your answer will look like Example 2.23.

2.6 Consider the cusp form f = q2+192q3−8280q4+· · · in S28(SL2(Z)).
Write f as a polynomial in E4 and E6 (see Remark 2.25).

2.7 Let Gk be the weight k Eisenstein series from equation (2.1.1).
Let c be the complex number so that the constant coefficient of
the q-expansion of g = c · Gk is 1. Is it always the case that the
q-expansion of g lies in Z[[q]]?

2.8 Compute the matrix of the Hecke operator T2 on the Miller basis
for M32(SL2(Z)). Then compute its characteristic polynomial and
verify it factors as a product of two irreducible polynomials.

What Next? Much of the rest of this book is about methods for computing
subspaces of Mk(Γ1(N)) for general N and k. These general methods are
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more complicated than the methods presented in this chapter, since there
are many more modular forms of small weight and it can be difficult to
obtain them. Forms of level N > 1 have subtle connections with elliptic
curves, abelian varieties, and motives. Read on for more!



Chapter 3

Modular Forms of
Weight 2

We saw in Chapter 2 (especially Section 2.2) that we can compute each
space Mk(SL2(Z)) explicitly. This involves computing Eisenstein series E4

and E6 to some precision, then forming the basis {Ea
4Eb

6 : 4a + 6b = k, 0 ≤
a, b ∈ Z} for Mk(SL2(Z)). In this chapter we consider the more general
problem of computing S2(Γ0(N)), for any positive integer N . Again we
have a decomposition

M2(Γ0(N)) = S2(Γ0(N)) ⊕ E2(Γ0(N)),

where E2(Γ0(N)) is spanned by generalized Eisenstein series and S2(Γ0(N))
is the space of cusp forms, i.e., elements of M2(Γ0(N)) that vanish at all
cusps.

In Chapter 5 we compute the space E2(Γ0(N)) in a similar way to how
we computed Mk(SL2(Z)). On the other hand, elements of S2(Γ0(N)) often
cannot be written as sums or products of generalized Eisenstein series. In
fact, the structure of M2(Γ0(N)) is, in general, much more complicated
than that of Mk(SL2(Z)). For example, when p is a prime, E2(Γ0(p)) has
dimension 1, whereas S2(Γ0(p)) has dimension about p/12.

Fortunately an idea of Birch, which he called modular symbols, provides
a method for computing S2(Γ0(N)) and indeed for much more that is rele-
vant to understanding special values of L-functions. Modular symbols are
also a powerful theoretical tool. In this chapter, we explain how S2(Γ0(N))
is related to modular symbols and how to use this relationship to explicitly

35
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compute a basis for S2(Γ0(N)). In Chapter 8 we will introduce more gen-
eral modular symbols and explain how to use them to compute Sk(Γ0(N)),
Sk(Γ1(N)) and Sk(N, ε) for any integers k ≥ 2 and N and character ε.

Section 3.1 contains a very brief summary of basic facts about modular
forms of weight 2, modular curves, Hecke operators, and integral homology.
Section 3.2 introduces modular symbols and describes how to compute with
them. In Section 3.5 we talk about how to cut out the subspace of modular
symbols corresponding to cusp forms using the boundary map. Section 3.6
is about a straightforward method to compute a basis for S2(Γ0(N)) using
modular symbols, and Section 3.7 outlines a more sophisticated algorithm
for computing newforms that uses Atkin-Lehner theory.

Before reading this chapter, you should have read Chapter 1 and Chap-
ter 2. We also assume familiarity with algebraic curves, Riemann surfaces,
and homology groups of compact Riemann surfaces.

3.1. Hecke Operators

Recall from Chapter 1 that the group Γ0(N) acts on h∗ = h∪P1(Q) by linear
fractional transformations. The quotient Γ0(N)\h∗ is a Riemann surface,
which we denote by X0(N). See [DS05, Ch. 2] for a detailed description of
the topology on X0(N). The Riemann surface X0(N) also has a canonical
structure of algebraic curve over Q, as is explained in [DS05, Ch. 7] (see
also [Shi94, §6.7]).

Recall from Section 1.3 that a cusp form of weight 2 for Γ0(N) is a func-
tion f on h such that f(z)dz defines a holomorphic differential on X0(N).
Equivalently, a cusp form is a holomorphic function f on h such that

(a) the expression f(z)dz is invariant under replacing z by γ(z) for
each γ ∈ Γ0(N) and

(b) f(z) vanishes at every cusp for Γ0(N).

The space S2(Γ0(N)) of weight 2 cusp forms on Γ0(N) is a finite-dimensional
complex vector space, of dimension equal to the genus g of X0(N). The space
X0(N)(C) is a compact oriented Riemann surface, so it is a 2-dimensional
oriented real manifold, i.e., X0(N)(C) is a g-holed torus (see Figure 3.1.1 on
page 38).

Condition (b) in the definition of f means that f has a Fourier expansion
about each element of P1(Q). Thus, at ∞ we have

f(z) = a1e
2πiz + a2e

2πi2z + a3e
2πi3z + · · ·

= a1q + a2q
2 + a3q

3 + · · · ,

where, for brevity, we write q = q(z) = e2πiz.
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Example 3.1. Let E be the elliptic curve defined by the equation y2+xy =
x3 + x2 − 4x − 5. Let ap = p + 1 − #Ẽ(Fp), where Ẽ is the reduction of E
mod p (note that for the primes that divide the conductor of E we have
a3 = −1, a13 = 1). For n composite, define an using the relations at the end
of Section 3.7. Then the Shimura-Taniyama conjecture asserts that

f = q + a2q
2 + a3q

3 + a4q
4 + a5q

5 + · · ·
= q + q2 − q3 − q4 + 2q5 + · · ·

is the q-expansion of an element of S2(Γ0(39)). This conjecture, which is
now a theorem (see [BCDT01]), asserts that any q-expansion constructed
as above from an elliptic curve over Q is a modular form. This conjecture
was mostly proved first by Wiles [Wil95] as a key step in the proof of
Fermat’s last theorem.

Just as is the case for level 1 modular forms (see Section 2.4) there are
commuting Hecke operators T1, T2, T3, . . . that act on S2(Γ0(N)). To define
them conceptually, we introduce an interpretation of the modular curve
X0(N) as an object whose points parameterize elliptic curves with extra
structure.

Proposition 3.2. The complex points of Y0(N) = Γ0(N)\h are in natural
bijection with isomorphism classes of pairs (E, C), where E is an elliptic
curve over C and C is a cyclic subgroup of E(C) of order N . The class of
the point λ ∈ h corresponds to the pair

(
C/(Z + Zλ),

(
1

N
Z + Zλ

)
/(Z + Zλ)

)
.

Proof. See Exercise 3.1. ¤

Suppose n and N are coprime positive integers. There are two natural
maps π1 and π2 from Y0(n · N) to Y0(N); the first, π1, sends (E, C) ∈
Y0(n · N)(C) to (E, C ′), where C ′ is the unique cyclic subgroup of C of
order N , and the second, π2, sends (E, C) to (E/D, C/D), where D is the
unique cyclic subgroup of C of order n. These maps extend in a unique way
to algebraic maps from X0(n · N) to X0(N):

(3.1.1) X0(n · N)
π2

xxrrrrrrrrrr
π1

&&LLLLLLLLLL

X0(N) X0(N).

The nth Hecke operator Tn is π1∗◦π∗
2, where π∗

2 and π1∗ denote pullback and
pushforward of differentials, respectively. (There is a similar definition of Tn

when gcd(n, N) 6= 1.) Using our interpretation of S2(Γ0(N)) as differentials
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on X0(N), this gives an action of Hecke operators on S2(Γ0(N)). One can
show that these induce the maps of Proposition 2.31 on q-expansions.

Example 3.3. There is a basis of S2(39) so that

T2 =




1 1 0
−2 −3 −2

0 0 1


 and T5 =




−4 −2 −6
4 4 4
0 0 2


 .

Notice that these matrices commute. Also, the characteristic polynomial of
T2 is (x − 1) · (x2 + 2x − 1).

3.1.1. Homology. The first homology group H1(X0(N), Z) is the group
of closed 1-cycles modulo boundaries of 2-cycles (formal sums of images of
2-simplexes). Topologically X0(N) is a g-holed torus, where g is the genus
of X0(N). Thus H1(X0(N), Z) is a free abelian group of rank 2g (see, e.g.,
[GH81, Ex. 19.30] and [DS05, §6.1]), with two generators corresponding
to each hole, as illustrated in the case N = 39 in Figure 3.1.1.

H1(X0(39), Z) ∼= Z × Z × Z × Z × Z × Z

Figure 3.1.1. The homology of X0(39).

The homology of X0(N) is closely related to modular forms, since the
Hecke operators Tn also act on H1(X0(N), Z). The action is by pullback of
homology classes by π2 followed by taking the image under π1, where π1 and
π2 are as in (3.1.1).

Integration defines a pairing

(3.1.2) 〈 , 〉 : S2(Γ0(N)) × H1(X0(N), Z) → C.

Explicitly, for a path x,

〈f, x〉 = 2πi ·
∫

x
f(z)dz.

Theorem 3.4. The pairing (3.1.2) is nondegenerate and Hecke equivariant
in the sense that for every Hecke operator Tn, we have 〈fTn, x〉 = 〈f, Tnx〉.
Moreover, it induces a perfect pairing

(3.1.3) 〈 , 〉 : S2(Γ0(N)) × H1(X0(N), R) → C.
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This is a special case of the results in Section 8.5.

As we will see, modular symbols allow us to make explicit the action
of the Hecke operators on H1(X0(N), Z); the above pairing then translates
this into a wealth of information about cusp forms.

We will also consider the relative homology group H1(X0(N), Z; {cusps})
of X0(N) relative to the cusps; it is the same as usual homology, but in
addition we allow paths with endpoints in the cusps instead of restricting
to closed loops. Modular symbols provide a “combinatorial” presentation of
H1(X0(N), Z) in terms of paths between elements of P1(Q).

3.2. Modular Symbols

Let M2 be the free abelian group with basis the set of symbols {α, β} with
α, β ∈ P1(Q) modulo the 3-term relations

{α, β} + {β, γ} + {γ, α} = 0

above and modulo any torsion. Since M2 is torsion-free, we have

{α, α} = 0 and {α, β} = −{β, α}.

Remark 3.5 (Warning). The symbols {α, β} satisfy the relations {α, β} =
−{β, α}, so order matters. The notation {α, β} looks like the set containing
two elements, which strongly (and incorrectly) suggests that the order does
not matter. This is the standard notation in the literature.

Figure 3.2.1. The modular symbols {α, β} and {0, ∞}.

As illustrated in Figure 3.2.1, we “think of” this modular symbol as the
homology class, relative to the cusps, of a path from α to β in h∗.
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Define a left action of GL2(Q) on M2 by letting g ∈ GL2(Q) act by

g{α, β} = {g(α), g(β)},

and g acts on α and β via the corresponding linear fractional transformation.
The space M2(Γ0(N)) of modular symbols for Γ0(N) is the quotient of M2

by the submodule generated by the infinitely many elements of the form
x − g(x), for x in M2 and g in Γ0(N), and modulo any torsion. A modular
symbol for Γ0(N) is an element of this space. We frequently denote the
equivalence class of a modular symbol by giving a representative element.

Example 3.6. Some modular symbols are 0 no matter what the level N is!
For example, since γ = ( 1 1

0 1 ) ∈ Γ0(N), we have

{∞, 0} = {γ(∞), γ(0)} = {∞, 1},

so

0 = {∞, 1} − {∞, 0} = {∞, 1} + {0, ∞} = {0, ∞} + {∞, 1} = {0, 1}.

See Exercise 3.2 for a generalization of this observation.

There is a natural homomorphism

(3.2.1) ϕ : M2(Γ0(N)) → H1(X0(N), {cusps}, Z)

that sends a formal linear combination of geodesic paths in the upper half
plane to their image as paths on X0(N). In [Man72] Manin proved that
(3.2.1) is an isomorphism (this is a fairly involved topological argument).

Manin identified the subspace of M2(Γ0(N)) that is sent isomorphically
onto H1(X0(N), Z). Let B2(Γ0(N)) denote the free abelian group whose
basis is the finite set C(Γ0(N)) = Γ0(N)\P1(Q) of cusps for Γ0(N). The
boundary map

δ : M2(Γ0(N)) → B2(Γ0(N))

sends {α, β} to {β}−{α}, where {β} denotes the basis element of B2(Γ0(N))
corresponding to β ∈ P1(Q). The kernel S2(Γ0(N)) of δ is the subspace of
cuspidal modular symbols. Thus an element of S2(Γ0(N)) can be thought of
as a linear combination of paths in h∗ whose endpoints are cusps and whose
images in X0(N) are homologous to a Z-linear combination of closed paths.

Theorem 3.7 (Manin). The map ϕ above induces a canonical isomorphism

S2(Γ0(N)) ∼= H1(X0(N), Z).

Proof. This is [Man72, Thm. 1.9]. ¤

For any (commutative) ring R let

M2(Γ0(N), R) = M2(Γ0(N)) ⊗Z R
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and

S2(Γ0(N), R) = S2(Γ0(N)) ⊗Z R.

Proposition 3.8. We have

dimC S2(Γ0(N), C) = 2 dimC S2(Γ0(N)).

Proof. We have

dimC S2(Γ0(N), C) = rankZ S2(Γ0(N)) = rankZ H1(X0(N), Z) = 2g.

¤

Example 3.9. We illustrate modular symbols in the case when N = 11.
Using SAGE (below), which implements the algorithm that we describe below
over Q, we find that M2(Γ0(11); Q) has basis {∞, 0}, {−1/8, 0}, {−1/9, 0}.
A basis for the integral homology H1(X0(11), Z) is the subgroup generated
by {−1/8, 0} and {−1/9, 0}.

sage: set_modsym_print_mode (’modular’)

sage: M = ModularSymbols(11, 2)

sage: M.basis()

({Infinity,0}, {-1/8,0}, {-1/9,0})

sage: S = M.cuspidal_submodule()

sage: S.integral_basis() # basis over ZZ.

({-1/8,0}, {-1/9,0})

sage: set_modsym_print_mode (’manin’) # set it back

3.3. Computing with Modular Symbols

3.3.1. Manin’s Trick. In this section, we describe a trick of Manin that
we will use to prove that spaces of modular symbols are computable.

By Exercise 1.6 the group Γ0(N) has finite index in SL2(Z). Fix right
coset representatives r0, r1, . . . , rm for Γ0(N) in SL2(Z), so that

SL2(Z) = Γ0(N)r0 ∪ Γ0(N)r1 ∪ · · · ∪ Γ0(N)rm,

where the union is disjoint. For example, when N is prime, a list of coset
representatives is

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 0
2 1

)
,

(
1 0
3 1

)
, . . . ,

(
1 0

N − 1 1

)
,

(
0 −1
1 0

)
.

Let

(3.3.1) P1(Z/NZ) = {(a : b) : a, b ∈ Z/NZ, gcd(a, b, N) = 1 }/ ∼
where (a : b) ∼ (a′ : b′) if there is u ∈ (Z/NZ)∗ such that a = ua′, b = ub′.
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Proposition 3.10. There is a bijection between P1(Z/NZ) and the right
cosets of Γ0(N) in SL2(Z), which sends a coset representative

(
a b
c d

)
to the

class of (c : d) in P1(Z/NZ).

Proof. See Exercise 3.3. ¤

See Proposition 8.6 for the analogous statement for Γ1(N).

We now describe an observation of Manin (see [Man72, §1.5]) that is
crucial to making M2(Γ0(N)) computable. It allows us to write any modular
symbol {α, β} as a Z-linear combination of symbols of the form ri{0, ∞},
where the ri ∈ SL2(Z) are coset representatives as above. In particular, the
finitely many symbols r0{0, ∞}, . . . , rm{0, ∞} generate M2(Γ0(N)).

Proposition 3.11 (Manin). Let N be a positive integer and r0, . . . , rm

a set of right coset representatives for Γ0(N) in SL2(Z). Every {α, β} ∈
M2(Γ0(N)) is a Z-linear combination of r0{0, ∞}, . . . , rm{0, ∞}.

We give two proofs of the proposition. The first is useful for computation
(see [Cre97a, §2.1.6]); the second (see [MTT86, §2]) is easier to understand
conceptually since it does not require any knowledge of continued fractions.

Continued Fractions Proof of Proposition 3.11. Since

{α, β} = {0, β} − {0, α},

it suffices to consider modular symbols of the form {0, b/a}, where the ra-
tional number b/a is in lowest terms. Expand b/a as a continued fraction
and consider the successive convergents in lowest terms:

b−2

a−2
=

0

1
,

b−1

a−1
=

1

0
,

b0

a0
=

b0

1
, . . . ,

bn−1

an−1
,

bn

an
=

b

a

where the first two are included formally. Then

bkak−1 − bk−1ak = (−1)k−1,

so that

gk =

(
bk (−1)k−1bk−1

ak (−1)k−1ak−1

)
∈ SL2(Z).

Hence {
bk−1

ak−1
,
bk

ak

}
= gk{0, ∞} = ri{0, ∞},

for some i, is of the required special form. Since

{0, b/a} = {0, ∞} + {∞, b0} +

{
b0

1
,
b1

a1

}
+ · · · +

{
bn−1

an−1
,
bn

an

}
,

this completes the proof. ¤
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Inductive Proof of Proposition 3.11. As in the first proof it suffices to
prove the proposition for any symbol {0, b/a}, where b/a is in lowest terms.
We will induct on a ∈ Z≥0. If a = 0, then the symbol is {0, ∞}, which
corresponds to the identity coset, so assume that a > 0. Find a′ ∈ Z such
that

ba′ ≡ 1 (mod a);

then b′ = (ba′ − 1)/a ∈ Z so the matrix

δ =

(
b b′

a a′

)

is an element of SL2(Z). Thus δ = γ · rj for some right coset representative
rj and γ ∈ Γ0(N). Then

{0, b/a} − {0, b′/a′} = {b′/a′, b/a} =

(
b b′

a a′

)
· {0, ∞} = rj{0, ∞},

as elements of M2(Γ0(N)). By induction, {0, b′/a′} is a linear combination
of symbols of the form rk{0, ∞}, which completes the proof. ¤

Example 3.12. Let N = 11, and consider the modular symbol {0, 4/7}.
We have

4

7
= 0 +

1

1 + 1
1+ 1

3

,

so the partial convergents are

b−2

a−2
=

0

1
,

b−1

a−1
=

1

0
,

b0

a0
=

0

1
,

b1

a1
=

1

1
,

b2

a2
=

1

2
,

b3

a3
=

4

7
.

Thus, noting as in Example 3.6 that {0, 1} = 0, we have

{0, 4/7} = {0, ∞} + {∞, 0} + {0, 1} + {1, 1/2} + {1/2, 4/7}

=

(
1 −1
2 −1

)
{0, ∞} +

(
4 1
7 2

)
{0, ∞}

=

(
1 0
9 1

)
{0, ∞} +

(
1 0
9 1

)
{0, ∞}

= 2 ·
[(

1 0
9 1

)
{0, ∞}

]
.

We compute the convergents of 4/7 in SAGE as follows (note that 0 and ∞
are excluded):

sage: convergents(4/7)

[0, 1, 1/2, 4/7]
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3.3.2. Manin Symbols. As above, fix coset representatives r0, . . . , rm for
Γ0(N) in SL2(Z). Consider formal symbols [ri]

′ for i = 0, . . . , m. Let [ri]
be the modular symbol ri{0, ∞} = {ri(0), ri(∞)}. We equip the symbols
[r0]

′, . . . , [rm]′ with a right action of SL2(Z), which is given by [ri]
′.g = [rj ]

′,
where Γ0(N)rj = Γ0(N)rig. We extend the notation by writing [γ]′ =
[Γ0(N)γ]′ = [ri]

′, where γ ∈ Γ0(N)ri. Then the right action of Γ0(N) is
simply [γ]′.g = [γg]′.

Theorem 1.2 implies that SL2(Z) is generated by the two matrices σ =(
0 −1
1 0

)
and τ =

(
1 −1
1 0

)
. Note that σ = S from Theorem 1.2 and τ = TS, so

T = τσ ∈ 〈σ, τ〉.
The following theorem provides us with a finite presentation for the

space M2(Γ0(N)) of modular symbols.

Theorem 3.13 (Manin). Consider the quotient M of the free abelian group
on Manin symbols [r0]

′, . . . , [rm]′ by the subgroup generated by the elements
(for all i):

[ri]
′ + [ri]

′σ and [ri]
′ + [ri]

′τ + [ri]
′τ2,

and modulo any torsion. Then there is an isomorphism

Ψ : M
∼−→ M2(Γ0(N))

given by [ri]
′ 7→ [ri] = ri{0, ∞}.

Proof. We will only prove that Ψ is surjective; the proof that Ψ is injective
requires much more work and will be omitted from this book (see [Man72,
§1.7] for a complete proof).

Proposition 3.11 implies that Ψ is surjective, assuming that Ψ is well
defined. We next verify that Ψ is well defined, i.e., that the listed 2-term
and 3-term relations hold in the image. To see that the first relation holds,
note that

[ri] + [ri]σ = {ri(0), ri(∞)} + {riσ(0), riσ(∞)}
= {ri(0), ri(∞)} + {ri(∞), ri(0)}
= 0.

For the second relation we have

[ri] + [ri]τ + [ri]τ
2 = {ri(0), ri(∞)} + {riτ(0), riτ(∞)} + {riτ

2(0), riτ
2(∞)}

= {ri(0), ri(∞)} + {ri(∞), ri(1)} + {ri(1), ri(0)}
= 0.

¤
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Example 3.14. By default SAGE computes modular symbols spaces over
Q, i.e., M2(Γ0(N); Q) ∼= M2(Γ0(N))⊗Q. SAGE represents (weight 2) Manin
symbols as pairs (c, d). Here c, d are integers that satisfy 0 ≤ c, d < N ; they
define a point (c : d) ∈ P1(Z/NZ), hence a right coset of Γ0(N) in SL2(Z)
(see Proposition 3.10).

Create M2(Γ0(N); Q) in SAGE by typing ModularSymbols(N, 2). We
then use the SAGE command manin generators to enumerate a list of gener-
ators [r0], . . . , [rn] as in Theorem 3.13 for several spaces of modular symbols.

sage: M = ModularSymbols(2,2)

sage: M

Modular Symbols space of dimension 1 for Gamma_0(2)

of weight 2 with sign 0 over Rational Field

sage: M.manin_generators()

[(0,1), (1,0), (1,1)]

sage: M = ModularSymbols(3,2)

sage: M.manin_generators()

[(0,1), (1,0), (1,1), (1,2)]

sage: M = ModularSymbols(6,2)

sage: M.manin_generators()

[(0,1), (1,0), (1,1), (1,2), (1,3), (1,4), (1,5), (2,1),

(2,3), (2,5), (3,1), (3,2)]

Given x=(c,d), the command x.lift to sl2z(N) computes an element
of SL2(Z) whose lower two entries are congruent to (c, d) modulo N .

sage: M = ModularSymbols(2,2)

sage: [x.lift_to_sl2z(2) for x in M.manin_generators()]

[[1, 0, 0, 1], [0, -1, 1, 0], [0, -1, 1, 1]]

sage: M = ModularSymbols(6,2)

sage: x = M.manin_generators()[9]

sage: x

(2,5)

sage: x.lift_to_sl2z(6)

[1, 2, 2, 5]

The manin basis command returns a list of indices into the Manin gen-
erator list such that the corresponding symbols form a basis for the quotient
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of the Q-vector space spanned by Manin symbols modulo the 2-term and
3-term relations of Theorem 3.13.

sage: M = ModularSymbols(2,2)

sage: M.manin_basis()

[1]

sage: [M.manin_generators()[i] for i in M.manin_basis()]

[(1,0)]

sage: M = ModularSymbols(6,2)

sage: M.manin_basis()

[1, 10, 11]

sage: [M.manin_generators()[i] for i in M.manin_basis()]

[(1,0), (3,1), (3,2)]

Thus, e.g., every element of M2(Γ0(6)) is a Q-linear combination of the
three symbols [(1, 0)], [(3, 1)], and [(3, 2)]. We can write each of these as a
modular symbol using the modular symbol rep function.

sage: M.basis()

((1,0), (3,1), (3,2))

sage: [x.modular_symbol_rep() for x in M.basis()]

[{Infinity,0}, {0,1/3}, {-1/2,-1/3}]

The manin gens to basis function returns a matrix whose rows express
each Manin symbol generator in terms of the subset of Manin symbols that
forms a basis (as returned by manin basis).

sage: M = ModularSymbols(2,2)

sage: M.manin_gens_to_basis()

[-1]

[ 1]

[ 0]

Since the basis is (1, 0), this means that in M2(Γ0(2); Q), we have [(0, 1)] =
−[(1, 0)] and [(1, 1)] = 0. (Since no denominators are involved, we have in
fact computed a presentation of M2(Γ0(2); Z).)

To convert a Manin symbol x = (c, d) to an element of a modular symbols
space M , use M(x):
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sage: M = ModularSymbols(2,2)

sage: x = (1,0); M(x)

(1,0)

Next consider M2(Γ0(6); Q):

sage: M = ModularSymbols(6,2)

sage: M.manin_gens_to_basis()

[-1 0 0]

[ 1 0 0]

[ 0 0 0]

[ 0 -1 1]

[ 0 -1 0]

[ 0 -1 1]

[ 0 0 0]

[ 0 1 -1]

[ 0 0 -1]

[ 0 1 -1]

[ 0 1 0]

[ 0 0 1]

Recall that our choice of basis for M2(Γ0(6); Q) is [(1, 0)], [(3, 1)], [(3, 2)].
Thus, e.g., the first row of this matrix says that [(0, 1)] = −[(1, 0)], and the
fourth row asserts that [(1, 2)] = −[(3, 1)] + [(3, 2)].

sage: M = ModularSymbols(6,2)

sage: M((0,1))

-(1,0)

sage: M((1,2))

-(3,1) + (3,2)

3.4. Hecke Operators

3.4.1. Hecke Operators on Modular Symbols. When p is a prime not
dividing N , define

Tp({α, β}) =

(
p 0
0 1

)
{α, β} +

∑

r mod p

(
1 r
0 p

)
{α, β}.

The Hecke operators are compatible with the integration pairing 〈 , 〉 of
Section 3.1, in the sense that 〈fTp, x〉 = 〈f, Tpx〉. When p | N , the definition
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is the same, except that the matrix
(

p 0
0 1

)
is not included in the sum (see

Theorem 8.23). There is a similar definition of Tn for n composite (see
Section 8.3.1).

Example 3.15. For example, when N = 11, we have

T2{0, 1/5} = {0, 2/5} + {0, 1/10} + {1/2, 3/5}
= −2{0, 1/5}.

See Figure 3.4.1.

Figure 3.4.1. Image of {0, 1/5} under T2

3.4.2. Hecke Operators on Manin Symbols. In [Mer94], L. Merel
gives a description of the action of Tp directly on Manin symbols [ri] (see
Section 8.3.2 for details). For example, when p = 2 and N is odd, we have

(3.4.1) T2([ri]) = [ri]

(
1 0
0 2

)
+ [ri]

(
2 0
0 1

)
+ [ri]

(
2 1
0 1

)
+ [ri]

(
1 0
1 2

)
.

For any prime, let Cp be the set of matrices constructed using the fol-
lowing algorithm (see [Cre97a, §2.4]):

Algorithm 3.16 (Cremona’s Heilbronn Matrices). Given a prime p, this
algorithm outputs a list of 2 × 2 matrices of determinant p that can be used
to compute the Hecke operator Tp.

(1) Output

(
1 0
0 p

)
.

(2) For r =
⌈
−p

2

⌉
, . . . ,

⌊p

2

⌋
:

(a) Let x1 = p, x2 = −r, y1 = 0, y2 = 1, a = −p, b = r.

(b) Output

(
x1 x2

y1 y2

)
.

(c) As long as b 6= 0, do the following:
(i) Let q be the integer closest to a/b (if a/b is a half integer,

round away from 0).

(ii) Let c = a − bq, a = −b, b = c.
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(iii) Set x3 = qx2 − x1, x1 = x2, x2 = x3, and
y3 = qy2 − y1, y1 = y2, y2 = y3.

(iv) Output

(
x1 x2

y1 y2

)
.

Proposition 3.17 (Cremona, Merel). Let Cp be as above. Then for p ∤ N
and [x] ∈ M2(Γ0(N)) a Manin symbol, we have

Tp([x]) =
∑

g∈Cp

[xg].

Proof. See Proposition 2.4.1 of [Cre97a]. ¤

There are other lists of matrices, due to Merel, that work even when
p | N (see Section 8.3.2).

The command HeilbronnCremonaList(p), for p prime, outputs the list
of matrices from Algorithm 3.16.

sage: HeilbronnCremonaList(2)

[[1, 0, 0, 2], [2, 0, 0, 1], [2, 1, 0, 1], [1, 0, 1, 2]]

sage: HeilbronnCremonaList(3)

[[1, 0, 0, 3], [3, 1, 0, 1], [1, 0, 1, 3], [3, 0, 0, 1],

[3, -1, 0, 1], [-1, 0, 1, -3]]

sage: HeilbronnCremonaList(5)

[[1, 0, 0, 5], [5, 2, 0, 1], [2, 1, 1, 3], [1, 0, 3, 5],

[5, 1, 0, 1], [1, 0, 1, 5], [5, 0, 0, 1], [5, -1, 0, 1],

[-1, 0, 1, -5], [5, -2, 0, 1], [-2, 1, 1, -3],

[1, 0, -3, 5]]

sage: len(HeilbronnCremonaList(37))

128

sage: len(HeilbronnCremonaList(389))

1892

sage: len(HeilbronnCremonaList(2003))

11662

Example 3.18. We compute the matrix of T2 on M2(Γ0(2)):

sage: M = ModularSymbols(2,2)

sage: M.T(2).matrix()

[1]

Example 3.19. We compute some Hecke operators on M2(Γ0(6)):
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sage: M = ModularSymbols(6, 2)

sage: M.T(2).matrix()

[ 2 1 -1]

[-1 0 1]

[-1 -1 2]

sage: M.T(3).matrix()

[3 2 0]

[0 1 0]

[2 2 1]

sage: M.T(3).fcp() # factored characteristic polynomial

(x - 3) * (x - 1)^2

For p ≥ 5 we have Tp = p + 1, since M2(Γ0(6)) is spanned by generalized
Eisenstein series (see Chapter 5).

Example 3.20. We compute the Hecke operators on M2(Γ0(39)):

sage: M = ModularSymbols(39, 2)

sage: T2 = M.T(2)

sage: T2.matrix()

[ 3 0 -1 0 0 1 1 -1 0]

[ 0 0 2 0 -1 1 0 1 -1]

[ 0 1 0 -1 1 1 0 1 -1]

[ 0 0 1 0 0 1 0 1 -1]

[ 0 -1 2 0 0 1 0 1 -1]

[ 0 0 1 1 0 1 1 -1 0]

[ 0 0 0 -1 0 1 1 2 0]

[ 0 0 0 1 0 0 2 0 1]

[ 0 0 -1 0 0 0 1 0 2]

sage: T2.fcp() # factored characteristic polynomial

(x - 3)^3 * (x - 1)^2 * (x^2 + 2*x - 1)^2

The Hecke operators commute, so their eigenspace structures are related.

sage: T2 = M.T(2).matrix()

sage: T5 = M.T(5).matrix()

sage: T2*T5 - T5*T2 == 0

True

sage: T5.charpoly().factor()

(x^2 - 8)^2 * (x - 6)^3 * (x - 2)^2
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The decomposition of T2 is a list of the kernels of (fe)(T2), where f runs
through the irreducible factors of the characteristic polynomial of T2 and fe

exactly divides this characteristic polynomial. Using SAGE, we find them:

sage: M = ModularSymbols(39, 2)

sage: M.T(2).decomposition()

[

Modular Symbols subspace of dimension 3 of Modular

Symbols space of dimension 9 for Gamma_0(39) of weight

2 with sign 0 over Rational Field,

Modular Symbols subspace of dimension 2 of Modular

Symbols space of dimension 9 for Gamma_0(39) of weight

2 with sign 0 over Rational Field,

Modular Symbols subspace of dimension 4 of Modular

Symbols space of dimension 9 for Gamma_0(39) of weight

2 with sign 0 over Rational Field

]

3.5. Computing the Boundary Map

In Section 3.2 we defined a map δ : M2(Γ0(N)) → B2(Γ0(N)). The kernel of
this map is the space S2(Γ0(N)) of cuspidal modular symbols. This kernel
will be important in computing cusp forms in Section 3.7 below.

To compute the boundary map on [γ], note that [γ] = {γ(0), γ(∞)}, so
if γ =

(
a b
c d

)
, then

δ([γ]) = {γ(∞)} − {γ(0)} = {a/c} − {b/d}.

Computing this boundary map would appear to first require an algo-
rithm to compute the set C(Γ0(N)) = Γ0(N)\P1(Q) of cusps for Γ0(N). In
fact, there is a trick that computes the set of cusps in the course of running
the algorithm. First, give an algorithm for deciding whether or not two
elements of P1(Q) are equivalent modulo the action of Γ0(N). Then simply
construct C(Γ0(N)) in the course of computing the boundary map, i.e., keep
a list of cusps found so far, and whenever a new cusp class is discovered,
add it to the list. The following proposition, which is proved in [Cre97a,
Prop. 2.2.3], explains how to determine whether two cusps are equivalent.

Proposition 3.21 (Cremona). Let (ci, di), i = 1, 2, be pairs of integers
with gcd(ci, di) = 1 and possibly di = 0. There is g ∈ Γ0(N) such that
g(c1/d1) = c2/d2 in P1(Q) if and only if

s1d2 ≡ s2d1 (mod gcd(d1d2, N))
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where sj satisfies cjsj ≡ 1 (mod dj).

In SAGE the command boundary map() computes the boundary map
from M2(Γ0(N)) to B2(Γ0(N)), and the cuspidal submodule() command
computes its kernel. For example, for level 2 the boundary map is given by
the matrix [1 − 1], and its kernel is the 0 space:

sage: M = ModularSymbols(2, 2)

sage: M.boundary_map()

Hecke module morphism boundary map defined by the matrix

[ 1 -1]

Domain: Modular Symbols space of dimension 1 for

Gamma_0(2) of weight ...

Codomain: Space of Boundary Modular Symbols for

Congruence Subgroup Gamma0(2) ...

sage: M.cuspidal_submodule()

Modular Symbols subspace of dimension 0 of Modular

Symbols space of dimension 1 for Gamma_0(2) of weight

2 with sign 0 over Rational Field

The smallest level for which the boundary map has nontrivial kernel,
i.e., for which S2(Γ0(N)) 6= 0, is N = 11.

sage: M = ModularSymbols(11, 2)

sage: M.boundary_map().matrix()

[ 1 -1]

[ 0 0]

[ 0 0]

sage: M.cuspidal_submodule()

Modular Symbols subspace of dimension 2 of Modular

Symbols space of dimension 3 for Gamma_0(11) of weight

2 with sign 0 over Rational Field

sage: S = M.cuspidal_submodule(); S

Modular Symbols subspace of dimension 2 of Modular

Symbols space of dimension 3 for Gamma_0(11) of weight

2 with sign 0 over Rational Field

sage: S.basis()

((1,8), (1,9))

The following illustrates that the Hecke operators preserve S2(Γ0(N)):
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sage: S.T(2).matrix()

[-2 0]

[ 0 -2]

sage: S.T(3).matrix()

[-1 0]

[ 0 -1]

sage: S.T(5).matrix()

[1 0]

[0 1]

A nontrivial fact is that for p prime the eigenvalue of each of these
matrices is p + 1 − #E(Fp), where E is the elliptic curve X0(11) defined by
the (affine) equation y2 + y = x3 − x2 − 10x − 20. For example, we have

sage: E = EllipticCurve([0,-1,1,-10,-20])

sage: 2 + 1 - E.Np(2)

-2

sage: 3 + 1 - E.Np(3)

-1

sage: 5 + 1 - E.Np(5)

1

sage: 7 + 1 - E.Np(7)

-2

The same numbers appear as the eigenvalues of Hecke operators:

sage: [S.T(p).matrix()[0,0] for p in [2,3,5,7]]

[-2, -1, 1, -2]

In fact, something similar happens for every elliptic curve over Q. The book
[DS05] (especially Chapter 8) is about this striking numerical relationship
between the number of points on elliptic curves modulo p and coefficients of
modular forms.

3.6. Computing a Basis for S2(Γ0(N))

This section is about a method for using modular symbols to compute a
basis for S2(Γ0(N)). It is not the most efficient for certain applications, but
it is easy to explain and understand. See Section 3.7 for a method that takes
advantage of additional structure of S2(Γ0(N)).
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Let M2(Γ0(N); Q) and S2(Γ0(N); Q) be the spaces of modular symbols
and cuspidal modular symbols over Q. Before we begin, we describe a simple
but crucial fact about the relation between cusp forms and Hecke operators.

If f =
∑

bnqn ∈ C[[q]] is a power series, let an(f) = bn be the n coeffi-
cient of f . Notice that an is a C-linear map C[[q]] → C.

As explained in [DS05, Prop. 5.3.1] and [Lan95, §VII.3] (recall also
Proposition 2.31), the Hecke operators Tn act on elements of M2(Γ0(N)) as
follows (where k = 2 below):

(3.6.1) Tn

( ∞∑

m=0

amqm

)
=

∞∑

m=0


 ∑

1≤d | gcd(n,m)

ε(d) · dk−1 · amn/d2


 qm,

where ε(d) = 1 if gcd(d, N) = 1 and ε(d) = 0 if gcd(d, N) 6= 1. (Note: More
generally, if f ∈ Mk(Γ1(N)) is a modular form with Dirichlet character ε,
then the above formula holds; above we are considering this formula in the
special case when ε is the trivial character and k = 2.)

Lemma 3.22. Suppose f ∈ C[[q]] and n is a positive integer. Let Tn be the
operator on q-expansions (formal power series) defined by (3.6.1). Then

a1(Tn(f)) = an(f).

Proof. The coefficient of q in (3.6.1) is ε(1) · 1 · a1·n/12 = an. ¤

The Hecke algebra T is the ring generated by all Hecke operators Tn

acting on Mk(Γ1(N)). Let T′ denote the image of the Hecke algebra in
End(S2(Γ0(N))), and let T′

C = T′⊗ZC be the C-span of the Hecke operators.

Let T̃C denote the subring of End(C[[q]]) generated over C by all Hecke
operators acting on formal power series via definition (3.6.1).

Proposition 3.23. There is a bilinear pairing of complex vector spaces

C[[q]] × T̃C → C

given by

〈f, t〉 = a1(t(f)).

If f is such that 〈f, t〉 = 0 for all t ∈ T̃C, then f = 0.

Proof. The pairing is bilinear since both t and a1 are linear.

Suppose f ∈ C[[q]] is such that 〈f, t〉 = 0 for all t ∈ T̃C. Then 〈f, Tn〉 = 0
for each positive integer n. But by Lemma 3.22 we have

an(f) = a1(Tn(f)) = 0

for all n; thus f = 0. ¤
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Proposition 3.24. There is a perfect bilinear pairing of complex vector
spaces

S2(Γ0(N)) × T′
C → C

given by
〈f, t〉 = a1(t(f)).

Proof. The pairing has 0 kernel on the left by Proposition 3.23. Suppose
that t ∈ T′

C is such that 〈f, t〉 = 0 for all f ∈ S2(Γ0(N)). Then a1(t(f)) = 0
for all f . For any n, the image Tn(f) is also a cusp form, so a1(t(Tn(f))) = 0
for all n and f . Finally the fact that T′ is commutative and Lemma 3.22
together imply that for all n and f ,

0 = a1(t(Tn(f))) = a1(Tn(t(f))) = an(t(f)),

so t(f) = 0 for all f . Thus t is the 0 operator.

Since S2(Γ0(N)) has finite dimension and the kernel on each side of the
pairing is 0, it follows that the pairing is perfect, i.e., defines an isomorphism

T′
C ∼= HomC(S2(Γ0(N)); C).

¤

By Proposition 3.24 there is an isomorphism of vector spaces

(3.6.2) Ψ : S2(Γ0(N))
∼=−−→ Hom(T′

C, C)

that sends f ∈ S2(Γ0(N)) to the homomorphism

t 7→ a1(t(f)).

For any C-linear map ϕ : T′
C → C, let

fϕ =
∞∑

n=1

ϕ(Tn)qn ∈ C[[q]].

Lemma 3.25. The series fϕ is the q-expansion of Ψ−1(ϕ) ∈ S2(Γ0(N)).

Proof. Note that it is not even a priori obvious that fϕ is the q-expansion of
a modular form. Let g = Ψ−1(ϕ), which is by definition the unique element
of S2(Γ0(N)) such that 〈g, Tn〉 = ϕ(Tn) for all n. By Lemma 3.22, we have

〈fϕ, Tn〉 = a1(Tn(fϕ)) = an(fϕ) = ϕ(Tn),

so 〈fϕ − g, Tn〉 = 0 for all n. Proposition 3.23 implies that fϕ − g = 0, so
fϕ = g = Ψ−1(ϕ), as claimed. ¤

Conclusion: The cusp forms fϕ, as ϕ varies through a basis of Hom(T′
C, C),

form a basis for S2(Γ0(N)). In particular, we can compute S2(Γ0(N)) by
computing Hom(T′

C, C), where we compute T′ in any way we want, e.g.,
using a space that contains an isomorphic copy of S2(Γ0(N)).
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Algorithm 3.26 (Basis of Cusp Forms). Given positive integers N and B,
this algorithm computes a basis for S2(Γ0(N)) to precision O(qB).

(1) Compute M2(Γ0(N); Q) via the presentation of Section 3.3.2.

(2) Compute the subspace S2(Γ0(N); Q) of cuspidal modular symbols
as in Section 3.5.

(3) Let d = 1
2 ·dim S2(Γ0(N); Q). By Proposition 3.8, d is the dimension

of S2(Γ0(N)).

(4) Let [Tn] denote the matrix of Tn acting on a basis of S2(Γ0(N); Q).
For a matrix A, let aij(A) denote the ijth entry of A. For various
integers i, j with 0 ≤ i, j ≤ d − 1, compute formal q-expansions

fij(q) =
B−1∑

n=1

aij([Tn])qn + O(qB) ∈ Q[[q]]

until we find enough to span a space of dimension d (or exhaust all
of them). These fij are a basis for S2(Γ0(N)) to precision O(qB).

3.6.1. Examples. We use SAGE to demonstrate Algorithm 3.26.

Example 3.27. The smallest N with S2(Γ0(N)) 6= 0 is N = 11.

sage: M = ModularSymbols(11); M.basis()

((1,0), (1,8), (1,9))

sage: S = M.cuspidal_submodule(); S

Modular Symbols subspace of dimension 2 of Modular

Symbols space of dimension 3 for Gamma_0(11) of weight

2 with sign 0 over Rational Field

We compute a few Hecke operators, and then read off a nonzero cusp
form, which forms a basis for S2(Γ0(11)):

sage: S.T(2).matrix()

[-2 0]

[ 0 -2]

sage: S.T(3).matrix()

[-1 0]

[ 0 -1]

Thus

f0,0 = q − 2q2 − q3 + · · · ∈ S2(Γ0(11))

forms a basis for S2(Γ0(11)).

Example 3.28. We compute a basis for S2(Γ0(33)) to precision O(q6).
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sage: M = ModularSymbols(33)

sage: S = M.cuspidal_submodule(); S

Modular Symbols subspace of dimension 6 of Modular

Symbols space of dimension 9 for Gamma_0(33) of weight

2 with sign 0 over Rational Field

Thus dimS2(Γ0(33)) = 3.

sage: R.<q> = PowerSeriesRing(QQ)

sage: v = [S.T(n).matrix()[0,0] for n in range(1,6)]

sage: f00 = sum(v[n-1]*q^n for n in range(1,6)) + O(q^6)

sage: f00

q - q^2 - q^3 + q^4 + O(q^6)

This gives us one basis element of S2(Γ0(33)). It remains to find two
others. We find

sage: v = [S.T(n).matrix()[0,1] for n in range(1,6)]

sage: f01 = sum(v[n-1]*q^n for n in range(1,6)) + O(q^6)

sage: f01

-2*q^3 + O(q^6)

and

sage: v = [S.T(n).matrix()[1,0] for n in range(1,6)]

sage: f10 = sum(v[n-1]*q^n for n in range(1,6)) + O(q^6)

sage: f10

q^3 + O(q^6)

This third one is (to our precision) a scalar multiple of the second, so
we look further.

sage: v = [S.T(n).matrix()[1,1] for n in range(1,6)]

sage: f11 = sum(v[n-1]*q^n for n in range(1,6)) + O(q^6)

sage: f11

q - 2*q^2 + 2*q^4 + q^5 + O(q^6)

This latter form is clearly not in the span of the first two. Thus we have the
following basis for S2(Γ0(33)) (to precision O(q6)):

f00 = q − q2 − q3 + q4 + · · · ,

f11 = q − 2q2 + 2q4 + q5 + · · · ,

f10 = q3 + · · · .
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Example 3.29. Next consider N = 23, where we have

d = dimS2(Γ0(23)) = 2.

The command q expansion cuspforms computes matrices Tn and returns a
function f such that f(i, j) is the q-expansion of fi,j to some precision. (For
efficiency reasons, f(i, j) in SAGE actually computes matrices of Tn acting
on a basis for the linear dual of S2(Γ0(N)).)

sage: M = ModularSymbols(23)

sage: S = M.cuspidal_submodule()

sage: S

Modular Symbols subspace of dimension 4 of Modular

Symbols space of dimension 5 for Gamma_0(23) of weight

2 with sign 0 over Rational Field

sage: f = S.q_expansion_cuspforms(6)

sage: f(0,0)

q - 2/3*q^2 + 1/3*q^3 - 1/3*q^4 - 4/3*q^5 + O(q^6)

sage: f(0,1)

O(q^6)

sage: f(1,0)

-1/3*q^2 + 2/3*q^3 + 1/3*q^4 - 2/3*q^5 + O(q^6)

Thus a basis for S2(Γ0(23)) is

f0,0 = q − 2

3
q2 +

1

3
q3 − 1

3
q4 − 4

3
q5 + · · · ,

f1,0 = −1

3
q2 +

2

3
q3 +

1

3
q4 − 2

3
q5 + · · · .

Or, in echelon form,

q − q3 − q4 + · · ·
q2 − 2q3 − q4 + 2q5 + · · ·

which we computed using

sage: S.q_expansion_basis(6)

[

q - q^3 - q^4 + O(q^6),

q^2 - 2*q^3 - q^4 + 2*q^5 + O(q^6)

]

3.7. Computing S2(Γ0(N)) Using Eigenvectors

In this section we describe how to use modular symbols to construct a basis
of S2(Γ0(N)) consisting of modular forms that are eigenvectors for every
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element of the ring T(N) generated by the Hecke operator Tp, with p ∤ N .
Such eigenvectors are called eigenforms.

Suppose M is a positive integer that divides N . As explained in [Lan95,
VIII.1–2], for each divisor d of N/M there is a natural degeneracy map αM,d :

S2(Γ0(M)) → S2(Γ0(N)) given by αM,d(f(q)) = f(qd). The new subspace
of S2(Γ0(N)), denoted S2(Γ0(N))new, is the complementary T-submodule
of the T-module generated by the images of all maps αM,d, with M and d
as above. It is a nontrivial fact that this complement is well defined; one
possible proof uses the Petersson inner product (see [Lan95, §VII.5]).

The theory of Atkin and Lehner [AL70] (see Theorem 9.4 below) asserts

that, as a T(N)-module, S2(Γ0(N)) decomposes as follows:

S2(Γ0(N)) =
⊕

M |N, d|N/M

βM,d(S2(Γ0(M))new).

To compute S2(Γ0(N)) it suffices to compute S2(Γ0(M))new for each M | N .

We now turn to the problem of computing S2(Γ0(N))new. Atkin and
Lehner [AL70] proved that S2(Γ0(N))new is spanned by eigenforms for all
Tp with p ∤ N and that the common eigenspaces of all the Tp with p ∤ N
each have dimension 1. Moreover, if f ∈ S2(Γ0(N))new is an eigenform then
the coefficient of q in the q-expansion of f is nonzero, so it is possible to
normalize f so the coefficient of q is 1 (such a normalized eigenform in the
new subspace is called a newform). With f so normalized, if Tp(f) = apf ,
then the pth Fourier coefficient of f is ap. If f =

∑∞
n=1 anqn is a normalized

eigenvector for all Tp, then the an, with n composite, are determined by the
ap, with p prime, by the following formulas: anm = anam when n and m are
relatively prime and apr = apr−1ap − papr−2 for p ∤ N prime. When p | N ,
apr = ar

p. We conclude that in order to compute S2(Γ0(N))new, it suffices
to compute all systems of eigenvalues {a2, a3, a5, . . .} of the prime-indexed
Hecke operators T2, T3, T5, . . . acting on S2(Γ0(N))new. Given a system of
eigenvalues, the corresponding eigenform is f =

∑∞
n=1 anqn, where the an,

for n composite, are determined by the recurrence given above.

In light of the pairing 〈 , 〉 introduced in Section 3.1, computing the above
systems of eigenvalues {a2, a3, a5, . . .} amounts to computing the systems of
eigenvalues of the Hecke operators Tp on the subspace V of S2(Γ0(N)) that
corresponds to the new subspace of S2(Γ0(N)). For each proper divisor M
of N and each divisor d of N/M , let φM,d : S2(Γ0(N)) → S2(Γ0(M)) be the
map sending x to

(
d 0
0 1

)
x. Then V is the intersection of the kernels of all

maps φM,d.

Computing the systems of eigenvalues of a collection of commuting di-
agonalizable endomorphisms is a problem in linear algebra (see Chapter 7).
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Example 3.30. All forms in S2(Γ0(39)) are new. Up to Galois conjugacy,
the eigenvalues of the Hecke operators T2, T3, T5, and T7 on S2(Γ0(39)) are
{1, −1, 2, −4} and {a, 1, −2a − 2, 2a + 2}, where a2 + 2a − 1 = 0. Each of
these eigenvalues occur in S2(Γ0(39)) with multiplicity two; for example, the
characteristic polynomial of T2 on S2(Γ0(39)) is (x − 1)2 · (x2 + 2x − 1)2.
Thus S2(Γ0(39)) is spanned by

f1 = q + q2 − q3 − q4 + 2q5 − q6 − 4q7 + · · · ,

f2 = q + aq2 + q3 + (−2a − 1)q4 + (−2a − 2)q5 + aq6 + (2a + 2)q7 + · · · ,

f3 = q + σ(a)q2 + q3 + (−2σ(a) − 1)q4 + (−2σ(a) − 2)q5 + σ(a)q6 + · · · ,

where σ(a) is the other Gal(Q/Q)-conjugate of a.

3.7.1. Summary. To compute the q-expansion of a basis for S2(Γ0(N)),
we use the degeneracy maps so that we only have to solve the problem
for S2(Γ0(M))new, for all integers M | N . Using modular symbols, we
compute all systems of eigenvalues {a2, a3, a5, . . .}, and then write down the
corresponding eigenforms

∑
anqn.

3.8. Exercises

3.1 Suppose that λ, λ′ ∈ h are in the same orbit for the action of Γ0(N),
i.e., that there exists g ∈ Γ0(N) such that g(λ) = λ′. Let Λ =
Z+Zλ and Λ′ = Z+Zλ′. Prove that the pairs (C/Λ, ( 1

N Z+Λ)/Λ)

and (C/Λ′, ( 1
N Z + Λ′)/Λ′) are isomorphic. (By an isomorphism

(E, C) → (F, D) of pairs, we mean an isomorphism φ : E → F
of elliptic curves that sends C to D. You may use the fact that
an isomorphism of elliptic curves over C is a C-linear map C → C
that sends the lattice corresponding to one curve onto the lattice
corresponding to the other.)

3.2 Let n, m be integers and N a positive integer. Prove that the
modular symbol {n, m} is 0 as an element of M2(Γ0(N)). [Hint:
See Example 3.6.]

3.3 Let p be a prime.
(a) List representative elements of P1(Z/pZ).
(b) What is the cardinality of P1(Z/pZ) as a function of p?
(c) Prove that there is a bijection between the right cosets of Γ0(p)

in SL2(Z) and the elements of P1(Z/pZ) that sends
(

a b
c d

)
to

(c : d). (As mentioned in this chapter, the analogous statement
is also true when the level is composite; see [Cre97a, §2.2] for
complete details.)

3.4 Use the inductive proof of Proposition 3.11 to write {0, 4/7} in
terms of Manin symbols for Γ0(7).
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3.5 Show that the Hecke operator T2 acts as multiplication by 3 on the
space M2(Γ0(3)) as follows:
(a) Write down right coset representatives for Γ0(3) in SL2(Z).
(b) List all eight relations coming from Theorem 3.13.
(c) Find a single Manin symbols [ri] so that the three other Manin

symbols are a nonzero multiple of [ri] modulo the relations
found in the previous step.

(d) Use formula (3.4.1) to compute T2([ri]). You will obtain a sum
of four symbols. Using the relations above, write this sum as
a multiple of [ri]. (The multiple must be 3 or you made a
mistake.)





Chapter 4

Dirichlet Characters

In this chapter we develop a theory for computing with Dirichlet characters,
which are extremely important to computations with modular forms for (at
least) two reasons:

(1) To compute the Eisenstein subspace Ek(Γ1(N)) of Mk(Γ1(N)), we
write down Eisenstein series attached to pairs of Dirichlet charac-
ters (the space Ek(Γ1(N)) will be defined in Chapter 5).

(2) To compute Sk(Γ1(N)), we instead compute a decomposition

Mk(Γ1(N)) =
⊕

Mk(Γ1(N), ε)

and then compute each factor (see Section 9.1). Here the sum is
over all Dirichlet characters ε of modulus N .

Dirichlet characters appear frequently in many other areas of number
theory. For example, by the Kronecker-Weber theorem, Dirichlet characters
correspond to the 1-dimensional representations of Gal(Q/Q).

After defining Dirichlet characters in Section 4.1, in Section 4.2 we de-
scribe a good way to represent Dirichlet characters using a computer. Sec-
tion 4.3 is about how to evaluate Dirichlet characters and leads naturally
to a discussion of the baby-step giant-step algorithm for solving the discrete
log problem and methods for efficiently computing the Kronecker symbol.
In Section 4.4 we explain how to factor Dirichlet characters into their prime
power constituents and apply this to the computations of conductors. We
describe how to carry out a number of standard operations with Dirichlet
characters in Section 4.6 and discuss alternative ways to represent them in
Section 4.7. Finally, in Section 4.8 we give a very short tutorial about how
to compute with Dirichlet characters using SAGE.

63



64 4. Dirichlet Characters

4.1. The Definition

Fix an integral domain R and a root ζ of unity in R.

Definition 4.1 (Dirichlet Character). A Dirichlet character of modulus N
over R is a map ε : Z → R such that there is a homomorphism f :
(Z/NZ)∗ → 〈ζ〉 for which

ε(a) =

{
0 if gcd(a, N) > 1,

f (a mod N) if gcd(a, N) = 1.

We denote the group of such Dirichlet characters by D(N, R). Note that
elements of D(N, R) are in bijection with homomorphisms (Z/NZ)∗ → 〈ζ〉.

A familiar Dirichlet character is the Legendre symbol
(

a
p

)
, with p an

odd prime, that appears in quadratic reciprocity theory. It is a Dirichlet
character of modulus p that takes the value 1 on integers that are congruent
to a nonzero square modulo p, the value −1 on integers that are congruent
to a nonzero nonsquare modulo p, and 0 on integers divisible by p.

4.2. Representing Dirichlet Characters

Lemma 4.2. The groups (Z/NZ)∗ and D(N, C) are isomorphic.

Proof. We prove the more general fact that for any finite abelian group G,
we have that G ≈ Hom(G, C∗). To deduce this latter isomorphism, first
reduce to the case when G is cyclic by writing G as a product of cyclic
groups. The cyclic case follows because if G is cyclic of order n, then C∗

contains an nth root of unity, so Hom(G, C∗) is also cyclic of order n. Any
two cyclic groups of the same order are isomorphic, so G and Hom(G, C∗)
are isomorphic. ¤
Corollary 4.3. We have #D(N, R) | ϕ(N), with equality if and only if
the order of our choice of ζ ∈ R is a multiple of the exponent of the group
(Z/NZ)∗.

Proof. This is because #(Z/NZ)∗ = ϕ(N). ¤

Fix a positive integer N . To find the set of “canonical” generators for
the group (Z/NZ)∗, write N =

∏n
i=0 pei

i where p0 < p1 < · · · < pn are
the prime divisors of N . By Exercise 4.2, each factor (Z/pei

i Z)∗ is a cyclic
group Ci = 〈gi〉, except if p0 = 2 and e0 ≥ 3, in which case (Z/pe0

0 Z)∗

is a product of the cyclic subgroup C0 = 〈−1〉 of order 2 with the cyclic
subgroup C1 = 〈5〉. In all cases we have

(Z/NZ)∗ ∼=
∏

0≤i≤n

Ci =
∏

0≤i≤n

〈gi〉.
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For i such that pi > 2, choose the generator gi of Ci to be the element of
{2, 3, . . . , pei

i − 1} that is smallest and generates. Finally, use the Chinese
Remainder Theorem (see [Coh93, §1.3.3]) to lift each gi to an element in
(Z/NZ)∗, also denoted gi, that is 1 modulo each p

ej

j for j 6= i.

Algorithm 4.4 (Minimal Generator for (Z/prZ)∗). Given a prime power pr

with p odd, this algorithm computes the minimal generator of (Z/prZ)∗.

(1) [Factor Group Order] Factor n = φ(pr) = pr−1 · 2 · ((p − 1)/2) as a
product

∏
pei

i of primes. This is equivalent in difficulty to factoring
(p − 1)/2. (See, e.g., [Coh93, Ch.8, Ch. 10] for an excellent dis-
cussion of factorization algorithms, though of course much progress
has been made since then.)

(2) [Initialize] Set g = 2.

(3) [Generator?] Using the binary powering algorithm (see [Coh93,

§1.2]), compute gn/pi (mod pr), for each prime divisor pi of n. If
any of these powers are 1, then g is not a generator, so set g = g+1
and go to step (2). If no powers are 1, output g and terminate.

See Exercise 4.3 for a proof that this algorithm is correct.

Example 4.5. A minimal generator for (Z/49Z)∗ is 3. We have n = ϕ(49) =
42 = 2 · 3 · 7 and

2n/2 ≡ 1, 2n/3 ≡ 18, 2n/7 ≡ 15 (mod 49),

so 2 is not a generator for (Z/49Z)∗. (We see this just from 2n/2 ≡ 1
(mod 49).) However 3 is a generator since

3n/2 ≡ 48, 3n/3 ≡ 30, 3n/7 ≡ 43 (mod 49).

Example 4.6. In this example we compute minimal generators for N = 25,
100, and 200:

(1) The minimal generator for (Z/25Z)∗ is 2.

(2) The minimal generators for (Z/100Z)∗, lifted to numbers modulo
100, are g0 = 51 and g1 = 77. Notice that g0 ≡ −1 (mod 4)
and g0 ≡ 1 (mod 25) and that g1 ≡ 2 (mod 25) is the minimal
generator modulo 25.

(3) The minimal generators for (Z/200Z)∗, lifted to numbers modulo
200, are g0 = 151, g1 = 101, and g2 = 177. Note that g0 ≡ −1
(mod 4), that g1 ≡ 5 (mod 8) and g2 ≡ 2 (mod 25).

In SAGE, the command Integers(N) creates Z/NZ.
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sage: R = Integers(49)

sage: R

Ring of integers modulo 49

The unit gens command computes the minimal generators for (Z/NZ)∗,
as defined above.

sage: R.unit_gens()

[3]

sage: Integers(25).unit_gens()

[2]

sage: Integers(100).unit_gens()

[51, 77]

sage: Integers(200).unit_gens()

[151, 101, 177]

sage: Integers(2005).unit_gens()

[402, 1206]

sage: Integers(200000000).unit_gens()

[174218751, 51562501, 187109377]

Fix an element ζ of finite multiplicative order in a ring R, and let
D(N, R) denote the group of Dirichlet characters of modulus N over R,
with image in 〈ζ〉 ∪ {0}. In most of this chapter, we specify an element
ε ∈ D(N, R) by giving the list

(4.2.1) [ε(g0), ε(g1), . . . , ε(gn)]

of images of the generators of (Z/NZ)∗. (Note that if N is even, the number
of elements of the list (4.2.1) does depend on whether or not 8 | N—there are
two factors corresponding to 2 if 8 | N , but only one if 8 ∤ N .) This represen-
tation completely determines ε and is convenient for arithmetic operations.
It is analogous to representing a linear transformation by a matrix.

Remark 4.7. In any actual implementation (e.g., the one in SAGE), it is
better to represent the ε(gi) by recording an integer j such that ε(gi) = ζj ,
where ζ ∈ R is a fixed root of unity. Then (4.2.1) is internally represented as
an element of (Z/mZ)n+1, where m is the multiplicative order of ζ. When
the representation of (4.2.1) is needed for an algorithm, it can be quickly
computed on the fly using a table of the powers of ζ. See Section 4.7 for
further discussion about ways to represent characters.

Example 4.8. The group D(5, C) has elements {[1], [i], [−1], [−i]}, so it is
cyclic of order ϕ(5) = 4. In contrast, the group D(5, Q) has only the two
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elements [1] and [−1] and order 2. The command DirichletGroup(N) with
no second argument creates the group of Dirichlet characters with values in
the cyclotomic field Q(ζn), where n is the exponent of the group (Z/NZ)∗.
Every element in D(N, C) takes values in Q(ζn), so D(N, Q(ζn)) ≈ D(N, C).

sage: list(DirichletGroup(5))

[[1], [zeta4], [-1], [-zeta4]]

sage: list(DirichletGroup(5, QQ))

[[1], [-1]]

4.3. Evaluation of Dirichlet Characters

This section is about how to compute ε(n), where ε is a Dirichlet character
and n is an integer. We begin with an example.

Example 4.9. If N = 200, then g0 = 151, g1 = 101 and g2 = 177, as we
saw in Example 4.6. The exponent of (Z/200Z)∗ is 20, since that is the least
common multiple of the exponents of 4 = #(Z/8Z)∗ and 20 = #(Z/25Z)∗.
The orders of g0, g1, and g2 are 2, 2, and 20. Let ζ = ζ20 be a primitive
20th root of unity in C. Then the following are generators for D(200, C):

ε0 = [−1, 1, 1], ε1 = [1, −1, 1], ε2 = [1, 1, ζ],

and ε = [1, −1, ζ5] is an example element of order 4. To evaluate ε(3), we
write 3 in terms of g0, g1, and g2. First, reducing 3 modulo 8, we see that
3 ≡ g0 ·g1 (mod 8). Next reducing 3 modulo 25 and trying powers of g2 = 2,
we find that e ≡ g7

2 (mod 25). Thus

ε(3) = ε(g0 · g1 · g7
2)

= ε(g0)ε(g1)ε(g2)
7

= 1 · (−1) · (ζ5)7

= −ζ35 = −ζ15.

We next illustrate the above computation of ε(3) in SAGE. First we make
the group D(200, Q(ζ8)) and list its generators.
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sage: G = DirichletGroup(200)

sage: G

Group of Dirichlet characters of modulus 200 over

Cyclotomic Field of order 20 and degree 8

sage: G.exponent()

20

sage: G.gens()

([-1, 1, 1], [1, -1, 1], [1, 1, zeta20])

We construct ε.

sage: K = G.base_ring()

sage: zeta = K.0

sage: eps = G([1,-1,zeta^5])

sage: eps

[1, -1, zeta20^5]

Finally, we evaluate ε at 3.

sage: eps(3)

zeta20^5

sage: -zeta^15

zeta20^5

Example 4.9 illustrates that if ε is represented using a list as described
above, evaluation of ε is inefficient without extra information; it requires
solving the discrete log problem in (Z/NZ)∗.

Remark 4.10. For a general character ε, is calculation of ε at least as
hard as finding discrete logarithms? Quadratic characters are easier—see
Algorithm 4.23.

Algorithm 4.11 (Evaluate ε). Given a Dirichlet character ε of modulus N ,
represented by a list [ε(g0), ε(g1), . . . , ε(gn)], and an integer a, this algorithm
computes ε(a).

(1) [GCD] Compute g = gcd(a, N). If g > 1, output 0 and terminate.

(2) [Discrete Log] For each i, write a (mod pei
i ) as a power mi of gi

using some algorithm for solving the discrete log problem (see be-
low). If pi = 2, write a (mod pei

i ) as (−1)m0 · 5m1 . (This step is
analogous to writing a vector in terms of a basis.)
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(3) [Multiply] Output
∏

ε(gi)
mi as an element of R, and terminate.

(This is analogous to multiplying a matrix times a vector.)

4.3.1. The Discrete Log Problem. Exercise 4.4 gives an isomorphism
of groups

(1 + pn−1(Z/pnZ), ×) ∼= (Z/pZ, +),

so one sees by induction that step (2) is “about as difficult” as finding a
discrete log in (Z/pZ)∗. There is an algorithm called “baby-step giant-

step”, which solves the discrete log problem in (Z/pZ)∗ in time O(
√

ℓ),
where ℓ is the largest prime factor of p − 1 = #(Z/pZ)∗ (note that the
discrete log problem in (Z/pZ)∗ reduces to a series of discrete log problems
in each prime-order cyclic factor). This is unfortunately still exponential in

the number of digits of ℓ; it also uses O(
√

ℓ) memory. We now describe this
algorithm without any specific optimizations.

Algorithm 4.12 (Baby-step Giant-step Discrete Log). Given a prime p, a
generator g of (Z/pZ)∗, and an element a ∈ (Z/pZ)∗, this algorithm finds
an n such that gn = a. (Note that this algorithm works in any cyclic group,
not just (Z/pZ)∗.)

(1) [Make Lists] Let m = ⌈√p⌉ be the ceiling of
√

p, and construct two
lists

1, gm, . . . , g(m−1)m (giant steps)

and

a, ag, ag2, . . . , agm−1 (baby steps).

(2) [Find Match] Sort the two lists and find a match gim = agj . Then
a = gim−j .

Proof. We prove that there will always be a match. Since we know that
a = gk for some k with 0 ≤ k ≤ p − 1 and any such k can be written in the
form im − j for 0 ≤ i, j ≤ m − 1, we will find such a match. ¤

Algorithm 4.12 uses nothing special about (Z/pZ)∗, so it works in a
generic group. It is a theorem that there is no faster algorithm to find
discrete logs in a “generic group” (see [Sho97, Nec94]). There are much
better subexponential algorithms for solving the discrete log problem in
(Z/pZ)∗, which use the special structure of this group. They use the number
field sieve (see, e.g., [Gor93]), which is also the best-known algorithm for
factoring integers. This class of algorithms has been very well studied by
cryptographers; though sub-exponential, solving discrete log problems when
p is large is still extremely difficult. For a more in-depth survey see [Gor04].
For computing Dirichlet characters in our context, p is not too large, so
Algorithm 4.12 works well.
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4.3.2. Enumeration of All Values. For many applications of Dirichlet
characters to computing modular forms, N is fairly small, e.g., N < 106, and
we evaluate ε on a huge number of random elements, inside inner loops of
algorithms. Thus for such purposes it will often be better to make a table of
all values of ε, so that evaluation of ε is extremely fast. The following algo-
rithm computes a table of all values of ε, and it does not require computing
any discrete logs since we are computing all values.

Algorithm 4.13 (Values of ε). Given a Dirichlet character ε represented
by the list of values of ε on the minimal generators gi of (Z/NZ)∗, this
algorithm creates a list of all the values of ε.

(1) [Initialize] For each minimal generator gi, set ai = 0. Let n =
∏

gai
i ,

and set z = 1. Create a list v of N values, all initially set equal to 0.
When this algorithm terminates, the list v will have the property
that

v [x (mod N)] = ε(x).

Notice that we index v starting at 0.

(2) [Add Value to Table] Set v[n] = z.

(3) [Finished?] If each ai is one less than the order of gi, output v and
terminate.

(4) [Increment] Set a0 = a0 + 1, n = n · g0 (mod N), and z = z · ε(g0).
If a0 ≥ ord(g0), set a0 → 0, and then set a1 = a1 + 1, n = n · g1

(mod N), and z = z · ε(g1). If a1 ≥ ord(g1), do what you just did
with a0 but with all subscripts replaced by 1. Etc. (Imagine a car
odometer.) Go to step (2).

4.4. Conductors of Dirichlet Characters

The following algorithm for computing the order of ε reduces the problem
to computing the orders of powers of ζ in R.

Algorithm 4.14 (Order of Character). This algorithm computes the order
of a Dirichlet character ε ∈ D(N, R).

(1) Compute the order ri of each ε(gi), for each minimal generator gi

of (Z/NZ)∗. The order of ε(gi) is a divisor of n = #(Z/pei
i Z)∗ so

we can compute its order by considering the divisors of n.

(2) Compute and output the least common multiple of the integers ri.

Remark 4.15. Computing the order of ε(gi) ∈ R is potentially difficult.
Simultaneously using a different representation of Dirichlet characters avoids
having to compute the order of elements of R (see Section 4.7).

The next algorithm factors ε as a product of “local” characters, one for
each prime divisor of N . It is useful for other algorithms, e.g., for explicit
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computations with trace formulas (see [Hij74]). This factorization is easy
to compute because of how we represent ε.

Algorithm 4.16 (Factorization of Character). Given a Dirichlet character
ε ∈ D(N, R), with N =

∏
pei

i , this algorithm finds Dirichlet characters εi

modulo pei
i , such that for all a ∈ (Z/NZ)∗, we have ε(a) =

∏
εi(a(mod pei

i )).
If 2 | N , the steps are as follows:

(1) Let gi be the minimal generators of (Z/NZ)∗, so ε is given by a list

[ε(g0), . . . , ε(gn)].

(2) For i = 2, . . . , n, let εi be the element of D(pei
i , R) defined by the

singleton list [ε(gi)].

(3) Let ε1 be the element of D(2e1 , R) defined by the list [ε(g0), ε(g1)]
of length 2. Output the εi and terminate.

If 2 ∤ N , then omit step (3), and include all i in step (2).

The factorization of Algorithm 4.16 is unique since each εi is determined
by the image of the canonical map (Z/pei

i Z)∗ in (Z/NZ)∗, which sends a

(mod pei
i ) to the element of (Z/NZ)∗ that is a (mod pei

i ) and 1 (mod p
ej

j )
for j 6= i.

Example 4.17. If ε = [1, −1, ζ5] ∈ D(200, C), then ε1 = [1, −1] ∈ D(8, C)
and ε2 = [ζ5] ∈ D(25, C).

Definition 4.18 (Conductor). The conductor of a Dirichlet character ε ∈
D(N, R) is the smallest positive divisor c | N such that there is a character
ε′ ∈ D(c, R) for which ε(a) = ε′(a) for all a ∈ Z with (a, N) = 1. A
Dirichlet character is primitive if its modulus equals its conductor. The
character ε′ associated to ε with modulus equal to the conductor of ε is
called the primitive character associated to ε.

We will be interested in conductors later, when computing new subspaces
of spaces of modular forms with character. Also certain formulas for special
values of L functions are only valid for primitive characters.

Algorithm 4.19 (Conductor). This algorithm computes the conductor of a
Dirichlet character ε ∈ D(N, R).

(1) [Factor Character] Using Algorithm 4.16, find characters εi whose
product is ε.

(2) [Compute Orders] Using Algorithm 4.14, compute the orders ri of
each εi.

(3) [Conductors of Factors] For each i, either set ci → 1 if εi is the

trivial character (i.e., of order 1) or set ci = p
ordpi (ri)+1
i , where

ordp(n) is the largest power of p that divides n.



72 4. Dirichlet Characters

(4) [Adjust at 2?] If p1 = 2 and ε1(5) 6= 1, set c1 = 2c1.

(5) [Finished] Output c =
∏

ci and terminate.

Proof. Let εi be the local factors of ε, as in step (1). We first show that the
product of the conductors fi of the εi is the conductor f of ε. Since εi factors
through (Z/fiZ)∗, the product ε of the εi factors through (Z/

∏
fiZ)∗, so

the conductor of ε divides
∏

fi. Conversely, if ordpi(f) < ordpi(fi) for
some i, then we could factor ε as a product of local (prime power) characters
differently, which contradicts that this factorization is unique.

It remains to prove that if ε is a nontrivial character of modulus pn,
where p is a prime, and if r is the order of ε, then the conductor of ε is
pordp(r)+1, except possibly if 8 | pn. Since the order and conductor of ε and
of the associated primitive character ε′ are the same, we may assume ε is
primitive, i.e., that pn is the conductor of ε; note that n > 0, since ε is
nontrivial.

First suppose p is odd. Then the abelian group D(pn, R) splits as a direct
sum D(p, R) ⊕ D(pn, R)′, where D(pn, R)′ is the p-power torsion subgroup
of D(pn, R). Also ε has order u · pm, where u, which is coprime to p, is
the order of the image of ε in D(p, R) and pm is the order of the image
in D(pn, R)′. If m = 0, then the order of ε is coprime to p, so ε is in
D(p, R), which means that n = 1, so n = m+1, as required. If m > 0, then
ζ ∈ R must have order divisible by p, so R has characteristic not equal to p.
The conductor of ε does not change if we adjoin roots of unity to R, so in
light of Lemma 4.2 we may assume that D(N, R) ≈ (Z/NZ)∗. It follows

that for each n′ ≤ n, the p-power subgroup D(pn′
, R)′ of D(pn′

, R) is the

pn′−1-torsion subgroup of D(pn, R)′. Thus m = n − 1, since D(pn, R)′ is by
assumption the smallest such group that contains the projection of ε. This
proves the formula of step (3). We leave the argument when p = 2 as an
exercise (see Exercise 4.5). ¤

Example 4.20. If ε = [1, −1, ζ5] ∈ D(200, C), then as in Example 4.17, ε
is the product of ε1 = [1, −1] and ε2 = [ζ5]. Because ε1(5) = −1, the
conductor of ε1 is 8. The order of ε2 is 4 (since ζ is a 20th root of unity),
so the conductor of ε2 is 5. Thus the conductor of ε is 40 = 8 · 5.

4.5. The Kronecker Symbol

In this section all characters have values in C.

Frequently quadratic characters are described in terms of the Kronecker
symbol

(
a
n

)
, which we define for any integer a and positive integer n as
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follows. First, if n = p is an odd prime, then for any integer a,

(
a

p

)
=





0 if gcd(a, p) 6= 1,

1 if a is a square mod p,

−1 if a is not a square mod p.

If p = 2, then

(a

2

)
=





0 if a is even,

1 if a ≡ ±1 (mod 8),

−1 if a ≡ ±3 (mod 8).

More generally, if n =
∏

pei
i with the pi prime, then

(a

n

)
=

∏ (
a

pi

)ei

.

Remark 4.21. One can also extend
(

a
n

)
to n < 0, but we will not need

this. The extension is to set
(

a
−1

)
= −1 and

(
a
1

)
= 1, for a 6= 0, and to

extend multiplicatively (in the denominator). Note that the map
(

•
−1

)
is

not a Dirichlet character (see Exercise 4.1).

Let M be the product of the primes p such that ordp(n) is odd. If M is
odd, let N = M ; otherwise, let N = 8M .

Lemma 4.22. The function

ε(a) =

{(
a
n

)
if gcd(a, N) = 1,

0 otherwise

is a Dirichlet character of modulus N . The function

ε(a) =

{(−1
a

)
if a is odd,

0 if a is even

is a Dirichlet character of modulus N .

Proof. When restricted to (Z/NZ)∗, each map
(

•
p

)
, for p prime, is a homo-

morphism, so ε a product of homomorphisms. The second statement follows
from the definition and the fact that −1 is a square modulo an odd prime p
if and only if p ≡ 1 (mod 4). ¤

This section is about going between representing quadratic characters
as row matrices and via Kronecker symbols. This is valuable because the
algorithms in [Coh93, §1.1.4] for computing Kronecker symbols run in time
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quadratic in the number of digits of the input. They do not require comput-

ing discrete logarithms; instead, they use, e.g., that
(

a
p

)
≡ a(p−1)/2 (mod p),

when p is an odd prime.

Algorithm 4.23 (Kronecker Symbol as Dirichlet Character). Given n > 0,
this algorithm computes a representation of the Kronecker symbol

( •
n

)
as a

Dirichlet character.

(1) [Modulus] Compute N as in Lemma 4.22.

(2) [Minimal Generators] Compute minimal generators gi of (Z/NZ)∗

using Algorithm 4.4.

(3) [Images] Compute
( gi

N

)
for each gi using one of the algorithms of

[Coh93, §1.1.4].

Example 4.24. We compute the Dirichlet character associated to
( •

200

)
.

Using SAGE, we compute the
( gi

200

)
, for i = 0, 1, 2, where the gi are as in

Example 4.9:

sage: kronecker(151,200)

1

sage: kronecker(101,200)

-1

sage: kronecker(177,200)

1

Thus the corresponding character is defined by [1, −1, 1].

Example 4.25. We compute the character associated to
( •

420

)
. We have

420 = 4 · 3 · 5 · 7, and minimal generators are

g0 = 211, g1 = 1, g2 = 281, g3 = 337, g4 = 241.

We have g0 ≡ −1 (mod 4), g2 ≡ 2 (mod 3), g3 ≡ 2 (mod 5) and g4 ≡ 3
(mod 7). We find

( g0

420

)
=

( g1

420

)
= 1 and

( g2

420

)
=

( g3

420

)
=

( g4

420

)
= −1. The

corresponding character is [1, 1, −1, −1, −1].

Using the following algorithm, we can go in the other direction, i.e.,
write any quadratic Dirichlet character as a Kronecker symbol.

Algorithm 4.26 (Dirichlet Character as Kronecker Symbol). Given ε of
order 2 with modulus N , this algorithm writes ε as a Kronecker symbol.

(1) [Conductor] Use Algorithm 4.19 to compute the conductor f of ε.

(2) [Odd] If f is odd, output
(

•
f

)
.

(3) [Even] If ε(−1) = 1, output
(

•
f

)
; if ε(−1) = −1, output

(
•
f

)
·
(−1

•
)
.



4.6. Restriction, Extension, and Galois Orbits 75

Proof. Since f is the conductor of a quadratic Dirichlet character, it is
a square-free product g of odd primes times either 4 or 8, so the group
(Z/fZ)∗ does not inject into (Z/gZ)∗ for any proper divisor g of f (see
this by reducing to the prime power case). Since g is odd and square-free,

the character
(

•
g

)
has conductor g. For each odd prime p, by step (3) of

Algorithm 4.19 the factor at p of both ε and
(

•
g

)
is a quadratic character

with modulus p. By Exercise 4.2 and Lemma 4.2 the group D(p, C) is cyclic,

so it has a unique element of order 2, so the factors of ε and
(

•
g

)
at p are

equal.

The quadratic characters with conductor a power of 2 are [−1], [1, −1],
and [−1, −1]. The character [1, −1] is

(•
2

)
and the character [−1] is

(−1
•

)
. ¤

Example 4.27. Consider ε = [−1, −1, −1, −1, −1] with modulus 840 = 8·3·
5·7. It has conductor 840, and ε(−1) = −1, so for all a with gcd(a, 840) = 1,
we have ε(a) =

(
a

840

)
·
(−1

a

)
.

4.6. Restriction, Extension, and Galois Orbits

The following two algorithms restrict and extend characters to a compatible
modulus. Using them, it is easy to define multiplication of two characters
ε ∈ D(N, R) and ε′ ∈ D(N ′, R′), as long as R and R′ are subrings of a
common ring. To carry out the multiplication, extend both characters to a
common base ring, and then extend them to characters modulo lcm(N, N ′)
and multiply.

Algorithm 4.28 (Restriction of Character). Given a Dirichlet character
ε ∈ D(N, R) and a divisor N ′ of N that is a multiple of the conductor of ε,
this algorithm finds a characters ε′ ∈ D(N ′, R), such that ε′(a) = ε(a), for
all a ∈ Z with (a, N) = 1.

(1) [Conductor] Compute the conductor of ε using Algorithm 4.19, and
verify that N ′ is divisible by the conductor and divides N .

(2) [Minimal Generators] Compute minimal generators gi for (Z/N ′Z)∗.
(3) [Values of Restriction] For each i, compute ε′(gi) as follows. Find

a multiple aN ′ of N ′ such that (gi + aN ′, N) = 1; then ε′(gi) =
ε(gi + aN ′).

(4) [Output Character] Output the Dirichlet character of modulus N ′

defined by [ε′(g0), . . . , ε
′(gn)].

Proof. The only part that is not clear is that in step (3) there is an a such
that (gi + aN ′, N) = 1. If we write N = N1 · N2, with (N1, N2) = 1 and N1

divisible by all primes that divide N ′, then (gi, N1) = 1 since (gi, N
′) = 1.

By the Chinese Remainder Theorem, there is an x ∈ Z such that x ≡ gi
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(mod N1) and x ≡ 1 (mod N2). Then x = gi + bN1 = gi + (bN1/N
′) · N ′

and (x, N) = 1, which completes the proof. ¤

Algorithm 4.29 (Extension of Character). Given a Dirichlet character
ε ∈ D(N, R) and a multiple N ′ of N , this algorithm finds a character ε′ ∈
D(N ′, R), such that ε′(a) = ε(a), for all a ∈ Z with (a, N ′) = 1.

(1) [Minimal Generators] Compute minimal generators gi for (Z/N ′Z)∗.
(2) [Evaluate] Compute ε(gi) for each i. Since (gi, N

′) = 1, we also
have (gi, N) = 1.

(3) [Output Character] Output the character [ε(g0), . . . , ε(gn)].

Let F be the prime subfield of R, and assume that R ⊂ F , where
F is a separable closure of F . If σ ∈ Gal(F/F ) and ε ∈ D(N, R), let
(σε)(n) = σ(ε(n)); this defines an action of Gal(F/F ) on D(N, R). Our
next algorithm computes the orbits for the action of Gal(F/F ) on D(N, R).
This algorithm can provide huge savings for modular forms computations
because the spaces Mk(N, ε) and Mk(N, ε′) are canonically isomorphic if ε
and ε′ are conjugate.

Algorithm 4.30 (Galois Orbit). Given a Dirichlet character ε ∈ D(N, R),
this algorithm computes the orbit of ε under the action of G = Gal(F/F ),
where F is the prime subfield of Frac(R), so F = Fp or Q.

(1) [Order of ζ] Let n be the order of the chosen root ζ ∈ R.

(2) [Nontrivial Automorphisms] If char(R) = 0, let

A = {a : 2 ≤ a < n and (a, n) = 1}.

If char(R) = p > 0, compute the multiplicative order r of p(mod n),
and let

A = {pm : 1 ≤ m < r}.

(3) [Compute Orbit] Compute and output the set of unique elements
εa for each a ∈ A (there could be repeats, so we output unique
elements only).

Proof. We prove that the nontrivial automorphisms of 〈ζ〉 in character-
istic p are as in step (2). It is well known that every automorphism in
characteristic p on ζ ∈ Fp is of the form x 7→ xps

, for some s. The images of
ζ under such automorphisms are

ζ, ζp, ζp2
, . . . .

Suppose r > 0 is minimal such that ζ = ζpr
. Then the orbit of ζ is

ζ, . . . , ζpr−1
. Also pr ≡ 1 (mod n), where n is the multiplicative order of ζ,

so r is the multiplicative order of p modulo n, which completes the proof. ¤
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Example 4.31. The Galois orbits of characters in D(20, C∗) are as follows:

G0 = {[1, 1, 1]},

G1 = {[−1, 1, 1]},

G2 = {[1, 1, ζ4], [1, 1, −ζ4]}
G3 = {[−1, 1, ζ4], [−1, 1, −ζ4]}
G4 = {[1, 1, −1]},

G5 = {[−1, 1, −1]}.

The conductors of the characters in orbit G0 are 1, in orbit G1 they are 4,
in orbit G2 they are 5, in G3 they are 20, in G4 the conductor is 5, and in
G5 the conductor is 20. (You should verify this.)

SAGE computes Galois orbits as follows:

sage: G = DirichletGroup(20)

sage: G.galois_orbits()

[

[[1, 1]],

[[1, zeta4], [1, -zeta4]],

[[1, -1]],

[[-1, 1]],

[[-1, zeta4], [-1, -zeta4]],

[[-1, -1]]

]

4.7. Alternative Representations of Characters

Let N be a positive integer and R an integral domain, with fixed root of
unity ζ of order n, and let D(N, R) = D(N, R, ζ). As in the rest of this
chapter, write N =

∏
pei

i , and let Ci = 〈gi〉 be the corresponding cyclic fac-
tors of (Z/NZ)∗. In this section we discuss other ways to represent elements
ε ∈ D(N, R). Each representation has advantages and disadvantages, and
no single representation is best. It is easy to convert between them, and
some algorithms are much easier using one representation than when using
another. In this section we present two other representations, each having
advantages and disadvantages. There is no reason to restrict to only one
representation; for example, SAGE internally uses both.

We could represent ε by giving a list [b0, . . . , br], where each bi ∈ Z/nZ
and ε(gi) = ζbi . Then arithmetic in D(N, R) is arithmetic in (Z/nZ)r+1,
which is very efficient. A drawback to this approach (in practice) is that it
is easy to accidentally consider sequences that do not actually correspond to



78 4. Dirichlet Characters

elements of D(N, R). Also the choice of ζ is less clear, which can cause con-
fusion. Finally, the orders of the local factors is more opaque, e.g., compare
[−1, ζ40] with [20, 1]. Overall this representation is not too bad and is more
like representing a linear transformation by a matrix. It has the advantage
over the representation discussed earlier in this chapter that arithmetic in
D(N, R) is very efficient and does not require any operations in the ring R.

Another way to represent ε would be to give a list [b0, . . . , br] of integers,
but this time with bi ∈ Z/ gcd(si, n)Z, where si is the order of gi. Then

ε(gi) = ζbi·n/(gcd(si,n)),

which is already pretty complicated. With this representation we set up an
identification

D(N, R) ∼=
⊕

i

Z/ gcd(si, n)Z,

and arithmetic is efficient. This approach is seductive because every se-
quence of integers determines a character, and the sizes of the integers in
the sequence nicely indicate the local orders of the character. However,
giving analogues of many of the algorithms discussed in this chapter that
operate on characters represented this way is tricky. For example, the repre-
sentation depends very much on the order of ζ, so it is difficult to correctly
compute natural maps D(N, R) → D(N, S), for R ⊂ S rings.

4.8. Dirichlet Characters in SAGE

To create a Dirichlet character in SAGE, first create the group D(N, R) of
Dirichlet characters then construct elements of that group. First we make
D(11, Q):

sage: G = DirichletGroup(11, QQ); G

Group of Dirichlet characters of modulus 11 over

Rational Field

A Dirichlet character prints as a matrix that gives the values of the
character on canonical generators of (Z/NZ)∗ (as discussed below).

sage: list(G)

[[1], [-1]]

sage: eps = G.0 # 0th generator for Dirichlet group

sage: eps

[-1]

The character ε takes the value −1 on the unit generator.



4.8. Dirichlet Characters in SAGE 79

sage: G.unit_gens()

[2]

sage: eps(2)

-1

sage: eps(3)

1

It is 0 on any integer not coprime to 11:

sage: [eps(11*n) for n in range(10)]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

We can also create groups of Dirichlet characters taking values in other
rings or fields. For example, we create the cyclotomic field Q(ζ4).

sage: R = CyclotomicField(4)

sage: CyclotomicField(4)

Cyclotomic Field of order 4 and degree 2

Then we define G = D(15, Q(ζ4)).

sage: G = DirichletGroup(15, R)

sage: G

Group of Dirichlet characters of modulus 15 over

Cyclotomic Field of order 4 and degree 2

Next we list each of its elements.

sage: list(G)

[[1, 1], [-1, 1], [1, zeta4], [-1, zeta4], [1, -1],

[-1, -1], [1, -zeta4], [-1, -zeta4]]

Now we evaluate the second generator of G on various integers:
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sage: e = G.1

sage: e(4)

-1

sage: e(-1)

-1

sage: e(5)

0

Finally we list all the values of e.

sage: [e(n) for n in range(15)]

[0, 1, zeta4, 0, -1, 0, 0, zeta4, -zeta4,

0, 0, 1, 0, -zeta4, -1]

We can also compute with groups of Dirichlet characters with values in
a finite field.

sage: G = DirichletGroup(15, GF(5)); G

Group of Dirichlet characters of modulus 15

over Finite Field of size 5

We list all the elements of G, again represented by lists that give the
images of each unit generator, as an element of F5.

sage: list(G)

[[1, 1], [4, 1], [1, 2], [4, 2], [1, 4], [4, 4],

[1, 3], [4, 3]]

We evaluate the second generator of G on several integers.

sage: e = G.1

sage: e(-1)

4

sage: e(2)

2

sage: e(5)

0

sage: print [e(n) for n in range(15)]

[0, 1, 2, 0, 4, 0, 0, 2, 3, 0, 0, 1, 0, 3, 4]
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4.9. Exercises

4.1 Let f : Z → C be the map given by

f(a) =





0 if a = 0,

−1 if a < 0,

1 if a > 0.

Prove that f is not a Dirichlet character of any modulus N .

4.2 This exercise is about the structure of the units of Z/pnZ.
(a) If p is odd and n is a positive integer, prove that (Z/pnZ)∗ is

cyclic.
(b) For n ≥ 3, prove that (Z/2nZ)∗ is a direct sum of the cyclic

subgroups 〈−1〉 and 〈5〉, of orders 2 and 2n−2, respectively.

4.3 Prove that Algorithm 4.4 works, i.e., that if g ∈ (Z/prZ)∗ and

gn/pi 6= 1 for all pi | n = ϕ(pr), then g is a generator of (Z/prZ)∗.

4.4 (a) Let p be an odd prime and n ≥ 2 an integer, and prove that
(
(1 + pn−1Z/pnZ), ×

) ∼= (Z/pZ, +).

(b) Use the first part to show that solving the discrete log problem
in (Z/pnZ)∗ is “not much harder” than solving the discrete log
problem in (Z/pZ)∗.

4.5 Suppose ε is a nontrivial Dirichlet character of modulus 2n of or-
der r over the complex numbers C. Prove that the conductor of ε
is

c =

{
2ord2(r)+1 if ε(5) = 1,

2ord2(r)+2 if ε(5) 6= 1.

4.6 (a) Find an irreducible quadratic polynomial f over F5.
(b) Then F25 = F5[x]/(f). Find an element with multiplicative

order 4 in F25.
(c) Make a list of all Dirichlet characters in D(25, F25, ζ).
(d) Divide these characters into orbits for the action of Gal(F5/F5).





Chapter 5

Eisenstein Series and
Bernoulli Numbers

We introduce generalized Bernoulli numbers attached to Dirichlet characters
and give an algorithm to enumerate the Eisenstein series in Mk(N, ε).

5.1. The Eisenstein Subspace

Let Mk(Γ1(N)) be the space of modular forms of weight k for Γ1(N), and
let T be the Hecke algebra acting on Mk(Γ1(N)), which is the subring of
End(Mk(Γ1(N))) generated by all Hecke operators. Then there is a T-
module decomposition

Mk(Γ1(N)) = Ek(Γ1(N)) ⊕ Sk(Γ1(N)),

where Sk(Γ1(N)) is the subspace of modular forms that vanish at all cusps
and Ek(Γ1(N)) is the Eisenstein subspace, which is uniquely determined by
this decomposition. The above decomposition induces a decomposition of
Mk(Γ0(N)) and of Mk(N, ε), for any Dirichlet character ε of modulus N .

5.2. Generalized Bernoulli Numbers

Suppose ε is a Dirichlet character of modulus N over C. Leopoldt [Leo58]
defined generalized Bernoulli numbers attached to ε.

Definition 5.1 (Generalized Bernoulli Number). We define the generalized
Bernoulli numbers Bk,ε attached to ε by the following identity of infinite

83
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series:

N∑

a=1

ε(a) · x · eax

eNx − 1
=

∞∑

k=0

Bk,ε · xk

k!
.

If ε is the trivial character of modulus 1 and Bk are as in Section 2.1,
then Bk,ε = Bk, except when k = 1, in which case B1,ε = −B1 = 1/2 (see
Exercise 5.2).

5.2.1. Algebraically Computing Generalized Bernoulli Numbers.
Let Q(ε) denote the field generated by the image of the character ε; thus
Q(ε) is the cyclotomic extension Q(ζn), where n is the order of ε.

Algorithm 5.2 (Generalized Bernoulli Numbers). Given an integer k ≥ 0
and any Dirichlet character ε with modulus N , this algorithm computes the
generalized Bernoulli numbers Bj,ε, for j ≤ k.

(1) Compute g = x/(eNx−1) ∈ Q[[x]] to precision O(xk+1) by comput-
ing eNx − 1 =

∑
n≥1 Nnxn/n! to precision O(xk+2) and computing

the inverse 1/(eNx − 1), then multiplying by x.

(2) For each a = 1, . . . , N , compute fa = g · eax ∈ Q[[x]], to preci-
sion O(xk+1). This requires computing eax =

∑
n≥0 anxn/n! to

precision O(xk+1). (Omit computation of eNx if N > 1 since then
ε(N) = 0.)

(3) Then for j ≤ k, we have

Bj,ε = j! ·
N∑

a=1

ε(a) · cj(fa),

where cj(fa) is the coefficient of xj in fa.

Note that in steps (1) and (2) we compute the power series doing arith-
metic only in Q[[x]], not in Q(ε)[[x]], which could be much less efficient
if ε has large order. In step (1) if k is huge, we could compute the inverse
1/(eNx − 1) using asymptotically fast arithmetic and Newton iteration.

Example 5.3. The nontrivial character ε with modulus 4 has order 2 and
takes values in Q. The Bernoulli numbers Bk,ε for k even are all 0 and for
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k odd they are

B1,ε = −1/2,

B3,ε = 3/2,

B5,ε = −25/2,

B7,ε = 427/2,

B9,ε = −12465/2,

B11,ε = 555731/2,

B13,ε = −35135945/2,

B15,ε = 2990414715/2,

B17,ε = −329655706465/2,

B19,ε = 45692713833379/2.

Example 5.4. The generalized Bernoulli numbers need not be in Q. Sup-
pose ε is the mod 5 character such that ε(2) = i =

√
−1. Then Bk,ε = 0 for

k even and

B1,ε =
−i − 3

5
,

B3,ε =
6i + 12

5
,

B5,ε =
−86i − 148

5
,

B7,ε =
2366i + 3892

5
,

B9,ε =
−108846i − 176868

5
,

B11,ε =
7599526i + 12309572

5
,

B13,ε =
−751182406i − 1215768788

5
,

B15,ε =
99909993486i + 161668772052

5
,

B17,ε =
−17209733596766i − 27846408467908

5
.

Example 5.5. We use SAGE to compute some of the above generalized
Bernoulli numbers. First we define the character and verify that ε(2) = i
(note that in SAGE zeta4 is

√
−1).
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sage: G = DirichletGroup(5)

sage: e = G.0

sage: e(2)

zeta4

We compute the Bernoulli number B1,ε.

sage: e.bernoulli(1)

-1/5*zeta4 - 3/5

We compute B9,ε.

sage: e.bernoulli(9)

-108846/5*zeta4 - 176868/5

Proposition 5.6. If ε(−1) 6= (−1)k and k ≥ 2, then Bk,ε = 0.

Proof. See Exercise 5.3. ¤

5.2.2. Computing Generalized Bernoulli Numbers Analytically.

This section, which was written jointly with Kevin McGown, is about
a way to compute generalized Bernoulli numbers, which is similar to the
algorithm in Section 2.7.

Let χ be a primitive Dirichlet character modulo its conductor f . Note
from the definition of Bernoulli numbers that if σ ∈ Gal(Q/Q), then

(5.2.1) σ(Bn,χ) = Bn,σ(χ).

For any character χ, we define the Gauss sum τ(χ) as

τ(χ) =

f−1∑

r=1

χ(r) ζr ,

where ζ = exp(2πi/f) is the principal fth root of unity. The Dirichlet
L-function for χ for Re(s) > 1 is

L(s, χ) =
∞∑

n=1

χ(n)n−s .

In the right half plane {s ∈ C | Re(s) > 1} this function is analytic, and
because χ is multiplicative, we have the Euler product representation

L(s, χ) =
∏

p prime

(
1 − χ(p)p−s

)−1
.(5.2.2)

We note (but will not use) that through analytic continuation L(s, χ) can
be extended to a meromorphic function on the entire complex plane.
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If χ is a nonprincipal primitive Dirichlet character of conductor f such
that χ(−1) = (−1)n, then (see, e.g., [Wan82])

L(n, χ) = (−1)n−1 τ(χ)

2

(
2πi

f

)n Bn,χ

n!
.

Solving for the Bernoulli number yields

Bn,χ = (−1)n−1 2n!

τ(χ)

(
f

2πi

)n

L(n, χ) .

This allows us to give decimal approximations for Bn,χ. It remains to com-
pute Bn,χ exactly (i.e., as an algebraic integer). To simplify the above
expression, we define

Kn,χ = (−1)n−1 2n!

(
f

2i

)n

and write

(5.2.3) Bn,χ =
Kn,χ

πn τ(χ)
L(n, χ) .

Note that we can compute Kn,χ exactly in the field Q(i).

The following result identifies the denominator of Bn,χ.

Theorem 5.7. Let n and χ be as above, and define an integer d as follows:

d =





1 if f is divisible by two distinct primes,

2 if f = 4,

1 if f = 2µ, µ > 2,

np if f = p, p > 2,

(1 − χ(1 + p)) if f = pµ, p > 2, µ > 1.

Then dn−1 Bn,χ is integral.

Proof. See [Car59a] for the proof and [Car59b] for further details. ¤

To compute the algebraic integer dn−1Bn,χ, and we compute L(n, χ) to
very high precision using the Euler product (5.2.2) and the formula (5.2.3).
We carry out the same computation for each of the Gal(Q/Q) conjugates of
χ, which by (5.2.1) yields the conjugates of dn−1Bn,χ. We can then write
down the characteristic polynomial of dn−1Bn,χ to very high precision and
recognize the coefficients as rational integers. Finally, we determine which
of the roots of the characteristic polynomial is dn−1Bn,χ by approximating
them all numerically to high precision and seeing which is closest to our
numerical approximation to dn−1Bn,χ. The details are similar to what is
explained in Section 2.7.
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5.3. Explicit Basis for the Eisenstein Subspace

Suppose χ and ψ are primitive Dirichlet characters with conductors L and
R, respectively. Let

(5.3.1) Ek,χ,ψ(q) = c0+
∑

m≥1


∑

n|m
ψ(n) · χ(m/n) · nk−1


 qm ∈ Q(χ, ψ)[[q]],

where

c0 =





0 if L > 1,

−Bk,ψ

2k
if L = 1.

Note that when χ = ψ = 1 and k ≥ 4, then Ek,χ,ψ = Ek, where Ek is from
Chapter 1.

Miyake proves statements that imply the following in [Miy89, Ch. 7].

Theorem 5.8. Suppose t is a positive integer and χ, ψ are as above and
that k is a positive integer such that χ(−1)ψ(−1) = (−1)k. Except when
k = 2 and χ = ψ = 1, the power series Ek,χ,ψ(qt) defines an element of
Mk(RLt, χψ). If χ = ψ = 1, k = 2, t > 1, and E2(q) = Ek,χ,ψ(q), then
E2(q) − tE2(q

t) is a modular form in M2(Γ0(t)).

Theorem 5.9. The Eisenstein series in Mk(N, ε) coming from Theorem 5.8
with RLt | N and χψ = ε form a basis for the Eisenstein subspace Ek(N, ε).

Theorem 5.10. The Eisenstein series Ek,χ,ψ(q) ∈ Mk(RL) defined above
are eigenforms (i.e., eigenvectors for all Hecke operators Tn). Also E2(q) −
tE2(q

t), for t > 1, is an eigenform.

Since Ek,χ,ψ(q) is normalized so the coefficient of q is 1, the eigenvalue
of Tm is the coefficient

∑

n|m
ψ(n) · χ(m/n) · nk−1

of qm (see Proposition 9.10). Also for f = E2(q) − tE2(q
t) with t > 1

prime, the coefficient of q is 1, Tm(f) = σ1(m) · f for (m, t) = 1, and
Tt(f) = ((t + 1) − t)f = f .

Algorithm 5.11 (Enumerating Eisenstein Series). Given a weight k and a
Dirichlet character ε of modulus N , this algorithm computes a basis for the
Eisenstein subspace Ek(N, ε) of Mk(N, ε) to precision O(qr).

(1) [Weight 2 Trivial Character?] If k = 2 and ε = 1, output the
Eisenstein series E2(q) − tE2(q

t), for each divisor t | N with t 6= 1,
and then terminate.
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(2) [Empty Space?] If ε(−1) 6= (−1)k, output the empty list.

(3) [Compute Dirichlet Group] Let G = D(N, Q(ζn)) be the group of
Dirichlet characters with values in Q(ζn), where n is the exponent
of (Z/NZ)∗.

(4) [Compute Conductors] Compute the conductor of every element of
G using Algorithm 4.19.

(5) [List Characters χ] Form a list V of all Dirichlet characters χ ∈ G
such that cond(χ) · cond(χ/ε) divides N .

(6) [Compute Eisenstein Series] For each character χ in V , let ψ = χ/ε
and compute Ek,χ,ψ(qt) (mod qr) for each divisor t of N/(cond(χ) ·
cond(ψ)). Here we compute Ek,χ,ψ(qt) (mod qr) using (5.3.1) and
Algorithm 5.2.

Remark 5.12. Algorithm 5.11 is what is currently used in SAGE. It might
be better to first reduce to the prime power case by writing all characters
as a product of local characters and combine steps (4) and (5) into a single
step that involves orders. However, this might make things more obscure.

Example 5.13. The following is a basis of Eisenstein series for E2(Γ1(13)).

f1 =
1

2
+ q + 3q2 + 4q3 + · · · ,

f2 = − 7

13
ζ2
12 − 11

13
+ q +

(
2ζ2

12 + 1
)
q2 +

(
−3ζ2

12 + 1
)
q3 + · · · ,

f3 = q +
(
ζ2
12 + 2

)
q2 +

(
−ζ2

12 + 3
)
q3 + · · · ,

f4 = −ζ2
12 + q +

(
2ζ2

12 − 1
)
q2 +

(
3ζ2

12 − 2
)
q3 + · · · ,

f5 = q +
(
ζ2
12 + 1

)
q2 +

(
ζ2
12 + 2

)
q3 + · · · ,

f6 = −1 + q + −q2 + 4q3 + · · · ,

f7 = q + q2 + 4q3 + · · · ,

f8 = ζ2
12 − 1 + q +

(
−2ζ2

12 + 1
)
q2 +

(
−3ζ2

12 + 1
)
q3 + · · · ,

f9 = q +
(
−ζ2

12 + 2
)
q2 +

(
−ζ2

12 + 3
)
q3 + · · · ,

f10 =
7

13
ζ2
12 − 18

13
+ q +

(
−2ζ2

12 + 3
)
q2 +

(
3ζ2

12 − 2
)
q3 + · · · ,

f11 = q +
(
−ζ2

12 + 3
)
q2 +

(
ζ2
12 + 2

)
q3 + · · · .

We computed it as follows:

sage: E = EisensteinForms(Gamma1(13),2)

sage: E.eisenstein_series()
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We can also compute the parameters χ, ψ, t that define each series:

sage: e = E.eisenstein_series()

sage: for e in E.eisenstein_series():

... print e.parameters()

...

([1], [1], 13)

([1], [zeta6], 1)

([zeta6], [1], 1)

([1], [zeta6 - 1], 1)

([zeta6 - 1], [1], 1)

([1], [-1], 1)

([-1], [1], 1)

([1], [-zeta6], 1)

([-zeta6], [1], 1)

([1], [-zeta6 + 1], 1)

([-zeta6 + 1], [1], 1)

5.4. Exercises

5.1 Suppose A and B are diagonalizable linear transformations of a
finite-dimensional vector space V over an algebraically closed field
K and that AB = BA. Prove there is a basis for V so that the ma-
trices of A and B with respect to that basis are both simultaneously
diagonal.

5.2 If ε is the trivial character of modulus 1 and Bk are as in Section 2.1,
then Bk,ε = Bk, except when k = 1, in which case B1,ε = −B1 =
1/2.

5.3 Prove that for k ≥ 2 if ε(−1) 6= (−1)k, then Bk,ε = 0.

5.4 Show that the dimension of the Eisenstein subspace E3(Γ1(13)) is
12 by finding a basis of series Ek,χ,ψ. You do not have to write
down the q-expansions of the series, but you do have to figure out
which χ, ψ to use.



Chapter 6

Dimension Formulas

When computing with spaces of modular forms, it is helpful to have easy-to-
compute formulas for dimensions of these spaces. Such formulas provide a
check on the output of the algorithms from Chapter 8 that compute explicit
bases for spaces of modular forms. We can also use dimension formulas
to improve the efficiency of some of the algorithms in Chapter 8, since we
can use them to determine the ranks of certain matrices without having to
explicitly compute those matrices. Dimension formulas can also be used in
generating bases of q-expansions; if we know the dimension of Mk(N, ε) and
if we have a process for computing q-expansions of elements of Mk(N, ε),
e.g., multiplying together q-expansions of certain forms of smaller weight,
then we can tell when we are done generating Mk(N, ε).

This chapter contains formulas for dimensions of spaces of modular
forms, along with some remarks about how to evaluate these formulas. In
some cases we give dimension formulas for spaces that we will define in later
chapters. We also give many examples, some of which were computed using
the modular symbols algorithms from Chapter 8.

Many of the dimension formulas and algorithms we give below grew out
of Shimura’s book [Shi94] and a program that Bruce Kaskel wrote (around
1996) in PARI, which Kevin Buzzard extended. That program codified
dimension formulas that Buzzard and Kaskel found or extracted from the
literature (mainly [Shi94, §2.6]). The algorithms for dimensions of spaces
with nontrivial character are from [CO77], with some refinements suggested
by Kevin Buzzard.

For the rest of this chapter, N denotes a positive integer and k ≥ 2 is an
integer. We will give no simple formulas for dimensions of spaces of weight 1
modular forms; in fact, it might not be possible to give such formulas since

91
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the methods used to derive the formulas below do not apply in the case
k = 1. If k = 0, the only modular forms are the constants, and for k < 0
the dimension of Mk(N, ε) is 0.

For a nonzero integer N and a prime p, let vp(N) be the largest integer e
such that pe | N . In the formulas in this chapter, p always denotes a prime
number. Let Mk(N, ε) be the space of modular forms of level N weight k and
character ε, and let Sk(N, ε) and Ek(N, ε) be the cuspidal and Eisenstein
subspaces, respectively.

The dimension formulas below for Sk(Γ0(N)), Sk(Γ1(N)), Ek(Γ0(N))
and Ek(Γ1(N)) can be found in [DS05, Ch. 3], [Shi94, §2.6]1 and [Miy89,
§2.5]. They are derived using the Riemann-Roch Theorem applied to the
covering X0(N) → X0(1) or X1(N) → X1(1) and appropriately chosen
divisors. It would be natural to give a sample argument along these lines
at this point, but we will not since it easy to find such arguments in other
books and survey papers (see, e.g., [DI95]). So you will not learn much
about how to derive dimension formulas from this chapter. What you will
learn is precisely what the dimension formulas are, which is something that
is often hard to extract from obscure references.

In addition to reading this chapter, the reader may wish to consult
[Mar05] for proofs of similar dimension formulas, asymptotic results, and
a nonrecursive formula for dimensions of certain new subspaces.

6.1. Modular Forms for Γ0(N)

For any prime p and any positive integer N , let vp(N) be the power of p
that divides N . Also, let

µ0(N) =
∏

p|N

(
pvp(N) + pvp(N)−1

)
,

µ0,2(N) =

{
0 if 4 | N ,
∏

p|N
(
1 +

(
−4
p

))
otherwise,

µ0,3(N) =

{
0 if 2 | N or 9 | N ,
∏

p|N
(
1 +

(
−3
p

))
otherwise,

c0(N) =
∑

d|N
ϕ(gcd(d, N/d)),

g0(N) = 1 +
µ0(N)

12
− µ0,2(N)

4
− µ0,3(N)

3
− c0(N)

2
.

1The formulas in [Shi94, §2.6] contain some minor mistakes.
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Note that µ0(N) is the index of Γ0(N) in SL2(Z) (see Exercise 6.1).

Proposition 6.1. We have dimS2(Γ0(N)) = g0(N), and for k ≥ 4 even,

dimSk(Γ0(N)) = (k − 1) · (g0(N) − 1) +

(
k

2
− 1

)
· c0(N)

+ µ0,2(N) ·
⌊

k

4

⌋
+ µ0,3(N) ·

⌊
k

3

⌋
.

The dimension of the Eisenstein subspace is

dimEk(Γ0(N)) =

{
c0(N) if k 6= 2,

c0(N) − 1 if k = 2.

The following is a table of dimSk(Γ0(N)) for some values of N and k:

N S2(Γ0(N)) S4(Γ0(N)) S6(Γ0(N)) S24(Γ0(N))

1 0 0 0 2
10 0 3 5 33
11 1 2 4 22
100 7 36 66 336
389 32 97 161 747
1000 131 430 730 3430
2007 221 806 1346 6206
100000 14801 44800 74800 344800

Example 6.2. Use the commands dimension cusp forms, dimension eis,
and dimension modular forms to compute the dimensions of the three
spaces Sk(Γ0(N)), Ek(Γ0(N)) and Mk(Γ0(N)), respectively. For example,

sage: dimension_cusp_forms(Gamma0(2007),2)

221

sage: dimension_eis(Gamma0(2007),2)

7

sage: dimension_modular_forms(Gamma0(2007),2)

228

Remark 6.3. Csirik, Wetherell, and Zieve prove in [CWZ01] that a ran-
dom positive integer has probability 0 of being a value of

g0(N) = dimS2(Γ0(N)),

and they give bounds on the size of the set of values of g0(N) below some
given x. For example, they show that 150, 180, 210, 286, 304, 312, . . . are the
first few integers that are not of the form g0(N) for any N . See Figure 6.1.1
for a plot of the very erratic function g0(N). In contrast, the function
k 7→ dim S2k(Γ0(12)) is very well behaved (see Figure 6.1.2).
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Figure 6.1.1. Dimension of S2(Γ0(N)) as a function of N .

Figure 6.1.2. Dimension of S2k(Γ0(12)) as a function of k.
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6.1.1. New and Old Subspaces. In this section we assume the reader is
either familiar with newforms or has read Section 9.2.

For any integer R, let

µ(R) =





0 if p3 | R for some p,∏

p||R
−2 otherwise,

where the product is over primes that exactly divide R. Note that µ is not
the Moebius function, but it has a similar flavor.

Proposition 6.4. The dimension of the new subspace is

dim Sk(Γ0(N))new =
∑

M |N
µ(N/M) · dimSk(Γ0(M)),

where the sum is over the positive divisors M of N . As a consequence of
Theorem 9.4, we also have

dimSk(Γ0(N)) =
∑

M |N
σ0(N/M) dim Sk(Γ0(M))new,

where σ0(N/M) is the number of divisors of N/M .

Example 6.5. We compute the dimension of the new subspace of Sk(Γ0(N))
using the SAGE command dimension new cusp forms as follows:

sage: dimension_new_cusp_forms(Gamma0(11),12)

8

sage: dimension_cusp_forms(Gamma0(11),12)

10

sage: dimension_new_cusp_forms(Gamma0(2007),12)

1017

sage: dimension_cusp_forms(Gamma0(2007),12)

2460

6.2. Modular Forms for Γ1(N)

This section follows Section 6.1 closely, but with suitable modifications with
Γ0(N) replaced by Γ1(N).
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Define functions of a positive integer N by the following formulas:

µ1(N) =





µ0(N) if N = 1, 2,
φ(N) · µ0(N)

2
otherwise,

µ1,2(N) =

{
0 if N ≥ 4,

µ0,2(N) otherwise,

µ1,3(N) =

{
0 if N ≥ 4,

µ0,3(N) otherwise,

c1(N) =





c0(N) if N = 1, 2,

3 if N = 4,
∑

d|N

φ(d)φ(N/d)

2
otherwise,

g1(N) = 1 +
µ1(N)

12
− µ1,2(N)

4
− µ1,3(N)

3
− c1(N)

2
.

Note that g1(N) is the genus of the modular curve X1(N) (associated to
Γ1(N)) and c1(N) is the number of cusps of X1(N).

Proposition 6.6. We have dim S2(Γ1(N)) = g1(N). If N ≤ 2, then
Γ0(N) = Γ1(N) so

dimSk(Γ1(N)) = dimSk(Γ0(N)),

where dim Sk(Γ0(N)) is given by the formula of Proposition 6.1. If k ≥ 3,
let

a(N, k) = (k − 1)(g1(N) − 1) +

(
k

2
− 1

)
· c1(N).

Then for N ≥ 3,

dimSk(Γ1(N)) =





a + 1/2 if N = 4 and 2 ∤ k,

a + ⌊k/3⌋ if N = 3,

a otherwise.

The dimension of the Eisenstein subspace is as follows:

dimEk(Γ1(N)) =

{
c1(N) if k 6= 2,

c1(N) − 1 if k = 2.

The dimension of the new subspace of Mk(Γ1(N)) is

dim Sk(Γ1(N))new =
∑

M |N
µ(N/M) · dimSk(Γ1(M)),

where µ is as in the statement of Proposition 6.4.
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Remark 6.7. Since Mk = Sk ⊕ Ek, the formulas above for dimSk and
dimEk also yield a formula for the dimension of Mk.

Figure 6.2.1. Dimension of S2(Γ1(N)) as a function of N .

The following table contains the dimension of Sk(Γ1(N)) for some sample
values of N and k:

N S2(Γ1(N)) S3(Γ1(N)) S4(Γ1(N)) S24(Γ1(N))

1 0 0 0 2
10 0 2 5 65
11 1 5 10 110
100 231 530 830 6830
389 6112 12416 18721 144821
1000 28921 58920 88920 688920
2007 147409 296592 445776 3429456
100000 299792001 599792000 899792000 6899792000

Example 6.8. We compute dimensions of spaces of modular forms for
Γ1(N):
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sage: dimension_cusp_forms(Gamma1(2007),2)

147409

sage: dimension_eis(Gamma1(2007),2)

3551

sage: dimension_modular_forms(Gamma1(2007),2)

150960

6.3. Modular Forms with Character

Fix a Dirichlet character ε of modulus N , and let c be the conductor of ε
(we do not assume that ε is primitive). Assume that ε 6= 1, since otherwise
Mk(N, ε) = Mk(Γ0(N)) and the formulas of Section 6.1 apply. Also, assume
that ε(−1) = (−1)k, since otherwise dim Mk(Γ0(N)) = 0. In this section we
discuss formulas for computing each of Mk(N, ε), Sk(N, ε) and Ek(N, ε).

In [CO77], Cohen and Oesterlé assert (without published proof; see Re-
mark 6.11 below) that for any k ∈ Z and N , ε as above,

dimSk(N, ε) − dim M2−k(N, ε)

=
k − 1

12
· µ0(N) − 1

2
·
∏

p|N
λ(p, N, vp(c))

+ γ4(k) ·
∑

x∈A4(N)

ε(x) + γ3(k) ·
∑

x∈A3(N)

ε(x)

where µ0(N) is as in Section 6.1, A4(N) = {x ∈ Z/NZ : x2 + 1 = 0} and
A3(N) = {x ∈ Z/NZ : x2 + x + 1 = 0}, and γ3, γ4 are

γ4(k) =





−1/4 if k ≡ 2 (mod 4),

1/4 if k ≡ 0 (mod 4),

0 if k is odd.

γ3(k) =





−1/3 if k ≡ 2 (mod 3),

1/3 if k ≡ 0 (mod 3),

0 if k ≡ 1 (mod 3).

It remains to define λ. Fix a prime divisor p | N and let r = vp(N). Then

λ(p, N, vp(c)) =





p
r
2 + p

r
2
−1 if 2 · vp(c) ≤ r and 2 | r,

2 · p
r−1
2 if 2 · vp(c) ≤ r and 2 ∤ r,

2 · pr−vp(c) if 2 · vp(c) > r.
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This flexible formula can be used to compute the dimension of Mk(N, ε),
Sk(N, ε), and Ek(N, ε) for any N , ε, k 6= 1, by using that

dimSk(N, ε) = 0 if k ≤ 0,

dimMk(N, ε) = 0 if k < 0,

dimM0(N, ε) = 1 if k = 0.

One thing that is not straightforward when implementing an algorithm
to compute the above dimension formulas is how to efficiently compute the
sets A4(N) and A6(N). Kevin Buzzard suggested the following two algo-
rithms. Note that if k is odd, then γ4(k) = 0, so the sum over A4(N) is only
needed when k is even.

Algorithm 6.9 (Sum over A4(N)). Given a positive integer N and an even
Dirichlet character ε of modulus N , this algorithm computes

∑
x∈A4(N) ε(x).

(1) [Factor N ] Compute the prime factorization pe1
1 · · · pen

n of N .

(2) [Initialize] Set t = 1 and i = 0.

(3) [Loop Over Prime Divisors] Set i = i + 1. If i > n, return t.
Otherwise set p = pi and e = ei.
(a) If p ≡ 3 (mod 4), return 0.

(b) If p = 2 and e > 1, return 0.

(c) If p = 2 and e = 1, go to step (3).

(d) Compute a generator a ∈ (Z/pZ)∗ using Algorithm 4.4.

(e) Compute ω = a(p−1)/4.

(f) Use the Chinese Remainder Theorem to find x ∈ Z/NZ such
that x ≡ a (mod p) and x ≡ 1 (mod N/pe).

(g) Set x = xpr−1
.

(h) Set s = ε(x).

(i) If s = 1, set t = 2t and go to step (3).

(j) If s = −1, set t = −2t and go to step (3).

Proof. Note that ε(−x) = ε(x), since ε is even. By the Chinese Remainder
Theorem, the set A4(N) is empty if and only if there is no square root of
−1 modulo some prime power divisor of p. If A4(N) is empty, the algo-
rithm correctly detects this fact in steps (3a)–(3b). Thus assume A4(N) is
nonempty. For each prime power pei

i that exactly divides N , let xi ∈ Z/NZ
be such that x2

i = −1 and xi ≡ 1 (mod p
ej

j ) for i 6= j. This is the value of x

computed in steps (3d)–(3g) (as one sees using elementary number theory).

The next key observation is that

(6.3.1)
∏

i

(ε(xi) + ε(−xi)) =
∑

x∈A4(N)

ε(x),
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since by the Chinese Remainder Theorem the elements of A4(N) are in
bijection with the choices for a square root of −1 modulo each prime power
divisors of N . The observation (6.3.1) is a huge gain from an efficiency
point of view—if N had r prime factors, then A4(N) would have size 2r,
which could be prohibitive, where the product involves only r factors. To
finish the proof, just note that steps (3h)–(3j) compute the local factors
ε(xi) + ε(−xi) = 2ε(xi), where again we use that ε is even. Note that a
solution of x2 +1 ≡ 0 (mod p) lifts uniquely to a solution mod pn for any n,
because the kernel of the natural homomorphism (Z/pnZ)∗ → (Z/pZ)∗ is a
group of p-power order. ¤

The algorithm for computing the sum over A3(N) is similar.

For k ≥ 2, to compute dimSk(N, ε), use the formula directly and the fact
that dimM2−k(N, ε) = 0, unless ε = 1 and k = 2. To compute dimMk(N, ε)
for k ≥ 2, use the fact that the big formula at the beginning of this section
is valid for any integer k to replace k by 2− k and that dimSk(N, ε) = 0 for
k ≤ 0 to rewrite the formula as

dimMk(N, ε) = −(dim S2−k(N, ε) − dimMk(N, ε))

= −
(1 − k

12
· µ0(N) − 1

2
·
∏

p|N
λ(p, N, vp(c))

+ γ4(2 − k) ·
∑

x∈A4(N)

ε(x) + γ3(2 − k) ·
∑

x∈A3(N)

ε(x)
)
.

Note also that for k = 0, dimEk(N, ε) = 1 if and only if ε is trivial and it
equals 0 otherwise. We then also obtain

dimEk(N, ε) = dimMk(N, ε) − dim Sk(N, ε).

We can also compute dim Ek(N, ε) when k = 1 directly, since

dimS2−1(N, ε) = dimS1(N, ε).

The following table contains the dimension of Sk(N, ε) for some sample
values of N and k. In each case, ε is the product of characters εp of maximal
order corresponding to the prime power factors of N (i.e., the product of
the generators of the group D(N, C∗) of Dirichlet characters of modulus N).
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N dim S2(N, ε) dimS3(N, ε) dimS4(N, ε) dimS24(N, ε)

1 0 0 0 2
10 0 1 0 0
11 0 1 0 0
100 13 0 43 343
389 0 64 0 0
1000 148 0 448 3448
2007 222 0 670 5150

Example 6.10. We compute the last line of the above table. First we create
the character ε.

sage: G = DirichletGroup(2007)

sage: e = prod(G.gens(), G(1))

Next we compute the dimension of the four spaces.

sage: dimension_cusp_forms(e,2)

222

sage: dimension_cusp_forms(e,3)

0

sage: dimension_cusp_forms(e,4)

670

sage: dimension_cusp_forms(e,24)

5150

We can also compute dimensions of the corresponding spaces of Eisen-
stein series.

sage: dimension_eis(e,2)

4

sage: dimension_eis(e,3)

0

sage: dimension_eis(e,4)

4

sage: dimension_eis(e,24)

4

Remark 6.11. Cohen and Oesterlé also give dimension formulas for spaces
of half-integral weight modular forms, which we do not give in this chapter.
Note that [CO77] does not contain any proofs that their claimed formulas
are correct, but instead they say only that “Les formules qui les donnent sont
connues de beaucoup de gens et il existe plusieurs méthodes permettant de
les obtenir (théorème de Riemann-Roch, application des formules de trace
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données par Shimura).”2 Fortunately, in [Que06], Jordi Quer derives the
(integral weight) formulas of [CO77] along with formulas for dimensions of
spaces Sk(G) and Mk(G) for more general congruence subgroups.

Let f be the conductor of a Dirichlet character ε of modulus N . Then
the dimension of the new subspace of Mk(N, ε) is

dimSk(N, ε)new =
∑

M such that f |M |N
µ(N/M) · dimSk(M, ε′),

where µ is as in the statement of Proposition 6.4, and ε′ is the restriction
of ε mod M .

Example 6.12. We compute the dimension of S2(2007, ε)new for ε a qua-
dratic character of modulus 2007.

sage: G = DirichletGroup(2007, QQ)

sage: e = prod(G.gens(), G(1))

sage: dimension_new_cusp_forms(e,2)

76

6.4. Exercises

6.1 Let µ0 and µ1 be as in this chapter.
(a) Prove that µ0(N) = [SL2(Z) : Γ0(N)].
(b) Prove that for N ≥ 3, µ1(N) = [SL2(Z) : Γ1(N)]/2, so µ1(N)

is the index of Γ1(N) · {±1} in PSL2(Z) = SL2(Z)/{±1}.

6.2 Use Proposition 6.4 to find a formula for dimSk(SL2(Z)). Verify
that this formula is the same as the one in Corollary 2.16.

6.3 Suppose either that N = 1 or that N is prime and k = 2. Prove
that Mk(Γ0(N))new = Mk(Γ0(N)).

6.4 Fill in the details of the proof of Algorithm 6.9.

6.5 Implement a computer program to compute dimSk(Γ0(N)) as a
function of k and N .

2The formulas that we give here are well known and there exist many methods to prove them,

e.g., the Riemann-Roch theorem and applications of the trace formula of Shimura.



Chapter 7

Linear Algebra

This chapter is about several algorithms for matrix algebra over the ra-
tional numbers and cyclotomic fields. Algorithms for linear algebra over
exact fields are necessary in order to implement the modular symbols algo-
rithms that we will describe in Chapter 7. This chapter partly overlaps with
[Coh93, Sections 2.1–2.4].

Note: We view all matrices as defining linear transformations by acting on
row vectors from the right.

7.1. Echelon Forms of Matrices

Definition 7.1 (Reduced Row Echelon Form). A matrix is in (reduced row)
echelon form if each row in the matrix has more zeros at the beginning than
the row above it, the first nonzero entry of every row is 1, and the first
nonzero entry of any row is the only nonzero entry in its column.

Given a matrix A, there is another matrix B such that B is obtained
from A by left multiplication by an invertible matrix and B is in reduced row
echelon form. This matrix B is called the echelon form of A. It is unique.

A pivot column of A is a column of A such that the reduced row echelon
form of A contains a leading 1.

Example 7.2. The following matrix is not in reduced row echelon form:




14 2 7 228 −224
0 0 3 78 −70
0 0 0 −405 381


 .
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The reduced row echelon form of the above matrix is


1 1
7 0 0 −1174

945

0 0 1 0 152
135

0 0 0 1 −127
135


 .

Notice that the entries of the reduced row echelon form can be rationals
with large denominators even though the entries of the original matrix A
are integers. Another example is the simple looking matrix




−9 6 7 3 1 0 0 0
−10 3 8 2 0 1 0 0

3 −6 2 8 0 0 1 0
−8 −6 −8 6 0 0 0 1




whose echelon form is


1 0 0 0 42
1025 − 92

1025
1
25 − 9

205

0 1 0 0 716
3075 − 641

3075 − 2
75 − 7

615

0 0 1 0 − 83
1025

133
1025

1
25 − 23

410

0 0 0 1 184
1025 − 159

1025
2
25

9
410


 .

A basic fact is that two matrices A and B have the same reduced row
echelon form if and only if there is an invertible matrix E such that EA = B.
Also, many standard operations in linear algebra, e.g., computation of the
kernel of a linear map, intersection of subspaces, membership checking, etc.,
can be encoded as a question about computing the echelon form of a matrix.

The following standard algorithm computes the echelon form of a matrix.

Algorithm 7.3 (Gauss Elimination). Given an m×n matrix A over a field,
the algorithm outputs the reduced row echelon form of A. Write ai,j for the
i, j entry of A, where 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1.

(1) [Initialize] Set k = 0.

(2) [Clear Each Column] For each column c = 0, 1, . . . , n − 1, clear the
cth column as follows:
(a) [First Nonzero] Find the smallest r such that ar,c 6= 0, or if

there is no such r, go to the next column.

(b) [Rescale] Replace row r of A by 1
ar,c

times row r.

(c) [Swap] Swap row r with row k.

(d) [Clear] For each i = 0, . . . , m − 1 with i 6= k, if ai,c 6= 0, add
−ai,c times row k of A to row i to clear the leading entry of
the ith row.

(e) [Increment] Set k = k + 1.

This algorithm takes O(mn2) arithmetic operations in the base field,
where A is an m × n matrix. If the base field is Q, the entries can become
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huge and arithmetic operations are then very expensive. See Section 7.3 for
ways to mitigate this problem.

To conclude this section, we mention how to convert a few standard
problems into questions about reduced row echelon forms of matrices. Note
that one can also phrase some of these answers in terms of the echelon form,
which might be easier to compute, or an LUP decomposition (lower triangu-
lar times upper triangular times permutation matrix), which the numerical
analysts use.

(1) Kernel of A: We explain how to compute the kernel of A acting
on column vectors from the right (first transpose to obtain the
kernel of A acting on row vectors). Since passing to the reduced
row echelon form of A is the same as multiplying on the left by an
invertible matrix, the kernel of the reduce row echelon form E of A
is the same as the kernel of A. There is a basis vector of ker(E) that
corresponds to each nonpivot column of E. That vector has a 1 at
the nonpivot column, 0’s at all other nonpivot columns, and for
each pivot column, the negative of the entry of A at the nonpivot
column in the row with that pivot element.

(2) Intersection of Subspaces: Suppose W1 and W2 are subspace
of a finite-dimensional vector space V . Let A1 and A2 be matrices
whose columns form a basis for W1 and W2, respectively. Let A =
[A1|A2] be the augmented matrix formed from A1 and A2. Let
K be the kernel of the linear transformation defined by A. Then
K is isomorphic to the desired intersection. To write down the
intersection explicitly, suppose that dim(W1) ≤ dim(W2) and do
the following: For each b in a basis for K, write down the linear
combination of a basis for W1 obtained by taking the first dim(W1)
entries of the vector b. The fact that b is in Ker(A) implies that the
vector we just wrote down is also in W2. This is because a linear
relation ∑

aiw1,i +
∑

bjw2,j = 0,

i.e., an element of that kernel, is the same as
∑

aiw1,i =
∑

−bjw2,j .

For more details, see [Coh93, Alg. 2.3.9].

7.2. Rational Reconstruction

Rational reconstruction is a process that allows one to sometimes lift an
integer modulo m uniquely to a bounded rational number.
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Algorithm 7.4 (Rational Reconstruction). Given an integer a ≥ 0 and an
integer m > 1, this algorithm computes the numerator n and denominator
d of the unique rational number n/d, if it exists, with

(7.2.1) |n|, d ≤
√

m

2
and n ≡ ad (mod m),

or it reports that there is no such number.

(1) [Reduce mod m] Replace a with the least integer between 0 and
m − 1 that is congruent to a modulo m.

(2) [Trivial Cases] If a = 0 or a = 1, return a.

(3) [Initialize] Let b =
√

m/2, u = m, v = a, and set U = (1, 0, u) and
V = (0, 1, v). Use the notation Ui and Vi to refer to the ith entries
of U, V , for i = 0, 1, 2.

(4) [Iterate] Do the following as long as |V2| > b: Set q = ⌊U2/V2⌋, set
T = U − qV , and set U = V and V = T .

(5) [Numerator and Denominator] Set d = |V1| and n = V2.

(6) [Good?] If d ≤ b and gcd(n, d) = 1, return n/d; otherwise report
that there is no rational number as in (7.2.1).

Algorithm 7.4 for rational reconstruction is described (with proof) in
[Knu, pgs. 656–657] as the solution to Exercise 51 on page 379 in that
book. See, in particular, the paragraph right in the middle of page 657,
which describes the algorithm. Knuth attributes this rational reconstruction
algorithm to Wang, Kornerup, and Gregory from around 1983.

We now give an indication of why Algorithm 7.4 computes the rational
reconstruction of a (mod m), leaving the precise details and uniqueness to
[Knu, pgs. 656–657]. At each step in Algorithm 7.4, the 3-tuple V =
(v0, v1, v2) satisfies

(7.2.2) m · v0 + a · v1 = v2,

and similarly for U . When computing the usual extended gcd, at the end
v2 = gcd(a, m) and v0, v1 give a representation of the v2 as a Z-linear
combination of m and a. In Algorithm 7.4, we are instead interested in
finding a rational number n/d such that n ≡ a ·d (mod m). If we set n = v2

and d = v1 in (7.2.2) and rearrange, we obtain

n = a · d + m · v0.

Thus at every step of the algorithm we find a rational number n/d such that
n ≡ ad (mod m). The problem at intermediate steps is that, e.g., v0 could
be 0, or n or d could be too large.

Example 7.5. We compute an example using SAGE.
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sage: p = 389

sage: k = GF(p)

sage: a = k(7/13); a

210

sage: a.rational_reconstruction()

7/13

7.3. Echelon Forms over Q

A difficulty with computation of the echelon form of a matrix over the
rational numbers is that arithmetic with large rational numbers is time-
consuming; each addition potentially requires a gcd and numerous additions
and multiplications of integers. Moreover, the entries of A during intermedi-
ate steps of Algorithm 7.3 can be huge even though the entries of A and the
answer are small. For example, suppose A is an invertible square matrix.
Then the echelon form of A is the identity matrix, but during intermediate
steps the numbers involved could be quite large. One technique for mitigat-
ing this is to compute the echelon form using a multimodular method.

If A is a matrix with rational entries, let H(A) be the height of A, which
is the maximum of the absolute values of the numerators and denominators
of all entries of A. If x, y are rational numbers and p is a prime, we write
x ≡ y (mod p) to mean that the denominators of x and y are not divisible
by p but the numerator of the rational number x − y (in reduced form) is
divisible by p. For example, if x = 5/7 and y = 2/11, then x − y = 41/77,
so x ≡ y (mod 41).

Algorithm 7.6 (Multimodular Echelon Form). Given an m × n matrix A
with entries in Q, this algorithm computes the reduced row echelon form
of A.

(1) Rescale the input matrix A to have integer entries. This does not
change the echelon form and makes reduction modulo many primes
easier. We may thus assume A has integer entries.

(2) Let c be a guess for the height of the echelon form.

(3) List successive primes p1, p2, . . . such that the product of the pi is
greater than n · c · H(A) + 1, where n is the number of columns
of A.

(4) Compute the echelon forms Bi of the reduction A (mod pi) using,
e.g., Algorithm 7.3 or any other echelon algorithm.

(5) Discard any Bi whose pivot column list is not maximal among pivot
lists of all Bj found so far. (The pivot list associated to Bi is the
ordered list of integers k such that the kth column of Bj is a pivot
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column. We mean maximal with respect to the following ordering
on integer sequences: shorter integer sequences are smaller, and
if two sequences have the same length, then order in reverse lex-
icographic order. Thus [1, 2] is smaller than [1, 2, 3], and [1, 2, 7]
is smaller than [1, 2, 5]. Think of maximal as “optimal”, i.e., best
possible pivot columns.)

(6) Use the Chinese Remainder Theorem to find a matrix B with in-
teger entries such that B ≡ Bi (mod pi) for all pi.

(7) Use Algorithm 7.4 to try to find a matrix C whose coefficients are

rational numbers n/r such that |n|, r ≤
√

M/2, where M =
∏

pi,
and C ≡ Bi (mod pi) for each prime p. If rational reconstruction
fails, compute a few more echelon forms mod the next few primes
(using the above steps) and attempt rational reconstruction again.
Let E be the matrix over Q so obtained. (A trick here is to keep
track of denominators found so far to avoid doing very many ratio-
nal reconstructions.)

(8) Compute the denominator d of E, i.e., the smallest positive integer
such that dE has integer entries. If

(7.3.1) H(dE) · H(A) · n <
∏

pi,

then E is the reduced row echelon form of A. If not, repeat the
above steps with a few more primes.

Proof. We prove that if (7.3.1) is satisfied, then the matrix E computed
by the algorithm really is the reduced row echelon form R of A. First note
that E is in reduced row echelon form since the set of pivot columns of all
matrices Bi used to construct E are the same, so the pivot columns of E are
the same as those of any Bi and all other entries in the Bi pivot columns
are 0, so the other entries of E in the pivot columns are also 0.

Recall from the end of Section 7.1 that a matrix whose columns are
a basis for the kernel of A can be obtained from the reduced row echelon
form R. Let K be the matrix whose columns are the vectors in the kernel
algorithm applied to E, so EK = 0. Since the reduced row echelon form is
obtained by left multiplying by an invertible matrix, for each i, there is an
invertible matrix Vi mod pi such that A ≡ ViBi (mod pi) so

A · dK ≡ ViBi · dK ≡ Vi · dE · K ≡ 0 (mod pi).

Since dK and A are integer matrices, the Chinese remainder theorem implies
that

A · dK ≡ 0
(
mod

∏
pi

)
.

The integer entries a of A · dK all satisfy |a| ≤ H(A) · H(dK) · n, where
n is the number of columns of A. Since H(K) ≤ H(E), the bound (7.3.1)
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implies that A · dK = 0. Thus AK = 0, so Ker(E) ⊂ Ker(A). On the other
hand, the rank of E equals the rank of each Bi (since the pivot columns are
the same), so

rank(E) = rank(Bi) = rank(A (mod pi)) ≤ rank(A).

Thus dim(Ker(A)) ≤ dim(Ker(E)), and combining this with the bound
obtained above, we see that Ker(E) = Ker(A). This implies that E is the
reduced row echelon form of A, since two matrices have the same kernel if
and only if they have the same reduced row echelon form (the echelon form
is an invariant of the row space, and the kernel is the orthogonal complement
of the row space).

The reason for step (5) is that the matrices Bi need not be the reduction
of R modulo pi, and indeed this reduction might not even be defined, e.g.,
if pi divides the denominator of some element of R, then this reduction
makes no sense. For example, set p = pi and suppose A =

(
p 1
0 0

)
. Then

R =
(

1 1/p
0 0

)
, which has no reduction modulo p; also, the reduction of A

modulo Bi is Bi = ( 0 1
0 0 ) (mod p), which is already in reduced row echelon

form. However if we were to combine Bi with the echelon form of A modulo
another prime, the result could never be lifted using rational reconstruction.
Thus the reason we exclude all Bi with nonmaximal pivot column sequence
is so that a rational reconstruction will exist. There are only finitely many
primes that divide denominators of entries of R, so eventually all Bi will
have maximal pivot column sequences, i.e., they are the reduction of the
true reduced row echelon form R, so the algorithm terminates. ¤
Remark 7.7. Algorithm 7.6, with sparse matrices seems to work very well
in practice. A simple but helpful modification to Algorithm 7.3 in the sparse
case is to clear each column using a row with a minimal number of nonzero
entries, so as to reduce the amount of “fill in” (denseness) of the matrix.
There are much more sophisticated methods along these lines called “intel-
ligent Gauss elimination”. (Cryptographers are interested in linear algebra
mod p with huge sparse matrices, since they come up in attacks on the
discrete log problem and integer factorization.)

One can adapt Algorithm 7.6 to computation of echelon forms of ma-
trices A over cyclotomic fields Q(ζn). Assume A has denominator 1. Let p
be a prime that splits completely in Q(ζn). Compute the homomorphisms
fi : Zp[ζn] → Fp by finding the elements of order n in F∗

p. Then com-
pute the mod p matrix fi(A) for each i, and find its reduced row eche-
lon form. Taken together, the maps fi together induce an isomorphism
Ψ : Fp[X]/Φn(X) ∼= Fd

p, where Φn(X) is the nth cyclotomic polynomial and
d is its degree. It is easy to compute Ψ(f(x)) by evaluating f(x) at each
element of order n in Fp. To compute Ψ−1, simply use linear algebra over Fp
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to invert a matrix that represents Ψ. Use Ψ−1 to compute the reduced row
echelon form of A (mod p), where (p) is the nonprime ideal in Z[ζn] gener-
ated by p. Do this for several primes p, and use rational reconstruction on
each coefficient of each power of ζn, to recover the echelon form of A.

7.4. Echelon Forms via Matrix Multiplication

In this section we explain how to compute echelon forms using matrix multi-
plication. This is valuable because there are asymptotically fast, i.e., better
than O(n3) field operations, algorithms for matrix multiplication, and im-
plementations of linear algebra libraries often include highly optimized ma-
trix multiplication algorithms. We only sketch the basic ideas behind these
asymptotically fast algorithms (following [Ste]), since more detail would
take us too far from modular forms.

The naive algorithm for multiplying two m×m matrices requires O(m3)
arithmetic operations in the base ring. In [Str69], Strassen described a
clever algorithm that computes the product of two m × m matrices in
O(mlog2(7)) = O(m2.807...) arithmetic operations in the base ring. Because
of numerical stability issues, Strassen’s algorithm is rarely used in numerical
analysis. But for matrix arithmetic over exact base rings (e.g., the rational
numbers, finite fields, etc.) it is of extreme importance.

In [Str69], Strassen also sketched a new algorithm for computing the
inverse of a square matrix using matrix multiplication. Using this algorithm,
the number of operations to invert an m × m matrix is (roughly) the same
as the number needed to multiply two m × m matrices. Suppose the input
matrix is 2n × 2n and we write it in block form as

(
A B
C D

)
where A, B, C, D

are all 2n−1 × 2n−1 matrices. Assume that any intermediate matrices below
that we invert are invertible. Consider the augmented matrix

(
A B I 0
C D 0 I

)
.

Multiply the top row by A−1 to obtain
(

I A−1B A−1 0
C D 0 I

)
,

and write E = A−1B. Subtract C times the first row from the second row
to get (

I E A−1 0
0 D − CE −CA−1 I

)
.

Set F = D −CE and multiply the bottom row by F−1 on the left to obtain
(

I E A−1 0
0 I −F−1CA−1 F−1

)
.
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Set G = −F−1CA−1, and subtract E times the second from the first row to
arrive at

(
I 0 A−1 − EG −EF−1

0 I G F−1

)
.

The idea listed above can, with significant work, be extended to a general
algorithm (as is done in [Ste06]).

Next we very briefly sketch how to compute echelon forms of matrices
using matrix multiplication and inversion. Its complexity is comparable to
the complexity of matrix multiplication.

As motivation, recall the standard algorithm from undergraduate linear
algebra for inverting an invertible square matrix A: form the augmented
matrix [A|I], and then compute the echelon form of this matrix, which is
[I|A−1]. If T is the transformation matrix to echelon form, then T [A|I] =
[I|T ], so T = A−1. In particular, we could find the echelon form of [A|I] by
multiplying on the left by A−1. Likewise, for any matrix B with the same
number of rows as A, we could find the echelon form of [A|B] by multiplying
on the left by A−1. Next we extend this idea to give an algorithm to compute
echelon forms using only matrix multiplication (and echelon form modulo
one prime).

Algorithm 7.8 (Asymptotically Fast Echelon Form). Given a matrix A
over the rational numbers (or a number field), this algorithm computes the
echelon form of A.

(1) [Find Pivots] Choose a random prime p (coprime to the denomina-
tor of any entry of A) and compute the echelon form of A (mod p),
e.g., using Algorithm 7.3. Let c0, . . . , cn−1 be the pivot columns of
A (mod p). When computing the echelon form, save the positions
r0, . . . , rn−1 of the rows used to clear each column.

(2) [Extract Submatrix] Extract the n × n submatrix B of A whose
entries are Ari,cj for 0 ≤ i, j ≤ n − 1.

(3) [Compute Inverse] Compute the inverse B−1 of B. Note that B
must be invertible since its reduction modulo p is invertible.

(4) [Multiply] Let C be the matrix whose rows are the rows r0, . . . , rn−1

of A. Compute E = B−1C. If E is not in echelon form, go to
step (1).

(5) [Done?] Write down a matrix D whose columns are a basis for
ker(E) as explained on page 105. Let F be the matrix whose rows
are the rows of A other than rows r0, . . . , rn−1. Compute the prod-
uct FD. If FD = 0, output E, which is the echelon form of A. If
FD 6= 0, go to step (1) and run the whole algorithm again.
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Proof. We prove both that the algorithm terminates and that when it ter-
minates, the matrix E is the echelon form of A.

First we prove that the algorithm terminates. Let E be the echelon form
of A. By Exercise 7.3, for all but finitely many primes p (i.e., any prime
where A (mod p) has the same rank as A) the echelon form of A (mod p)
equals E (mod p). For any such prime p the pivot columns of E (mod p)
are the pivot columns of E, so the algorithm will terminate for that choice
of p.

We next prove that when the algorithm terminates, E is the echelon form
of A. By assumption, E is in echelon form and is obtained by multiplying
C on the left by an invertible matrix, so E must be the echelon form of C.
The rows of C are a subset of those of A, so the rows of E are a subset of
the rows of the echelon form of A. Thus ker(A) ⊂ ker(E). To show that E
equals the echelon form of A, we just need to verify that ker(E) ⊂ ker(A),
i.e., that AD = 0, where D is as in step (5). Since E is the echelon form
of C, we know that CD = 0. By step (5) we also know that FD = 0. Thus
AD = 0, since the rows of A are the union of the rows of F and C.

¤

Example 7.9. Let A be the 4 × 8 matrix

A =




−9 6 7 3 1 0 0 0
−10 3 8 2 0 1 0 0

3 −6 2 8 0 0 1 0
−8 −6 −8 6 0 0 0 1




from Example 7.2.

sage: M = MatrixSpace(QQ,4,8)

sage: A = M([[-9,6,7,3,1,0,0,0],[-10,3,8,2,0,1,0,0],

[3,-6,2,8,0,0,1,0],[-8,-6,-8,6,0,0,0,1]])

First choose the “random” prime p = 41, which does not divide any of
the entries of A, and compute the echelon form of the reduction of A modulo
41.

sage: A41 = MatrixSpace(GF(41),4,8)(A)

sage: E41 = A41.echelon_form()

The echelon form of A (mod 41) is



1 0 0 2 0 20 33 18
0 1 0 40 0 30 7 1
0 0 1 39 0 19 13 17
0 0 0 0 1 31 0 37


 .
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Thus we take c0 = 0, c1 = 1, c2 = 2, and c3 = 4. Also ri = i for i = 0, 1, 2, 3.
Next extract the submatrix B.

sage: B = A.matrix_from_columns([0,1,2,4])

The submatrix B is

B =




−9 6 7 1
−10 3 8 0

3 −6 2 0
−8 −6 −8 0


 .

The inverse of B is

B−1 =




0 − 5
92

1
46 − 9

184

0 − 1
138 − 3

23 − 11
276

0 11
184

7
92 − 17

368

1 −159
184

41
92

45
368


 .

Multiplying by A yields

E = B−1A =




1 0 0 −21
92 0 − 5

92
1
46 − 9

184

0 1 0 −179
138 0 − 1

138 − 3
23 − 11

276

0 0 1 83
184 0 11

184
7
92 − 17

368

0 0 0 1025
184 1 −159

184
41
92

45
368


 .

sage: E = B^(-1)*A

This is not the echelon form of A. Indeed, it is not even in echelon form,
since the last row is not normalized so the leftmost nonzero entry is 1. We
thus choose another random prime, say p = 43. The echelon form mod 43
has columns 0, 1, 2, 3 as pivot columns. We thus extract the matrix

B =




−9 6 7 3
−10 3 8 2

3 −6 2 8
−8 −6 −8 6


 .

sage: B = A.matrix_from_columns([0,1,2,3])

This matrix has inverse

B−1 =




42
1025 − 92

1025
1
25 − 9

205
716
3075 − 641

3075 − 2
75 − 7

615

− 83
1025

133
1025

1
25 − 23

410
184
1025 − 159

1025
2
25

9
410


 .
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Finally, the echelon form of A is E = B−1A. No further checking is needed
since the product so obtained is in echelon form, and the matrix F of the
last step of the algorithm has 0 rows.

Remark 7.10. Above we have given only the barest sketch of asymptot-
ically fast “block” algorithms for linear algebra. For optimized algorithms
that work in the general case, please see the source code of [Ste06].

7.5. Decomposing Spaces under the Action of Matrix

Efficiently solving the following problem is a crucial step in computing a basis
of eigenforms for a space of modular forms (see Sections 3.7 and 9.3.2).

Problem 7.11. Suppose T is an n × n matrix with entries in a field K
(typically a number field or finite field) and that the minimal polynomial
of T is square-free and has degree n. View T as acting on V = Kn. Find
a simple module decomposition W0 ⊕ · · · ⊕ Wm of V as a direct sum of
simple K[T ]-modules. Equivalently, find an invertible matrix A such that
A−1TA is a block direct sum of matrices T0, . . . , Tm such that the minimal
polynomial of each Ti is irreducible.

Remark 7.12. A generalization of Problem 7.11 to arbitrary matrices with
entries in Q is finding the rational Jordan form (or rational canonical form,
or Frobenius form) of T . This is like the usual Jordan form, but the re-
sulting matrix is over Q and the summands of the matrix corresponding
to eigenvalues are replaced by matrices whose minimal polynomials are the
minimal polynomials (over Q) of the eigenvalues. The rational Jordan form
was extensively studied by Giesbrecht in his Ph.D. thesis and many succes-
sive papers, where he analyzes the complexity of his algorithms and observes
that the limiting step is factoring polynomials over K. The reason is that
given a polynomial f ∈ K[x], one can easily write down a matrix T such
that one can read off the factorization of f from the rational Jordan form
of T (see also [Ste97]).

7.5.1. Characteristic Polynomials. The computation of characteristic
polynomials of matrices is crucial to modular forms computations. There are
many approaches to this problems: compute det(xI−A) symbolically (bad),
compute the traces of the powers of A (bad), or compute the Hessenberg
form modulo many primes and use CRT (bad; see for [Coh93, §2.2.4] the
definition of Hessenberg form and the algorithm). A more sophisticated
method is to compute the rational canonical form of A using Giesbrecht’s
algorithm1 (see [GS02]), which involves computing Krylov subspaces (see
Remark 7.13 below), and building up the whole space on which A acts. This

1Allan Steel also invented a similar algorithm.
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latter method is a generalization of Wiedemann’s algorithm for computing
minimal polynomials (see Section 7.5.3), but with more structure to handle
the case when the characteristic polynomial is not equal to the minimal
polynomial.

7.5.2. Polynomial Factorization. Factorization of polynomials in Q[X]
(or over number fields) is an important step in computing an explicit basis
of Hecke eigenforms for spaces of modular forms. The best algorithm is the
van Hoeij method [BHKS06], which uses the LLL lattice basis reduction
algorithm [LLL82] in a novel way to solve the optimization problems that
come up in trying to lift factorizations mod p to Z. It has been generalized
by Belebas, van Hoeij, Klüners, and Steel to number fields.

7.5.3. Wiedemann’s Minimal Polynomial Algorithm. In this section
we describe an algorithm due to Wiedemann for computing the minimal
polynomial of an n × n matrix A over a field.

Choose a random vector v and compute the iterates

(7.5.1) v0 = v, v1 = A(v), v2 = A2(v), . . . , v2n−1 = A2n−1(v).

If f = xm + cm−1x
m−1 + · · ·+ c1x+ c0 is the minimal polynomial of A, then

Am + cm−1A
m−1 + · · · + c0In = 0,

where In is the n × n identity matrix. For any k ≥ 0, by multiplying both
sides on the right by the vector Akv, we see that

Am+kv + cm−1A
m−1+kv + · · · + c0A

kv = 0;

hence

vm+k + cm−1vm−1+k + · · · + c0vk = 0, all k ≥ 0.

Wiedemann’s idea is to observe that any single component of the vectors
v0, . . . , v2n−1 satisfies the linear recurrence with coefficients 1, cm−1, . . . , c0.
The Berlekamp-Massey algorithm (see Algorithm 7.14 below) was intro-
duced in the 1960s in the context of coding theory to find the minimal
polynomial of a linear recurrence sequence {ar}. The minimal polynomial
of this linear recurrence is by definition the unique monic polynomial g, such
that if {ar} satisfies a linear recurrence aj+k + bj−1aj−1+k + · · · + b0ak = 0

(for all k ≥ 0), then g divides the polynomial xj +
∑j−1

i=0 bix
i. If we apply

Berlekamp-Massey to the top coordinates of the vi, we obtain a polynomial
g0, which divides f . We then apply it to the second to the top coordinates
and find a polynomial g1 that divides f , etc. Taking the least common mul-
tiple of the first few gi, we find a divisor of the minimal polynomial of f .
One can show that with “high probability” one quickly finds f , instead of
just a proper divisor of f .
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Remark 7.13. In the literature, techniques that involve iterating a vector
as in (7.5.1) are often called Krylov methods. The subspace generated by
the iterates of a vector under a matrix is called a Krylov subspace.

Algorithm 7.14 (Berlekamp-Massey). Suppose a0, . . . , a2n−1 are the first
2n terms of a sequence that satisfies a linear recurrence of degree at most n.
This algorithm computes the minimal polynomial f of the sequence.

(1) Let R0 = x2n, R1 =
∑2n−1

i=0 aix
i, V0 = 0, V1 = 1.

(2) While deg(R1) ≥ n, do the following:
(a) Compute Q and R such that R0 = QR1 + R.
(b) Let (V0, V1, R0, R1) = (V1, V0 − QV1, R1, R).

(3) Let d = max(deg(V1), 1 + deg(R1)) and set P = xdV1(1/x).

(4) Let c be the leading coefficient of P and output f = P/c.

The above description of Berlekamp-Massey is taken from [ADT04],
which contains some additional ideas for improvements.

Now suppose T is an n × n matrix as in Problem 7.11. We find the
minimal polynomial of T by computing the minimal polynomial of T (mod p)
using Wiedemann’s algorithm, for many primes p, and using the Chinese
Remainder Theorem. (One has to bound the number of primes that must
be considered; see, e.g., [Coh93].)

One can also compute the characteristic polynomial of T directly from
the Hessenberg form of T , which can be computed in O(n4) field operations,
as described in [Coh93]. This is simple but slow. Also, the T we consider
will often be sparse, and Wiedemann is particularly good when T is sparse.

Example 7.15. We compute the minimal polynomial of

A =




3 0 0
0 0 2

−1 1/2 −1




using Wiedemann’s algorithm. Let v = (1, 0, 0)t. Then

v = (1, 0, 0)t, Av = (3, 0, −1)t, A2v = (9, −2, −2)t,

A3v = (27, −4, −8)t, A4v = (81, −16, −21)t, A5v = (243, −42, −68)t.

The linear recurrence sequence coming from the first entries is

1, 3, 9, 27, 81, 243.

This sequence satisfies the linear recurrence

ak+1 − 3ak = 0, all k > 0,

so its minimal polynomial is x − 3. This implies that x − 3 divides the
minimal polynomial of the matrix A. Next we use the sequence of second
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coordinates of the iterates of v, which is

0, 0, −2, −4, −16, −42.

The recurrence that this sequence satisfies is slightly less obvious, so we
apply the Berlekamp-Massey algorithm to find it, with n = 3.

(1) We have R0 = x6, R1 = −42x5 − 16x4 − 4x3 − 2x2, V0 = 0, V1 = 1.

(2) (a) Dividing R0 by R1, we find

R0 = R1

(
− 1

42
x +

4

441

)
+

(
22

441
x4 − 5

441
x3 +

8

441
x2

)
.

(b) The new V0, V1, R0, R1 are

V0 = 1,

V1 =
1

42
x − 4

441
,

R0 = −42x5 − 16x4 − 4x3 − 2x2,

R1 =
22

441
x4 − 5

441
x3 +

8

441
x2.

Since deg(R1) ≥ n = 3, we do the above three steps again.

(3) We repeat the above three steps.
(a) Dividing R0 by R1, we find

R0 = R1

(
−9261

11
x − 123921

242

)
+

(
1323

242
x3 +

882

121
x2

)
.

(b) The new V0, V1, R0, R1 are:

V0 =
1

42
x − 4

441
,

V1 =
441

22
x2 +

2205

484
x +

441

121
,

R0 =
22

441
x4 − 5

441
x3 +

8

441
x2,

R1 =
1323

242
x3 +

882

121
x2.
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(4) We have to repeat the steps yet again:

V0 =
441

22
x2 +

2205

484
x +

441

121
,

V1 = − 242

1323
x3 +

968

3969
x2 +

484

3969
x − 242

3969
,

R0 =
1323

242
x3 +

882

121
x2,

R1 =
484

3969
x2.

(5) We have d = 3, so P = − 242
3969x3 + 484

3969x2 + 968
3969x − 242

1323 .

(6) Multiply through by −3969/242 and output

x3 − 2x2 − 4x + 3 = (x − 3)(x2 + x − 1).

The minimal polynomial of T2 is (x − 3)(x2 + x − 1), since the minimal
polynomial has degree at most 3 and is divisible by (x − 3)(x2 + x − 1).

7.5.4. p-adic Nullspace. We will use the following algorithm of Dixon
[Dix82] to compute p-adic approximations to solutions of linear equations
over Q. Rational reconstruction modulo pn then allows us to recover the
corresponding solutions over Q.

Algorithm 7.16 (p-adic Nullspace). Given a matrix A with integer entries
and nonzero kernel, this algorithm computes a nonzero element of ker(A)
using successive p-adic approximations.

(1) [Prime] Choose a random prime p.

(2) [Echelon] Compute the echelon form of A modulo p.

(3) [Done?] If A has full rank modulo p, it has full rank, so we terminate
the algorithm.

(4) [Setup] Let b0 = 0.

(5) [Iterate] For each m = 0, 1, 2, . . . , k, use the echelon form of A
modulo p to find a vector ym with integer entries such that Aym ≡
bm (mod p), and then set

bm+1 =
bm − Aym

p
.

(If m = 0, choose ym 6= 0.)

(6) [p-adic Solution] Let x = y0 + y1p + y2p
2 + y3p

3 + · · · + ykp
k.

(7) [Lift] Use rational reconstruction (Algorithm 7.4) to find a vector z
with rational entries such that z ≡ x (mod pk+1), if such a vector
exists. If the vector does not exist, increase k or use a different p.
Otherwise, output z.
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Proof. We verify the case k = 2 only. We have Ay0 = 0 (mod p) and

Ay1 = −Ay0

p (mod p). Thus

Ay0 + pAy1 ≡ Ay0 + (−Ay0) (mod p2).

¤

7.5.5. Decomposition Using Kernels. We now know enough to give an
algorithm to solve Problem 7.11.

Algorithm 7.17 (Decomposition Using Kernels). Given an n×n matrix T
over a field K as in Problem 7.11, this algorithm computes the decomposition
of V as a direct sum of simple K[T ] modules.

(1) [Minimal Polynomial] Compute the minimal polynomial f of T ,
e.g., using the multimodular Wiedemann algorithm.

(2) [Factorization] Factor f using the algorithm in Section 7.5.2.

(3) [Compute Kernels] For each irreducible factor gi of f , compute the
following.
(a) Compute the matrix Ai = gi(T ).
(b) Compute Wi = ker(Ai), e.g., using Algorithm 7.16.

(4) [Output Answer] Then V =
⊕

Wi.

Remark 7.18. As mentioned in Remark 7.12, if one can compute such
decompositions V =

⊕
Wi, then one can easily factor polynomials f ; hence

the difficulty of polynomial factorization is a lower bound on the complexity
of writing V as a direct sum of simples.

7.6. Exercises

7.1 Given a subspace W of kn, where k is a field and n ≥ 0 is an integer,
give an algorithm to find a matrix A such that W = Ker(A).

7.2 If rref(A) denotes the row reduced echelon form of A and p is a
prime not dividing any denominator of any entry of A or of rref(A),
is rref(A (mod p)) = rref(A) (mod p)?

7.3 Let A be a matrix with entries in Q. Prove that for all but finitely
many primes p we have rref(A (mod p)) = rref(A) (mod p).

7.4 Let

A =




1 2 3
4 5 6
7 8 9


 .

(a) Compute the echelon form of A using each of Algorithm 7.3,
Algorithm 7.6, and Algorithm 7.8.

(b) Compute the kernel of A.
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(c) Find the characteristic polynomial of A using the algorithm of
Section 7.5.3.

7.5 The notion of echelon form extends to matrices whose entries come
from certain rings other than fields, e.g., Euclidean domains. In the
case of matrices over Z we define a matrix to be in echelon form
(or Hermite normal form) if it satisfies

• aij = 0, for i > j,
• aii ≥ 0,
• aij < aii for all j < i (unless aii = 0, in which case all aij = 0).

There are algorithms for computing with finitely generated modules
over Z that are analogous to the ones in this chapter for vector
spaces, which depend on computation of Hermite forms.

(a) Show that the Hermite form of




1 2 3
4 5 6
7 8 9


 is




1 2 3
0 3 6
0 0 0


.

(b) Describe an algorithm for transforming an n×n matrix A with
integer entries into Hermite form using row operations and the
Euclidean algorithm.



Chapter 8

General Modular
Symbols

In this chapter we explain how to generalize the notion of modular symbols
given in Chapter 3 to higher weight and more general level. We define Hecke
operators on them and their relation to modular forms via the integration
pairing. We omit many difficult proofs that modular symbols have certain
properties and instead focus on how to compute with modular symbols. For
more details see the references given in this section (especially [Mer94])
and [Wie05].

Modular symbols are a formalism that make it elementary to compute
with homology or cohomology related to certain Kuga-Sato varieties (these
are E ×X · · ·×X E , where X is a modular curve and E is the universal elliptic
curve over it). It is not necessary to know anything about these Kuga-Sato
varieties in order to compute with modular symbols.

This chapter is about spaces of modular symbols and how to compute
with them. It is by far the most important chapter in this book. The
algorithms that build on the theory in this chapter are central to all the
computations we will do later in the book.

This chapter closely follows Löıc Merel’s paper [Mer94]. First we define
modular symbols of weight k ≥ 2. Then we define the corresponding Manin
symbols and state a theorem of Merel-Shokurov, which gives all relations
between Manin symbols. (The proof of the Merel-Shokurov theorem is be-
yond the scope of this book but is presented nicely in [Wie05].) Next we
describe how the Hecke operators act on both modular and Manin symbols

121
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and how to compute trace and inclusion maps between spaces of modular
symbols of different levels.

Not only are modular symbols useful for computation, but they have
been used to prove theoretical results about modular forms. For example,
certain technical calculations with modular symbols are used in Löıc Merel’s
proof of the uniform boundedness conjecture for torsion points on elliptic
curves over number fields (modular symbols are used to understand linear
independence of Hecke operators). Another example is [Gri05], which dis-
tills hypotheses about Kato’s Euler system in K2 of modular curves to a
simple formula involving modular symbols (when the hypotheses are satis-
fied, one obtains a lower bound on the Shafarevich-Tate group of an elliptic
curve).

8.1. Modular Symbols

We recall from Chapter 3 the free abelian group M2 of modular symbols.
We view these as elements of the relative homology of the extended upper
half plane h∗ = h ∪ P1(Q) relative to the cusps. The group M2 is the free
abelian group on symbols {α, β} with

α, β ∈ P1(Q) = Q ∪ {∞}
modulo the relations

{α, β} + {β, γ} + {γ, α} = 0,

for all α, β, γ ∈ P1(Q), and all torsion. More precisely,

M2 = (F/R)/(F/R)tor,

where F is the free abelian group on all pairs (α, β) and R is the subgroup
generated by all elements of the form (α, β) + (β, γ) + (γ, α). Note that M2

is a huge free abelian group of countable rank.

For any integer n ≥ 0, let Z[X, Y ]n be the abelian group of homogeneous
polynomials of degree n in two variables X, Y .

Remark 8.1. Note that Z[X, Y ]n is isomorphic to Symn(Z×Z) as a group,
but certain natural actions are different. In [Mer94], Merel uses the nota-
tion Zn[X, Y ] for what we denote by Z[X, Y ]n.

Now fix an integer k ≥ 2. Set

Mk = Z[X, Y ]k−2 ⊗Z M2,

which is a torsion-free abelian group whose elements are sums of expressions
of the form XiY k−2−i ⊗ {α, β}. For example,

X3 ⊗ {0, 1/2} − 17XY 2 ⊗ {∞, 1/7} ∈ M5.
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Fix a finite index subgroup G of SL2(Z). Define a left action of G on
Z[X, Y ]k−2 as follows. If g =

(
a b
c d

)
∈ G and P (X, Y ) ∈ Z[X, Y ]k−2, let

(gP )(X, Y ) = P (dX − bY,−cX + aY ).

Note that if we think of z = (X, Y ) as a column vector, then

(gP )(z) = P (g−1z),

since g−1 =
(

d −b
−c a

)
. The reason for the inverse is so that this is a left action

instead of a right action, e.g., if g, h ∈ G, then

((gh)P )(z) = P ((gh)−1z) = P (h−1g−1z) = (hP )(g−1z) = (g(hP ))(z).

Recall that we let G act on the left on M2 by

g{α, β} = {g(α), g(β)},

where G acts via linear fractional transformations, so if g =
(

a b
c d

)
, then

g(α) =
aα + b

cα + d
.

For example, useful special cases to remember are that if g =
(

a b
c d

)
, then

g(0) =
b

d
and g(∞) =

a

c
.

(Here we view ∞ as 1/0 in order to describe the action.)

We now combine these two actions to obtain a left action of G on Mk,
which is given by

g(P ⊗ {α, β}) = (gP ) ⊗ {g(α), g(β)}.

For example,
(

1 2
−2 −3

)
(X3 ⊗ {0, 1/2}) = (−3X − 2Y )3 ⊗

{
−2

3
, −5

8

}

= (−27X3 − 54X2Y − 36XY 2 − 8Y 3) ⊗
{

−2

3
, −5

8

}
.

We will often write P (X, Y ){α, β} for P (X, Y ) ⊗ {α, β}.

Definition 8.2 (Modular Symbols). Let k ≥ 2 be an integer and let G be
a finite index subgroup of SL2(Z). The space Mk(G) of weight k modular
symbols for G is the quotient of Mk by all relations gx−x for x ∈ Mk, g ∈ G,
and by any torsion.

Note that Mk is a torsion-free abelian group, and it is a nontrivial fact
that Mk has finite rank. We denote modular symbols for G in exactly the
same way we denote elements of Mk; the group G will be clear from context.
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The space of modular symbols over a ring R is

Mk(G; R) = Mk(G) ⊗Z R.

8.2. Manin Symbols

Let G be a finite index subgroup of SL2(Z) and k ≥ 2 an integer. Just as in
Chapter 3 it is possible to compute Mk(G) using a computer, despite that,
as defined above, Mk(G) is the quotient of one infinitely generated abelian
group by another one. This section is about Manin symbols, which are a
distinguished subset of Mk(G) that lead to a finite presentation for Mk(G).
Formulas written in terms of Manin symbols are frequently much easier to
compute using a computer than formulas in terms of modular symbols.

Suppose P ∈ Z[X, Y ]k−2 and g ∈ SL2(Z). Then the Manin symbol
associated to this pair of elements is

[P, g] = g(P{0, ∞}) ∈ Mk(G).

Notice that if Gg = Gh, then [P, g] = [P, h], since the symbol g(P{0, ∞}) is
invariant by the action of G on the left (by definition, since it is a modular
symbol for G). Thus for a right coset Gg it makes sense to write [P, Gg] for
the symbol [P, h] for any h ∈ Gg. Since G has finite index in SL2(Z), the
abelian group generated by Manin symbols is of finite rank, generated by

{
[Xk−2−iY i, Ggj ] : i = 0, . . . , k − 2 and j = 0, . . . , r

}
,

where g0, . . . , gr run through representatives for the right cosets G\ SL2(Z).

We next show that every modular symbol can be written as a Z-linear
combination of Manin symbols, so they generate Mk(G).

Proposition 8.3. The Manin symbols generate Mk(G).

Proof. The proof if very similar to that of Proposition 3.11 except we in-
troduce an extra twist to deal with the polynomial part. Suppose that we
are given a modular symbol P{α, β} and wish to represent it as a sum of
Manin symbols. Because

P{a/b, c/d} = P{a/b, 0} + P{0, c/d},

it suffices to write P{0, a/b} in terms of Manin symbols. Let

0 =
p−2

q−2
=

0

1
,

p−1

q−1
=

1

0
,

p0

1
=

p0

q0
,

p1

q1
,

p2

q2
, . . . ,

pr

qr
=

a

b

denote the continued fraction convergents of the rational number a/b. Then

pjqj−1 − pj−1qj = (−1)j−1 for − 1 ≤ j ≤ r.
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If we let gj =

(
(−1)j−1pj pj−1

(−1)j−1qj qj−1

)
, then gj ∈ SL2(Z) and

P{0, a/b} = P
r∑

j=−1

{
pj−1

qj−1
,
pj

qj

}

=
r∑

j=−1

gj((g
−1
j P ){0, ∞})

=
r∑

j=−1

[g−1
j P, gj ].

Since gj ∈ SL2(Z) and P has integer coefficients, the polynomial g−1
j P also

has integer coefficients, so we introduce no denominators. ¤

Now that we know the Manin symbols generate Mk(G), we next con-
sider the relations between Manin symbols. Fortunately, the answer is fairly
simple (though the proof is not). Let

σ =

(
0 −1
1 0

)
, τ =

(
0 −1
1 −1

)
, J =

(
−1 0

0 −1

)
.

Define a right action of SL2(Z) on Manin symbols as follows. If h ∈ SL2(Z),
let

[P, g]h = [h−1P, gh].

This is a right action because both P 7→ h−1P and g 7→ gh are right actions.

Theorem 8.4. If x is a Manin symbol, then

x + xσ = 0,(8.2.1)

x + xτ + xτ2 = 0,(8.2.2)

x − xJ = 0.(8.2.3)

Moreover, these are all the relations between Manin symbols, in the sense
that the space Mk(G) of modular symbols is isomorphic to the quotient of
the free abelian group on the finitely many symbols [XiY k−2−i, Gg] (for i =
0, . . . , k − 2 and Gg ∈ G\ SL2(Z)) by the above relations and any torsion.

Proof. First we prove that the Manin symbols satisfy the above relations.
We follow Merel’s proof (see [Mer94, §1.2]). Note that

σ(0) = σ2(∞) = ∞ and τ(1) = τ2(0) = ∞.
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Writing x = [P, g], we have

[P, g] + [P, g]σ = [P, g] + [σ−1P, gσ]

= g(P{0, ∞}) + gσ(σ−1P{0, ∞})

= (gP ){g(0), g(∞)} + (gσ)(σ−1P ){gσ(0), gσ(∞)}
= (gP ){g(0), g(∞)} + (gP ){g(∞), g(0)}
= (gP ){g(0), g(∞)} + {g(∞), g(0)})

= 0.

Also,

[P, g] + [P, g]τ + [P, g]τ2 = [P, g] + [τ−1P, gτ ] + [τ−2P, gτ2]

= g(P{0, ∞}) + gτ(τ−1P{0, ∞}) + gτ2(τ−2P{0, ∞})

= (gP ){g(0), g(∞)} + (gP ){gτ(0), gτ(∞)} + (gP ){gτ2(0), τ2(∞)}
= (gP ){g(0), g(∞)} + (gP ){g(1), g(0)}) + (gP ){g(∞), g(1)}
= (gP )

(
{g(0), g(∞)} + {g(∞), g(1)} + {g(1), g(0)}

)

= 0.

Finally,

[P, g] + [P, g]J = g(P{0, ∞}) − gJ(J−1P{gJ(0), gJ(∞)}
= (gP ){g(0), g(∞)} − (gP ){g(0), g(∞)}
= 0,

where we use that J acts trivially via linear fractional transformations. This
proves that the listed relations are all satisfied.

That the listed relations are all relations is more difficult to prove. One
approach is to show (as in [Mer94, §1.3]) that the quotient of Manin symbols
by the above relations and torsion is isomorphic to a space of Shokurov
symbols, which is in turn isomorphic to Mk(G). A much better approach is
to apply some results from group cohomology, as in [Wie05]. ¤

If G is a finite index subgroup and we have an algorithm to enumerate
the right cosets G\ SL2(Z) and to decide which coset an arbitrary element of
SL2(Z) belongs to, then Theorem 8.4 and the algorithms of Chapter 7 yield
an algorithm to compute Mk(G; Q). Note that if J ∈ G, then the relation
x − xJ = 0 is automatic.

Remark 8.5. The matrices σ and τ do not commute, so in computing
Mk(G; Q), one cannot first quotient out by the two-term σ relations, then
quotient out only the remaining free generators by the τ relations, and get
the right answer in general.
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8.2.1. Coset Representatives and Manin Symbols. The following is
analogous to Proposition 3.10:

Proposition 8.6. The right cosets Γ1(N)\ SL2(Z) are in bijection with pairs
(c, d) where c, d ∈ Z/NZ and gcd(c, d, N) = 1. The coset containing a matrix(

a b
c d

)
corresponds to (c, d).

Proof. This proof is copied from [Cre92, pg. 203], except in that paper
Cremona works with the analogue of Γ1(N) in PSL2(Z), so his result is

slightly different. Suppose γi =
(

ai bi
ci di

)
∈ SL2(Z), for i = 1, 2. We have

γ1γ
−1
2 =

(
a1 b1

c1 d1

) (
d2 −b2

−c2 a2

)
=

(
a1d2 − b1c2 ∗
c1d2 − d1c2 a2d1 − b2c1

)
,

which is in Γ1(N) if and only if

(8.2.4) c1d2 − d1c2 ≡ 0 (mod N)

and

(8.2.5) a2d1 − b2c1 ≡ a1d2 − b1c2 ≡ 1 (mod N).

Since the γi have determinant 1, if (c1, d1) = (c2, d2) (mod N), then the
congruences (8.2.4)–(8.2.5) hold. Conversely, if (8.2.4)–(8.2.5) hold, then

c2 ≡ a2d1c2 − b2c1c2

≡ a2d2c1 − b2c2c1 since d1c2 ≡ d2c1 (mod N)

≡ c1 since a2d2 − b2c2 = 1,

and likewise

d2 ≡ a2d1d2 − b2c1d2 ≡ a2d1d2 − b2d1c2 ≡ d1 (mod N).

¤

Thus we may view weight k Manin symbols for Γ1(N) as triples of in-
tegers (i, c, d), where 0 ≤ i ≤ k − 2 and c, d ∈ Z/NZ with gcd(c, d, N) = 1.
Here (i, c, d) corresponds to the Manin symbol [XiY k−2−i,

(
a b
c′ d′

)
], where c′

and d′ are congruent to c, d (mod N). The relations of Theorem 8.4 become

(i, c, d) + (−1)i(k − 2 − i, d,−c) = 0,

(i, c, d) + (−1)k−2
k−2−i∑

j=0

(−1)j

(
k − 2 − i

j

)
(j, d, −c − d)

+ (−1)k−2−i
i∑

j=0

(−1)j

(
i

j

)
(k − 2 − i + j, −c − d, c) = 0,

(i, c, d) − (−1)k−2(i, −c,−d) = 0.

Recall that Proposition 3.10 gives a similar description for Γ0(N).
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8.2.2. Modular Symbols with Character. Suppose G = Γ1(N). Define
an action of diamond-bracket operators 〈d〉o, with gcd(d, N) = 1 on Manin
symbols as follows:

〈d〉([P, (u, v)]) = [P, (du, dv)] .

Let

ε : (Z/NZ)∗ → Q(ζ)∗

be a Dirichlet character, where ζ is an nth root of unity and n is the order
of ε. Let Mk(N, ε) be the quotient of Mk(Γ1(N); Z[ζ]) by the relations (given
in terms of Manin symbols)

〈d〉x − ε(d)x = 0,

for all x ∈ Mk(Γ1(N); Z[ζ]), d ∈ (Z/NZ)∗, and by any Z-torsion. Thus
Mk(N, ε) is a Z[ε]-module that has no torsion when viewed as a Z-module.

8.3. Hecke Operators

Suppose Γ is a subgroup of SL2(Z) of level N that contains Γ1(N). Just as
for modular forms, there is a commutative Hecke algebra T = Z[T1, T2, . . .],
which is the subring of End(Mk(Γ)) generated by all Hecke operators. Let

Rp =

{(
1 r
0 p

)
: r = 0, 1, . . . , p − 1

}
∪

{(
p 0
0 1

)}
,

where we omit
(

p 0
0 1

)
if p | N . Then the Hecke operator Tp on Mk(Γ) is given

by

Tp(x) =
∑

g∈Rp

gx.

Notice when p ∤ N that Tp is defined by summing over p + 1 matrices that
correspond to the p + 1 subgroups of Z × Z of index p. This is exactly how
we defined Tp on modular forms in Definition 2.26.

8.3.1. General Definition of Hecke Operators. Let Γ be a finite index
subgroup of SL2(Z) and suppose

∆ ⊂ GL2(Q)

is a set such that Γ∆ = ∆Γ = ∆ and Γ\∆ is finite. For example, ∆ = Γ
satisfies this condition. Also, if Γ = Γ1(N), then for any positive integer n,
the set

∆n =

{(
a b
c d

)
∈ Mat2(Z) : ad − bc = n,

(
a b
c d

)
≡

(
1 ∗
0 n

)
(mod N)

}

also satisfies this condition, as we will now prove.
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Lemma 8.7. We have

Γ1(N) · ∆n = ∆n · Γ1(N) = ∆n

and

∆n =
⋃

a,b

Γ1(N) · σa

(
a b
0 n/a

)
,

where σa ≡
(

1/a 0
0 a

)
(mod N), the union is disjoint and 1 ≤ a ≤ n with

a | n, gcd(a, N) = 1, and 0 ≤ b < n/a. In particular, the set of cosets
Γ1(N)\∆n is finite.

Proof. (This is Lemma 1 of [Mer94, §2.3].) If γ ∈ Γ1(N) and δ ∈ ∆n, then
(

1 ∗
0 1

)
·
(

1 ∗
0 n

)
≡

(
1 ∗
0 n

)
·
(

1 ∗
0 1

)
≡

(
1 ∗
0 n

)
(mod N).

Thus Γ1(N)∆n ⊂ ∆n, and since Γ1(N) is a group, Γ1(N)∆n = ∆n; likewise
∆nΓ1(N) = ∆n.

For the coset decomposition, we first prove the statement for N = 1,
i.e., for Γ1(N) = SL2(Z). If A is an arbitrary element of Mat2(Z) with
determinant n, then using row operators on the left with determinant 1,
i.e., left multiplication by elements of SL2(Z), we can transform A into the

form
(

a b
0 n/a

)
, with 1 ≤ a ≤ n and 0 ≤ b < n. (Just imagine applying the

Euclidean algorithm to the two entries in the first column of A. Then a is
the gcd of the two entries in the first column, and the lower left entry is 0.
Next subtract n/a from b until 0 ≤ b < n/a.)

Next suppose N is arbitrary. Let g1, . . . , gr be such that

g1Γ1(N) ∪ · · · ∪ grΓ1(N) = SL2(Z)

is a disjoint union. If A ∈ ∆n is arbitrary, then as we showed above, there is

some γ ∈ SL2(Z), so that γ ·A =
(

a b
0 n/a

)
, with 1 ≤ a ≤ n and 0 ≤ b < n/a,

and a | n. Write γ = gi · α, with α ∈ Γ1(N). Then

α · A = g−1
i ·

(
a b
0 n/a

)
≡

(
1 ∗
0 n

)
(mod N).

It follows that

g−1
i ≡

(
1 ∗
0 n

)
·
(

a b
0 n/a

)−1

≡
(

1/a ∗
0 a

)
(mod N).

Since ( 1 1
0 1 ) ∈ Γ1(N) and gcd(a, N) = 1, there is γ′ ∈ Γ1(N) such that

γ′g−1
i ≡

(
1/a 0
0 a

)
(mod N).
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We may then choose σa = γ′g−1
i . Thus every A ∈ ∆n is of the form

γσa

(
a b
0 n/a

)
, with γ ∈ Γ1(N) and a, b suitably bounded. This proves the

second claim. ¤

Let any element δ =
(

a b
c d

)
∈ GL2(Q) act on the left on modular symbols

Mk ⊗ Q by

δ(P{α, β}) = P (dX − bY,−cX + aY ){δ(α), δ(β)}.

(Until now we had only defined an action of SL2(Z) on modular symbols.)
For g =

(
a b
c d

)
∈ GL2(Q), let

(8.3.1) g̃ =

(
d −b

−c a

)
= det(g) · g−1.

Note that ˜̃g = g. Also, δP (X, Y ) = (P ◦ g̃)(X, Y ), where we set

g̃(X, Y ) = (dX − bY,−cX + aY ).

Suppose Γ and ∆ are as above. Fix a finite set R of representatives for
Γ\∆. Let

T∆ : Mk(Γ) → Mk(Γ)

be the linear map

T∆(x) =
∑

δ∈R

δx.

This map is well defined because if γ ∈ Γ and x ∈ Mk(Γ), then
∑

δ∈R

δγx =
∑

certain δ′
γδ′x =

∑

certain δ′
δ′x =

∑

δ∈R

δx,

where we have used that ∆Γ = Γ∆, and Γ acts trivially on Mk(Γ).

Let Γ = Γ1(N) and ∆ = ∆n. Then the nth Hecke operator Tn is T∆n ,
and by Lemma 8.7,

Tn(x) =
∑

a,b

σa

(
a b
0 n/a

)
· x,

where a, b are as in Lemma 8.7.

Given this definition, we can compute the Hecke operators on Mk(Γ1(N))
as follows. Write x as a modular symbol P{α, β}, compute Tn(x) as a mod-
ular symbol, and then convert to Manin symbols using continued fractions
expansions. This is extremely inefficient; fortunately Löıc Merel (following
[Maz73]) found a much better way, which we now describe (see [Mer94]).
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8.3.2. Hecke Operators on Manin Symbols. If S is a subset of GL2(Q),
let

S̃ = {g̃ : g ∈ S},

where g̃ is as in (8.3.1). Also, for any ring R and any subset S ⊂ Mat2(Z), let
R[S] denote the free R-module with basis the elements of S, so the elements
of R[S] are the finite R-linear combinations of the elements of S.

One of the main theorems of [Mer94] is that for any Γ, ∆ satisfying
the condition at the beginning of Section 8.3.1, if we can find

∑
uMM ∈

C[Mat2(Z)] and a map

φ : ∆̃ SL2(Z) → SL2(Z)

that satisfies certain conditions, then for any Manin symbol [P, g] ∈ Mk(Γ),
we have

T∆([P, g]) =
∑

gM∈∆̃ SL2(Z) with M∈SL2(Z)

uM [M̃ · P, φ(gM)].

The paper [Mer94] contains many examples of φ and
∑

uMM ∈ C[Mat2(Z)]
that satisfy all of the conditions.

When Γ = Γ1(N), the complicated list of conditions becomes simpler.
Let Mat2(Z)n be the set of 2 × 2 matrices with determinant n. An element

h =
∑

uM [M ] ∈ C[Mat2(Z)n]

satisfies condition Cn if for every K ∈ Mat2(Z)n/ SL2(Z), we have that

(8.3.2)
∑

M∈K

uM ([M∞] − [M0]) = [∞] − [0] ∈ C[P 1(Q)].

If h satisfies condition Cn, then for any Manin symbol [P, g] ∈ Mk(Γ1(N)),
Merel proves that

(8.3.3) Tn([P, (u, v)]) =
∑

M

uM [P (aX + bY, cX + dY ), (u, v)M ].

Here (u, v) ∈ (Z/NZ)2 corresponds via Proposition 8.6 to a coset of Γ1(N)
in SL2(Z), and if (u′, v′) = (u, v)M ∈ (Z/NZ)2 and gcd(u′, v′, N) 6= 1, then
we omit the corresponding summand.

For example, we will now check directly that the element

h2 =

[(
2 0
0 1

)]
+

[(
1 0
0 2

)]
+

[(
2 1
0 1

)]
+

[(
1 0
1 2

)]
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satisfies condition C2. We have, as in the proof of Lemma 8.7 (but using
elementary column operations), that

Mat2(Z)2/ SL2(Z) =

{(
a 0
b 2/a

)
SL2(Z) : a = 1, 2 and 0 ≤ b < 2/a

}

=

{(
1 0
0 2

)
SL2(Z),

(
1 0
1 2

)
SL2(Z),

(
2 0
0 1

)
SL2(Z)

}
.

To verify condition C2, we consider in turn each of the three elements of
Mat2(Z)2/ SL2(Z) and check that (8.3.2) holds. We have that

(
1 0
0 2

)
∈

(
1 0
0 2

)
SL2(Z),

(
2 1
0 1

)
,

(
1 0
1 2

)
∈

(
1 0
1 2

)
SL2(Z),

and (
2 0
0 1

)
∈

(
2 0
0 1

)
SL2(Z).

Thus if K = ( 1 0
0 2 ) SL2(Z), the left sum of (8.3.2) is [( 1 0

0 2 ) (∞)]−[( 1 0
0 2 ) (0)] =

[∞] − [0], as required. If K = ( 1 0
1 2 ) SL2(Z), then the left side of (8.3.2) is

[( 2 1
0 1 ) (∞)] − [( 2 1

0 1 ) (0)] + [( 1 0
1 2 ) (∞)] − [( 1 0

1 2 ) (0)]

= [∞] − [1] + [1] − [0] = [∞] − [0].

Finally, for K = ( 2 0
0 1 ) SL2(Z) we also have [( 2 0

0 1 ) (∞)]−[( 2 0
0 1 ) (0)] = [∞]−[0],

as required. Thus by (8.3.3) we can compute T2 on any Manin symbol, by
summing over the action of the four matrices ( 2 0

0 1 ) , ( 1 0
0 2 ) , ( 2 1

0 1 ) , ( 1 0
1 2 ).

Proposition 8.8 (Merel). The element

∑

a>b≥0
d>c≥0

ad−bc=n

[(
a b
c d

)]
∈ Z[Mat2(Z)n]

satisfies condition Cn.

Merel’s two-page proof of Proposition 8.8 is fairly elementary.

Remark 8.9. In [Cre97a, §2.4], Cremona discusses the work of Merel and
Mazur on Heilbronn matrices in the special cases Γ = Γ0(N) and weight 2.
He gives a simple proof that the action of Tp on Manin symbols can be com-
puted by summing the action of some set Rp of matrices of determinant p.
He then describes the set Rp and gives an efficient continued fractions al-
gorithm for computing it (but he does not prove that his Rp satisfy Merel’s
hypothesis).
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8.3.3. Remarks on Complexity. Merel gives another family Sn of ma-
trices that satisfy condition Cn, and he proves that as n → ∞,

#Sn ∼ 12 log(2)

π2
· σ1(n) log(n),

where σ1(n) is the sum of the divisors of n. Thus for a fixed space Mk(Γ)
of modular symbols, one can compute Tn using O(σ1(n) log(n)) arithmetic
operations. Note that we have fixed Mk(Γ), so we ignore the linear algebra
involved in computation of a presentation; also, adding elements takes a
bounded number of field operations when the space is fixed. Thus, using
Manin symbols the complexity of computing Tp, for p prime, is O((p +
1) log(p)) field operations, which is exponential in the number of digits of p.

8.3.4. Basmaji’s Trick. There is a trick of Basmaji (see [Bas96]) for
computing a matrix of Tn on Mk(Γ), when n is very large, and it is more
efficient than one might naively expect. Basmaji’s trick does not improve the
big-oh complexity for a fixed space, but it does improve the complexity by a
constant factor of the dimension of Mk(Γ; Q). Suppose we are interested in
computing the matrix for Tn for some massive integer n and that Mk(Γ; Q)
has large dimension. The trick is as follows. Choose a list

x1 = [P1, g1], . . . , xr = [Pr, gr] ∈ V = Mk(Γ; Q)

of Manin symbols such that the map Ψ : T → V r given by

t 7→ (tx1, . . . , txr)

is injective. In practice, it is often possible to do this with r “very small”.
Also, we emphasize that V r is a Q-vector space of dimension r · dim(V ).

Next find Hecke operators Ti, with i small, whose images form a basis for
the image of Ψ. Now with the above data precomputed, which only required
working with Hecke operators Ti for small i, we are ready to compute Tn with
n huge. Compute yi = Tn(xi), for each i = 1, . . . , r, which we can compute
using Heilbronn matrices since each xi = [Pi, gi] is a Manin symbol. We
thus obtain Ψ(Tn) ∈ V r. Since we have precomputed Hecke operators Tj

such that Ψ(Tj) generate V r, we can find aj such that
∑

ajΨ(Tj) = Ψ(Tn).
Then since Ψ is injective, we have Tn =

∑
ajTj , which gives the full matrix

of Tn on Mk(Γ; Q).

8.4. Cuspidal Modular Symbols

Let B be the free abelian group on symbols {α}, for α ∈ P1(Q), and set

Bk = Z[X, Y ]k−2 ⊗ B.

Define a left action of SL2(Z) on Bk by

g(P{α}) = (gP ){g(α)},
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for g ∈ SL2(Z). For any finite index subgroup Γ ⊂ SL2(Z), let Bk(Γ) be the
quotient of Bk by the relations x−gx for all g ∈ Γ and by any torsion. Thus
Bk(Γ) is a torsion-free abelian group.

The boundary map is the map

b : Mk(Γ) → Bk(Γ)

given by extending the map

b(P{α, β}) = P{β} − P{α}
linearly. The space Sk(Γ) of cuspidal modular symbols is the kernel

Sk(Γ) = ker(Mk(Γ) → Bk(Γ)),

so we have an exact sequence

0 → Sk(Γ) → Mk(Γ) → Bk(Γ).

One can prove that when k > 2, this sequence is exact on the right.

Next we give a presentation of Bk(Γ) in terms of “boundary Manin
symbols”.

8.4.1. Boundary Manin Symbols. We give an explicit description of the
boundary map in terms of Manin symbols for Γ = Γ1(N), then describe an
efficient way to compute the boundary map.

Let R be the equivalence relation on Γ\Q2 given by

[Γ
(

λu
λv

)
] ∼ sign(λ)k[Γ ( u

v )],

for any λ ∈ Q∗. Denote by Bk(Γ) the finite-dimensional Q-vector space with
basis the equivalence classes (Γ\Q2)/R. The following two propositions are
proved in [Mer94].

Proposition 8.10. The map

µ : Bk(Γ) → Bk(Γ), P
{u

v

}
7→ P (u, v)

[
Γ

(
u
v

)]

is well defined and injective. Here u and v are assumed coprime.

Thus the kernel of δ : Sk(Γ) → Bk(Γ) is the same as the kernel of µ ◦ δ.

Proposition 8.11. Let P ∈ Vk−2 and g =
(

a b
c d

)
∈ SL2(Z). We have

µ ◦ δ([P, (c, d)]) = P (1, 0)[Γ ( a
c )] − P (0, 1)[Γ

(
b
d

)
].

We next describe how to explicitly compute µ◦ δ : Mk(N, ε) → Bk(N, ε)
by generalizing the algorithm of [Cre97a, §2.2]. To compute the image of
[P, (c, d)], with g =

(
a b
c d

)
∈ SL2(Z), we must compute the class of [( a

c )] and

of [
(

b
d

)
]. Instead of finding a canonical form for cusps, we use a quick test for

equivalence modulo scalars. In the following algorithm, by the ith symbol we
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mean the ith basis vector for a basis of Bk(N, ε). This basis is constructed
as the algorithm is called successively. We first give the algorithm, and then
prove the facts used by the algorithm in testing equivalence.

Algorithm 8.12 (Cusp Representation). Given a boundary Manin symbol
[( u

v )], this algorithm outputs an integer i and a scalar α such that [( u
v )] is

equivalent to α times the ith symbol found so far. (We call this algorithm
repeatedly and maintain a running list of cusps seen so far.)

(1) Use Proposition 3.21 to check whether or not [( u
v )] is equivalent,

modulo scalars, to any cusp found. If so, return the representative,
its index, and the scalar. If not, record ( u

v ) in the representative
list.

(2) Using Proposition 8.16, check whether or not [( u
v )] is forced to

equal 0 by the relations. If it does not equal 0, return its position
in the list and the scalar 1. If it equals 0, return the scalar 0 and
the position 1; keep ( u

v ) in the list, and record that it is equivalent
to 0.

The case considered in Cremona’s book [Cre97a] only involve the triv-
ial character, so no cusp classes are forced to vanish. Cremona gives the
following two criteria for equivalence.

Proposition 8.13 (Cremona). Consider ( ui
vi ), i = 1, 2, with ui, vi integers

such that gcd(ui, vi) = 1 for each i.

(1) There exists g ∈ Γ0(N) such that g ( u1
v1 ) = ( u2

v2 ) if and only if

s1v2 ≡ s2v1 (mod gcd(v1v2, N)), where sj satisfies ujsj ≡ 1 (mod vj).

(2) There exists g ∈ Γ1(N) such that g ( u1
v1 ) = ( u2

v2 ) if and only if

v2 ≡ v1 (mod N) and u2 ≡ u1 (mod gcd(v1, N)).

Proof. The first statement is [Cre97a, Prop. 2.2.3], and the second is
[Cre92, Lem. 3.2]. ¤

Algorithm 8.14 (Explicit Cusp Equivalence). Suppose ( u1
v1 ) and ( u2

v2 ) are
equivalent modulo Γ0(N). This algorithm computes a matrix g ∈ Γ0(N)
such that g ( u1

v1 ) = ( u2
v2 ).

(1) Let s1, s2, r1, r2 be solutions to s1u1 −r1v1 = 1 and s2u2 −r2v2 = 1.

(2) Find integers x0 and y0 such that x0v1v2 + y0N = 1.

(3) Let x = −x0(s1v2 − s2v1)/(v1v2, N) and s′
1 = s1 + xv1.

(4) Output g = ( u2 r2
v2 s2 ) ·

(
u1 r1

v1 s′
1

)−1
, which sends ( u1

v1 ) to ( u2
v2 ).

Proof. See the proof of [Cre97a, Prop. 8.13]. ¤
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The ε relations can make the situation more complicated, since it is
possible that ε(α) 6= ε(β) but

ε(α)

[(
u
v

)]
=

[
γα

(
u
v

)]
=

[
γβ

(
u
v

)]
= ε(β)

[(
u
v

)]
.

One way out of this difficulty is to construct the cusp classes for Γ1(N), and
then quotient out by the additional ε relations using Gaussian elimination.
This is far too inefficient to be useful in practice because the number of
Γ1(N) cusp classes can be unreasonably large. Instead, we give a quick test
to determine whether or not a cusp vanishes modulo the ε-relations.

Lemma 8.15. Suppose α and α′ are integers such that gcd(α, α′, N) =
1. Then there exist integers β and β′, congruent to α and α′ modulo N ,
respectively, such that gcd(β, β′) = 1.

Proof. By Exercise 8.2 the map SL2(Z) → SL2(Z/NZ) is surjective. By the
Euclidean algorithm, there exist integers x, y and z such that xα+yα′+zN =
1. Consider the matrix

( y −x
α α′

)
∈ SL2(Z/NZ) and take β, β′ to be the

bottom row of a lift of this matrix to SL2(Z). ¤

Proposition 8.16. Let N be a positive integer and ε a Dirichlet character
of modulus N . Suppose ( u

v ) is a cusp with u and v coprime. Then ( u
v )

vanishes modulo the relations

[γ ( u
v )] = ε(γ) [( u

v )] , all γ ∈ Γ0(N),

if and only if there exists α ∈ (Z/NZ)∗, with ε(α) 6= 1, such that

v ≡ αv (mod N),

u ≡ αu (mod gcd(v, N)).

Proof. First suppose such an α exists. By Lemma 8.15 there exists β, β′ ∈
Z lifting α, α−1 such that gcd(β, β′) = 1. The cusp

(
βu
β′v

)
has coprime

coordinates so, by Proposition 8.13 and our congruence conditions on α, the

cusps
(

βu
β′v

)
and ( u

v ) are equivalent by an element of Γ1(N). This implies

that
[(

βu
β′v

)]
= [( u

v )]. Since
[(

βu
β′v

)]
= ε(α) [( u

v )] and ε(α) 6= 1, we have

[( u
v )] = 0.

Conversely, suppose [( u
v )] = 0. Because all relations are two-term re-

lations and the Γ1(N)-relations identify Γ1(N)-orbits, there must exists α
and β with

[
γα

(
u
v

)]
=

[
γβ

(
u
v

)]
and ε(α) 6= ε(β).
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Indeed, if this did not occur, then we could mod out by the ε relations
by writing each [γα ( u

v )] in terms of [( u
v )], and there would be no further

relations left to kill [( u
v )]. Next observe that

[
γβ−1α

(
u
v

)]
=

[
γβ−1γα

(
u
v

)]

= ε(β−1)

[
γα

(
u
v

)]
= ε(β−1)

[
γβ

(
u
v

)]
=

[(
u
v

)]
.

Applying Proposition 8.13 and noting that ε(β−1α) 6= 1 shows that β−1α
satisfies the properties of the “α” in the statement of the proposition. ¤

We enumerate the possible α appearing in Proposition 8.16 as follows.
Let g = (v, N) and list the α = v · N

g · a + 1, for a = 0, . . . , g − 1, such that

ε(α) 6= 0.

8.5. Pairing Modular Symbols and Modular Forms

In this section we define a pairing between modular symbols and modular
forms that the Hecke operators respect. We also define an involution on
modular symbols and study its relationship with the pairing. This pairing
is crucial in much that follows, because it gives rise to period maps from
modular symbols to certain complex vector spaces.

Fix an integer weight k ≥ 2 and a finite index subgroup Γ of SL2(Z).
Let Mk(Γ) denote the space of holomorphic modular forms of weight k for
Γ, and let Sk(Γ) denote its cuspidal subspace. Following [Mer94, §1.5], let

(8.5.1) Sk(Γ) = {f : f ∈ Sk(Γ)}
denote the space of antiholomorphic cusp forms. Here f is the function on
h∗ given by f(z) = f(z).

Define a pairing

(8.5.2) (Sk(Γ) ⊕ Sk(Γ)) × Mk(Γ) → C

by letting

〈(f1, f2), P{α, β}〉 =

∫ β

α
f1(z)P (z, 1)dz +

∫ β

α
f2(z)P (z, 1)dz

and extending linearly. Here the integral is a complex path integral along
a simple path from α to β in h (so, e.g., write z(t) = x(t) + iy(t), where
(x(t), y(t)) traces out the path and consider two real integrals).

Proposition 8.17. The integration pairing is well defined, i.e., if we replace
P{α, β} by an equivalent modular symbol (equivalent modulo the left action
of Γ), then the integral is the same.
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Proof. This follows from the change of variables formulas for integration
and the fact that f1 ∈ Sk(Γ) and f2 ∈ Sk(Γ). For example, if k = 2, g ∈ Γ
and f ∈ Sk(Γ), then

〈f, g{α, β}〉 = 〈f, {g(α), g(β)}〉

=

∫ g(β)

g(α)
f(z)dz

=

∫ β

α
f(g(z))dg(z)

=

∫ β

α
f(z)dz = 〈f, {α, β}〉,

where f(g(z))dg(z) = f(z)dz because f is a weight 2 modular form. For the
case of arbitrary weight k > 2, see Exercise 8.4. ¤

The integration pairing is very relevant to the study of special values of
L-functions. The L-function of a cusp form f =

∑
anqn ∈ Sk(Γ1(N)) is

L(f, s) = (2π)sΓ(s)−1

∫ ∞

0
f(it)ts

dt

t
(8.5.3)

=
∞∑

n=1

an

ns
for Re(s) ≫ 0.(8.5.4)

The equality of the integral and the Dirichlet series follows by switching
the order of summation and integration, which is justified using standard
estimates on |an| (see, e.g., [Kna92, Section VIII.5]).

For each integer j with 1 ≤ j ≤ k−1, we have, setting s = j and making
the change of variables t 7→ −it in (8.5.3), that

(8.5.5) L(f, j) =
(−2πi)j

(j − 1)!
·
〈
f, Xj−1Y k−2−(j−1){0, ∞}

〉
.

The integers j as above are called critical integers. When f is an eigenform,
they have deep conjectural significance (see [BK90, Sch90]). One can
approximate L(f, j) to any desired precision by computing the above pairing
explicitly using the method described in Chapter 10. Alternatively, [Dok04]
contains methods for computing special values of very general L-functions,
which can be used for approximating L(f, s) for arbitrary s, in addition to
just the critical integers 1, . . . , k − 1.

Theorem 8.18 (Shokoruv). The pairing

〈· , ·〉 : (Sk(Γ) ⊕ Sk(Γ)) × Sk(Γ, C) → C
is a nondegenerate pairing of complex vector spaces.

Proof. This is [Sho80b, Thm. 0.2] and [Mer94, §1.5]. ¤
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Corollary 8.19. We have

dimC Sk(Γ, C) = 2 dimC S2(Γ).

The pairing is also compatible with Hecke operators. Before proving this,
we define an action of Hecke operators on Mk(Γ1(N)) and on Sk(Γ1(N)).
The definition is similar to the one we gave in Section 2.4 for modular forms
of level 1. For a positive integer n, let Rn be a set of coset representatives
for Γ1(N)\∆n from Lemma 8.7. For any γ =

(
a b
c d

)
∈ GL2(Q) and f ∈

Mk(Γ1(N)) set

f [γ]k = det(γ)k−1(cz + d)−kf(γ(z)).

Also, for f ∈ Sk(Γ1(N)), set

f [γ]′k = det(γ)k−1(cz + d)−kf(γ(z)).

Then for f ∈ Mk(Γ1(N)),

Tn(f) =
∑

γ∈Rn

f [γ]k

and for f ∈ Sk(Γ1(N)),

Tn(f) =
∑

γ∈Rn

f [γ]′k .

This agrees with the definition from Section 2.4 when N = 1.

Remark 8.20. If Γ is an arbitrary finite index subgroup of SL2(Z), then
we can define operators T∆ on Mk(Γ) for any ∆ with ∆Γ = Γ∆ = ∆ and
Γ\∆ finite. For concreteness we do not do the general case here or in the
theorem below, but the proof is exactly the same (see [Mer94, §1.5]).

Finally we prove the promised Hecke compatibility of the pairing. This
proof should convince you that the definition of modular symbols is sensible,
in that they are natural objects to integrate against modular forms.

Theorem 8.21. If

f = (f1, f2) ∈ Sk(Γ1(N)) ⊕ Sk(Γ1(N))

and x ∈ Mk(Γ1(N)), then for any n,

〈Tn(f), x〉 = 〈f, Tn(x)〉.

Proof. We follow [Mer94, §2.1] (but with more details) and will only prove
the theorem when f = f1 ∈ Sk(Γ1(N)), the proof in the general case being
the same.

Let α, β ∈ P1(Q), P ∈ Z[X, Y ]k−2, and for g =
(

a b
c d

)
∈ GL2(Q), set

j(g, z) = cz + d.
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Let n be any positive integer, and let Rn be a set of coset representatives
for Γ1(N)\∆n from Lemma 8.7.

We have

〈Tn(f), P{α, β}〉 =

∫ β

α
Tn(f)P (z, 1)dz

=
∑

δ∈R

∫ β

α
det(δ)k−1f(δ(z))j(δ, z)−kP (z, 1)dz.

Now for each summand corresponding to the δ ∈ R, make the change of
variables u = δz. Thus we make #R change of variables. Also, we will use
the notation

g̃ =

(
d −b

−c a

)
= det(g) · g−1

for g ∈ GL2(Q). We have

〈Tn(f), P{α, β}〉 =

∑

δ∈R

∫ δ(β)

δ(α)
det(δ)k−1f(u)j(δ, δ−1(u))−kP (δ−1(u), 1)d(δ−1(u)).

We have δ−1(u) = δ̃(u), since a linear fractional transformation is unchanged
by a nonzero rescaling of a matrix that induces it. Thus by the quotient
rule, using that δ̃ has determinant det(δ), we see that

d(δ−1(u)) = d(δ̃(u)) =
det(δ)du

j(δ̃, u)2
.

We next show that

(8.5.6) j(δ, δ−1(u))−kP (δ−1(u), 1) = j(δ̃, u)k det(δ)−kP (δ̃(u), 1).

From the definitions, and again using that δ−1(u) = δ̃(u), we see that

j(δ, δ−1(u)) =
det(δ)

j(δ̃, u)
,

which proves that (8.5.6) holds. Thus

〈Tn(f), P{α, β}〉 =

∑

δ∈R

∫ δ(β)

δ(α)
det(δ)k−1f(u)j(δ̃, u)k det(δ)−kP (δ̃(u), 1)

det(δ)du

j(δ̃, u)2
.

Next we use that

(δP )(u, 1) = j(δ̃, u)k−2P (δ̃(u), 1).
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To see this, note that P (X, Y ) = P (X/Y, 1) · Y k−2. Using this we see that

(δP )(X, Y ) = (P ◦ δ̃)(X, Y )

= P

(
δ̃

(
X

Y

)
, 1

) (
−c · X

Y
+ a

)k−2

· Y k−2.

Now substituting (u, 1) for (X, 1), we see that

(δP )(u, 1) = P (δ̃(u), 1) · (−cu + a)k−2,

as required. Thus finally

〈Tn(f), P{α, β}〉 =
∑

δ∈R

∫ δ(β)

δ(α)
f(u)j(δ̃, u)k−2P (δ̃(u), 1)du

=
∑

δ∈R

∫ δ(β)

δ(α)
f(u) · ((δP )(u, 1))du

= 〈f, Tn(P{α, β})〉.
¤

Suppose that Γ is a finite index subgroup of SL2(Z) such that if η =( −1 0
0 1

)
, then

ηΓη = Γ.

For example, Γ = Γ1(N) satisfies this condition. There is an involution ι∗

on Mk(Γ) given by

(8.5.7) ι∗(P (X, Y ){α, β}) = −P (X, −Y ){−α,−β},

which we call the star involution. On Manin symbols, ι∗ is

(8.5.8) ι∗[P, (u, v)] = −[P (−X, Y ), (−u, v)].

Let Sk(Γ)+ be the +1 eigenspace for ι∗ on Sk(Γ), and let Sk(Γ)− be the −1
eigenspace. There is also a map ι on modular forms, which is adjoint to ι∗.

Remark 8.22. Notice the minus sign in front of −P (X, −Y ){−α,−β} in
(8.5.7). This sign is missing in [Cre97a], which is a potential source of
confusion (this is not a mistake, but a different choice of convention).

We now state the final result about the pairing, which explains how
modular symbols and modular forms are related.

Theorem 8.23. The integration pairing 〈· , ·〉 induces nondegenerate Hecke
compatible bilinear pairings

Sk(Γ)+ × Sk(Γ) → C and Sk(Γ)− × Sk(Γ) → C.
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Remark 8.24. We make some remarks about computing the boundary map
of Section 8.4.1 when working in the ±1 quotient. Let s be a sign, either +1
or −1. To compute Sk(N, ε)s, it is necessary to replace Bk(N, ε) by its
quotient modulo the additional relations [( −u

v )] = s [( u
v )] for all cusps ( u

v ).
Algorithm 8.12 can be modified to deal with this situation as follows. Given
a cusp x = ( u

v ), proceed as in Algorithm 8.12 and check if either ( u
v ) or

( −u
v ) is equivalent (modulo scalars) to any cusp seen so far. If not, use the

following trick to determine whether the ε and s-relations kill the class of
( u

v ): use the unmodified Algorithm 8.12 to compute the scalars α1, α2 and
indices i1, i2 associated to ( u

v ) and ( −u
v ), respectively. The s-relation kills

the class of ( u
v ) if and only if i1 = i2 but α1 6= sα2.

8.6. Degeneracy Maps

In this section, we describe natural maps between spaces of modular symbols
with character of different levels. We consider spaces with character, since
they are so important in applications.

Fix a positive integer N and a Dirichlet character ε : (Z/NZ)∗ → C∗.
Let M be a positive divisor of N that is divisible by the conductor of ε, in
the sense that ε factors through (Z/MZ)∗ via the natural map (Z/NZ)∗ →
(Z/MZ)∗ composed with some uniquely defined character ε′ : (Z/MZ)∗ →
C∗. For any positive divisor t of N/M , let T = ( 1 0

0 t ) and fix a choice
Dt = {Tγi : i = 1, . . . , n} of coset representatives for Γ0(N)\TΓ0(M).

Remark 8.25. Note that [Mer94, §2.6] contains a typo: The quotient
“Γ1(N)\Γ1(M)T” should be replaced by “Γ1(N)\TΓ1(M)”.

Proposition 8.26. For each divisor t of N/M there are well-defined linear
maps

αt : Mk(N, ε) → Mk(M, ε′), αt(x) = (tT−1)x =

(
t 0
0 1

)
x,

βt : Mk(M, ε′) → Mk(N, ε), βt(x) =
∑

Tγi∈Dt

ε′(γi)
−1Tγix.

Furthermore, αt ◦ βt is multiplication by tk−2 · [Γ0(M) : Γ0(N)].

Proof. To show that αt is well defined, we must show that for each x ∈
Mk(N, ε) and γ =

(
a b
c d

)
∈ Γ0(N), we have

αt(γx − ε(γ)x) = 0 ∈ Mk(M, ε′).

We have

αt(γx) =

(
t 0
0 1

)
γx =

(
a tb

c/t d

) (
t 0
0 1

)
x = ε′(a)

(
t 0
0 1

)
x,
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so

αt(γx − ε(γ)x) = ε′(a)αt(x) − ε(γ)αt(x) = 0.

We next verify that βt is well defined. Suppose that x ∈ Mk(M, ε′) and
γ ∈ Γ0(M); then ε′(γ)−1γx = x, so

βt(x) =
∑

Tγi∈Dt

ε′(γi)
−1Tγiε

′(γ)−1γx

=
∑

Tγiγ∈Dt

ε′(γiγ)−1Tγiγx.

This computation shows that the definition of βt does not depend on the
choice Dt of coset representatives. To finish the proof that βt is well defined,
we must show that, for γ ∈ Γ0(M), we have βt(γx) = ε′(γ)βt(x) so that βt

respects the relations that define Mk(M, ε). Using that βt does not depend
on the choice of coset representative, we find that for γ ∈ Γ0(M),

βt(γx) =
∑

Tγi∈Dt

ε′(γi)
−1Tγiγx

=
∑

Tγiγ−1∈Dt

ε′(γiγ
−1)−1Tγiγ

−1γx

= ε′(γ)βt(x).

To compute αt ◦ βt, we use that #Dt = [Γ0(N) : Γ0(M)]:

αt(βt(x)) = αt


∑

Tγi

ε′(γi)
−1Tγix




=
∑

Tγi

ε′(γi)
−1(tT−1)Tγix

= tk−2
∑

Tγi

ε′(γi)
−1γix

= tk−2
∑

Tγi

x

= tk−2 · [Γ0(N) : Γ0(M)] · x.

The scalar factor of tk−2 appears instead of t, because t is acting on x as an
element of GL2(Q) and not as an an element of Q. ¤

Definition 8.27 (New and Old Modular Symbols). The space Mk(N, ε)new

of new modular symbols is the intersection of the kernels of the αt as t runs
through all positive divisors of N/M and M runs through positive divisors
of M strictly less than N and divisible by the conductor of ε. The subspace
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Mk(N, ε)old of old modular symbols is the subspace generated by the images
of the βt where t runs through all positive divisors of N/M and M runs
through positive divisors of M strictly less than N and divisible by the
conductor of ε. The new and old subspaces of cuspidal modular symbols are
the intersections of the above spaces with Sk(N, ε).

Example 8.28. The new and old subspaces need not be disjoint, as the fol-
lowing example illustrates! (This contradicts [Mer94, pg. 80].) Consider,
for example, the case N = 6, k = 2, and trivial character. The spaces
M2(Γ0(2)) and M2(Γ0(3)) are each of dimension 1, and each is generated
by the modular symbol {∞, 0}. The space M2(Γ0(6)) is of dimension 3
and is generated by the three modular symbols {∞, 0}, {−1/4, 0}, and
{−1/2, −1/3}. The space generated by the two images of M2(Γ0(2)) un-
der the two degeneracy maps has dimension 2, and likewise for M2(Γ0(3)).
Together these images generate M2(Γ0(6)), so M2(Γ0(6)) is equal to its old
subspace. However, the new subspace is nontrivial because the two degen-
eracy maps M2(Γ0(6)) → M2(Γ0(2)) are equal, as are the two degeneracy
maps

M2(Γ0(6)) → M2(Γ0(3)).

In particular, the intersection of the kernels of the degeneracy maps has
dimension at least 1 (in fact, it equals 1). We verify some of the above
claims using SAGE.

sage: M = ModularSymbols(Gamma0(6)); M

Modular Symbols space of dimension 3 for Gamma_0(6)

of weight 2 with sign 0 over Rational Field

sage: M.new_subspace()

Modular Symbols subspace of dimension 1 of Modular

Symbols space of dimension 3 for Gamma_0(6) of weight

2 with sign 0 over Rational Field

sage: M.old_subspace()

Modular Symbols subspace of dimension 3 of Modular

Symbols space of dimension 3 for Gamma_0(6) of weight

2 with sign 0 over Rational Field

8.7. Explicitly Computing Mk(Γ0(N))

In this section we explicitly compute Mk(Γ0(N)) for various k and N . We
represent Manin symbols for Γ0(N) as triples of integers (i, u, v), where
(u, v) ∈ P1(Z/NZ), and (i, u, v) corresponds to [XiY k−2−i, (u, v)] in the
usual notation. Also, recall from Proposition 3.10 that (u, v) corresponds to



8.7. Explicitly Computing Mk(Γ0(N)) 145

the right coset of Γ0(N) that contains a matrix
(

a b
c d

)
with (u, v) ≡ (c, d) as

elements of P1(Z/NZ), i.e., up to rescaling by an element of (Z/NZ)∗.

8.7.1. Computing P1(Z/NZ). In this section we give an algorithm to
compute a canonical representative for each element of P1(Z/NZ). This
algorithm is extremely important because modular symbols implementa-
tions use it a huge number of times. A more naive approach would be to
store all pairs (u, v) ∈ (Z/NZ)2 and a fixed reduced representative, but this
wastes a huge amount of memory. For example, if N = 105, we would store
an array of

2 · 105 · 105 = 20 billion integers.

Another approach to enumerating P1(Z/NZ) is described at the end
of [Cre97a, §2.2]. It uses the fact that is easy to test whether two pairs
(u0, v0), (u1, v1) define the same element of P1(Z/NZ); they do if and only
if we have equality of cross terms u0v1 = v0u1 (mod N) (see [Cre97a,
Prop. 2.2.1]). So we consider the 0-based list of elements

(8.7.1) (1, 0), (1, 1), . . . , (1, N − 1), (0, 1)

concatenated with the list of nonequivalent elements (d, a) for d | N and
a = 1, . . . , N − 1, checking each time we add a new element to our list (of
(d, a)) whether we have already seen it.

Given a random pair (u, v), the problem is then to find the index of
the element of our list of the equivalent representative in P1(Z/NZ). We
use the following algorithm, which finds a canonical representative for each
element of P1(Z/NZ). Given an arbitrary (u, v), we first find the canonical
equivalent elements (u′, v′). If u′ = 1, then the index is v′. If u′ 6= 1, we
find the corresponding element in an explicit sorted list, e.g., using binary
search.

In the following algorithm, a (mod N) denotes the residue of a mod-
ulo N that satisfies 0 ≤ a < N . Note that we never create and store the list
(8.7.1) itself in memory.

Algorithm 8.29 (Reduction in P1(Z/NZ) to Canonical Form). Given u
and v and a positive integer N , this algorithm outputs a pair u0, v0 such
that (u, v) ≡ (u0, v0) as elements of P1(Z/NZ) and s ∈ Z such that (u, v) =
(su0, sv0) (mod Z/nZ). Moreover, the element (u0, v0) does not depend on
the class of (u, v), i.e., for any s with gcd(N, s) = 1 the input (su, sv) also
outputs (u0, v0). If (u, v) is not in P1(Z/NZ), this algorithm outputs (0, 0), 0.

(1) [Reduce] Reduce both u and v modulo N .

(2) [Easy (0, 1) Case] If u = 0, check that gcd(v, N) = 1. If so, return
s = 1 and (0, 1); otherwise return 0.

(3) [GCD] Compute g = gcd(u, N) and s, t ∈ Z such that g = su+ tN .
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(4) [Not in P 1?] We have gcd(u, v, N) = gcd(g, v), so if gcd(g, v) > 1,
then (u, v) 6∈ P1(Z/NZ), and we return 0.

(5) [Pseudo-Inverse] Now g = su+tN , so we may think of s as “pseudo-
inverse” of u (mod N), in the sense that su is as close as possible
to being 1 modulo N . Note that since g | u, changing s modulo
N/g does not change su (mod N). We can adjust s modulo N/g
so it is coprime to N (by adding multiples of N/g to s). (This is
because 1 = su/g + tN/g, so s is a unit mod N/g, and the map
(Z/NZ)∗ → (Z/(N/g)Z)∗ is surjective, e.g., as we saw in the proof
of Algorithm 4.28.)

(6) [Multiply by s] Multiply (u, v) by s, and replace (u, v) by the equiv-
alent element (g, sv) of P1(Z/NZ).

(7) [Normalize] Compute the unique pair (g, v′) equivalent to (g, v) that
minimizes v, as follows:
(a) [Easy Case] If g = 1, this pair is (1, v).

(b) [Enumerate and Find Best] Otherwise, note that if 1 6= t ∈
(Z/NZ)∗ and tg ≡ g (mod N), then (t − 1)g ≡ 0 (mod N),
so t − 1 = kN/g for some k with 1 ≤ k ≤ g − 1. Then for
t = 1+kN/g coprime to N , we have (gt, vt) = (g, v +kvN/g).
So we compute all pairs (g, v + kvN/g) and pick out the one
that minimizes the least nonnegative residue of vt modulo N .

(c) [Invert s and Output] The s that we computed in the above
steps multiplies the input (u, v) to give the output (u0, v0).
Thus we invert it, since the scalar we output multiplies (u0, v0)
to give (u, v).

Remark 8.30. In the above algorithm, there are many gcd’s with N so one
should create a table of the gcd’s of 0, 1, 2, . . . , N − 1 with N .

Remark 8.31. Another approach is to instead use that

P1(Z/NZ) ∼=
∏

p|N
P1(Z/pνpZ),

where νp = ordp(N), and that it is relatively easy to enumerate the elements
of P1(Z/pnZ) for a prime power pn.

Algorithm 8.32 (List P1(Z/NZ)). Given an integer N > 1, this algorithm
makes a sorted list of the distinct representatives (c, d) of P1(Z/NZ) with
c 6= 0, 1, as output by Algorithm 8.29.

(1) For each c = 1, . . . , N − 1 with g = gcd(c, N) > 1 do the following:
(a) Use Algorithm 8.29 to compute the canonical representative

(u′, v′) equivalent to (c, 1), and include it in the list.
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(b) If g = c, for each d = 2, . . . , N − 1 with gcd(d, N) > 1 and
gcd(c, d) = 1, append the normalized representative of (c, d)
to the list.

(2) Sort the list.

(3) Pass through the sorted list and delete any duplicates.

8.8. Explicit Examples

Explicit detailed examples are crucial when implementing modular symbols
algorithms from scratch. This section contains a number of such examples.

8.8.1. Examples of Computation of Mk(Γ0(N)). In this section, we
compute Mk(Γ0(N)) explicitly in a few cases.

Example 8.33. We compute V = M4(Γ0(1)). Because Sk(Γ0(1)) = 0 and
Mk(Γ0(1)) = CE4, we expect V to have dimension 1 and for each integer
n the Hecke operator Tn to have eigenvalue the sum σ3(n) of the cubes of
positive divisors of n.

The Manin symbols are

x0 = (0, 0, 0), x1 = (1, 0, 0), x2 = (2, 0, 0).

The relation matrix is 


1 0 1
0 0 0

2 − 2 2
1 − 1 1
2 − 2 2




,

where the first two rows correspond to S-relations and the second three to
T -relations. Note that we do not include all S-relations, since it is obvious
that some are redundant, e.g., x + xS = 0 and (xS) + (xS)S = xS + x = 0
are the same since S has order 2.

The echelon form of the relation matrix is(
1 0 1
0 1 0

)
,

where we have deleted the zero rows from the bottom. Thus we may replace
the above complicated list of relations with the following simpler list of
relations:

x0 + x2 = 0,

x1 = 0

from which we immediately read off that the second generator x1 is 0 and
x0 = −x2. Thus M4(Γ0(1)) has dimension 1, with basis the equivalence class
of x2 (or of x0).
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Next we compute the Hecke operator T2 on M4(Γ0(1)). The Heilbronn
matrices of determinant 2 from Proposition 8.8 are

h0 =

(
1 0
0 2

)
,

h1 =

(
1 0
1 2

)
,

h2 =

(
2 0
0 1

)
,

h3 =

(
2 1
0 1

)
.

To compute T2, we apply each of these matrices to x0, then reduce modulo
the relations. We have

x2

(
1 0
0 2

)
= [X2, (0, 0)]

(
1 0
0 2

)
x2,

x2

(
1 0
1 2

)
= [X2, (0, 0)] = x2,

x2

(
2 0
0 1

)
= [(2X)2, (0, 0)] = 4x2,

x2

(
2 1
0 1

)
= [(2X + 1)2, (0, 0)] = x0 + 4x1 + 4x2 ∼ 3x2.

Summing we see that T2(x2) ∼ 9x2 in M4(Γ0(1)). Notice that

9 = 13 + 23 = σ3(2).

The Heilbronn matrices of determinant 3 from Proposition 8.8 are

h0 =

(
1 0
0 3

)
, h1 =

(
1 0
1 3

)
,

h2 =

(
1 0
2 3

)
, h3 =

(
2 1
1 2

)
,

h4 =

(
3 0
0 1

)
, h5 =

(
3 1
0 1

)
,

h6 =

(
3 2
0 1

)
.
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We have

x2

(
1 0
0 3

)
= [X2, (0, 0)]

(
1 0
0 3

)
= x2,

x2

(
1 0
1 3

)
= [X2, (0, 0)] = x2,

x2

(
1 0
2 3

)
= [X2, (0, 0)] = x2,

x2

(
2 1
2 2

)
= [(2X + 1)2, (0, 0)] = x0 + 4x1 + 4x2 ∼ 3x2,

x2

(
3 0
0 1

)
= [(3X)2, (0, 0)] = 9x2,

x2

(
3 1
0 1

)
= [(3X + 1)2, (0, 0)] = x0 + 6x1 + 9x2 ∼ 8x2,

x2

(
3 2
0 1

)
= [(3X + 2)2, (0, 0)] = 4x0 + 12x1 + 9x2 ∼ 5x2.

Summing we see that

T3(x2) ∼ x2 + x2 + x2 + 3x2 + 9x2 + 8x2 + 5x2 = 28x2.

Notice that

28 = 13 + 33 = σ3(3).

Example 8.34. Next we compute M2(Γ0(11)) explicitly. The Manin symbol
generators are

x0 = (0, 1), x1 = (1, 0), x2 = (1, 1), x3 = (1, 2), x4 = (1, 3), x5 = (1, 4),

x6 = (1, 5), x7 = (1, 6), x8 = (1, 7), x9 = (1, 8), x10 = (1, 9), x11 = (1, 10).

The relation matrix is as follows, where the S-relations are above the line
and the T -relations are below it:




1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0

1 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 1 0 0




.
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In weight 2, two out of three T -relations are redundant, so we do not include
them. The reduced row echelon form of the relation matrix is




1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0 1 −1 0
0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0




.

From the echelon form we see that every symbol is equivalent to a combi-
nation of x1 = (1, 0), x9 = (1, 8), and x10 = (1, 9). (Notice that columns 1,
9, and 10 are the pivot columns, where we index columns starting at 0.)

To compute T2, we apply each of the Heilbronn matrices of determinant 2
from Proposition 8.8 to x1, then to x9, and finally to x10. The matrices are
as in Example 8.33 above. We have

T2(x1) = 3(1, 0) + (1, 6) ∼ 3x1 − x10.

Applying T2 to x9 = (1, 8), we get

T2(x9) = (1, 3) + (1, 4) + (1, 5) + (1, 10) ∼ −2x9.

Applying T2 to x10 = (1, 9), we get

T2(x10) = (1, 4) + (1, 5) + (1, 7) + (1, 10) ∼ −x1 − 2x10.

Thus the matrix of T2 with respect to this basis is

T2 =




3 0 0
0 −2 0

−1 0 −2


 ,

where we write the matrix as an operator on the left on vectors written in
terms of x1, x9, and x10. The matrix T2 has characteristic polynomial

(x − 3)(x + 2)2.

The (x − 3) factor corresponds to the weight 2 Eisenstein series, and the
x + 2 factor corresponds to the elliptic curve E = X0(11), which has

a2 = −2 = 2 + 1 − #E(F2).

Example 8.35. In this example, we compute M6(Γ0(3)), which illustrates
both weight greater than 2 and level greater than 1. We have the following
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generating Manin symbols:

x0 = [XY 4, (0, 1)], x1 = [XY 4, (1, 0)],

x2 = [XY 4, (1, 1)], x3 = [XY 4, (1, 2)],

x4 = [XY 3, (0, 1)], x5 = [XY 3, (1, 0)],

x6 = [XY 3, (1, 1)], x7 = [XY 3, (1, 2)],

x8 = [X2Y 2, (0, 1)], x9 = [X2Y 2, (1, 0)],

x10 = [X2Y 2, (1, 1)], x11 = [X2Y 2, (1, 2)],

x12 = [X3Y, (0, 1)], x13 = [X3Y, (1, 0)],

x14 = [X3Y, (1, 1)], x15 = [X3Y, (1, 2)],

x16 = [X4Y, (0, 1)], x17 = [X4Y, (1, 0)],

x18 = [X4Y, (1, 1)], x19 = [X4Y, (1, 2)].

The relation matrix is already very large for M6(Γ0(3)). It is as follows,
where the S-relations are before the line and the T -relations after it:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 −4 0 0 0 6 0 0 0 −4 0 1 0 1
1 1 0 0 −4 0 0 0 6 0 0 0 −4 0 0 0 1 0 0 1
0 0 2 0 0 0 −4 0 0 0 6 0 0 0 −4 0 0 0 2 0
0 1 0 1 0 −4 0 0 0 6 0 0 0 −4 0 0 1 1 0 0
0 0 0 1 1 0 0 −3 0 0 0 3 0 −1 0 −1 0 1 0 0
1 0 0 0 −3 1 0 0 3 0 0 0 −1 0 0 −1 0 0 0 1
0 0 1 0 0 0 −2 0 0 0 3 0 0 0 −2 0 0 0 1 0
0 1 0 0 0 −3 0 1 0 3 0 0 −1 −1 0 0 1 0 0 0
0 0 0 1 0 0 0 −2 1 1 0 1 0 −2 0 0 0 1 0 0
1 0 0 0 −2 0 0 0 1 1 0 1 0 0 0 −2 0 0 0 1
0 0 1 0 0 0 −2 0 0 0 3 0 0 0 −2 0 0 0 1 0
0 1 0 0 0 −2 0 0 1 1 0 1 −2 0 0 0 1 0 0 0
0 0 0 1 0 −1 0 −1 0 3 0 0 1 −3 0 0 0 1 0 0
1 0 0 0 −1 0 0 −1 0 0 0 3 0 1 0 −3 0 0 0 1
0 0 1 0 0 0 −2 0 0 0 3 0 0 0 −2 0 0 0 1 0
0 1 0 0 −1 −1 0 0 3 0 0 0 −3 0 0 1 1 0 0 0
0 1 0 1 0 −4 0 0 0 6 0 0 0 −4 0 0 1 1 0 0
1 0 0 1 0 0 0 −4 0 0 0 6 0 0 0 −4 0 1 0 1
0 0 2 0 0 0 −4 0 0 0 6 0 0 0 −4 0 0 0 2 0
1 1 0 0 −4 0 0 0 6 0 0 0 −4 0 0 0 1 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.
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The reduced row echelon form of the relations matrix, with zero rows re-
moved is
0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3/16 −3/16
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1/16 1/16
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1/2 −5/16 −3/16
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1/2 3/16 5/16
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1/6 1/12 1/12
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1/6 −1/12 −1/12
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1/4 −1/4
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1/4 1/4
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1/16 1/16
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3/16 −3/16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1/2 3/16 5/16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1/2 −5/16 −3/16

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Since these relations are equivalent to the original relations, we see how
x0, . . . , x15 can be expressed in terms of x16, x17, x18, and x19. Thus
M6(Γ0(3)) has dimension 4. For example,

x15 ∼ 1

2
x17 − 5

16
x18 − 3

16
x19.

Notice that the number of relations is already quite large. It is perhaps
surprising how complicated the presentation is already for M6(Γ0(3)). Be-
cause there are denominators in the relations, the above calculation is only
a computation of M6(Γ0(3); Q). Computing M6(Γ0(3); Z) involves finding a
Z-basis for the kernel of the relation matrix (see Exercise 7.5).

As before, we find that with respect to the basis x16, x17, x18, and x19

T2 =




33 0 0 0
3 6 12 12

−3/2 27/2 15/2 27/2
−3/2 27/2 27/2 15/2


 .

Notice that there are denominators in the matrix for T2 with respect to this
basis. It is clear from the definition of T2 acting on Manin symbols that T2

preserves the Z-module M6(Γ0(3)), so there is some basis for M6(Γ0(3)) such
that T2 is given by an integer matrix. Thus the characteristic polynomial
f2 of T2 will have integer coefficients; indeed,

f2 = (x − 33)2 · (x + 6)2.

Note the factor (x−33)2, which comes from the two images of the Eisenstein
series E4 of level 1. The factor x + 6 comes from the cusp form

g = q − 6q2 + · · · ∈ S6(Γ0(3)).

By computing more Hecke operators Tn, we can find more coefficients of g.
For example, the charpoly of T3 is (x − 1)(x − 243)(x − 9)2, and the matrix
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of T5 is

T5 =




3126 0 0 0
240 966 960 960

−120 1080 1086 1080
−120 1080 1080 1086


 ,

which has characteristic polynomial

f5 = (x − 3126)2(x − 6)2.

The matrix of T7 is

T7 =




16808 0 0 0
1296 5144 5184 5184
−648 5832 5792 5832
−648 5832 5832 5792


 ,

with characteristic polynomial

f7 = (x − 16808)2(x + 40)2.

One can put this information together to deduce that

g = q − 6q2 + 9q3 + 4q4 + 6q5 − 54q6 − 40q7 + · · · .

Example 8.36. Consider M2(Γ0(43)), which has dimension 7. With respect
to the symbols

x1 = (1, 0), x32 = (1, 31), x33 = (1, 32),

x39 = (1, 38), x40 = (1, 39), x41 = (1, 40), x42 = (1, 41),

the matrix of T2 is

T2 =




3 0 0 0 0 0 0
0 −2 −1 −1 −1 0 0
0 1 1 0 0 −2 −1
0 0 1 −1 1 0 0
0 0 0 2 1 2 1
0 0 −1 −1 −1 −2 0

−1 0 0 1 1 1 −1




,

which has characteristic polynomial

(x − 3)(x + 2)2(x2 − 2)2.

There is one Eisenstein series and there are three cusp forms with a2 = −2
and a2 = ±

√
2.

Example 8.37. To compute M2(Γ0(2004); Q), we first make a list of the

4032 = (22 + 2) · (3 + 1) · (167 + 1)

elements (a, b) ∈ P1(Z/2004Z) using Algorithm 8.29. The list looks like this:

(0, 1), (1, 0), (1, 1), (1, 2), . . . , (668, 1), (668, 3), (668, 5), (1002, 1).
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For each of the symbols xi, we consider the S-relations and T -relations.
Ignoring the redundant relations, we find 2016 S-relations and 1344 T -
relations. It is simple to quotient out by the S-relations, e.g., by identifying
xi with −xiS = −xj for some j (or setting xi = 0 if xiS = xi). Once
we have taken the quotient by the S-relations, we take the image of all
1344 of the T -relations modulo the S-relations and quotient out by those
relations. Because S and T do not commutate, we cannot only quotient
out by T -relations xi + xiT + xiT

2 = 0 where the xi are the basis after
quotienting out by the S-relations. The relation matrix has rank 3359, so
M2(Γ0(2004); Q) has dimension 673.

If we instead compute the quotient M2(Γ0(2004); Q)+ of M2(Γ0(2004); Q)
by the subspace of elements x − η∗(x), we include relations xi + xiI = 0,
where I =

( −1 0
0 1

)
. There are now 2016 S-relations, 2024 I-relations, and

1344 T -relations. Again, it is relatively easy to quotient out by the S-
relations by identifying xi and −xiS. We then take the image of all 2024
I-relations modulo the S-relations, and again directly quotient out by the
I-relations by identifying [xi] with −[xiI] = −[xj ] for some j, where by [xi]
we mean the class of xi modulo the S-relations. Finally, we quotient out by
the 1344 T -relations, which involves sparse Gauss elimination on a matrix
with 1344 rows and at most three nonzero entries per row. The dimension
of M2(Γ0(2004); Q)+ is 331.

8.9. Refined Algorithm for the Presentation

Algorithm 8.38 (Modular Symbols Presentation). This is an algorithm
to compute Mk(Γ0(N); Q) or Mk(Γ0(N); Q)±, which only requires doing
generic sparse linear algebra to deal with the three term T -relations.

(1) Let x0, . . . , xn by a list of all Manin symbols.

(2) Quotient out the two-term S-relations and if the ± quotient is
desired, by the two-term η-relations. (Note that this is more subtle
than just “identifying symbols in pairs”, since complicated relations
can cause generators to surprisingly equal 0.) Let [xi] denote the
class of xi after this quotienting process.

(3) Create a sparse matrix A with m columns, whose rows encode the
relations

[xi] + [xiT ] + [xiT
2] = 0.

For example, there are about n/3 such rows when k = 2. The
number of nonzero entries per row is at most 3(k − 1). Note that
we must include rows for all i, since even if [xi] = [xj ], it need
not be the case that [xiT ] = [xjT ], since the matrices S and T
do not commute. However, we have an a priori formula for the
dimension of the quotient by all these relations, so we could omit
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many relations and just check that there are enough at the end—if
there are not, we add in more.

(4) Compute the reduced row echelon form of A using Algorithm 7.6.
For k = 2, this is the echelon form of a matrix with size about
n/3 × n/4.

(5) Use what we have done above to read off a sparse matrix R that
expresses each of the n Manin symbols in terms of a basis of Manin
symbols, modulo the relations.

8.10. Applications

8.10.1. Later in This Book. We sketch some of the ways in which we
will apply the modular symbols algorithms of this chapter later in this book.

Cuspidal modular symbols are in Hecke-equivariant duality with cuspidal
modular forms, and as such we can compute modular forms by computing
systems of eigenvalues for the Hecke operators acting on modular symbols.
By the Atkin-Lehner-Li theory of newforms (see, e.g., Theorem 9.4), we can
construct Sk(N, ε) for any N , any ε, and k ≥ 2 using this method. See
Chapter 1 for more details.

Once we can compute spaces of modular symbols, we move to computing
the corresponding modular forms. We define inclusion and trace maps from
modular symbols of one level N to modular symbols of level a multiple or
divisor of N . Using these, we compute the quotient V of the new subspace
of cuspidal modular symbols on which a “star involution” acts as +1. The
Hecke operators act by diagonalizable commuting matrices on this space,
and computing the systems of Hecke eigenvalues is equivalent to computing
newforms

∑
anqn. In this way, we obtain a list of all newforms (normalized

eigenforms) in Sk(N, ε) for any N , ε, and k ≥ 2.

In Chapter 10, we compute with the period mapping from modular sym-
bols to C attached to a newform f ∈ Sk(N, ε). When k = 2, ε = 1 and f
has rational Fourier coefficients, this gives a method to compute the period
lattice associated to a modular elliptic curve attached to a newform (see
Section 10.7). In general, computation of this map is important when find-
ing equations for modular Q-curves, CM curves, and curves with a given
modular Jacobian. It is also important for computing special values of the
L-function L(f, s) at integer points in the critical strip.

8.10.2. Discussion of the Literature and Research. Modular symbols
were introduced by Birch [Bir71] for computations in support of the Birch
and Swinnerton-Dyer conjecture. Manin [Man72] used modular symbols to
prove rationality results about special values of L-functions.



156 8. General Modular Symbols

Merel’s paper [Mer94] builds on work of Shokurov (mainly [Sho80a]),
which develops a higher-weight generalization of Manin’s work partly to
understand rationality properties of special values of L-functions. Cremona’s
book [Cre97a] discusses how to compute the space of weight 2 modular
symbols for Γ0(N), in connection with the problem of enumerating all elliptic
curves of given conductor, and his article [Cre92] discusses the Γ1(N) case
and computation of modular symbols with character.

There have been several Ph.D. theses about modular symbols. Basmaji’s
thesis [Bas96] contains tricks to efficiently compute Hecke operators Tp,
with p very large (see Section 8.3.4), and also discusses how to compute
spaces of half integral weight modular forms building on what one can get
from modular symbols of integral weight. The author’s Ph.D. thesis [Ste00]
discusses higher-weight modular symbols and applies modular symbols to
study Shafarevich-Tate groups (see also [Aga00]). Martin’s thesis [Mar01]
is about an attempt to study an analogue of analytic modular symbols for
weight 1. Gabor Wiese’s thesis [Wie05] uses modular symbols methods to
study weight 1 modular forms modulo p. Lemelin’s thesis [Lem01] discusses
modular symbols for quadratic imaginary fields in the context of p-adic
analogues of the Birch and Swinnerton-Dyer conjecture. See also the survey
paper [FM99], which discusses computation with weight 2 modular symbols
in the context of modular abelian varieties.

The appendix of this book is about analogues of modular symbols for
groups besides finite index subgroups of SL2(Z), e.g., for subgroup of higher
rank groups such as SL3(Z). There has also been work on computing Hilbert
modular forms, e.g., by Lassina Dembelé [Dem05] Hilbert modular forms
are functions on a product of copies of h, and SL2(Z) is replaced by a group
of matrices with entries in a totally real field.

Glenn Stevens, Robert Pollack and Henri Darmon (see [DP04]) have
worked for many years to develop an analogue of modular symbols in a rigid
analytic context, which is helpful for questions about computing with over-
convergent p-adic modular forms or proving results about p-adic L-functions.

Finally we mention that Barry Mazur and some other authors use the
term “modular symbol” in a different way than we do. They use the term
in a way that is dual to our usage; for example, they attach a “modular
symbol” to a modular form or elliptic curve. See [MTT86] for an extensive
discussion of modular symbols from this point of view, where they are used
to construct p-adic L-functions.

8.11. Exercises

8.1 Suppose M is an integer multiple of N . Prove that the natural
map (Z/MZ)∗ → (Z/NZ)∗ is surjective.
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8.2 Prove that SL2(Z) → SL2(Z/NZ) is surjective (see Lemma 8.15).

8.3 Compute M3(Γ1(3)). List each Manin symbol the relations they
satisfy, compute the quotient, etc. Find the matrix of T2. (Check:
The dimension of M3(Γ1(3)) is 2, and the characteristic polynomial
of T2 is (x − 3)(x + 3).)

8.4 Finish the proof of Proposition 8.17.

8.5 (a) Show that if η =
( −1 0

0 1

)
, then ηΓη = Γ for Γ = Γ0(N) and

Γ = Γ1(N).
(b) (*) Give an example of a finite index subgroup Γ such that

ηΓη 6= Γ.





Chapter 9

Computing with
Newforms

In this chapter we pull together results and algorithms from Chapter 3, 4,
7, and 8 and explain how to use linear algebra techniques to compute cusp
forms and eigenforms using modular symbols.

We first discuss in Section 9.1 how to decompose Mk(Γ1(N)) as a direct
sum of subspaces corresponding to Dirichlet characters. Next in Section 9.2
we state the main theorems of Atkin-Lehner-Li theory, which decomposes
Sk(Γ1(N)) into subspaces on which the Hecke operators act diagonalizably
with “multiplicity one”. In Section 9.3 we describe two algorithms for com-
puting modular forms. One algorithm finds a basis of q-expansions, and the
other computes eigenvalues of newforms.

9.1. Dirichlet Character Decomposition

The group (Z/NZ)∗ acts on Mk(Γ1(N)) through diamond-bracket operators
〈d〉, as follows. For d ∈ (Z/NZ)∗, define

f |〈d〉 = f

h“
a b
c d′

”i
k ,

where
(

a b
c d′

)
∈ SL2(Z) is congruent to

(
d−1 0
0 d

)
(mod N). Note that the

map SL2(Z) → SL2(Z/NZ) is surjective (see Exercise 8.2), so the matrix(
a b
c d′

)
exists. To prove that 〈d〉 preserves Mk(Γ1(N)), we prove the more

general fact that Γ1(N) is a normal subgroup of

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
∗ ∗
0 ∗

)
(mod N)

}
.
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This will imply that 〈d〉 preserves Mk(Γ1(N)) since
(

a b
c d′

)
∈ Γ0(N).

Lemma 9.1. The group Γ1(N) is a normal subgroup of Γ0(N), and the
quotient Γ0(N)/Γ1(N) is isomorphic to (Z/NZ)∗.

Proof. See Exercise 9.1. ¤

Alternatively, one can prove that 〈d〉 preserves Mk(Γ1(N)) by show-
ing that 〈d〉 ∈ T and noting that Mk(Γ1(N)) is preserved by T (see Re-
mark 9.11).

The diamond-bracket action is the action of Γ0(N)/Γ1(N) ∼= (Z/NZ)∗

on Mk(Γ1(N)). Since Mk(Γ1(N)) is a finite-dimensional vector space over C,
the 〈d〉 action breaks Mk(Γ1(N)) up as a direct sum of factors corresponding
to the Dirichlet characters D(N, C) of modulus N .

Proposition 9.2. We have

Mk(Γ1(N)) =
⊕

ε∈D(N,C)

Mk(N, ε),

where

Mk(N, ε) =
{
f ∈ Mk(Γ1(N)) : f |〈d〉 = ε(d)f, all d ∈ (Z/NZ)∗}.

Proof. The linear transformations 〈d〉, for the d ∈ (Z/NZ)∗, all commute,
since 〈d〉 acts through the abelian group Γ0(N)/Γ1(N). Also, if e is the
exponent of (Z/NZ)∗, then 〈d〉e = 〈de〉 = 〈1〉 = 1, so the matrix of 〈d〉 is
diagonalizable. It is a standard fact from linear algebra that any commuting
family of diagonalizable linear transformations is simultaneously diagonal-
izable (see Exercise 5.1), so there is a basis f1, . . . , fn for Mk(Γ1(N)) such
that all 〈d〉 act by diagonal matrices. The system of eigenvalues of the ac-
tion of (Z/NZ)∗ on a fixed fi defines a Dirichlet character, i.e., each fi has
the property that fi|〈d〉 = εi(d), for all d ∈ (Z/NZ)∗ and some Dirichlet
character εi. The fi for a given ε then span Mk(N, ε), and taken together
the Mk(N, ε) must span Mk(Γ1(N)). ¤

Definition 9.3 (Character of Modular Form). If f ∈ Mk(N, ε), we say
that ε is the character of the modular form f .

The spaces Mk(N, ε) are a direct sum of subspaces Sk(N, ε) and Ek(N, ε),
where Sk(N, ε) is the subspace of cusp forms, i.e., forms that vanish at all
cusps (elements of Q ∪ {∞}), and Ek(N, ε) is the subspace of Eisenstein
series, which is the unique subspace of Mk(N, ε) that is invariant under all
Hecke operators and is such that Mk(N, ε) = Sk(N, ε)⊕Ek(N, ε). The space
Ek(N, ε) can also be defined as the space spanned by all Eisenstein series
of weight k and level N , as defined in Chapter 5. The space Ek(N, ε) can
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be defined in a third way using the Petersson inner product (see [Lan95,
§VII.5]).

The diamond-bracket operators preserve cusp forms, so the isomorphism
of Proposition 9.2 restricts to an isomorphism of the corresponding cuspidal
subspaces. We illustrate how to use SAGE to make a table of dimension of
Mk(Γ1(N)) and Mk(N, ε) for N = 13.

sage: G = DirichletGroup(13)

sage: G

Group of Dirichlet characters of modulus 13 over

Cyclotomic Field of order 12 and degree 4

sage: dimension_modular_forms(Gamma1(13),2)

13

sage: [dimension_modular_forms(e,2) for e in G]

[1, 0, 3, 0, 2, 0, 2, 0, 2, 0, 3, 0]

Next we do the same for N = 100.

sage: G = DirichletGroup(100)

sage: G

Group of Dirichlet characters of modulus 100 over

Cyclotomic Field of order 20 and degree 8

sage: dimension_modular_forms(Gamma1(100),2)

370

sage: v = [dimension_modular_forms(e,2) for e in G]; v

[24, 0, 0, 17, 18, 0, 0, 17, 18, 0, 0, 21, 18, 0, 0, 17,

18, 0, 0, 17, 24, 0, 0, 17, 18, 0, 0, 17, 18, 0, 0, 21,

18, 0, 0, 17, 18, 0, 0, 17]

sage: sum(v)

370

9.2. Atkin-Lehner-Li Theory

In Section 8.6 we defined maps between modular symbols spaces of different
level. There are similar maps between spaces of cusp forms. Suppose N and
M are positive integers with M | N and that t is a divisor of N/M . Let

(9.2.1) αt : Sk(Γ1(M)) → Sk(Γ1(N))

be the degeneracy map, which is given by f(q) 7→ f(qt). There are also maps
βt in the other direction; see [Lan95, Ch. VIII].
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The old subspace of Sk(Γ1(N)), denoted Sk(Γ1(N))old, is the sum of the
images of all maps αt with M a proper divisor of N and t any divisor of N/M
(note that αt depends on t, N , and M , so there is a slight abuse of notation).
The new subspace of Sk(Γ1(N)), which we denote by Sk(Γ1(N))new, is the
intersection of the kernel of all maps βt with M a proper divisor of N . One
can use the Petersson inner product to show that

Sk(Γ1(N)) = Sk(Γ1(N))new ⊕ Sk(Γ1(N))old.

Moreover, the new and old subspaces are preserved by all Hecke operators.

Let T = Z[T1, T2, . . .] be the commutative polynomial ring in infinitely
many indeterminates Tn. This ring acts (via Tn acting as the nth Hecke

operator) on Sk(Γ1(N)) for every integer N . Let T(N) be the subring of T
generated by the Tn with gcd(n, N) = 1.

Theorem 9.4 (Atkin, Lehner, Li). We have a decomposition

(9.2.2) Sk(Γ1(N)) =
⊕

M |N

⊕

d|N/M

αd(Sk(Γ1(M))new).

Each space Sk(Γ1(M))new is a direct sum of distinct (nonisomorphic) simple

T(N)
C -modules.

Proof. The complete proof is in [Li75]. See also [DS05, Ch. 5] for a beau-
tiful modern treatment of this and related results. ¤

The analogue of Theorem 9.4 with Γ1 replaced by Γ0 is also true (this
is what was proved in [AL70]). The analogue for Sk(N, ε) is also valid, as
long as we omit the spaces Sk(Γ1(M), ε) for which cond(ε) ∤ M .

Example 9.5. If N is prime and k ≤ 11, then Sk(Γ1(N))new = Sk(Γ1(N)),
since Sk(Γ1(1)) = 0.

One can prove using the Petersson inner product that the operators Tn

on Sk(Γ1(N)), with gcd(n, N) = 1, are diagonalizable. Another result of
Atkin-Lehner-Li theory is that the ring of endomorphisms of Sk(Γ1(N))new

generated by all Hecke operators equals the ring generated by the Hecke
operators Tn with (n, N) = 1. This statement need not be true if we do not
restrict to the new subspace, as the following example shows.

Example 9.6. We have

S2(Γ0(22)) = S2(Γ0(11)) ⊕ α2(S2(Γ0(11))),

where each of the spaces S2(Γ0(11)) has dimension 1. Thus S2(Γ0(22))new =
0. The Hecke operator T2 on S2(Γ0(22)) has characteristic polynomial x2 +
2x + 2, which is irreducible. Since α2 commutes with all Hecke operators
Tn, with gcd(n, 2) = 1, the subring T(22) of the Hecke algebra generated by
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operators Tn with n odd is isomorphic to Z (the 2×2 scalar matrices). Thus

on the full space S2(Γ0(22)), we do not have T(22) = T. However, on the new
subspace we do have this equality, since the new subspace has dimension 0.

Example 9.7. The space S2(Γ0(45)) has dimension 3 and basis

f0 = q − q4 − q10 − 2q13 − q16 + 4q19 + · · · ,

f1 = q2 − q5 − 3q8 + 4q11 − 2q17 + · · · ,

f2 = q3 − q6 − q9 − q12 + q15 + q18 + · · · .

The new subspace S2(Γ0(45))new is spanned by the single cusp form

q + q2 − q4 − q5 − 3q8 − q10 + 4q11 − 2q13 + · · · .

We have S2(Γ0(45/5)) = 0 and S2(Γ0(15)) has dimension 1 with basis

q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 − q10 − 4q11 + q12 − 2q13 + · · · .

We use SAGE to verify the above assertions.

sage: S = CuspForms(Gamma0(45), 2, prec=14); S

Cuspidal subspace of dimension 3 of Modular Forms space

of dimension 10 for Congruence Subgroup Gamma0(45) of

weight 2 over Rational Field

sage: S.basis()

[

q - q^4 - q^10 - 2*q^13 + O(q^14),

q^2 - q^5 - 3*q^8 + 4*q^11 + O(q^14),

q^3 - q^6 - q^9 - q^12 + O(q^14)

]

sage: S.new_subspace().basis()

(q - q^4 - q^10 - 2*q^13 + O(q^14),)

sage: CuspForms(Gamma0(9),2)

Cuspidal subspace of dimension 0 of Modular Forms space

of dimension 3 for Congruence Subgroup Gamma0(9) of

weight 2 over Rational Field

sage: CuspForms(Gamma0(15),2, prec=10).basis()

[

q - q^2 - q^3 - q^4 + q^5 + q^6 + 3*q^8 + q^9 + O(q^10)

]

Example 9.8. This example is similar to Example 9.6, except that there
are newforms. We have

S2(Γ0(55)) = S2(Γ0(11)) ⊕ α5(S2(Γ0(11))) ⊕ S2(Γ0(55))new,



164 9. Computing with Newforms

where S2(Γ0(11)) has dimension 1 and S2(Γ0(55))new has dimension 3. The
Hecke operator T5 on S2(Γ0(55))new acts via the matrix




−2 2 −1
−1 1 −1

1 −2 0




with respect to some basis. This matrix has eigenvalues 1 and −1. Atkin-
Lehner theory asserts that T5 must be a linear combination of Tn, with
gcd(n, 55) = 1. Upon computing the matrix for T2, we find by simple linear
algebra that T5 = 2T2 − T4.

Definition 9.9 (Newform). A newform is a T-eigenform f ∈ Sk(Γ1(N))new

that is normalized so that the coefficient of q is 1.

We now motivate this definition by explaining why any T-eigenform can
be normalized so that the coefficient of q is 1 and how such an eigenform has
the property that its Fourier coefficients are exactly the Hecke eigenvalues.

Proposition 9.10. If f =
∑∞

n=0 anqn ∈ Mk(N, ε) is an eigenvector for all
Hecke operators Tn normalized so that a1 = 1, then Tn(f) = anf .

Proof. If ε = 1, then f ∈ Mk(Γ0(N)) and this is Lemma 3.22. However, we
have not yet considered Hecke operators on q-expansions for more general
spaces of modular forms.

The Hecke operators Tp, for p prime, act on Sk(N, ε) by

Tp

( ∞∑

n=0

anqn

)
=

∞∑

n=0

(
anpq

n + ε(p)pk−1anqnp
)

,

and there is a similar formula for Tm with m composite. If f =
∑∞

n=0 anqn

is an eigenform for all Tp, with eigenvalues λp, then by the above formula

(9.2.3) λpf = λpa1q + λpa2q
2 + · · · = Tp(f) = apq + higher terms.

Equating coefficients of q, we see that if a1 = 0, then ap = 0 for all p; hence
an = 0 for all n, because of the multiplicativity of Fourier coefficients and
the recurrence

apr = apr−1ap − ε(p)pk−1apr−2 .

This would mean that f = 0, a contradiction. Thus a1 6= 0, and it makes
sense to normalize f so that a1 = 1. With this normalization, (9.2.3) implies
that λp = ap, as desired. ¤

Remark 9.11. The Hecke algebra TQ on Mk(Γ1(N)) contains the operators
〈d〉, since they satisfy the relation Tp2 = T 2

p −〈p〉pk−1. Thus any T-eigenform
in Mk(Γ1(N)) lies in a subspace Mk(N, ε) for some Dirichlet character ε.
Also, one can even prove that 〈d〉 ∈ Z[. . . , Tn, . . .] (see Exercise 9.2).
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9.3. Computing Cusp Forms

Let Sk(N, ε; C) be the space of cuspidal modular symbols as in Chapter 8.
Let ι∗ be the map of (8.5.8), and let Sk(N, ε; C)+ be the plus one quotient
of cuspidal modular symbols, i.e., the quotient of Sk(N, ε; C) by the image
of ι∗ − 1. It follows from Theorem 8.23 and compatibility of the degeneracy
maps (for modular symbols they are defined in Section 8.6) that the T-
modules Sk(N, ε)new and Sk(N, ε; C)+new are dual as T-modules. Thus finding
the systems of T-eigenvalues on cusp forms is the same as finding the systems
of T-eigenvalues on cuspidal modular symbols.

Our strategy to compute Sk(N, ε) is to first compute spaces Sk(N, ε)new

using the Atkin-Lehner-Li decomposition (9.2.2). To compute Sk(N, ε)new

to a given precision, we compute the systems of eigenvalues of the Hecke
operators Tp on the space V = Sk(N, ε; C)+new, which we will define below.
Using Proposition 9.10, we then recover a basis of q-expansions for newforms.
Note that we only need to compute Hecke eigenvalues Tp, for p prime, not
the Tn for n composite, since the an can be quickly recovered in terms of
the ap using multiplicativity and the recurrence.

For some problems, e.g., construction of models for modular curves,
having a basis of q-expansions is enough. For many other problems, e.g.,
enumeration of modular abelian varieties, one is really interested in the
newforms. We next discuss algorithms aimed at each of these problems.

9.3.1. A Basis of q-Expansions. The following algorithm generalizes Al-
gorithm 3.26. It computes Sk(N, ε) without finding any eigenspaces.

Algorithm 9.12 (Merel’s Algorithm for Computing a Basis). Given inte-
gers m, N and k and a Dirichlet character ε with modulus N , this algorithm
computes a basis of q-expansions for Sk(N, ε) to precision O(qm+1).

(1) [Compute Modular Symbols] Use Algorithm 8.38 to compute

V = Sk(N, ε)+ ⊗ Q(ε),

viewed as a K = Q(ε) vector space, with an action of the Tn.

(2) [Basis for Linear Dual] Write down a basis for V ∗ = Hom(V, Q(ε)).
E.g., if we identify V with Kn viewed as column vectors, then V ∗

is the space of row vectors of length n, and the pairing is the row
× column product.

(3) [Find Generator] Find x ∈ V such that Tx = V by choosing ran-
dom x until we find one that generates. The set of x that fail to
generate lie in a union of a finite number of proper subspaces.
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(4) [Compute Basis] The set of power series

fi =
m∑

n=1

ψi(Tn(x))qn + O(qm+1)

forms a basis for Sk(N, ε) to precision m.

In practice Algorithm 9.12 seems slower than the eigenspace algorithm
that we will describe in the rest of this chapter. The theoretical complexity
of Algorithm 9.12 may be better, because it is not necessary to factor any
polynomials. Polynomial factorization is difficult from the worst-case com-
plexity point of view, though it is usually fast in practice. The eigenvalue
algorithm only requires computing a few images Tp(x) for p prime and x a
Manin symbol on which Tp can easily be computed. The Merel algorithm in-
volves computing Tn(x) for all n and for a fairly easy x, which is potentially
more work.

Remark 9.13. By “easy x”, I mean that computing Tn(x) is easier on x
than on a completely random element of Sk(N, ε)+, e.g., x could be a Manin
symbol.

9.3.2. Newforms: Systems of Eigenvalues. In this section we describe
an algorithm for computing the system of Hecke eigenvalues associated to
a simple subspace of a space of modular symbols. This algorithm is better
than doing linear algebra directly over the number field generated by the
eigenvalues. It only involves linear algebra over the base field and also yields
a compact representation for the answer, which is better than writing the
eigenvalues in terms of a power basis for a number field. In order to use
this algorithm, it is necessary to decompose the space of cuspidal modular
symbols as a direct sum of simples, e.g., using Algorithm 7.17.

Fix N and a Dirichlet character ε of modulus N , and let

V = Mk(N, ε)+

be the +1 quotient of modular symbols (see equation (8.5.8)).

Algorithm 9.14 (System of Eigenvalues). Given a T-simple subspace W ⊂
V of modular symbols, this algorithm outputs maps ψ and e, where ψ : TK →
W is a K-linear map and e : W ∼= L is an isomorphism of W with a number
field L, such that an = e(ψ(Tn)) is the eigenvalue of the nth Hecke operator
acting on a fixed T-eigenvector in W ⊗ Q. (Thus f =

∑∞
n=1 e(ψ(Tn))qn is

a newform.)

(1) [Compute Projection] Let ϕ : V → W ′ be any surjective linear map
such that ker(ϕ) equals the kernel of the T-invariant projection
onto W . For example, compute ϕ by finding a simple submodule
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of V ∗ = Hom(V, K) that is isomorphic to W , e.g., by applying
Algorithm 7.17 to V ∗ with T replaced by the transpose of T .

(2) [Choose v] Choose a nonzero element v ∈ V such that π(v) 6= 0
and computation of Tn(v) is “easy”, e.g., choose v to be a Manin
symbol.

(3) [Map from Hecke Ring] Let ψ be the map T → W ′, given by ψ(t) =
π(tv). Note that computation of ψ is relatively easy, because v was
chosen so that tv is relatively easy to compute. In particular, if
t = Tp, we do not need to compute the full matrix of Tp on V ;
instead we just compute Tp(v).

(4) [Find Generator] Find a random T ∈ T such that the iterates

ψ(T 0), ψ(T ), ψ(T 2), . . . , ψ(T d−1)

are a basis for W ′, where W has dimension d.

(5) [Characteristic Polynomial] Compute the characteristic polynomial
f of T |W , and let L = K[x]/(f). Because of how we chose T
in step (4), the minimal and characteristic polynomials of T |W
are equal, and both are irreducible, so L is an extension of K of
degree d = dim(W ).

(6) [Field Structure] In this step we endow W ′ with a field structure.
Let e : W ′ → L be the unique K-linear isomorphism such that

e(ψ(T i)) ≡ xi (mod f)

for i = 0, 1, 2, ...,deg(f) − 1. The map e is uniquely determined
since the ψ(T i) are a basis for W ′. To compute e, we compute the
change of basis matrix from the standard basis for W ′ to the basis
{ψ(T i)}. This change of basis matrix is the inverse of the matrix
whose rows are the ψ(T i) for i = 0, ...,deg(f) − 1.

(7) [Hecke Eigenvalues] Finally for each integer n ≥ 1, we have

an = e(ψ(Tn)) = e(π(Tn(v))),

where an is the eigenvalue of Tn. Output the maps ψ and e and
terminate.

One reason we separate ψ and e is that when dim(W ) is large, the values
ψ(Tn) take less space to store and are easier to compute, whereas each one of
the values e(ψ(n)) is huge.1 The function e typically involves large numbers
if dim(W ) is large, since e is obtained from the iterates of a single vector.
For many applications, e.g., databases, it is better to store a matrix that
defines e and the images under ψ of many Tn.

1John Cremona initially suggested to me the idea of separating these two maps.
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Example 9.15. The space S2(Γ0(23)) of cusp forms has dimension 2 and
is spanned by two Gal(Q/Q)-conjugate newforms, one of which is

f = q + aq2 + (−2a − 1)q3 + (−a − 1)q4 + 2aq5 + · · · ,

where a = (−1 +
√

5)/2. We will use Algorithm 9.14 to compute a few of
these coefficients.

The space M2(Γ0(23))+ of modular symbols has dimension 3. It has the
following basis of Manin symbols:

[(0, 0)], [(1, 0)], [(0, 1)],

where we use square brackets to differentiate Manin symbols from vectors.
The Hecke operator

T2 =




3 0 0
0 0 2

−1 1/2 −1




has characteristic polynomial (x−3)(x2 +x−1). The kernel of T2 −3 corre-
sponds to the span of the Eisenstein series of level 23 and weight 2, and the
kernel V of T 2

2 +T2 −1 corresponds to S2(Γ0(23)). (We could also have com-
puted V as the kernel of the boundary map M2(Γ0(23))+ → B2(Γ0(23))+.)
Each of the following steps corresponds to the step of Algorithm 9.14 with
the same number.

(1) [Compute Projection] We compute projection onto V (this will suf-
fice to give us a map φ as in the algorithm). The matrix whose first
two columns are the echelon basis for V and whose last column is
the echelon basis for the Eisenstein subspace is




0 0 1
1 0 −2/11
0 1 −3/11




and

B−1 =




2/11 1 0
3/11 0 1

1 0 0


 ,

so projection onto V is given by the first two rows:

π =

(
2/11 1 0
3/11 0 1

)
.

(2) [Choose v] Let v = (0, 1, 0)t. Notice that π(v) = (1, 0)t 6= 0, and
v = [(1, 0)] is a sum of only one Manin symbol.
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(3) [Map from Hecke Ring] This step is purely conceptual, since no
actual work needs to be done. We illustrate it by computing ψ(T1)
and ψ(T2). We have

ψ(T1) = π(v) = (1, 0)t

and

ψ(T2) = π(T2(v)) = π((0, 0, 1/2)t) = (0, 1/2)t.

(4) [Find Generator] We have

ψ(T 0
2 ) = ψ(T1) = (1, 0)t,

which is clearly independent from ψ(T2) = (0, 1/2)t. Thus we find
that the image of the powers of T = T2 generate V .

(5) [Characteristic Polynomial] The matrix of T2|V is
(

0 2
1/2 −1

)
, which

has characteristic polynomial f = x2 +x−1. Of course, we already
knew this because we computed V as the kernel of T 2

2 + T2 − 1.

(6) [Field Structure] We have

ψ(T 0
2 ) = π(v) = (1, 0)t and ψ(T2) = (0, 1/2).

The matrix with rows the ψ(T i
2) is

(
1 0
0 1/2

)
, which has inverse e =

( 1 0
0 2 ). The matrix e defines an isomorphism between V and the

field

L = Q[x]/(f) = Q((−1 +
√

5)/2).

I.e., e((1, 0)) = 1 and e((0, 1)) = 2x, where x = (−1 +
√

5)/2.

(7) [Hecke Eigenvalues] We have an = e(Ψ(Tn)). For example,

a1 = e(Ψ(T1)) = e((1, 0)) = 1,

a2 = e(Ψ(T2)) = e((0, 1/2)) = x,

a3 = e(Ψ(T3)) = e(π(T3(v)))=e(π((0, −1, −1)t))

= e((−1, −1)t)=−1 − 2x,

a4 = e(Ψ(T4)) = e(π((0, −1, −1/2)t)) = e((−1, −1/2)t) = −1 − x,

a5 = e(Ψ(T5)) = e(π((0, 0, 1)t)) = e((0, 1)t) = 2x,

a23 = e(Ψ(T23)) = e(π((0, 1, 0)t)) = e((1, 0)t) = 1,

a97 = e(Ψ(T23)) = e(π((0, 14, 3)t)) = e((14, 3)t) = 14 + 6x.

Example 9.16. It is easier to appreciate Algorithm 9.14 after seeing how
big the coefficients of the power series expansion of a newform typically are,
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when the newform is defined over a large field. For example, there is a
newform

f =
∞∑

n=1

anqn ∈ S2(Γ0(389))

such that if α = a2, then

1097385680·a3(f) = −20146763x19 + 102331615x18 + 479539092x17

− 3014444212x16 − 3813583550x15 + 36114755350x14

+ 6349339639x13 − 227515736964x12 + 71555185319x11

+ 816654992625x10 − 446376673498x9 − 1698789732650x8

+ 1063778499268x7 + 1996558922610x6 − 1167579836501x5

− 1238356001958x4 + 523532113822x3 + 352838824320x2

− 58584308844x − 25674258672.

In contrast, if we take v = {0, ∞} = (0, 1) ∈ M2(Γ0(389))+, then

T3(v) = −4(1, 0) + 2(1, 291) − 2(1, 294) − 2(1, 310) + 2(1, 313) + 2(1, 383).

Storing T3(v), T5(v), . . . as vectors is more compact than storing a3(f), a5(f),
. . . directly as polynomials in a2!

9.4. Congruences between Newforms

This section is about congruences between modular forms. Understanding
congruences is crucial for studying Serre’s conjectures, Galois representa-
tions, and explicit construction of Hecke algebras. We assume more back-
ground in algebraic number theory here than elsewhere in this book.

9.4.1. Congruences between Modular Forms. Let Γ be an arbitrary
congruence subgroup of SL2(Z), and suppose f ∈ Mk(Γ) is a modular form
of integer weight k for Γ. Since

(
1 N
0 1

)
∈ Γ for some integer N , the form

f has a Fourier expansion in nonnegative powers of q1/N . For a rational
number n, let an(f) be the coefficient of qn in the Fourier expansion of f .
Put

ordq(f) = min{n ∈ Q : an 6= 0},

where by convention we take min ∅ = +∞, so ordq(0) = +∞.

9.4.1.1. The j-invariant. Let

j =
1

q
+ 744 + 196884q + · · ·

be the j-function, which is a weight 0 modular function that is holomorphic
except for a simple pole at ∞ and has integer Fourier coefficients (see, e.g.,
[Ser73, Section VIII.3.3]).
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Lemma 9.17. Suppose g is a weight 0 level 1 modular function that is holo-
morphic except possibly with a pole of order n at ∞. Then g is a polynomial
in j of degree at most n. Moreover, the coefficients of this polynomial lie in
the ideal I generated by the coefficients am(g) with m ≤ 0.

Proof. If n = 0, then g ∈ M0(SL2(Z)) = C, so g is constant with constant
term in I, so the statement is true. Next suppose n > 0 and the lemma has
been proved for all functions with smaller order poles. Let α = an(g), and
note that

ordq(g − αjn) = ordq

(
g − α ·

(
1

q
+ 744 + 196884q + · · ·

)n)
> −n.

Thus by induction h = g − αjn is a polynomial in j of degree < n with
coefficients in the ideal generated by the coefficients am(g) with m < 0. It
follows that g = α · jn − h satisfies the conclusion of the lemma. ¤

9.4.1.2. Sturm’s Theorem. If O is the ring of integers of a number field, m
is a maximal ideal of O, and f =

∑
anqn ∈ O[[q1/N ]] for some integer N ,

let

ordm(f) = ordq(f mod m) = min{n ∈ Q : an 6∈ m}.

Note that ordm(fg) = ordm(f) + ordm(g). The following theorem was first
proved in [Stu87].

Theorem 9.18 (Sturm). Let m be a prime ideal in the ring of integers O of
a number field K, and let Γ be a congruence subgroup of SL2(Z) of index m
and level N . Suppose f ∈ Mk(Γ, O) is a modular form and

ordm(f) >
km

12

or f ∈ Sk(Γ, O) is a cusp form and

ordm(f) >
km

12
− m − 1

N
.

Then f ≡ 0 (mod m).

Proof. Case 1: First we assume Γ = SL2(Z).
Let

∆ = q + 24q2 + · · · ∈ S12(SL2(Z), Z)

be the ∆ function. Since ordm(f) > k/12, we have ordm(f12) > k. We have

(9.4.1) ordq(f
12 · ∆−k) = 12 · ordq(f) − k · ordq(∆) ≥ −k,

since f is holomorphic at infinity and ∆ has a zero of order 1. Also

(9.4.2) ordm(f12 · ∆−k) = ordm(f12) − k · ordm(∆) > k − k = 0.
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Combining (9.4.1) and (9.4.2), we see that

f12 · ∆−k =
∑

n≥−k

bnqn,

with bn ∈ O and bn ∈ m if n ≤ 0.

By Lemma 9.17,

f12 · ∆−k ∈ m[j]

is a polynomial in j of degree at most k with coefficients in m. Thus

f12 ∈ m[j] · ∆k,

so since the coefficients of ∆ are integers, every coefficient of f12 is in m.
Thus ordm(f12) = +∞, hence ordm(f) = +∞, so f = 0, as claimed.

Case 2: Γ Arbitrary

Let N be such that Γ(N) ⊂ Γ, so also f ∈ Mk(Γ(N)). If g ∈ Mk(Γ(N))
is arbitrary, then because Γ(N) is a normal subgroup of SL2(Z), we have
that for any γ ∈ Γ(N) and δ ∈ SL2(Z),

(g[δ]k)[γ]k = g[δγ]k = g[γ′δ]k = (g[γ′]k)[δ]k = g[δ]k ,

where γ′ ∈ SL2(Z). Thus for any δ ∈ SL2(Z), we have that g[δ]k ∈ Mk(Γ(N)),
so SL2(Z) acts on Mk(Γ(N)).

It is a standard (but nontrivial) fact about modular forms, which comes
from the geometry of the modular curve X(N) over Q(ζN ) and Z[ζN ], that

Mk(Γ(N)) has a basis with Fourier expansions in Z[ζN ][[q1/N ]] and that the
action of SL2(Z) on Mk(Γ(N)) preserves

Mk(Γ(N), Q(ζN )) = Mk(Γ(N)) ∩ (Q(ζN )[[q1/N ]])

and the cuspidal subspace Sk(Γ(N), Q(ζN )). In particular, for any γ ∈
SL2(Z),

f [γ]k ∈ Mk(Γ(N), K(ζN ))

Moreover, the denominators of f [γ]k are bounded, since f is an O[ζN ]-linear

combination of a basis for Mk(Γ(N), Z[ζN ]), and the denominators of f [γ]k

divide the product of the denominators of the images of each of these basis
vectors under [γ]k.

Let L = K(ζN ). Let M be a prime of OL that divides mOL. We will
now show that for each γ ∈ SL2(Z), the Chinese Remainder Theorem implies
that there is an element Aγ ∈ L∗ such that

(9.4.3) Aγ · f [γ]k ∈ Mk(Γ(N), OL) and ordM(Aγ · f [γ]k) < ∞.

First find A ∈ L∗ such that A · f [γ]k has coefficients in OL. Choose α ∈ M
with α 6∈ M2, and find a negative power αt such that αt · A · f [γ]k has M-
integral coefficients and finite valuation. This is possible because we assumed
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that f is nonzero. Use the Chinese Remainder Theorem to find β ∈ OL such
that β ≡ 1 (mod M) and β ≡ 0 (mod ℘) for each prime ℘ 6= M that divides
(α). Then for some s we have

βs · αt · A · f [γ]k = Aγ · f [γ]k ∈ Mk(Γ(N), OL)

and ordM(Aγ · f [γ]k) < ∞.

Write

SL2(Z) =
m⋃

i=1

Γγi

with γ1 = ( 1 0
0 1 ), and let

F = f ·
m∏

i=2

Aγi · f [γi]k .

Then F ∈ Mkm(SL2(Z)) and since M ∩ OK = m, we have ordM(f) =
ordm(f), so

ordM(F ) ≥ ordM(f) = ordm(f) >
km

12
.

Thus we can apply Case 1 to conclude that

ordM(F ) = +∞.

Thus

(9.4.4) ∞ = ordM(F ) = ordm(f) +
m∑

i=2

ordM(Aγif
[γ]k),

so ordm(f) = +∞, because of (9.4.3).

We next obtain a better bound when f is a cusp form. Since [γ]k pre-

serves cusp forms, ordM(Aγif
[γ]k) ≥ 1

N for each i. Thus

ordM(F ) ≥ ordM(f) +
m − 1

N
= ordm(f) +

m − 1

N
>

km

12
,

since now we are merely assuming that

ordm(f) >
km

12
− m − 1

N
.

Thus we again apply Case 1 to conclude that ordM(F ) = +∞, and using
(9.4.4), conclude that ordm(f) = +∞. ¤

Corollary 9.19. Let m be a prime ideal in the ring of integers O of a
number field. Suppose f, g ∈ Mk(Γ, O) are modular forms and

an(f) ≡ an(g) (mod m)
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for all

n ≤





km

12
− m − 1

N
if f − g ∈ Sk(Γ, O),

km

12
otherwise,

where m = [SL2(Z) : Γ]. Then f ≡ g (mod m).

Buzzard proved the following corollary, which is extremely useful in prac-
tical computations. It asserts that the Sturm bound for modular forms with
character is the same as the Sturm bound for Γ0(N).

Corollary 9.20 (Buzzard). Let m be a prime ideal in the ring of inte-
gers O of a number field. Suppose f, g ∈ Mk(N, ε, O) are modular forms
with Dirichlet character ε : (Z/NZ)∗ → C∗ and assume that

an(f) ≡ an(g) (mod m) for all n ≤ km

12
,

where

m = [SL2(Z) : Γ0(N)] = #P1(Z/NZ) = N ·
∏

p|N

(
1 +

1

p

)
.

Then f ≡ g (mod m).

Proof. Let h = f − g and let r = km/12, so ordm(h) > r. Let s be the
order of the Dirichlet character ε. Then hs ∈ Mks(Γ0(N)) and

ordm(hs) > sr =
ksm

12
.

By Theorem 9.18, we have ordm(hs) = ∞, so ordm(h) = ∞. It follows that
f ≡ g (mod m). ¤

9.4.1.3. Congruence for Newforms. Sturm’s paper [Stu87] also applies some
results of Asai on q-expansions at various cusps to obtain a more refined
result for newforms.

Theorem 9.21 (Sturm). Let N be a positive integer that is square-free,
and suppose f and g are two newforms in Sk(N, ε, O), where O is the ring
of integers of a number field, and suppose that m is a maximal ideal of O.
Let I be an arbitrary subset of the prime divisors of N . If ap(f) = ap(g) for
all p ∈ I and if

ap(f) ≡ ap(g) (mod m)

for all primes

p ≤ k · [SL2(Z) : Γ0(N)]

12 · 2#I
,

then f ≡ g (mod m).



9.4. Congruences between Newforms 175

The paper [BS02] contains a similar result about congruences between
newforms, which does not require that the level be square-free. Recall from
Definition 4.18 that the conductor of a Dirichlet character ε is the largest
divisor c of N such that ε factors through (Z/cZ)×.

Theorem 9.22. Let N > 4 be any integer, and suppose f and g are two
normalized eigenforms in Sk(N, ε; O), where O is the ring of integers of a
number field, and suppose that m is a maximal ideal of O. Let I be the set
of prime divisors of N that do not divide N

cond(ε) . If

ap(f) ≡ ap(g) (mod m)

for all primes p ∈ I and for all primes

p ≤ k · [SL2(Z) : Γ0(N)]

12 · 2#I
,

then f ≡ g (mod m).

For the proof, see Lemma 1.4 and Corollary 1.7 in [BS02, §1.3].

9.4.2. Generating the Hecke Algebra. The following theorem appeared
in [LS02, Appendix], except that we give a better bound here. It is a nice
application of the congruence result above, which makes possible explicit
computations with Hecke rings T.

Theorem 9.23. Suppose Γ is a congruence subgroup that contains Γ1(N)
and let

(9.4.5) r =
km

12
− m − 1

N
,

where m = [SL2(Z) : Γ]. Then the Hecke algebra

T = Z[. . . , Tn, . . .] ⊂ End(Sk(Γ))

is generated as a Z-module by the Hecke operators Tn for n ≤ r.

Proof. For any ring R, let Sk(N, R) = Sk(N ; Z) ⊗ R, where Sk(N ; Z) ⊂
Z[[q]] is the submodule of cusp forms with integer Fourier expansion at the
cusp ∞, and let TR = T ⊗Z R. For any ring R, there is a perfect pairing

Sk(N, R) ⊗R TR → R

given by 〈f, T 〉 7→ a1(T (f)) (this is true for R = Z, hence for any R).

Let M be the submodule of T generated by T1, T2, . . . , Tr, where r is the
largest integer ≤ kN

12 · [SL2(Z) : Γ]. Consider the exact sequence of additive
abelian groups

0 → M
i→ T → T/M → 0.
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Let p be a prime and use the fact that tensor product is right exact to obtain
an exact sequence

M ⊗ Fp
i→ T ⊗ Fp → (T/M) ⊗ Fp → 0.

Suppose that f ∈ Sk(N, Fp) pairs to 0 with each of T1, . . . , Tr. Then

am(f) = a1(Tmf) = 〈f, Tm〉 = 0

in Fp for each m ≤ r. By Theorem 9.18, it follows that f = 0. Thus the
pairing restricted to the image of M ⊗Fp in TFp is nondegenerate, so because
(9.4.5) is perfect, it follows that

dimFp i(M ⊗ Fp) = dimFp Sk(N, Fp).

Thus (T/M) ⊗ Fp = 0. Repeating the argument for all primes p shows that
T/M = 0, as claimed. ¤

Remark 9.24. In general, the conclusion of Theorem 9.23 is not true if
one considers only Tn where n runs over the primes less than the bound.
Consider, for example, S2(11), where the bound is 1 and there are no primes
≤ 1. However, the Hecke algebra is generated as an algebra by operators Tp

with p ≤ r.

9.5. Exercises

9.1 Prove that the group Γ1(N) is a normal subgroup of Γ0(N) and
that the quotient Γ0(N)/Γ1(N) is isomorphic to (Z/NZ)∗.

9.2 Prove that the operators 〈d〉 are elements of Z[. . . , Tn, . . .]. [Hint:
Use Dirichlet’s theorem on primes in arithmetic progression.]

9.3 Find an example like Example 9.6 but in which the new subspace is
nonzero. More precisely, find an integer N such that the Hecke ring
on S2(Γ0(N)) is not equal to the ring generated by Hecke operators
Tn with gcd(n, N) = 1 and S2(Γ0(N))new 6= 0.

9.4 (a) Following Example 9.15, compute a basis for S2(Γ0(31)).
(b) Use Algorithm 9.12 to compute a basis for S2(Γ0(31)).



Chapter 10

Computing Periods

This chapter is about computing period maps associated to newforms. We
assume you have read Chapters 8 and 9 and that you are familiar with
abelian varieties at the level of [Ros86].

In Section 10.1 we introduce the period map and give some examples
of situations in which computing it is relevant. Section 10.2 is about how
to use the period mapping to attach an abelian variety to any newform. In
Section 10.3, we introduce extended modular symbols, which are the key
computational tool for quickly computing periods of modular symbols. We
turn to numerical computation of period integrals in Section 10.4, and in
Section 10.5 we explain how to use Atkin-Lehner operators to speed conver-
gence. In Section 10.6 we explain how to compute the full period map with
a minimum amount of work.

Section 10.7 briefly sketches three approaches to computing all elliptic
curves of a given conductor.

This chapter was inspired by [Cre97a], which contains similar algo-
rithms in the special case of a newform f =

∑
anqn ∈ S2(Γ0(N)) with

an ∈ Z.

See also [Dok04] for algorithmic methods to compute special values of
very general L-functions, which can be used for approximating L(f, s) for
arbitrary s.

177
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10.1. The Period Map

Let Γ be a subgroup of SL2(Z) that contains Γ1(N) for some N , and suppose

f =
∑

n≥1

anqn ∈ Sk(Γ)

is a newform (see Definition 9.9). In this chapter we describe how to ap-
proximately compute the complex period mapping

Φf : Mk(Γ) → C,

given by

Φf (P{α, β}) = 〈f, P{α, β}〉 =

∫ β

α
f(z)P (z, 1)dz,

as in Section 8.5. As an application, we can approximate the special values
L(f, j), for j = 1, 2, . . . , k −1 using (8.5.5). We can also compute the period
lattice attached to a modular abelian variety, which is an important step,
e.g., in enumeration of Q-curves (see, e.g., [GLQ04]) or computation of a
curve whose Jacobian is a modular abelian variety Af (see, e.g., [Wan95]).

10.2. Abelian Varieties Attached to Newforms

Fix a newform f ∈ Sk(Γ), where Γ1(N) ⊂ Γ for some N . Let f1, . . . , fd be
the Gal(Q/Q)-conjugates of f , where Gal(Q/Q) acts via its action on the
Fourier coefficients, which are algebraic integers (since they are the eigen-
values of matrices with integer entries). Let

(10.2.1) Vf = Cf1 ⊕ · · · ⊕ Cfd ⊂ Sk(Γ)

be the subspace of cusp forms spanned by the Gal(Q/Q)-conjugates of f .
One can show using the results discussed in Section 9.2 that the above sum
is direct, i.e., that Vf has dimension d.

The integration pairing induces a T-equivariant homomorphism

Φf : Mk(Γ) → V ∗
f = HomC(Vf , C)

from modular symbols to the C-linear dual V ∗
f of Vf . Here T acts on V ∗

f via

(ϕt)(x) = ϕ(tx), and this homomorphism is T-stable by Theorem 8.21. The
abelian variety attached to f is the quotient

Af (C) = V ∗
f /Φf (Sk(Γ; Z)).

Here Sk(Γ; Z) = Sk(Γ), and we include the Z in the notation to emphasize
that these are integral modular symbols. See [Shi59] for a proof that Af (C)
is an abelian variety (in particular, Φf (Sk(Γ; Z)) is a lattice, and V ∗

f is

equipped with a nondegenerate Riemann form).

When k = 2, we can also construct Af as a quotient of the modular
Jacobian Jac(XΓ), so Af is an abelian variety canonically defined over Q.
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In general, we have an exact sequence

0 → Ker(Φf ) → Sk(Γ) → V ∗
f → Af (C) → 0.

Remark 10.1. When k = 2, the abelian variety Af has a canonical struc-
ture of abelian variety over Q. Moreover, there is a conjecture of Ribet and
Serre in [Rib92] that describes the simple abelian varieties A over Q that
should arise via this construction. In particular, the conjecture is that A
is isogenous to some abelian variety Af if and only if End(A/Q) ⊗ Q is a
number field of degree dim(A). The abelian varieties Af have this property
since Q(. . . , an(f), . . .) embeds in End(A/Q)⊗Q and the endomorphism ring
over Q has degree at most dim(A) (see [Rib92] for details). Ribet proves
that his conjecture is a consequence of Serre’s conjecture [Ser87] on mod-
ularity of mod p odd irreducible Galois representations (see Section 1.5).
Much of Serre’s conjecture has been proved by Khare and Wintenberger
(not published). In particular, it is a theorem that if A is a simple abelian
variety over Q with End(A/Q) ⊗ Q a number field of degree dim(A) and if
A has good reduction at 2, then A is isogenous to some abelian variety Af .

Remark 10.2. When k > 2, there is an object called a Grothendieck motive
that is attached to f and has a canonical “structure over Q”. See [Sch90].

10.3. Extended Modular Symbols

In this section, we extend the notion of modular symbols to allows symbols
of the form P{w, z} where w and z are arbitrary elements of h∗ = h∪P1(Q).

Definition 10.3 (Extended Modular Symbols). The abelian group Mk of
extended modular symbols of weight k is the Z-span of symbols P{w, z}, with
P ∈ Vk−2 a homogeneous polynomial of degree k−2 with integer coefficients,
modulo the relations

P · ({w, y} + {y, z} + {z, w}) = 0

and modulo any torsion.

Fix a finite index subgroup Γ ⊂ SL2(Z). Just as for usual modular
symbols, Mk is equipped with an action of Γ, and we define the space of
extended modular symbols of weight k for Γ to be the quotient

Mk(Γ) = (Mk/〈γx − x : γ ∈ Γ, x ∈ Mk〉)/ tor .

The quotient Mk(Γ) is torsion-free and fixed by Γ.

The integration pairing extends naturally to a pairing

(10.3.1)
(
Sk(Γ) ⊕ Sk(Γ)

)
× Mk(Γ) → C,
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where we recall from (8.5.1) that Sk(Γ) denotes the space of antiholomorphic
cusp forms. Moreover, if

ι : Mk(Γ) → Mk(Γ)

is the natural map, then ι respects (10.3.1) in the sense that for all f ∈
Sk(Γ) ⊕ Sk(Γ) and x ∈ Mk(Γ), we have

〈f, x〉 = 〈f, ι(x)〉.
As we will see soon, it is often useful to replace x ∈ Mk(Γ) first by ι(x)
and then by an equivalent sum

∑
yi of symbols yi ∈ Mk(N, ε) such that

〈f,
∑

yi〉 is easier to compute numerically than 〈f, x〉.
Let ε be a Dirichlet character of modulus N . If γ =

(
a b
c d

)
∈ SL2(Z), let

ε(γ) = ε(d). Let Mk(N, ε) be the quotient of Mk(N, Z[ε]) by the relations
γ(x) − ε(γ)x, for all x ∈ Mk(N, Z[ε]), γ ∈ Γ0(N), and modulo any torsion.

10.4. Approximating Period Integrals

In this section we assume Γ is a congruence subgroup of SL2(Z) that contains
Γ1(N) for some N . Suppose α ∈ h, so Im(α) > 0 and m is an integer
such that 0 ≤ m ≤ k − 2, and consider the extended modular symbol
XmY k−2−m{α,∞}. Let 〈·, ·〉 denote the integration pairing from Section 8.5.
Given an arbitrary cusp form f =

∑∞
n=1 anqn ∈ Sk(Γ), we have

Φf (XmY k−2−m{α,∞}) =
〈
f, XmY k−2−m{α,∞}

〉
(10.4.1)

=

∫ ∞

α
f(z)zmdz(10.4.2)

=
∞∑

n=1

an

∫ ∞

α
e2πinzzmdz.(10.4.3)

The reversal of summation and integration is justified because the imaginary
part of α is positive so that the sum converges absolutely. The following
lemma is useful for computing the above infinite sum.

Lemma 10.4.

(10.4.4)

∫ ∞

α
e2πinzzmdz = e2πinα

m∑

s=0


(−1)sαm−s

(2πin)s+1

m∏

j=(m+1)−s

j


 .

Proof. See Exercise 10.1 ¤

In practice we will usually be interested in computing the period map
Φf when f ∈ Sk(Γ) is a newform. Since f is a newform, there is a Dirichlet
character ε such that f ∈ Sk(N, ε). The period map Φf : Mk(Γ) → C then
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factors through the quotient Mk(N, ε), so it suffices to compute the period
map on modular symbols in Mk(N, ε).

The following proposition is an analogue of [Cre97a, Prop. 2.1.1(5)].

Proposition 10.5. For any γ ∈ Γ0(N), P ∈ Vk−2 and α ∈ h∗, we have the
following relation in Mk(N, ε):

P{∞, γ(∞)} = P{α, γ(α)} + (P − ε(γ)γ−1P ){∞, α}(10.4.5)

= ε(γ)(γ−1P ){α,∞} − P{γ(α), ∞}.(10.4.6)

Proof. By definition, if x ∈ Mk(N, ε) is a modular symbol and γ ∈ Γ0(N),
then γx = ε(γ)x. Thus ε(γ)γ−1x = x, so

P{∞, γ(∞)} = P{∞, α} + P{α, γ(α)} + P{γ(α), γ(∞)}
= P{∞, α} + P{α, γ(α)} + ε(γ)γ−1(P{γ(α), γ(∞)})

= P{∞, α} + P{α, γ(α)} + ε(γ)(γ−1P ){α,∞}
= P{α, γ(α)} + P{∞, α} − ε(γ)(γ−1P ){∞, α}
= P{α, γ(α)} + (P − ε(γ)γ−1P ){∞, α}.

The second equality in the statement of the proposition now follows easily.
¤

In the case of weight 2 and trivial character, the “error term”

(10.4.7) (P − ε(γ)γ−1P ){∞, α}
vanishes since P is constant and ε(γ) = 1. In general this term does not
vanish. However, we can suitably modify the formulas found in [Cre97a,
2.10] and still obtain an algorithm for computing period integrals.

Algorithm 10.6 (Period Integrals). Given γ ∈ Γ0(N), P ∈ Vk−2 and
f ∈ Sk(N, ε) presented as a q-expansion to some precision, this algorithm
outputs an approximation to the period integral 〈f, P{∞, γ(∞)}〉.

(1) Write γ =
(

a b
cN d

)
∈ Γ0(N), with a, b, c, d ∈ Z, and set α = −d+i

cN in
Proposition 10.5.

(2) Replacing γ by −γ if necessary, we find that the imaginary parts
of α and γ(α) = a+i

cN are both equal to the positive number 1
cN .

(3) Use (10.4.3) and Lemma 10.4 to compute the integrals that appear
in Proposition 10.5.

It would be nice if the modular symbols of the form P{∞, γ(∞)} for
P ∈ Vk−2 and γ ∈ Γ0(N) were to generate a large subspace of Mk(N, ε)⊗Q.
When k = 2 and ε = 1, Manin proved in [Man72] that the map Γ0(N) →
H1(X0(N), Z) sending γ to {0, γ(0)} is a surjective group homomorphism.
When k > 2, the author does not know a similar group-theoretic statement.
However, we have the following theorem.
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r
∞

-P r
γ∞

-Q r
β∞

rα -P

r
γα

-Q rβα

Figure 10.4.1. “Transporting” a transportable modular symbol.

Theorem 10.7. Any element of Sk(N, ε) can be written in the form

n∑

i=1

Pi{∞, γi(∞)}

for some Pi ∈ Vk−2 and γi ∈ Γ0(N). Moreover, Pi and γi can be chosen so
that

∑
Pi =

∑
ε(γi)γ

−1
i (Pi), so the error term (10.4.7) vanishes.

The author and Helena Verrill prove this theorem in [SV01]. The con-
dition that the error term vanishes means that one can replace ∞ by any α
in the expression for the modular symbol and obtain an equivalent modular
symbol. For this reason, we call such modular symbols transportable, as
illustrated in Figure 10.4.1.

Note that in general not every element of the form P{∞, γ(∞)} must lie
in Sk(N, ε). However, if γP = P , then P{∞, γ(∞)} does lie in Sk(N, ε). It
would be interesting to know under what circumstances Sk(N, ε) is generated
by symbols of the form P{∞, γ(∞)} with γP = P . This sometimes fails
for k odd; for example, when k = 3, the condition γP = P implies that
γ ∈ Γ0(N) has an eigenvector with eigenvalue 1, and hence is of finite order.
When k is even, the author can see no obstruction to generating Sk(N, ε)
using such symbols.
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10.5. Speeding Convergence Using Atkin-Lehner

Let wN =
(

0 −1
N 0

)
∈ Mat2(Z). Consider the Atkin-Lehner involution WN

on Mk(Γ1(N)), which is defined by

WN (f) = N (2−k)/2 · f |[wN ]k

= N (2−k)/2 · f

(
− 1

Nz

)
· Nk−1 · (Nz)−k

= N−k/2 · z−k · f

(
− 1

Nz

)
.

Here we take the positive square root if k is odd. Then W 2
N = (−1)k is an

involution when k is even.

There is an operator on modular symbols, which we also denote WN ,
which is given by

WN (P{α, β}) = N (2−k)/2 · wN (P ){wN (α), wN (β)}

= N (2−k)/2 · P (−Y, NX)

{
− 1

αN
, − 1

βN

}
,

and one has that if f ∈ Sk(Γ1(N)) and x ∈ Mk(Γ1(N)), then

〈WN (f), x〉 = 〈f, WN (x)〉.

If ε is a Dirichlet character of modulus N , then the operator WN sends
Sk(N, ε) to Sk(Γ1(N), ε). Thus if ε2 = 1, then WN preserves Sk(N, ε). In
particular, WN acts on Sk(Γ0(N)).

The next proposition shows how to compute the pairing 〈f, P{∞, γ(∞)}〉
under certain restrictive assumptions. It generalizes a result of [Cre97b] to
higher weight.

Proposition 10.8. Let f ∈ Sk(N, ε) be a cusp form which is an eigenform
for the Atkin-Lehner operator WN having eigenvalue w ∈ {±1} (thus ε2 = 1
and k is even). Then for any γ ∈ Γ0(N) and any P ∈ Vk−2, with the property
that γP = ε(γ)P , we have the following formula, valid for any α ∈ h:

〈f, P{∞, γ(∞)}〉 =
〈
f, w

P (Y,−NX)

Nk/2−1
{wN (α), ∞}

+

(
P − w

P (Y,−NX)

Nk/2−1

) {
i/

√
N, ∞

}
− P {γ(α), ∞}

〉
.

Here wN (α) = − 1

Nα
.

Proof. By Proposition 10.5 our condition on P implies that P{∞, γ(∞)} =
P{α, γ(α)}. We describe the steps of the following computation below.
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〈
f, P{α, γ(α)}

〉

=
〈
f, P{α, i/

√
N} + P{i/

√
N, W (α)} + P{W (α), γ(α)}

〉

=

〈
f, w

W (P )

Nk/2−1
{W (α), i/

√
N} + P{i/

√
N, W (α)} + P{W (α), γ(α)}

〉
.

For the first equality, we break the path into three paths, and in the second,
we apply the W -involution to the first term and use that the action of W is
compatible with the pairing 〈 , 〉 and that f is an eigenvector with eigenvalue
w. In the following sequence of equalities we combine the first two terms
and break up the third; then we replace {W (α), i/

√
N} by {W (α), ∞} +

{∞, i/
√

N} and regroup:

w
W (P )

Nk/2−1
{W (α), i/

√
N} + P{i/

√
N, W (α)} + P{W (α), γ(α)}

=

(
w

W (P )

Nk/2−1
− P

)
{W (α), i/

√
N} + P{W (α), ∞} − P{γ(α), ∞}

= w
W (P )

Nk/2−1
{W (α), ∞} +

(
P − w

W (P )

Nk/2−1

)
{i/

√
N, ∞} − P{γ(α), ∞}.

¤

A good choice for α is α = γ−1
(

b
d + i

d
√

N

)
, so that W (α) = c

d + i
d
√

N
.

This maximizes the minimum of the imaginary parts of α and W (α), which
results in series that converge more quickly.

Let γ =
(

a b
c d

)
∈ Γ0(N). The polynomial

P (X, Y ) = (cX2 + (d − a)XY − bY 2)
k−2
2

satisfies γ(P ) = P . We obtained this formula by viewing Vk−2 as the (k−2)th
symmetric product of the 2-dimensional space on which Γ0(N) acts natu-
rally. For example, observe that since det(γ) = 1, the symmetric product of
two eigenvectors for γ is an eigenvector in V2 having eigenvalue 1. For the
same reason, if ε(γ) 6= 1, there need not be a polynomial P (X, Y ) such that
γ(P ) = ε(γ)P . One remedy is to choose another γ so that ε(γ) = 1.

Since the imaginary parts of the terms i/
√

N , α and W (α) in the propo-
sition are all relatively large, the sums appearing at the beginning of Sec-
tion 10.4 converge quickly if d is small. It is important to choose γ in
Proposition 10.8 with d small; otherwise the series will converge very slowly.

Remark 10.9. Is there a generalization of Proposition 10.8 without the
restrictions that ε2 = 1 and k is even?
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10.5.1. Another Atkin-Lehner Trick. Suppose E is an elliptic curve
and let L(E, s) be the corresponding L-function. Let ε ∈ {±1} be the
root number of E, i.e., the sign of the functional equation for L(E, s), so

Λ(E, s) = εΛ(E, 2−s), where Λ(E, s) = N s/2(2π)−sΓ(s)L(E, s). Let f = fE

be the modular form associated to E (which exists by [Wil95, BCDT01]).
If WN (f) = wf , then ε = −w (see Exercise 10.2). We have

L(E, 1) = −2π

∫ ∞

0
f(z) dz

= −2πi 〈f, {0, ∞}〉

= −2πi
〈
f, {0, i/

√
N} + {i/

√
N, ∞}

〉

= −2πi
〈
wf, {wN (0), wN (i/

√
N)} + {i/

√
N, ∞}

〉

= −2πi
〈
wf, {∞, i/

√
N} + {i/

√
N, ∞}

〉

= −2πi (w − 1)
〈
f, {∞, i/

√
N}

〉
.

If w = 1, then L(E, 1) = 0. If w = −1, then

(10.5.1) L(E, 1) = 4πi
〈
f, {∞, i/

√
N}

〉
= 2

∞∑

n=1

an

n
e−2πn/

√
N .

For more about computing with L-functions of elliptic curves, including
a trick for computing ε quickly without directly computing WN , see [Coh93,

§7.5] and [Cre97a, §2.11]. One can also find higher derivatives L(r)(E, 1)
by a formula similar to (10.5.1) (see [Cre97a, §2.13]). The methods in this
chapter for obtaining rapidly converging series are not just of computational
interest; see, e.g., [Gre83] for a nontrivial theoretical application to the
Birch and Swinnerton-Dyer conjecture.

10.6. Computing the Period Mapping

Fix a newform f =
∑

anqn ∈ Sk(Γ), where Γ1(N) ⊂ Γ for some N . Let Vf

be as in (10.2.1).

Let Θf : Mk(Γ; Q) → V be any Q-linear map with the same kernel as
Φf ; we call any such map a rational period mapping associated to f . Let

Φf be the period mapping associated to the Gal(Q/Q)-conjugates of f . We
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have a commutative diagram

Mk(Γ; Q)

Θf
$$IIIIIIIII

Φf
// HomC(Vf , C)

V
+

®

if
99rrrrrrrrrrr

Recall from Section 10.2 that the cokernel of Φf is the abelian variety Af (C).

The Hecke algebra T acts on the linear dual

Mk(Γ; Q)∗ = Hom(Mk(Γ), Q)

by (tϕ)(x) = ϕ(tx). Let I = If ⊂ T be the kernel of the ring homomorphism
T → Z[a2, a3, . . .] that sends Tn to an. Let

Mk(Γ; Q)∗[I] = {ϕ ∈ Mk(Γ; Q)∗ : tϕ = 0 all t ∈ I}.

Since f is a newform, one can show that Mk(Γ; Q)∗[I] has dimension d. Let
θ1, . . . , θd be a basis for Mk(Γ; Q)∗[I], so

Ker(Φf ) = Ker(θ1) ⊕ · · · ⊕ Ker(θd).

We can thus compute Ker(Φf ), hence a choice of Θf . To compute Φf , it
remains to compute if .

Let Sk(Γ; Q) denote the space of cusp forms with q-expansion in Q[[q]].
By Exercise 10.3

Sk(Γ; Q)[I] = Sk(Γ)[I] ∩ Q[[q]]

is a Q-vector space of dimension d. Let g1, . . . , gd be a basis for this Q-vector
space. We will compute Φf with respect to the basis of HomQ(Sk(Γ; Q)[I]; C)
dual to this basis. Choose elements x1, . . . , xd ∈ Mk(Γ) with the following
properties:

(1) Using Proposition 10.5 or Proposition 10.8, it is possible to compute
the period integrals 〈gi, xj〉, i, j ∈ {1, . . . , d}, efficiently.

(2) The 2d elements v + η(v) and v − η(v) for v = Θf (x1), . . . ,Θf (xd)
span a space of dimension 2d (i.e., they span Mk(Γ)/ Ker(Φf )).

Given this data, we can compute

if (v + η(v)) = 2Re(〈g1, xi〉, . . . , 〈gd, xi〉)
and

if (v − η(v)) = 2iIm(〈g1, xi〉, . . . , 〈gd, xi〉).
We break the integrals into real and imaginary parts because this increases
the precision of our answers. Since the vectors vn + η(vn) and vn − η(vn),
n = 1, . . . , d, span Mk(N, ε; Q)/ Ker(Φf ), we have computed if .
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Remark 10.10. We want to find symbols xi satisfying the conditions of
Proposition 10.8. This is usually possible when d is very small, but in
practice it is difficult when d is large.

Remark 10.11. The above strategy was motivated by [Cre97a, §2.10].

10.7. All Elliptic Curves of Given Conductor

Using modular symbols and the period map, we can compute all elliptic
curves over Q of conductor N , up to isogeny. The algorithm in this sec-
tion gives all modular elliptic curves (up to isogeny), i.e., elliptic curves
attached to modular forms, of conductor N . Fortunately, it is now known
by [Wil95, BCDT01, TW95] that every elliptic curve over Q is modular,
so the procedure of this section gives all elliptic curves (up to isogeny) of
given conductor. See [Cre06] for a nice historical discussion of this problem.

Algorithm 10.12 (Elliptic Curves of Conductor N). Given N > 0, this
algorithm outputs equations for all elliptic curves of conductor N , up to
isogeny.

(1) [Modular Symbols] Compute M2(Γ0(N)) using Section 8.7.

(2) [Find Rational Eigenspaces] Find the 2-dimensional eigenspaces V
in M2(Γ0(N))new that correspond to elliptic curves. Do not use the
algorithm for decomposition from Section 7.5, which is too com-
plicated and gives more information than we need. Instead, for
the first few primes p ∤ N , compute all eigenspaces Ker(Tp − a),
where a runs through integers with −2

√
p < a < 2

√
p. Intersect

these eigenspaces to find the eigenspaces that correspond to elliptic
curves. To find just the new ones, either compute the degeneracy
maps to lower level or find all the rational eigenspaces of all levels
that strictly divide N and exclude them.

(3) [Find Newforms] Use Algorithm 9.14 to compute to some precision
each newform f =

∑∞
n=1 anqn ∈ Z[[q]] associated to each eigenspace

V found in step (2).

(4) [Find Each Curve] For each newform f found in step (3), do the
following:
(a) [Period Lattice] Compute the corresponding period lattice Λ =

Zω1 + Zω2 by computing the image of Φf , as described in
Section 10.6.

(b) [Compute τ ] Let τ = ω1/ω2. If Im(τ) < 0, swap ω1 and ω2, so
Im(τ) > 0. By successively applying generators of SL2(Z), we
find an SL2(Z) equivalent element τ ′ in F , i.e., |Re(τ ′)| ≤ 1/2
and |τ | ≥ 1.



188 10. Computing Periods

(c) [c-invariants] Compute the invariants c4 and c6 of the lattice Λ
using the following rapidly convergent series:

c4 =

(
2π

ω2

)4

·
(

1 + 240

∞∑

n=1

n3qn

1 − qn

)
,

c6 =

(
2π

ω2

)6

·
(

1 − 504
∞∑

n=1

n5qn

1 − qn

)
,

where q = e2πiτ ′
, where τ ′ is as in step (4b). A theorem of

Edixhoven (that the Manin constant is an integer) implies that
the invariants c4 and c6 of Λ are integers, so it is only necessary
to compute Λ to large precision to completely determine them.

(d) [Elliptic Curve] An elliptic curve with invariants c4 and c6 is

E : y2 = x3 − c4

48
x − c6

864
.

(e) [Prove Correctness] Using Tate’s algorithm, find the conduc-
tor of E. If the conductor is not N , then recompute c4 and
c6 using more terms of f and real numbers to larger preci-
sion, etc. If the conductor is N , compute the coefficients bp

of the modular form g = gE attached to the elliptic curve E,
for p ≤ #P1(Z/NZ)/6. Verify that ap = bp, where ap are the
coefficients of f . If this equality holds, then E must be isoge-
nous to the elliptic curve attached to f , by the Sturm bound
(Theorem 9.18) and Faltings’s isogeny theorem. If the equality
fails for some p, recompute c4 and c6 to larger precision.

There are numerous tricks to optimize the above algorithm. For example,
often one can work separately with Mk(Γ0(N))+new and Mk(Γ0(N))−

new and
get enough information to find E, up to isogeny (see [Cre97b]).

Once we have one curve from each isogeny class of curves of conductor N ,
we find each curve in each isogeny class (which is another interesting problem
discussed in [Cre97a]), hence all curves of conductor N . If E/Q is an elliptic
curve, then any curve isogenous to E is isogenous via a chain of isogenies of
prime degree. There is an a priori bound on the degrees of these isogenies
due to Mazur. Also, there are various methods for finding all isogenies of a
given degree with domain E. See [Cre97a, §3.8] for more details.

10.7.1. Finding Curves: S-Integral Points. In this section we briefly
survey an alternative approach to finding curves of a given conductor by
finding integral points on other elliptic curves.

Cremona and others have developed a complementary approach to the
problem of computing all elliptic curves of given conductor (see [CL04]).
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Instead of computing all curves of given conductor, we instead consider the
seemingly more difficult problem of finding all curves with good reduction
outside a finite set S of primes. Since one can compute the conductor of a
curve using Tate’s algorithm [Tat75, Cre97a, §3.2], if we know all curves
with good reduction outside S, we can find all curves of conductor N by
letting S be the set of prime divisors of N .

There is a strategy for finding all curves with good reduction outside S.
It is not an algorithm, in the sense that it is always guaranteed to terminate
(the modular symbols method above is an algorithm), but in practice it
often works. Also, this strategy makes sense over any number field, whereas
the modular symbols method does not (there are generalizations of modular
symbols to other number fields).

Fix a finite set S of primes of a number field K. It is a theorem of
Shafarevich that there are only finitely many elliptic curves with good re-
duction outside S (see [Sil92, Section IX.6]). His proof uses that the group
of S-units in K is finite and Siegel’s theorem that there are only finitely
many S-integral points on an elliptic curve. One can make all this explicit,
and sometimes in practice one can compute all these S-integral points.

The problem of finding all elliptic curves with good reduction outside
of S can be broken into several subproblems, the main ones being

(1) determine the following finite subgroup of K∗/(K∗)m:

K(S, m) = {x ∈ K∗/(K∗)m : m | ordp(x) all p 6∈ S};

(2) find all S-integral points on certain elliptic curves y2 = x3 + k.

In [CL04], there is one example, where they find all curves of conductor
N = 28 · 172 = 73984 by finding all curves with good reduction outside
{2, 17}. They finds 32 curves of conductor 73984 that divide into 16 isogeny
classes. (Note that dim S2(Γ0(N)) = 9577.)

10.7.2. Finding Curves: Enumeration. One can also find curves by
simply enumerating Weierstrass equations. For example, the paper [SW02]
discusses a database that the author and Watkins created that contains
hundreds of millions of elliptic curves. It was constructed by enumerating
Weierstrass equations of a certain form. This database does not contain
every curve of each conductor included in the database. It is, however, fairly
complete in some cases. For example, using the Mestre method of graphs
[Mes86], we verified in [JBS03] that the database contains all elliptic curve
of prime conductor < 234446, which implies that the smallest conductor rank
4 curve is composite.
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10.8. Exercises

10.1 Prove Lemma 10.4.

10.2 Suppose f ∈ S2(Γ0(N)) is a newform and that WN (f) = wf . Let

Λ(E, s) = N s/2(2π)−sΓ(s)L(E, s). Prove that

Λ(E, s) = −wΛ(E, 2 − s).

[Hint: Show that Λ(f, s) =
∫
0,∞ f(iy/

√
N)ys−1 dy. Then substitute

1/y for y.]

10.3 Let f =
∑

anqn ∈ C[[q]] be a power series whose coefficients an

together generate a number field K of degree d over Q. Let Vf

be the complex vector space spanned by the Gal(Q/Q)-conjugates
of f .
(a) Give an example to show that Vf need not have dimension d.
(b) Suppose Vf has dimension d. Prove that Vf ∩ Q[[q]] is a Q-

vector space of dimension d.

10.4 Find an elliptic curve of conductor 11 using Section 10.7.



Chapter 11

Solutions to Selected
Exercises

11.1. Chapter 1

(1) Exercise 1.1. Suppose γ =
(

a nb
c d

)
∈ GL2(R) is a matrix with

positive determinant. Then γ is a linear fractional transformation
that fixes the real line, so it must either fix or swap the upper and
lower half planes. Now

γ(i) =
ai + b

ci + d
=

ac + bd + (ad − bc)i

d2 + c2
,

so since det γ = ad − bc > 0, the imaginary part of γ(i) is positive;
hence γ sends the upper half plane to itself.

(2) Exercise 1.2. Avoiding poles, the quotient rule for differentiation
goes through exactly as in the real case, so any rational function
f(z) = p(z)/q(z) (p, q ∈ C[z]) is holomorphic on C−{α : q(α) = 0}.
By the fundamental theorem of algebra, this set of poles is finite,
and hence it is discrete. Write q(z) = an(z − α1)

r1 · · · (z − αk)
rk

for each αi and let qi(z) = q(z)/(z − αi)
ri which is a polynomial

nonzero at αi. Thus for each i we have (z − αi)
rif(z) = p(z)/q′(z)

is holomorphic at αi and hence f(z) is meromorphic on C.

(3) Exercise 1.3.
(a) The product fg of two meromorphic functions on the upper

half plane is itself meromorphic. Also, for all γ ∈ SL2(Z) we

191
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have

(fg)[γ]k+j =
1

(cz + d)k+j
((fg) ◦ γ)

=
1

(cz + d)k
(f ◦ γ)

1

(cz + d)j
(g ◦ γ) = fg,

so fg is weakly modular.
(b) If f is meromorphic on the upper half plane, then so is 1/f .

Now

1

f
=

1

(cz + d)−kf ◦ γ
= (cz + d)k((1/f) ◦ γ) =

1

f

[γ]−k

,

so 1/f is a weakly modular form of weight −k.
(c) Let f and g be modular functions. Then, as above, fg is a

weakly modular function. Let
∑∞

n=m anqn and
∑∞

n=m′ bnqn be
their q-expansions around any α ∈ P1(Q); then their formal
product is the q-expansion of fg. But the formal product of
two Laurent series about the same point is itself a Laurent
series with convergence in the intersection of the convergent
domains of the original series, so fg has a meromorphic q-
expansion at each α ∈ P1(Q) and hence at each cusp.

(d) We are in exactly the same case as in part (c), but because f
and g are modular functions, m, m′ ≥ 0 and hence the function
is holomorphic at each of its cusps.

(4) Exercise 1.4. Let f be a weakly modular function of odd weight
k. Since γ =

( −1 0
0 −1

)
∈ SL2(Z), we have f(z) = (−1)−kf(γ(z)) =

−f(z) so f = 0.

(5) Exercise 1.5. Because SL2(Z/1Z) is the trivial group, Γ(1) =
ker(SL2(Z) → SL2(Z/1Z)) must be all of SL2(Z). As SL2(Z) =
Γ(1) ⊂ Γ1(1) ⊂ Γ0(1) ⊂ SL2(Z), we must have Γ(1) = Γ1(1) =
Γ0(1) = SL2(Z).

(6) Exercise 1.6.
(a) The group Γ1(N) is the inverse image of the subgroup of

SL2(Z/NZ) generated by ( 1 1
0 1 ), and the inverse image of a

group (under a group homomorphism) is a group.
(b) The group contains the kernel of the homomorphism SL2(Z) →

SL2(Z/NZ), and that kernel has finite index since the quotient
is contained in SL2(Z/NZ), which is finite.

(c) Same argument as previous part.
(d) The level is at most N since both groups contain Γ(N). It can

be no greater than N since
(

1 N
0 1

)
is in both groups.

(7) Exercise 1.7. See [DS05, Lemma 1.2.2].
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(8) Exercise 1.8. Let α = p/q ∈ Q, where p and q are relatively prime.
By the Euclidean algorithm, we can find x, y ∈ Z such that px +
qy = 1. Let γα =

(
p −y
q x

)
. Note that γα ∈ SL2(Z) and γα(∞) = α.

Also let γ∞ be the identity map on P1(Q). Now γ−1
β sends β to ∞

so we have γα ◦ γ−1
β which sends α to β.

11.2. Chapter 2

(1) Exercise 2.1. We have

ζ(26) =
1315862 · π26

11094481976030578125
.

Variation: Compute ζ(28).

(2) Exercise 2.2. Omitted.

(3) Exercise 2.3.

E8 = −B8

16
+ q +

∞∑

n=2

σ7(n)qn

=
1

480
+ q + 129q2 + 2188q3 + · · · .

Variation: Compute E10.

(4) Exercise 2.4. Omitted.

(5) Exercise 2.5. We have d = dimS28 = 2. A choice of a, b with
4a + 6b ≤ 14 and 4a + 6b ≡ 4 (mod 12) is a = 1, b = 0. A basis for
S28 is then

g1 = ∆F
2(2−1)+0
6 F4 = q − 792q2 − 324q3 + 67590208q4 + · · · ,

g2 = ∆2F
2(2−2)+0
6 F4 = q2 + 192q3 − 8280q4 + · · · .

The Victor Miller basis is then

f1 = g1 + 729g2 = q + 151740q3 + 61032448q4 + · · · ,

f2 = g2 = q2 + 192q3 − 8280q4 + · · · .

Variation: Compute the Victor Miller basis for S30.
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(6) Exercise 2.6. From the previous exercise we have f = ∆2F4. Then

f = ∆2F4 =

(
F 3

4 − F 2
6

−1728

)2

· F4

=




(
− 8

B4
E4

)3
−

(
− 12

B6
E6

)2

−1728




2

·
(

− 8

B4
E4

)

= 5186160E4E
4
6 − 564480000E4

4E2
6 + 15360000000E7

4 .

(7) Exercise 2.7. No, it is not always integral. For example, for k = 12,
the coefficient of q is −2 · 12/B12 = 65520/691 6∈ Z. Variation:
Find, with proof, the set of all k such that the normalized series Fk

is integral (use that Bk is eventually very large compared to 2k).

(8) Exercise 2.8. We compute the Victor Miller basis to precision great
enough to determine T2. This means we need up to O(q5).

f0 = 1 + 2611200q3 + 19524758400q4 + · · · ,

f1 = q + 50220q3 + 87866368q4 + · · · ,

f2 = q2 + 432q3 + 39960q4 + · · · .

Then the matrix of T2 on this basis is



2147483649 0 19524758400
0 0 2235350016
0 1 39960


 .

(The rows of this matrix are the linear combinations that give the
images of the fi under T2.) This matrix has characteristic polyno-
mial

(x − 2147483649) · (x2 − 39960x − 2235350016).

11.3. Chapter 3

(1) Exercise 3.1. Write g =
(

a b
c d

)
, so λ′ = aλ+b

cλ+d . Let f be the isomor-

phism C/Λ → C/Λ′ given by f(z) = z/(cλ + d). We have

f

(
1

N

)
=

1

N(cλ + d)
=

a

N
− c

N
· aλ + b

cλ + d
∼= a

N
(mod Z + Zλ′),

where the second equality can be verified easily by expanding out
each side, and for the congruence we use that N | c. Thus the
subgroup of C/Λ generated by 1

N is taken isomorphically to the

subgroup of C/Λ′ generated by 1
N .
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(2) Exercise 3.2. For any integer r, we have ( 1 r
0 1 ) ∈ Γ0(N), so {0, ∞} =

{r, ∞}. Thus

0 = {0, ∞}−{0, ∞} = {n, ∞}−{m, ∞} = {n, ∞}+{∞, m} = {n, m}.

(3) Exercise 3.3.
(a) (0 : 1), (1 : 0), (1 : 1), . . . , (1, p − 1).
(b) p + 1.
(c) See [Cre97a, Prop. 2.2.1].

(4) Exercise 3.4. We start with b = 4, a = 7. Then 4 · 2 ≡ 1 (mod 7).
Let δ1 = ( 4 1

7 2 ) ∈ SL2(Z). Since δ1 ∈ Γ0(7), we use the right coset
representative ( 1 0

0 1 ) and see that

{0, 4/7} = {0, 1/2} + ( 1 0
0 1 ) {0, ∞}.

Repeating the process, we have δ2 = ( 1 1
2 0 ), which is in the same

coset at
(

0 −1
1 0

)
. Thus

{0, 1/2} = ( 0 6
1 0 ) {0, ∞} + {0, 0}.

Putting it together gives

{0, 4/7} = ( 1 0
0 1 ) {0, ∞} + ( 0 6

1 0 ) {0, ∞} = [(0, 1)] + [(1, 0)].

(5) Exercise 3.5.
(a) Coset representatives for Γ0(3) in SL2(Z) are

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 0
2 1

)
,

(
0 −1
1 0

)
,

which we refer to below as [r0], [r1], [r2], and [r3], respectively.
(b) In terms of representatives we have

[r0] + [r3] = 0, [r0] + [r3] + [r2] = 0,
[r1] + [r2] = 0, [r1] + [r1] + [r1] = 0,
[r2] + [r1] = 0, [r2] + [r0] + [r3] = 0,
[r3] + [r0] = 0, [r3] + [r2] + [r0] = 0.

(c) By the first three relations we have [r2] = [r1] = 0 = 0[r0] and
[r3] = −1[r0].

(d)

T2([r0]) = [r0] ( 1 0
0 2 ) + [r0] ( 2 0

0 1 ) + [r0] ( 2 1
0 1 ) + [r0] ( 1 0

1 2 )

= [( 1 0
0 2 )] + [( 2 0

0 1 )] + [( 2 1
0 1 )] + [( 1 0

1 2 )]

= [r0] + [r0] + [r0] + [r2]

= 3[r0].
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11.4. Chapter 4

(1) Exercise 4.1. Suppose f is a Dirichlet character with modulus N .
Then −1 = f(−1) = f(−1 + N) = 1, a contradiction.

(2) Exercise 4.2.
(a) Any finite subgroup of the multiplicative group of a field is

cyclic (since the number of roots of a polynomial over a field
is at most its degree), so (Z/pZ)∗ is cyclic. Let g be an integer
that reduces to a generator of (Z/pZ)∗. Let x = 1 + p ∈
(Z/pnZ)∗; by the binomial theorem

xpn−2
= 1 + pn−2 · p + · · · ≡ 1 + pn−1 6≡ 0 (mod pn),

so x has order pn−1. Since p is odd, gcd(pn−1, p − 1) = 1, so
xg has order pn−1 · (p − 1) = ϕ(pn); hence (Z/pnZ)∗ is cyclic.

(b) By the binomial theorem (1 + 22)2
n−3 6≡ 1 (mod 2n), so 5 has

order 2n−2 in (Z/2nZ)∗, and clearly −1 has order 2. Since
5 ≡ 1 (mod 4), −1 is not a power of 5 in (Z/2nZ)∗. Thus the
subgroups 〈−1〉 and 〈5〉 have trivial intersection. The product
of their orders is 2n−1 = ϕ(2n) = #(Z/2nZ)∗, so the claim
follows.

(3) Exercise 4.3. Write n =
∏

pei
i . The order of g divides n, so the

condition implies that pei
i divides the order of g for each i. Thus

the order of g is divisible by the least common multiple of the pei
i ,

i.e., by n.

(4) Exercise 4.4.
(a) The bijection given by 1 + pn−1a (mod pn) 7→ a (mod p) is a

homomorphism since

(1 + pn−1a)(1 + pn−1b) ≡ 1 + pn−1(a + b) (mod pn).

(b) We have an exact sequence

1 → 1 + pZ/pnZ → (Z/pnZ)∗ → (Z/pZ)∗ → 1,

so it suffices to solve the discrete log problem in the kernel and
cokernel. We prove by induction on n that we can solve the
discrete log problem in the kernel easily (compared to known
methods for solving the discrete log problem in (Z/pZ)∗). We
have an exact sequence

1 → 1 + pn−1Z/pnZ → (Z/pnZ)∗ → (Z/pn−1Z)∗ → 1.

The first part of this problem shows that we can solve the
discrete log problem in the kernel, and by induction we can
solve it in the cokernel. This completes the proof.
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(5) Exercise 4.5. If ε(5) = 1, then since ε is nontrivial, Exercise 4.2
implies that ε factors through (Z/4Z)∗, hence has conductor 4 =
21+1, as claimed. If ε(5) 6= 1, then again from Exercise 4.2 we see
that if ε has order r, then ε factors through (Z/2r+2Z)∗ but nothing
smaller.

(6) Exercise 4.6.
(a) Take f = x2 + 2.
(b) The element 2 has order 4.
(c) A minimal generator for (Z/25Z)∗ is 2, and the characters are

[1], [2], [3], [4].
(d) Each of the four Galois orbits has size 1.

11.5. Chapter 5

(1) Exercise 5.1. The eigenspace Eλ of A with eigenvalue λ is preserved
by B, since if v ∈ Eλ, then

ABv = BAv = B(λv) = λBv.

Because B is diagonalizable, its minimal polynomial equals its char-
acteristic polynomial; hence the same is true for the restriction of B
to Eλ, i.e., the restriction of B is diagonalizable. Choose basis for
all Eλ so that the restrictions of B to these eigenspaces is diagonal
with respect to these bases. Then the concatenation of these bases
is a basis that simultaneously diagonalizes A and B.

(2) Exercise 5.2. When ε is the trivial character, the Bk,ε are defined
by

1∑

a=1

ε(a)xeax

ex − 1
=

xex

ex − 1
= x +

x

ex − 1
=

∞∑

k=0

Bk,ε
xk

k!
.

Thus B1,ε = 1 + B1 = 1
2 , and for k > 1, we have Bk,ε = Bk.

(3) Exercise 5.3. Omitted.

(4) Exercise 5.4. The Eisenstein series in our basis for E3(Γ1(13)) are
of the form E3,1,ε or E3,ε,1 with ε(−1) = (−1)3 = −1. There are six
characters ε with modulus 13 such that ε(−1) = −1, and we have
the two series E3,1,ε and E3,ε,1 associated to each of these. This
gives a dimension of 12.

11.6. Chapter 6

(1) Exercise 6.1.
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(a) By Proposition 3.10, we have [SL2(Z) : Γ0(N)] = #P1(Z/NZ).
By the Chinese Remainder Theorem,

#P1(Z/NZ) =
∏

p|N
#P1(Z/pordp(N)Z).

So we are reduced to computing #P1(Z/pordp(N)Z). We have
(a, b) ∈ (Z/pnZ)2 with gcd(a, b, p) = 1 if and only if (a, b) 6∈
(pZ/pnZ)2, so there are p2n − p2(n−1) such pairs. The unit
group (Z/pnZ)∗ has order ϕ(pn) = pn − pn−1. It follows that

#P1(Z/NZ) =
p2n − p2(n−1)

pn − pn−1
= pn + pn−1.

(b) Omitted.

(2) Exercise 6.2. Omitted.

(3) Exercise 6.3. Omitted.

(4) Exercise 6.4. Omitted.

(5) Exercise 6.5. See the source code to SAGE.

11.7. Chapter 7

(1) Exercise 7.1. Take a basis of W and let G be the matrix whose rows
are these basis elements. Let B be the row echelon form of G. After
a permutation p of columns, we may write B = pi(I|C), where I
is the identity matrix. The matrix A = p−1(−Ct|I), where I is a
different sized identity matrix, has the property that W = Ker(A).

(2) Exercise 7.2. The answer is no. For example if A = nI is n times
the identity matrix and if p | n, then rref(A (mod p)) = 0 but
rref(A) (mod p) = I.

(3) Exercise 7.3. Let T =
∏

Ei be an invertible matrix such that
TA = E is in (reduced) echelon form and the Ei are elementary
matrices, i.e., the result of applying an elementary row operation
to the identity matrix. If p is a prime that does not divide any of
the nonzero numerators or denominators of the entries of A and
any Ei, then rref(A (mod p)) = rref(A) (mod p). This is because
E (mod p) is in echelon form and A (mod p) can be transformed
to E (mod p) via a series of elementary row operations modulo p.

(4) Exercise 7.4.
(a) The echelon form (over Q) is




1 0 −1
0 1 2
0 0 0


 .
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(b) The kernel is the 1-dimensional span of (1, −2, 1).
(c) The characteristic polynomial is x · (x2 − 15x − 18).

(5) Exercise 7.5.
(a) The answer is given in the problem.
(b) See [Coh93, §2.4].

11.8. Chapter 8

(1) Exercise 8.1. Using the Chinese Remainder Theorem we imme-
diately reduce to proving the statement when both M = pr and
N = ps are powers of a prime p. Then [a] ∈ (Z/psZ)∗ is repre-
sented by an integer a with gcd(a, p) = 1. That same integer a
defines an element of (Z/prZ)∗ that reduces modulo ps to [a].

(2) Exercise 8.2. See [Shi94, Lemma 1.38].

(3) Exercise 8.3. Coset representatives for Γ1(3) are in bijection with
(c, d) where c, d ∈ Z/3Z and gcd(c, d, N) = 1, so the following are
representatives:

( 1 0
0 1 ) , ( 2 0

0 2 ) , ( 0 2
1 0 ) , ( 1 0

1 1 ) , ( 2 0
1 2 ) , ( 1 1

2 0 ) , ( 1 0
2 1 ) , ( 2 0

2 2 ) ,

which we call r1, . . . , r8, respectively. Now our Manin symbols are
of the form [X, ri] and [Y, ri] for 1 ≤ i ≤ 8 modulo the relations

x + xσ = 0, x + xτ + xτ2 = 0, and x − xJ = 0.

First, note that J acts trivially on Manin symbols of odd weight
because it sends X to −X, Y to −Y and ri to −ri, so

[z, g]J = [−z, −g] = [z, g].

Thus the last relation is trivially true.
Now σ−1X = −Y and σ−1Y = X. Also τ−1X = −Y, τ−1Y =

X − Y, τ−2X = −X + Y and τ−2Y = −X.
The first relation on the first symbol says that

[X, r1] = −[−Y, r3] = [Y, r3]

and the second relation tells us that

[X, r1] + [−Y, r5] + [−X + Y, r6] = 0.

(4) Exercise 8.4. Let f ∈ Sk(Γ) and g ∈ Γ. All that remains to
be shown is that this pairing respects the relation x = xg for all
modular symbols x. By linearity it suffices to show the invariance
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of 〈f, Xk−i−2Y i{α, β}〉. We have
〈
f, (Xk−2−iY i{α, β})g−1

〉

=
〈
f, (aX + bY )k−i−2(cX + dY )i{g−1(α), g−1(β)}

〉

=

∫ g−1(β)

g−1(α)
f(z)(az + b)k−i−2(cz + d)i dz

=

∫ g−1(β)

g−1(α)
f(z)

(az + b)k−i−2

(cz + d)k−i−2
(cz + d)k−2 dz

=

∫ g−1(β)

g−1(α)
f(z) g(z)k−i−2(cz + d)k−2 dz

=

∫ β

α
f(g−1(z)) g(g−1(z))k−i−2(cg−1(z) + d)k−2 d(g−1(z))

=

∫ β

α
f(g−1(z)) zk−i−2(cg−1(z) + d)k−2 (cg−1(z) + d)2 dz

=

∫ β

α
f(z) zk−i−2 dz

=
〈
f, Xk−i−2Y i{α, β}

〉
,

where the second to last simplification is due to invariance under
[g]k, i.e.,

f(g−1(z)) = f [g]k(g−1(z)) = (cg−1(z) + d)−kf(g(g−1(z))).

(The proof for f ∈ Sk(Γ) works in exactly the same way.)

(5) Exercise 8.5.

(a) Let η =
(

−1 0

0 1

)
. For any γ =

(
a b

c d

)
we have

γη =
(

−a b

−c d

)
, ηγ =

(
−a −b

c d

)
, and ηγη =

(
a −b

−c d

)
.

First, if γ ∈ SL2(Z), then ηγη ∈ GL2(Z) and

det(ηγη) = det η det γ det η = (−1)(1)(−1) = 1

so ηγη ∈ SL2(Z). As η2 = 1, conjugation by η is self-inverse,
so it must be a bijection.
Now if γ ∈ Γ0(N), then c ≡ 0 (mod N), so −c ≡ 0 (mod N),
and so ηγη ∈ Γ0(N). Thus ηΓ0(N)η = Γ0(N).
If γ ∈ Γ1(N), then −c ≡ 0 (mod N) as before and also a ≡
d ≡ 1 (mod N), so ηγη ∈ Γ1(N). Thus ηΓ1(N)η = Γ1(N).

(b) Omitted.
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11.9. Chapter 9

(1) Exercise 9.1. Consider the surjective homomorphism

r : SL2(Z) → SL2(Z/NZ).

Notice that Γ1(N) is the exact inverse image of the subgroup H of
matrices of the form ( 1 ∗

0 1 ) and Γ0(N) is the inverse image of the
subgroup T of upper triangular matrices. It thus suffices to observe
that H is normal in T , which is clear. Finally, the quotient T/H
is isomorphic to the group of diagonal matrices in SL2(Z/NZ)∗,
which is isomorphic to (Z/NZ)∗.

(2) Exercise 9.2. It is enough to show 〈p〉 ∈ Z[. . . , Tn, . . .] for primes p,
since each 〈d〉 can be written in terms of the 〈p〉. Since p ∤ N , we
have that

Tp2 = T 2
p − 〈p〉pk−1,

so

〈p〉pk−1 = T 2
p − Tp2 .

By Dirichlet’s theorem on primes in arithmetic progression, there
is a prime q 6= p congruent to p mod N . Since pk−1 and qk−1 are
relatively prime, there exist integers a and b such that apk−1 +
bqk−1 = 1. Then

〈p〉 = 〈p〉(apk−1 + bqk−1) = a(Tp
2 − Tp2) + b(Tq

2 − Tq2) ∈ Z[. . . , Tn, . . .].

(3) Exercise 9.3. Take N = 33. The space S2(Γ0(33)) is a direct
sum of the two old subspaces coming from S2(Γ0(11)) and the new
subspace, which has dimension 1. If f is a basis for S2(Γ0(11)) and
g is a basis for S2(Γ0(33))new, then α1(f), α3(f), g is a basis for
S2(Γ0(33)) on which all Hecke operators Tn, with gcd(n, 33) = 1,
have diagonal matrix. However, the operator T3 on S2(Γ0(33)) does
not act as a scalar on α1(f), so it cannot be in the ring generated
by all operators Tn with gcd(n, 33) = 1.

(4) Exercise 9.4. Omitted.

11.10. Chapter 10

(1) Exercise 10.1. Hint: Use either repeated integration by parts or a
change of variables that relates the integral to the Γ function.

(2) Exercise 10.2. See [Cre97a, §2.8].

(3) Exercise 10.3.
(a) Let f =

√
−1

∑
qn. Then d = 2, but the nontrivial conjugate

of f is −f , so Vf has dimension 1.
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(b) Choose α ∈ K such that K = Q(α). Write

(11.10.1) f =
d−1∑

i=0

αigi

with gi ∈ Q[[q]]. Let Wg be the Q-span of the gi, and let

Wf = Vf ∩ Q[[q]]. By considering the Gal(Q/Q) conjugates
of (11.10.1), we see that the Galois conjugates of f are in the
C-span of the gi, so

(11.10.2) d = dimC Vf ≤ dimQ Wg.

Likewise, taking the above modulo O(qn) for any n, we obtain
a matrix equation

F = AG,

where the columns of F are the Gal(Q/Q)-conjugates of f , the
matrix A is the Vandermonde matrix corresponding to α (and
its Gal(Q/Q) conjugates), and G has columns gi. Since A is
a Vandermonde matrix, it is invertible, so A−1F = G. Taking
the limit as n goes to infinity, we see that each gi is a linear
combination of the fi, hence an element of Vf . Thus Wg ⊂ Wf ,
so (11.10.2) implies that dimQ Wf ≥ d. But Wf ⊗Q C ⊂ Vf so
finally

d ≤ dimQ Wf = dimC(Wf ⊗Q C) ≤ dimC Vf = d.

(4) Exercise 10.4. See the appendix to Chapter II in [Cre97a], where
this example is worked out in complete detail.



Appendix A

Computing in Higher
Rank

by Paul E. Gunnells

A.1. Introduction

This book has addressed the theoretical and practical problems of perform-
ing computations with modular forms. Modular forms are the simplest
examples of the general theory of automorphic forms attached to a reduc-
tive algebraic group G with an arithmetic subgroup Γ; they are the case
G = SL2(R) with Γ a congruence subgroup of SL2(Z). For such pairs (G, Γ)
the Langlands philosophy asserts that there should be deep connections
between automorphic forms and arithmetic, connections that are revealed
through the action of the Hecke operators on spaces of automorphic forms.
There have been many profound advances in recent years in our understand-
ing of these phenomena, for example:

• the establishment of the modularity of elliptic curves defined over
Q [Wil95, TW95, Dia96, CDT99, BCDT01],

• the proof by Harris–Taylor of the local Langlands correspondence
[HT01], and

• Lafforgue’s proof of the global Langlands correspondence for func-
tion fields [Laf02].

Nevertheless, we are still far from seeing that the links between automorphic
forms and arithmetic hold in the broad scope in which they are generally
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believed. Hence one has the natural problem of studying spaces of automor-
phic forms computationally.

The goal of this appendix is to describe some computational techniques
for automorphic forms. We focus on the case G = SLn(R) and Γ ⊂ SLn(Z),
since the automorphic forms that arise are one natural generalization of
modular forms, and since this is the setting for which we have the most
tools available. In fact, we do not work directly with automorphic forms,
but rather with the cohomology of the arithmetic group Γ with certain
coefficient modules. This is the most natural generalization of the tools
developed in previous chapters.

Here is a brief overview of the contents. Section A.2 gives background on
automorphic forms and the cohomology of arithmetic groups and explains
why the two are related. In Section A.3 we describe the basic topological
tools used to compute the cohomology of Γ explicitly. Section A.4 defines
the Hecke operators, describes the generalization of the modular symbols
from Chapter 8 to higher rank, and explains how to compute the action
of the Hecke operators on the top degree cohomology group. Section A.5
discusses computation of the Hecke action on cohomology groups below the
top degree. Finally, Section A.6 briefly discusses some related material and
presents some open problems.

A.1.1. The theory of automorphic forms is notorious for the difficulty of its
prerequisites. Even if one is only interested in the cohomology of arithmetic
groups—a small part of the full theory—one needs considerable background
in algebraic groups, algebraic topology, and representation theory. This is
somewhat reflected in our presentation, which falls far short of being self-
contained. Indeed, a complete account would require a long book of its
own. We have chosen to sketch the foundational material and to provide
many pointers to the literature; good general references are [BW00, Harb,
LS90, Vog97]. We hope that the energetic reader will follow the references
and fill many gaps on his/her own.

The choice of topics presented here is heavily influenced (as usual) by the
author’s interests and expertise. There are many computational topics in
the cohomology of arithmetic groups we have completely omitted, including
the trace formula in its many incarnations [GP05], the explicit Jacquet–
Langlands correspondence [Dem04, SW05], and moduli space techniques
[FvdG, vdG]. We encourage the reader to investigate these extremely
interesting and useful techniques.

A.1.2. Acknowledgements. I thank Avner Ash, John Cremona, Mark
McConnell, and Dan Yasaki for helpful comments. I also thank the NSF for
support.
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A.2. Automorphic Forms and Arithmetic Groups

A.2.1. Let Γ = Γ0(N) ⊂ SL2(Z) be the usual Hecke congruence subgroup
of matrices upper-triangular mod N . Let Y0(N) be the modular curve Γ\h,
and let X0(N) be its canonical compactification obtained by adjoining cusps.
For any integer k ≥ 2, let Sk(N) be the space of weight k holomorphic cus-
pidal modular forms on Γ. According to Eichler–Shimura [Shi94, Chapter
8], we have the isomorphism

(A.2.1) H1(X0(N); C)
∼−→ S2(N) ⊕ S2(N),

where the bar denotes complex conjugation and where the isomorphism is
one of Hecke modules.

More generally, for any integer n ≥ 0, let Mn ⊂ C[x, y] be the subspace of
degree n homogeneous polynomials. The space Mn admits a representation
of Γ by the “change of variables” map

(A.2.2)

(
a b
c d

)
· p(x, y) = p(dx − by, −cx + ay).

This induces a local system M̃n on the curve X0(N).1 Then the analogue of
(A.2.1) for higher-weight modular forms is the isomorphism

(A.2.3) H1(X0(N); M̃k−2)
∼−→ Sk(N) ⊕ Sk(N).

Note that (A.2.3) reduces to (A.2.1) when k = 2.

Similar considerations apply if we work with the open curve Y0(N) in-
stead, except that Eisenstein series also contribute to the cohomology. More
precisely, let Ek(N) be the space of weight k Eisenstein series on Γ0(N).
Then (A.2.3) becomes

(A.2.4) H1(Y0(N); M̃k−2)
∼−→ Sk(N) ⊕ Sk(N) ⊕ Ek(N).

These isomorphisms lie at the heart of the modular symbols method.

A.2.2. The first step on the path to general automorphic forms is a reinter-
pretation of modular forms in terms of functions on SL2(R). Let Γ ⊂ SL2(Z)
be a congruence subgroup. A weight k modular form on Γ is a holomorphic
function f : h → C satisfying the transformation property

f((az + b)/(cz + d)) = j(γ, z)kf(z), γ =

(
a b
c d

)
∈ Γ, z ∈ h.

1The classic references for cohomology with local systems are [Ste99a, Section 31] and [Eil47,

Ch. V]. A more recent exposition (in the language of Čech cohomology and locally constant

sheaves) can be found in [BT82, II.13]. For an exposition tailored to our needs, see [Harb,

Section 2.9].
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Here j(γ, z) is the automorphy factor cz + d. There are some additional
conditions f must satisfy at the cusps of h, but these are not so important
for our discussion.

The group G = SL2(R) acts transitively on h, with the subgroup K =
SO(2) fixing i. Thus h can be written as the quotient G/K. From this,
we see that f can be viewed as a function G → C that is K-invariant on
the right and that satisfies a certain symmetry condition with respect to
the Γ-action on the left. Of course not every f with these properties is a
modular form: some extra data is needed to take the role of holomorphicity
and to handle the behavior at the cusps. Again, this can be ignored right
now.

We can turn this interpretation around as follows. Suppose ϕ is a func-
tion G → C that is Γ-invariant on the left, that is, ϕ(γg) = ϕ(g) for all
γ ∈ Γ. Hence ϕ can be thought of as a function ϕ : Γ\G → C. We further
suppose that ϕ satisfies a certain symmetry condition with respect to the
K-action on the right. In particular, any matrix m ∈ K can be written

(A.2.5) m =

(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ R,

with θ uniquely determined modulo 2π. Let ζm be the complex number eiθ.
Then the K-symmetry we require is

ϕ(gm) = ζ−k
m ϕ(z), m ∈ K,

where k is some fixed nonnegative integer.

It turns out that such functions ϕ are very closely related to modular
forms: any f ∈ Sk(Γ) uniquely determines such a function ϕf : Γ\G → C.
The correspondence is very simple. Given a weight k modular form f , define

(A.2.6) ϕf (g) := f(g · i)j(g, i)−k.

We claim ϕf is left Γ-invariant and satisfies the desired K-symmetry on the
right. Indeed, since j satisfies the cocycle property

j(gh, z) = j(g, h · z)j(h, z),

we have

ϕf (γg) = f((γg)·i)j(γg, i)−k = j(γ, g ·i)kf(g ·i)j(γ, g ·i)−kj(g, i)−k = ϕf (g).

Moreover, any m ∈ K stabilizes i. Hence

ϕf (gm) = f((gm) · i)j(gm, i)−k = f(g · i)j(m, i)−kj(g, m · i)−k.

From (A.2.5) we have j(m, i)−k = (cos θ + i sin θ)−k = ζ−k
m , and thus

ϕf (gm) = ζ−k
m ϕf (g).

Hence in (A.2.6) the weight and the automorphy factor “untwist” the
Γ-action to make ϕf left Γ-invariant. The upshot is that we can study
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modular forms by studying the spaces of functions that arise through the
construction (A.2.6).

Of course, not every ϕ : Γ\G → C will arise as ϕf for some f ∈ SK(Γ):
after all, f is holomorphic and satisfies rather stringent growth conditions.
Pinning down all the requirements is somewhat technical and is (mostly)
done in the sequel.

A.2.3. Before we define automorphic forms, we need to find the correct
generalizations of our groups SL2(R) and Γ0(N). The correct setup is rather
technical, but this really reflects the power of the general theory, which
handles so many different situations (e.g., Maass forms, Hilbert modular
forms, Siegel modular forms, etc.).

Let G be a connected Lie group, and let K ⊂ G be a maximal com-
pact subgroup. We assume that G is the set of real points of a connected
semisimple algebraic group G defined over Q. These conditions mean the
following [PR94, §2.1.1]:

(1) The group G has the structure of an affine algebraic variety given
by an ideal I in the ring R = C[xij , D

−1], where the variables
{xij | 1 ≤ i, j ≤ n} should be interpreted as the entries of an
“indeterminate matrix,” and D is the polynomial det(xij). Both
the group multiplication G × G → G and inversion G → G are
required to be morphisms of algebraic varieties.

The ring R is the coordinate ring of the algebraic group GLn.
Hence this condition means that G can be essentially viewed as a
subgroup of GLn(C) defined by polynomial equations in the matrix
entries of the latter.

(2) Defined over Q means that I is generated by polynomials with
rational coefficients.

(3) Connected means that G is connected as an algebraic variety.

(4) Set of real points means that G is the set of real solutions to the
equations determined by I. We write G = G(R).

(5) Semisimple means that the maximal connected solvable normal
subgroup of G is trivial.

Example A.1. The most important example for our purposes is the split
form of SLn. For this choice we have

G = SLn(R) and K = SO(n).

Example A.2. Let F/Q be a number field. Then there is a Q-group G such
that G(Q) = SLn(F ). The group G is constructed as RF/Q(SLn), where
RF/Q denotes the restriction of scalars from F to Q [PR94, §2.1.2]. For
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example, if F is totally real, the group RF/Q(SL2) appears when one studies
Hilbert modular forms.

Let (r, s) be the signature of the field F , so that F ⊗R ≃ Rr ×Cs. Then
G = SLn(R)r × SLn(C)s and K = SO(n)r × SU(n)s.

Example A.3. Another important example is the split symplectic group
Sp2n. This is the group that arises when one studies Siegel modular forms.
The group of real points Sp2n(R) is the subgroup of SL2n(R) preserving a
fixed nondegenerate alternating bilinear form on R2n. We have K = U(n).

A.2.4. To generalize Γ0(N), we need the notion of an arithmetic group.
This is a discrete subgroup Γ of the group of rational points G(Q) that is
commensurable with the set of integral points G(Z). Here commensurable
simply means that Γ ∩G(Z) is a finite index subgroup of both Γ and G(Z);
in particular G(Z) itself is an arithmetic group.

Example A.4. For the split form of SLn we have G(Z) = SLn(Z) ⊂
G(Q) = SLn(Q). A trivial way to obtain other arithmetic groups is by
conjugation: if g ∈ SLn(Q), then g · SLn(Z) · g−1 is also arithmetic.

A more interesting collection of examples is given by the congruence
subgroups. The principal congruence subgroup Γ(N) is the group of matri-
ces congruent to the identity modulo N for some fixed integer N ≥ 1. A
congruence subgroup is a group containing Γ(N) for some N .

In higher dimensions there are many candidates to generalize the Hecke
subgroup Γ0(N). For example, one can take the subgroup of SLn(Z) that is
upper-triangular mod N . From a computational perspective, this choice is
not so good since its index in SLn(Z) is large. A better choice, and the one
that usually appears in the literature, is to define Γ0(N) to be the subgroup
of SLn(Z) with bottom row congruent to (0, . . . , 0, ∗) mod N .

A.2.5. We are almost ready to define automorphic forms. Let g be the Lie
algebra of G, and let U(g) be its universal enveloping algebra over C. Geo-
metrically, g is just the tangent space at the identity of the smooth manifold
G. The algebra U(g) is a certain complex associative algebra canonically
built from g. The usual definition would lead us a bit far afield, so we
will settle for an equivalent characterization: U(g) can be realized as a cer-
tain subalgebra of the ring of differential operators on C∞(G), the space of
smooth functions on G.

In particular, G acts on C∞(G) by left translations: given g ∈ G and
f ∈ C∞(G), we define

Lg(f)(x) := f(g−1x).

Then U(g) can be identified with the ring of all differential operators on
C∞(G) that are invariant under left translation. For our purposes the most
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important part of U(g) is its center Z(g). In terms of differential opera-
tors, Z(g) consists of those operators that are also invariant under right
translation:

Rg(f)(x) := f(xg).

Definition A.5. An automorphic form on G with respect to Γ is a function
ϕ : G → C satisfying

(1) ϕ(γg) = ϕ(g) for all γ ∈ Γ,

(2) the right translates {ϕ(gk) | k ∈ K} span a finite-dimensional space
ξ of functions,

(3) there exists an ideal J ⊂ Z(g) of finite codimension such that J
annihilates ϕ, and

(4) ϕ satisfies a certain growth condition that we do not wish to make
precise. (In the literature, ϕ is said to be slowly increasing.)

For fixed ξ and J , we denote by A (Γ, ξ, J, K) the space of all functions
satisfying the above four conditions. It is a basic theorem, due to Harish-
Chandra [HC68], that A (Γ, ξ, J, K) is finite-dimensional.

Example A.6. We can identify the cuspidal modular forms Sk(N) in the
language of Definition A.5. Given a modular form f , let ϕf ∈ C∞(SL2(R))
be the function from (A.2.6). Then the map f 7→ ϕf identifies Sk(N) with
the subspace Ak(N) of functions ϕ satisfying

(1) ϕ(γg) = ϕ(g) for all γ ∈ Γ0(N),

(2) ϕ(gm) = ζ−k
m ϕ(g) for all m ∈ SO(2),

(3) (∆ + λk)ϕ = 0, where ∆ ∈ Z(g) is the Laplace–Beltrami–Casimir
operator and

λk =
k

2

(
k

2
− 1

)
,

(4) ϕ is slowly increasing, and

(5) ϕ is cuspidal.

The first four conditions parallel Definition A.5. Item (1) is the Γ-
invariance. Item (2) implies that the right translates of ϕ by SO(2) lie in a
fixed finite-dimensional representation of SO(2). Item (3) is how holomor-
phicity appears, namely that ϕ is killed by a certain differential operator.
Finally, item (4) is the usual growth condition.

The only condition missing from the general definition is (5), which is an
extra constraint placed on ϕ to ensure that it comes from a cusp form. This
condition can be expressed by the vanishing of certain integrals (“constant
terms”); for details we refer to [Bum97, Gel75].
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Example A.7. Another important example appears when we set k = 0
in (2) in Example A.6 and relax (3) by requiring only that (∆ − λ)ϕ = 0
for some nonzero λ ∈ R. Such automorphic forms cannot possibly arise
from modular forms, since there are no nontrivial cusp forms of weight 0.
However, there are plenty of solutions to these conditions: they correspond
to real-analytic cuspidal modular forms of weight 0 and are known as Maass
forms. Traditionally one writes λ = (1 − s2)/4. The positivity of ∆ implies
that s ∈ (−1, 1) or is purely imaginary.

Maass forms are highly elusive objects. Selberg proved that there are in-
finitely many linearly independent Maass forms of full level (i.e., on SL2(Z)),
but to this date no explicit construction of a single one is known. (Selberg’s
argument is indirect and relies on the trace formula; for an exposition see
[Sar03].) For higher levels some explicit examples can be constructed using
theta series attached to indefinite quadratic forms [Vig77]. Numerically
Maass forms have been well studied; see for example [FL].

In general the arithmetic nature of the eigenvalues λ that correspond
to Maass forms is unknown, although a famous conjecture of Selberg states
that for congruence subgroups they satisfy the inequality λ ≥ 1/4 (in other
words, only purely imaginary s appear above). The truth of this conjecture
would have far-reaching consequences, from analytic number theory to graph
theory [Lub94].

A.2.6. As Example A.6 indicates, there is a notion of cuspidal automorphic
form. The exact definition is too technical to state here, but it involves
an appropriate generalization of the notion of constant term familiar from
modular forms.

There are also Eisenstein series [Lan66, Art79]. Again the complete
definition is technical; we only mention that there are different types of
Eisenstein series corresponding to certain subgroups of G. The Eisenstein
series that are easiest to understand are those built from cusp forms on lower
rank groups. Very explicit formulas for Eisenstein series on GL3 can be seen
in [Bum84]. For a down-to-earth exposition of some of the Eisenstein series
on GLn, we refer to [Gol05].

The decomposition of Mk(Γ0(N)) into cusp forms and Eisenstein series
also generalizes to a general group G, although the statement is much more
complicated. The result is a theorem of Langlands [Lan76] known as the
spectral decomposition of L2(Γ\G). A thorough recent presentation of this
can be found in [MW94].

A.2.7. Let A = A (Γ, K) be the space of all automorphic forms, where ξ
and J range over all possibilities. The space A is huge, and the arithmetic
significance of much of it is unknown. This is already apparent for G =
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SL2(R). The automorphic forms directly connected with arithmetic are the
holomorphic modular forms, not the Maass forms2. Thus the question arises:
which automorphic forms in A are the most natural generalization of the
modular forms?

One answer is provided by the isomorphisms (A.2.1), (A.2.3), (A.2.4).
These show that modular forms appear naturally in the cohomology of mod-
ular curves. Hence a reasonable approach is to generalize the left of (A.2.1),
(A.2.3), (A.2.4), and to study the resulting cohomology groups. This is the
approach we will take. One drawback is that it is not obvious that our
generalization has anything to do with automorphic forms, but we will see
eventually that it certainly does. So we begin by looking for an appropriate
generalization of the modular curve Y0(N).

Let G and K be as in Section A.2.3, and let X be the quotient G/K.
This is a global Riemannian symmetric space [Hel01]. One can prove that
X is contractible. Any arithmetic group Γ ⊂ G acts on X properly dis-
continuously. In particular, if Γ is torsion-free, then the quotient Γ\X is a
smooth manifold.

Unlike the modular curves, Γ\X will not have a complex structure in
general3; nevertheless, Γ\X is a very nice space. In particular, if Γ is torsion-
free, it is an Eilenberg–Mac Lane space for Γ, otherwise known as a K(Γ, 1).
This means that the only nontrivial homotopy group of Γ\X is its fundamen-
tal group, which is isomorphic to Γ, and that the universal cover of Γ\X is
contractible. Hence Γ\X is in some sense a “topological incarnation”4 of Γ.

This leads us to the notion of the group cohomology H∗(Γ; C) of Γ with
trivial complex coefficients. In the early days of algebraic topology, this was
defined to be the complex cohomology of an Eilenberg–Mac Lane space for
Γ [Bro94, Introduction, I.4]:

(A.2.7) H∗(Γ; C) = H∗(Γ\X; C).

Today there are purely algebraic approaches to H∗(Γ; C) [Bro94, III.1],
but for our purposes (A.2.7) is exactly what we need. In fact, the group
cohomology H∗(Γ; C) can be identified with the cohomology of the quotient
Γ\X even if Γ has torsion, since we are working with complex coefficients.
The cohomology groups H∗(Γ; C), where Γ is an arithmetic group, are our
proposed generalization for the weight 2 modular forms.

What about higher weights? For this we must replace the trivial co-
efficient module C with local systems, just as we did in (A.2.3). For our

2However, Maass forms play a very important indirect role in arithmetic.
3The symmetric spaces that have a complex structure are known as bounded domains, or

Hermitian symmetric spaces [Hel01].
4This apt phrase is due to Vogan [Vog97].
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purposes it is enough to let M be a rational finite-dimensional representa-
tion of G over the complex numbers. Any such M gives a representation of

Γ ⊂ G and thus induces a local system M̃ on Γ\X. As before, the group

cohomology H∗(Γ; M ) is the cohomology H∗(Γ\X; M̃ ). In (A.2.3) we took
M = Mn, the nth symmetric power of the standard representation. For a
general group G there are many kinds of representations to consider. In any
case, we contend that the cohomology spaces

H∗(Γ; M ) = H∗(Γ\X; M̃ )

are a good generalization of the spaces of modular forms.

A.2.8. It is certainly not obvious that the cohomology groups H∗(Γ; M )
have anything to do with automorphic forms, although the isomorphisms
(A.2.1), (A.2.3), (A.2.4) look promising.

The connection is provided by a deep theorem of Franke [Fra98], which
asserts that

(1) the cohomology groups H∗(Γ; M ) can be directly computed in
terms of certain automorphic forms (the automorphic forms of “co-
homological type,” also known as those with “nonvanishing (g, K)
cohomology” [VZ84]); and

(2) there is a direct sum decomposition

(A.2.8) H∗(Γ; M ) = H∗
cusp(Γ; M ) ⊕

⊕

{P}
H∗

{P}(Γ; M ),

where the sum is taken over the set of classes of associate proper
Q-parabolic subgroups of G.

The precise version of statement (1) is known in the literature as the Borel
conjecture. Statement (2) parallels Langlands’s spectral decomposition of
L2(Γ\G).

Example A.8. For Γ = Γ0(N) ⊂ SL2(Z), the decomposition (A.2.8) is

exactly (A.2.4). The cusp forms Sk(N)⊕Sk(N) correspond to the summand
H1

cusp(Γ; M ). There is one class of proper Q-parabolic subgroups in SL2(R),
represented by the Borel subgroup of upper-triangular matrices. Hence only
one term appears in big direct sum on the right of (A.2.8), which is the
Eisenstein term Ek.

The summand H∗
cusp(Γ; M ) of (A.2.8) is called the cuspidal cohomol-

ogy; this is the subspace of classes represented by cuspidal automorphic
forms. The remaining summands constitute the Eisenstein cohomology of Γ
[Har91]. In particular the summand indexed by {P} is constructed using
Eisenstein series attached to certain cuspidal automorphic forms on lower
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rank groups. Hence H∗
cusp(Γ; M ) is in some sense the most important part

of the cohomology: all the rest can be built systematically from cuspidal co-
homology on lower rank groups5. This leads us to our basic computational
problem:

Problem A.9. Develop tools to compute explicitly the cohomology spaces
H∗(Γ; M ) and to identify the cuspidal subspace H∗

cusp(Γ; M ).

A.3. Combinatorial Models for Group Cohomology

A.3.1. In this section, we restrict attention to G = SLn(R) and Γ, a
congruence subgroup of SLn(Z). By the previous section, we can study the

group cohomology H∗(Γ; M ) by studying the cohomology H∗(Γ\X; M̃ ).
The latter spaces can be studied using standard topological techniques, such
as taking the cohomology of complexes associated to cellular decompositions
of Γ\X. For SLn(R), one can construct such decompositions using a version
of explicit reduction theory of real positive-definite quadratic forms due to
Voronǒı [Vor08]. The goal of this section is to explain how this is done. We
also discuss how the cohomology can be explicitly studied for congruence
subgroups of SL3(Z).

A.3.2. Let V be the R-vector space of all symmetric n × n matrices, and
let C ⊂ V be the subset of positive-definite matrices. The space C can be
identified with the space of all real positive-definite quadratic forms in n
variables: in coordinates, if x = (x1, . . . , xn)t ∈ Rn (column vector), then
the matrix A ∈ C induces the quadratic form

x 7−→ xtAx,

and it is well known that any positive-definite quadratic form arises in this
way. The space C is a cone, in that it is preserved by homotheties: if
x ∈ C, then λx ∈ C for all λ ∈ R>0. It is also convex: if x1, x2 ∈ C, then
tx1 +(1− t)x2 ∈ C for t ∈ [0, 1]. Let D be the quotient of C by homotheties.

Example A.10. The case n = 2 is illustrative. We can take coordinates on
V ≃ R3 by representing any matrix in V as

(
x y
y z

)
, x, y, z ∈ R.

The subset of singular matrices Q = {xz − y2 = 0} is a quadric cone in
V dividing the complement V r Q into three connected components. The
component containing the identity matrix is the cone C of positive-definite
matrices. The quotient D can be identified with an open 2-disk.

5This is a bit of an oversimplification, since it is a highly nontrivial problem to decide when

cusp cohomology from lower rank groups appears in Γ. However, many results are known; as a

selection we mention [Har91, Har87, LS04]
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The group G acts on C on the left by

(g, c) 7−→ gcgt.

This action commutes with that of the homotheties and thus descends to a
G-action on D. One can show that G acts transitively on D and that the
stabilizer of the image of the identity matrix is K = SO(n). Hence we may
identify D with our symmetric space X = SLn(R)/ SO(n). We will do this in
the sequel, using the notation D when we want to emphasize the coordinates
coming from the linear structure of C ⊂ V and using the notation X for the
quotient G/K.

We can make the identification D ≃ X more explicit. If g ∈ SLn(R),
then the map

(A.3.1) g 7−→ ggt

takes g to a symmetric positive-definite matrix. Any coset gK is taken to the
same matrix since KKt = Id. Thus (A.3.1) identifies G/K with a subset C1

of C, namely those positive-definite symmetric matrices with determinant
1. It is easy to see that C1 maps diffeomorphically onto D.

The inverse map C1 → G/K is more complicated. Given a determinant
1 positive-definite symmetric matrix A, one must find g ∈ SLn(R) such that
ggt = A. Such a representation always exists, with g determined uniquely up
to right multiplication by an element of K. In computational linear algebra,
such a g can be constructed through Cholesky decomposition of A.

The group SLn(Z) acts on C via the G-action and does so properly
discontinuously. This is the “unimodular change of variables” action on
quadratic forms [Ser73, V.1.1]. Under our identification of D with X, this
is the usual action of SLn(Z) by left translation from Section A.2.7.

A.3.3. Now consider the group cohomology H∗(Γ; M ) = H∗(Γ\X; M̃ ).
The identification D ≃ X shows that the dimension of X is n(n + 1)/2 −
1. Hence H i(Γ; M ) vanishes if i > n(n + 1)/2 − 1. Since dim X grows
quadratically in n, there are many potentially interesting cohomology groups
to study.

However, it turns out that there is some additional vanishing of the
cohomology for deeper (topological) reasons. For n = 2, this is easy to see.
The quotient Γ\h is homeomorphic to a topological surface with punctures,
corresponding to the cusps of Γ. Any such surface S can be retracted onto a
finite graph simply by “stretching” S along its punctures. Thus H2(Γ; M ) =
0, even though dim Γ\h = 2.

For Γ ⊂ SLn(Z), a theorem of Borel–Serre implies that H i(Γ; M ) van-
ishes if i > dim X − n + 1 = n(n − 1)/2 [BS73, Theorem 11.4.4]. The
number ν = n(n − 1)/2 is called the virtual cohomological dimension of Γ
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and is denoted vcdΓ. Thus we only need to consider cohomology in degrees
i ≤ ν.

Moreover we know from Section A.2.8 that the most interesting part of
the cohomology is the cuspidal cohomology. In what degrees can it live?
For n = 2, there is only one interesting cohomology group H1(Γ; M ), and
it contains the cuspidal cohomology. For higher dimensions, the situation
is quite different: for most i, the subspace H i

cusp(Γ; M ) vanishes! In fact in
the late 1970’s Borel, Wallach, and Zuckerman observed that the cuspidal
cohomology can only live in the cohomological degrees lying in an interval
around (dimX)/2 of size linear in n. An explicit description of this interval
is given in [Sch86, Proposition 3.5]; one can also look at Table A.3.1, from
which the precise statement is easy to determine.

Another feature of Table A.3.1 deserves to be mentioned. There are
exactly two values of n, namely n = 2, 3, such that virtual cohomological
dimension equals the upper limit of the cuspidal range. This will have
implications later, when we study the action of the Hecke operators on the
cohomology.

n 2 3 4 5 6 7 8 9

dim X 2 5 9 14 20 27 35 44
vcdΓ 1 3 6 10 15 21 28 36

top degree of H∗
cusp 1 3 5 8 11 15 19 24

bottom degree of H∗
cusp 1 2 4 6 9 12 16 20

Table A.3.1. The virtual cohomological dimension and the cuspidal
range for subgroups of SLn(Z).

A.3.4. Recall that a point in Zn is said to be primitive if the greatest
common divisor of its coordinates is 1. In particular, a primitive point is
nonzero. Let P ⊂ Zn be the set of primitive points. Any v ∈ P, written as
a column vector, determines a rank-1 symmetric matrix q(v) in the closure C̄
via q(v) = vvt. The Voronǒı polyhedron Π is defined to be the closed convex
hull in C̄ of the points q(v), as v ranges over P. Note that by construction,
SLn(Z) acts on Π, since SLn(Z) preserves the set {q(v)} and acts linearly
on V .

Example A.11. Figure A.3.1 represents a crude attempt to show what Π
looks like for n = 2. These images were constructed by computing a large
subset of the points q(v) and taking the convex hull (we took all points
v ∈ P such that Trace q(v) < N for some large integer N). From a distance,
the polyhedron Π looks almost indistinguishable from the cone C; this is
somewhat conveyed by the right of Figure A.3.1. Unfortunately Π is not
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locally finite, so we really cannot produce an accurate picture. To get a
more accurate image, the reader should imagine that each vertex meets
infinitely many edges. On the other hand, Π is not hopelessly complex:
each maximal face is a triangle, as the pictures suggest.

(a) (b)

Figure A.3.1. The polyhedron Π for SL2(Z). In (a) we see Π from the
origin, in (b) from the side. The small triangle at the right center of (a)
is the facet with vertices {q(e1), q(e2), q(e1 + e2)}, where {e1, e2} is the
standard basis of Z2. In (b) the x-axis runs along the top from left to
right, and the z-axis runs down the left side. The facet from (a) is the
little triangle at the top left corner of (b).

A.3.5. The polyhedron Π is quite complicated: it has infinitely many faces
and is not locally finite. However, one of Voronǒı’s great insights is that Π
is actually not as complicated as it seems.

For any A ∈ C, let µ(A) be the minimum value attained by A on P and
let M(A) ⊂ P be the set on which A attains µ(A). Note that µ(A) > 0 and
M(A) is finite since A is positive-definite. Then A is called perfect if it is
recoverable from the knowledge of the pair (µ(A), M(A)). In other words,
given (µ(A), M(A)), we can write a system of linear equations

(A.3.2) mZmt = µ(A), m ∈ M(A),

where Z = (zij) is a symmetric matrix of variables. Then A is perfect if and
only if A is the unique solution to the system (A.3.2).

Example A.12. The quadratic form Q(x, y) = x2 −xy +y2 is perfect. The
smallest nontrivial value it attains on Z2 is µ(Q) = 1, and it does so on the
columns of

M(Q) =

(
1 0 1
0 1 1

)
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and their negatives. Letting αx2 +βxy +γy2 be an undetermined quadratic
form and applying the data (µ(Q), M(Q)), we are led to the system of linear
equations

α = 1, γ = 1, α + β + γ = 1.

From this we recover Q(x, y).

Example A.13. The quadratic form Q′(x, y) = x2 + y2 is not perfect.
Again the smallest nontrivial value of Q′ on Z2 is m(Q′) = 1, attained on
the columns of

M(Q′) =

(
1 0
0 1

)

and their negatives. But every member of the one-parameter family of qua-
dratic forms

(A.3.3) x2 + αxy + y2, α ∈ (−1, 1)

has the same set of minimal vectors, and so Q′ cannot be recovered from
the knowledge of m(Q′), M(Q′).

Example A.14. Example A.12 generalizes to all n. Define

(A.3.4) An(x) :=
n∑

i=1

x2
i −

∑

1≤i<j≤n

xixj .

Then An is perfect for all n. We have µ(An) = 1, and M(An) consists of all
points of the form

±(ei + ei+1 + · · · + ei+k), 1 ≤ i ≤ n, i ≤ i + k ≤ n,

where {ei} is the standard basis of Zn. This quadratic form is closely related
to the An root lattice [FH91], which explains its name. It is one of two
infinite families of perfect forms studied by Voronǒı (the other is related to
the Dn root lattice).

We can now summarize Voronǒı’s main results:

(1) There are finitely many equivalence classes of perfect forms modulo
the action of SLn(Z). Voronǒı even gave an explicit algorithm to
determine all the perfect forms of a given dimension.

(2) The facets of Π, in other words the codimension 1 faces, are in bijec-
tion with the rank n perfect quadratic forms. Under this correspon-
dence the minimal vectors M(A) determine a facet FA by taking
the convex hull in C̄ of the finite point set {q(m) | m ∈ M(A)}.
Hence there are finitely many faces of Π modulo SLn(Z) and thus
finitely many modulo any finite index subgroup Γ.



218 A. Computing in Higher Rank

(3) Let V be the set of cones over the faces of Π. Then V is a fan,
which means (i) if σ ∈ V , then any face of σ is also in V ; and
(ii) if σ, σ′ ∈ V , then σ ∩ σ′ is a common face of each6. The
fan V provides a reduction theory for C in the following sense:
any point x ∈ C is contained in a unique σ(x) ∈ V , and the
set {γ ∈ SLn(Z) | γ · σ(x) = σ(x)} is finite. Voronǒı also gave an
explicit algorithm to determine σ(x) given x, the Voronǒı reduction
algorithm.

The number Nperf of equivalence classes of perfect forms modulo the
action of GLn(Z) grows rapidly with n (Table A.3.2); the complete classifi-
cation is known only for n ≤ 8. For a list of perfect forms up to n = 7, see
[CS88]. For a recent comprehensive treatment of perfect forms, with many
historical remarks, see [Mar03].

Dimension Nperf Authors

2 1 Voronǒı [Vor08]
3 1 ibid.
4 2 ibid.
5 3 ibid.
6 7 Barnes [Bar57]
7 33 Jaquet-Chiffelle [Jaq91, JC93]
8 10916 Dutour–Schürmann–Vallentin [DVS05]

Table A.3.2. The number Nperf of equivalence classes of perfect forms.

A.3.6. Our goal now is to describe how the Voronǒı fan V can be used to
compute the cohomology H∗(Γ; M ). The idea is to use the cones in V to
chop the quotient D into pieces.

For any σ ∈ V , let σ◦ be the open cone obtained by taking the comple-
ment in σ of its proper faces. Then after taking the quotient by homotheties,
the cones {σ◦ ∩ C | σ ∈ V } pass to locally closed subsets of D. Let C be
the set of these images.

Any c ∈ C is a topological cell, i.e., it is homeomorphic to an open ball,
since c is homeomorphic to a face of Π. Because C comes from the fan V ,
the cells in C have good incidence properties: the closure in D of any c ∈ C
can be written as a finite disjoint union of elements of C . Moreover, C is
locally finite: by taking quotients of all the σ◦ meeting C, we have eliminated
the open cones lying in C̄, and it is these cones that are responsible for the
failure of local finiteness of V . We summarize these properties by saying

6Strictly speaking, Voronǒı actually showed that every codimension 1 cone is contained in

two top-dimensional cones.
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that C gives a cellular decomposition of D. Clearly SLn(Z) acts on C , since
C is constructed using the fan V . Thus we obtain a cellular decomposition7

of Γ\D for any torsion-free Γ. We call C the Voronǒı decomposition of D.

Some care must be taken in using these cells to perform topological
computations. The problem is that even though the individual pieces are
homeomorphic to balls and are glued together nicely, the boundaries of
the closures of the pieces are not homeomorphic to spheres in general. (If
they were, then the Voronǒı decomposition would give rise to a regular cell
complex [CF67], which can be used as a substitute for a simplicial or CW
complex in homology computations.) Nevertheless, there is a way to remedy
this.

Recall that a subspace A of a topological space B is a strong deformation
retract if there is a continuous map f : B × [0, 1] → B such that f(b, 0) = b,
f(b, 1) ∈ A, and f(a, t) = a for all a ∈ A. For such pairs A ⊂ B we
have H∗(A) = H∗(B). One can show that there is a strong deformation
retraction from C to itself equivariant under the actions of both SLn(Z) and
the homotheties and that the image of the retraction modulo homotheties,
denoted W , is naturally a locally finite regular cell complex of dimension ν.
Moreover, the cells in W are in bijective, inclusion-reversing correspondence
with the cells in C . In particular, if a cell in C has codimension d, the
corresponding cell in W has dimension d. Thus, for example, the vertices
of W modulo SLn(Z) are in bijection with the top-dimensional cells in C ,
which are in bijection with equivalence classes of perfect forms.

In the literature W is called the well-rounded retract. The subspace
W ⊂ D ≃ X has a beautiful geometric interpretation. The quotient

SLn(Z)\X = SLn(Z)\ SLn(R)/ SO(n)

can be interpreted as the moduli space of lattices in Rn modulo the equiv-
alence relation of rotation and positive scaling (cf. [AG00]; for n = 2 one
can also see [Ser73, VII, Proposition 3]). Then W corresponds to those
lattices whose shortest nonzero vectors span Rn. This is the origin of the
name: the shortest vectors of such a lattice are “more round” than those of
a generic lattice.

The space W was known classically for n = 2 and was constructed
for n ≥ 3 by Lannes and Soulé, although Soulé only published the case
n = 3 [Sou75]. The construction for all n appears in work of Ash [Ash80,
Ash84], who also generalized W to a much larger class of groups. Explicit
computations of the cell structure of W have only been performed up to

7If Γ has torsion, then cells in C can have nontrivial stabilizers in Γ, and thus Γ\C should

be considered as an “orbifold” cellular decomposition.
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n = 6 [EVGS02]. Certainly computing W explicitly for n = 8 seems very
difficult, as Table A.3.2 indicates.

Example A.15. Figure A.3.2 illustrates C and W for SL2(Z). As in Ex-
ample A.11, the polyhedron Π is 3-dimensional, and so the Voronǒı fan V
has cones of dimensions 0, 1, 2, 3. The 1-cones of V , which correspond to the
vertices of Π, pass to infinitely many points on the boundary ∂D̄ = D̄ r D.
The 3-cones become triangles in D̄ with vertices on ∂D̄. In fact, the iden-
tifications D ≃ SL2(R)/ SO(2) ≃ h realize D as the Klein model for the
hyperbolic plane, in which geodesics are represented by Euclidean line seg-
ments. Hence, the images of the 1-cones of V are none other than the usual
cusps of h, and the triangles are the SL2(Z)-translates of the ideal triangle
with vertices {0, 1, ∞}. These triangles form a tessellation of h sometimes
known as the Farey tessellation. The edges of the Voronǒı are the SL2(Z)-
translates of the ideal geodesic between 0 and ∞. After adjoining cusps
and passing to the quotient X0(N), these edges become the supports of
the Manin symbols from Section 8.2 (cf. Figure 3.2.1). This example also
shows how the Voronǒı decomposition fails to be a regular cell complex: the
boundaries of the closures of the triangles in D do not contain the vertices
and thus are not homeomorphic to circles.

The virtual cohomological dimension of SL2(Z) is 1. Hence the well-
rounded retract W is a graph (Figures A.3.2 and A.3.3). Note that W is
not a manifold. The vertices of W are in bijection with the Farey triangles—
each vertex lies at the center of the corresponding triangle—and the edges
are in bijection with the Manin symbols. Under the map D → h, the graph
W becomes the familiar “PSL2-tree” embedded in h, with vertices at the
order 3 elliptic points (Figure A.3.3).

A.3.7. We now discuss the example SL3(Z) in some detail. This example
gives a good feeling for how the general situation compares to the case n = 2.

We begin with the Voronǒı fan V . The cone C is 6-dimensional, and the
quotient D is 5-dimensional. There is one equivalence class of perfect forms
modulo the action of SL3(Z), represented by the form (A.3.4). Hence there
are 12 minimal vectors; six are the columns of the matrix

(A.3.5)




1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1


 ,

and the remaining six are the negatives of these. This implies that the cone
σ corresponding to this form is 6-dimensional and simplicial. The latter
implies that the faces of σ are the cones generated by {q(v) | v ∈ S}, where
S ranges over all subsets of (A.3.5). To get the full structure of the fan, one
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Figure A.3.2. The Voronǒı decomposition and the retract in D.

Figure A.3.3. The Voronǒı decomposition and the retract in h.

must determine the SL3(Z) orbits of faces, as well as which faces lie in the
boundary ∂C̄ = C̄ r C. After some pleasant computation, one finds:

(1) There is one equivalence class modulo SL3(Z) for each of the 6-, 5-,
2-, and 1-dimensional cones.

(2) There are two equivalence classes of the 4-dimensional cones, rep-
resented by the sets of minimal vectors




1 0 0 1
0 1 0 1
0 0 1 1


 and




1 0 0 1
0 1 0 1
0 0 1 0


 .

(3) There are two equivalence classes of the 3-dimensional cones, rep-
resented by the sets of minimal vectors




1 0 0
0 1 0
0 0 1


 and




1 0 1
0 1 1
0 0 0


 .
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The second type of 3-cone lies in ∂C̄ and thus does not determine
a cell in C .

(4) The 2- and 1-dimensional cones lie entirely in ∂C̄ and do not de-
termine cells in C .

After passing from C to D, the cones of dimension k determine cells
of dimension k − 1. Therefore, modulo the action of SL3(Z) there are five
types of cells in the Voronǒı decomposition C , with dimensions from 5 to 2.
We denote these cell types by c5, c4, c3a, c3b, and c2. Here c3a corresponds
to the first type of 4-cone in item (2) above, and c3b to the second. For
a beautiful way to index the cells of C using configurations in projective
spaces, see [McC91].

The virtual cohomological dimension of SL3(Z) is 3, which means that
the retract W is a 3-dimensional cell complex. The closures of the top-
dimensional cells in W , which are in bijection with the Voronǒı cells of type
c2, are homeomorphic to solid cubes truncated along two pairs of opposite
corners (Figure A.3.4). To compute this, one must see how many Voronǒı
cells of a given type contain a fixed cell of type c2 (since the inclusions of
cells in W are the opposite of those in C ).

A table of the incidence relations between the cells of C and W is given
in Table A.3.3. To interpret the table, let m = m(X, Y ) be the integer in
row X and column Y .

• If m is below the diagonal, then the boundary of a cell of type Y
contains m cells of type X.

• If m is above the diagonal, then a cell of type Y appears in the
boundary of m cells of type X.

For instance, the entry 16 in row c5 and column c2 means that a Voronǒı
cell of type c2 meets the boundaries of 16 cells of type c5. This is the same
as the number of vertices in the Soulé cube (Figure A.3.4). Investigation
of the table shows that the triangular (respectively, hexagonal) faces of the
Soulé cube correspond to the Voronǒı cells of type c3a (resp., c3b).

Figure A.3.5 shows a Schlegel diagram for the Soulé cube. One vertex is
at infinity; this is indicated by the arrows on three of the edges. This Soulé
cube is dual to the Voronǒı cell C of type c2 with minimal vectors given by
the columns of the identity matrix. The labels on the 2-faces are additional
minimal vectors that show which Voronǒı cells contain C. For example, the
central triangle labelled with (1, 1, 1)t is dual to the Voronǒı cell of type c3a

with minimal vectors given by those of C together with (1, 1, 1)t. Cells of
type c4 containing C in their closure correspond to the edges of the figure;
the minimal vectors for a given edge are those of C together with the two
vectors on the 2-faces containing the edge. Similarly, one can read off the
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minimal vectors of the top-dimensional Voronǒı cells containing C, which
correspond to the vertices of Figure A.3.5.

c5 c4 c3a c3b c2

c5 • 2 3 6 16
c4 6 • 3 6 24
c3a 3 1 • • 4
c3b 12 4 • • 6
c2 12 8 4 3 •

Table A.3.3. Incidence relations in the Voronǒı decomposition and the
retract for SL3(Z).

Figure A.3.4. The Soulé cube.

A.3.8. Now let p be a prime, and let Γ = Γ0(p) ⊂ SL3(Z) be the Hecke
subgroup of matrices with bottom row congruent to (0, 0, ∗) mod p (Ex-
ample A.4). The virtual cohomological dimension of Γ is 3, and the cusp
cohomology with constant coefficients can appear in degrees 2 and 3. One
can show that the cusp cohomology in degree 2 is dual to that in degree 3,
so for computational purposes it suffices to focus on degree 3.

In terms of W , these will be cochains supported on the 3-cells. Unfortu-
nately we cannot work directly with the quotient Γ\W since Γ has torsion:
there will be cells taken to themselves by the Γ-action, and thus the cells of
W need to be subdivided to induce the structure of a cell complex on Γ\W .
Thus when Γ has torsion, the “set of 3-cells modulo Γ” unfortunately makes
no sense.

To circumvent this problem, one can mimic the idea of Manin symbols.
The quotient Γ\ SL3(Z) is in bijection with the finite projective plane P2(Fp),
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(1, 1, 1)t

(−1, 1, 1)t

(1, −1, 1)t

(1, 1, −1)t

(1, 1, 0)t

(1, −1, 0)t

(0, 1, 1)t

(0, 1, −1)t(1, 0, 1)t

(1, 0, −1)t

Figure A.3.5. A Schlegel diagram of a Soulé cube, showing the mini-
mal vectors that correspond to the 2-faces.

where Fp is the field with p elements (cf. Proposition 3.10). The group
SL3(Z) acts transitively on the set of all 3-cells of W ; if we fix one such
cell w, its stabilizer Stab(w) = {γ ∈ SL3(Z) | γw = w} is a finite subgroup
of SL3(Z). Hence the set of 3-cells modulo Γ should be interpreted as the
set of orbits in P2(Fp) of the finite group Stab(w). This suggests describing
H3(Γ; C) in terms of the space S of complex-valued functions f : P2(Fp) →
C. To carry this out, there are two problems:

(1) How do we explicitly describe H3(Γ; C) in terms of S ?

(2) How can we isolate the cuspidal subspace H3
cusp(Γ; C) ⊂ H3(Γ; C)

in terms of our description?

Fully describing the solutions to these problems is rather complicated. We
content ourselves with presenting the following theorem, which collects to-
gether several statements in [AGG84]. This result should be compared to
Theorems 3.13 and 8.4.

Theorem A.16 (Theorem 3.19 and Summary 3.23 of [AGG84]). We have

dimH3(Γ0(p); C) = dim H3
cusp(Γ0(p); C) + 2Sp,

where Sp is the dimension of the space of weight 2 holomorphic cusp forms
on Γ0(p) ⊂ SL2(Z). Moreover, the cuspidal cohomology H3

cusp(Γ0(p); C) is

isomorphic to the vector space of functions f : P2(Fp) → C satisfying

(1) f(x, y, z) = f(z, x, y) = f(−x, y, z) = −f(y, x, z),

(2) f(x, y, z) + f(−y, x − y, z) + f(y − x,−x, z) = 0,

(3) f(x, y, 0) = 0, and
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(4)
∑p−1

z=1 f(x, y, z) = 0.

Unlike subgroups of SL2(Z), cuspidal cohomology is apparently much
rarer for Γ0(p) ⊂ SL3(Z). The computations of [AGG84, vGvdKTV97]
show that the only prime levels p ≤ 337 with nonvanishing cusp cohomology
are 53, 61, 79, 89, and 223. In all these examples, the cuspidal subspace is
2-dimensional.

For more details of how to implement such computations, we refer to
[AGG84, vGvdKTV97]. For further details about the additional compli-
cations arising for higher rank groups, in particular subgroups of SL4(Z),
see [AGM02, Section 3].

A.4. Hecke Operators and Modular Symbols

A.4.1. There is one ingredient missing so far in our discussion of the co-
homology of arithmetic groups, namely the Hecke operators. These are an
essential tool in the study of modular forms. Indeed, the forms with the
most arithmetic significance are the Hecke eigenforms, and the connection
with arithmetic is revealed by the Hecke eigenvalues.

In higher rank the situation is similar. There is an algebra of Hecke
operators acting on the cohomology spaces H∗(Γ; M ). The eigenvalues of
these operators are conjecturally related to certain representations of the
Galois group. Just as in the case G = SL2(R), we need tools to compute
the Hecke action.

In this section we discuss this problem. We begin with a general de-
scription of the Hecke operators and how they act on cohomology. Then we
focus on one particular cohomology group, namely the top degree Hν(Γ; C),
where ν = vcd(Γ) and Γ has finite index in SLn(Z). This is the setting
that generalizes the modular symbols method from Chapter 8. We con-
clude by giving examples of Hecke eigenclasses in the cuspidal cohomology
of Γ0(p) ⊂ SL3(Z).

A.4.2. Let g ∈ SLn(Q). The group Γ′ = Γ ∩ g−1Γg has finite index in
both Γ and g−1Γg. The element g determines a diagram C(g)

Γ′\X

s

{{xxxxxxxx
t

##FFFFFFFF

Γ\X Γ\X
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called a Hecke correspondence. The map s is induced by the inclusion Γ′ ⊂ Γ,
while t is induced by the inclusion Γ′ ⊂ g−1Γg followed by the diffeomor-
phism g−1Γg\X → Γ\X given by left multiplication by g. Specifically,

s(Γ′x) = Γx, t(Γ′x) = Γgx, x ∈ X.

The maps s and t are finite-to-one, since the indices [Γ′ : Γ] and [Γ′ :
g−1Γg] are finite. This implies that we obtain maps on cohomology

s∗ : H∗(Γ\X) → H∗(Γ′\X), t∗ : H∗(Γ′\X) → H∗(Γ\X).

Here the map s∗ is the usual induced map on cohomology, while the “wrong-
way” map8 t∗ is given by summing a class over the finite fibers of t. These
maps can be composed to give a map

Tg := t∗s∗ : H∗(Γ\X; M̃ ) −→ H∗(Γ\X; M̃ ).

This is called the Hecke operator associated to g. There is an obvious notion
of isomorphism of Hecke correspondences. One can show that up to iso-
morphism, the correspondence C(g) and thus the Hecke operator Tg depend
only on the double coset ΓgΓ. One can compose Hecke correspondences,
and thus we obtain an algebra of operators acting on the cohomology, just
as in the classical case.

Example A.17. Let n = 2, and let Γ = SL2(Z). If we take g = diag(1, p),
where p is a prime, then the action of Tg on H1(Γ; Mk−2) is the same as
the action of the classical Hecke operator Tp on the weight k holomorphic
modular forms. If we take Γ = Γ0(N), we obtain an operator T (p) for
all p prime to N , and the algebra of Hecke operators coincides with the
(semisimple) Hecke algebra generated by the Tp, (p, N) = 1. For p|N , one
can also describe the Up operators in this language.

Example A.18. Now let n > 2 and let Γ = SLn(Z). The picture is
very similar, except that now there are several Hecke operators attached
to any prime p. In fact there are n − 1 operators T (p, k), k = 1, . . . , n − 1.
The operator T (p, k) is associated to the correspondence C(g), where g =
diag(1, . . . , 1, p, . . . , p) and where p occurs k times. If we consider the con-
gruence subgroups Γ0(N), we have operators T (p, k) for (p, N) = 1 and
analogues of the Up operators for p|N .

Just as in the classical case, any double coset ΓgΓ can be written as a
disjoint union of left cosets

ΓgΓ =
∐

h∈Ω

Γh

8Under the identification H∗(Γ\X; fM ) ≃ H∗(Γ; M ), the map t∗ becomes the transfer map

in group cohomology [Bro94, III.9].
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for a certain finite set of n×n integral matrices Ω. For the operator T (p, k),
the set Ω can be taken to be all upper-triangular matrices of the form [Kri90,
Proposition 7.2] 


pe1 aij

. . .

pen


 ,

where

• ei ∈ {0, 1} and exactly k of the ei are equal to 1 and

• aij = 0 unless ei = 0 and ej = 1, in which case aij satisfies 0 ≤
aij < p.

Remark A.19. The number of coset representatives for the operator T (p, k)
is the same as the number of points in the finite Grassmannian G(k, n)(Fp).
A similar phenomenon is true for the Hecke operators for any group G,
although there are some subtleties [Gro98].

A.4.3. Recall that in Section A.3.6 we constructed the Voronǒı decom-
position C and the well-rounded retract W and that we can use them to
compute the cohomology H∗(Γ; M ). Unfortunately, we cannot directly use
them to compute the action of the Hecke operators on cohomology, since
the Hecke operators do not act cellularly on C or W . The problem is that
the Hecke image of a cell in C (or W ) is usually not a union of cells in
C (or W ). This is already apparent for n = 2. The edges of C are the
SL2(Z)-translates of the ideal geodesic τ from 0 to ∞ (Example A.15). Ap-
plying a Hecke operator takes such an edge to a union of ideal geodesics,
each with vertices at a pair of cusps. In general such geodesics are not an
SL2(Z)-translate of τ .

For n = 2, one solution is to work with all possible ideal geodesics
with vertices at the cusps, in other words the space of modular symbols M2

from Section 3.2. Manin’s trick (Proposition 3.11) shows how to write any
modular symbol as a linear combination of unimodular symbols, by which
we mean modular symbols supported on the edges of C . These are the ideas
we now generalize to all n.

Definition A.20. Let S0 be the Q-vector space spanned by the symbols
v = [v1, . . . , vn], where vi ∈ Qn r {0}, modulo the following relations:

(1) If τ is a permutation on n letters, then

[v1, . . . , vn] = sign(τ)[τ(v1), . . . , τ(vn)],

where sign(τ) is the sign of τ .

(2) If q ∈ Q×, then

[qv1, v2 . . . , vn] = [v1, . . . , vn].
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(3) If the points v1, . . . , vn are linearly dependent, then v = 0.

Let B ⊂ S0 be the subspace generated by linear combinations of the form

(A.4.1)
n∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vn],

where v0, . . . , vn ∈ Qn r {0} and where v̂i means to omit vi.

We call S0 the space of modular symbols. We caution the reader that
there are some differences in what we call modular symbols and those found
in Section 3.2 and Definition 8.2; we compare them in Section A.4.4. The
group SLn(Q) acts on S0 by left multiplication: g · v = [gv1, . . . , gvn]. This
action preserves the subspace B and thus induces an action on the quotient
M = S0/B. For Γ ⊂ SLn(Z) a finite index subgroup, let MΓ be the space
of Γ-coinvariants in M . In other words, MΓ is the quotient of M by the
subspace generated by {m − γ · m | γ ∈ Γ}.

The relationship between modular symbols and the cohomology of Γ is
given by the following theorem, first proved for SLn by Ash and Rudolph
[AR79] and by Ash for general G [Ash86]:

Theorem A.21 ([Ash86, AR79]). Let Γ ⊂ SLn(Z) be a finite index sub-
group. There is an isomorphism

(A.4.2) MΓ
∼−→ Hν(Γ; Q),

where Γ acts trivially on Q and where ν = vcd(Γ).

We remark that Theorem A.21 remains true if Q is replaced with non-
trivial coefficients as in Section A.2.7. Moreover, if Γ is assumed to be
torsion-free then we can replace Q with Z.

The great virtue of MΓ is that it admits an action of the Hecke operators.
Given a Hecke operator Tg, write the double coset ΓgΓ as a disjoint union
of left cosets

(A.4.3) ΓgΓ =
∐

h∈Ω

Γh

as in Example A.18. Any class in MΓ can be lifted to a representative
η =

∑
q(v)v ∈ S0, where q(v) ∈ Q and almost all q(v) vanish. Then we

define

(A.4.4) Tg(v) =
∑

h∈Ω

h · v

and extend to η by linearity. The right side of (A.4.4) depends on the
choices of η and Ω, but after taking quotients and coinvariants, we obtain a
well-defined action on cohomology via (A.4.2).



A.4. Hecke Operators and Modular Symbols 229

A.4.4. The space S0 is closely related to the space M2 from Section 3.2
and Section 8.1. Indeed, M2 was defined to be the quotient (F/R)/(F/R)tor,
where F is the free abelian group generated by ordered pairs

(A.4.5) {α, β}, α, β ∈ P1(Q),

and R is the subgroup generated by elements of the form

(A.4.6) {α, β} + {β, γ} + {γ, α}, α, β, γ ∈ P1(Q).

The only new feature in Definition A.20 is item (3). For n = 2 this corre-
sponds to the condition {α, α} = 0, which follows from (A.4.6). We have

S0/B ≃ M2 ⊗ Q.

Hence there are two differences between S0 and M2: our notion of modular
symbols uses rational coefficients instead of integral coefficients and is the
space of symbols before dividing out by the subspace of relations B; we
further caution the reader that this is somewhat at odds with the literature.

We also remark that the general arbitrary weight definition of modular
symbols for a subgroup Γ ⊂ SL2(Z) given in Section 8.1 also includes taking
Γ-coinvariants, as well as extra data for a coefficient system. We have not
included the latter data since our emphasis is trivial coefficients, although
it would be easy to do so in the spirit of Section 8.1.

Elements of M2 also have a geometric interpretation: the symbol {α, β}
corresponds to the ideal geodesic in h with endpoints at the cusps α and
β. We have a similar picture for the symbols v = [v1, . . . , vn]. We can
assume that each vi is primitive, which means that each vi determines a
vertex of the Voronǒı polyhedron Π. The rational cone generated by these
vertices determines a subset ∆(v) ⊂ D, where D is the linear model of the
symmetric space X = SLn(R)/ SO(n) from Section A.3.2. This subset ∆(v)
is then an “ideal simplex” in X. There is also a connection between ∆(v)
and torus orbits in X; we refer to [Ash86] for a related discussion.

A.4.5. Now we need a generalization of the Manin trick (Section 3.3.1).
This is known in the literature as the modular symbols algorithm.

We can define a kind of norm function on S0 as follows. Let v =
[v1, . . . , vn] be a modular symbol. For each vi, choose λi ∈ Q× such that
λivi is primitive. Then we define

‖v‖ := | det(λ1v1, . . . , λnvn)| ∈ Z.

Note that ‖v‖ is well defined, since the λi are unique up to sign, and per-
muting the vi only changes the determinant by a sign. We extend ‖ ‖ to
all of S0 by taking the maximum of ‖ ‖ over the support of any η ∈ S0: if
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η =
∑

q(v)v, where q(v) ∈ Q and almost all q(v) vanish, then we put

‖η‖ = Max
q(v) 6=0

‖v‖.

We say a modular symbol η is unimodular if ‖η‖ = 1. It is clear that the
images of the unimodular symbols generate a finite-dimensional subspace of
MΓ. The next theorem shows that this subspace is actually all of MΓ.

Theorem A.22 ([AR79, Bar94]). The space MΓ is spanned by the images
of the unimodular symbols. More precisely, given any symbol v ∈ S0 with
‖v‖ > 1,

(1) in S0/B we may write

(A.4.7) v =
∑

q(w)w, q(w) ∈ Z,

where if q(w) 6= 0, then ‖w‖ = 1, and

(2) the number of terms on the right side of (A.4.7) is bounded by a
polynomial in log ‖v‖ that depends only on the dimension n.

Proof. (Sketch) Given a modular symbol v = [v1, . . . , vn], we may assume
that the points vi are primitive. We will show that if ‖v‖ > 1, we can find
a point u such that when we apply the relation (A.4.1) using the points
u, v1, . . . , vn, all terms other than v have norm less than ‖v‖. We call such
a point a reducing point for v.

Let P ⊂ Rn be the open parallelotope

P :=
{∑

λivi

∣∣∣ |λi| < ‖v‖−1/n
}

.

Then P is an n-dimensional centrally symmetric convex body with volume
2n. By Minkowski’s theorem from the geometry of numbers (cf. [FT93,
IV.2.6]), P ∩ Zn contains a nonzero point u. Using (A.4.1), we find

(A.4.8) v =
n∑

i=1

(−1)i−1vi(u),

where vi(u) is the symbol

vi(u) = [v1, . . . , vi−1, u, vi+1, . . . , vn].

Moreover, it is easy to see that the new symbols satisfy

(A.4.9) 0 ≤ ‖vi(u)‖ < ‖v‖(n−1)/n, i = 1, . . . , n.

This completes the proof of the first statement.

To prove the second statement, we must estimate how many times re-
lations of the form (A.4.8) need to be applied to obtain (A.4.7). A nonuni-
modular symbol produces at most n new modular symbols after (A.4.8) is
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performed; we potentially have to apply (A.4.8) again to each of the sym-
bols that result, which in turn could produce as many as n new symbols for
each. Hence we can visualize the process of constructing (A.4.7) as building
a rooted tree, where the root is v, the leaves are the symbols w, and where
each node has at most n children. It is not hard to see that the bound
(A.4.9) implies that the depth of this tree (i.e., the longest length of a path
from the root to a leaf) is O(log log ‖v‖). From this the second statement
follows easily. ¤

Statement (1) of Theorem A.22 is due to Ash and Rudolph [AR79].
Instead of P , they used the larger parallelotope P ′ defined by

P ′ :=
{∑

λivi

∣∣∣ |λi| < 1
}

,

which has volume 2n‖v‖. The observation that P ′ can be replaced by P
and the proof of (2) are both due to Barvinok [Bar94].

A.4.6. The relationship between Theorem A.22 and Manin’s trick should
be clear. For Γ ⊂ SL2(Z), the Manin symbols correspond exactly to the
unimodular symbols mod Γ. So Theorem A.22 implies that every modular
symbol (in the language of Section 8.1) is a linear combination of Manin
symbols. This is exactly the conclusion of Proposition 8.3.

In higher rank the relationship between Manin symbols and unimodular
symbols is more subtle. In fact there are two possible notions of “Manin
symbol,” which agree for SL2(Z) but not in general. One possibility is the
obvious one: a Manin symbol is a unimodular symbol.

The other possibility is to define a Manin symbol to be a modular symbol
corresponding to a top-dimensional cell of the retract W . But for n ≥ 5, such
modular symbols need not be unimodular. In particular, for n = 5 there
are two equivalence classes of top-dimensional cells. One class corresponds
to the unimodular symbols, the other to a set of modular symbols of norm
2. However, Theorems A.21 and A.22 show that Hν(Γ; Q) is spanned by
unimodular symbols. Thus as far as this cohomology group is concerned,
the second class of symbols is in some sense unnecessary.

A.4.7. We return to the setting of Section A.3.8 and give examples of
Hecke eigenclasses in the cusp cohomology of Γ = Γ0(p) ⊂ SL3(Z). We
closely follow [AGG84, vGvdKTV97]. Note that since the top of the
cuspidal range for SL3 is the same as the virtual cohomological dimension
ν, we can use modular symbols to compute the Hecke action on cuspidal
classes.

Given a prime l coprime to p, there are two Hecke operators of inter-
est T (l, 1) and T (l, 2). We can compute the action of these operators on
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H3
cusp(Γ; C) as follows. Recall that H3

cusp(Γ; C) can be identified with a cer-

tain space of functions f : P2(Fp) → C (Theorem A.16). Given x ∈ P2(Fp),
let Qx ∈ SL3(Z) be a matrix such that Qx 7→ x under the identification

P2(Fp)
∼−→ Γ\ SL3(Z). Then Qx determines a unimodular symbol [Qx] by

taking the vi to be the columns of Qx. Given any Hecke operator Tg, we can
find coset representatives hi such that ΓgΓ =

∐
Γhi (explicit representatives

for Γ = Γ0(p) and Tg = T (l, k) are given in [AGG84, vGvdKTV97]). The
modular symbols [hiQx] are no longer unimodular in general, but we can
apply Theorem A.22 to write

[hiQx] =
∑

j

[Rij ], Rij ∈ SL3(Z).

Then for f : P2(Fp) → C as in Theorem A.16, we have

(Tgf)(x) =
∑

i,j

f(Rij),

where Rij is the class of Rij in P2(Fp).

Now let ξ ∈ H3
cusp(Γ; C) be a simultaneous eigenclass for all the Hecke

operators T (l, 1), T (l, 2), as l ranges over all primes coprime with p. General
considerations from the theory of automorphic forms imply that the eigen-
values a(l, 1), a(l, 2) are complex conjugates of one other. Hence it suffices
to compute a(l, 1). We give two examples of cuspidal eigenclasses for two
different prime levels.

Example A.23. Let p = 53. Then H3
cusp(Γ0(53); C) is 2-dimensional. Let

η = (1 +
√

−11)/2. One eigenclass is given by the data

l 2 3 5 7 11 13

a(l, 1) −1 − 2η −2 + 2η 1 −3 1 −2 − 12η

and the other is obtained by complex conjugation.

Example A.24. Let p = 61. Then H3
cusp(Γ0(61); C) is 2-dimensional. Let

ω = (1 +
√

−3)/2. One eigenclass is given by the data

l 2 3 5 7 11 13

a(l, 1) 1 − 2ω −5 + 4ω −2 + 4ω −6ω −2 + 2ω −2 − 4ω

and the other is obtained by complex conjugation.

A.5. Other Cohomology Groups

A.5.1. In Section A.4 we saw how to compute the Hecke action on the
top cohomology group Hν(Γ; C). Unfortunately for n ≥ 4, this cohomology
group does not contain any cuspidal cohomology. The first case is Γ ⊂
SL4(Z); we have vcd(Γ) = 6, and the cusp cohomology lives in degrees 4
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and 5. One can show that the cusp cohomology in degree 4 is dual to that
in degree 5, so for computational purposes it suffices to be able to compute
the Hecke action on H5(Γ; C). But modular symbols do not help us here.

In this section we describe a technique to compute the Hecke action
on Hν−1(Γ; C), following [Gun00a]. The technique is an extension of the
modular symbol algorithm to these cohomology groups. In principle the
ideas in this section can be modified to compute the Hecke action on other
cohomology groups Hν−k(Γ; C), k > 1, although this has not been investi-
gated9. For n = 4, we have applied the algorithm in joint work with Ash and
McConnell to investigate computationally the cohomology H5(Γ; C), where
Γ0(N) ⊂ SL4(Z) [AGM02].

A.5.2. To begin, we need an analogue of Theorem A.21 for lower degree
cohomology groups. In other words, we need a generalization of the mod-
ular symbols for other cohomology groups. This is achieved by the sharbly
complex S∗:

Definition A.25 ([Ash94]). Let {S∗, ∂} be the chain complex given by the
following data:

(1) For k ≥ 0, Sk is the Q-vector space generated by the symbols
u = [v1, . . . , vn+k], where vi ∈ Qn r {0}, modulo the relations:
(a) If τ is a permutation on (n + k) letters, then

[v1, . . . , vn+k] = sign(τ)[τ(v1), . . . , τ(vn+k)],

where sign(τ) is the sign of τ .
(b) If q ∈ Q×, then

[qv1, v2 . . . , vn+k] = [v1, . . . , vn+k].

(c) If the rank of the matrix (v1, . . . , vn+k) is less than n, then
u = 0.

(2) For k > 0, the boundary map ∂ : Sk → Sk−1 is

[v1, . . . , vn+k] 7−→
n+k∑

i=1

(−1)i[v1, . . . , v̂i, . . . , vn+k].

We define ∂ to be identically zero on S0.

The elements

u = [v1, . . . , vn+k]

9The first interesting case is n = 5, for which the cuspidal cohomology lives in Hν−2.
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are called k-sharblies10. The 0-sharblies are exactly the modular symbols
from Definition A.20, and the subspace B ⊂ S0 is the image of the boundary
map ∂ : S1 → S0.

There is an obvious left action of Γ on S∗ commuting with ∂. For any
k ≥ 0, let Sk,Γ be the space of Γ-coinvariants. Since the boundary map ∂
commutes with the Γ-action, we obtain a complex (S∗,Γ, ∂Γ). The following
theorem shows that this complex computes the cohomology of Γ:

Theorem A.26 ([Ash94]). There is a natural isomorphism

Hν−k(Γ; C)
∼−→ Hk(S∗,Γ ⊗ C).

A.5.3. We can extend our norm function ‖ ‖ from modular symbols to
all of Sk as follows. Let u = [v1, . . . , vn+k] be a k-sharbly, and let Z(u) be
the set of all submodular symbols determined by u. In other words, Z(u)
consists of the modular symbols of the form [vi1 , . . . , vin ], where {i1, . . . , in}
ranges over all n-fold subsets of {1, . . . , n + k}. Define ‖u‖ by

‖u‖ = Max
v∈Z(u)

‖v‖.

Note that ‖u‖ is well defined modulo the relations in Definition A.25. As
for modular symbols, we extend the norm to sharbly chains ξ =

∑
q(u)u

taking the maximum norm over the support. Formally, we let supp(ξ) =
{u | q(u) 6= 0} and Z(ξ) =

⋃
u∈supp(ξ) Z(u), and then we define ‖ξ‖ by

‖ξ‖ = Max
v∈Z(ξ)

‖v‖.

We say that ξ is reduced if ‖ξ‖ = 1. Hence ξ is reduced if and only if
all its submodular symbols are unimodular or have determinant 0. Clearly
there are only finitely many reduced k-sharblies modulo Γ for any k.

In general the cohomology groups H∗(Γ; C) are not spanned by reduced
sharblies. However, it is known (cf. [McC91]) that for Γ ⊂ SL4(Z), the
group H5(Γ; C) is spanned by reduced 1-sharbly cycles. The best one can
say in general is that for each pair n, k, there is an integer N = N(n, k) such
that for Γ ⊂ SLn(Z), Hν−k(Γ; C) is spanned by k-sharblies of norm ≤ N .
This set of sharblies is also finite modulo Γ, although it is not known how
large N must be for any given pair n, k.

A.5.4. Recall that the cells of the well-rounded retract W are indexed by
sets of primitive vectors in Zn. Since any primitive vector determines a point
in Qnr{0} and since sets of such points index sharblies, it is clear that there
is a close relationship between S∗ and the chain complex associated to W ,

10The terminology for S∗ is due to Lee Rudolph, in honor of Lee and Szczarba. They

introduced a very similar complex in [LS76] for SL3(Z).
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although of course S∗ is much bigger. In any case, both complexes compute
H∗(Γ; C).

The main benefit of using the sharbly complex to compute cohomology
is that it admits a Hecke action. Suppose ξ =

∑
q(u)u is a sharbly cycle

mod Γ, and consider a Hecke operator Tg. Then we have

(A.5.1) Tg(ξ) =
∑

h∈Ω,u

n(u)h · u,

where Ω is a set of coset representatives as in (A.4.3). Since Ω 6⊂ SLn(Z) in
general, the Hecke image of a reduced sharbly is not usually reduced.

A.5.5. We are now ready to describe our algorithm for the computation
of the Hecke operators on Hν−1(Γ; C). It suffices to describe an algorithm
that takes as input a 1-sharbly cycle ξ and produces as output a cycle ξ′

with

(a) the classes of ξ and ξ′ in Hν−1(Γ; C) the same, and

(b) ‖ξ′‖ < ‖ξ‖ if ‖ξ‖ > 1.

Below, we will present an algorithm satisfying (a). In [Gun00a], we
conjectured (and presented evidence) that the algorithm satisfies (b) for
n ≤ 4. Further evidence is provided by the computations in [AGM02],
which relied on the algorithm to compute the Hecke action on H5(Γ; C),
where Γ = Γ0(N) ⊂ SL4(Z).

The idea behind the algorithm is simple: given a 1-sharbly cycle ξ that is
not reduced, (i) simultaneously apply the modular symbol algorithm (The-
orem A.22) to each of its submodular symbols, and then (ii) package the
resulting data into a new 1-sharbly cycle. Our experience in presenting this
algorithm is that most people find the geometry involved in (ii) daunting.
Hence we will give details only for n = 2 and will provide a sketch for n > 2.
Full details are contained in [Gun00a]. Note that n = 2 is topologically
and arithmetically uninteresting, since we are computing the Hecke action
on H0(Γ; C); nevertheless, the geometry faithfully represents the situation
for all n.

A.5.6. Fix n = 2, let ξ ∈ S1 be a 1-sharbly cycle mod Γ for some Γ ⊂
SL2(Z), and suppose ξ is not reduced. Assume Γ is torsion-free to simplify
the presentation.

Suppose first that all submodular symbols v ∈ Z(ξ) are nonunimod-
ular. Select reducing points for each v ∈ Z(ξ) and make these choices
Γ-equivariantly. This means the following. Suppose u,u′ ∈ supp ξ and
v ∈ supp(∂u) and v′ ∈ supp(∂u′) are modular symbols such that v = γ · v′

for some γ ∈ Γ. Then we select reducing points w for v and w′ for v′ such



236 A. Computing in Higher Rank

that w = γ · w′. (Note that since Γ is torsion-free, no modular symbol can
be identified to itself by an element of Γ; hence v 6= v′.) This is possible
since if v is a modular symbol and w is a reducing point for v, then γ ·w is a
reducing point for γ · v for any γ ∈ Γ. Because there are only finitely many
Γ-orbits in Z(ξ), we can choose reducing points Γ-equivariantly by selecting
them for some set of orbit representatives.

It is important to note that Γ-equivariance is the only global criterion we
use when selecting reducing. In particular, there is a priori no relationship
among the three reducing points chosen for any u ∈ supp ξ.

A.5.7. Now we want to use the reducing points and the 1-sharblies in ξ to
build ξ′. Choose u = [v1, v2, v3] ∈ supp ξ, and denote the reducing point for
[vi, vj ] by wk, where {i, j, k} = {1, 2, 3}. We use the vi and the wi to build
a 2-sharbly chain η(u) as follows.

Let P be an octahedron in R3. Label the vertices of P with the vi

and wi such that the vertex labeled vi is opposite the vertex labeled wi

(Figure A.5.1). Subdivide P into four tetrahedra by connecting two opposite
vertices, say v1 and w1, with an edge (Figure A.5.2). For each tetrahedron
T , take the labels of four vertices and arrange them into a quadruple. If we
orient P , then we can use the induced orientation on T to order the four
primitive points. In this way, each T determines a 2-sharbly, and η(u) is
defined to be the sum. For example, if we use the decomposition in Figure
A.5.2, we have
(A.5.2)

η(u) = [v1, v3, v2, w1] + [v1, w2, v3, w1] + [v1, w3, w2, w1] + [v1, v2, w3, w1].

Repeat this construction for all u ∈ supp ξ, and let η =
∑

q(u)η(u). Finally,
let ξ′ = ξ + ∂η.

v1

v2v3

w1
w2 w3

Figure A.5.1.

A.5.8. By construction, ξ′ is a cycle mod Γ in the same class as ξ. We
claim in addition that no submodular symbol from ξ appears in ξ′. To see
this, consider ∂η(u). From (A.5.2), we have

(A.5.3) ∂η(u) = −[v1, v2, v3] + [v1, v2, w3] + [v1, w2, v3] + [w1, v2, v3]

− [v1, w2, w3] − [w1, v2, w3] − [w1, w2, v3] + [w1, w2, w3].
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Figure A.5.2.

Note that this is the boundary in S∗, not in S∗,Γ. Furthermore, ∂η(u) is
independent of which pair of opposite vertices of P we connected to build
η(u).

From (A.5.3), we see that in ξ + ∂η the 1-sharbly −[v1, v2, v3] is can-
celed by u ∈ supp ξ. We also claim that 1-sharblies in (A.5.3) of the form
[vi, vj , wk] vanish in ∂Γη.

To see this, let u,u′ ∈ supp ξ, and suppose v = [v1, v2] ∈ supp ∂u equals
γ · v′ for some v′ = [v′

1, v
′
2] ∈ supp ∂u′. Since the reducing points were

chosen Γ-equivariantly, we have w = γ · w′. This means that the 1-sharbly
[v1, v2, w] ∈ ∂η(u) will be canceled mod Γ by [v′

1, v
′
2, w

′] ∈ ∂η(u′). Hence, in
passing from ξ to ξ′, the effect in (S∗)Γ is to replace u with four 1-sharblies
in supp ξ′:

(A.5.4) [v1, v2, v3] 7−→ −[v1, w2, w3]−[w1, v2, w3]−[w1, w2, v3]+[w1, w2, w3].

Note that in (A.5.4), there are no 1-sharblies of the form [vi, vj , wk].

Remark A.27. For implementation purposes, it is not necessary to explic-
itly construct η. Rather, one may work directly with (A.5.4).

A.5.9. Why do we expect ξ′ to satisfy ‖ξ′‖ < ‖ξ‖? First of all, in the right
hand side of (A.5.4) there are no submodular symbols of the form [vi, vj ].
In fact, any submodular symbol involving a point vi also includes a reducing
point for [vi, vj ].

On the other hand, consider the submodular symbols in (A.5.4) of the
form [wi, wj ]. Since there is no relationship among the wi, one has no reason
to believe that these modular symbols are closer to unimodularity than
those in u. Indeed, for certain choices of reducing points it can happen that
‖[wi, wj ]‖ ≥ ‖u‖.

The upshot is that some care must be taken in choosing reducing points.
In [Gun00a, Conjectures 3.5 and 3.6] we describe two methods for finding
reducing points for modular symbols, one using Voronǒı reduction and one
using LLL-reduction. Our experience is that if one selects reducing points
using either of these conjectures, then ‖[wi, wj ]‖ < ‖u‖ for each of the new
modular symbols [wi, wj ]. In fact, in practice these symbols are trivial or
satisfy ‖[wi, wj ]‖ = 1.
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A.5.10. In the previous discussion we assumed that no submodular sym-
bols of any u ∈ supp ξ were unimodular. Now we say what to do if some
are. There are three cases to consider.

First, all submodular symbols of u may be unimodular. In this case
there are no reducing points, and (A.5.4) becomes

(A.5.5) [v1, v2, v3] 7−→ [v1, v2, v3].

Second, one submodular symbol of u may be nonunimodular, say the
symbol [v1, v2]. In this case, to build η, we use a tetrahedron P ′ and put
η(u) = [v1, v2, v3, w3] (Figure A.5.3). Since [v1, v2, w3] vanishes in the bound-
ary of η mod Γ, (A.5.4) becomes

(A.5.6) [v1, v2, v3] 7→ −[v1, v3, w3] + [v2, v3, w3].

v1

v2v3

w3

Figure A.5.3.

Finally, two submodular symbols of u may be nonunimodular, say [v1, v2]
and [v1, v3]. In this case we use the cone on a square P ′′ (Figure A.5.4).
To construct η(u), we must choose a decomposition of P ′′ into tetrahedra.
Since P ′′ has a nonsimplicial face, this choice affects ξ′ (in contrast to the
previous cases). If we subdivide P ′′ by connecting the vertex labelled v2

with the vertex labelled w2, we obtain

(A.5.7) [v1, v2, v3] 7−→ [v2, w2, w3] + [v2, v3, w2] + [v1, v3, w2].

v1

v2v3

w2 w3

Figure A.5.4.

A.5.11. Now consider general n. The basic technique is the same, but
the combinatorics become more complicated. Suppose u = [v1, . . . , vn+1]
satisfies q(u) 6= 0 in a 1-sharbly cycle ξ, and for i = 1, . . . , n + 1 let vi

be the submodular symbol [v1, . . . , v̂i, . . . , vn+1]. Assume that all vi are
nonunimodular, and for each i let wi be a reducing point for vi.
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For any subset I ⊂ {1, . . . , n+1}, let uI be the 1-sharbly [u1, . . . , un+1],
where ui = wi if i ∈ I, and ui = vi otherwise. The polytope P used to
build η(u) is the cross polytope, which is the higher-dimensional analogue of
the octahedron [Gun00a, §4.4]. We suppress the details and give the final
answer: (A.5.4) becomes

(A.5.8) u 7−→ −
∑

I

(−1)#IuI ,

where the sum is taken over all subsets I ⊂ {1, . . . , n + 1} of cardinality at
least 2.

More generally, if some vi happen to be unimodular, then the polytope
used to build η is an iterated cone on a lower-dimensional cross polytope.
This is already visible for n = 2:

• The 2-dimensional cross polytope is a square, and the polytope P ′′

is a cone on a square.

• The 1-dimensional cross polytope is an interval, and the polytope
P ′ is a double cone on an interval.

Altogether there are n + 1 relations generalizing (A.5.5)–(A.5.7).

A.5.12. Now we describe how these computations are carried out in prac-
tice, focusing on Γ = Γ0(N) ⊂ SL4(Z) and H5(Γ; C). Besides discussing
technical details, we also have to slightly modify some aspects of the con-
struction in Section A.5.6, since Γ is not torsion-free.

Let W be the well-rounded retract. We can represent a cohomology class
β ∈ H5(Γ; C) as β =

∑
q(σ)σ, where σ denotes a codimension 1 cell in W .

In this case there are three types of codimension 1 cells in W . Under the
bijection W ↔ C , these cells correspond to the Voronǒı cells indexed by the
columns of the matrices
(A.5.9)



1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


 ,




1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 0


 ,




1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0


 .

Thus each σ in W modulo Γ corresponds to an SL4(Z)-translate of one
of the matrices in (A.5.9). These translates determine basis 1-sharblies u
(by taking the points ui to be the columns), and hence we can represent β
by a 1-sharbly chain ξ =

∑
q(u)u ∈ S1 that is a cycle in the complex of

coinvariants (S∗,Γ, ∂Γ).

To make later computations more efficient, we precompute more data
attached to ξ. Given a 1-sharbly u = [u1, . . . , un+1], a lift M(u) of u is
defined to be an integral matrix with primitive columns Mi such that u =



240 A. Computing in Higher Rank

[M1, . . . , Mn+1]. Then we encode ξ, once and for all, by a finite collection Φ
of 4-tuples

(u, n(u), {v}, {M(v)}),

where

(1) u ranges over the support of ξ,

(2) n(u) ∈ C is the coefficient of u in ξ,

(3) {v} is the set of submodular symbols appearing in the boundary
of u, and

(4) {M(v)} is a set of lifts for {v}.

Moreover, the lifts in (4) are chosen to satisfy the following Γ-equivariance
condition. Suppose that for u,u′ ∈ supp ξ we have v ∈ supp(∂u) and
v′ ∈ supp(∂u′) satisfying v = γ · v′ for some γ ∈ Γ. Then we require
M(v) = γM(v′). This is possible since ξ is a cycle modulo Γ, although
there is one complication since Γ has torsion: it can happen that some
submodular symbol v of a 1-sharbly u is identified to itself by an element of
Γ. This means that in constructing {M(v)} for u, we must somehow choose
more than one lift for v. To deal with this, let M(v) be any lift of v, and
let Γ(v) ⊂ Γ be the stabilizer of v. Then in ξ, we replace q(u)u by

1

#Γ(v)

∑

γ∈Γ(v)

q(u)uγ ,

where uγ has the same data as u, except11 that we give v the lift γM(v).

Next we compute and store the 1-sharbly transformation laws general-
izing (A.5.5)–(A.5.7). As a part of this we fix triangulations of certain cross
polytopes as in (A.5.7).

We are now ready to begin the actual reduction algorithm. We take a
Hecke operator T (l, k) and build the coset representatives Ω as in (A.5.1).
For each h ∈ Ω and each 1-sharbly u in the support of ξ, we obtain a non-
reduced 1-sharbly uh := h · u. Here h acts on all the data attached to u in
the list Φ. In particular, we replace each lift M(v) with h ·M(v), where the
dot means matrix multiplication.

Now we check the submodular symbols of uh and choose reducing points
for the nonunimodular symbols. This is where the lifts come in handy. Recall
that reduction points must be chosen Γ-equivariantly over the entire cycle.
Instead of explicitly keeping track of the identifications between modular
symbols, we do the following trick:

11In fact, we can be slightly more clever than this and only introduce denominators that are

powers of 2.
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(1) Construct the Hermite normal form Mher(v) of the lift M(v) (see
[Coh93, §2.4] and Exercise 7.5). Record the transformation matrix
U ∈ GL4(Z) such that UM(v) = Mher(v).

(2) Choose a reducing point u for Mher(v).

(3) Then the reducing point for M(v) is U−1u.

This guarantees Γ-equivariance: if v, v′ are submodular symbols of ξ with
γ ·v = v′ and with reducing points u, u′, we have γu = u′. The reason is that
the Hermite normal form Mher(v) is a uniquely determined representative
of the GL4(Z)-orbit of M(v) [Coh93]. Hence if γM(v) = M(v′), then
Mher(v) = Mher(v

′).

After computing all reducing points, we apply the appropriate trans-
formation law. The result will be a chain of 1-sharblies, each of which has
(conjecturally) smaller norm than the original 1-sharbly u. We output these
1-sharblies if they are reduced; otherwise they are fed into the reduction algo-
rithm again. Eventually we obtain a reduced 1-sharbly cycle ξ′ homologous
to the original cycle ξ.

The final step of the algorithm is to rewrite ξ′ as a cocycle on W . This
is easy to do since the relevant cells of W are in bijection with the reduced
1-sharblies. There are some nuisances in keeping orientations straight, but
the computation is not difficult. We refer to [AGM02] for details.

A.5.13. We now give some examples, taken from [AGM02], of Hecke
eigenclasses in H5(Γ0(N); C) for various levels N . Instead of giving a table
of eigenvalues, we give the Hecke polynomials. If β is an eigenclass with
T (l, k)(β) = a(l, k)β, then we define

H(β, l) =
∑

k

(−1)klk(k−1)/2a(l, k)Xk ∈ C[X].

For almost all l, after putting X = l−s where s is a complex variable, the
function H(β, s) is the inverse of the local factor at l of the automorphic
representation attached to β.

Example A.28. Suppose N = 11. Then the cohomology H5(Γ0(11); C) is
2-dimensional. There are two Hecke eigenclasses u1, u2, each with rational
Hecke eigenvalues.
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u1 T2 (1 − 4X)(1 − 8X)(1 + 2X + 2X2)
T3 (1 − 9X)(1 − 27X)(1 + X + 3X2)
T5 (1 − 25X)(1 − 125X)(1 − X + 5X2)
T7 (1 − 49X)(1 − 343X)(1 + 2X + 7X2)

u2 T2 (1 − X)(1 − 2X)(1 + 8X + 32X2)
T3 (1 − X)(1 − 3X)(1 + 9X + 243X2)
T5 (1 − X)(1 − 5X)(1 − 25X + 3125X2)
T7 (1 − X)(1 − 7X)(1 + 98X + 16807X2)

Example A.29. Suppose N = 19. Then the cohomology H5(Γ0(19); C)
is 3-dimensional. There are three Hecke eigenclasses u1, u2, u3, each with
rational Hecke eigenvalues.

u1 T2 (1 − 4X)(1 − 8X)(1 + 2X2)
T3 (1 − 9X)(1 − 27X)(1 + 2X + 3X2)
T5 (1 − 25X)(1 − 125X)(1 − 3X + 5X2)

u2 T2 (1 − X)(1 − 2X)(1 + 32X2)
T3 (1 − X)(1 − 3X)(1 + 18X + 243X2)
T5 (1 − X)(1 − 5X)(1 − 75X + 3125X2)

u3 T2 (1 − 2X)(1 − 4X)(1 + 3X + 8X2)
T3 (1 − 3X)(1 − 9X)(1 + 5X + 27X2)
T5 (1 − 5X)(1 − 25X)(1 + 12X + 125X2)

In these examples, the cohomology is completely accounted for by the
Eisenstein summand of (A.2.8). In fact, let Γ′

0(N) ⊂ SL2(Z) be the usual
Hecke congruence subgroup of matrices upper-triangular modulo N . Then
the cohomology classes above actually come from classes in H1(Γ′

0(N)), that
is from holomorphic modular forms of level N .

For N = 11, the space of weight two cusp forms S2(11) is 1-dimensional.
This cusp form f lifts in two different ways to H5(Γ0(11); C), which can be
seen from the quadratic part of the Hecke polynomials for the ui. Indeed,
for ui the quadratic part is exactly the inverse of the local factor for the L-
function attached to f , after the substitution X = l−s. For u2, we see that
the lift is also twisted by the square of the cyclotomic character. (In fact the
linear terms of the Hecke polynomials come from powers of the cyclotomic
character.)

For N = 19, the space of weight two cusp forms S2(19) is again 1-
dimensional. The classes u1 and u2 are lifts of this form, exactly as for
N = 11. The class u3, on the other hand, comes from S4(19), the space of
weight 4 cusp forms on Γ′

0(19). In fact, dimS4(19) = 4, with one Hecke
eigenform defined over Q and another defined over a totally real cubic
extension of Q. Only the rational weight four eigenform contributes to
H5(Γ0(19); C). One can show that whether or not a weight four cuspidal
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eigenform f contributes to the cohomology of Γ0(N) depends only on the
sign of the functional equation of L(f, s) [Wes]. This phenomenon is typical
of what one encounters when studying Eisenstein cohomology.

In addition to the lifts of weight 2 and weight 4 cusp forms, for other
levels one finds lifts of Eisenstein series of weights 2 and 4 and lifts of cus-
pidal cohomology classes from subgroups of SL3(Z). For some levels one
finds cuspidal classes that appear to be lifts from the group of symplectic
similitudes GSp(4). More details can be found in [AGM02, AGM].

A.5.14. Here are some notes on the reduction algorithm and its imple-
mentation:

• Some additional care must be taken when selecting reducing points
for the submodular symbols of u. In particular, in practice one
should choose w for v such that

∑ ‖vi(w)‖ is minimized. Similar
remarks apply when choosing a subdivision of the crosspolytopes
in Section A.5.10.

• In practice, the reduction algorithm has always terminated with
a reduced 1-sharbly cycle ξ′ homologous to ξ. However, at the
moment we cannot prove that this will always happen.

• Experimentally, the efficiency of the reduction step appears to be
comparable to that of Theorem A.22. In other words the depth
of the “reduction tree” associated to a given 1-sharbly u seems to
be bounded by a polynomial in log log ‖u‖. Hence computing the
Hecke action using this algorithm is extremely efficient.

On the other hand, computing Hecke operators on SL4 is still a
much bigger computation—relative to the level—than on SL2 and
SL3. For example, the size of the full retract W modulo Γ0(p) is
roughly O(p6), which grows rapidly with p. The portion of the
retract corresponding to H5 is much smaller, around p3/10, but
this still grows quite quickly. This makes computing with p > 100
out of reach at the moment.

The number of Hecke cosets grows rapidly as well, e.g., the
number of coset representatives of T (l, 2) is l4 + l3 + 2l2 + l + 1.
Hence it is only feasible to compute Hecke operators for small l; for
large levels only l = 2 is possible.

Here are some numbers to give an idea of the size of these
computations. For level 73, the rank of H5 is 20. There are 39504
cells of codimension 1 and 4128 top-dimensional cells in W modulo
Γ0(73). The computational techniques in [AGM02] used at this
level (a Lanczos scheme over a large finite field) tend to produce
sharbly cycles supported on almost all the cells. Computing T (2, 1)
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requires a reduction tree of depth 1 and produces as many as 26
reduced 1-sharblies for each of the 15 nonreduced Hecke images.
Thus one cycle produces a cycle supported on as many as 15406560
1-sharblies, all of which must be converted to an appropriate cell
of W modulo Γ. Also this is just what needs to be done for one
cycle; do not forget that the rank of H5 is 20.

In practice the numbers are slightly better, since the reduction
step produces fewer 1-sharblies on average and since the support of
the initial cycle has size less than 39504. Nevertheless the orders
of magnitude are correct.

• Using lifts is a convenient way to encode the global Γ-identifications
in the cycle ξ, since it means we do not have to maintain a big data
structure keeping track of the identifications on ∂ξ. However, there
is a certain expense in computing the Hermite normal form. This is
balanced by the benefit that working with the data Φ associated to
ξ allows us to reduce the supporting 1-sharblies u independently.
This means we can cheaply parallelize our computation: each 1-
sharbly, encoded as a 4-tuple (u, n(u), {v}, {M(v)}), can be han-
dled by a separate computer. The results of all these individual
computations can then be collated at the end, when producing a
W -cocycle.

A.6. Complements and Open Problems

A.6.1. We conclude this appendix by giving some complements and de-
scribing some possible directions for future work, both theoretical and com-
putational. Since a full explanation of the material in this section would
involve many more pages, we will be brief and will provide many references.

A.6.2. Perfect Quadratic Forms over Number Fields and Retracts.
Since Voronǒı’s pioneering work [Vor08], it has been the goal of many to
extend his results from Q to a general algebraic number field F . Recently
Coulangeon [Cou01], building on work of Icaza and Baeza [Ica97, BI97],
has found a good notion of perfection for quadratic forms over number
fields12. One of the key ideas in [Cou01] is that the correct notion of equiv-
alence between Humbert forms involves not only the action of GLn(OF ),
where OF is the ring of integers of F , but also the action of a certain con-
tinuous group U related to the units O×

F . One of Coulangeon’s basic results
is that there are finitely many equivalence classes of perfect Humbert forms
modulo these actions.

12Such forms are called Humbert forms in the literature.



A.6. Complements and Open Problems 245

On the other hand, Ash’s original construction of retracts [Ash77] intro-
duces a geometric notion of perfection. Namely he generalizes the Voronǒı
polyhedron Π and defines a quadratic form to be perfect if it naturally in-
dexes a facet of Π. What is the connection between these two notions? Can
one use Coulangeon’s results to construct cell complexes to be used in coho-
mology computations? One tempting possibility is to try to use the group
U to collapse the Voronǒı cells of [Ash77] into a cell decomposition of the
symmetric space associated to SLn(F ).

A.6.3. The Modular Complex. In his study of multiple ζ-values, Gon-
charov has recently defined the modular complex M∗ [Gon97, Gon98]. This
is an n-step complex of GLn(Z)-modules closely related both to the proper-
ties of multiple polylogarithms evaluated at µN , the Nth roots of unity, and
to the action of GQ on π1,N = πl

1(P1 r {0, ∞, µN}), the pro-l completion of
the algebraic fundamental group of P1 r {0, ∞, µN}.

Remarkably, the modular complex is very closely related to the Voronǒı
decomposition V . In fact, one can succinctly describe the modular com-
plex by saying that it is the chain complex of the cells coming from the
top-dimensional Voronǒı cone of type An. This is all of the Voronǒı de-
composition for n = 2, 3, and Goncharov showed that the modular complex
is quasi-isomorphic to the full Voronǒı complex for n = 4. Hence there is
a precise relationship among multiple polylogarithms, the Galois action on
π1,N , and the cohomology of level N congruence subgroups of SLn(Z).

The question then arises, how much of the cohomology of congruence
subgroups is captured by the modular complex for all n? Table A.3.2 in-
dicates that asymptotically very little of the Voronǒı decomposition comes
from the An cone, but this says nothing about the cohomology. The first
interesting case to consider is n = 5.

A.6.4. Retracts for Other Groups. The most general construction of
retracts W known [Ash84] applies only to linear symmetric spaces. The
most familiar example of such a space is SLn(R)/ SO(n); other examples
are the symmetric spaces associated to SLn over number fields and division
algebras.

Now let Γ ⊂ G(Q) be an arithmetic group, and let X = G/K be the
associated symmetric space. What can one say about cell complexes that
can be used to compute H∗(Γ; M )? The theorem of Borel–Serre mentioned
in Section A.3.3 implies the vanishing of Hk(Γ; M ) for k > ν := dimX − q,
where q is the Q-rank of Γ. For example, for the split form of SLn, the
Q-rank is n − 1. For the split symplectic group Sp2n, the Q-rank is n.
Moreover, this bound is sharp: there will be coefficient modules M for
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which Hν(Γ; M ) 6= 0. Hence any minimal cell complex used to compute the
cohomology of Γ should have dimension ν.

Ideally one would like to see such a complex realized as a subspace
of X and would like to be able to treat all finite index subgroups of Γ
simultaneously. This leads to the following question: is there a Γ-equivariant
deformation retraction of X onto a regular cell complex W of dimension ν?

For G = Sp4, McConnell and MacPherson showed that the answer is yes.
Their construction begins by realizing the symplectic symmetric space XSp

as a subspace of the special linear symmetric space XSL. They then construct
subsets of XSp by intersecting the Voronǒı cells in XSL with XSp. Through
explicit computations in coordinates they prove that these intersections are
cells and give a cell decomposition of XSp. By taking an appropriate dual
complex (as suggested by Figures A.3.2 and A.3.3 and as done in [Ash77]),
they construct the desired cell complex W .

Other progress has been recently made by Bullock [Bul00], Bullock and
Connell [BC06], and Yasaki [Yas05b, Yas05a] in the case of groups of Q-
rank 1. In particular, Yasaki uses the tilings of Saper [Sap97] to construct an
explicit retract for the unitary group SU(2, 1) over the Gaussian integers. His
method also works for Hilbert modular groups, although further refinement
may be needed to produce a regular cell complex. Can one generalize these
techniques to construct retracts for groups of arbitrary Q-rank? Is there an
analogue of the Voronǒı decomposition for these retracts (i.e., a dual cell
decomposition of the symmetric space)? If so, can one generalize ideas in
Sections A.4–A.5 and use that generalization to compute the action of the
Hecke operators on the cohomology?

A.6.5. Deeper Cohomology Groups. The algorithm in Section A.5 can
be used to compute the Hecke action on Hν−1(Γ). For n > 4, this group
no longer contains cuspidal cohomology classes. Can one generalize this
algorithm to compute the Hecke action on deeper cohomology groups? The
first practical case is n = 5. Here ν = 10, and the highest degree in which
cuspidal cohomology can live is 8. This case is also interesting since the
cohomology of full level has been studied [EVGS02].

Here are some indications of what one can expect. The general strategy
is the same: for a k-sharbly ξ representing a class in Hν−k(Γ), begin by Γ-
equivariantly choosing reducing points for the nonunimodular submodular
symbols of ξ. This data can be packaged into a new k-sharbly cycle as in
Section A.5.7ff, but the crosspolytopes must be replaced with hypersimplices.
By definition, the hypersimplex ∆(n, k) is the convex hull in Rn of the points
{∑

i∈I ei}, where I ranges over all order k subsets of {1, . . . , n} and e1, . . . , en

denotes the standard basis of Rn.
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The simplest example is n = 2, k = 2. From the point of view of
cohomology, this is even less interesting than n = 2, k = 1, since now we are
computing the Hecke action on H−1(Γ)! Nevertheless, the geometry here
illustrates what one can expect in general.

Each 2-sharbly in the support of ξ can be written as [v1, v2, v3, v4] and
determines six submodular symbols, of the form [vi, vj ], i 6= j. Assume for
simplicity that all these submodular symbols are nonunimodular. Let wij

be the reducing point for [vi, vj ]. Then use the ten points vi, wij to label the
vertices of the hypersimplex ∆(5, 2) as in Figure A.6.1 (note that ∆(5, 2) is
4-dimensional).

v1

v2

v3

v4

w12

w13

w14

w23

w24
w34

Figure A.6.1.

The boundary of this hypersimplex gives the analogue of (A.5.4). Which
2-sharblies will appear in ξ′? The boundary ∂∆(5, 2) is a union of five
tetrahedra and five octahedra. The outer tetrahedron will not appear in ξ′,
since that is the analogue of the left side of (A.5.4). The four octahedra
sharing a triangular face with the outer tetrahedron also will not appear,
since they disappear when considering ξ′ modulo Γ. The remaining four
tetrahedra and the central octahedron survive to ξ′ and constitute the right
side of the analogue of (A.5.4). Note that we must choose a simplicial
subdivision of the central octahedron to write the result as a 2-sharbly cycle
and that this must be done with care since it introduces a new submodular
symbol.

If some submodular symbols are unimodular, then again one must con-
sider iterated cones on hypersimplices, just as in Section A.5.10. The ana-
logues of these steps become more complicated, since there are now many
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simplicial subdivisions of a hypersimplex13. There is one final complication:
in general we cannot use reduced k-sharblies alone to represent cohomology
classes. Thus one must terminate the algorithm when ‖ξ‖ is less than some
predetermined bound.

A.6.6. Other Linear Groups. Let F be a number field, and let G =
RF/Q(SLn) (Example A.2). Let Γ ⊂ G(Q) be an arithmetic subgroup. Can
one compute the action of the Hecke operators on H∗(Γ)?

There are two completely different approaches to this problem. The first
involves the generalization of the modular symbols method. One can define
the analogue of the sharbly complex, and can try to extend the techniques
of Sections A.4–A.5.

This technique has been extensively used when F is imaginary qua-
dratic and n = 2. We have X = SL2(C)/ SU(2), which is isomorphic to
3-dimensional hyperbolic space h3. The arithmetic groups Γ ⊂ SL2(OF )
are known as Bianchi groups. The retracts and cohomology of these groups
have been well studied; as a representative sample of works we mention
[Men79, EGM98, Vog85, GS81].

Such groups have Q-rank 1 and thus have cohomological dimension 2.
One can show that the cuspidal classes live in degrees 1 and 2. This means
that we can use modular symbols to investigate the Hecke action on cuspidal
cohomology. This was done by Cremona [Cre84] for euclidean fields F . In
that case Theorem A.22 works with no trouble (the euclidean algorithm is
needed to construct reducing points). For noneuclidean fields further work
has been done by Whitley [Whi90], Cremona and Whitely [CW94] (both
for principal ideal domains), Bygott [Byg99] (for F = Q(

√
−5) and any

field with class group an elementary abelian 2-group), and Lingham [Lin05]
(any field with odd class number). Putting all these ideas together allows
one to generalize the modular symbols method to any imaginary quadratic
field [Cre].

For F imaginary quadratic and n > 2, very little has been studied.
The only related work to the best of our knowledge is that of Staffeldt
[Sta79]. He determined the structure of the Voronǒı polyhedron in detail
for RF/Q(SL3), where F = Q(

√
−1). We have dimX = 8 and ν = 6. The

cuspidal cohomology appears in degrees 3, 4, 5, so one could try to use the
techniques of Section A.5 to investigate it.

Similar remarks apply to F real quadratic and n = 2. The symmetric
space X ≃ h × h has dimension 4 and the Q-rank is 1, which means ν = 3.
Unfortunately the cuspidal cohomology appears only in degree 2, which

13Indeed, computing all simplicial subdivisions of ∆(n, k) is a difficult problem in convex

geometry.
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means modular symbols cannot see it. On the other hand, 1-sharblies can see
it, and so one can try to use ideas in Section A.5 here to compute the Hecke
operators. The data needed to build the retract W already (essentially)
appears in the literature for certain fields; see for example [Ong86].

The second approach shifts the emphasis from modular symbols and the
sharbly complex to the Voronǒı fan and its cones. For this approach we must
assume that the group Γ is associated to a self-adjoint homogeneous cone
over Q. (cf. [Ash77]). This class of groups includes arithmetic subgroups
of RF/Q(SLn), where F is a totally real or CM field. Such groups have all
the nice structures in Section A.3.2. For example, we have a cone C with a
G-action. We also have an analogue of the Voronǒı polyhedron Π. There is
a natural compactification C̃ of C obtained by adjoining certain self-adjoint
homogeneous cones of lower rank. The quotient Γ\C̃ is singular in general,
but it can still be used to compute H∗(Γ; C). The polyhedron Π can be
used to construct a fan V that gives a Γ-equivariant decomposition of all
of C̃. But the most important structure we have is the Voronǒı reduction
algorithm: given any point x ∈ C̃, we can determine the unique Voronǒı
cone containing x.

Here is how this setup can be used to compute the Hecke action. Full
details are in [Gun99, GM03]. We define two chain complexes CV

∗ and
CR

∗ . The latter is essentially the chain complex generated by all simplicial

rational polyhedral cones in C̃; the former is the subcomplex generated by
the Voronǒı cones. These are the analogues of the sharbly complex and the
chain complex associated to the retract W , and one can show that either
can be used to compute H∗(Γ; C). Take a cycle ξ ∈ CV

∗ representing a
cohomology class in H∗(Γ; C) and act on it by a Hecke operator T . We have
T (ξ) ∈ CR

∗ , and we must push T (ξ) back to CV
∗ .

To do this, we use the linear structure on C̃ to subdivide T (ξ) very finely

into a chain ξ′. For each 1-cone τ in supp ξ′, we choose a 1-cone ρτ ∈ C̃ r C
and assemble them using the combinatorics of ξ′ into a polyhedral chain ξ′′

homologous to ξ′. Under certain conditions involved in the construction of
ξ′, this chain ξ′′ will lie in CV

∗ .

We illustrate this process for the split group SL2; more details can
be found in [Gun99]. We work modulo homotheties, so that the three-

dimensional cone C̃ becomes the extended upper half plane h∗ := h∪Q∪{∞},

with ∂C̃ passing to the cusps h∗ r h. As usual top-dimensional Voronǒı
cones become the triangles of the Farey tessellation, and the cones ρτ be-
come cusps. Given any x ∈ h, let R(x) be the set of cusps of the unique
triangle or edge containing x (this can be computed using the Voronǒı re-
duction algorithm). Extend R to a function on h∗ by putting R(u) = {u}
for any cusp u.
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In h, the support of T (ξ) becomes a geodesic µ between two cusps u,
u′, in other words the support of a modular symbol [u, u′] (Figure A.6.2).
Subdivide µ by choosing points x0, . . . , xn such that x0 = u, xn = u′,
and R(xi) ∩ R(xi+1) 6= ∅. (This is easily done, for example by repeat-
edly barycentrically subdividing µ.) For each i < n choose a cusp qi ∈
R(xi) ∩ R(xi+1), and put qn = u′. Then we have a relation in H1:

(A.6.1) [u, u′] = [q0, q1] + · · · + [qn−1, qn].

Moreover, each [qi, qi+1] is unimodular, since qi and qi+1 are both vertices
of a triangle containing xi+1. Upon lifting (A.6.1) back to CR

∗ , the cusps qi

become the 1-cones ρτ and give us a relation T (ξ) = ξ′′ ∈ CV
∗ .

µ

u u′

Figure A.6.2. A subdivision of µ; the solid dots are the xi. Since the
xi lie in the same or adjacent Voronǒı cells, we can assign cusps to them
to construct a homology to a cycle in CV

∗ .

A.6.7. The Sharbly Complex for General Groups. In [Gun00b] we
generalized Theorem A.22 (without the complexity statement) to the sym-
plectic group Sp2n. Using this algorithm and the symplectic retract [MM93,
MM89], one can compute the action of the Hecke operators on the top-
degree cohomology of subgroups of Sp4(Z).

More recently, Toth has investigated modular symbols for other groups.
He showed that the unimodular symbols generate the top-degree cohomology
groups for Γ an arithmetic subgroup of a split classical group or a split group
of type E6 or E7 [Tot05]. His technique of proof is completely different from
that of [Gun00b]. In particular he does not give an analogue of the Manin
trick. Can one extract an algorithm from Toth’s proof that can be used to
explicitly compute the action of the Hecke operators on cohomology?

The proof of the main result of [Gun00b] uses a description of the re-
lations among the modular symbols. These relations were motivated by the
structure of the cell complex in [MM93, MM89]. The modular symbols
and these relations are analogues of the groups S0 and S1 in the sharbly com-
plex. Can one extend these combinatorial constructions to form a symplectic
sharbly complex? What about for general groups G?

Already for Sp4, resolution of this question would have immediate arith-
metic applications. Indeed, Harder has a beautiful conjecture about certain
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congruences between holomorphic modular forms and Siegel modular forms
of full level [Hara]. Examples of these congruences were checked numerically
in [Hara] using techniques of [FvdG] to compute the Hecke action.

However, to investigate higher levels, one needs a different technique.
The relevant cohomology classes live in Hν−1(Γ; M ), so one only needs
to understand the first three terms of the complex S0 ← S1 ← S2. We
understand S0, S1 from [Gun00b]; the key is understanding S2, which
should encode relations among elements of S1. If one could do this and
then could generalize the techniques of [Gun00a], one would have a way to
investigate Harder’s conjecture.

A.6.8. Generalized Modular Symbols. We conclude this appendix by
discussing a geometric approach to modular symbols. This complements
the algebraic approaches presented in this book and leads to many new
interesting phenomena and problems.

Suppose H and G are connected semisimple algebraic groups over Q with
an injective map f : H → G. Let KH be a maximal compact subgroup of
H = H(R), and suppose K ⊂ G is a maximal compact subgroup containing
f(KH). Let X = G/K and Y = H/KH .

Now let Γ ⊂ G(Q) be a torsion-free arithmetic subgroup. Let ΓH =
f−1(Γ). We get a map ΓH\Y → Γ\X, and we denote the image by S(H, Γ).
Any compactly supported cohomology class ξ ∈ Hdim Y

c (Γ\X; C) can be
pulled back via f to ΓH\Y and integrated to obtain a complex number.
Hence S(H, Γ) defines a linear form on Hdim Y

c (Γ\X; C). By Poincaré du-
ality, this linear form determines a class [S(H, Γ)] ∈ Hdim X−dim Y (Γ\X; C),
called a generalized modular symbol. Such classes have been considered by
many authors, for example [AB90, SV03, Har05, AGR93].

As an example, we can take G to be the split form of SL2, and we can
take f : H → G to be the inclusion of connected component of the diagonal
subgroup. Hence H ≃ R>0. In this case KH is trivial. The image of Y in
X is the ideal geodesic from 0 to ∞. One way to vary f is by taking an
SL2(Q)-translate of this geodesic, which gives a geodesic between two cusps.
Hence we can obtain the support of any modular symbol this way. This
example generalizes to SLn to yield the modular symbols in Section A.4.
Here H ≃ (R > 0)n−1. Note that dimY = n − 1, so the cohomology classes
we have constructed live in the top degree Hν(Γ\X; C).

Another family of examples is provided by taking H to be a Levi factor
of a parabolic subgroup; these are the modular symbols studied in [AB90].

There are many natural questions to study for such objects. Here are
two:
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• Under what conditions on G,H, Γ is [S(H, Γ)] nonzero? This ques-
tion is connected to relations between periods of automorphic forms
and functoriality lifting. There are a variety of partial results
known; see for example [SV03, AGR93].

• We know the usual modular symbols span the top-degree cohomol-
ogy for any arithmetic group Γ. Fix a class of generalized modular
symbols by fixing the pair G,H and fixing some class of maps f .
How much of the cohomology can one span for a general arithmetic
group Γ ⊂ G(Q)?

A simple example is given by the Ash–Borel construction for
G = SL3 and H a Levi factor of a rational parabolic subgroup P
of type (2, 1). In this case H ≃ SL2(R) × R>0 and sits inside G via

g

(
α−1M 0

0 α

)
g−1, M ∈ SL2(R), α ∈ R>0, g ∈ SL3(Q).

For Γ ⊂ SL3(Z) these symbols define a subspace

S(2,1) ⊂ H2(Γ\X; C).

Are there Γ for which S(2,1) equals the full cohomology space? For
general Γ how much is captured? Is there a nice combinatorial way
to write down the relations among these classes? Can one cook
up a generalization of Theorem A.22 for these classes and use it to
compute Hecke eigenvalues?
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euclidiens, designs sphériques et formes modulaires, Monogr. Enseign.
Math., vol. 37, Enseignement Math., Geneva, 2001, pp. 147–162.
MR 1878749 (2002m:11064)

[Cre] J. E. Cremona, personal communication.

[Cre84] , Hyperbolic tessellations, modular symbols, and elliptic curves over
complex quadratic fields, Compositio Math. 51 (1984), no. 3, 275–324.

[Cre92] , Modular symbols for Γ1(N) and elliptic curves with everywhere
good reduction, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 2,
199–218.

[Cre97a] , Algorithms for modular elliptic curves, second ed., Cambridge
University Press, Cambridge, 1997,
http://www.maths.nott.ac.uk/personal/jec/book/.

[Cre97b] , Computing periods of cusp forms and modular elliptic curves, Ex-
periment. Math. 6 (1997), no. 2, 97–107.

[Cre06] , Proceedings of the 7th International Symposium (ANTS-VII)
(2006).

[CS88] J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. III. Per-
fect forms, Proc. Roy. Soc. London Ser. A 418 (1988), no. 1854, 43–80.
MR 953277 (90a:11073)

[CW94] J. E. Cremona and E. Whitley, Periods of cusp forms and elliptic curves
over imaginary quadratic fields, Math. Comp. 62 (1994), no. 205, 407–429.

[CWZ01] Janos A. Csirik, Joseph L. Wetherell, and Michael E. Zieve, On the genera
of X0(N), http://www.csirik.net/papers.html (2001).

[Dar97] H. Darmon, Faltings plus epsilon, Wiles plus epsilon, and the generalized
Fermat equation, C. R. Math. Rep. Acad. Sci. Canada 19 (1997), no. 1,
3–14. MR 1479291 (98h:11034a)
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séries d’Eisenstein, Progress in Mathematics, vol. 113, Birkhäuser Verlag,
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Voronǒı reduction algorithm,

weakly modular function, 3, 5

Weierstrass ℘-function, 14

weight, 3, 4, 7

weight k modular symbols for G,

weight k right action, 5

well-rounded retract, 219

width of the cusp, 6, 8

SAGE Index
SAGE , vii, x, 2,

M36, 28

q-expansion of ∆, 15

SL2(Z), 2

Z/NZ, 65 106, 144, 161, 15, 16, 20, 22,

163, 198 26, 30, 41, 43, 45, 51, 52, 49

50 56, 58, 63, 65–67, 74, 77, 78, 85, 89,

95,

basis for M24, 20

basis for S2(Γ0(N)), 56

Bernoulli numbers, 16

Bernoulli numbers modulo p, 30

boundary map, 52

continued fraction convergents, 43

cuspidal submodule, 52

dimension formulas, 93

dimension Sk(Γ0(N)), 95

dimension Sk(Γ1(N)), 97

dimension with character, 101, 161

Dirichlet character tutorial, 78

Dirichlet group, 67

echelon form, 112

Eisenstein arithmetic, 26

Eisenstein series, 89

evaluation of character, 67

generalized Bernoulli numbers, 85

Hecke operators M2(Γ0(39)),

Hecke operators M2(Γ0(6)),

Hecke operator T2, 49

Heilbronn matrices, 49

Manin symbols, 45

Miller basis, 22

modular symbols, 44

modular symbols of level 11, 41

modular symbols printing, 46

rational reconstruction, 106

General Index 148, 150

SAGE, 49

Basmaji’s trick, 133

Bernoulli numbers

generalized, 83

Birch and Swinnerton-Dyer conjecture,

10

boundary map, 134

computing, 51

boundary modular symbols

and Manin symbols, 134

congruent number problem, 10

conjecture

Maeda, 28

Shimura-Taniyama, 37

cusp forms

∆, 14

for Γ, 134

higher level dimension, 92, 96

cuspidal modular symbols

and Manin symbols, 134

cusps

action of SL2(Z) on, 5

and boundary map, 134

criterion for vanishing, 136

dimension

cusp forms of higher level, 92, 96

Diophantine equations, 10

Dirichlet character, 142

and cusps, 136

Eisenstein series, 13

algorithm to enumerate, 88

and Bernoulli numbers, 83

are eigenforms, 88

basis of, 88

compute, 63

compute using SAGE, 89



268 Index

Fourier expansion, 15

Eisenstein subspace, 83

Fermat’s last theorem, 10

Hecke algebra

generators over Z, 175

Hecke operator, 54, 225

Heilbronn matrices, 48, 132, 133,

Krylov subspace, 114

lattices, 11
linear symmetric spaces, 245

Maeda’s conjecture, 28

Manin symbols, 44

and boundary space, 134

and cuspidal subspace, 134

modular symbols

finite presentation, 44

new and old subspace of, 143

newform, 155

associated period map, 177

computing, 159

system of eigenvalues, 166

new modular symbols, 143

number field sieve, 69

old modular symbols, 143

partitions, 11

period mapping

computation of, 185

Petersson inner product, 59, 160

Ramanujan graphs, 10

right action of GL2(Q), 5

Serre’s conjecture, 11

Shimura-Taniyama conjecture, 37

valence formula, 17



30 Explicit Heegner points: Kolyvagins conjec-
ture and non-trivial elements in the Shafarevich-
Tate group, with D. Jetchev and K. Lauter

1200



Explicit Heegner points: Kolyvagin’s conjecture and

non-trivial elements in the Shafarevich-Tate group

Dimitar Jetchev, Kristin Lauter and William Stein

Abstract

Kolyvagin used Heegner points to associate a system of cohomology classes to an elliptic
curve over Q and conjectured that the system contains a nontrivial class. His conjecture
has profound implications on the structure of Selmer groups. We provide new compu-
tational and theoretical evidence for Kolyvagin’s conjecture. More precisely, we apply
results of Zhang and others to deduce that Kolyvagin classes are computable, then ex-
plicitly study Heegner points over ring class fields and Kolyvagin’s conjecture for specific
elliptic curves of rank two. We explain how Kolyvagin’s conjecture implies that if the
analytic rank of an elliptic curve is at least two then the Zp-corank of the corresponding
Selmer group is at least two as well. We also use explicitly computed Heegner points to
produce non-trivial classes in the Shafarevich-Tate group.

1. Introduction

Let E/F be an elliptic curve over a number field F . The analytic rank ran(E/F ) of E is the
order of vanishing of the L-function L(E/F , s) at s = 1. The Mordell-Weil rank rMW(E/F ) is
the rank of the Mordell-Weil group E(F ). The conjecture of Birch and Swinnerton-Dyer asserts
that ran(E/F ) = rMW(E/F ).

Kolyvagin constructed explicit cohomology classes from Heegner points over certain abelian
extensions of quadratic imaginary fields and used these classes to bound the size of the Selmer
groups for elliptic curves over Q of analytic rank at most one (see [Kol90], [Kol91b] and [Gro91]).
His results, together with the Gross-Zagier formula (see [GZ86]), imply the following theorem:

Theorem 1.1 (Gross-Zagier, Kolyvagin). Let E/Q be an elliptic curve which satisfies ran(E/Q) 6 1.
Then the Shafarevich-Tate group X(E/Q) is finite and ran(E/Q) = rMW(E/Q).

Unfortunately, very little is known about the Birch and Swinnerton-Dyer conjecture for elliptic
curves E/Q with ran(E/Q) > 2. Still, it implies the following conjecture:

Conjecture 1. If ran(E/Q) > 2 then rMW(E/Q) > 2.

As far as we know, nothing has been proved towards the above assertion. A weaker conjecture can
be formulated in the language of Selmer coranks. The Selmer corank rp(E/F ) of E/F is the Zp-corank
of the Selmer group Selp∞(E/F ). Using Kummer theory, one shows that rp(E/Q) > rMW(E/Q)
with an equality occuring if and only if the p-primary part of the Shafarevich-Tate group X(E/Q)
is finite. Thus, one obtains the following weaker conjecture:
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Conjecture 2. If ran(E/Q) > 2 then rp(E/Q) > 2.

For elliptic curves E of arbitrary analytic rank, Kolyvagin was able to explain the exact structure
of the Selmer group Selp∞(E/Q) in terms of Heegner points and the associated cohomology classes
under a conjecture about the non-triviality of these classes (see [Kol91a, Conj.A]). Unfortunately,
Kolyvagin’s conjecture appears to be extremely difficult to prove. Until the present paper, there has
been no example of an elliptic curve over Q of rank at least two for which the conjecture has been
verified.

In this paper, we present a complete algorithm to compute Kolyvagin’s cohomology classes by
explicitly computing the corresponding Heegner points over ring class fields. We use this algorithm to
verify Kolyvagin’s conjecture for the first time for elliptic curves of analytic rank two. We also explain
(see Corollary 3.3) how Kolyvagin’s conjecture implies Conjecture 2. In addition, we use methods
of Cornut (see [Cor02]) to provide theoretical evidence for Kolyvagin’s conjecture. As a separate
application of the explicit computation of Heegner points, we construct nontrivial cohomology classes
in the Shafarevich-Tate group X(E/K) of elliptic curves E over certain quadratic imaginary fields.
One of the main contributions of this paper is that by establishing certain height bounds, we prove
that there exists an algorithm which provably computes the correct Heegner points over ring class
fields.

The paper is organized as follows. Section 2 introduces Heegner points over ring class fields and
Kolyvagin cohomology classes. We explain the methods of computation and illustrate them with
several examples. In Section 3 we state Kolyvagin’s conjecture, discuss Kolyvagin’s work on Selmer
groups and establish Conjecture 2 as a corollary. Moreover, we present a proof of the theoretical
evidence following closely Cornut’s arguments. Section 3.6 contains the essential examples for which
we manage to explicitly verify the conjecture. Finally, in Section 4 we apply our computational
techniques to produce explicit non-trivial elements in the Shafarevich-Tate groups for specific elliptic
curves. Finally, the appendix establishes certain bounds on the logarithmic heights of the Heegner
points over ring class fields.

2. Heegner points over ring class fields

We discuss Heegner points over ring class fields in Section 2.1 and describe a method for com-
puting them in Section 2.2. Height estimates for these points are given in the appendix. We illus-
trate the method with some examples in Section 2.3. The standard references are [Gro91], [Kol90]
and [McC91].

2.1 Heegner points over ring class fields

Let E be an elliptic curve over Q of conductor N and let K = Q(
√
−D) for some fundamental

discriminant D > 0, D 6= 3, 4, such that all prime factors of N are split in K. We refer to such a
discriminant as a Heegner discriminant for E/Q. Let OK be the ring of integers of K. It follows
that NOK = NN̄ for an ideal N of OK with OK/N ' Z/NZ.

By the modularity theorem (see [BCDT01]), there exists an optimal (having minimal degree)
modular parameterization ϕ : X0(N) → E. Let N−1 be the fractional ideal of OK for which
NN−1 = OK . We view OK and N as Z-lattices of rank two in C and observe that C/OK → C/N−1
is a cyclic isogeny of degree N between the elliptic curves C/OK and C/N−1. This isogeny corre-
sponds to a complex point x1 ∈ X0(N)(C). According to the theory of complex multiplication [Sil94,
Ch.II], the point x1 is defined over the Hilbert class field HK of K.

More generally, for an integer c, let Oc = Z + cOK be the order of conductor c in OK and let
Nc = N ∩Oc, which is an invertible ideal of Oc. Then Oc/Nc ' Z/NZ and the map C/Oc → C/N−1c
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is a cyclic isogeny of degree N . Thus, it defines a point xc ∈ X0(N)(C). By the theory of complex
multiplication, this point is defined over the ring class field K[c] of conductor c over K (that is, the

unique abelian extension of K corresponding to the norm subgroup Ôc
×
K× ⊂ K̂×; e.g., if c = 1

then K[1] = HK).

We use the parameterization ϕ : X0(N)→ E to obtain points

yc = ϕ(xc) ∈ E(K[c]).

Let yK = TrHK/K(y1). We refer to yK as the Heegner point for the discriminant D, even though it
is only well defined up to sign and torsion (if N ′ is another ideal with O/N ′ ' Z/NZ then the new
Heegner point differs from yK by at most a sign change and a rational torsion point).

2.2 Explicit computation of the points yc

Significant work has been done on explicit calculations of Heegner points on elliptic curves (see
[Coh07], [Del02], [Elk94], [Wat04]). Yet, all of these only compute the points y1 and yK . In [EJL06]
explicit computations of the points yc were considered in several examples and some difficulties were
outlined. However, there has been no algorithm which provably computes the points yc. One of the
main contributions of this paper is the description of such an algorithm.

To compute the point yc = [C/Oc → C/N−1c ] ∈ E(K[c]) we let f ∈ S2(Γ0(N)) be the newform
corresponding to the elliptic curve E and Λ be the complex lattice (defined up to homothety),
such that E ∼= C/Λ. Let h× = h ∪ P1(Q) ∪ {i∞}, where h = {z ∈ C : =(z) > 0} is the upper-
half plane equipped with the action of Γ0(N) by linear fractional transformations. The modular
parametrization ϕ : X0(N)→ E is then given by the function ϕ : h× → C/Λ

ϕ(τ) =

∫ i∞

τ
f(z)dz =

∑

n>1

an
n
e2πinτ , (1)

where f =
∞∑

n=1

anq
n is the Fourier expansion of the modular form f .

We first compute ideal class representatives a1, a2, . . . , ahc for the Picard group Pic(Oc) ∼=
Gal(K[c]/K), where hc = #Pic(Oc). Let σi ∈ Gal(K[c]/K) be the image of the ideal class of
ai under the Artin map. We use the ideal ai to compute a complex number (a quadratic surd)τi ∈ h
representing the CM point σi(xc) for each i = 1, . . . , hc (since X0(N) = Γ0(N)\h×). Explicitly, the
Galois conjugates of xc are

σi(xc) = [C/a−1i → C/a−1i N−1c ], i = 1, . . . , hc.

Next, we use (1) to approximate ϕ(σi(xc)) as an element of C/Λ by truncating the infinite series
up to sufficiently many terms whose number is determined precisely by the results of the appendix.
Finally, the image of ϕ(τi) + Λ under the Weierstrass ℘-function gives us an approximation of the
x-coordinate of the point yc on the Weierstrass model of the elliptic curve E. On the other hand,
this coordinate is K[c]-rational. Thus, if we compute the map (1) with sufficiently many terms and
up to high enough floating point accuracy, we must be able to recognize the correct x-coordinate of
yc on the Weierstrass model as an element of K[c].

To implement the last step, we use the upper bound established in the appendix on the logarith-
mic height of the Heegner point yc. The bound on the logarithmic height comes from a bound on
the canonical height combined with bounds on the height difference (see the appendix for complete
details). Once we have a height bound, we estimate the floating point accuracy required for the
computation. Finally, we estimate the number of terms of (1) necessary to compute the point yc up
to the corresponding accuracy (see [Coh07, p.591] for more details).
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Remark 1. In practice, there are two ways to implement the above algorithm. The first approach
is to compute an approximation xi of the x-coordinates of yσi

c for every i = 1, . . . , c and form
the polynomial F (z) =

∏hc
i=1(z − xi). The coefficients of this polynomial are very close to the

rational coefficients of the minimal polynomial of the actual x-coordinate of yc. Thus, one can try
to recognize the coefficients of F (z) by using the continued fractions method. The second approach
is to search for the τi with the largest imaginary part (which will make the convergence of the
corresponding series (1) defining the modular parametrization fast) and then try to search for an
algebraic dependence of degree [K[c] : K] using standard algorithms implemented in PARI/GP.
Indeed, computing a conjugate with a smaller imaginary part might be significantly harder since
the infinite series in (1) will converge slower and one will need more terms to compute the image
up to the required accuracy.

Remark 2. We did not actually implement an algorithm for computing bounds on heights of Heegner
points as described in the appendix of this paper. Thus, the computations in the specific examples
below are not provably correct, though we did many consistency checks and we are convinced that
our computational observations are correct. The primary goal of the examples and practical imple-
mentation of our algorithm is to provide tools and data for improving our theoretical understanding
of Kolyvagin’s conjecture, and not making the computations below provably correct does not detract
from either of these goals.

2.3 Examples

We compute the Heegner points yc for specific elliptic curves and choices of quadratic imaginary
fields.

53a1: Let E/Q be the elliptic curve with label 53a1 in Cremona’s database (see [Cre]). Explicitly,
E is the curve y2 + xy + y = x3 − x2. Let D = 43 and c = 5. The conductor of E is 53 which is
split in K = Q(

√
−D), so D is a Heegner discriminant for E. The modular form associated to E is

fE(q) = q − q2 − 3q3 − q4 + 3q6 − 4q7 + 3q8 + 6q9 + · · · . One applies the methods from Section 2.2 to
compute the minimal polynomial of the x-coordinate of y5 for the above model

F (x) = x6 − 12x5 + 1980x4 − 5855x3 + 6930x2 − 3852x+ 864.

Since F (x) is an irreducible polynomial over K, it generates the ring class field K[5]/K, i.e.,
K[5] = K[α] ∼= K[x]/〈F (x)〉, where α is one of the roots. To find the y-coordinate of y5 we
substitute α into the equation of E and factor the resulting quadratic polynomial over K[5] to
obtain that the point y5 is equal to

(
α,−4/315α5 + 43/315α4 − 7897/315α3 + 2167/35α2 − 372/7α+ 544/35

)
∈ E(K[5]).

389a1: The elliptic curve with label 389a1 is y2 + y = x3 + x2 − 2x and the associated modular
form is fE(q) = q − 2q2 − 2q3 + 2q4 − 3q5 + 4q6 − 5q7 + q9 + 6q10 + · · · . Let D = 7 (which is a Heegner
discriminant for E) and c = 5. As above, we compute the minimal polynomial of the x-coordinate
of y5:

F (x) = x6 +
10

7
x5 − 867

49
x4 − 76

245
x3 +

3148

35
x2 − 25944

245
x+

48771

1225
.

If α is a root of F (x) then y5 = (α, β) where

β =
280

7761

√
−7α5 +

1030

7761

√
−7α4 − 12305

36218

√
−7α3 − 10099

15522

√
−7α2

+
70565

54327

√
−7α+

−18109− 33814
√
−7

36218
.

709a1: The elliptic curve 709a1 with equation y2 + y = x3 − x2 − 2x has an associated modular
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form fE(q) = q − 2q2 − q3 + 2q4 − 3q5 + 2q6 − 4q7 − 2q9 + · · · . Let D = 7 (a Heegner discriminant for
E) and c = 5. The minimal polynomial of the x-coordinate of y5 is

F (x) =
1

52 · 72 · 192
(
442225x6 − 161350x5 − 2082625x4 − 387380x3 + 2627410x2 + 18136030x+ 339921

)
,

and if α is a root of x then y5 = (α, β) for

β =
341145

62822

√
−7α5 − 138045

31411

√
−7α4 − 31161685

1319262

√
−7α3 +

7109897

1319262

√
−7α2 +

+
39756589

1319262

√
−7α+

−219877 + 4423733
√
−7

439754
.

718b1: The curve 718b1 has equation y2 + xy + y = x3 − 5x with associated modular form
fE(q) = q − q2 − 2q3 + q4 − 3q5 + 2q6 − 5q7 − q8 + q9 + 3q10 + . . . . Again, for D = 7 and c = 5 we find
F (x) = 1

34·52
(
2025x6 + 12400x5 + 32200x4 + 78960x3 + 289120x2 + 622560x+ 472896

)
and y5 = (α, β)

with

β =
16335

12271

√
−7α5 +

206525

36813

√
−7α4 +

54995

5259

√
−7α3 +

390532

12271

√
−7α2 +

+
−36813 + 9538687

√
−7

73626
α+
−12271 + 4018835

√
−7

24542
.

3. Kolyvagin’s conjecture: consequences and evidence

We recall Kolyvagin’s construction of the cohomology classes in Section 3.2 and state Kolyvagin’s
conjecture in Section 3.3. Section 3.4 is devoted to the proof of the promised consequence regarding
the Zp-corank of the Selmer group of an elliptic curve with large analytic rank. In Section 3.5 we
provide Cornut’s arguments for the theoretical evidence for Kolyvagin’s conjecture and finally, in
Section 3.6 we verify Kolyvagin’s conjecture for particular elliptic curves. Throughout the entire
section we assume that E/Q is an elliptic curve of conductor N , D is a Heegner discriminant for E

and p - ND is a prime such that the mod p Galois representation ρE,p : Gal(Q/Q) → Aut(E[p]) is
surjective.

3.1 Preliminaries

Most of this section follows the exposition in [Gro91], [McC91] and [Kol91c].

1. Kolyvagin primes. We refer to a prime number ` as a Kolyvagin prime if ` is inert in K and p
divides both a` and `+ 1). For a Kolyvagin prime ` let

M(`) = ordp(gcd(a`, `+ 1)).

We denote by Λr the set of all square-free products of exactly r Kolyvagin primes and let Λ =
⋃

r

Λr.

For any c ∈ Λ, let M(c) = min
`|c

M(`). Finally, let

Λr
m = {c ∈ Λr :M(c) > m}

and let Λm =
⋃

r

Λr
m.

2. Kolyvagin derivative operators. Let Gc = Gal(K[c]/K) and Gc = Gal(K[c]/K[1]). For each ` ∈ Λ1,
the group G` is cyclic of order `+ 1. Indeed,

G` ' (OK/`OK)×/(Z/`Z)× ' F×λ /F
×
` .
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Moreover, Gc
∼=
∏

`|c
G` (since Gal(K[c]/K[c/`]) ∼= G`). Next, fix a generator σ` of G` for each ` ∈ Λ1.

Define D` =
∑`

i=1 iσ
i
` ∈ Z[G`] and let

Dc =
∏

`|c
D` ∈ Z[Gc].

Note that (σ` − 1)D` = 1 + `− TrK[`]/K[1].

We refer to Dc as the Kolyvagin derivative operators. Finally, let S be a set of coset representa-
tives for the subgroup Gc ⊆ Gc. Define

Pc =
∑

s∈S
sDcyc ∈ E(K[c]).

The points Pc are derived from the points yc, so we will refer to them as derived Heegner points.

3. The function m : Λ → Z and the sequence {mr}r>0. For any c ∈ Λ let m′(c) be the largest
positive integer such that Pc ∈ pm′(c)E(K[c]) (if Pc is torsion then m′(c) = ∞). Define a function
m : Λ→ Z by

m(c) =

{
m′(c) if m′(c) 6M(c),
∞ otherwise.

Finally, let mr = min
c∈Λr

m(c).

Proposition 3.1. The sequence {mr}r>0 is non-increasing, i.e., mr > mr+1 for every r > 0.

Proof. This is proved in [Kol91c, Thm.C].

3.2 Kolyvagin cohomology classes

Kolyvagin uses the points Pc to construct classes κc,m ∈ H1(K,E[pm]) for any c ∈ Λm. For the
details of the construction, we refer to [Gro91, pp.241-242]) and [McC91, §4]. The class κc,m is
explicit, in the sense that it is represented by the 1-cocycle

σ 7→ σ

(
Pc

pm

)
− Pc

pm
− (σ − 1)Pc

pm
, (2)

where
(σ − 1)Pc

pm
is the unique pm-division point of (σ − 1)Pc in E(K[c]) (see [McC91, Lem. 4.1]).

The class κc,m is non-trivial if and only if Pc /∈ pmE(K[c]) (which is equivalent to m > m(c)).

Finally, let −ε be the sign of the functional equation corresponding to E. For each c ∈ Λm, let
ε(c) = ε · (−1)fc where fc = #{` : ` | c} (e.g., f1 = 0). It follows from [Gro91, Prop.5.4(ii)] that
κc,m lies in the ε(c)-eigenspace for the action of complex conjugation on H1(K,E[pm]).

3.3 Statement of the conjecture

We are interested in m∞ = min
c∈Λ

m(c) = lim
r→∞

mr. In the case when the Heegner point P1 = yK has

infinite order in E(K), the Gross-Zagier formula (see [GZ86]) implies that ran(E/K) = 1, so (by
the results of Kolyvagin) rMW(E/K) = 1. This means that m0 = ordp([E(K) : ZyK ]) < ∞. In
particular, m∞ <∞ which is equivalent to the system of cohomology classes

T = {κc,m : m 6M(c)}
containing at least one non-zero class. A much more interesting and subtle is the case of an elliptic
curves E over K of analytic rank at least two. In this case, Kolyvagin conjectured (see [Kol91a,
Conj.C]) that T contains a non-trivial class as well.
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Conjecture 3 (Kolyvagin’s conjecture). We havem∞ <∞, i.e., T contains at least one class κc,m 6= 0.

Remark 3. Although Kolyvagin’s conjecture is obvious in the case of elliptic curves of analytic rank
one over K, the number m∞ is still interesting. Indeed, the p-part of the Birch and Swinnerton-

Dyer conjectural formula for E/K is equivalent to m∞ = ordp


∏

q|N
cq


, where cq is the Tamagawa

number of E/Q at q. See [Jet07] for some new results related to this question which imply (in many
cases) the exact upper bound on the order of the p-primary part of the Shafarevich-Tate group as
predicted by the conjectural formula.

3.4 A consequence on the structure of Selmer groups

Let r±p (E/K) = corankZp Selp∞(E/K)±. Kolyvagin (see [Kol91a]) proved the following:

Theorem 3.2 (Kolyvagin). Assume Conjecture 3 and let f be the smallest nonnegative integer for
which mf <∞. Then

Selp∞(E/K)ε(−1)
f+1 ∼= (Qp/Zp)

f+1 ⊕ (a finite group)

and

Selp∞(E/K)ε(−1)
f ∼= (Qp/Zp)

r ⊕ (a finite group)

where r 6 f and f − r is even. In other words, r
ε(−1)f
p (E/K) = r and r

ε(−1)f+1

p (E/K) = f + 1.

The above structure theorem of Kolyvagin has the following consequence which strongly supports
Conjecture 2.

Corollary 3.3. Assume Conjecture 3. Then (i) If ran(E/Q) is even and nonzero then

rp(E/Q) > 2.

(ii) If ran(E/Q) is odd and strictly larger than one then

rp(E/Q) > 3.

Proof. (i) By [BFH90] or [MM97], one can choose a quadratic imaginary field K = Q(
√
−D) with

Heegner discriminant D, such that L′(ED
/Q, 1) 6= 0, where ED is the twist of E by the quadratic

character associated to K (note that D is a Heegner discriminant, so the sign of the functional
equation of ED is always odd since E has even sign). Hence, by Theorem 1.1, the Selmer group
Selp∞(ED/Q) has Zp-corank one, i.e., r−p (E/K) = rp(E

D/Q) = 1. We want to prove r+p (E/K) =
rp(E/Q) > 2. Assume the contrary, i.e., r+p (E/K) = rp(E/Q) 6 1. This means (by Theorem 3.2)
that r = f = 0 (here, r and f are as in Theorem 3.2). Therefore, m0 < ∞ which means that the
Heegner point yK has infinite order in E(K) and hence (by the Gross-Zagier formula), L′(E/K , 1) 6=
0. But this is a contradiction since

L′(E/K , s) = L′(E/Q, s)L(E
D
/Q, s) + L(E/Q, s)L

′(ED
/Q, s),

which vanishes at s = 1 since L(E/Q, 1) = L′(E/Q, 1) = 0. Thus, rp(E/Q) = r+p (E/K) > 2.

(ii) It follows from the work of Waldspurger (see also [BFH90, pp.543-44]) that one can choose a
quadratic imaginary field K = Q(

√
−D) with a Heegner discriminant D, such that L(ED

/Q, 1) 6=
0 (this uses the fact that ran(E/Q) is odd). Therefore, by Theorem 1.1, rp(E

D/Q) = 0, i.e.,
r−p (E/K) = 0. By Theorem 3.2, r = 0 and f is even. If f > 2 we are done since rp(E/Q) =
r+p (E/K) = f + 1 > 3. If f = 0, we use the same argument as in (i) to arrive at a contradiction.
Therefore, rp(E/Q) = r+p (E/K) > 3.
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Remark 4. The parity conjecture proved by Nekovář (see [Nek01]) implies that

rp(E/Q) ≡ ran(E/Q) mod 2.

Yet, Nekovář’s result does not imply in any obvious way the statements of the above proposition.

3.5 Cornut’s theoretical evidence for Kolyvagin’s conjecture

The following evidence for Conjecture 3 was proven by Cornut.

Proposition 3.4. For all but finitely many c ∈ Λ there exists a set R of liftings for the elements
of Gal(K[1]/K) into Gal(Kab/K), such that if Pc = D0Dcyc is the derived Heegner point defined

in terms of this choice of liftings (i.e, if D0 =
∑

σ∈R
σ), then Pc is non-torsion.

Remark 5. For a non-torsion point Pc, let m
′(c) be the function defined in Section 3.1. Propo-

sition 3.4 provides little evidence towards Kolyvagin’s conjecture. The reason is that even if one
gets non-torsion points Pc, it might still happen that for each such c we have m′(c) > M(c) (i.e.,
m(c) =∞) in which case all classes κc,m with m 6M(c) will be trivial.

Let K[∞] =
⋃

c∈Λ
K[c]. The proof of the proposition depends on the following two lemmas:

Lemma 3.5. The group E(K[∞])tors is finite.

Proof. Let q be any prime which is a prime of good reduction for E, which is inert in K and which
is different from the primes in Λ1 (there are infinitely many such primes according to Čebotarev
density theorem). Let q be the unique prime of K over q. It follows from class field theory that the
prime q splits completely in K[∞] since it splits completely in each of the finite extensions K[c].
Thus, the completion of K[∞] at any prime which lies over q is isomorphic to Kq and therefore,
E(K[∞])tors ↪→ E(Kq)tors. The last group is finite since it is isomorphic to an extension of Z2

q by a
finite group (see [Mil86, Lem.I.3.3] or [Tat67, p.168-169]). Therefore, E(K[∞]tors) is finite.

Let |E(K[∞])tors| = M < ∞ and let d(c) = [K[c] : K[1]] =
∏

`|c
(` + 1) for any c ∈ Λ. Let

mE be the modular degree of E, i.e., the degree of the fixed optimal modular parametrization
ϕ : X0(N)→ E.

Lemma 3.6. Suppose that c ∈ Λ satisfies d(c) > mEM . There exists a set of lifting R ofGal(K[1]/K)

into Gal(K[c]/K), such that D0yc /∈ E(K[c])tors, where D0 =
∑

σ∈R
σ.

Proof. The Gal(K[c]/K[1])-orbit of the point xc ∈ X0(N)(K[c]) consists of d(c) distinct points
(sinceK[c] = K(j(Oc))), so there are at least d(c)/mE distinct points in the orbit Gal(K[c]/K[1])yc.
Choose a set of representatives R of Gal(K[c]/K)/Gal(K[c]/K[1]) which contains the identity
element 1 ∈ Gal(K[c]/K). For τ ∈ Gal(K[c]/K[1]) define

Rτ = (R− {1}) ∪ {τ}.

Let S =
∑

σ∈R
σyc and Sτ =

∑

σ∈Rτ

σyc. Then

Sτ − S = τyc − yc,
which takes at least d(c)/mE > M distinct values. Therefore, there exists an automorphism τ ∈
Gal(K[c]/K[1]), for which Sτ /∈ E(K[c])tors, which proves the lemma.
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Proof of Proposition 3.4. Suppose that c ∈ Λ satisfies the statement of Lemma 3.6 for some choice

of liftings R and the corresponding D0 =
∑

σ∈R
, i.e., D0yc /∈ E(K[c])tors. For any ring class character

χ : Gal(K[c]/K)→ C×, let eχ ∈ C[Gal(K[c]/K)] be the eidempotent projector corresponding to χ.
Explicitly,

eχ =
1

#Gal(K[c]/K)

∑

σ∈Gal(K[c]/K)

χ−1(σ)σ ∈ C[Gal(K[c]/K)].

Consider V = E(K[c]) ⊗ C as a complex representation of Gal(K[c]/K). The representation V
decomposes as

V =
⊕

χ:Gal(K[c]/K)→C×
Vχ,

where Vχ is the one-dimensional subspace on which Gal(K[c]/K[1]) acts via the character χ. Since
the vector D0yc⊗1 ∈ V is non-zero, there exists a ring class character χ, such that eχ(D0yc⊗1) 6= 0.

Next, we consider the point D0Dcyc ∈ E(K[c]) and claim that D0Dcyc ⊗ 1 ∈ E(K[c]) ⊗ C
is non-zero, which is sufficient to conclude that Pc = D0Dcyc /∈ E(K[c])tors. We will prove that
eχ(D0Dcyc ⊗ 1) 6= 0. Indeed,

eχ(D0Dcyc ⊗ 1) = eχDc(D0yc ⊗ 1) =
∏

`|c

(∑̀

i=1

iσi`

)
eχ(D0yc ⊗ 1) =

=
∏

`|c

(∑̀

i=1

iχ(σ`)
i

)
eχ(D0yc ⊗ 1),

the last equality holding since τeχ = χ(τ)eχ in C[Gal(K[c]/K)] for all τ ∈ Gal(K[c]/K). Thus, it

remains to compute
∑̀

i=1

iχ(σ`)
i for every ` | c. It is not hard to show that

∑̀

i=1

iχ(σ`)
i =

{
`+1

χ(σ`)−1 if χ(σ`) 6= 1
`(`+1)

2 if χ(σ`) = 1.

Thus, eχ(D0Dcyc ⊗ 1) 6= 0 which means that Pc = D0Dcyc /∈ E(K[c])tors for any c satisfying
D0yc /∈ E(K[c])tors. To complete the proof, notice that for all, but finitely many c ∈ Λ, the hypothesis
of Lemma 3.6 will be satisfied.

3.6 Computational evidence for Kolyvagin’s conjecture

Consider the example E = 389a1 with equation y2 + y = x3 + x2 − 2x. As in Section 2.3, let
D = 7, ` = 5, and p = 3. Using the algorithm of [GJP+05, §2.1] we verify that the mod p Galois
representation ρE,p is surjective. Next, we observe that ` = 5 is a Kolyvagin prime for E, p and

D. Let c = 5 and consider the class κ5,1 ∈ H1(K,E[3]). We claim that κ5,1 6= 0, which will verify
Kolyvagin’s conjecture.

Proposition 3.7. The class κ5,1 6= 0. In other words, Kolyvagin’s conjecture holds for E = 389a1,
D = 7 and p = 3.

Before proving the proposition, we recall some standard facts about division polynomials (see,
e.g., [Sil92, Ex.3.7]). For an elliptic curve given in Weierstrass form over any field of characteristic
different from 2 and 3, y2 = x3 + Ax+ B, one defines a sequence of polynomials ψm ∈ Z[A,B, x, y]

9
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inductively as follows:

ψ1 = 1, ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3),

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m > 2,

2yψ2m = ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1) for m > 3.

Define also polynomials φm and ωm by

φm = xψ2
m − ψm+1ψm−1, 4yωm = ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1.

After replacing y2 by x3 + Ax+ B, the polynomials φm and ψ2
m can be viewed as polynomials in

x with leading terms xm
2
and m2xm

2−1, respectively. Finally, multiplication-by-m is given by

mP =

(
φm(P )

ψm(P )2
,
ωm(P )

ψm(P )3

)
.

Proof of Proposition 3.7. We already computed the Heegner point y5 on the model y2 + y = x3 +
x2 − 2x in Section 2.3. The Weierstrass model for E is y2 = x3 − 7/3x+ 107/108, so A = −7/3 and

B = 107/108. We now compute the point P5 =
5∑

i=1

iσi(y5) ∈ E(K[5]) on the Weierstrass model,

where σ is a generator of Gal(K[5]/K). To show that κ5,1 6= 0 we need to check that there is no
point Q = (x, y), such that 3Q = P5. For the verification of this fact, we use the division polynomial
ψ3 and the polynomial φ3. Indeed, it follows from the recursive definitions that

φ3(x) = x9 − 12Ax7 − 168Bx6 + (30A2 + 72B)x5 − 168ABx4 +

+ (36A3 + 144AB − 96B2)x3 + 72A2Bx2 +

+ (9A4 − 24A2B + 96AB2 + 144B2)x+ 8A3B + 64B3.

Consider the polynomial g(x) = φ3(x) − X(P5)ψ3(x)
2, where X(P5) is the x-coordinate of the

point P5 on the Weierstrass model. We factor g(x) (which has degree 9) over the number field K[5]
and check that it is irreducible. In particular, there is no root of g(x) in K[5], i.e., there is no
Q ∈ E(K[5]), such that 3Q = P5. Thus, κ5,1 6= 0.

Remark 6. Using exactly the same method as above, we verify Kolyvagin’s conjecture for the other
two elliptic curves of rank two from Section 2.3. For both E = 709a1 and E = 718b1 we use
D = 7, p = 3 and ` = 5 (which are valid parameters), and verify that κ5,1 6= 0 in the two cases.
For completeness, we provide all the data of each computation in the three examples in the files
389a1.txt, 709a1.txt and 718a1.txt.

4. Non-trivial elements in the Shafarevich-Tate group

Throughout the entire section, let E/Q be a non-CM elliptic curve, K = Q(
√
−D), where D is a

Heegner discriminant for E such that the Heegner point yK has infinite order in E(K) (which, by
the Gross-Zagier formula and Kolyvagin’s result, means that E(K) has Mordell-Weil rank one) and
let p be a prime, such that p - DN and the mod p Galois representation ρE,p is surjective.

4.1 Non-triviality in Kolyvagin classes.

Under the above assumptions, the next proposition provides a criterion which guarantees that an
explicit class in the Shafarevich-Tate group X(E/K) is non-zero.

Proposition 4.1. Let c ∈ Λm. Assume that the following hypotheses are satisfied:

10
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i) [Selmer hypothesis]: The class κc,m ∈ H1(K,E[pm]) is an element of the Selmer group Selpm(E/K).

ii) [Non-divisibility]: The derived Heegner point Pc is not divisible by pm in E(K[c]), i.e., Pc /∈
pmE(K[c]).

iii) [Parity]: The number fc = #{` : ` | c} is odd.
Then the image κ′c,m ∈ H1(K,E)[pm] of κc,m is a non-zero element of X(E/K)[pm].

Proof. The first hypothesis implies that the image κ′c,m of κc,m in H1(K,E)[pm] is an element of the
Shafarevich-Tate group X(E/K). The second one implies that κc,m 6= 0. To show that κ′c,m 6= 0 we
use the exact sequence

0→ E(K)/pmE(K)→ Selpm(E/K)→X(E/K)[pm]→ 0

which splits under the action of complex conjugation as

0→ (E(K)/pmE(K))± → Selpm(E/K)± →X(E/K)±[pm]→ 0.

According to [Gro91, Prop.5.4(2)], the class κc,m lies in the εc-eigenspace of the Selmer group
Selpm(E/K) for the action of complex conjugation, where εc = ε(−1)fc = −1 (fc is odd by the
third hypothesis and ε = 1 since −ε is the sign of the functional equation for E/K which is −1 by
Gross-Zagier). On the other hand, the Heegner point yK = P1 lies in the ε1-eigenspace of complex
conjugation (again, by [Gro91, Prop.5.4(2)]) where ε1 = ε(−1)f1 = 1. Since E(K) has rank one, the
group E(K)− is torsion and since E(K)[p] = 0, we obtain that (E(K)/pmE(K))− = 0. Therefore,

Selpm(E/K)− ∼= X(E/K)−[pm],

which implies κ′c,m 6= 0.

4.2 The example E = 53a1.

The Weierstrass equation for the curve E =53a1 is y2 = x3 + 405x + 16038 and E has rank one
over Q. The Fourier coefficient a5(f) ≡ 5 + 1 ≡ 0 mod 3, so ` = 5 is a Kolyvagin prime for E,
the discriminant D = 43 and the prime p = 3. Kolyvagin’s construction exhibits a class κ5,1 ∈
H1(K,E[3]). We will prove the following proposition:

Proposition 4.2. The cohomology class κ5,1 ∈ H1(K,E[3]) lies in the Selmer group Sel3(E/K)
and its image κ′5,1 in the Shafarevich-Tate group X(E/K) is a nonzero 3-torsion element.

Remark 7. Since E/K has analytic rank one, Kolyvagin’s conjecture is automatic (since m0 <∞ by
Gross-Zagier’s formula) and one knows (see [McC91, Thm. 5.8]) that there exist Kolyvagin classes
κ′c,m which generate X(E/K)[p∞]. Yet, this result is not explicit in the sense that one does not
know any particular Kolyvagin class which is non-trivial. The above proposition exhibits an explicit
non-zero cohomology class in the p-primary part of the Shafarevich-Tate group X(E/K).

Proof. Using the data computed in Section 2.3 for this curve, we apply the Kolyvagin derivative to
compute the point P5. In order to do this, one needs a generator of the Galois group Gal(K[5]/K).
Such a generator is determined by the image of α, which will be another root of f(x) in K[5]. We
check that the automorphism σ defined by

α 7→ 1

1601320
(47343 + 54795

√
−43)α5 +

1

2401980
(−614771− 936861

√
−43)α4 +

+
1

600495
(34507457 + 40541607

√
−43)α3 +

1

4803960
(102487877− 767102463

√
−43)α2 +

+
1

400330
(−61171198 + 52833377

√
−43)α+

1

200165
(18971815− 7453713

√
−43)

11
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is a generator (we found this automorphism by factoring the defining polynomial of the number

field over the number field K[5]). Thus, we can compute P5 =
5∑

i=1

iσi(y5).

Note that we are computing the point on the Weierstrass model of E rather than on the original
model. The cohomology class κ5,1 is trivial if and only if P5 ∈ 3E(K[5]). To show that P5 /∈ 3E(K[5]),
we repeat the argument from Proposition 3.7 and verify (using any factorization algorithm for
polynomials over number fields) that the polynomial g(x) = φ3(x) − X(P5)ψ3(x)

2 has no linear
factors over K[5] (here, X(P5) is the x-coordinate of P5). This means that there is no point Q =
(x, y) ∈ E(K[5]), such that 3Q = P5, i.e., κ5,1 6= 0. Finally, using Proposition 4.1 we conclude that
the class κ′5,1 ∈X(E/K)[3] is non-trivial.

Remark 8. For completeness, all the computational data is provided (with the appropriate expla-
nations) in the file 53a1.txt. We verified the irreducibility of g(x) using MAGMA and PARI/GP
independently.

Appendix A. Upper bounds on the logarithmic heights of the Heegner points yc

We explain how to compute an upper bound on the logarithmic height h(yc). The method first
relates the canonical height ĥ(yc) to special values of the first derivatives of certain automorphic
L-functions via Zhang’s generalization of the Gross-Zagier formula. Then we either compute the
special values up to arbitrary precision using a well-known algorithm (recently implemented by
Dokchitser) or use effective asymptotic upper bounds (convexity bounds) on the special values
and Cauchy’s integral formula. Finally, using some known bounds on the difference between the
canonical and the logarithmic heights, we obtain explicit upper bounds on the logarithmic height
h(yc). We provide a summary of the asymptotic bounds in Section A.4 and refer the reader to [Jet]
for complete details.

A.1 The automorphic L-functions L(f, χ, s) and L(πf⊗θχ , s)

Let dc = c2D and let f =
∑

n>1

anq
n be the new eigenform of level N and weight two corresponding

to E. Let χ : Gal(K[c]/K)→ C× be a ring class character.

1. The theta series θχ. Recall that ideal classes for Pic(Oc) correspond to primitive, reduced binary
quadratic forms of discriminants dc. To each ideal class A we consider the corresponding binary
quadratic form QA and the theta series θQA associated to it via

θQA =
∑

M

e2πizQA(M)

which is a modular form for Γ0(dc) of weight one with character ε (the quadratic character of K)
according to Weil’s converse theorem (see [Shi71] for details). This allows us to define a cusp form

θχ =
∑

A∈Pic(Oc)

χ−1(A)θQA ∈ S1(Γ0(dc), ε).

Here, we view χ−1 as a character of Pic(Oc) via the isomorphism Pic(Oc) ∼= Gal(K[c]/K). Let
θχ =

∑
m>0 bmq

m be the Fourier expansion. By L(f, χ, s) we will always mean the Rankin L-
function L(f ⊗ θχ, s) (equivalently, the L-function associated to the automorphic representation
π = f ⊗ θχ of GL4).

2. The functional equation of L(f, χ, s). We recall some basic facts about the Rankin L-series
L(f ⊗ θχ, s) following [Gro84, §III]. Since (N,D) = 1, the conductor of L(f ⊗ θχ, s) is Q = N2d2c .
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The Euler factor at infinity (the gamma factor) is L∞(f ⊗ θχ, s) = ΓC(s)2. If we set

Λ(f ⊗ θχ, s) = Qs/2L∞(f ⊗ θχ, s)L(f ⊗ θχ, s)
then the function Λ has a holomorphic continuation to the entire complex plane and satisfies the
functional equation

Λ(f ⊗ θχ, s) = −Λ(f ⊗ θχ, 2− s).
In particular, the order of vanishing of L(f ⊗ θχ, s) at s = 1 is non-negative and odd, i.e., L(f ⊗
θχ, 1) = 0.

3. The automorphic L-function L(πf⊗θχ , s). In order to center the critical line at Re(s) =
1

2
instead

of Re(s) = 1 (which is consistent with Langlands convention), we consider the L-function L(πf⊗θχ , s)
corresponding to the automorphic representation attached to f ⊗ θχ for GL4. This function satisfies

L(πf⊗θχ , s) = L

(
f ⊗ θχ, s+

1

2

)

The function L(πf⊗θχ , s) then satisfies a functional equation relating the values at s and 1− s. For
a general automorphic L-function L(π, s), we consider the corresponding Dirichlet series and Euler
product

L(π, s) =
∑

n>1

λπ(n)

ns
=
∏

p

(1− απ,1(p)p
−s)−1 . . . (1− απ,d(p)p

−s)−1,

which are absolutely convergent for Re(s) > 1.

A.2 Zhang’s formula

For a character χ of Gal(K[c]/K), let

eχ =
1

#Gal(K[c]/K)

∑

σ∈Gal(K[c]/K)

χ−1(σ)σ ∈ C[Gal(K[c]/K)]

be the associated eidempotent (see also Section 3.5). The canonical height ĥ(eχyc) is related via the
generalized Gross-Zagier formula of Zhang to a special value of the derivative of the Rankin-Selberg
L-function L(f, χ, s) at s = 1 (see [Zha01, Thm.1.2.1]). More precisely,

Theorem A.1 (Zhang). If ( , ) denotes the Petersson inner product on S2(Γ0(N)) then

L′(f, χ, 1) =
4√
D
(f, f)ĥ(eχyc).

Since 〈eχ′yc, eχ′′yc〉 = 0 whenever χ′ 6= χ′′ (here, 〈 , 〉 denotes the Néron-Tate height pairing for E)

and since ĥ(x) = 〈x, x〉 then

ĥ(yc) = ĥ

(∑

χ

eχyc

)
=
∑

χ

ĥ(eχyc). (3)

Thus, we will have an upper bound on the canonical height ĥ(yc) if we obtain upper bounds on the
special values L′(f, χ, 1) for every character χ of Gal(K[c]/K).

A.3 Computing special values of derivatives of automorphic L-functions

For simplicity, let γ(s) = L∞(f ⊗ θχ, s+ 1/2) be the gamma factor of the L-function L(π, s). This
means that if Λ(π, s) = Qs/2γ(s)L(π, s) then Λ(π, s) satisfies the functional equation Λ(π, s) =
Λ(π, 1 − s). We will describe a classical algorithm to compute the value of L(k)(π, s) at s = s0 up
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to arbitrary precision. The algorithm and its implementation is discussed in a greater generality
in [Dok04]. The main idea is to express Λ(π, s) as an infinite series with rapid convergence which is
usually done in the following sequence of steps:

i) Consider the inverse Mellin transform of the gamma factor γ(s), i.e., the function φ(t) which
satisfies

γ(s) =

∫ ∞

0
φ(t)ts

dt

t
.

One can show (see [Dok04, §3]) that φ(t) decays exponentially for large t. Hence, the sum

Θ(t) =
∞∑

n=1

λπ(n)φ

(
nt√
Q

)

converges exponentially fast. The function φ(t) can be computed numerically as explained
in [Dok04, §3-5].

ii) The Mellin transform of Θ(t) is exactly the function Λ(π, s). Indeed,

∫ ∞

0
Θ(t)ts

dt

t
=

∫ ∞

0

∞∑

n=1

λπ(n)φ

(
nt√
Q

)
ts
dt

t
=
∞∑

n=1

λπ(n)

∫ ∞

0
φ

(
nt√
Q

)
ts
dt

t
=

=
∞∑

n=1

λπ(n)

(√
Q

n

)s ∫ ∞

0
φ(t′)t′s

dt′

t′
= Qs/2γ(s)L(π, s) = Λ(π, s).

iii) Next, we obtain a functional equation for Θ(t) which relates Θ(t) to Θ(1/t). Indeed, since
Λ(π, s) is holomorphic, Mellin’s inversion formula implies that

Θ(t) =

∫ c+i∞

c−i∞
Λ(π, s)t−sds, ∀c.

Therefore,

Θ(1/t) =

∫ c+i∞

c−i∞
Λ(π, s)(1/t)−sds = −t

∫ c+i∞

c−i∞
Λ(π, 1− s)t−(1−s)ds =

= −t
∫ c+i∞

c−i∞
Λ(π, s′)t−s

′
ds′ = −tΘ(t).

Thus, Θ(t) satisfies the functional equation Θ(1/t) = −tΘ(t).

iv) Next, we consider the incomplete Mellin transform

Gs(t) = t−s
∫ ∞

t
φ(x)xs

dx

x
, t > 0

of φ(t). The function Gs(t) satisfies lim
t→0

tsGs(t) = γ(s) and it decays exponentially. Moreover,

it can be computed numerically (see [Dok04, §4-5]).
v) Finally, we use the functional equation for Θ(t) to obtain

Λ(π, s) =

∫ ∞

0
Θ(t)ts

dt

t
=

∫ 1

0
Θ(t)ts

dt

t
+

∫ ∞

1
Θ(t)ts

dt

t
=

=

∫ ∞

1
Θ(1/t′)t′−s

dt′

t′
+

∫ ∞

1
Θ(t)ts

dt

t
=

= −
∫ ∞

1
Θ(t′)t′1−s

dt′

t′
+

∫ ∞

1
Θ(t)ts

dt

t
.
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vi) Finally, we compute
∫ ∞

1
Θ(t)ts

dt

t
=

∫ ∞

1

∞∑

n=1

λπ(n)φ

(
nt√
Q

)
ts
dt

t
=
∞∑

n=1

λπ(n)

∫ ∞

1
φ

(
nt√
Q

)
ts
dt

t
=

=
∞∑

n=1

λπ(n)

∫ ∞
n√
Q

φ
(
t′
)(√Qt′

n

)s

=
∞∑

n=1

λπ(n)Gs

(
n√
Q

)
.

Thus,

Λ(π, s) =
∞∑

n=1

λπ(n)Gs

(
n√
Q

)
−
∞∑

n=1

λπ(n)G1−s

(
n√
Q

)

is the desired expansion. From here, we obtain a formula for the k-th derivative

∂k

∂sk
Λ(π, s) =

∞∑

n=1

λπ(n)
∂k

∂sk
Gs

(
n√
Q

)
−
∞∑

n=1

λπ(n)
∂k

∂sk
G1−s

(
n√
Q

)
.

The computation of the derivatives of Gs(x) is explained in [Dok04, §3-5].

A.4 Asymptotic estimates on the canonical heights ĥ(yc)

In this section we provide an asymptotic bound on the canonical height ĥ(yc) by using convexity
bounds on the special values of the automorphic L-functions L(π, s) defined in Section A.1. We only
outline the basic techniques used to prove the asymptotic bounds and refer the reader to [Jet] for
the complete details. Asymptotic bounds on heights of Heegner points are obtained in [RV], but
these bounds are of significantly different type than ours. In our case, we fix the elliptic curve E
and let the fundamental discriminant D and the conductor c of the ring class field both vary. We
obtain the following:

Proposition A.2. Fix the elliptic curve E and let the fundamental discriminant D and the con-
ductor c vary. For any ε > 0 the following asymptotic bound holds

ĥ(yc)�ε,f hDD
εc2+ε,

where hD is the class number of the quadratic imaginary field K = Q(
√
−D). Moreover, the implied

constant depends only on ε and the cusp form f .

One proves the proposition by combining the formula of Zhang with convexity bounds on special
values of automorphic L-functions. The latter are conveniently expressed in terms of a quantity
known as the analytic conductor associated to the automorphic representation π (see [Mic02, p.12]).
It is a function Qπ(t) over the real line, which is defined as

Qπ(t) = Q ·
d∏

i=1

(1 + |it− µπ,i|), ∀t ∈ R,

where µπ,i are obtained from the gamma factor

L∞(π, s) =
d∏

i=1

ΓR(s− µπ,i), ΓR(s) = π−s/2Γ(s/2).

In our situation for π = πf⊗θχ , d = 4 and µπ,1 = µπ,2 = 0, µπ,3 = µπ,4 = 1 (see [Mic02, §1.1.1]
and [Ser70, §3] for discussions of local factors at archimedian places). Moreover, we let Qπ = Qπ(0).

The main idea is to prove that for a fixed f , |L′(πf⊗θχ , 1/2)| �ε,f Q
1/4+ε
πf⊗θχ

, where the implied
constant only depends on f and ε (and is independent of χ and the discriminant D). To establish the
bound, we first prove an asymptotic bound for the L-function L(πf⊗θχ , s) on the vertical line Re(s) =

15
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1+ε by either using the Ramanujan-Petersson conjecture or a method of Iwaniec (see [Mic02, p.26]).
This gives us the estimate |L(πf⊗θχ , 1+ε+it)| �ε,f Qπf⊗θχ

(t)ε. Then, by the functional equation for
L(πf⊗θχ , s) and Stirling’s approximation formula, we deduce an upper bound for the L-function on

the vertical line Re(s) = −ε, i.e., |L(πf⊗θχ ,−ε+ t)| �ε,f Qπf⊗θχ
(t)1/2+ε. Next, we apply Phragmen-

Lindelöf’s convexity principle (see [IK04, Thm.5.53]) to obtain the bound |L(πf⊗θχ , 1/2 + it)| �ε,f

Qπ(t)
1/4+ε (also known as convexity bound). Finally, by applying Cauchy’s integral formula for a

small circle centered at s = 1/2, we obtain the asymptotic estimate |L′(πf⊗θχ , 1/2)| �ε,f Q
1/4+ε
πf⊗θχ

.

Since Q = N2d2c = N2D2c4 in our situation and since [K[c] : K] = hD
∏

`|c(`+ 1), Zhang’s formula
(Theorem A.1) and equation (3) imply that for any ε > 0,

ĥ(yc)�ε,f hDD
εc2+ε.

Remark 9. In the above situation (the Rankin-Selberg L-function of two cusp forms of levels N
and dc = c2D), one can even prove a subconvexity bound |L′(πf⊗θχ , 1/2)| �f D

1/2−1/1057c1−2/1057,
where the implied constant depends only on f and is independent of χ (see [Mic04, Thm.2]). Yet, the
proof relies on much more involved analytic number theory techniques than the convexity principle,
so we do not discuss it here.

A.5 Height difference bounds and the main estimates

To estimate h(yc) we need a bound on the difference between the canonical and the logarithmic
heights. Such a bound has been established in [Sil90] and [CPS06] and is effective.

Let F be a number field. For any non-archimedian place v of K, let E0(Fv) denote the points of
E(Fv) which specialize to the identity component of the Néron model of E over the ring of integers
Ov of Fv. Moreover, let nv = [Fv : Qv] and let M∞F denote the set of all archimedian places of F .
A slightly weakened (but easier to compute) bounds on the height difference are provided by the
following result of [CPS06, Thm.2]

Theorem A.3 (Cremona-Prickett-Siksek). Let P ∈ E(F ) and suppose that P ∈ E0(Fv) for every
non-archimedian place v of F . Then

1

3[F : Q]

∑

v∈M∞
F

nv log δv 6 h(P )− ĥ(P ) 6
1

3[F : Q]

∑

v∈M∞
F

nv log εv,

where εv and δv are defined in [CPS06, §2].
Remark 10. All of the points yc in our particular examples satisfies the condition yc ∈ E0(K[c]v) for
all non-archimedian places v of K[c]. Indeed, according to [GZ86, §III.3] (see also [Jet07, Cor.3.2])
the point yc lies in E0(K[c]v) up to a rational torsion point. Since E(Q)tors is trivial for all the
curves that we are considering, the above proposition is applicable. In general, one does not need
this assumption in order to compute height difference bounds (see [CPS06, Thm.1] for the general
case).

Remark 11. A method for computing εv and δv up to arbitrary precision for real and complex
archimedian places is provided in [CPS06, §7-9].
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Chapter 1

The BSD Rank
Conjecture

This chapter explains the conjecture that Birch and Swinnerton-Dyer made
about ranks of elliptic curves (the BSD rank conjecture).

1.1. Statement of the BSD Rank Conjecture

An excellent reference for this section is Andrew Wiles’s Clay Math Insti-
tute paper [Wil00]. The reader is also strongly encouraged to look Birch’s
original paper [Bir71] to get a better sense of the excitement surrounding
this conjecture, as exemplified in the following quote:

“I want to describe some computations undertaken by my-
self and Swinnerton-Dyer on EDSAC by which we have
calculated the zeta-functions of certain elliptic curves. As
a result of these computations we have found an analogue
for an elliptic curve of the Tamagawa number of an al-
gebraic group; and conjectures (due to ourselves, due to
Tate, and due to others) have proliferated.”

An elliptic curve E over a field K is the projective closure of the zero
locus of a nonsingular affine curve

(1.1.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, a2, a3, a4, a6 ∈ K. There is a simple algebraic condition on the ai

that ensures that (1.1.1) defines a nonsingular curve (see, e.g., [Sil92]).

An elliptic curve E has genus 1, and the set of points on E has a natural
structure of abelian group, with identity element the one extra projective

1



2 1. The BSD Rank Conjecture

point at ∞. Again, there are simple algebraic formulas that, given two
points P and Q on an elliptic curve, produce a third point P + Q on the
elliptic curve. Moreover, if P and Q both have coordinates in K, then so
does P +Q. The Mordell-Weil group

E(K) = { points on E with coordinates in K }
of E over K plays a central role in this book.

In the 1920s, Mordell proved that if K = Q, then E(Q) is finitely gen-
erated, and soon after Weil proved that E(K) is finitely generated for any
number field K, so

(1.1.2) E(K) ≈ Zr ⊕ T,

where T is a finite group. Perhaps the chief invariant of an elliptic curve E
over a number field K is the rank, which is the number r in (1.1.2).

Fix an elliptic curve E over Q. For all but finitely many prime numbers
p, the equation (1.1.1) reduces modulo p to define an elliptic curve over the
finite field Fp. The primes that must be excluded are exactly the primes
that divide the discriminant ∆ of (1.1.1).

As above, the set of points E(Fp) is an abelian group. This group is
finite, because it is contained in the set P2(Fp) of rational points in the
projective plane. Moreover, since it is the set of points on a (genus 1) curve,
a theorem of Hasse implies that

|p+ 1 − #E(Fp)| ≤ 2
√
p.

The error terms

ap = p+ 1 − #E(Fp)

play a central role in almost everything in this book. We next gather to-
gether the error terms into a single “generating function”:

L̃(E, s) =
∏

p∤∆

(
1

1 − app−s + p1−2s

)
.

The function L̃(E, s) defines a complex analytic function on some right half
plane Re(s) > 3

2 .

A deep theorem of Wiles et al. [Wil95, BCDT01], which many consider

the crowning achievement of 1990s number theory, implies that L̃(E, s) can
be analytically continued to an analytic function on all C. This implies that
L̃(E, s) has a Taylor series expansion about s = 1:

L̃(E, s) = c0 + c1(s− 1) + c2(s− 1)2 + · · ·
Define the analytic rank ran of E to be the order of vanishing of L̃(E, s) as
s = 1, so

L̃(E, s) = cran(s− 1)ran + · · · .
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The definitions of the analytic and Mordell-Weil ranks could not be more
different – one is completely analytic and the other is purely algebraic.

Conjecture 1.1 (Birch and Swinnerton-Dyer Rank Conjecture). Let E be
an elliptic curve over Q. Then the algebraic and analytic ranks of E are the
same.

This problem is extremely difficult. The conjecture was made in the
1960s, and hundreds of people have thought about it for over 4 decades.
The work of Wiles et al. on modularity in late 1999, combined with earlier
work of Gross, Zagier, and Kolyvagin, and many others proves the following
partial result toward the conjecture.

Theorem 1.2. Suppose E is an elliptic curve over Q and that ran ≤ 1.
Then the algebraic and analytic ranks of E are the same.

In 2000, Conjecture 1.1 was declared a million dollar millenium prize
problem by the Clay Mathematics Institute, which motivated even more
work, conferences, etc., on the conjecture. Since then, to the best of my
knowledge, not a single new result directly about Conjecture 1.1 has been
proved1. The class of curves for which we know the conjecture is still the
set of curves over Q with ran ≤ 1, along with a finite set of individual curves
on which further computer calculations have been performed (by Cremona,
Watkins, myself, and others).

“A new idea is needed.”
– Nick Katz on BSD, at a 2001 Arizona Winter School

And another quote from Bertolini-Darmon (2001):

“The following question stands as the ultimate challenge
concerning the Birch and Swinnerton-Dyer conjecture for
elliptic curves over Q: Provide evidence for the Birch and
Swinnerton-Dyer conjecture in cases where ords=1 L(E, s) > 1.”

1.2. The BSD Rank Conjecture Implies that E(Q) is
Computable

Proposition 1.3. Let E be an elliptic curve over Q. If Conjecture 1.1 is
true, then there is an algorithm to compute the rank of E.

Proof. By naively searching for points in E(Q) we obtain a lower bound
on r, which is closer and closer to the true rank r, the longer we run the
search. At some point this lower bound will equal r, but without using
further information we do not know when that will occur.

1Much interesting new work has been done on related conjectures and problems.
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As explained, e.g., in [Cre97] (see also [Dok04]), we can for any k

compute L(k)(E, 1) to any desired precision. Such computations yield upper

bounds on ran. In particular, if we compute L(k)(E, 1) and it is nonzero (to
the precision of our computation), then ran ≤ k. Eventually this method
will also converge to give an upper bound on ran, though again without
further information we do not know when our computed upper bound on
ran equals to the true value of ran.

Since we are assuming that Conjecture 1.1 is true, we know that r = ran,
hence at some point the lower bound on r computed using point searches
will equal the upper bound on ran computed using the L-series. At this
point, by Conjecture 1.1, we know the true value of r. �

Next we show that given the rank r, the full group E(Q) is computable.
The issue is that what we did above might have only computed a subgroup
of finite index. The argument below follows [Cre97, §3.5] closely.

The naive height h(P ) of a point P = (x, y) ∈ E(Q) is

h(P ) = log(max(numer(x),denom(x))).

The Néron-Tate canonical height of P is

ĥ(P ) = lim
n→∞

h(2nP )

4n
.

Note that if P has finite order then ĥ(P ) = 0. Also, a standard result is
that the height pairing

〈P,Q〉 =
1

2

(
ĥ(P +Q) − ĥ(P ) − ĥ(Q)

)

defines a nondegenerate real-valued quadratic form on E(Q)/tor with dis-
crete image.

Lemma 1.4. Let B > 0 be a positive real number such that

S = {P ∈ E(Q) : ĥ(P ) ≤ B}
contains a set of generators for E(Q)/2E(Q). Then S generates E(Q).

Proof. Let A be the subgroup of E(Q)/tor generated by the points in S.
Suppose for the sake of contradiction that A is a proper subgroup. Then
there is Q ∈ E(Q) \ A with ĥ(Q) minimal, since ĥ takes a discrete set of
values. Since S contains generators for E(Q)/2E(Q), there is an element
P ∈ S that is congruent to Q modulo 2E(Q), i.e., so that

Q = P + 2R,

for some R ∈ E(Q). We have R 6∈ A (since otherwise Q would be in A), so

ĥ(R) ≥ ĥ(Q) by minimality. Finally, since ĥ is quadratic and nonnegative,



1.3. The Complex L-series L(E, s) 5

we have

ĥ(P ) =
1

2

(
ĥ(Q+ P ) + ĥ(Q− P ) − ĥ(Q)

)

≥ 1

2
ĥ(2R) − ĥ(Q)

= 2ĥ(R) − ĥ(Q) ≥ ĥ(Q) > B.

(Here we use that ĥ(P ) = 〈P, P 〉 and use properties of a bilinear form.) �

Proposition 1.5. Let E be an elliptic curve over Q. If Conjecture 1.1 is
true, then there is an algorithm to compute E(Q).

Proof. By Proposition 1.3 we can compute the rank r of E(Q). Note that
we can also trivially compute the subgroup E(Q)[2] of elements of order 2 in
E(Q), since if E is given by y2 = x3+ax+b, then this subgroup is generated
by points (α, β), where α is a rational root of x3 + ax + b. Thus we can
compute s = dimF2 E(Q)/2E(Q), since it is equal to r + dimE(Q)[2].

Run any search for points in E(Q) and use that ĥ is a nondegenerate
quadratic form to find independent points P1, . . . , Pr of infinite order. It is
easy to check whether a point P is twice another point (just solve a relatively
simple algebraic equation). Run through all subsets of the points Pi, and
if any subset of the Pi sums to 2Q for some point Q ∈ E(Q), then we
replace one of the Pi by Q and decrease the index of our subgroup in E(Q)
by a factor of 2. Because E(Q) is a finitely generated group, after a finite
number of steps (and including the 2-torsion points found above) we obtain
independent points P1, . . . , Ps that generate E(Q)/2E(Q).

Let C the the explicit bound of Cremona-Pricket-Siksek on the difference
between the naive and canonical height (i.e., for any P ∈ E(Q), we have

|h(P ) − ĥ(P )| < C). Let

B = max{ĥ(P1), . . . , ĥ(Ps)}.
Then by a point search up to naive height B + C, we compute a set that
contains the set S in Lemma 1.4. This set then contains generators for
E(Q), hence we have computed E(Q).

�

1.3. The Complex L-series L(E, s)

In Section 1.1 we defined a function L̃(E, s), which encoded information
about E(Fp) for all but finitely many primes p. In this section we define
the function L(E, s), which includes information about all primes, and the
function Λ(E, s) that also includes information “at infinity”.



6 1. The BSD Rank Conjecture

Let E be an elliptic curve over Q defined by a minimal Weierstrass
equation

(1.3.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

A minimal Weierstrass equation in one for which the ai are all integers and
the discriminant ∆ ∈ Z is minimal amongs all discriminants of Weierstrass
equations for E (again, see [Sil92] for the definition of the discriminant of
a Weierstrass equation, and also for an explicit description of the allowed
transformations of a Weierstrass equation).

For each prime number p ∤ ∆, the equation (1.3.1) reduces modulo p to
define an elliptic EFp over the finite field Fp. Let

ap = p+ 1 − #E(Fp).

For each prime p | ∆, we use the following recipe to define ap. If the singular
curve EFp has a cuspidal singularity, e.g., is y2 = x3, then let ap = 0. If it

has a a nodal singularity, e.g., like y2 = x3 + x2, let ap = 1 if the slope of
the tangent line at the singular point is in Fp and let ap = −1 if the slope is
not in Fp. Summarizing:

ap =





0 if the reduction is cuspidal (“additive”),

1 if the reduction is nodal and tangent line is Fp-rational (“split multiplicative”)

−1 if the reduction is nodal and tangent line is not Fp-rational (“non-split multiplicative”)

Even in the cases when p | ∆, we still have

ap = p+ 1 − #E(Fp).

When E has additive reduction, the nonsingular points form a group iso-
morphic to (Fp,+), and there is one singular point, hence p + 1 points,
so

ap = p+ 1 − (p+ 1))) = 0.

When E has split multiplicative reduction, there is 1 singular point plus the
number of elements of a group isomorphic to (F∗

p,×), so 1 + (p − 1) = p
points, and

ap = p+ 1 − p = 1.

When E has non-split multiplicative reduction, there is 1 singular point plus
the number of elements of a group isomorphic (F∗

p2/F∗
p,×), i.e., p+2 points,

and

ap = p+ 1 − (p+ 2) = −1.

The definition of the full L-function of E is then

L(E, s) =
∏

p|∆

1

1 − app−s
·
∏

p∤∆

1

1 − app−s + p · p−2s
. =

∞∑

n=1

an

ns
.
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If in addition we add in a few more analytic factors to the L-function
we obtain a function Λ(E, s) that satisfies a remarkably simple functional
equation. Let

Γ(z) =

∫ ∞

0
tz−1e−tdt

be the Γ-function (e.g., Γ(n) = (n − 1)!), which defines a meromorphic
function on C, with poles at the non-positive integers.

Theorem 1.6 (Hecke, Wiles et al.). There is a unique positive integer N =
NE and sign ε = εE ∈ {±1} such that the function

Λ(E, s) = N s/2 · (2π)−s · Γ(s) · L(E, s)

extends to a complex analytic function on all C that satisfies the functional
equation

(1.3.2) Λ(E, 2 − s) = ε · Λ(E, s),

for all s ∈ C.

Proof. Wiles et al. prove that L(E, s) is the L-series attached to a modular
form (see Section ?? below), and Hecke proved that the L-series of a modular
form analytically continues and satisfies the given functional equation. �

The integer N = NE is called the conductor of E and ε = εE is called
the sign in the functional equation for E or the root number of E. One can
prove that the primes that divide N are the same as the primes that divide
∆. Moreover, for p ≥ 5, we have that

ordp(N) =





0, if p ∤ ∆,

1, if E has multiplicative reduction at p, and

2, if E has additive reduction at p.

There is a geometric algorithm called Tate’s algorithm that computes N in
all cases and ε.

Example 1.7. Consider the elliptic curve E defined by

y2 + y = x3 + 50x+ 31.

The above Weierstrass equation is minimal and has discriminant

−1 · 56 · 72 · 11.
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sage: e = EllipticCurve(’1925d’); e

Elliptic Curve defined by y^2 + y = x^3 + 50*x + 31 over Rational Field

sage: e.is_minimal()

True

sage: factor(e.discriminant())

-1 * 5^6 * 7^2 * 11

At 5 the curve has additive reduction so a5 = 0. At 7 the curve has split mul-
tiplicative reduction so a7 = 1. At 11 the curve has nonsplit multiplicative
reduction, so a11 = −1. Counting points for p = 2, 3, we find that

L(E, s) =
1

1−s
+

3

3−s
+

−2

4−s
+

1

7−s
+

6

9−s
+

−1

11−s
+

−6

12−s
+ · · ·

sage: [e.ap(p) for p in primes(14)]

[0, 3, 0, 1, -1, 4]

Corollary 1.8. Let E be an elliptic curve over Q, let ε ∈ {1,−1} be the
sign in the functional equation (1.3.2), and let rE,an = ords=1 L(E, s). Then

ε = (−1)rE,an .

Proof. Because Γ(1) = 1, we have ords=1 L(E, s) = ords=1 Λ(E, s). It thus
sufficies to prove the corollary with L(E, s) replaced by Λ(E, s). Note that

r = rE,an is the minimal integer r ≥ 0 such that Λ(r)(E, 1) 6= 0. By repeated
differentiation, we see that for any integer k ≥ 0, we have

(1.3.3) (−1)kΛ(k)(E, 2 − s) = ε · Λ(k)(s).

Setting s = 1 and k = r, and using that Λ(r)(E, 1) 6= 0, shows that (−1)r =
ε, as claimed. �

Conjecture 1.9 (The Parity Conjecture). Let E be an elliptic curve over
Q, let rE,an be the analytic rank and rE,alg be the algebraic rank. Then

rE,alg ≡ rE,an (mod 2).

Jan Nekovar has done a huge amount of work toward Conjecture 1.9; in
particular, he proves it under the (as yet unproved) hypothesis that X(E)
is finite (see Section 2.2 below).

1.4. Computing L(E, s)

In this section we briefly describe one way to evaluate L(E, s), for s real.
See [Dok04] for a more sophisticated analysis of computing L(E, s) and its
Taylor expansion for any complex number s.
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Theorem 1.10 (Lavrik). We have the following rapidly-converging series
expression for L(E, s), for any complex number s:

L(E, s) = N−s/2 · (2π)s · Γ(s)−1 ·
∞∑

n=1

an · (Fn(s− 1) − εFn(1 − s))

where

Fn(t) = Γ

(
t+ 1,

2πn√
N

)
·
(√

N

2πn

)t+1

,

and

Γ(z, α) =

∫ ∞

α
tz−1e−tdt

is the incomplete Γ-function.

Theorem 1.10 above is a special case of a more general theorem that
gives rapidly converging series that allow computation of any Dirichlet series∑
ann

s that meromorphically continues to the whole complex plane and
satisfies an appropriate functional equation. For more details, see [Coh00,
§10.3], especially Exercise 24 on page 521 of [Coh00].

1.4.1. Approximating the Rank. Fix an elliptic curve E over Q. The
usual method to approximate the rank is to find a series that rapidly con-
verges to L(r)(E, 1) for r = 0, 1, 2, 3, . . ., then compute L(E, 1), L′(E, 1),

L(2)(E, 1), etc., until one appears to be nonzero. Note that half of the

L(k)(E, 1) are automatically 0 because of equation (1.3.3). For more details,
see [Cre97, §2.13] and [Dok04].

In this section, we describe a slightly different method, which only uses
Theorem 1.10 and the definition of the derivative.

Proposition 1.11. Write

L(E, s) = cr(s− 1)r + cr+1(s− 1)r+1 + · · · .
with cr 6= 0. Then

lim
s→1

(s− 1) · L
′(E, s)
L(E, s)

= r.

Proof. Setting L(s) = L(E, s), we have

lim
s→1

(s− 1) · L
′(s)
L(s)

= lim
s→1

(s− 1) · rcr(s− 1)r−1 + (r + 1)cr+1(s− 1)r + · · ·
cr(s− 1)r + cr+1(s− 1)r+1 + · · ·

= r · lim
s→1

cr(s− 1)r + (r+1)
r cr+1(s− 1)r+1 + · · ·

cr(s− 1)r + cr+1(s− 1)r+1 + · · ·
= r.

�
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Thus the rank r is the limit as s → 1 of a certain (smooth) function.
We know this limit is an integer. But, for example, for the rank 4 curve

(1.4.1) y2 + xy = x3 − x2 − 79x+ 289

of conductor 234446 nobody has succeeded in proving that this integer limit
is 4. (We can prove that the limit is either 2 or 4 by using the functionality
equation (1.3.2) to show that the order of vanishing is even, then verifying

by computation that L(4)(E, 1) = 214.65233 . . . 6= 0.)

Using the definition of derivative, we approximate (s−1)L′(s)
L(s) as follows.

For |s− 1| small, we have

(s− 1)
L′(s)
L(s)

=
s− 1

L(s)
· lim

h→0

L(s+ h) − L(s)

h

≈ s− 1

L(s)
· L(s+ (s− 1)2) − L(s)

(s− 1)2

=
L(s2 − s+ 1) − L(s)

(s− 1)L(s)

In fact, we have

lim
s→1

(s− 1) · L
′(s)
L(s)

= lim
s→1

L(s2 − s+ 1) − L(s)

(s− 1)L(s)
.

We can use this formula in SAGE to “approximate” r. First we start
with a curve of rank 2.

sage: e = EllipticCurve(’389a’); e.rank()

2

sage: L = e.Lseries_dokchitser()

sage: def r(e,s): L1=L(s); L2=L(s^2-s+1); return (L2-L1)/((s-1)*L1)

sage: r(e,1.01)

2.00413534247395

sage: r(e,1.001)

2.00043133754756

sage: r(e,1.00001)

2.00000433133371

Next consider the curve y2 + xy = x3 − x2 − 79x+ 289 of rank 4:
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sage: e = EllipticCurve([1, -1, 0, -79, 289])

sage: e.rank()

4

sage: L = e.Lseries_dokchitser(100)

sage: def r(e,s): L1=L(s); L2=L(s^2-s+1); return (L2-L1)/((s-1)*L1)

sage: R = RealField(100)

sage: r(e,R(’1.01’))

4.0212949184444018810727106489

sage: r(e,R(’1.001’))

4.0022223745190806421850637523

sage: r(e,R(’1.00001’))

4.0000223250026401574120263050

sage: r(e,R(’1.000001’))

4.0000022325922257758141597819

It certainly looks like lims→1 r(s) = 4. We know that lims→1 r(s) ∈ Z,
and if only there were a good way to bound the error we could conclude
that the limit is 4. But this has stumped people for years, and probably it
is nearly impossible without a deep result that somehow interprets L′′(E, 1)
in a completely different way.
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1.5. The p-adic L-series

Fix2 an elliptic curve E defined over Q. We say a prime p is a prime of good
ordinary reduction for E if p ∤ NE and ap 6≡ 0 (mod p). The Hasse bound,
i.e., that |ap| < 2

√
p on implies that if p ≥ 5 then ordinary at p is the same

as ap 6= 0.

In this section, we define for each odd prime number p of good ordinary
reduction for E a p-adic L-function Lp(E, T ). This is a p-adic analogue of
the complex L-function L(E, s) about which there are similar analogue of
the BSD conjecture.

1.5.1. Hensel’s lemma and the Teichmuller lift. The following stan-
dard lemma is proved by Newton iteration.

Lemma 1.12 (Hensel). If f ∈ Zp[x] is a polynomial and β ∈ Z/pZ is a

multiplicity one root of f , then there is a unique lift of β to a root of f .

For example, consider the polynomial f(x) = xp−1 − 1. By Fermat’s
little theorem, it has p− 1 distinct roots in Z/pZ, so by Lemma 1.12 there
are p− 1 roots of f(x) in Zp, i.e., all the p− 1st roots of unity are elements
of Zp. The Teichmuller lift is the map that sends any β ∈ (Z/pZ)∗ to the
unique (p− 1)st root of unity in Z∗

p that reduces to it.

The Teichmuller character is the homomorphism

τ : Z∗
p → Z∗

p

obtained by first reducing modulo p, then sending an element to its Teich-
muller lift. The 1-unit projection character is the homomorphism

〈 • 〉 : Z∗
p → 1 + pZp

given by

〈x〉 =
x

τ(x)
.

1.5.2. Modular Symbol and Measures. Let

fE(z) =
∞∑

n=1

ane
2πinz ∈ S2(Γ0(N))

be the modular form associated to E, which is a holomorphic function on
the extended upper half plane h ∪ Q ∪ {∞}. Let

ΩE =

∫

E(R)

dx

2y + a1x+ a3

∈ R

2This section is based on correspondence with Robert Pollack and Koopa Koo.
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be the real period associated to a minimal Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for E.

The plus modular symbol map associated to the elliptic curve E is the
map Q → Q given by sending r ∈ Q to

[r] = [r]E =
2πi

ΩE

(∫ i∞

r
fE(z)dz +

∫ i∞

−r
fE(z)dz

)
.

Question 1.13. Let E vary over all elliptic curve over Q and r over all
rational numbers. Is the set of denominators of the rational numbers [r]E
bounded? Thoughts: For a given curve E, the denominators are bounded
by the order of the image in E(Q) of the cuspidal subgroup of J0(N)(Q).
It is likely one can show that if a prime ℓ divides the order of the image of
this subgroup, then E admits a rational ℓ-isogeny. Mazur’s theorem would
then prove that the set of such ℓ is bounded, which would imply a “yes”
answer to this question. Also, for any particular curve E, one can compute
the cuspidal subgroup precisely, and hence bound the denominators of [r]E .

Let ap be the pth Fourier coefficient of E and note that the polynomial

x2 − apx+ p ≡ x(x− ap) (mod p)

has distinct roots because p is an ordinary prime. Let α be the root of
x2 −apx+p with |α|p = 1, i.e., the lift of the root ap modulo p, which exists
by Lemma 1.12.

Define a measure on Z∗
p by

µE(a+ pnZp) =
1

αn

[
a

pn

]
− 1

αn+1

[
a

pn−1

]
.

That µE is a measure follows from the formula for the action of Hecke
operators on modular symbols and that fE is a Hecke eigenform. We will
not prove this here3.

1.5.3. The p-Adic L-function. Define the p-adic L-function as a function
on characters

χ ∈ Hom(Z∗
p,C∗

p)

as follows. Send a character χ to

Lp(E,χ) =

∫

Z∗
p

χ dµE .

We will later make the integral on the right more precise, as a limit of
Riemann sums (see Section 1.6).

3Add proof or good reference.
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Remark 1.14. For any Dirichlet character χ : Z/nZ → C, let L(E,χ, s) be
the entire L-function defined by the Dirichlet series

∞∑

n=1

χ(n)an

ns
.

The standard interpolation property of Lp is that for any primitive Dirichlet
character χ of conductor pn (for any n), we have4

(1.5.1) Lp(E,χ) =

{
pn · g(χ) · L(E, χ̄, 1)/ΩE for χ 6= 1,

(1 − α−1)2L(E, 1)/ΩE if χ = 1,

where g(χ) is the Gauss sum:

g(χ) =
∑

a mod pn

χ(a)e
2πia
pn .

Note, in particular, that L(E, 1) 6= 0 if and only if Lp(E, 1) 6= 0.

In order to obtain a Taylor series attached to Lp, we view Lp as a p-adic
analytic function on the open disk

D = {u ∈ Cp : |u− 1|p < 1},
as follows. We have that γ = 1 + p is a topological generator for 1 + pZp.
For any u ∈ D, let ψu : 1 + pZp → C∗

p be the character given by sending
γ to u and extending by using the group law and continuity. Extend ψu to
a character χu : Z∗

p → C∗
p by letting χu(x) = ψu(〈x〉). Finally, overloading

notation, let

Lp(E, u) = Lp(E,χu).

Theorem 1.15. The function Lp(E, u) is a p-adic analytic function on D
with Taylor series about u = 1 in the variable T

Lp(E, T ) ∈ Qp[[T ]].

that converges on {z ∈ Cp : |z|p < 1}. (Note that Lp(E, u) = Lp(E, u− 1).)

It is Lp(E, T ) that we will compute explicitly.

Conjecture 1.16 (Mazur, Tate, Teitelbaum).

ordT Lp(E, T ) = rankE(Q).

Proposition 1.17. Conjecture 1.16 is true if ordT Lp(E, T ) ≤ 1.

4I copied this from Bertolini-Darmon, and I don’t trust it exactly yet, especially because the
line from Bertolini-Darmon for χ = 1 was wrong.
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Sketch of Proof. By Remark 1.14, we have ordT (Lp(E, T )) = 0 if and
only if

rE,an = ords=1 L(E, s) = 0.

Since the BSD rank conjecture (Conjecture 1.1) is a theorem when rE,an = 0,
Conjecture 1.16 is also known under the hypothesis that ordT (Lp(E, T )) = 0.

Recall that the BSD rank conjecture is also a theorem when rE,an = 1. It
turns out that the same is true of Conjecture 1.16 above. If ordT (Lp(E, T )) =
1, then a theorem of Perrin-Riou implies that a certain Heegner point has
nonzero p-adic height, hence is non-torsion, so by the Gross-Zagier theorem
rE,an = 1. Kolyvagin’s theorem then implies that rankE(Q) = 1. �

Remark 1.18. Mazur, Tate, and Teitelbaum also define an analogue of
Lp(E, T ) for primes of bad multiplicative reduction and make a conjecture.
A prime p is supersingular for E if ap ≡ 0 (mod p); it is a theorem of Elkies
[Elk87] that for any elliptic curve E there are infinitely many supersingular
primes p. Perrin-Riou, Pollack, Greenberg and others have studied Lp(E, T )
at good supersingular primes. More works needs to be done on finding a
definition of Lp(E, T ) when p is a prime of bad additive reduction for E.

Remark 1.19. A theorem of Rohrlich implies that there is some character
as in (1.5.1) such that L(E,χ, 1) 6= 0, so Lp(E, T ) is not identically zero.
Thus ordT Lp(T ) < ∞.

1.6. Computing Lp(E, T )

Fix notation as in Section 1.5. In particular, E is an elliptic curve over Q,
p is an odd prime of good ordinary reduction for E, and α is the root of
x2 − apx+ p with |α|p = 1.

For each integer n ≥ 1, define a polynomial

Pn(T ) =

p−1∑

a=1




pn−1−1∑

j=0

µE

(
τ(a)(1 + p)j + pnZp

)
· (1 + T )j


 ∈ Qp[T ].

Recall that τ(a) ∈ Z∗
p is the Teichmuller lift of a.

Proposition 1.20. We have that the p-adic limit of these polynomials is
the p-adic L-series:

lim
n→∞

Pn(T ) = Lp(E, T ).

This convergence is coefficient-by-coefficient, in the sense that if Pn(T ) =∑
j an,jT

j and Lp(E, T ) =
∑

j ajT
j , then

lim
n→∞

an,j = aj .
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We now give a proof of this convergence and in doing so obtain an upper
bound for |aj − an,j |.

For any choice ζr of pr-th root of unity in Cp, let χr be the Cp-valued
character of Z×

p of order pr which factors through 1 + pZp and sends 1 + p

to ζr. Note that the conductor of χr is pr+1.

Lemma 1.21. Let ζr be a pr-th root of unity with 1 ≤ r ≤ n− 1, and let χr

be the corresponding character of order pr+1, as above. Then

Pn(ζr − 1) =

∫

Z×
p

χr dµE

In particular, note that the right hand side does not depend on n.

Proof. Writing χ = χr, we have

Pn(ζr − 1) =

p−1∑

a=1

pn−1−1∑

j=0

µE

(
τ(a)(1 + p)j + pnZp

)
· ζj

r

=

p−1∑

a=1

pn−1−1∑

j=0

µE

(
τ(a)(1 + p)j + pnZp

)
· χ
(
(1 + p)j

)

=
∑

b∈(Z/pnZ)∗
µE (b+ pnZp) · χ(b)

=

∫

Z×
p

χ dµE .

In the second to the last equality, we use that

(Z/pnZ)∗ ∼= (Z/pZ)∗ × (1 + p(Z/pnZ))∗

to sum over lifts of b ∈ (Z/pnZ)∗ of the form τ(a)(1+p)j , i.e., a Teichmuller
lift times a power of (1+p)j . In the last equality, we use that χ has conductor
pn, so is constant on the residue classes modulo pn, i.e., the last equality is
just the Riemann sums definition of the given integral.

�

For each positive integer n, let wn(T ) = (1 + T )pn − 1.

Corollary 1.22. We have that

wn−1(T ) divides Pn+1(T ) − Pn(T ).

Proof. By Lemma 1.21, Pn+1(T ) and Pn(T ) agree on ζj−1 for 0 ≤ j ≤ n−1
and any choice ζj of pj-th root of unity, so their difference vanishes on every

root of the polynomial wn−1(T ) = (1 + T )pn−1 − 1. The claimed divisibility
follows, since wn−1(T ) has distinct roots. �
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Lemma 1.23. Let f(T ) =
∑

j bjT
j and g(T ) =

∑
j cjT

j be in O[T ] with O
a finite extension of Zp. If f(T ) divides g(T ), then

ordp(cj) ≥ min
0≤i≤j

ordp(bi).

Proof. We have f(T )k(T ) = g(T ). The lemma follows by using the defini-
tion of polynomial multiplication and the non-archimedean property of ordp

on each coefficient of g(T ). �

As above, let an,j be the jth coefficient of the polynomial Pn(T ). Let

cn = max(0,− min
j

ordp(an,j))

so that pcnPn(T ) ∈ Zp[T ], i.e., cn is the smallest power of p that clears the
denominator. Note that cn is an integer since an,j ∈ Q. Probably if E[p] is
irreducible then cn = 0 – see Question 1.13. Also, for any j > 0, let

en,j = min
1≤i≤j

ordp

(
pn

i

)
.

be the min of the valuations of the coefficients of wn(T ), as in Lemma 1.23.

Proposition 1.24. For all n ≥ 0, we have an+1,0 = an,0, and for j > 0,

ordp(an+1,j − an,j) ≥ en−1,j − max(cn, cn+1).

Proof. Let c = max(cn, cn+1). The divisibility of Corollary 1.8 implies that
there is a polynomial h(T ) ∈ Zp[T ] with

wn−1(T ) · pch(T ) = pcPn+1(T ) − pcPn(T )

and thus (by Gauss’ lemma) pch(T ) ∈ Zp[T ] since the right hand side of
the equation is integral and wn−1(T ) is a primitive polynomial. Applying
Lemma 1.23 and renormalizing by pc gives the result. �

For j fixed, en−1,j − max(cn+1, cn) goes to infinity as n grows since the
ck are uniformly bounded (they are bounded by the power of p that divides
the order of the cuspidal subgroup of E). Thus, {an,j} is a Cauchy and
Proposition 1.24 implies that that

ordp(aj − an,j) ≥ en−1,j − max(cn+1, cn).

Remark 1.25. Recall that presently there is not a single example where
we can provably show that ords=1 L(E, s) ≥ 4. Amazingly ordT Lp(E, T ) is
“computable in practice” because Kato has proved, using his Euler system
inK2, that rankE(Q) ≤ ordT Lp(E, T ) by proving a divisibility predicted by
Iwasawa Theory. Thus computing elements of E(Q) gives a provable lower
bound, and approximating Lp(E, T ) using Riemann sums gives a provable
upper bound – in practice these meet.





Chapter 2

The Birch and
Swinnerton-Dyer
Formula

2.1. Galois Cohomology

Galois cohomology is the basic language used for much research into alge-
braic aspects of the BSD conjecture. It was introduced by Lang and Tate in
1958 in [LT58]. This section contains a survey of the basic facts we will need
in order to define Shafarevich-Tate groups, discuss descent, and construct
Kolyvagin’s cohomology classes.

The best basic reference on Galois cohomology is chapters VII and X
of Serre’s Local Fields [Ser79] or the (very similar!) article by Atiyah and
Wall in Cassels-Frohlich [Cp86, Ch. IV]. See also the article by Gruenberg
in [Cp86, Ch. V] for an introduction to profinite groups such as Gal(Q/Q).
Since this section is only a survey, you should read one of the above two refer-
ences in detail, if you haven’t already. You might also want to read Chapter
1 of [CS00] by Coates and Sujatha, which contains an excellent summary
of more advanced topics in Galois cohomology, and Serre’s book Galois Co-
homology [Ser97] discusses many general advanced topics in depth. The
original article [LT58] is also well worth reading.

2.1.1. Group Cohomology. If G is a multiplicative group, the group ring
Z[G] is the ring of all finite formal sums of elements of G, with multiplication
defined using distributivity and extending linearly. Let A be an additive

19
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group. We say that A is a G-module if A is equipped with a module structure
over the group ring Z[G].

Let AG be the submodule of elements of A that are fixed by G. Notice
that if A → B is a homomorphism of G-modules, then restriction defines a
homomorphism AG → BG, so A 7→ AG is a functor. In fact, it is a left-exact
functor:

Proposition 2.1. If 0 → A → B → C is an exact sequence of G modules,
then 0 → AG → BG → CG is also exact.

Definition 2.2 (Group Cohomology). The group cohomology Hn(G,A) is
by definition the right derived functors of the left exact functor A → AG.
These are the unique, up to canonical equivalence, functors Hn such that

• The sequence

0 → AG → BG → CG δ−→ H1(G,A) → · · · → Hn(G,A) → Hn(G,B) → Hn(G,C)
δ−→ Hn+1(G,A) →

is exact.

• If A is coinduced, i.e., A = Hom(Z[G], X) for X an abelian group,
then

Hn(G,A) = 0 for all n ≥ 1.

Remark 2.3. For those familiar with the Ext functor, we have

Hn(G,A) = Extn
Z[G](Z, A).

We construct Hn(G,A) explicitly as follows. Consider Z as a G-module,
equipped with the trivial G-action. Consider the following free resolution of
Z. Let Pi be the free Z-module with basis the set of i+1 tuples (g0, . . . , gi) ∈
Gi+1, and with G acting on Pi componentwise:

s(g0, . . . , gi) = (sg0, . . . , sgi).

The homomorphism d : Pi → Pi+1 is given by

d(g0, . . . , gi) =
i∑

j=0

(−1)j(g0, . . . , gj−1, gj+1, . . . gi),

and P0 → Z is given by sending every element (g0) to 1 ∈ Z.

The cohomology groups Hi(G,A) are then the cohomology groups of the
complex Ki = HomZ[G](Pi, A). We identify an element of Ki with a function

f : Gi+1 → A such that the condition

f(sg0, . . . , sgi) = sf(g0, . . . , gi)

holds. Notice that such an f ∈ Ki is uniquely determined by the function
(of i inputs)

ϕ(g1, . . . , gi) = f(1, g1, g1g2, . . . , g1 · · · gi).



2.1. Galois Cohomology 21

The boundary map d : Ki → Ki+1 on such functions ϕ ∈ Ki is then
given explicitly by the formula

(dϕ)(g1, . . . , gi+1) = g1ϕ(g2, . . . , gi+1) +
i∑

j=1

(−1)jϕ(g2, . . . , gjgj+1, . . . , gi+1)

+ (−1)i+1ϕ(g1, . . . , gi).

The group of n-cocycles is the group of ϕ ∈ Kn, as above are functions of n
variables such that dϕ = 0. The subgroup of n-coboundaries is the image of
Kn+1 under d. Explicitly, the cohomology group Hn(G,A) is the quotient
of the group group of n-cocycles modulo the subgroup of n-coboundaries.

When n = 1, the 1-cocycles are the maps G → A such that

ϕ(gg′) = gϕ(g′) + ϕ(g),

and ϕ is a coboundary if there exists a ∈ A such that ϕ(g) = ga− a for all
g ∈ G. Notice that if G acts trivially on A, then

H1(G,A) = Hom(G,A).

2.1.2. The inf-res Sequence. Suppose G is a group and H is a normal
subgroup of G, and A is a G-module. Then for any n ≥ 0, there are natural
homomorphisms

res : Hn(G,A) → Hn(H,A)

and

inf : Hn(G/H,AH) → Hn(G,A)

Require that we view n-cocycles as certain maps on the n-fold product of
the group. On cocycles, the map res is obtained by simply restricting a
cocycle, which is a map Gi → A, to a map H i → A. The second map inf
is obtained by precomposing a cocycle (G/H)i → AH with the natural map
Gi → (G/H)i.

Proposition 2.4. The inf-res sequence

0 → H1(G/H,AH)
inf−→ H1(G,A)

res−−→ H1(H,A)

is exact.

Proof. See [Ser79, §VII.6]. �
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2.1.3. Galois Cohomology. Let K be a field and L a finite Galois ex-
tension of K, so the set of field automorphisms of L that fix K equals the
dimension of L viewed as a K-vector space.

For any Gal(L/K)-module A and any n ≥ 0, let

Hn(L/K,A) = Hn(Gal(L/K), A).

If M/L/K is a tower of Galois extensions of K and suppose Gal(M/K) acts
on A. Then inf defines a map

(2.1.1) Hn(L/K,AL) → Hn(M/K,A).

LetKsep denote a separable closure ofK and suppose A is a (continuous)
Gal(Ksep/K)-module. (Note – if K has characteristic 0, then a separable
closure is the same thing as an algebraic closure.) For any subfield L ⊂ Ksep

that contains K, let A(L) = AL. Let

Hn(K,A) = lim−→
L/K finite Galois

Hn(L/K,A(L)),

where the direct limit is with respect to the maps (2.1.1). We can think of
this direct limit as simply the union of all the groups, where we identify two
elements if they are eventually equal under some map (2.1.1).

One can prove (see [Cp86, Ch. V]) that changing the choice of sepa-
rable closure Ksep only changes Hn(K,A) by unique isomorphism, i.e., the
construction is essentially independent of the choice of seperable closure.
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2.2. The Shafarevich-Tate Group

In this section we discuss Galois cohomology of elliptic curves, introduce the
Kummmer sequence, define the Selmer group, the Shafarevich-Tate group
and dicuss descent and the Mordell-Weil theorem.

2.2.1. The Elliptic Curve Kummer Sequence. Let E be an elliptic
curve over a number field K. Consider the abelian group E(Q) of all points
on E defined over a fixed choice Q of algebraic closure of Q. Then A is a
module over Gal(Q/K), and we may consider the Galois cohomology groups

Hn(K,E), for n = 0, 1, 2, . . .

which are of great interest in the study of elliptic curves, especially for
n = 0, 1.

If L is a finite Galois extension of K, then the inf-res sequence, written
in terms of Galois chomology, is

0 → H1(L/K,E(L)) → H1(K,E) → H1(L,E).

For any positive integer n consider the homomorphism

[n] : E(Q) → E(Q).

This is a surjective homomorphism of abelian groups, so we have an exact
sequence

0 → E[n] → E
[n]−→ E → 0.

The associated long exact sequence of Galois cohomology is

0 → E(K)[n] → E(K)
[n]−→ E(K) → H1(K,E[n]) → H1(K,E)

[n]−→ H1(K,E) → · · · .
An interesting way to rewrite the begining part of this sequence is as

(2.2.1) 0 → E(K)/nE(K) → H1(K,E[n]) → H1(K,E)[n] → 0.

The sequence (2.2.1) is called the Kummer sequence associated to the elliptic
curve.

2.2.2. The Global-to-Local Restriction Maps. Let ℘ be a prime ideal
of the ring OK of integers of the number field K, and let K℘ be the com-
pletion of K with respect to ℘. Thus K℘ is a finite extension the field Qp

of p-adic numbers.

More explicitly, if K = Q(α), with α a root of the irreducible polynomial
f(x), then the prime ideals ℘ correspond to the irreducible factors of f(x)
in Zp[x]. The fields K℘ then correspond to adjoing roots of each of these
irreducible factors of f(x) in Zp[x]. Note that for most p, a generalization
of Hensel’s lemma (see Section 1.5.1) asserts that we can factor f(x) by
factoring f(x) modulo p and iteratively lifting the factorization.
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We have a natural map Gal(Qp/K℘) → Gal(Q/K) got by restriction;

implicit in this is a choice of embedding of Q in Qp that sends K into Kv.

We may thus view Gal(Qp/K℘) as a subgroup of Gal(Q/K).

Let A be any Gal(Q/K) module. Then this restriction map induces a
restriction map on Galois cohomology

res℘ : H1(K,A) → H1(K℘, A).

Recall that in terms of 1-cocycles this sends a set-theoretic map (a crossed-
homomorphism) f : Gal(Q/K) → A to a map res℘(f) : Gal(Qp/K℘) → A.

Likewise there is a restriction map for each real Archimedian prime v,
i.e., for each embedding K → R we have a map

resv : H1(K,A) → H1(R, A).

Exercise 2.5. Let A = E(C) be the group of points on an elliptic curve
over R. Prove that H1(R, E) = H1(C/R, E(C)) is a group of order 1 or 2.

Exercise 2.6. Prove that for any Galois moduloe A and for all primes ℘
the kernel of res℘ does not depend on the choice of embedding of Q in Qp.
(See [Cp86, Ch. V]).

2.2.3. The Selmer Group. Let E be an elliptic curve over a number
field K. Let v be either a prime ℘ of K or a real Archimedian place (i.e.,
embedding K → R). As in Section 2.2.1 we also obtain a local Kummer
sequence

0 → E(Kv)/nE(Kv) → H1(Kv, E[n]) → H1(Kv, E)[n] → 0.

Putting these together for all v we obtain a commutative diagram:
(2.2.2)

0 // E(K)/nE(K) //

��

H1(K,E[n]) //

��

H1(K,E)[n] //

��

0

0 //
∏

v E(Kv)/nE(Kv) // ∏
v H1(Kv, E[n]) //

∏
v H

1(Kv, E)[n] // 0.

Definition 2.7. The n-Selmer group of an elliptic curve E over a number
field K is

Sel(n)(E/K) = ker

(
H1(K,E[n]) →

∏

v

H1(Kv, E)[n]

)
.

2.2.4. The Shafarevich-Tate Group and the Mordell-Weil Theo-
rem.
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Definition 2.8 (Shafarevich-Tate Group). The Shafarevich-Tate group of
an elliptic curve E over a number field K is

X(E/K) = ker

(
H1(K,E) →

∏

v

H1(Kv, E)

)
.

For any positive integer n, we may thus add in a row to (2.2.2):

0 // E(K)/nE(K) // Sel(n)(E/K) //
� _

��

X(E/K)[n] //
� _

��

0

0 // E(K)/nE(K) //

��

H1(K,E[n]) //

��

H1(K,E)[n] //

��

0

0 //
∏

v E(Kv)/nE(Kv) // ∏
v H1(Kv, E[n]) //

∏
v H

1(Kv, E)[n] // 0.

The n-descent sequence for E is the short exact sequence

(2.2.3) 0 → E(K)/nE(K) → Sel(n)(E/K) → X(E/K)[n] → 0.

Theorem 2.9. For every integer n the group Sel(n)(E/K) is finite.

Sketch of Proof. Let K(E[n]) denote the finite Galois extension of K ob-
tained by adjoining to K all x and y coordinates of elements of E(Q) of
order dividing n. The inf-res sequence for K(E[n])/K is

(2.2.4) 0 → H1(K(E[n])/K,E[n]) → H1(K,E[n]) → H1(K(E[n]), E[n]).

Because Gal(K(E[n])/K) and E[n] are both finite groups, the cohomology
group H1(K(E[n])/K,E[n]) is also finite.

Since Sel(n)(E/K) ⊂ H1(K,E[n]), restriction defines a map

(2.2.5) Sel(n)(E/K) → Sel(n)(E/K[n]).

The kernel of (2.2.5) is finite since it is contained in the first term of (2.2.4),

which is finite. It thus suffices to prove that Sel(n)(E/K[n]) is finite.

But

Sel(n)(E/K[n]) ⊂ H1(K[n], E[n]) ∼= Hom(Gal(Q/K[n]), E[n])).

So each element of Sel(n)(E/K[n]) determines (and is determined by) a
homomorphism Gal(Q/K[n]) → (Z/nZ)2. That that the fixed field of such
a homomorphism is a Galois extension of K[n] with Galois group contained
in (Z/nZ)2.

To complete the proof, one uses the theory of elliptic curves over local
fields to show that there is a finite set S of primes such that any such ho-
momorphism corresponding to an element of the Selmer group corresponds
to an extension of K[n] ramified only at primes in S. Then the two main
theorems of algebraic number theory — that class groups are finite and unit
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groups are finitely generated — together imply that there are only finitely
many such extensions of K[n].

�

Exercise 2.10. Prove the that E[n] is a finite Galois extension of K.

Theorem 2.11 (Mordell-Weil). The group E(Q) is finitely generated.

Proof. The exact sequence (2.2.3) with n = 2 and Theorem 2.9 imply that
E(Q)/2E(Q) is a finite group. Recall Lemma 1.4 which asserted that if B
is a positive real number such that

S = {P ∈ E(Q) : ĥ(P ) ≤ B}
contains a set of generators for E(Q)/2E(Q), then S generates E(Q). Since
E(Q)/2E(Q) is finite, it makes sense to define B to be the maximum of
the heights of arbitrary lifts of all the elements of E(Q)/2E(Q). Then the
corresponding set S generates E(Q). A basic fact about heights is that the
set of points of bounded height is finite, i.e., S is finite, so E(Q) is finitely
generated. �

2.2.5. Some Conjectures and Theorems about the Shafarevich-
Tate Group.

Conjecture 2.12 (Shafarevich-Tate). Let E be an elliptic curve over a
number field K. Then the group X(E/K) is finite.

Theorem 2.13 (Rubin). If E is a CM elliptic curve over Q with L(E, 1) 6=
0, then X(E/Q) is finite. (He proved more than just this.)

Thus Rubin’s theorem proves that the Shafarevich-Tate group of the
CM elliptic curve y2 + y = x3 − 7 of conductor 27 is finite.

Theorem 2.14 (Kolyvagin et al.). If E is an elliptic curve over Q with
ords=1 L(E, s) ≤ 1, then X(E/Q) is finite.

Kolyvagin’s theorem is proved in a completely different way than Rubin’s
theorem. It combines the Gross-Zagier theorem, the modularity theorem
that there is a map X0(N) → E, a nonvanishing result about the special
values L(ED, 1) of quadratic twists of E, and a highly original explicit study
of the structure of the images of certain points on X0(N)(Q) in E(Q).

Theorem 2.15 (Cassels). Let E be an elliptic curve over a number field
K. There is an alternating pairing on X(E/K), which is nondegenerate
on the quotient of X(E/K) by its maximal divisible subgroup. Moreover, if
X(E/K) is finite then #X(E/K) is a perfect square.
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For an abelian group A and a prime p, let A(p) denote the subgroup of
elements of p power order in A.

The following problem remains open. It helps illustrate our ignorance
about Conjecture 2.12 in any cases beyond those mentioned above.

Problem 2.16. Show that there is an elliptic curve E over Q with rank
≥ 2 such that X(E/Q)(p) is finite for infinitely many primes p.

2.3. The Birch and Swinnerton-Dyer Formula

“The subject of this lecture is rather a special one. I want
to describe some computations undertaken by myself and
Swinnerton-Dyer on EDSAC, by which we have calculated
the zeta-functions of certain elliptic curves. As a result of
these computations we have found an analogue for an elliptic
curve of the Tamagawa number of an algebraic group; and
conjectures have proliferated. [. . .] I would like to stress that
though the associated theory is both abstract and techni-
cally complicated, the objects about which I intend to talk
are usually simply defined and often machine computable;
experimentally we have detected certain relations between
different invariants, but we have been unable to approach
proofs of these relations, which must lie very deep.”

– Bryan Birch

Conjecture 2.17 (Birch and Swinnerton-Dyer). Let E be an elliptic curve
over Q of rank r. Then r = ords=1 L(E, s) and

(2.3.1)
L(r)(E, 1)

r!
=

ΩE · Reg(E) · #X(E/Q) ·∏p cp

#E(Q)2tor
.

Let

(2.3.2) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

be a minimal Weierstrass equation for E.

Recall from Section 1.5.2 that the real period ΩE is the integral

ΩE =

∫

E(R)

dx

2y + a1x+ a3

.

See [Cre97, §3.7] for an explanation about how to use the Gauss arithmetic-
geometry mean to efficiently compute ΩE .

To define the regulator Reg(E) let P1, . . . , Pn be a basis for E(Q) mod-
ulo torsion and recall the Néron-Tate canonical height pairing 〈 , 〉 from
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Section 1.2. The real number Reg(E) is the absolute value of the determi-
nant of the n×n matrix whose (i, j) entry is 〈Pi, Pj〉. See [Cre97, §3.4] for
a discussion of how to compute Reg(E).

We defined the group X(E/Q) in Section 2.2.4. In general it is not
known to be finite, which led to Tate’s famous assertion that the above
conjecture “relates the value of a function at a point at which it is not known
to be defined1 to the order of a group that is not known to be finite.” The
paper [GJP+05] discusses methods for computing #X(E/Q) in practice,
though no general algorithm for computing #X(E/Q) is known. In fact, in
general even if we assume truth of the BSD rank conjecture (Conjecture 1.1)
and assume that X(E/Q) is finite, there is still no known way to compute
#X(E/Q), i.e., there is no analogue of Proposition 1.3. Given finiteness
of X(E/Q) we can compute the p-part X(E/Q)(p) of X(E/Q) for any
prime p, but we don’t know when to stop considering new primes p. (Note
that when rE,an ≤ 1, Kolyvagin’s work provides an explicit upper bound on
#X(E/Q), so in that case X(E/Q) is computable.)

The Tamagawa numbers cp are 1 for all primes p ∤ ∆E , where ∆E is
the discriminant of (2.3.2). When p | ∆E , the number cp is a more refined
measure of the structure of the E locally at p. If p is a prime of additive
reduction (see Section 1.3), then one can prove that cp ≤ 4. The other
alternatives are that p is a prime of split or nonsplit multiplicative reduction.
If p is a nonsplit prime, then

cp =

{
1 if ordp(∆) is odd

2 otherwise

If p is a prime of split multiplicative reduction then

cp = ordp(∆)

can be arbitrarily large. The above discussion completely determines cp
except when p is an additive prime – see [Cre97, §3.2] for a discussion of
how to compute cp in general.

For those that are very familiar with elliptic curves over local fields,

cp = [E(Qp) : E0(Qp)],

where E0(Qp) is the subgroup of E(Qp) of points that have nonsingular
reduction modulo p.

For those with more geometric background, we offer the following con-
ceptual definition of cp. Let E be the Néron model of E. This is the unique,
up to unique isomorphism, smooth commutative (but not proper!) group

1When E is defined over Q it is now known that L(E, s) is defined overwhere.
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scheme over Z that has generic fiber E and satisfies the Néron mapping
property:

for any smooth group scheme X over Z the natural map

Hom(X, E) → Hom(XQ, E)

is an isomorphism.

In particular, note that E(Z) ∼= E(Q). For each prime p, the reduction
EFp of the Néron model modulo p is a smooth commutative group scheme
over Fp (smoothness is a property of morphisms that is closed under base
extension). Let E0

Fp
be the identity component of the group scheme EFp , i.e.,

the connected component of E0
Fp

that contains the 0 section. The component

group of E at p is the quotient group scheme

ΦE,p = EFp/E0
Fp
,

which is a finite étale group scheme over Fp. Finally

cp = #ΦE,p(Fp).

2.4. Examples: The Birch and Swinnerton-Dyer Formula

In each example below we use SAGE to compute the conjectural order of
X(E/Q) and find that it appears to be the square of an integer as predicted
by Theorem 2.15.

2.4.1. Example: A Curve of Rank 0. Consider the elliptic curve E
with Cremona label 11a, which is one the 3 curves of smallest conductor.
We now compute each of the quantities in Conjecture 2.17. First we define
the curve E in SAGE and compute its rank:

sage: E = EllipticCurve(’11a’); E

Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20

over Rational Field

sage: E.rank()

0

Next we compute the number L(E, 1) to double precision (as an element of
the real double field RDF):

sage: L = RDF(E.Lseries(1)); L

0.253841860856

We next compute the real period:
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sage: Om = RDF(E.omega()); Om

1.26920930428

To compute
∏
cp we factor the discriminant of E. It turns at that only 11

divides the discriminant, and since the reduction at 11 is split multiplicative
the Tamagawa number is 5 = ord11(∆E).

sage: factor(discriminant(E))

-1 * 11^5

sage: c11 = E.tamagawa_number(11); c11

5

Next we compute the regulator, which is 1 since E rank 0.

sage: Reg = RDF(E.regulator()); Reg

1.0

The torsion subgroup has order 5.

sage: T = E.torsion_order(); T

5

Putting everything together in (2.3.1) and solving for the conjectural order
of X(E/Q), we see that Conjecture 2.17 for E is equivalent to the assertion
that X(E/Q) has order 1.

sage: Sha_conj = L * T^2 / (Om * Reg * c11); Sha_conj

1.0

2.4.2. Example: A Rank 0 curve with nontrivial Sha. Consider the
curve E with label 681b. This curve has rank 0, and we compute the con-
jectural order of #X(E/Q) as in the previous section:
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sage: E = EllipticCurve(’681b’); E

Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 1154*x - 15345

over Rational Field

sage: E.rank()

0

sage: L = RDF(E.Lseries(1)); L

1.84481520613

sage: Om = RDF(E.omega()); Om

0.81991786939

There are two primes of bad reduction this time.

sage: factor(681)

3 * 227

sage: factor(discriminant(E))

3^10 * 227^2

sage: c3 = E.tamagawa_number(3); c227 = E.tamagawa_number(227)

sage: c3, c227

(2, 2)

sage: Reg = RDF(E.regulator()); Reg

1.0

sage: T = E.torsion_order(); T

4

In this case it turns out that #X(E/Q) is conjecturally 9.

sage: Sha_conj = L * T^2 / (Om * Reg * c3*c227); Sha_conj

9.0

2.4.3. Example: A Curve of Rank 1. Let E be the elliptic curve with
label 37a, which is the curve of rank 1 with smallest conductor. We define
E and compute its rank, which is 1.

sage: E = EllipticCurve(’37a’); E

Elliptic Curve defined by y^2 + y = x^3 - x over

Rational Field

sage: E.rank()

1
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We next compute the value L′(E, 1). The corresponding function in SAGE
takes a bound on the number of terms of the L-series to use, and returns an
approximate to L′(E, 1) along with a bound on the error (coming from the
tail end of the series).

sage: L, error = E.Lseries_deriv_at1(200); L, error

(0.305999773834879, 2.10219814818300e-90)

sage: L = RDF(L); L

0.305999773835

We compute ΩE and the Tamagawa number, regulator, and torsion as above.

sage: Om = RDF(E.omega()); Om

5.98691729246

sage: factor(discriminant(E))

37

sage: c37 = 1

sage: Reg = RDF(E.regulator()); Reg

0.05111140824

sage: T = E.torsion_order(); T

1

Finally, we solve and find that the conjectural order of X(E/Q) is 1.

sage: Sha_conj = L * T^2 / (Om * Reg * c37); Sha_conj

1.0

2.4.4. Example: A curve of rank 2. Let E be the elliptic curve 389a of
rank 2, which is the curve of rank 2 with smallest conductor.

sage: E = EllipticCurve(’389a’); E

Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x

over Rational Field

sage: E.rank()

2

Because the curve has rank 2, we use Dokchitser’s L-function package to
approximate L(2)(E, 1) to high precision:
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sage: Lser = E.Lseries_dokchitser()

sage: L = RDF(abs(Lser.derivative(1,2))); L

1.51863300058

We compute the regulator, Tamagawa numbers, and torsion as usual:

sage: Om = RDF(E.omega()); Om

4.98042512171

sage: factor(discriminant(E))

389

sage: c389 = 1

sage: Reg = RDF(E.regulator()); Reg

0.152460177943

sage: T = E.torsion_order(); T

1

Finally we solve for the conjectural order of #X(E/Q).

sage: Sha_conj = (L/2) * T^2 / (Om * Reg * c389)

sage: Sha_conj

1.0

We pause to emphasize that just getting something that looks like an
integer by computing

(2.4.1)
L(r)(E, 1)

r!
· #E(Q)2tor/(ΩE · Reg(E) ·

∏
cP )

is already excellent evidence for Conjecture 2.17. There is also a subtle and
deep open problem here:

Open Problem 2.18. Let E be the elliptic curve 389a above. Prove that
the quantity (2.4.1) is a rational number.

For curves E of analytic rank 0 it is easy to prove using modular symbols
that the conjectural order of X(E/Q) is a rational number. For curves with
analytic rank 1, this rationality follows from the very deep Gross-Zagier
theorem. For curves of analytic rank ≥ 2 there is not a single example in
which the conjectural order of X(E/Q) is known to be a rational number.

2.4.5. Example: A Rank 3 curve. The curve E with label 5077a has
rank 3. This is the curve with smallest conductor and rank 3.
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sage: E = EllipticCurve(’5077a’); E

Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6

over Rational Field

sage: E.rank()

3

We compute L(E, s) using Dokchitser’s algorithm. Note that the order of
vanishing appears to be 3.

sage: E.root_number()

-1

sage: Lser = E.Lseries_dokchitser()

sage: Lser.derivative(1,1)

-5.63436295355925e-22

sage: Lser.derivative(1,2)

2.08600476044634e-21

sage: L = RDF(abs(Lser.derivative(1,3))); L

10.3910994007

That the order of vanishing is really 3 follows from the Gross-Zagier theorem,
which asserts that L′(E, 1) is a nonzero multiple of the Néron-Tate canonical
height of a certain point on E called a Heegner point. One can explicitly
construct this point2 on E and find that it is torsion, hence has height 0, so
L′(E, 1) = 0. That L′′(E, 1) = 0 then follows from the functional equation
(see Section 1.3). Finally we compute the other BSD invariants:

sage: Om = RDF(E.omega()); Om

4.15168798309

sage: factor(discriminant(E))

5077

sage: c5077 = 1

sage: Reg = RDF(E.regulator()); Reg

0.417143558758

sage: T = E.torsion_order(); T

1

Putting everything together we see that the conjectural order of X(E/Q)
is 1.

2This is not yet implemented in SAGE; if it were, there would be an example right here.
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sage: Sha_conj = (L/6) * T^2 / (Om * Reg * c5077)

sage: Sha_conj

1.0

Note that just as was the case with the curve 389a above, we do not know
that the above conjectural order of X(E/Q) is a rational number, since there
are no know theoretical results that relate any of the three real numbers
L(3)(E, 1), Reg(E/Q), and ΩE/Q.

2.4.6. Example: A Rank 4 curve. Let E be the curve of rank 4 with
label 234446b. It is likely that this is the curve with smallest conductor and
rank 4 (a big calculation of the author et al. shows that there are no rank
4 curves with smaller prime conductor).

sage: E = EllipticCurve([1, -1, 0, -79, 289]); E

Elliptic Curve defined by y^2 + x*y = x^3 - x^2 - 79*x + 289

over Rational Field

sage: E.rank()

4

We next compute L(E, 1), L′(E, 1), L(2)(E, 1), L(3)(E, 1), and L(4)(E, 1).

All these special values look like they are 0, except for L(4)(E, 1) which is
about 214, hence clearly nonzero. One can prove that L(E, 1) = 0 (e.g.,
using denominator bounds coming from modular symbols), hence since the
root number is +1, we have either rE,an = 2 or rE,an = 4, and of course
suspect (but cannot prove yet) that rE,an = 4.

sage: E.root_number()

1

sage: Lser = E.Lseries_dokchitser()

sage: Lser(1)

1.43930352980778e-18

sage: Lser.derivative(1,1)

-4.59277879927938e-24

sage: Lser.derivative(1,2)

-8.85707917856308e-22

sage: Lser.derivative(1,3)

1.01437455701212e-20

sage: L = RDF(abs(Lser.derivative(1,4))); L

214.652337502
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As above, we compute the other BSD invariants of E.

sage: Om = RDF(E.omega()); Om

2.97267184726

sage: factor(discriminant(E))

2^2 * 117223

sage: c2 = 2

sage: c117223 = 1

sage: Reg = RDF(E.regulator()); Reg

1.50434488828

sage: T = E.torsion_order(); T

1

Finally, putting everything together, we see that the conjectural order
of X(E/Q) is 1.

sage: Sha_conj = (L/24) * T^2 / (Om * Reg * c2 * c117223)

sage: Sha_conj

1.0

Again we emphasize that we do not even know that the conjectural order
computed above is a rational number.

It seems almost a miracle that L(4)(E, 1) = 214.65 . . ., ΩE = 2.97 . . .,
and Reg(E) = 1.50 . . . have anything to do with each other, but indeed they
do:

sage: L/24, 2*Om*Reg

(8.9438473959, 8.9438473959)

That these two numbers are the same to several decimal places is a fact,
independent of any conjectures.
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2.5. The p-adic BSD Conjectural Formula

Let E be an elliptic curve over Q and let p be a prime of good ordinary
reduction for E.

In Chapter 1 (see Theorem 1.15) we defined a p-adic L-series

Lp(E, T ) ∈ Qp[[T ]].

Conjecture 1.16 asserted that ordT Lp(E, T ) = rankE(Q). Just as is the
cases for L(E, s), there is a conjectural formula for the leading coefficient
of the power series Lp(E, T ). This formula is due to Mazur, Tate, and
Teitelbaum [MTT86].

First, suppose ordT Lp(E, T ) = 0, i.e., Lp(E, 0) 6= 0. Recall that the
interpolation property (1.5.1) for Lp(E, T ) implies that

Lp(E, 0) = εp · L(E, 1)/ΩE ,

where

(2.5.1) εp = (1 − α−1)2,

and α ∈ Zp is the unit root of x2 − apx + p = 0. Thus the usual BSD
conjecture predicts that if the rank is 1, then

(2.5.2) Lp(E, 0) = εp ·
∏

ℓ cℓ · #X(E/Q) · Reg(E)

#E(Q)2tor

Notice in (2.5.2) that since E(Q) has rank 0, we have Reg(E) = 1, so
there is no issue with the left hand side being a p-adic number and the right
hand side not making sense. It would be natural to try to generalize (2.5.2)
to higher order of vanishing as follows. Let L∗

p(E, 0) denote the leading
coefficient of the power series Lp(E, T ). Then

(2.5.3) L∗
p(E, 0)“ = ”εp ·

∏
ℓ cℓ · #X(E/Q) · Reg(E)

#E(Q)2tor
(nonsense!!).

Unfortunately (2.5.2) is total nonsense when the rank is bigger than 0. The
problem is that Reg(E) ∈ R is a real number, whereas εp and L∗

p(E, 0) are
both p-adic numbers.

The key new idea needed to make a conjecture is to replace the real-
number regulator Reg(E) with a p-adic regulator Regp(E) ∈ Qp. This new
regulator is defined in a way analogous to the classical regulator, but where
many classical complex analytic objects are replaced by p-adic analogues.
Moreover, the p-adic regulator was, until recently (see [MST06]), much
more difficult to compute than the classical real regulator. We will define
the p-adic number Regp(E) ∈ Qp in the next section.
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Conjecture 2.19 (Mazur, Tate, and Teitelbaum). Let E be an elliptic curve
over Q and let p be a prime of good ordinary reduction for E. Then the rank
of E equals ordT (Lp(E, T )) and

(2.5.4) L∗
p(E, 0) = εp ·

∏
ℓ cℓ · #X(E/Q) · Regp(E)

#E(Q)2tor
,

where εp is as in (2.5.1), and the p-adic regulator Regp(E) ∈ Qp will be
defined below.

Remark 2.20. There are analogous conjectures in many other cases, e.g.,
good supersingular, bad multiplicative, etc. See [SW07] for more details.

2.5.1. Example: A Curve of Rank 2. We only consider primes p of good
ordinary reduction for a given curve E in this section. If E is an elliptic
curve with analytic rank 0, then the p-adic and classical BSD conjecture are
the same, so there is nothing new to illustrate. We will thus consider only
curves of rank ≥ 1 in this section.

We consider the elliptic curve 446d1 of rank 2 at the prime p = 5.

sage: E = EllipticCurve(’446d1’); p = 5; E

Elliptic Curve defined by y^2 + x*y = x^3 - x^2 - 4*x + 4

over Rational Field

Next we verify that the rank is 2, that p is a good ordinary prime, and
that there are 10 points on E modulo p (so E is ananomolous at p, i.e.,
p | #E(Fp)).

sage: E.rank()

2

sage: E.is_ordinary(p)

True

sage: E.Np(p)

10

Next we compute the p-adic L-series of E at p. We add O(T 7) so that the
displayed series doesn’t take several lines.

sage: Lp = E.padic_lseries(p)

sage: LpT = Lp.series(4)

sage: LpT = LpT.add_bigoh(7); LpT

(5 + 5^2 + O(5^3))*T^2 + (2*5 + 3*5^2 + O(5^3))*T^3

+ (4*5^2 + O(5^3))*T^4 + (4*5 + O(5^2))*T^5

+ (1 + 2*5 + O(5^3))*T^6 + O(T^7)
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We compute the p-adic modular form E2 evaluated on our elliptic curve
with differential ω to precision O(p8). This is the key difficult input to the
computation of the p-adic regulator Regp(E).

sage: E.padic_E2(p, prec=8)

3*5 + 4*5^2 + 5^3 + 5^4 + 5^5 + 2*5^6 + 4*5^7 + O(5^8)

We compute the normalized p-adic regulator, normalized to the choice of
1 + p as a topological generator of 1 + pZp.

sage: Regp = E.padic_regulator(p, 10)

sage: R = Regp.parent()

sage: kg = log(R(1+p))

sage: reg = Regp * p^2 / log(R(1+p))^2

sage: reg*kg^2

2*5 + 2*5^2 + 5^4 + 4*5^5 + 2*5^7 + O(5^8)

We compute the Tamagawa numbers and torsion subgroup.

sage: E.tamagawa_numbers()

[2, 1]

sage: E.torsion_order()

1

We compute L∗
p(E, 0), which is the leading term of the p-adic L-function. It

is not a unit, so we call the prime p an irregular prime.

sage: Lpstar = LpT[2]; Lpstar

5 + 5^2 + O(5^3)

Finally, putting everything together we compute the conjectural p-adic order
of #X(E/Q). In particular, we see that conjecturally #X(E/Q)(5) is
trivial.

sage: eps = (1-1/Lp.alpha(20))^2

sage: Lpstar / (eps*reg*(2*1)) * (1)^2

1 + O(5^2)

2.5.2. The p-adic Regulator. Fix an elliptic curve E defined over Q and
a prime p of good ordinary reduction for E. In this section we define the
p-adic regulator Regp(E). See [MTT86], [MST06] and [SW07] and the
references listed there for a more general discussion of p-adic heights, espe-
cially for bad or supersingular primes, and for elliptic curves over number
fields. See also forthcoming work of David Harvey for highly optimized
computation of p-adic regulators.
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The p-adic logarithm logp : Q∗
p → (Qp,+) is the unique group homomor-

phism with logp(p) = 0 that extends the homomorphism logp : 1+pZp → Qp

defined by the usual power series of log(x) about 1. Explicitly, if x ∈ Q∗
p,

then

logp(x) =
1

p− 1
· logp(u

p−1),

where u = p− ordp(x) · x is the unit part of x, and the usual series for log
converges at up−1.

Example 2.21. For example, in SAGE we compute the logs of a couple of
non-unit elements of Q5 as follows:

sage: K = Qp(5,8); K

5-adic Field with capped relative precision 8

sage: a = K(-5^2*17); a

3*5^2 + 5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + O(5^10)

sage: u = a.unit_part()

3 + 5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + O(5^8)

sage: b = K(1235/5); b

2 + 4*5 + 4*5^2 + 5^3 + O(5^8)

sage: log(a)

5 + 3*5^2 + 3*5^3 + 4*5^4 + 4*5^5 + 5^6 + O(5^8)

sage: log(a*b) - log(a) - log(b)

O(5^8)

Note that we can recover b:

sage: c = a^b; c

2*5^494 + 4*5^496 + 2*5^497 + 5^499 + 3*5^500 + 5^501 + O(5^502)

sage: log(c)/log(a)

2 + 4*5 + 4*5^2 + 5^3 + O(5^7)

Let E denote the Néron model of E over Z. Let P ∈ E(Q) be a non-
torsion point that reduces to 0 ∈ E(Fp) and to the connected component
of EFℓ

at all primes ℓ of bad reduction for E. For example, given any point
Q ∈ E(Q) one can construct such a P by multiplying it by the least common
multiple of the Tamagawa numbers of E.

Exercise 2.22. Show that any nonzero point P = (x(P ), y(P )) ∈ E(Q) can
be written uniquely in the form (a/d2, b/d3), where a, b, d ∈ Z, gcd(a, d) =
gcd(b, d) = 1, and d > 0. (Hint: Use that Z is a unique factorization
domain.)

The function d(P ) assigns to P this square root d of the denominator of
the x-coordinate x(P ).
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Example 2.23. We compute a point on a curve, and observe that the
denominator of the x coordinate is a perfect square.

sage: E = EllipticCurve(’446d1’)

sage: P = 3*E.gen(0); P

(32/49 : -510/343 : 1)

Let

(2.5.5) x(t) =
1

t2
+ · · · ∈ Zp((t))

be the formal power series that expresses x in terms of the local parameter
t = −x/y at infinity. Similarly, let y(t) = −x(t)/t be the corresponding
series for y. If we do the change of variables t = −x/y and w = −1/y, so
x = t/w and y = −1/w, then the Weierstrass equation for E becomes

s = t3 + a1st+ a2wt
2 + a3w

2 + a4w
2t+ a6w

3 = F (w, t).

Repeatedly substituting this equation into itself recursively yields a power
series expansion for w = −1/y in terms of t, hence for both x and y.

Remark 2.24. The formal group of E is a power series

F (t1, t2) ∈ R = Z[a1, . . . , a6][[t1, t2]].

defined as follows. Since x(t) and y(t) satisfy the equation of E, the points
P1 = (x(t1), y(t1)) and P2 = (x(t2), y(t2)) are in E(R). As explained explic-
itly in [Sil92, §IV.1], their sum is

Q = P1 + P2 = (x(F ), y(F )) ∈ E(R)

for some F = F (t1, t2) ∈ R.

Example 2.25. We compute the above change of variables in SAGE:

sage: var(’a1 a2 a3 a4 a6’)

sage: E = EllipticCurve([a1,a2,a3,a4,a6]); E

Elliptic Curve defined by

y^2 + a1*x*y + a3*y = x^3 + a2*x^2 + a4*x + a6

over Symbolic Ring

sage: eqn = SR(E); eqn

(y^2 + a1*x*y + a3*y) == (x^3 + a2*x^2 + a4*x + a6)

sage: F = eqn.lhs() - eqn.rhs(); F

y^2 + a1*x*y + a3*y - x^3 - a2*x^2 - a4*x - a6

sage: G = w^3*F(x=t/s, y=-1/w); G.expand()

-t^3 - a2*w*t^2 - a4*w^2*t - a1*w*t - a6*w^3 - a3*w^2 + w
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Example 2.26. We use SAGE to compute the formal power series x(t) and
y(t) for the rank 1 elliptic curve 37a.

sage: E = EllipticCurve(’37a’); E

Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: F = E.formal_group(); F

Formal Group associated to the Elliptic Curve defined by

y^2 + y = x^3 - x over Rational Field

sage: x = F.x(prec=8); x

t^-2 - t + t^2 - t^4 + 2*t^5 - t^6 - 2*t^7 + O(t^8)

sage: y = F.y(prec=8); y

-t^-3 + 1 - t + t^3 - 2*t^4 + t^5 + 2*t^6 - 6*t^7 + O(t^8)

Notice that the power series satisfy the equation of the curve.

sage: y^2 + y == x^3 - x

True

Recall that ωE = dx
2y+a1x+a3

is the differential on a fixed choice of Weier-

strass equation for E. Let

ω(t) =
dx

2y + a1x+ a3

∈ Q((t))dt

be the formal invariant holomorphic differential on E.

Example 2.27. Continuing the above example, we compute the formal
differential on E:

sage: F.differential(prec=8)

1 + 2*t^3 - 2*t^4 + 6*t^6 - 12*t^7 + O(t^8)

We can also compute ω(t) directly from the definition:

sage: x.derivative()/(2*y+1)

1 + 2*t^3 - 2*t^4 + 6*t^6 - 12*t^7 + 6*t^8 + 20*t^9 + O(t^10)

The following theorem, which is proved in [MT91], uniquely determines
a power series σ ∈ tZp[[t]] and constant c ∈ Zp.

Theorem 2.28 (Mazur-Tate). There is exactly one odd function σ(t) =
t + · · · ∈ tZp[[t]] and constant c ∈ Zp that together satisfy the differential
equation

(2.5.6) x(t) + c = − d

ω

(
1

σ

dσ

ω

)
,
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where ω is the invariant differential dx/(2y + a1x+ a3) associated with our
chosen Weierstrass equation for E.

The above theorem produces a (very inefficient) algorithm to compute c
and σ(t). Just view c as a formal indeterminate and compute σ(t) ∈ Q[c][[t]],
then obtain constraints on c using that the coefficients of σ must be in Zp.
These determine c to some precision, which increases as we compute σ(t) to
higher precision. Until recently this was the only known way to compute c
and σ(t) – fortunately the method of [MST06] is much faster in general.

Definition 2.29 (Canonical p-adic Height). Let E be an elliptic curve over
Q with good ordinary reduction at the odd prime p. Let logp, d, and σ(t)
be as above and suppose P ∈ E(Q) and that nP is a nonzero multiple of P
such that nP reduces to the identity component of the Néron model of E
at each prime of bad reduction. Then the p-adic canonical height of P is

hp(P ) =
1

n2
· 1

p
· logp

(
σ(P )

d(P )

)
.

Definition 2.30 (p-adic Regulator). The p-adic regulator of E is the dis-
criminant (well defined up to sign) of the bilinear Qp-valued pairing

(P,Q)p = hp(P ) + hp(Q) − hp(P +Q).

Conjecture 2.31 (Schneider). The p-adic regulator Regp(E) is nonzero.

Theorem 2.32 (Kato, Schneider, et al.). Let E be an elliptic curve over Q
with good ordinary reduction at the odd prime p and assume that the p-adic
Galois representation ρE,p is surjective. If

ordT (Lp(E, T )) ≤ rankE(Q),

then #X(E/Q)(p) is finite. Moreover, if Regp(E) is nonzero, then

ordp(#X(E/Q)(p)) ≤ ordp

( L∗
p(E, 0)∏

cℓ · Regp(E)

)
.





Chapter 3

Heegner Points and
Kolyvagin’s Euler
System

3.1. CM Elliptic Curves

In this section we state, and in some cases sketch proofs of, some basic facts
about CM elliptic curves.

If E is an elliptic curve over a field K we let End(E/K) be the ring of
all endomorphisms of E that are defined over K.

Definition 3.1 (CM Elliptic Curve). An elliptic curve E over a subfield of
C has complex multiplication if End(E/C) 6= Z.

Remark 3.2. If E is an elliptic curve over Q, then End(E/Q) = Z. This
is true even if E has complex multiplication, in which case the complex
multiplication must be defined over a bigger field than Q. The reason
End(E/Q) = Z is because End(E/Q) acts faithfully on the 1-dimensional Q-
vector space of invariant holomorphic differentials onE over Q and End(E/Q)
is finitely generated as a Z-module.

A complex lattice Λ ⊂ C is a subgroup abstractly isomorphic to Z × Z
such that RΛ = C. Using the Weirestrass ℘-function associated to the lattice
Λ, one proves that there is a group isomorphism

C/Λ ∼= EΛ(C),

where EΛ is an elliptic curve over C. Conversely, if E is any elliptic curve
over C, then there is a lattice Λ such that E = EΛ. Explicitly, if ωE is an

45
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invariant differential we may take Λ to be the lattice of all periods
∫
γ ωE ∈ C,

where γ runs through the integral homology H1(E(C),Z).

Proposition 3.3. Let Λ1 and Λ2 be complex lattices. Then

Hom(C/Λ1,C/Λ2) ∼= {α ∈ C : αΛ1 ⊂ Λ2},
where the homomorphisms on the left side are as elliptic curves over C.
Moreover, the complex number α ∈ C corresponds to the homomorphism
[α] induced by multiplication by α, and the kernel of [α] is isomorphic to
Λ2/(αΛ1).

Corollary 3.4. If α is any nonzero complex number and Λ is a lattice, then
C/Λ ∼= C/(αΛ).

Proof. Since multiplication by α sends Λ into αΛ, Proposition 3.3 implies
that α defines a homomorphism with 0 kernel, hence an isomorphism. �

Now suppose E/C is a CM elliptic curve, and let Λ be a lattice such
that E ∼= EΛ. Then

End(E/C) ∼= {α ∈ C : αΛ ⊂ Λ}.
Proposition 3.5. Let E = EΛ be a CM elliptic curve. Then there is a
complex number ω and a quadratic imaginary field such K that

ωΛ ⊂ OK ,

where OK is the ring of integers of K. Moreover, End(E/C) is an order
(=subring of rank 2) of OK .

Proof. Write Λ = Zω1⊕Zω2. By Corollary 3.4, we have EΛ
∼= Eω−1

1 Λ, so we

may assume that ω1 = 1, i.e., that Λ = Z+βZ for some β ∈ C. To complete
the proof, we will show that ωΛ ⊂ OK for some quadratic imaginary field
K and complex number ω.

By our hypothesis that E is CM there is a complex number α 6∈ Z such
that αΛ ⊂ Λ. Fixing a basis for Λ, we see that α acts on Λ via a 2 × 2
integral matrix, so satisfies a quadratic equation. Thus α is an algebraic
integer of degree 2. In particular, there are integers a, b, c, d such that

α1 = a+ bβ, and αβ = c+ dβ.

Since α 6∈ Z, the first equation above implies that β ∈ Q(α), so since β 6∈ Q,
Q(β) = Q(α). Note that β 6∈ R since Λ is a lattice with basis 1 and
β, so K = Q(β) is a quadratic imaginary field. Thus the ring End(E/C)
generated by all such α is an order in the ring OK of integers of an imaginary
quadratic field. Finally, since β ∈ K, there is a complex number ω such that
ω(Z + Zβ) ⊂ OK , where ω is chosen so that ωβ ∈ OK . �
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3.1.1. The Set of CM Elliptic Curves with Given CM.

Definition 3.6 (Fractional Ideal). A fractional ideal a of a number field K

is an OK-submodule of K that is isomorphic to Z[K:Q] as an abelian group.
In particular, a is nonzero.

If a is a fractional ideal, the inverse a−1 of a, which is the set of x ∈ K
such that xa ⊂ OK , is also a fractional ideal. Moreover, aa−1 = OK .

Fix a quadratic imaginary fieldK. Let Ell(OK) be the set of C-isomorphism
classes of elliptic curves E/C with End(E) ∼= OK . By the above results we
may also view Ell(OK) as the set of lattices Λ with End(EΛ) ∼= OK .

If a is a fractional OK ideal, then a ⊂ K ⊂ C is a lattice in C. For the
elliptic curve Ea we have

End(Ea) = OK ,

because a is an OK-module by definition. Since rescaling a lattice produces
an isomorphic elliptic curve, for any nonzero c ∈ K the fractional ideals a
and ca define the same elements of Ell(OK).

The class group Cl(OK) is the group of fractional ideals modulo principal
fractional ideals. If a is a fractional OK ideal, denote by a its ideal class in
the class group Cl(OK) of K. We have a natural map

Cl(OK) → Ell(OK),

which sends a to Ea.

Theorem 3.7. Fix a quadratic imaginary field K, and let Λ be a lattice in
C such that EΛ ∈ Ell(OK). Let a and b be nonzero fractional OK-ideals.
Then

(1) aΛ is a lattice in C,

(2) We have End(EaΛ) ∼= OK .

(3) We have EaΛ
∼= EbΛ if and only if a = b.

Thus there is a well-defined action of Cl(OK) on Ell(OK) given by

aEΛ = Ea−1Λ.

Theorem 3.8. The action of Cl(OK) on Ell(OK) is simply transitive.

Example 3.9. Let K = Q(
√

−23). Then the class number hK is 3. An
elliptic curve with CM by OK is C/(Z + (1 +

√
−23)/2Z), and one can

obtain the other two elements of Ell(OK) by multiplying the lattice Z+(1+√
−23)/2Z by two representative ideal classes for Cl(OK).
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3.1.2. Class Field Theory. Class field theory makes sense for arbitrary
number fields, but for simplicity in this section and because it is all that
is needed for our application to the BSD conjecture, we assume henceforth
that K is a totally imaginary number field, i.e., one with no real embeddings.

Let L/K be a finite abelian extension of number fields, and let a be any
unramified prime ideal in OK . Let b be an prime of OL over a and consider
the extension kb = OL/b of the finite field ka = OK/a. There is an element
σ ∈ Gal(kb/ka) that acts via qth powering on kb, where q = #ka. A basic
fact one proves in algebraic number theory is that there is an element σ ∈
Gal(L/K) that acts as σ on OL/b; moreover, replacing b by a different ideal
over a just changes σ by conjugation. Since Gal(L/K) is abelian it follows
that σ is uniquely determined by a. The association a 7→ σ = [a, L/K] is
called the Artin reciprocity map.

Exercise 3.10. Prove that if an unramified prime p of K splits completely
in an abelian exension L/K, then [p, L/K] = 1.

Let c be an integral ideal divisible by all primes of K that ramify in L,
and let I(c) be the group of fractional ideals that are coprime to c. Then
the reciprocity map extends to a map

I(c) → Gal(L/K) a 7→ [a, L/K]

Let

P (c) = {(α) : α ∈ K∗, α ≡ 1 (mod c)}.
Here α ≡ 1 (mod c) means that ordp(α−1) ≥ ordp(c) for each prime divisor
p | c.

Definition 3.11 (Conductor of Extension). The conductor of an abelian
extension L/K is the largest (nonzero) integral ideal c = cL/K of OK such
that [(α), L/K] = 1 for all α ∈ K∗ such that α ≡ 1 (mod c).

Proposition 3.12. The conductor of L/K exists.

If c = cL/K is the conductor of L/K then Artin reciprocity induces a
group homomorphism

I(c)/P (c) → Gal(L/K).

Definition 3.13 (Ray Class Field). Let c be a nonzero integral ideal of OK .
A ray class field associated to c is a finite abelian extension Kc of K such
that whenever L/K is an abelian extension such that cL/K | c, then L ⊂ Kc.

Theorem 3.14 (Existence Theorem of Class Field Theory). Given any
nonzero integral ideal c of OK there exists a unique ray class field Kc asso-
ciated to c, and the conductor of Kc divides c.
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Theorem 3.15 (Reciprocity Law of Class Field Theory). Let L/K be a
finite abelian extension.

(1) The Artin map is a surjective homomorphism I(cL/K) → Gal(L/K).

(2) The kernel of the Artin map is NL/K(IL)·P (cL/K), where NL/K(IL)
is the group of norms from L to K of the fractional ideals of L.

Definition 3.16 (Hilbert Class Field). The Hilbert class field of a number
field K is the maximal unramified abelian extension of K.

In particular, since the Hilbert class field is unramified over K, we have:

Theorem 3.17. Let K be a number field and let H be the Hilbert class field
of K. The Artin reciprocity map induces an isomorphism

Cl(OK)
∼=−−→ Gal(H/K).

3.1.3. The Field of Definition of CM Elliptic Curves.

Theorem 3.18. Let F be an elliptic curve over C with CM by OK , where
K is a quadratic imaginary field. Let H be the Hilbert Class Field of K.

(1) There is an elliptic curve E defined over K such that F ∼= EC.

(2) The Gal(H/K)-conjugates of E are representative elements for Ell(OK).

(3) If σ ∈ Gal(H/K) corresponds via Artin reciprocity to a ∈ Cl(OK),
then

Eσ = aE.

Theorem 3.18 generalizes in a natural way to the more general situation
in which OK is replaced by an order Of = Z+fOK ⊂ OK . Then the Hilbert
class field is replaced by the ray class field Kf , which is a finite abelian
extension of H that is unramified outside f (see Definition 3.13 above).
There is an elliptic curve E defined over Kf whose endomorphism ring is
Of , and the set of Gal(Kf/K)-conjugates of E forms a set of representatives
for Ell(Of ). Moreover, the group I(cL/K)/(N · P (cL/K)) of Theorem 3.15
acts simply transitively on Ell(Of ), and the action of Gal(Kf/K) on the set
of conjugates of E is consistent with the Artin reciprocity map.
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3.2. Heegner Points

Let E be an elliptic curve defined over Q with conductor N , and fix a
modular parametrization πE : X0(N) → E.

Let K be a quadratic imaginary field such that the primes dividing N
are all unramified and split in K. For simplicity, we will also assume that
K 6= Q(i),Q(

√
−3). Let N be an integral ideal of OK such that OK/N ∼=

Z/NZ. Then C/OK and C/N −1 define two elliptic curves over C, and since
OK ⊂ N −1, there is a natural map

(3.2.1) C/OK → C/N −1.

By Proposition 3.3 the kernel of this map is

N −1/OK
∼= OK/N ∼= Z/NZ.

Exercise 3.19. Prove that there is an isomorphism N −1/OK
∼= OK/N of

finite abelian group.

The modular curve X0(N) parametrizes isomorphism classes of pairs
(F, φ), where φ is an isogeny with kernel cyclic of order N . Thus C/OK

and the isogeny (3.2.1) define an element x1 ∈ X0(N)(C). The discussion of
Section 3.1.3 along with properties of modular curves proves the following
proposition.

Proposition 3.20. We have

x1 ∈ X0(N)(H),

where H is the Hilbert class field of K.

Definition 3.21 (Heegner point). The Heegner point associated to K is

yK = TrH/K(πE(x1)) ∈ E(K).

More generally, for any integer n, let On = Z+nOK be the order in OK

of index n. Then Nn = N ∩ On satisfies On/Nn
∼= Z/NZ, and the pair

(C/On, C/On → C/N −1
n )

defines a point xn ∈ X0(N)(Kn), where Kn is the ray class field of conduc-
tor n over K.

Definition 3.22 (Heegner point of conductor n). The Heegner point of
conductor n is

yn = πE(xn) ∈ E(Kn).

3.3. Computing Heegner Points

[[This section will be my take on what’s in Cohen’s book and Watkins paper,
hopefully generalized to compute Heegner points over ring class fields (?).]]
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3.4. Kolyvagin’s Euler System

3.4.1. Kolyvagin’s Cohomology Classes. In this section we define Koly-
vagin’s cohomology classes. Later we will explain the properties that these
classes have, and eventually use them to sketch a proof of finiteness of
Shafarevich-Tate groups of certain elliptic curves.

We will use, when possible, similar notation to the notation Kolyvagin
uses in his papers (e.g., [Kol91]). If A is an abelian group let A/M =
A/(MA). Kolyvagin writes AM for the M -torsion subgroup, but we will
instead write A[M ] for this group.

Let E be an elliptic curve over Q with no constraint on the rank of E.
Fix a modular parametrization π : X0(N) → E, where N is the conductor of
E. Let K be a quadratic imaginary field with discriminant D that satisfies
the Heegner hypothesis for E, so each prime dividing N splits in K, and
assume for simplicity that D 6= −3,−4.

Let OK be the ring of integer of K. Since K satisfies the Heegner
hypothesis, there is an ideal N in OK such that OK/N is cyclic of order N .
For any positive integer λ, let Kλ be the ray class field of K associated to
the conductor λ (see Definition 3.13). Recall that Kλ is an abelian extension
of K that is unramified outside λ, whose existence is guaranteed by class
field theory. Let Oλ = Z + λOK be the order in OK of conductor λ, and let
Nλ = N ∩ Oλ. Let

zλ = [(C/Oλ,N −1
λ /Oλ)] = X0(N)(Kλ)

be the Heegner point associated to λ. Also, let

yλ = π(zλ) ∈ E(Kλ)

be the image of the Heegner point on the curve E.

Let R = End(E/C), and let B(E) be the set of primes ℓ ≥ 3 in Z that
do not divide the discriminant of R and are such that the image of the
representation

ρE,ℓ : Gal(Q/Q) → Aut(Tateℓ(E))

contains AutR(Tateℓ(E)), where AutR(Tateℓ(E)) is the set of automor-
phisms that commute with the action of R on Tateℓ(E). Note that if ℓ ≥ 5
the condition that ρE,ℓ is surjective is equivalent to the simpler condition
that

ρE,ℓ : Gal(Q/Q) → AutR(E[ℓ])

is surjective. The set B(E) contains all but finitely many primes, by theo-
rems of Serre [Ser72], Mazur [Maz78], and CM theory, and one can com-
pute B(E).
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sage: E = EllipticCurve(’11a’)

sage: E.non_surjective()

[(5, ’5-torsion’)]

sage: E = EllipticCurve(’389a’)

sage: E.non_surjective()

[]

Fix a prime ℓ ∈ B(E). We next introduce some very useful notation.
Let Λ1 denote the set of all primes p ∈ Z such that p ∤ N , p remains prime
in OK , and for which

n(p) = ordℓ(gcd(p+ 1, ap)) ≥ 1.

For any positive integer r, let Λr denote the set of all products of r distinct
primes in Λ1; by definition Λ0 = {1}. Finally, let

Λ =
⋃

r≥0

Λr.

For any r > 0 and λ ∈ Λr, let

n(λ) = min
p|λ

n(p)

be the “worst” of all the powers of p that divide gcd(p+ 1, ap). If λ = 1, set
n(λ) = +∞.

Fix an element λ ∈ Λ, with λ 6= 1, and consider the ℓ-power

M = Mλ = ℓn(λ).

Recall from Section 2.2.1 that we associate to the short exact sequence

0 → E[M ] → E
[M ]−−→ E → 0

an exact sequence

0 → E(K)/M → H1(K,E[M ]) → H1(K,E)[M ] → 0.

Our immediate goal is to construct an interesting cohomology class

cλ ∈ H1(K,E[M ]).

If L/K is any Galois extension, we have (see Section 2.1.2 for most of
this) an exact sequence
(3.4.1)

0 → H1(L/K,E[M ](L)) → H1(K,E[M ]) → H1(L,E[M ])Gal(L/K) → 0.

Lemma 3.23. We have E[M ](Kλ) = 0.
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Proof. For simplicity we prove the statement only in the non-CM case. The
integer M is a power of a prime ℓ, so it suffices to show that E[ℓ](Kλ) = 0.
Since ℓ ∈ B(E) the Galois representation

ρE,ℓ : GQ → GL2(Fℓ)

is surjective. The group GL2(Fℓ) acts transitively on (Fℓ)
2, so the GQ orbit

of any nonzero point in E[ℓ](Q) is equal to the set of all nonzero points in
E[ℓ](Q). By class field theory, the extension Kλ of Q is Galois, so if E[ℓ](Kλ)
is nonzero, then it is equal to E[ℓ](Q). Using properties of the Weil pairing,
we see that the field generated by the coordinates of the elements of E[ℓ](Q)
contains the cyclotomic field Q(ζℓ), which is a field totally ramified at ℓ.
But K ∩ Q(ζℓ) = Q, since disc(K) 6= −3,−4, and Kλ is ramified only at
primes in Λ1 and ℓ 6∈ Λ1. We conclude that Kλ ∩ Q(ζℓ) = Q, so we must
have E[ℓ](Kλ) = 0. (Compare [Gro91, Lem. 4.3].) �

Thus (3.4.1) with L = Kλ becomes

(3.4.2) H1(K,E[M ])
∼=−−−−→ H1(Kλ, E[M ])Gλ

where Gλ = Gal(Kλ/K). Putting this together, we obtain the following
commutative diagram with exact rows and columns:

0 // (E(Kλ)/M)Gλ // H1(Kλ, E[M ])Gλ // H1(Kλ, E)[M ]Gλ

0 // E(K)/M //
?�

OO

H1(K,E[M ])

∼= res

OO

// H1(K,E)[M ] //

res

OO

0

H1(Kλ/K,E)[M ]
?�

inf

OO

Thus to construct cλ ∈ H1(K,E[M ]), it suffices to construct a class
c′λ ∈ H1(Kλ, E[M ]) that is invariant under the action of Gλ. We will do this
by constructing an element of E(Kλ) and using the inclusion

(3.4.3) E(Kλ)/M →֒ H1(Kλ, E[M ]).

In particular, we will construct an element of the group E(Kλ)/M that is
invariant under the action of Gλ.

Recall that yλ ∈ E(Kλ). Unfortunately, there is no reason that the class

[yλ] ∈ E(Kλ)/M

should be invariant under the action of Gλ. To deal with this problem,
Kolyvagin introduced a new and original idea which we now explain.
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Let H = K1 be the Hilbert class field of K. Write λ = p1 · · · pr, and for
each p = pi let Gp = Gal(Kp/K) where Kp is the ray class field associated
to p. Class field theory implies that the natural map

Gal(Kλ/K1) ∼=→ Gp1 ×Gp2 × · · · ×Gpr

is an isomorphism. Moreover, each group Gpi is cyclic of order pi + 1. For
each p = pi, let σp be a fixed choice of generator of Gp, and let

Trp =
∑

σ∈Gp

σ ∈ Z[Gp].

Finally, let Dp ∈ Z[Gp] be any solution of the equation

(3.4.4) (σp − 1) ·Dp = p+ 1 − Trp .

For example, Kolyvagin always takes

Dp =

p∑

i=1

iσi
p = −

p+1∑

i=1

(σi
p − 1)/(σp − 1).

Notice that the choice of Dp is well defined up to addition of elements in
Z Trp. Let

Dλ =
∏

Dp = Dp1 ·Dp2 · · · · ·Dpr ∈ Z[Gλ].

Finally, let S be a set of coset representatives for Gal(Kλ/K1) in Gλ =
Gal(Kλ/K), and let

Jλ =
∑

σ∈S

σ ∈ Z[Gλ].

Let

Pλ = JλDλyλ ∈ E(Kλ).

Note that if λ = 1, then Kλ = K1, so

P1 = J1yλ = TrK1/K(yλ) = yK ∈ E(K).

Before proving that we can use Pλ to define a cohomology class in
H1(K,E[M ]), we state two crucial facts about the structure of the Heeg-
ner points yλ.

Proposition 3.24. Write λ = pλ′, and let ap = ap(E) = p+ 1 − #E(Fp).

(1) We have

Trp(yλ) = apyλ′

in E(Kλ′).

(2) Each prime factor ℘λ of p in Kλ divides a unique prime ℘λ′ of Kλ′,
and we have a congruence

yλ ≡ Frob(℘λ′)(yλ′) (mod ℘λ).
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Proof. See [Gro91, Prop. 3.7]. The proof uses a description of the action
of Hecke operators on modular curves. �

Proposition 3.25. The class [Pλ] of Pλ in E(Kλ)/M is fixed by Gλ.

Proof. We follow the proof of [Gro91, Prop. 3.6]. It suffices to show that
[Dλyλ] is fixed by σp for each prime p | λ, since the σp generate Gal(Kλ/K1),
the elements of the set S of coset representatives fix the image of Jλ, and
Gλ is generated by the σp and S. Thus we will prove that

(σp − 1)Dλyλ ∈ ME(Kλ)

for each p | λ.

Write λ = pm. By (3.4.4), we have in Z[Gλ] that

(σp − 1)Dλ = (σp − 1)DpDm = (p+ 1 − Trp)Dm,

so using Proposition 3.24 we have

(σp − 1)Dλyλ = (p+ 1 − Trp)Dmyλ

= (p+ 1)Dmyλ −Dm Trp(yλ)

= (p+ 1)Dmyλ − apDmyλ′

Since p ∈ Λ1 and M = ℓn(p) and n(p) = min(ordℓ(p+ 1), ordℓ(ap)), we have
M | p+1 and M | ap. Thus (p+1)Dmyλ ∈ ME(Kλ) and apyλ′ ∈ ME(Kλ),
which proves the proposition. �

We have now constructed an element of E(Kλ)/M that is fixed by Gλ.
Via (3.4.3) this defines an element c′λ ∈ H1(Kλ, E[M ]). But then using

(3.4.2) we obtain our sought after class cλ ∈ H1(K,E[M ]).

We will also be interested in the image dλ of cλ in H1(K,E)[M ].

Proposition 3.26. If v is archimedean or v ∤ λ, then

resv(dλ) = 0.

Proof. If v is archimedean we are done, sinceKv = C is algebraically closed.
Otherwise, the class dλ splits over Kλ and Kλ is unramified at v, so

resv(dλ) ∈ H1(Kunr
v /Kv, E).

But the latter group is isomorphic to the component group of E at v, and a
theorem of Gross-Zagier implies that the Heegner point maps to the identity
component. (See [Gro91, Prop. 6.2] for more details.) �
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Proposition 3.27. Write λ = pm and let ℘ = pOK be the unique prime
ideal of K dividing p. Let v be a place of Km that divides ℘. Then the order
of res℘(dλ) is the same as the order of

[Pm] ∈ E(K℘)/ME(K℘),

where K℘ denotes the completion of K at ℘. (Note that ℘ splits completely
in Km/K by class field theory, since ℘ = pOK is principal and coprime to
m, so Pm ∈ E(K℘).)

Proof. See [Gro91, Prop. 6.2] for the case M = ℓ. The argument involves
standard properties of Galois cohomology of elliptic curves, some diagram
chasing, reduction modulo a prime, and use of formal groups. �

Next we consider a consequence of Proposition 3.27 when yK is not a
torsion point. Note that yK nontorsion implies that yK 6∈ ME(K) for all
but finitely many M . Moreover, the Gross-Zagier theorem implies that yK

is nontorsion if and only if ords=1 L(E, s) ≤ 1.

Proposition 3.28. Suppose that yK ∈ E(K) is not divisible by M . Then
there are infinitely many p ∈ Λ1 such that dp ∈ H1(K,E)[M ] is nonzero.

Proof. This follows from Proposition 3.27 with m = 1 and the Chebotarev
density theorem. See e.g., [Ste02, §4.1] for a proof. �

Remark 3.29. See, e.g., [Ste02] for an application of this idea to a problem
raised by Lang and Tate in [LT58].

Theorem 3.30 (Kolyvagin). Suppose E is a modular elliptic curve over Q
and K is a quadratic imaginary field that satisfies the Heegner hypothesis
for E and is such that yK ∈ E(K) is nontorsion. Then E(K) has rank 1
and

#X(E/K) | b · [E(K) : ZyK ]2,

where b is a positive integer divisible only by primes ℓ ∈ B(E) (i.e., for
which the ℓ-adic representation is not as surjective as possible).

Proof. See the entire paper [Gro91]. Kolyvagin proves this theorem by

bounding Sel(M)(E/K) for various M using Proposition 3.28 in conjunction
with a careful study of various pairings coming from Galois cohomology, the
Weil pairing, Tate local daulity, etc. Since

0 → E(K)/ME(K) → Sel(M)(E/K) → X(E/K),

a bound on the Selmer group translates into a bound onE(K) and X(E/K).
�
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After Kolyvagin proved his theorem, independently Murty-Murty, Bump-
Friedberg-Hoffstein, Waldspurger, each proved that infinitely many such
quadratic imaginary K always exists so long as E has analytic rank 0 or 1.
Also, Taylor and Wiles proved that every E over Q is modular. Thus we
have the following theorem:

Theorem 3.31. Suppose E is an elliptic curve over Q with

rE,an = ords=1 L(E, s) ≤ 1.

Then E(Q) has rank rE,an, the group X(E/Q) is finite, and there is an
explicit computable upper bound on #X(E/Q).

The author has computed the upper bound of the theorem for all elliptic
curves with conductor up to 1000 and rE,an ≤ 1.

3.4.2. Kolyvagin’s Conjectures. What about curves E with rE,an ≥ 2?
Suppose that E is an elliptic curve over Q with rE,an ≥ 2. In the short
paper [Kol91], Kolyvagin states an amazing structure theorems for Selmer
groups assuming the following unproved conjecture, which is the appropriate
generalization of the condition that P1 has infinite order.

Conjecture 3.32 (Kolyvagin [Kol91]). Let E be any elliptic curve over Q
and fix a prime ℓ ∈ B(E) and a prime power M = ℓn of ℓ. Then there is at
least one cohomology class cλ ∈ H1(K,E[M ]) that is nonzero.

So far nobody has been able to show that Conjecture 3.32 is satisfied by
every elliptic curve E over Q, though several people are currently working
hard on this problem (including Vatsal and Cornut). Proposition 3.28 above
implies that Conjecture 3.32 is true for elliptic curves with rE,an ≤ 1.

Kolyvagin also goes on in [Kol91] to give a conjectural construction of
a subgroup

V ⊂ E(K)/E(K)tor

for which rank(E(Q)) = rank(V ). Let ℓ be an arbitrary prime, i.e., so we
do not necessarily assume ℓ ∈ B(E). One can construct cohomology class

cλ ∈ H1(K,E[M ]), so long as λ ∈ Λn+k0 , where ℓk0/2E(K)[ℓ∞] = 0, and K
is the compositum of all class field Kλ for λ ∈ Λ. For any n ≥ 1, k ≥ k0,
and r ≥ 0, let

V r
n,k ⊂ lim−→

m

H1(K,E[ℓm])/E(K)tor

be the subgroup generated by the images of the classes τλ = τλ,n ∈ H1(K,E[ℓn])
where λ runs through Λr

n+k.

Conjecture 3.33 (Kolyvagin). Let E be any elliptic curve over Q. Then
for all prime numbers ℓ, there exists an integer r such that for all k ≥ k0

there is an n such that V r
n,k 6= 0.
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Recall that
n(p) = ordℓ(gcd(p+ 1, ap)) ≥ 1

and
n(λ) = min

p|λ
n(p).

Let m′(λ) be the maximal nonnegative integer such that Pλ ∈ ℓm
′(λ)E(Kλ).

Let m(λ) = m′(λ) if m′(λ) < n(λ), and m(λ) = ∞ otherwise. For any r ≥ 0,
let

mr = min{m(λ) : λ ∈ Λr},
and let f be the minimal r such that mr is finite.

Proposition 3.34. We have f = 0 if and only if yK has infinite order.

Let SD = ℓnS, where

S = lim−→
n

Sel(ℓ
n)(K,E[ℓn]).

If A is a Z[1, σ]-module and ε = (−1)rE,an−1. then

Av = {b ∈ A : σ(b) = (−1)v+1εb}

Assuming his conjectures, Kolyvagin deduces that for every prime num-
ber ℓ there exists integers k1 and k2 such that for any integer k ≥ k1 we
have

ℓk2SD(f+1)[M ] ⊂ V f
n,k ⊂ SD(f+1)[M ].

Here the exponent of f+1 means the +1 or −1 eigenspace for the conjugation
action.

Conjecture 3.35 (Kolyvagin). Let E be any elliptic curve over Q and ℓ
any prime. There exists v ∈ {0, 1} and a subgroup

V ⊂ (E(K)/E(K)tors)
(v)

such that
1 ≤ rank(V ) ≡ v (mod 2).

Let a = rank(V )−1. Then for all sufficiently large k and all n, one has that

V a
n,k ≡ V mod ℓn(E(K)/E(K)tor).

Assuming the above conjecture for all primes ℓ, the group V is uniquely
determined by the congruence condition in the second part of the conjecture.
Also, Kolyvagin proves that if the above conjecture is true, then the rank of
Ev(Q) equals the rank of V , and that X(Ev/Q)[ℓ∞] is finite. (Here Ev is
E or its quadratic twist.)

When P1 has infinite order, the conjecture is true with v = 1 and V =
ZP1. (I think here E has rE,an = 0.)
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3.5. The Gross-Zagier Theorem
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Opinion

Open Source
Mathematical Software
Mathematical software has greatly contributed to mathemat-

ical research, enabling exciting advances in mathematics and

providing extensive data for conjectures. Perhaps three of the

most well-known applications of computation to mathemat-

ical research are the resolution of the four-color conjecture

by Appel and Haken in 1976 (though it is now reproven

with less need for computer verification by N. Robertson, D.

P. Sanders, P. D. Seymour and R. Thomas), Thomas Hales’s

proof of Kepler’s conjecture, and the formulation of the Birch

and Swinnerton-Dyer conjecture, which grew out of extensive

numerical computation.

Open source software, such as TEX, Mozilla Firefox, and

Linux has had a profound effect on computing during the

last decade, and we hope that open source mathematical

software will have a similar positive impact on mathematics.

I think we need a symbolic standard to make

computer manipulations easier to document

and verify. And with all due respect to the free

market, perhaps we should not be dependent

on commercial software here. An open source

project could, perhaps, find better answers

to the obvious problems such as availability,

bugs, backward compatibility, platform in-

dependence, standard libraries, etc. One can

learn from the success of TEX and more spe-

cialized software like Macaulay2. I do hope

that funding agencies are looking into this.

—Andrei Okounkov, 2006 Fields medalist

(see “Interviews with three Fields medalists”

Notices of the AMS, 54(3) (2007), 405–410).

The term open source is defined at http://www.

opensource.org/, but basically it means anyone (including

commercial companies or the defense department) should

be able to inspect open source software, modify it, and share

it with others.

One key difference between mathematical theorems and

software is that theorems require little maintenance, where-

as mathematical software requires substantial and potentially

expensive maintenance (bug fixes, updates when algorithms

or languages change, etc.). Mathematical research usually gen-

erates no direct revenue for researchers, and likewise open

source mathematical software is free to share and extend,

so it rarely generates revenue. Volunteer effort, donations,

and financial support from the NSF and other organizations

is thus critical to the success of open source mathematical

software.

There is a proof in the article by Campbell et al. in The

Atlas of Finite Groups—Ten Years On (1998) that describes

how many separate software packages were “easily used” to

deduce various mathematical facts—no code is given, and

some of the programs are proprietary software that runs

only on hardware many years out of date. Such proofs may

become increasingly common in mathematics if something

isn’t done to reverse this trend.
Suppose Jane is a well-known mathematician who an-

nounces she has proved a theorem. We probably will believe
her, but she knows that she will be required to produce
a proof if requested. However, suppose now Jane says a
theorem is true based partly on the results of software. The

closest we can reasonably hope to get to a rigorous proof
(without new ideas) is the open inspection and ability to use
all the computer code on which the result depends. If the
program is proprietary, this is not possible. We have every
right to be distrustful, not only due to a vague distrust of
computers but because even the best programmers regularly

make mistakes.
If one reads the proof of Jane’s theorem in hopes of

extending her ideas or applying them in a new context, it
is limiting to not have access to the inner workings of the
software on which Jane’s result builds. For example, consider

the following quote from the Mathematica tutorial1:

Particularly in more advanced applications of
Mathematica, it may sometimes seem worth-
while to try to analyze internal algorithms
in order to predict which way of doing a

given computation will be the most efficient.
[…] But most often the analyses will not be
worthwhile. For the internals of Mathemati-
ca are quite complicated, and even given a
basic description of the algorithm used for
a particular purpose, it is usually extremely

difficult to reach a reliable conclusion about
how the detailed implementation of this al-
gorithm will actually behave in particular
circumstances.

No journal would make a statement like the above about
the proofs of the theorems they publish. Increasingly, pro-

prietary software and the algorithms used are an essential
part of mathematical proofs. To quote J. Neubüser, “with this
situation two of the most basic rules of conduct in mathemat-
ics are violated: In mathematics information is passed on free
of charge and everything is laid open for checking.”

Full disclosure: The second author started a new math-

ematics software system in 2005 called SAGE (see www.
sagemath.org), which combines Python, GAP, Singular, PARI,
Maxima, SciPy, etc. with several hundred thousand lines of
new code. SAGE receives contributions from many mathe-
maticians worldwide that synthesize the latest algorithms
from a broad range of topics into a comprehensive toolkit

for mathematical research.

—David Joyner

U. S. Naval Academy, Annapolis
wdj@usna.edu
—William Stein

University of Washington, Seattle
wstein@u.washington.edu

1http://reference.wolfram.com/mathematica/tutorial/

WhyYouDoNotUsuallyNeedToKnowAboutInternals.html
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Koopa Tak-Lun Koo∗ and William Stein† and Gabor Wiese‡
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Abstract
Let f be a non-CM newform of weight k ≥ 2 without nontrivial in-

ner twists. In this article we study the set of primes p such that the eigen-
value ap(f) of the Hecke operator Tp acting on f generates the field of
coefficients of f . We show that this set has density 1, and prove a natural
analogue for newforms having inner twists. We also present some new data
on reducibility of Hecke polynomials, which suggest questions for further
investigation.

Mathematics Subject Classification (2000): 11F30 (primary); 11F11,
11F25, 11F80, 11R45 (secondary).

1 Introduction
The main aim of this paper is to prove the following theorem.

Theorem 1. Let f be a newform (i.e., a new normalized cuspidal Hecke eigen-
form) of weight k ≥ 2, level N and Dirichlet character χ which does not have
complex multiplication (CM, see [R80, p. 48]). Let Ef = Q(an(f) : (n,N) = 1)

be the field of coefficients of f and Ff = Q
(

an(f)2

χ(n)
: (n,N) = 1

)
.
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(a) The set {
p prime : Q

(
ap(f)

2

χ(p)

)
= Ff

}

has density 1.

(b) If f does not have any nontrivial inner twists, then the set

{p prime : Q(ap(f)) = Ef}

has density 1.

A twist of f by a Dirichlet character ε is said to be inner if there exists a
(necessarily unique) field automorphism σε : Ef → Ef such that

ap(f ⊗ ε) = ap(f)ε(p) = σε(ap(f))

for almost all primes p. If N is square free, k = 2 and the Dirichlet character χ
of f is the trivial character, then there are no nontrivial inner twists of f . For a
discussion of inner twists we refer the reader to [R80, §3] and [R85, §3].

In the presence of nontrivial inner twists, the conclusion of Part (b) of the
theorem never holds. To see this, we let ε be a nontrivial inner twist with as-
sociated field automorphism σε. The set of primes p such that ε(p) = 1 has
a positive density and for any such p we have σε(ap(f)) = ap(f). Therefore,
ap(f) ∈ E〈σ〉f ( Ef for a set of primes p of positive density.

In the literature there are related but weaker results in the context of Maeda’s
conjecture, i.e., they concern the case of level 1 and assume that Sk(1) consists of
a single Galois orbit of newforms (see, e.g., [JO98] and [BM03]). We now show
how Part (b) of Theorem 1 extends the principal results of these two papers.

Let f be a newform of level N , weight k ≥ 2 and trivial Dirichlet character
χ = 1 which neither has CM nor nontrivial inner twists. This is true when N = 1.
Let T be the Q-algebra generated by all Tn with n ≥ 1 inside End(Sk(N, 1)) and

let P be the kernel of the Q-algebra homomorphism T Tn 7→an(f)−−−−−−→ Ef . As T is re-

duced, the map TP
Tn 7→an(f)−−−−−−→ Ef is a ring isomorphism with TP the localization

of T at P. Non canonically TP is also isomorphic as a TP-module (equivalently
as an Ef -vector space) to its Q-linear dual, which can be identified with the lo-
calization at P of the Q-vector space Sk(N, 1;Q) of cusp forms in Sk(N, 1) with
q-expansion in Q[[q]]. Hence, Q(ap(f)) = Ef precisely means that the character-
istic polynomial Pp ∈ Q[X] of Tp acting on the localization at P of Sk(N, 1;Q)
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is irreducible. Part (b) of Theorem 1 hence shows that the set of primes p such
that Pp is irreducible has density 1.

This extends Theorem 1 of [JO98] and Theorem 1.1 of [BM03]. Both theo-
rems restrict to the case N = 1 and assume that there is a unique Galois orbit of
newforms, i.e., a unique P, so that no localization is needed. Theorem 1 of [JO98]
says that

#{p < X prime : Pp is irreducible in Q[X]} � X

logX

and Theorem 1.1 of [BM03] states that there is δ > 0 such that

#{p < X prime : Pp is reducible in Q[X]} � X

(logX)1+δ
.

Acknowledgements. The authors would like to thank the MSRI, where part of
this research was done, for its hospitality. The first author would like to thank his
advisor Ralph Greenberg for suggesting the problem. The second author acknowl-
edges partial support from the National Science Foundation grant No. 0555776,
and also used [SAGE] for some calculations related to this paper. All three authors
thank Jordi Quer for useful discussions.

2 Group theoretic input
Lemma 1. Let q be a prime power and ε a generator of the cyclic group F×q .

(a) The conjugacy classes c in GL2(Fq) have the following four kinds of repre-
sentatives:

Sa =

(
a 0
0 a

)
, Ta =

(
a 0
1 a

)
, Ua,b =

(
a 0
0 b

)
, Vx,y =

(
x εy
y x

)

where a 6= b, and y 6= 0.

(b) The number of elements in each of these conjugacy classes are: 1, q2−1, q2+
q, and q2 − q, respectively.

Proof. See Fulton-Harris [FH91], page 68.

We use the notation [g]G for the conjugacy class of g in G.
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Proposition 1. Let q be a prime power and r a positive integer. Let further R ⊆
R̃ ⊆ F×qr be subgroups. Put

√
R̃ = {s ∈ F×qr : s2 ∈ R̃}. Set

H = {g ∈ GL2(Fq) : det(g) ∈ R}

and let
G ⊆ {g ∈ GL2(Fqr) : det(g) ∈ R̃}

be any subgroup such that H is a normal subgroup of G. Then the following
statements hold.

(a) The group G/(G ∩ F×qr) (with F×qr identified with scalar matrices) is either
equal to PSL2(Fq) or to PGL2(Fq). More precisely, if we let {s1, . . . , sn} be

a system of representatives for
√
R̃/R, then for all g ∈ G there is i such that

g
(

s−1
i 0

0 s−1
i

)
∈ G ∩GL2(Fq) and

(
si 0
0 si

)
∈ G.

(b) Let g ∈ G such that g
(

s−1
i 0

0 s−1
i

)
∈ G ∩GL2(Fq) and

(
si 0
0 si

)
∈ G. Then

[g]G = [g
(

s−1
i 0

0 s−1
i

)
]G∩GL2(Fq)

(
si 0
0 si

)
.

(c) Let P (X) = X2 − aX + b ∈ Fqr [X] be a polynomial. Then the inequality
∑

C

|C| ≤ 2|R̃/R|(q2 + q)

holds, where the sum runs over the conjugacy classes C of G with character-
istic polynomial equal to P (X).

Proof. (a) The classification of the finite subgroups of PGL2(Fq) yields that the
group G/(G ∩ F×qr) is either PGL2(Fqu) or PSL2(Fqu) for some u | r. This,
however, can only occur with u = 1, as PSL2(Fqu) is simple. The rest is only a
reformulation.

(b) This follows from (a), since scalar matrices are central.
(c) From (b) we get the inclusion

⊔

C

C ⊆
n⊔

i=1

⊔

D

D
(
si 0
0 si

)
,

whereC runs over the conjugacy classes ofGwith characteristic polynomial equal
to P (X) andD runs over the conjugacy classes ofG∩GL2(Fq) with characteristic
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polynomial equal to X2 − as−1i X + bs−2i (such a conjugacy class is empty if the
polynomial is not in Fq[X]). The group G ∩ GL2(Fq) is normal in GL2(Fq),
as it contains SL2(Fq). Hence, any conjugacy class of GL2(Fq) either has an
empty intersection with G ∩ GL2(Fq) or is a disjoint union of conjugacy classes
of G ∩ GL2(Fq). Consequently, by Lemma 1, the disjoint union

⊔
DD

(
si 0
0 si

)
is

equal to one of

(i) [Ua,b]GL2(Fq)

(
si 0
0 si

)
,

(ii) [Vx,y]GL2(Fq)

(
si 0
0 si

)
or

(iii) [Sa]GL2(Fq)

(
si 0
0 si

)
t [Ta]GL2(Fq)

(
si 0
0 si

)
.

Still by Lemma 1, the first set contains q2+q, the second set q2−q and the third one
q2 elements. Hence, the set

⊔
C C contains at most 2|R̃/R|(q2 + q) elements.

3 Proof
The proof of Theorem 1 relies on the following important theorem by Ribet,
which, roughly speaking, says that the image of the mod ` Galois representation
attached to a fixed newform is as big as it can be for almost all primes `.

Theorem 2 (Ribet). Let f be a Hecke eigenform of weight k ≥ 2, level N and
Dirichlet character χ : (Z/NZ)× → C×. Suppose that f does not have CM. Let
Ef and Ff be as in Theorem 1 and denote by OEf

and OFf
the corresponding

rings of integers.
There exists an abelian extension K/Q such that for almost all prime num-

bers ` the following statement holds:

Let L̃ be a prime ideal of OEf
dividing `. Put L = L̃ ∩ OFf

and
OFf

/L ∼= F. Consider the residual Galois representation

ρf, eL : Gal(Q/Q)→ GL2(OEf
/L̃)

attached to f . Then the image ρf, eL(Gal(Q/K)) is equal to

{g ∈ GL2(F) : det(g) ∈ F×(k−1)` }.
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Proof. It suffices to take Ribet [R85, Thm. 3.1] mod L̃. Note that Ff is the
field EΓ

f . To see this, one checks immediately that Ff ⊆ EΓ
f with Γ the group

of the field automorphisms associated with the inner twists as in [R80, §3]. On
the other hand, let σ be a field embedding Ef → C which is the identity on Ff ,
i.e., on an(f)2

χ(n)
for all n with (n,N) = 1. Then σ(an(f))2

an(f)2
= σ(χ(n))

χ(n)
is a root of unity,

and, thus, so is ε(n) = σ(an(f))
an(f)

. This defines a Dirichlet character ε by which f
has an inner twist. Hence, σ ∈ Γ and Ff = EΓ

f .
Ribet does not say explicitly that K/Q is abelian, but this follows since it is a

composite of abelian extensions of K, which are each cut out by a character.

Remark 1. The field Ff defined in Theorem 1 is invariant under twisting. More
precisely, let ε be any Dirichlet character and consider the twisted modular form
f ⊗ ε, the Dirichlet character of which is χε2. Then the Fourier coefficients satisfy
an(f ⊗ ε) = an(f)ε(n) and, thus, an(f⊗ε)2

χ(n)ε(n)2
= an(f)2

χ(n)
.

Remark 2. If f in Theorem 1 does not have any nontrivial inner twists, then
K = Q and Ff = Ef , since Ff = EΓ

f with Γ the group of field automorphisms
associated with the inner twists (see the proof of Theorem 2).

Theorem 3. Let f be a non-CM newform of weight k ≥ 2, level N and Dirichlet
character χ. Let Ff be as in Theorem 1 and let L ⊂ Ff be any proper subfield.
Then the set {

p prime :
ap(f)

2

χ(p)
∈ L

}

has density zero.

Proof. Let L ( Ff be a proper subfield and OL its integer ring. We define the set

S := {L ⊂ OFf
prime ideal : [OFf

/L : OL/(L ∩ L)] ≥ 2}.

Notice that this set is infinite. For, if it were finite, then all but finitely many
primes would split completely in the extension Ff/L, which is not the case by
Chebotarev’s density theorem.

Let L ∈ S be any prime, ` its residue characteristic and L̃ a prime of OEf

lying over L. Put Fq = OL/(L ∩ L), Fqr = OFf
/L and Fqrs = OEf

/L̃. We
have r ≥ 2. Let W be the subgroup of F×qrs consisting of the values of χ mod-
ulo L̃; its size |W | is less than or equal to |(Z/NZ)×|. Let R = F×(k−1)` be
the subgroup of (k − 1)st powers of elements in the multiplicative group F×` and
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let R̃ = 〈R,W 〉 ⊂ F×qrs . The size of R̃ is less than or equal to |R| · |W |. Let

H = {g ∈ GL2(Fqr) : det(g) ∈ R} and G = Gal(Q
ker ρ

f, eL/Q). By Galois the-
ory, G can be identified with the image of the residual representation ρf, eL, and we
shall make this identification from now on. By Theorem 2 we have the inclusion
of groups

H ⊆ G ⊆ {g ∈ GL2(Fqrs) : det(g) ∈ R̃}
with H being normal in G.

If C is a conjugacy class of G, by Chebotarev’s density theorem the density of

{p prime : [ρf, eL(Frobp)]G = C}
equals |C|/|G|. We consider the set

ML :=
⊔

C

{p prime : [ρf, eL(Frobp)]G = C} ⊇
{
p prime :

(
ap(f)2

χ(p)

)
∈ Fq

}
,

where the reduction modulo L of an element x ∈ OFf
is denoted by x and C runs

over the conjugacy classes of G with characteristic polynomials equal to some
X2 − aX + b ∈ Fqrs [X] such that

a2 ∈ {t ∈ Fqrs : ∃u ∈ Fq ∃w ∈ W : t = uw}

and automatically b ∈ R̃. The set ML has the density δ(ML) =
∑

C
|C|
|G| with C as

before. There are at most 2q|W |2 · |R| such polynomials. We are now precisely in
the situation to apply Prop. 1, Part (c), which yields the inequality

δ(ML) ≤
4|W |3q(q2r + qr)

(q3r − qr) = O

(
1

qr−1

)
≤ O

(
1

q

)
,

where for the denominator we used |G| ≥ |H| = |R| · | SL2(Fqr)|.
Since q is unbounded for L ∈ S, the intersection M :=

⋂
L∈S ML is a set

having a density and this density is 0. The inclusion
{
p prime :

ap(f)
2

χ(p)
∈ L

}
⊆M

finishes the proof.

Proof of Theorem 1. To obtain (a), it suffices to apply Theorem 3 to each of the
finitely many sub-extension of Ff . (b) follows from (a) by Remark 2 and the
fact that χ must take values in {±1}, as otherwise Ef would be a CM-field and
complex conjugation would give a nontrivial inner twist.
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4 Reducibility of Hecke polynomials: questions
Motivated by a conjecture of Maeda, there has been some speculation that for ev-
ery integer k and prime number p, the characteristic polynomial of Tp acting on
Sk(1) is irreducible. See, for example, [FJ02], which verifies this for all k < 2000
and p < 2000. The most general such speculation might be the following ques-
tion: if f is a non-CM newform of level N ≥ 1 and weight k ≥ 2 such that
some ap(f) generates the field Ef = Q(an(f) : n ≥ 1), do all but finitely many
prime-indexed Fourier coefficients ap(f) have irreducible characteristic polyno-
mial? The answer in general is no. An example is given by the newform in
level 63 and weight 2 that has an inner twist by

( ·
4

)
. Also for non-CM newforms

of weight 2 without nontrivial inner twists such that [Ef : Q] = 2, we think that
the answer is likely no.

Let f ∈ Sk(Γ0(N)) be a newform of weight k and level N . The degree of
f is the degree of the field Ef , and we say that f is a reducible newform if the
characteristic polynomial of ap(f) is reducible for infinitely many primes p.

For each even weight k ≤ 12 and degree d = 2, 3, 4, we used [SAGE] to find
newforms f of weight k and degree d. For each of these forms, we computed the
reducible primes p < 1000, i.e., the primes such that the characteristic polynomial
of ap(f) is reducible. The result of this computation is given in Table 1. Table 2
contains the number of reducible primes p < 10000 for the first 20 newforms of
degree 2 and weight 2. This data inspires the following question.

Question 1. If f ∈ S2(Γ0(N)) is a newform of degree 2, is f necessarily re-
ducible? That is, are there infinitely many primes p such that ap(f) ∈ Z, or
equivalently, such that the characteristic polynomial of ap(f) is reducible?

Tables 4–6 contain additional data about the first few newforms of given de-
gree and weight, which may suggest other similar questions. In particular, Table 4
contains data for all primes up to 106 for the first degree 2 form f withL(f, 1) 6= 0,
and for the first degree 2 form g with L(g, 1) = 0. We find that there are 386
primes < 106 with ap(f) ∈ Z (i.e., has reducible characteristic polynomial), and
309 with ap(g) ∈ Z.

Question 2. If f ∈ S2(Γ0(N)) is a newform of degree 2, can the asymptotic
behaviour of the function

N(x) := #{p prime : p < x, ap(f) ∈ Z}
be described as a function of x?

The authors intend to investigate these questions in a subsequent paper.
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Table 1: Counting Reducible Characteristic Polynomials
k d N reducible p < 1000
2 2 23 13, 19, 23, 29, 43, 109, 223, 229, 271, 463, 673, 677, 883, 991
2 3 41 17, 41
2 4 47 47
4 2 11 11
4 3 17 17
4 4 23 23
6 2 7 7
6 3 11 11
6 4 17 17
8 2 5 5
8 3 17 17
8 4 11 11
10 2 5 5
10 3 7 7
10 4 13 13
12 2 5 5
12 3 7 7
12 4 21 3, 7

Table 2: First 20 Newforms of Degree 2 and Weight 2
k d N #{reducible p < 10000}
2 2 23 47
2 2 29 42
2 2 31 78
2 2 35 48
2 2 39 71
2 2 43 43
2 2 51 64
2 2 55 95
2 2 62 77
2 2 63 622 (inner twist by

( ·
4

)
)

k d N #{reducible p < 10000}
2 2 65 43
2 2 65 90
2 2 67 51
2 2 67 19
2 2 68 53
2 2 69 47
2 2 73 43
2 2 73 55
2 2 74 52
2 2 74 21
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Table 3: Newforms 23a and 67b: values of ψ(x) = #{reducible p < x · 105}
k d N ran 1 2 3 4 5 6 7 8 9 10
2 2 23 0 127 180 210 243 277 308 331 345 360 386
2 2 67 1 111 159 195 218 240 257 276 288 301 309

Table 4: First 5 Newforms of Degrees 3, 4 and Weight 2
k d N reducible p < 10000
2 3 41 17, 41
2 3 53 13, 53
2 3 61 61, 2087
2 3 71 23, 31, 71, 479,

647, 1013, 3181
2 3 71 13, 71, 509, 3613

k d N reducible p < 10000
2 4 47 47
2 4 95 5, 19
2 4 97 97
2 4 109 109, 4513
2 4 111 3, 37

Table 5: First 5 Newforms of Degrees 2, 3 and Weight 4
k d N reducible p < 1000
4 2 11 11
4 2 13 13
4 2 21 3, 7
4 2 27 3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103,

109, 127, 139, 151, 157, 163, 181, 193, 199, 211,

223, 229,241, 271, 277, 283, 307, 313, 331, 337,

349, 367, 373, 379, 397, 409, 421, 433, 439, 457,

463, 487, 499, 523, 541, 547, 571, 577, 601, 607,

613, 619, 631, 643, 661, 673, 691, 709, 727, 733,

739, 751, 757, 769, 787, 811, 823, 829, 853, 859,

877, 883, 907, 919, 937, 967, 991, 997

(has inner twists)
4 2 29 29

k d N reducible p < 1000
4 3 17 17
4 3 19 19
4 3 35 5, 7
4 3 39 3, 13
4 3 41 41
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Table 6: Newforms on Γ0(389) of Weight 2
k d N reducible p < 10000
2 1 389 none (degree 1 polynomials are all irreducible)
2 2 389 5, 11, 59, 97, 157, 173, 223, 389, 653, 739, 859, 947, 1033, 1283, 1549, 1667, 2207, 2417, 2909, 3121, 4337,

5431, 5647, 5689, 5879, 6151, 6323, 6373, 6607, 6763, 7583, 7589, 8363, 9013, 9371, 9767

2 3 389 7, 13, 389, 503, 1303, 1429, 1877, 5443
2 6 389 19, 389
2 20 389 389
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Introduction

Sage (see http://sagemath.org) is a comprehensive mathematical software
system for computations in many areas of pure and applied mathematics. We
program Sage using the mainstream programming language Python (see http:

//python.org), or its compiled variant Cython. It is also very easy to efficiently
use code written in C/C++ from Sage.

The author of this article started the Sage project in 2005. Sage is free
and open source, meaning you can change any part of Sage and redistribute the
result without having to pay any license fees, and Sage can also leverage the
power of commercial mathematical software such as Magma and Mathematica,
if you happen to have access to those closed source commercial systems.

This paper assumes no prior knowledge of either Python or Sage. Our goal is
to help number theorists do computations involving number fields and modular
forms using Sage.

As you read this article, please try every example in Sage, and make sure
things works as I claim, and do all of the exercises. Moreover, you should
experiment by typing in similar examples and checking that the output you get
agrees with what you expect.

To use Sage, install it on your computer, and use either the command line
or start the Sage notebook by typing notebook() at the command line.

We show Sage sessions as follows:

sage: factor(123456)

2^6 * 3 * 643

This means that if you type factor(123456) as input to Sage, then you’ll get
2^6 * 3 * 643 as output. If you’re using the Sage command line, you type
factor(123456) and press enter; if you’re using the Sage notebook via your
web browser, you type factor(123456) into an input cell and press shift-enter;
in the output cell you’ll see 2^6 * 3 * 643.

After trying the factor command in the previous paragraph (do this now!),
you should try factoring some other numbers.

Exercise 0.1. What happens if you factor a negative number? a rational
number?

You can also draw both 2d and 3d pictures using Sage. For example, the
following input plots the number of prime divisors of each positive integer up
to 500.

sage: line([(n, len(factor(n))) for n in [1..500]])

2



And, this example draws a similar 3d plot:

sage: v = [[len(factor(n*m)) for n in [1..15]] for m in [1..15]]

sage: list_plot3d(v, interpolation_type=’nn’)

The main difference between Sage and Pari is that Sage is vastly larger than
Pari with a much wider range of functionality, and has many more datatypes
and much more structured objects. Sage in fact includes Pari, and a typical Sage
install takes nearly a gigabyte of disk space, whereas a typical Pari install is much
more nimble, using only a few megabytes. There are many number-theoretic
algorithms that are included in Sage, which have never been implemented in
Pari, and Sage has 2d and 3d graphics which can be helpful for visualizing
number theoretic ideas, and a graphical user interface. Both Pari and Sage are
free and open source, which means anybody can read or change anything in
either program, and the software is free.

The biggest difference between Sage and Magma is that Magma is closed
source, not free, and difficult for users to extend. This means that most of
Magma cannot be changed except by the core Magma developers, since Magma
itself is well over two million lines of compiled C code, combined with about
a half million lines of interpreted Magma code (that anybody can read and
modify). In designing Sage, we carried over some of the excellent design ideas
from Magma, such as the parent, element, category hierarchy.

Any mathematician who is serious about doing extensive computational work
in algebraic number theory and arithmetic geometry is strongly urged to become
familiar with all three systems, since they all have their pros and cons. Pari
is sleek and small, Magma has much unique functionality for computations in
arithmetic geometry, and Sage has a wide range of functionality in most areas
of mathematics, a large developer community, and much unique new code.

1 Number Fields

In Sage, we can create the number field Q( 3
√

2) as follows.

sage: K.<alpha> = NumberField(x^3 - 2)

The above creates two Sage objects, K and α. Here K “is” (isomorphic to) the
number field Q( 3

√
2), as we confirm below:

sage: K

Number Field in alpha with defining polynomial x^3 - 2

and α is a root of x3−2, so α is an abstract choice of 3
√

2 (no specific embedding
of the number field K into C is chosen by default in Sage-3.1.2):

sage: alpha^3

2

sage: (alpha+1)^3

3*alpha^2 + 3*alpha + 3
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Note that we did not define x above before using it. You could “break” the
above example by redefining x to be something funny:

sage: x = 1

sage: K.<alpha> = NumberField(x^3 - 2)

Traceback (most recent call last):

...

TypeError: polynomial (=-1) must be a polynomial.

The Traceback above indicates that there was an error. Potentially lots of de-
tailed information about the error (a “traceback”) may be given after the word
Traceback and before the last line, which contains the actual error messages.

Important: whenever you use Sage and get a big error, look at the last line
for the actual error, and only look at the rest if you are feeling adventurous. In
the notebook, the part indicated by ... above is not displayed; to see it, click
just to the left of the word Traceback and the traceback will appear.

If you redefine x as above, but need to define a number field using the
indeterminate x, you have several options. You can reset x to its default value
at the start of Sage, you can redefine x to be a symbolic variable, or you can
define x to be a polynomial indeterminant (a polygen):

sage: reset(’x’)

sage: x

x

sage: x = 1

sage: x = var(’x’)

sage: x

x

sage: x = 1

sage: x = polygen(QQ, ’x’)

sage: x

x

sage: x = 1

sage: R.<x> = PolynomialRing(QQ)

sage: x

x

One you have created a number field K, type K.[tab key] to see a list of
functions. Type, e.g., K.Minkowski_embedding?[tab key] to see help on the
Minkowski_embedding command. To see source code, type K.Minkowski_embedding??[tab key].

sage: K.<alpha> = NumberField(x^3 - 2)

sage: K.[tab key]

1.1 Symbolic Expressions

Another natural way for us to create certain number fields is to create a symbolic
expression and adjoin it to the rational numbers. Unlike Pari and Magma (and
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like Mathematica and Maple), Sage also supports manipulation of symbolic
expressions and solving equations, without defining abstract structures such as
a number fields. For example, we can define a variable a =

√
2 as an abstract

symbolic object by simply typing a = sqrt(2). When we type parent(a)

below, Sage tells us the mathematical object that it views a as being an element
of; in this case, it’s the ring of all symbolic expressions.

sage: a = sqrt(2)

sage: parent(a)

Symbolic Ring

In particular, typing sqrt(2) does not numerically extract an approximation to√
2, like it would in Pari or Magma. We illustrate this below by calling Pari (via

the gp interpreter) and Magma directly from within Sage. After we evaluate
the following two input lines, copies of GP/Pari and Magma are running, and
there is a persistent connection between Sage and those sessions.

sage: gp(’sqrt(2)’)

1.414213562373095048801688724

sage: magma(’Sqrt(2)’) # optional

1.41421356237309504880168872421

You probably noticed a pause when evaluated the second line as Magma started
up. Also, note the # optional comment, which indicates that the line won’t
work if you don’t have Magma installed.

Incidentally, if you want to numerically evaluate
√

2 in Sage, just give the
optional prec argument to the sqrt function, which takes the required number
of bits (binary digits) of precision.

sage: sqrt(2, prec=100)

1.4142135623730950488016887242

It’s important to note in computations like this that there is not an a priori
guarantee that prec bits of the answer are all correct. Instead, what happens
is that Sage creates the number 2 as a floating point number with 100 bits of
accuracy, then asks Paul Zimmerman’s MPFR C library to compute the square
root of that approximate number.

We return now to our symbolic expression a =
√

2. If you ask to square
a + 1 you simply get the formal square. To expand out this formal square, we
use the expand command.

sage: a = sqrt(2)

sage: (a+1)^2

(sqrt(2) + 1)^2

sage: expand((a+1)^2)

2*sqrt(2) + 3
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Given any symbolic expression for which Sage can computes its minimal
polynomial, you can construct the number field obtained by adjoining that
expression to Q. The notation is quite simple – just type QQ[a] where a is
the symbolic expression.

sage: a = sqrt(2)

sage: K.<b> = QQ[a]

sage: K

Number Field in sqrt2 with defining polynomial x^2 - 2

sage: b

sqrt2

sage: (b+1)^2

2*sqrt2 + 3

sage: QQ[a/3 + 5]

Number Field in a with defining polynomial x^2 - 10*x + 223/9

You can’t create the number field Q(a) in Sage by typing QQ(a), which has
a very different meaning in Sage. It means “try to create a rational number
from a.” Thus QQ(a) in Sage is the analogue of QQ!a in Magma (Pari has no
notion of rings such as QQ).

sage: a = sqrt(2)

sage: QQ(a)

Traceback (most recent call last):

...

TypeError: unable to convert sqrt(2) to a rational

In general, if X is a ring, or vector space or other “parent structure” in Sage,
and a is an element, type X(a) to make an element of X from a. For example,
if X is the finite field of order 7, and a = 2/5 is a rational number, then X(a) is
the finite field element 6 (as a quick exercise, check that this is mathematically
the correct interpretation).

sage: X = GF(7); a = 2/5

sage: X(a)

6

As a slightly less trivial illustration of symbolic manipulation, consider the
cubic equation

x3 +
√

2x+ 5 = 0. (1.1)

In Sage, we can create this equation, and find an exact symbolic solution.

sage: x = var(’x’)

sage: eqn = x^3 + sqrt(2)*x + 5 == 0

sage: a = solve(eqn, x)[0].rhs()

The first line above makes sure that the symbolic variable x is defined, the
second creates the equation eqn, and the third line solves eqn for x, extracts
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the first solution (there are three), and takes the right hand side of that solution
and assigns it to the variable a.

To see the solution nicely typeset, use the show command:

sage: show(a)

{{\left(...

(√
8
√

2 + 675

6
√

3
− 5

2

) 1
3
(
−
√

3i

2
− 1

2

)
−

√
2
(√

3i
2 − 1

2

)

3

(√
8
√

2+675

6
√

3
− 5

2

) 1
3

You can also see the latex needed to paste a into a paper by typing latex(a).
The latex command works on most Sage objects.

sage: latex(a)

{{\left( \frac{\sqrt{ {8 \sqrt{ 2 }} ...

Next, we construct the number field obtained by adjoining the solution a to
Q. Notice that the minimal polynomial of the root is x6 + 10x3 − 2x2 + 25.

sage: K.<b> = QQ[a]

sage: K

Number Field in a with defining

polynomial x^6 + 10*x^3 - 2*x^2 + 25

sage: a.minpoly()

x^6 + 10*x^3 - 2*x^2 + 25

sage: b.minpoly()

x^6 + 10*x^3 - 2*x^2 + 25

We can now compute interesting invariants of the number field K:

sage: K.class_number()

5

sage: K.galois_group().order()

72

1.2 Galois Groups

We can compute the Galois group of the Galois closure as an abstract “Pari
group” using the galois_group function, which by default calls Pari (http:
//pari.math.u-bordeaux.fr/). You do not have to worry about installing
Pari, since Pari is part of Sage. In fact, despite appearances much of the difficult
algebraic number theory in Sage is actually done by the Pari C library (be sure
to also cite Pari in papers that use Sage).

sage: K.<alpha> = NumberField(x^3 - 2)

sage: G = K.galois_group()

sage: G

Galois group PARI group [6, -1, 2, "S3"] of degree 3 of the

Number Field in alpha with defining polynomial x^3 - 2
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We can find out more about G, too:

sage: G.order()

6

We compute two more Galois groups of degree 5 extensions, and see that
one has Galois group S5, so is not solvable by radicals:

sage: NumberField(x^5 - 2, ’a’).galois_group()

Galois group PARI group [20, -1, 3, "F(5) = 5:4"] of

degree 5 of the Number Field in a with defining

polynomial x^5 - 2

sage: NumberField(x^5 - x + 2, ’a’).galois_group()

Galois group PARI group [120, -1, 5, "S5"] of degree 5 of

the Number Field in a with defining polynomial x^5 - x + 2

Recent versions of Magma have an algorithm for computing Galois groups
that in theory applies when the input polynomial has any degree. There are no
open source implementation of this algorithm (as far as I know). If you have
Magma, you can use this algorithm from Sage by calling the galois_group

function and giving the algorithm=’magma’ option.

sage: K.<a> = NumberField(x^3 - 2)

sage: K.galois_group(algorithm=’magma’) # optional

verbose...

Galois group Transitive group number 2 of degree 3 of

the Number Field in a with defining polynomial x^3 - 2

We emphasize that the above example should not work if you don’t have Magma.
It is also possible to work explicitly with the group of automorphisms of a

field (though the link in Sage between abstract groups and automorphisms of
fields is currently poor1). For example, here we first define Q( 3

√
2), then compute

its Galois closure, which we represent as Q(b), where b6 + 40b3 + 1372 = 0.
Then we compute the automorphism group of the field L, and explicitly list its
elements.

sage: K.<a> = NumberField(x^3 - 2)

sage: L.<b> = K.galois_closure()

sage: L

Number Field in b with defining polynomial x^6 + 40*x^3 + 1372

sage: G = Hom(L, L)

sage: G

Automorphism group of Number Field in b ...

sage: G.list()

[

Ring endomorphism of Number Field in b ...

Defn: b |--> b,

Ring endomorphism of Number Field in b ...
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Defn: b |--> 1/36*b^4 + 1/18*b,

...

Ring endomorphism of Number Field in b ...

Defn: b |--> -2/63*b^4 - 31/63*b

]

You can explicitly apply any of the automorphisms above to any elements of L.

sage: phi = G.list()[1]

sage: phi

Ring endomorphism of Number Field in b ...

Defn: b |--> 1/36*b^4 + 1/18*b

sage: phi(b^2 + 2/3*b)

-1/36*b^5 + 1/54*b^4 - 19/18*b^2 + 1/27*b

You can also enumerate all complex embeddings of a number field:

sage: K.complex_embeddings()

[

Ring morphism:

From: Number Field in a with defining polynomial x^3 - 2

To: Complex Double Field

Defn: a |--> -0.629960524947 - 1.09112363597*I,

Ring morphism:

From: Number Field in a with defining polynomial x^3 - 2

To: Complex Double Field

Defn: a |--> -0.629960524947 + 1.09112363597*I,

Ring morphism:

From: Number Field in a with defining polynomial x^3 - 2

To: Complex Double Field

Defn: a |--> 1.25992104989

]

1.3 Class Numbers and Class Groups

The class group CK of a number field K is the group of fractional ideals of the
maximal order R of K modulo the subgroup of principal fractional ideals. One
of the main theorems of algebraic number theory asserts that CK is a finite
group. For example, the quadratic number field Q(

√
−23) has class number 3,

as we see using the Sage class number command.

sage: L.<a> = NumberField(x^2 + 23)

sage: L.class_number()

3

There are only 9 quadratic imaginary field Q(
√
D) that have class number

1:
D = −3,−4,−7,−8,−11,−19,−43,−67,−163.
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To find this list using Sage, we first experiment with making lists in Sage. For
example, typing [1..10] makes the list of integers between 1 and 10.

sage: [1..10]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

We can also make the list of odd integers between 1 and 11, by typing [1,3,..,11],
i.e., by giving the second term in the arithmetic progression.

sage: [1,3,..,11]

[1, 3, 5, 7, 9, 11]

Applying this idea, we make the list of negative numbers from −1 down to −10.

sage: [-1,-2,..,-10]

[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10]

The first two lines below makes a list v of every D from −1 down to −200 such
that D is a fundamental discriminant (the discriminant of a quadratic imaginary
field). Note that you will not see the ... in the output below; this ... notation
just means that part of the output is omitted below.

sage: w = [-1,-2,..,-200]

sage: v = [D for D in w if is_fundamental_discriminant(D)]

sage: v

[-3, -4, -7, -8, -11, -15, -19, -20, ..., -195, -199]

Finally, we make the list of D in our list v such that the quadratic number field
Q(
√
D) has class number 1. Notice that QuadraticField(D) is a shorthand for

NumberField(x^2 - D).

sage: [D for D in v if QuadraticField(D,’a’).class_number()==1]

[-3, -4, -7, -8, -11, -19, -43, -67, -163]

Of course, we have not proved that this is the list of all negative D so that
Q(
√
D) has class number 1.

A frustrating open problem is to prove that there are infinitely many number
fields with class number 1. It is quite easy to be convinced that this is prob-
ably true by computing a bunch of class numbers of real quadratic fields. For
example, over 58 percent of the real quadratic number fields with discriminant
D < 1000 have class number 1!

sage: w = [1..1000]

sage: v = [D for D in w if is_fundamental_discriminant(D)]

sage: len(v)

302

sage: len([D for D in v if QuadraticField(D,’a’).class_number() == 1])

176

sage: 176.0/302

0.582781456953642
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For more intuition about what is going on, read about the Cohen-Lenstra heuris-
tics.

Sage can also compute class numbers of extensions of higher degree, within
reason. Here we use the shorthand CyclotomicField(n) to create the number
field Q(ζn).

sage: CyclotomicField(7)

Cyclotomic Field of order 7 and degree 6

sage: for n in [2..15]: print n, CyclotomicField(n).class_number()

2 1

3 1

...

15 1

In the code above, the notation for n in [2..15]: ... means “do ... for n
equal to each of the integers 2, 3, 4, . . . , 15.”

Exercise 1.1. Compute what is omitted (replaced by ...) in the output of the
previous example.

Computations of class numbers and class groups in Sage is done by the Pari
C library, and unlike in Pari, by default Sage tells Pari not to assume any conjec-
tures. This can make some commands vastly slower than they might be directly
in Pari, which does assume unproved conjectures by default. Fortunately, it is
easy to tell Sage to be more permissive and allow Pari to assume conjectures,
either just for this one call or henceforth for all number field functions. For
example, with proof=False it takes only a few seconds to verify, modulo the
conjectures assumed by Pari, that the class number of Q(ζ23) is 3.

sage: CyclotomicField(23).class_number(proof=False)

3

Exercise 1.2. What is the smallest n such that Q(ζn) has class number bigger
than 1?

In addition to computing class numbers, Sage can also compute the group
structure and generators for class groups. For example, the quadratic field
Q(
√
−30) has class group C = (Z/2Z)⊕2, with generators the ideal classes

containing (5,
√
−30) and (3,

√
−30).

sage: K.<a> = QuadraticField(-30)

sage: C = K.class_group()

sage: C

Class group of order 4 with structure C2 x C2 of Number Field

in a with defining polynomial x^2 + 30

sage: category(C)

Category of groups

sage: C.gens()

[Fractional ideal class (5, a), Fractional ideal class (3, a)]
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In Sage, the notation C.i means “the ith generator of the object C,” where
the generators are indexed by numbers 0, 1, 2, . . . . Below, when we write C.0 *

C.1, this means “the product of the 0th and 1st generators of the class group
C.”

sage: K.<a> = QuadraticField(-30)

sage: C = K.class_group()

sage: C.0

Fractional ideal class (5, a)

sage: C.0.ideal()

Fractional ideal (5, a)

sage: I = C.0 * C.1

sage: I

Fractional ideal class (2, a)

Next we find that the class of the fractional ideal (2,
√
−30 + 4/3) is equal

to the ideal class I.

sage: A = K.ideal([2, a+4/3])

sage: J = C(A)

sage: J

Fractional ideal class (2/3, 1/3*a)

sage: J == I

True

Unfortunately, there is currently no Sage function that writes a fractional
ideal class in terms of the generators for the class group.

1.4 Orders in Number Fields

An order in a number field K is a subring of K whose rank over Z equals the
degree of K. For example, if K = Q(

√
−1), then Z[7i] is an order in K. A good

first exercise is to prove that every element of an order is an algebraic integer.

sage: K.<I> = NumberField(x^2 + 1)

sage: R = K.order(7*I)

sage: R

Order in Number Field in I with defining polynomial x^2 + 1

sage: R.basis()

[1, 7*I]

Using the discriminant command, we compute the discriminant of this
order:

sage: factor(R.discriminant())

-1 * 2^2 * 7^2

You can give any list of elements of the number field, and it will generate
the smallest ring R that contains them.

12



sage: K.<a> = NumberField(x^4 + 2)

sage: K.order([12*a^2, 4*a + 12]).basis()

[1, 4*a, 4*a^2, 16*a^3]

If R isn’t of rank equal to the degree of the number field (i.e., R isn’t an order),
then you’ll get an error message.

sage: K.order([a^2])

Traceback (most recent call last):

...

ValueError: the rank of the span of gens is wrong

We can also compute the maximal order, using the maxima order command,
which behind the scenes finds an integral basis using Pari’s nfbasis command.
For example, Q( 4

√
2) has maximal order Z[ 4

√
2], and if α is a root of x3 + x2 −

2x+ 8, then Q(α) has maximal order with Z-basis

1,
1

2
a2 +

1

2
a, a2.

sage: K.<a> = NumberField(x^4 + 2)

sage: K.maximal_order().basis()

[1, a, a^2, a^3]

sage: L.<a> = NumberField(x^3 + x^2 - 2*x+8)

sage: L.maximal_order().basis()

[1, 1/2*a^2 + 1/2*a, a^2]

sage: L.maximal_order().basis()[1].minpoly()

x^3 - 2*x^2 + 3*x - 10

There is still much important functionality for computing with non-maximal
orders that is missing in Sage. For example, there is no support at all in Sage
for computing with modules over orders or with ideals in non-maximal orders.

sage: K.<a> = NumberField(x^3 + 2)

sage: R = K.order(3*a)

sage: R.ideal(5)

Traceback (most recent call last):

...

NotImplementedError: ideals of non-maximal orders not

yet supported.

1.5 Relative Extensions

A relative number field L is a number field of the form K(α), where K is a
number field, and an absolute number field is a number field presented in the form
Q(α). By the primitive element theorem, any relative number field K(α) can
be written as Q(β) for some β ∈ L. However, in practice it is often convenient
to view L as K(α). In Section 1.1 we constructed the number field Q(

√
2)(α),
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where α is a root of x3 +
√

2x+ 5, but not as a relative field—we obtained just
the number field defined by a root of x6 + 10x3 − 2x2 + 25.

To construct this number field as a relative number field, first we let K be
Q(
√

2).

sage: K.<sqrt2> = QuadraticField(2)

Next we create the univariate polynomial ring R = K[X]. In Sage, we do this
by typing R.<X> = K[]. Here R.<X> means “create the object R with generator
X” and K[] means a “polynomial ring over K”, where the generator is named
based on the afformentioned X (to create a polynomial ring in two variables
X,Y simply replace R.<X> by R.<X,Y>).

sage: R.<X> = K[]

sage: R

Univariate Polynomial Ring in X over Number Field in sqrt2

with defining polynomial x^2 - 2

Now we can make a polynomial over the number field K = Q(
√

2), and construct
the extension of K obtained by adjoining a root of that polynomial to K.

sage: L.<a> = K.extension(X^3 + sqrt2*X + 5)

sage: L

Number Field in a with defining polynomial X^3 + sqrt2*X + 5...

Finally, L is the number field Q(
√

2)(α), where α is a root of X3 +
√

2α + 5.
We can do now do arithmetic in this number field, and of course include

√
2 in

expressions.

sage: a^3

(-sqrt2)*a - 5

sage: a^3 + sqrt2*a

-5

The relative number field L also has numerous functions, many of which are
by default relative. For example the degree function on L returns the rela-
tive degree of L over K; for the degree of L over Q use the absolute_degree

function.

sage: L.degree()

3

sage: L.absolute_degree()

6

Given any relative number field you can also an absolute number field that is
isomorphic to it. Below we create M = Q(b), which is isomorphic to L, but is
an absolute field over Q.

14



sage: M.<b> = L.absolute_field()

sage: M

Number Field in b with defining

polynomial x^6 + 10*x^3 - 2*x^2 + 25

The structure function returns isomorphisms in both directions between M
and L.

sage: M.structure()

(Isomorphism from Number Field in b ...,

Isomorphism from Number Field in a ...)

In Sage one can create arbitrary towers of relative number fields (unlike in
Pari, where a relative extension must be a single extension of an absolute field).

sage: R.<X> = L[]

sage: Z.<b> = L.extension(X^3 - a)

sage: Z

Number Field in b with defining polynomial

X^3 + (-1)*a over its base field

sage: Z.absolute_degree()

18

Exercise 1.3. Construct the relative number field L = K(
3
√√

2 +
√

3), where
K = Q(

√
2,
√

3).

One shortcoming with relative extensions in Sage is that behind the scenes
all arithmetic is done in terms of a single absolute defining polynomial, and in
some cases this can be very slow (much slower than Magma). Perhaps this could
be fixed by using Singular’s multivariate polynomials modulo an appropriate
ideal, since Singular polynomial arithmetic is extremely flast. Also, Sage has
very little direct support for constructive class field theory, which is a major
motivation for explicit computation with relative orders; it would be good to
expose more of Pari’s functionality in this regard.
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2 A Birds Eye View

We now take a whirlwind tour of some of the number theoretical functionality
of Sage. There is much that we won’t cover here, but this should help give you
a flavor for some of the number theoretic capabilities of Sage, much of which is
unique to Sage.

2.1 Integer Factorization

Bill Hart’s quadratic sieve is included with Sage. The quadratic sieve is the
best algorithm for factoring numbers of the form pq up to around 100 digits. It
involves searching for relations, solving a linear algebra problem modulo 2, then
factoring n using a relation x2 ≡ y2 mod n.

sage: qsieve(next_prime(2^90)*next_prime(2^91), time=True) # not tested

([1237940039285380274899124357, 2475880078570760549798248507],

’14.94user 0.53system 0:15.72elapsed 98%CPU (0avgtext+0avgdata 0maxresident)k’)

Using qsieve is twice as fast as Sage’s general factor command in this example.
Note that Sage’s general factor command does nothing but call Pari’s factor C
library function.

sage: time factor(next_prime(2^90)*next_prime(2^91)) # not tested

CPU times: user 28.71 s, sys: 0.28 s, total: 28.98 s

Wall time: 29.38 s

1237940039285380274899124357 * 2475880078570760549798248507

Obviously, Sage’s factor command should not just call Pari, but nobody has
gotten around to rewriting it yet.

Paul Zimmerman’s GMP-ECM is included in Sage. The elliptic curve fac-
torization (ECM) algorithm is the best algorithm for factoring numbers of the
form n = pm, where p is not “too big”. ECM is an algorithm due to Hendrik
Lenstra, which works by “pretending” that n is prime, chosing a random elliptic
curve over Z/nZ, and doing arithmetic on that curve—if something goes wrong
when doing arithmetic, we factor n.

In the following example, GMP-ECM is over 10 times faster than Sage’s
generic factor function. Again, this emphasizes that Sage’s generic factor com-
mand would benefit from a rewrite that uses GMP-ECM and qsieve.

sage: time ecm.factor(next_prime(2^40) * next_prime(2^300)) # not tested

CPU times: user 0.85 s, sys: 0.01 s, total: 0.86 s

Wall time: 1.73 s

[1099511627791,

2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397533]

sage: time factor(next_prime(2^40) * next_prime(2^300)) # not tested

CPU times: user 23.82 s, sys: 0.04 s, total: 23.86 s

Wall time: 24.35 s

1099511627791 * 2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397533
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2.2 Elliptic Curves

Cremona’s databases of elliptic curves is part of Sage. The curves up to conduc-
tor 10,000 come standard with Sage, and an optional 75MB download gives all
his tables up to conductor 130,000. Type sage -i database cremona ellcurve-20071019

to automatically download and install this extended table.
To use the database, just create a curve by giving

sage: EllipticCurve(’5077a1’)

Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field

sage: C = CremonaDatabase()

sage: C.number_of_curves()

847550

sage: C[37]

{’a’: {’a1’: [[0, 0, 1, -1, 0], 1, 1],

’b1’: [[0, 1, 1, -23, -50], 0, 3], ...

sage: C.isogeny_class(’37b’)

[Elliptic Curve defined by y^2 + y = x^3 + x^2 - 23*x - 50

over Rational Field, ...]

There is also a Stein-Watkins database that contains hundreds of millions of
elliptic curves. It’s over a 2GB download though!

Bryan Birch’s recently had a birthday conference, and I used Sage to draw
the cover of his birthday card by enumerating all optimal elliptic curves of
conductor up to 37, then plotting them with thick randomly colored lines. As
you can see below, plotting an elliptic curve is as simple as calling the plot
method on it. Also, the graphics array command allows us to easily combine
numerous plots into a single graphics object.

sage: v = cremona_optimal_curves([11..37])

sage: w = [E.plot(thickness=10,

rgbcolor=(random(),random(),random())) for E in v]

sage: graphics_array(w, 4, 5).show(axes=False)
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We can use Sage’s interact feature to draw a plot of an elliptic curve modulo
p, with a slider that one drags to change the prime p. The interact feature
of Sage is very helpful for interactively changing parameters and viewing the
results. Type interact? for more help and examples and visit the webpage
http://wiki.sagemath.org/interact.

In the code below we first define the elliptic curve E using the Cremona label
37a. Then we define an interactive function f , which is made interactive using
the @interact Python decorator. Because the default for p is primes(2,500),
the Sage notebook constructs a slider that varies over the primes up to 500.
When you drag the slider and let go, a plot is drawn of the affine Fp points on
the curve EFp

. Of course, one should never plot curves over finite fields, which
makes this even more fun.

E = EllipticCurve(’37a’)

@interact

def f(p=primes(2,500)):

show(plot(E.change_ring(GF(p)),pointsize=30),

axes=False, frame=True, gridlines="automatic",

aspect_ratio=1, gridlinesstyle={’rgbcolor’:(0.7,0.7,0.7)})

Sage includes sea.gp, which is a fast implementation of the SEA (Schoff-
Elkies-Atkin) algorithm for counting the number of points on an elliptic curve
over Fp.

We create the finite field k = Fp, where p is the next prime after 1020. The
next prime command uses Pari’s nextprime function, but proves primality of
the result (unlike Pari which gives only the next probable prime after a number).
Sage also has a next probable prime function.

sage: k = GF(next_prime(10^20))

compute its cardinality, which behind the scenes uses SEA.
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sage: E = EllipticCurve(k.random_element())

sage: E.cardinality() # less than a second

100000000005466254167

To see how Sage chooses when to use SEA versus other methods, type E.cardinality??
and read the source code. As of this writing, it simply uses SEA whenever
p > 1018.

Sage has the world’s best code for computing p-adic regulators of elliptic
curves, thanks to work of David Harvey and Robert Bradshaw. The p-adic
regulator of an elliptic curve E at a good ordinary prime p is the determinant of
the global p-adic height pairing matrix on the Mordell-Weil group E(Q). (This
has nothing to do with local or archimedean heights.) This is the analogue of
the regulator in the Mazur-Tate-Teitelbaum p-adic analogue of the Birch and
Swinnerton-Dyer conjecture.

In particular, Sage implements Harvey’s improvement on an algorithm of
Mazur-Stein-Tate, which builds on Kiran Kedlaya’s Monsky-Washnitzer ap-
proach to computing p-adic cohomology groups.

We create the elliptic curve with Cremona label 389a, which is the curve of
smallest conductor and rank 2. We then compute both the 5-adic and 997-adic
regulators of this curve.

sage: E = EllipticCurve(’389a’)

sage: E.padic_regulator(5, 10)

5^2 + 2*5^3 + 2*5^4 + 4*5^5 + 3*5^6 + 4*5^7 + 3*5^8 + 5^9 + O(5^11)

sage: E.padic_regulator(997, 10)

740*997^2 + 916*997^3 + 472*997^4 + 325*997^5 + 697*997^6

+ 642*997^7 + 68*997^8 + 860*997^9 + 884*997^10 + O(997^11)

Before the new algorithm mentioned above, even computing a 7-adic regulator
to 3 digits of precision was a nontrivial computational challenge. Now in Sage
computing the 100003-adic regulator is routine:

sage: E.padic_regulator(100003,5) # a couple of seconds

42582*100003^2 + 35250*100003^3 + 12790*100003^4 + 64078*100003^5 + O(100003^6)

p-adic L-functions play a central role in the arithmetic study of elliptic
curves. They are p-adic analogues of complex analytic L-function, and their
leading coefficient (at 0) is the analogue of L(r)(E, 1)/ΩE in the p-adic analogue
of the Birch and Swinnerton-Dyer conjecture. They also appear in theorems of
Kato, Schneider, and others that prove partial results toward p-adic BSD using
Iwasawa theory.

The implementation in Sage is mainly due to work of myself, Christian
Wuthrich, and Robert Pollack. We use Sage to compute the 5-adic L-series of
the elliptic curve 389a of rank 2.

sage: E = EllipticCurve(’389a’)

sage: L = E.padic_lseries(5)

sage: L
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5-adic L-series of Elliptic Curve defined

by y^2 + y = x^3 + x^2 - 2*x over Rational Field

sage: L.series(3)

O(5^5) + O(5^2)*T + (4 + 4*5 + O(5^2))*T^2 +

(2 + 4*5 + O(5^2))*T^3 + (3 + O(5^2))*T^4 + O(T^5)

Sage implements code to compute numerous explicit bounds on Shafarevich-
Tate Groups of elliptic curves. This functionality is only available in Sage,
and uses results Kolyvagin, Kato, Perrin-Riou, etc., and unpublished papers of
Wuthrich and me.

sage: E = EllipticCurve(’11a1’)

sage: E.sha().bound() # so only 2,3,5 could divide sha

[2, 3, 5]

sage: E = EllipticCurve(’37a1’) # so only 2 could divide sha

sage: E.sha().bound()

([2], 1)

sage: E = EllipticCurve(’389a1’)

sage: E.sha().bound()

(0, 0)

The (0, 0) in the last output above indicates that the Euler systems results of
Kolyvagin and Kato give no information about finiteness of the Shafarevich-Tate
group of the curve E. In fact, it is an open problem to prove this finiteness,
since E has rank 2, and finiteness is only known for elliptic curves for which
L(E, 1) 6= 0 or L′(E, 1) 6= 0.

Partial results of Kato, Schneider and others on the p-adic analogue of the
BSD conjecture yield algorithms for bounding the p-part of the Shafarevich-Tate
group. These algorithms require as input explicit computation of p-adic L-
functions, p-adic regulators, etc., as explained in Stein-Wuthrich. For example,
below we use Sage to prove that 5 and 7 do not divide the Shafarevich-Tate
group of our rank 2 curve 389a.

sage: E = EllipticCurve(’389a1’)

sage: sha = E.sha()

sage: sha.p_primary_bound(5) # iwasawa theory ==> 5 doesn’t divide sha

0

sage: sha.p_primary_bound(7) # iwasawa theory ==> 7 doesn’t divide sha

0

This is consistent with the Birch and Swinnerton-Dyer conjecture, which pre-
dicts that the Shafarevich-Tate group is trivial. Below we compute this pre-
dicted order, which is the floating point number 1.000000 to some precision.
That the result is a floating point number helps emphasize that it is an open
problem to show that the conjectural order of the Shafarevich-Tate group is even
a rational number in general!

sage: E.sha().an()

1.00000000000000
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2.3 Mordell-Weil Groups and Integral Points

Sage includes both Cremona’s mwrank library and Simon’s 2-descent GP scripts
for computing Mordell-Weil groups of elliptic curves.

sage: E = EllipticCurve([1,2,5,7,17])

sage: E.conductor() # not in the Tables

154907

sage: E.gens() # a few seconds

[(1 : 3 : 1), (67/4 : 507/8 : 1)]

Sage can also compute the torsion subgroup, isogeny class, determine im-
ages of Galois representations, determine reduction types, and includes a full
implementation of Tate’s algorithm over number fields.

Sage has the world’s fastest implementation of computation of all integral
points on an elliptic curve over Q, due to work of Cremona, Michael Mardaus,
and Tobias Nagel. This is also the only free open source implementation avail-
able.

sage: E = EllipticCurve([1,2,5,7,17])

sage: E.integral_points(both_signs=True)

[(1 : -9 : 1), (1 : 3 : 1)]

A very impressive example is the lowest conductor elliptic curve of rank 3, which
has 36 integral points.

sage: E = elliptic_curves.rank(3)[0]

sage: E.integral_points(both_signs=True) # less than 3 seconds

[(-3 : -1 : 1), (-3 : 0 : 1), (-2 : -4 : 1), (-2 : 3 : 1),

...(816 : -23310 : 1), (816 : 23309 : 1)]

The algorithm to compute all integral points involves first computing the Mordell-
Weil group, then bounding the integral points, and listing all integral points
satisfying those bounds. See Cohen’s new GTM 239 for complete details.

The complexity grows exponentially in the rank of the curve. We can do the
above calculation, but with the first known curve of rank 4, and it finishes in
about a minute (and outputs 64 points).

sage: E = elliptic_curves.rank(4)[0]

sage: E.integral_points(both_signs=True) # about a minute

[(-10 : 3 : 1), (-10 : 7 : 1), ...

(19405 : -2712802 : 1), (19405 : 2693397 : 1)]

2.4 Elliptic Curve L-functions

We next compute with the complex L-function

L(E, s) =
∏

p-∆=389

1

1− app−s + pp−2s
·
∏

p|∆=389

1

1− app−s
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of E. Though the above Euler product only defines an analytic function on
the right half plane where Re(s) > 3/2, a deep theorem of Wiles et al. (the
Modularity Theorem) implies that it has an analytic continuation to the
whole complex plane and functional equation. We can evaluate the function L
anywhere on the complex plane using Sage (via code of Tim Dokchitser).

sage: E = EllipticCurve(’389a1’)

sage: L = E.lseries()

sage: L

Complex L-series of the Elliptic Curve defined by

y^2 + y = x^3 + x^2 - 2*x over Rational Field

sage: L(1)

-1.04124792770327e-19

sage: L(1+I)

-0.638409938588039 + 0.715495239204667*I

sage: L(100)

1.00000000000000

We can also compute the Taylor series of L about any point, thanks to Tim
Dokchitser’s code.

sage: E = EllipticCurve(’389a1’)

sage: L = E.lseries()

sage: Ld = L.dokchitser()

sage: Ld.taylor_series(1,4)

-1.28158145691931e-23 + (7.26268290635587e-24)*z + 0.759316500288427*z^2

- 0.430302337583362*z^3 + O(z^4)

The Generalized Riemann Hypothesis asserts that all nontrivial zeros of L(E, s)
are of the form 1 + iy. Mike Rubinstein has written a C++ program that is
part of Sage that can for any n compute the first n values of y such that 1 + iy
is a zero of L(E, s). It also verifies the Riemann Hypothesis for these zeros (I
think). Rubinstein’s program can also do similar computations for a wide class
of L-functions, though not all of this functionality is as easy to use from Sage
as for elliptic curves. Below we compute the first 10 zeros of L(E, s), where E
is still the rank 2 curve 389a.

sage: L.zeros(10)

[0.000000000, 0.000000000, 2.87609907, 4.41689608, 5.79340263,

6.98596665, 7.47490750, 8.63320525, 9.63307880, 10.3514333]

2.5 The Matrix of Frobenius on Hyperelliptic Curves

Sage has a highly optimized implementation of the Harvey-Kedlaya algorithm
for computing the matrix of Frobenius associated to a curve over a finite field.
This is an implementation by David Harvey, which is GPL’d and depends only
on NTL and zn poly (a C library in Sage for fast arithmetic (Z/nZ)[x]).

We import the hypellfrob function and call it on a polynomial over Z.
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sage: from sage.schemes.hyperelliptic_curves.hypellfrob import hypellfrob

sage: R.<x> = PolynomialRing(ZZ)

sage: f = x^5 + 2*x^2 + x + 1; p = 101

sage: M = hypellfrob(p, 1, f); M

[ 0 + O(101) 0 + O(101) 93 + O(101) 62 + O(101)]

[ 0 + O(101) 0 + O(101) 55 + O(101) 19 + O(101)]

[ 0 + O(101) 0 + O(101) 65 + O(101) 42 + O(101)]

[ 0 + O(101) 0 + O(101) 89 + O(101) 29 + O(101)]

We do the same calculation but in Z/1014Z, which gives enough precision to
recognize the exact characteristic polynomial in Z[x] of Frobenius as an element
of the endomorphism ring. This computation is still very fast, taking only a
fraction of a second.

sage: M = hypellfrob(p, 4, f) # about 0.25 seconds

sage: M[0,0]

91844754 + O(101^4)

The characteristic polynomial of Frobenius is x4 + 7x3 + 167x2 + 707x+ 10201,
which determines the ζ function of the curve y2 = f(x).

sage: M.charpoly()

(1 + O(101^4))*x^4 + (7 + O(101^3))*x^3 + (167 + O(101^3))*x^2

+ (707 + O(101^3))*x + (10201 + O(101^4))

2.6 Modular Symbols

Modular symbols play a key role in algorithms for computing with modular
forms, special values of L-functions, elliptic curves, and modular abelian vari-
eties. Sage has the most general implementation of modular symbols available,
thanks to work of myself, Jordi Quer (of Barcelona) and Craig Citro (a stu-
dent of Hida). Moreover, computation with modular symbols is by far my most
favorite part of computational mathematics. There is still a lot of tuning and
optimization work to be done for modular symbols in Sage, in order for it to
be across the board the fastest implementation in the world, since my Magma
implementation is still better in some important cases.

We create the space M of weight 4 modular symbols for a certain congruence
subgroup ΓH(13) of level 13. Then we compute a basis for this space, expressed
in terms of Manin symbols. Finally, we compute the Hecke operator T2 acting
on M , find its characteristic polynomial and factor it. We also compute the
dimension of the cuspidal subspace.

sage: M = ModularSymbols(GammaH(13,[3]), weight=4)

sage: M

Modular Symbols space of dimension 14 for Congruence Subgroup

Gamma_H(13) with H generated by [3] of weight 4 with sign 0

and over Rational Field

sage: M.basis()
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([X^2,(0,1)], [X^2,(0,7)], [X^2,(2,5)], [X^2,(2,8)], [X^2,(2,9)],

[X^2,(2,10)], [X^2,(2,11)], [X^2,(2,12)], [X^2,(4,0)], [X^2,(4,3)],

[X^2,(4,6)], [X^2,(4,8)], [X^2,(4,12)], [X^2,(7,1)])

sage: factor(charpoly(M.T(2)))

(x - 7) * (x + 7) * (x - 9)^2 * (x + 5)^2

* (x^2 - x - 4)^2 * (x^2 + 9)^2

sage: dimension(M.cuspidal_subspace())

10

Sage includes John Cremona’s specialized and insanely fast implementation
of modular symbols for weight 2 and trivial character. We illustrate below
computing the space of modular symbols of level 20014, which has dimension
5005, along with a Hecke operator on this space. The whole computation below
takes only a few seconds; a similar computation takes a few minutes using Sage’s
generic modular symbols code. Moreover, Cremona has done computations at
levels over 200,000 using his library, so the code is known to scale well to large
problems. The new code in Sage for modular symbols is much more general,
but doesn’t scale nearly so well (yet).

sage: M = CremonaModularSymbols(20014) # few seconds

sage: M

Cremona Modular Symbols space of dimension 5005 for

Gamma_0(20014) of weight 2 with sign 0

sage: t = M.hecke_matrix(3) # few seconds

2.7 Enumerating Totally Real Number Fields

As part of his project to enumerate Shimura curves, John Voight has contributed
code to Sage for enumerating totally real number fields. The algorithm isn’t
extremely complicated, but it involves some “inner loops” that have to be coded
to run very quickly. Using Cython, Voight was able to implement exactly the
variant of Newton iteration that he needed for his problem.

The function enumerate totallyreal fields prim(n, B, ...) enumer-
ates without using a database (!) primitive (no proper subfield) totally real
fields of degree n > 1 with discriminant d ≤ B.

We compute the totally real quadratic fields of discriminant ≤ 50. The
calculation below, which is almost instant, is done in real time and is not a
table lookup.

sage: enumerate_totallyreal_fields_prim(2,50)

[[5, x^2 - x - 1], [8, x^2 - 2], [12, x^2 - 3], [13, x^2 - x - 3],

[17, x^2 - x - 4], [21, x^2 - x - 5], [24, x^2 - 6], [28, x^2 - 7],

[29, x^2 - x - 7], [33, x^2 - x - 8], [37, x^2 - x - 9],

[40, x^2 - 10], [41, x^2 - x - 10], [44, x^2 - 11]]

We compute all totally real quintic fields of discriminant ≤ 105. Again, this
is done in real time – it’s not a table lookup!

24



sage: enumerate_totallyreal_fields_prim(5,10^5)

[[14641, x^5 - x^4 - 4*x^3 + 3*x^2 + 3*x - 1],

[24217, x^5 - 5*x^3 - x^2 + 3*x + 1],

[36497, x^5 - 2*x^4 - 3*x^3 + 5*x^2 + x - 1],

[38569, x^5 - 5*x^3 + 4*x - 1],

[65657, x^5 - x^4 - 5*x^3 + 2*x^2 + 5*x + 1],

[70601, x^5 - x^4 - 5*x^3 + 2*x^2 + 3*x - 1],

[81509, x^5 - x^4 - 5*x^3 + 3*x^2 + 5*x - 2],

[81589, x^5 - 6*x^3 + 8*x - 1],

[89417, x^5 - 6*x^3 - x^2 + 8*x + 3]]

2.8 Bernoulli Numbers

From the mathematica website:

“Today We Broke the Bernoulli Record: From the Analyt-
ical Engine to Mathematica
April 29, 2008
Oleksandr Pavlyk, Kernel Technology
A week ago, I took our latest development version of Mathematica,
and I typed BernoulliB[10^7].
And then I waited.
Yesterday—5 days, 23 hours, 51 minutes, and 37 seconds later—I
got the result!”

Tom Boothby did that same computation in Sage, which uses Pari’s bernfrac

command that uses evaluation of ζ and factorial to high precision, and it took
2 days, 12 hours.

Then David Harvey came up with an entirely new algorithm that parallelizes
well. He gives these timings for computing B107 on his machine (it takes 59
minutes, 57 seconds on my 16-core 1.8ghz Opteron box):

PARI: 75 h, Mathematica: 142 h

bernmm (1 core) = 11.1 h, bernmm (10 cores) = 1.3 h

“Running on 10 cores for 5.5 days, I [David Harvey] computed [the
Bernoulli number] Bk for k = 108, which I believe is a new record.
Essentially it’s the multimodular algorithm I suggested earlier on
this thread, but I figured out some tricks to optimise the crap out
of the computation of Bkmodp.”

So now Sage is the fastest in the world for large Bernoulli numbers. The timings
below are on a 16-core 1.8Ghz Opteron box.

sage: w = bernoulli(100000, num_threads=16) # 1.87 seconds

sage: w = bernoulli(100000, algorithm=’pari’) # 28 seconds

25



2.9 Polynomial Arithmetic

Sage uses Bill Hart and David Harvey’s GPL’d Flint C library for arithmetic
in Z[x]. Its main claim to fame is that it is the world’s fastest for polynomial
multiplication, e.g., in the benchmark below it is 3 times faster than NTL and
twice as fast as Magma. Behind the scenes it contains some carefully tuned
discrete Fourier transform code (which I know nearly nothing about).

sage: Rflint = PolynomialRing(ZZ, ’x’)

sage: f = Rflint([ZZ.random_element(2^64) for _ in [1..32]])

sage: g = Rflint([ZZ.random_element(2^64) for _ in [1..32]])

sage: timeit(’f*g’) # random output

625 loops, best of 3: 105 microseconds per loop

sage: Rntl = PolynomialRing(ZZ, ’x’, implementation=’NTL’)

sage: f = Rntl([ZZ.random_element(2^64) for _ in [1..32]])

sage: g = Rntl([ZZ.random_element(2^64) for _ in [1..32]])

sage: timeit(’f*g’) # random output

625 loops, best of 3: 310 microseconds per loop

sage: ff = magma(f); gg = magma(g)

sage: s = ’time v := [%s * %s for _ in [1..10^5]];’%(ff.name(), gg.name())

sage: magma.eval(s) # random output

’Time: 17.120’

sage: (17.120/10^5)*10^(6) # convert to microseconds

171.200000000000

Multivariate polynomial arithmetic in many cases uses Singular in library
mode (Martin Albrecht), which is quite fast. For example, below we do the
Fateman benchmark over the finite field of order 32003.

sage: P.<x,y,z> = GF(32003)[]

sage: p = (x+y+z+1)^20

sage: q = p+1

sage: timeit(’p*q’) # random output

5 loops, best of 3: 384 ms per loop

sage: pp = magma(p); qq = magma(q)

sage: s = ’time w := %s*%s;’%(pp.name(),qq.name())

sage: magma.eval(s)

’Time: 1.480’

Notice that the multiplication takes about four times as long in Magma.

3 Modular Forms

This section is about computing with modular forms, modular symbols, and
modular abelian varieties. Most of the Sage functionality we describe below is
new code written for Sage by myself, Craig Citro, Robert Bradshaw, and Jordi
Quer in consultation with John Cremona. It has much overlap in functionality
with the modular forms code in Magma, which I developed during 1998–2004.
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3.1 Modular Forms and Hecke Operators

A congruence subgroup is a subgroup of the group SL2(Z) of determinant ±1
integer matrices that contains

Γ(N) = Ker(SL2(Z)→ SL2(Z/NZ))

for some positive integer N . Since Γ(N) has finite index in SL2(Z), all con-
gruence subgroups have finite index. The converse is not true, though in many
other settings it is true (see [paper of Serre]).

The inverse image Γ0(N) of the subgroup of upper triangular matrices in
SL2(Z/NZ) is a congruence subgroup, as is the inverse image Γ1(N) of the
subgroup of matrices of the form ( 1 ∗

0 1 ). Also, for any subgroup H ⊂ (Z/NZ)∗,
the inverse image ΓH(N) of the subgroup of SL2(Z/NZ) of all elements of the
form ( a ∗0 d ) with d ∈ H is a congruence subgroup.

We can create each of the above congruence subgroups in Sage, using the
Gamma0, Gamma1, and GammaH commands.

sage: Gamma0(8)

Congruence Subgroup Gamma0(8)

sage: Gamma1(13)

Congruence Subgroup Gamma1(13)

sage: GammaH(11,[2])

Congruence Subgroup Gamma_H(11) with H generated by [2]

The second argument to the GammaH command is a list of generators of the
subgroup H of (Z/NZ)∗.
Sage can compute a list of generators for these subgroups. The algorithm Sage
uses is a straightforward generic procedure that uses coset representatives for the
congruence subgroup (which are easy to enumerate) to obtain a list of generators
[[ref my modular forms book]].

sage: Gamma0(2).gens()

([1 1]

[0 1],

[-1 0]

[ 0 -1],

[ 1 -1]

[ 0 1],

[ 1 -1]

[ 2 -1],

[-1 1]

[-2 1])

sage: len(Gamma1(13).gens())

284

As you can see above, the list of generators Sage computes is unfortunately
large. Improving this would be an excellent Sage development project, which
would involve much beautiful mathematics.
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A modular form on a congruence subgroup Γ of integer weight k is a holo-
morphic function f(z) on the upper half plane

h∗ = {z ∈ C : Im(z) > 0} ∪Q ∪ {i∞}

such that for every matrix
(
a b
c d

)
∈ Γ, we have

f

(
az + b

cz + d

)
= (cz + d)kf(z). (3.1)

A cusp form is a modular form that vanishes at all of the cusps Q ∪ {i∞}.
If Γ contains Γ1(N) for some N , then ( 1 1

0 1 ) ∈ Γ, so (3.1) implies that f(z) =
f(z + 1). This, coupled with the holomorphicity condition, implies that f(z)
has a Fourier expansion

f(z) =
∞∑

n=0

ane
2πinz,

with an ∈ C. We let q = e2πiz, and call f =
∑∞
n=0 anq

n the q-expansion of f .
Henceforth we assume that Γ is either Γ1(N), Γ0(N), or ΓH(N) for some H

and N . The complex vector space Mk(Γ) of all modular forms of weight k on Γ
is a finite dimensional vector space.

We create the space Mk(Γ) in Sage by typing ModularForms(G, k) where
G is the congruence subgroup and k is the weight.

sage: ModularForms(Gamma0(25), 4)

Modular Forms space of dimension 11 for ...

sage: S = CuspForms(Gamma0(25),4, prec=15); S

Cuspidal subspace of dimension 5 of Modular Forms space ...

sage: S.basis()

[

q + q^9 - 8*q^11 - 8*q^14 + O(q^15),

q^2 - q^7 - q^8 - 7*q^12 + 7*q^13 + O(q^15),

q^3 + q^7 - 2*q^8 - 6*q^12 - 5*q^13 + O(q^15),

q^4 - q^6 - 3*q^9 + 5*q^11 - 2*q^14 + O(q^15),

q^5 - 4*q^10 + O(q^15)

]

Sage computes the dimensions of all these spaces using simple arithmetic formu-
las instead of actually computing bases for the spaces in question. In fact, Sage
has the most general collection of modular forms dimension formulas of any
software; type help(sage.modular.dims) to see a list of arithmetic functions
that are used to implement these dimension formulas.

sage: ModularForms(Gamma1(949284), 456).dimension()

11156973844800

sage: a = [dimension_cusp_forms(Gamma0(N),2) for N in [1..25]]; a

[0, 0, ..., 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 0]
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sage: sloane_find(a)

Searching Sloane’s online database...

[[1617,

’Genus of modular group GAMMA_0 (n). Or, genus of

modular curve X_0(n).’,...

Sage doesn’t have simple formulas for dimensions of spaces of modular forms
of weight 1, since such formulas perhaps do not exist.

The space Mk(Γ1(N)) is equipped with an action of (Z/NZ)∗ by diamond
bracket operators 〈d〉, and this induces a decomposition

Mk(Γ1(N)) =
⊕

ε:(Z/NZ)∗→C∗
Mk(N, ε),

where the sum is over all complex characters of the finite abelian group (Z/NZ)∗.
These characters are called Dirichlet characters, which are central in number
theory.

Theorem 3.1. The space Mk(Γ1(N)) has a basis of elements whose q-expansions
f(q) are all elements of Z[[q]].

The factors Mk(N, ε) then have bases whose q-expansions are elements of
R[[q]], where R = Z[ε] is the ring generated over Z by the image of ε. We
illustrate this with N = k = 5 below, where DirichletGroup will be described
later.

sage: CuspForms(DirichletGroup(5).0, 5).basis()

[q + (-zeta4 - 1)*q^2 + (6*zeta4 - 6)*q^3 - ... + O(q^6)]

Use the command DirichletGroup(N,R) to create the group of all Dirichlet
characters of modulus N taking values in the ring R. If R is omited, it defaults
to a cyclotomic field.

sage: G = DirichletGroup(8); G

Group of Dirichlet characters of modulus 8 over Cyclotomic

Field of order 2 and degree 1

sage: v = G.list(); v

[[1, 1], [-1, 1], [1, -1], [-1, -1]]

sage: eps = G.0; eps

[-1, 1]

sage: [eps(3), eps(5)]

[-1, 1]

Sage both represents Dirichlet characters by giving a “matrix”, i.e., the list of
images of canonical generators of (Z/NZ)∗, and as vectors modulo and integer
n. For years, I was torn between these two representations, until J. Quer and
I realized that the best approach is to use both and make it easy to convert
between them.
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sage: parent(eps.element())

Vector space of dimension 2 over Ring of integers modulo 2

Given a Dirichlet character, Sage also lets you compute the associated Jacobi
and Gauss sums, generalized Bernoulli numbers, the conductor, Galois orbit,
etc.

Recall that Dirichlet characters give a decomposition

Mk(Γ1(N)) =
⊕

ε:(Z/NZ)∗→C∗
Mk(N, ε).

Given a Dirichlet character ε we type ModularForms(eps, weight) to cre-
ate the space of modular forms with that character and a given integer weight.
For example, we create the space of forms of weight 5 with the character modulo
8 above that is −1 on 3 and 1 on 5 as follows.

sage: ModularForms(eps,5)

Modular Forms space of dimension 6, character [-1, 1] and

weight 5 over Rational Field

sage: sum([ModularForms(eps,5).dimension() for eps in v])

11

sage: ModularForms(Gamma1(8),5)

Modular Forms space of dimension 11 ...

Exercise 3.2. Compute the dimensions of all spaces M2(37, ε) for all Dirichlet
characters ε.

The space Mk(Γ) is equipped with an action of a commuting ring T of Hecke
operators Tn for n ≥ 1. A standard computational problem in the theory of
modular forms is to compute an explicit basis of q-expansion for Mk(Γ) along
with matrices for the action of any Hecke operator Tn, and to compute the
subspace Sk(Γ) of cusp forms.

sage: M = ModularForms(Gamma0(11),4)

sage: M.basis()

[

q + 3*q^3 - 6*q^4 - 7*q^5 + O(q^6),

q^2 - 4*q^3 + 2*q^4 + 8*q^5 + O(q^6),

1 + O(q^6),

q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + O(q^6)

]

sage: M.hecke_matrix(2)

[0 2 0 0]

[1 2 0 0]

[0 0 9 0]

[0 0 0 9]

We can also compute Hecke operators on the cuspidal subspace.
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sage: S = M.cuspidal_subspace()

sage: S.hecke_matrix(2)

[0 2]

[1 2]

sage: S.hecke_matrix(3)

[ 3 -8]

[-4 -5]

Unfortunately, Sage doesn’t yet implement computation of the Hecke oper-
ators on Mk(Γ1(N)).

sage: M = ModularForms(Gamma1(5),2)

sage: M

Modular Forms space of dimension 3 for Congruence Subgroup

Gamma1(5) of weight 2 over Rational Field

sage: M.hecke_matrix(2)

Traceback (most recent call last):

...

NotImplementedError

However, we can compute Hecke operators on modular symbols for Γ1(N), which
is a T-module that is isomorphic to Mk(Γ1(N)) (see Section 3.2).

sage: ModularSymbols(Gamma1(5),2,sign=1).hecke_matrix(2)

[ 2 1 1]

[ 1 2 -1]

[ 0 0 -1]

3.2 Modular Symbols

Modular symbols are a beautiful piece of mathematics that was developed since
the 1960s by Birch, Manin, Shokorov, Mazur, Merel, Cremona, and others. Not
only are modular symbols a powerful computational tool as we will see, they
have also been used to prove rationality results for special values of L-series,
to construct p-adic L-series, and they play a key role in Merel’s proof of the
uniform boundedness theorem for torsion points on elliptic curves over number
fields.

We view modular symbols as a remarkably flexible computational tool that
provides a single uniform algorithm for computing Mk(N, ε) for any N, ε and
k ≥ 2. There are ways to use computation of those spaces to obtain explicit
basis for spaces of weight 1 and half-integral weight, so in a sense modular
symbols yield everything. There are also generalizations of modular symbols to
higher rank groups, though Sage currently has no code for modular symbols on
higher rank groups.

A modular symbol of weight k, and level N , with character ε is a sum of
terms XiY k−2−i{α, β}, where 0 ≤ i ≤ k − 2 and α, β ∈ P1(Q) = Q ∪ {∞}.
Modular symbols satisfy the relations

XiY k−2−i{α, β}+XiY k−2−i{β, γ}+XiY k−2−i{γ, α} = 0,
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XiY k−2−i{α, β} = −XiY k−2−i{β, α},
and for every γ =

(
a b
c d

)
∈ Γ0(N), we have

(dX − bY )i(−cX + aY )k−2−i{γ(α), γ(β)} = ε(d)XiY k−2−i{α, β}.

The modular symbols spaceMk(N, ε) is the torsion free Q[ε]-module generated
by all sums of modular symbols, modulo the relations listed above. Here Q[ε]
is the ring generated by the values of the character ε, so it is of the form Q[ζm]
for some integer m.

The amazing theorem that makes modular symbols useful is that there is an
explicit description of an action of a Hecke algebra T on Mk(N, ε), and there
is an isomorphism

Mk(N, ε;C)
≈−→Mk(N, ε)⊕ Sk(N, ε).

This means that if modular symbols are computable (they are!), then they can
be used to compute a lot about the T-module Mk(N, ε).

Though Mk(N, ε) as described above is not explicitly generated by finitely
many elements, it is finitely generated. Manin, Shokoruv, and Merel give an
explicit description of finitely many generators (Manin symbols) for this space,
along with all explicit relations that these generators satisfy (see my book). In
particular, if we let

(i, c, d) = [XiY 2−k−i, (c, d)] = (dX − bY )i(−cX + aY )k−2−i{γ(0), γ(∞)},

where γ =
(
a b
c d

)
, then the Manin symbols (i, c, d) with 0 ≤ i ≤ k − 2 and

(c, d) ∈ P1(N) generate Mk(N, ε).
We compute a basis for the space of weight 4 modular symbols for Γ0(11),

then coerce in (2, 0, 1) and (1, 1, 3).

sage: M = ModularSymbols(11,4)

sage: M.basis()

([X^2,(0,1)], [X^2,(1,6)], [X^2,(1,7)], [X^2,(1,8)],

[X^2,(1,9)], [X^2,(1,10)])

sage: M( (2,0,1) )

[X^2,(0,1)]

sage: M( (1,1,3) )

2/7*[X^2,(1,6)] + 1/14*[X^2,(1,7)] - 4/7*[X^2,(1,8)]

+ 3/14*[X^2,(1,10)]

We compute a modular symbols representation for the Manin symbol (2, 1, 6),
and verify this by converting back.

sage: a = M.1; a

[X^2,(1,6)]

sage: a.modular_symbol_rep()

36*X^2*{5/6,1} - 60*X*Y*{5/6,1} + 25*Y^2*{5/6,1}

sage: 36*M([2,5/6,1]) - 60*M([1,5/6,1]) + 25*M([0,5/6,1])

[X^2,(1,6)]
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3.3 Method of Graphs

The Mestre Method of Graphs is an intriguing algorithm for computing the
action of Hecke operators on yet another module X that is isomorphic to
M2(Γ0(N)). The implementation in Sage unfortunately only works when N
is prime; in contrast, my implementation in Magma works when N = pM and
S2(Γ0(M)) = 0.

The matrices of Hecke operators on X are vastly sparser than on any basis
of M2(Γ0(N)) that you are likely to use.

sage: X = SupersingularModule(389); X

Module of supersingular points on X_0(1)/F_389 over Integer Ring

sage: t2 = X.T(2).matrix(); t2[0]

(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

sage: factor(charpoly(t2))

(x - 3) * (x + 2) * (x^2 - 2) * (x^3 - 4*x - 2) * ...

sage: t2 = ModularSymbols(389,sign=1).hecke_matrix(2); t2[0]

(3, 0, -1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 1, -1, 0, 1, 1,

0, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 1, -1, -1)

sage: factor(charpoly(t2))

(x - 3) * (x + 2) * (x^2 - 2) * (x^3 - 4*x - 2) * ...

The method of graphs is also used in computer science to construct expander
graphs with good properties. And it is important in my algorithm for computing
Tamagawa numbers of purely toric modular abelian varieties. This algorithm is
not implemented in Sage yet, since it is only interesting in the case of non-prime
level, as it turns out.

3.4 Level One Modular Forms

The modular form
∆ = q

∏
(1− qn)24 =

∑
τ(n)qn

is perhaps the world’s most famous modular form. We compute some terms
from the definition.

sage: R.<q> = QQ[[]]

sage: q * prod( 1-q^n+O(q^6) for n in (1..5) )^24

q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 + O(q^7)

There are much better ways to compute ∆, which amount to just a few poly-
nomial multiplactions over Z.

sage: D = delta_qexp(10^5) # less than 10 seconds

sage: D[:10]

q - 24*q^2 + 252*q^3 - 1472*q^4 + ...

sage: [p for p in primes(10^5) if D[p] % p == 0]
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[2, 3, 5, 7, 2411]

sage: D[2411]

4542041100095889012

sage: f = eisenstein_series_qexp(12,6) - D[:6]; f

691/65520 + 2073*q^2 + 176896*q^3 + 4197825*q^4 + 48823296*q^5 + O(q^6)

sage: f % 691

O(q^6)

The Victor Miller basis for Mk(SL2(Z)) is the reduced row echelon basis. It’s
a lemma that it has all integer coefficients, and a rather nice diagonal shape.

sage: victor_miller_basis(24, 6)

[

1 + 52416000*q^3 + 39007332000*q^4 + 6609020221440*q^5 + O(q^6),

q + 195660*q^3 + 12080128*q^4 + 44656110*q^5 + O(q^6),

q^2 - 48*q^3 + 1080*q^4 - 15040*q^5 + O(q^6)

]

sage: dimension_modular_forms(1,200)

17

sage: time B = victor_miller_basis(200, 18)

CPU time: 4.43 s, Wall time: 5.07 s

sage: B

[

1 + 79288314420681734048660707200000*q^17 + O(q^18),

q + 2687602718106772837928968846869*q^17 + O(q^18),

...

q^16 + 96*q^17 + O(q^18)

]

Note: Craig Citro has made the above computation an order of magnitude
faster in code he hasn’t quite got into Sage yet. “I’ll clean those up and submit
them soon, since I need them for something I’m working on ... I’m currently in
the process of making spaces of modular forms of level one subclass the existing
code, and actually take advantage of all our fast Ek and ∆ computation code,
as well as cleaning things up a bit.”

3.5 Half Integral Weight Forms

ALGORITHM: Basmaji (page 55 of his Essen thesis, ”Ein Algorithmus zur
Berechnung von Hecke-Operatoren und Anwendungen auf modulare Kurven”,
http://wstein.org/scans/papers/basmaji/).

Let S = Sk+1(ε) be the space of cusp forms of even integer weight k+ 1 and
character ε = χψ(k+1)/2, where ψ is the nontrivial mod-4 Dirichlet character.
Let U be the subspace of S × S of elements (a, b) such that Θ2a = Θ3b. Then
U is isomorphic to Sk/2(χ) via the map (a, b) 7→ a/Θ3.

This algorithm is implemented in Sage. I’m sure it could be implemented in
a way that is much faster than the current implementation...
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sage: half_integral_weight_modform_basis(DirichletGroup(16,QQ).1, 3, 10)

[]

sage: half_integral_weight_modform_basis(DirichletGroup(16,QQ).1, 5, 10)

[q - 2*q^3 - 2*q^5 + 4*q^7 - q^9 + O(q^10)]

sage: half_integral_weight_modform_basis(DirichletGroup(16*7).0^2,3,30)

[q - 2*q^2 - q^9 + 2*q^14 + 6*q^18 - 2*q^21 - 4*q^22 - q^25 + O(q^30),

q^2 - q^14 - 3*q^18 + 2*q^22 + O(q^30),

q^4 - q^8 - q^16 + q^28 + O(q^30), q^7 - 2*q^15 + O(q^30)]

3.6 Generators for Rings of Modular Forms

For any congruence subgroup Γ, the direct sum

M(Γ) =
⊕

k≥0

Mk(Γ)

is a ring, since the product of modular forms f ∈ Mk(Γ) and g ∈ Mk′(Γ) is
an element fg ∈ Mk+k′(Γ). Sage can compute likely generators for rings of
modular forms, but currently doesn’t prove any of these results.

We verify the statement proved in Serre’s “A Course in Arithmetic” that E4

and E6 generate the space of level one modular forms.

sage: from sage.modular.modform.find_generators import modform_generators

sage: modform_generators(1)

[(4, 1 + 240*q + 2160*q^2 + 6720*q^3 + O(q^4)),

(6, 1 - 504*q - 16632*q^2 - 122976*q^3 + O(q^4))]

Have you ever wondered which forms generate the ring M(Γ0(2))? it turns out
a form of weight 2 and two forms of weight 4 together generate.

sage: modform_generators(2)

[(2, 1 + 24*q + 24*q^2 + ... + 288*q^11 + O(q^12)),

(4, 1 + 240*q^2 + .. + 30240*q^10 + O(q^12)),

(4, q + 8*q^2 + .. + 1332*q^11 + O(q^12))]

Here’s generators for M(Γ0(3)). Notice that elements of weight 6 are now re-
quired, in addition to weights 2 and 4.

sage: modform_generators(3)

[(2, 1 + 12*q + 36*q^2 + .. + 168*q^13 + O(q^14)),

(4, 1 + 240*q^3 + 2160*q^6 + 6720*q^9 + 17520*q^12 + O(q^14)),

(4, q + 9*q^2 + 27*q^3 + 73*q^4 + .. + O(q^14)),

(6, q - 6*q^2 + 9*q^3 + 4*q^4 + .. + O(q^14)),

(6, 1 - 504*q^3 - 16632*q^6 .. + O(q^14)),

(6, q + 33*q^2 + 243*q^3 + .. + O(q^14))]
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3.7 L-series

Thanks to wrapping work of Jennifer Balakrishnan of M.I.T., we can compute
explicitly with the L-series of the modular form ∆. Like for elliptic curves,
behind these scenes this uses Dokchitsers L-functions calculation Pari program.

sage: L = delta_lseries(); L

L-series associated to the modular form Delta

sage: L(1)

0.0374412812685155

In some cases we can also compute with L-series attached to a cusp form.

sage: f = CuspForms(2,8).0

sage: L = f.cuspform_lseries()

sage: L(1)

0.0884317737041015

sage: L(0.5)

0.0296568512531983

Unfortunately, computing with the L-series of a general newform is not yet
implemented.

sage: S = CuspForms(23,2); S

Cuspidal subspace of dimension 2 of Modular Forms space of

dimension 3 for Congruence Subgroup Gamma0(23) of weight

2 over Rational Field

sage: f = S.newforms(’a’)[0]; f

q + a0*q^2 + (-2*a0 - 1)*q^3 + (-a0 - 1)*q^4 + 2*a0*q^5 + O(q^6)

Computing with L(f, s) totally not implemented yet, though should be easy via
Dokchitser.

3.8 Modular Abelian Varieties

The quotient of the extended upper half plane h∗ by the congruence subgroup
Γ1(N) is the modular curve X1(N). Its Jacobian J1(N) is an abelian variety
that is canonically defined over Q. Likewise, one defines a modular abelian
variety J0(N) associated to Γ0(N).

Definition 3.3. A modular abelian variety is an abelian variety over Q that is
a quotient of J1(N) for some N .

The biggest recent theorem in number theory is the proof of Serre’s conjec-
ture by Khare and Wintenberger. According to an argument of Ribet and Serre,
this implies the following modularity theorem, which generalizes the modular-
ity theorem that Taylor-Wiles proved in the course of proving Fermat’s Last
Theorem.
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Theorem 3.4 (Modularity Theorem). Let A be a simple abelian variety defined
over Q. Then End(A) ⊗ Q is a number field of degree dim(A) if and only if A
is modular.

One of my longterm research goals is to develop a systematic theory for com-
puting with modular abelian varieties. A good start is the observation using the
Abel-Jacobi theorem that every modular abelian variety (up to isomorphism)
can be specified by giving a lattice in a space of modular symbols.

We define some modular abelian varieties of level 39, and compute some
basic invariants.

sage: D = J0(39).decomposition(); D

[

Simple abelian subvariety 39a(1,39) of dimension 1 of J0(39),

Simple abelian subvariety 39b(1,39) of dimension 2 of J0(39)

]

sage: D[1].lattice()

Free module of degree 6 and rank 4 over Integer Ring

Echelon basis matrix:

[ 1 0 0 1 -1 0]

[ 0 1 1 0 -1 0]

[ 0 0 2 0 -1 0]

[ 0 0 0 0 0 1]

sage: G = D[1].rational_torsion_subgroup(); G

Torsion subgroup of Simple abelian subvariety 39b(1,39)

of dimension 2 of J0(39)

sage: G.order()

28

sage: G.gens()

[[(1/14, 2/7, 0, 1/14, -3/14, 1/7)], [(0, 1, 0, 0, -1/2, 0)],

[(0, 0, 1, 0, -1/2, 0)]]

sage: B, phi = D[1]/G

sage: B

Abelian variety factor of dimension 2 of J0(39)

sage: phi.kernel()

(Finite subgroup with invariants [2, 14] ...

There is an algorithm in Sage for computing the exact endomorphism ring
of any modular abelian variety.

sage: A = J0(91)[2]; A

Simple abelian subvariety 91c(1,91) of dimension 2 of J0(91)

sage: R = End(A); R

Endomorphism ring of Simple abelian subvariety 91c(1,91)

of dimension 2 of J0(91)

sage: for x in R.gens(): print x.matrix(),’\n’

[1 0 0 0]
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[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

[ 0 4 -2 0]

[-1 5 -2 1]

[-1 2 0 2]

[-1 1 0 3]

It is also possible to test isomorphism of two modular abelian varieties. But
much exciting theoretical and computational work remains to be done.
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Preface

This is a book about prime numbers, congruences, secret messages, and
elliptic curves that you can read cover to cover. It grew out of undergrad-
uate courses that the author taught at Harvard, UC San Diego, and the
University of Washington.

The systematic study of number theory was initiated around 300B.C.
when Euclid proved that there are infinitely many prime numbers, and
also cleverly deduced the fundamental theorem of arithmetic, which asserts
that every positive integer factors uniquely as a product of primes. Over a
thousand years later (around 972A.D.) Arab mathematicians formulated
the congruent number problem that asks for a way to decide whether or not
a given positive integer n is the area of a right triangle, all three of whose
sides are rational numbers. Then another thousand years later (in 1976),
Diffie and Hellman introduced the first ever public-key cryptosystem, which
enabled two people to communicate secretely over a public communications
channel with no predetermined secret; this invention and the ones that
followed it revolutionized the world of digital communication. In the 1980s
and 1990s, elliptic curves revolutionized number theory, providing striking
new insights into the congruent number problem, primality testing, public-
key cryptography, attacks on public-key systems, and playing a central role
in Andrew Wiles’ resolution of Fermat’s Last Theorem.

Today, pure and applied number theory is an exciting mix of simultane-
ously broad and deep theory, which is constantly informed and motivated
by algorithms and explicit computation. Active research is underway that
promises to resolve the congruent number problem, deepen our understand-
ing into the structure of prime numbers, and both challenge and improve
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our ability to communicate securely. The goal of this book is to bring the
reader closer to this world.

The reader is strongly encouraged to do every exercise in this book,
checking their answers in the back (where many, but not all, solutions
are given). Also, throughout the text there, are examples of calculations
done using the powerful free open source mathematical software system
Sage (http://www.sagemath.org), and the reader should try every such
example and experiment with similar examples.

Background. The reader should know how to read and write mathemati-
cal proofs and must have know the basics of groups, rings, and fields. Thus,
the prerequisites for this book are more than the prerequisites for most el-
ementary number theory books, while still being aimed at undergraduates.

Notation and Conventions. We let N = {1, 2, 3, . . .} denote the natural
numbers, and use the standard notation Z, Q, R, and C for the rings of
integer, rational, real, and complex numbers, respectively. In this book, we
will use the words proposition, theorem, lemma, and corollary as follows.
Usually a proposition is a less important or less fundamental assertion, a
theorem is a deeper culmination of ideas, a lemma is something that we will
use later in this book to prove a proposition or theorem, and a corollary
is an easy consequence of a proposition, theorem, or lemma. More difficult
exercises are marked with a (*).

Acknowledgements. I would like to thank Brian Conrad, Carl Pomer-
ance, and Ken Ribet for many clarifying comments and suggestions. Bau-
rzhan Bektemirov, Lawrence Cabusora, and Keith Conrad read drafts of
this book and made many comments, and Carl Witty commented exten-
sively on the first two chapters. Frank Calegari used the course when
teaching Math 124 at Harvard, and he and his students provided much
feedback. Noam Elkies made comments and suggested Exercise 4.6. Seth
Kleinerman wrote a version of Section 5.4 as a class project. Hendrik
Lenstra made helpful remarks about how to present his factorization al-
gorithm. Michael Abshoff, Sabmit Dasgupta, David Joyner, Arthur Pat-
terson, George Stephanides, Kevin Stern, Eve Thompson, Ting-You Wang,
and Heidi Williams all suggested corrections. I also benefited from conver-
sations with Henry Cohn and David Savitt. I used Sage ([Sag08]), emacs,
and LATEX in the preparation of this book.
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1
Prime Numbers

Every positive integer can be written uniquely as a product of prime num-
bers, e.g., 100 = 22 · 52. This is surprisingly difficult to prove, as we will
see below. Even more astounding is that actually finding a way to write
certain 1,000-digit numbers as a product of primes seems out of the reach of
present technology, an observation that is used by millions of people every
day when they buy things online.

Since prime numbers are the building blocks of integers, it is natural to
wonder how the primes are distributed among the integers.

“There are two facts about the distribution of prime numbers.
The first is that, [they are] the most arbitrary and ornery ob-
jects studied by mathematicians: they grow like weeds among
the natural numbers, seeming to obey no other law than that of
chance, and nobody can predict where the next one will sprout.
The second fact is even more astonishing, for it states just the
opposite: that the prime numbers exhibit stunning regularity,
that there are laws governing their behavior, and that they obey
these laws with almost military precision.”

— Don Zagier [Zag75]

The Riemann Hypothesis, which is the most famous unsolved problem in
number theory, postulates a very precise answer to the question of how the
prime numbers are distributed.

This chapter lays the foundations for our study of the theory of numbers
by weaving together the themes of prime numbers, integer factorization,
and the distribution of primes. In Section 1.1, we rigorously prove that the
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every positive integer is a product of primes, and give examples of specific
integers for which finding such a decomposition would win one a large cash
bounty. In Section 1.2, we discuss theorems about the set of prime numbers,
starting with Euclid’s proof that this set is infinite, and discuss the largest
known prime. Finally we discuss the distribution of primes via the prime
number theorem and the Riemann Hypothesis.

1.1 Prime Factorization

1.1.1 Primes

The set of natural numbers is

N = {1, 2, 3, 4, . . .},

and the set of integers is

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

Definition 1.1.1 (Divides). If a, b ∈ Z we say that a divides b, written
a | b, if ac = b for some c ∈ Z. In this case, we say a is a divisor of b. We
say that a does not divide b, written a - b, if there is no c ∈ Z such that
ac = b.

For example, we have 2 | 6 and −3 | 15. Also, all integers divide 0, and 0
divides only 0. However, 3 does not divide 7 in Z.

Remark 1.1.2. The notation b
.
: a for “b is divisible by a” is common in

Russian literature on number theory.

Definition 1.1.3 (Prime and Composite). An integer n > 1 is prime if
the only positive divisors of n are 1 and n. We call n composite if n is not
prime.

The number 1 is neither prime nor composite. The first few primes of N
are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, . . . ,

and the first few composites are

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, . . . .

Remark 1.1.4. J. H. Conway argues in [Con97, viii] that −1 should be
considered a prime, and in the 1914 table [Leh14], Lehmer considers 1 to
be a prime. In this book, we consider neither −1 nor 1 to be prime.

SAGE Example 1.1.5. We use Sage to compute all prime numbers between
a and b− 1.
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sage: prime_range(10,50)

[11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

We can also compute the composites in an interval.

sage: [n for n in range(10,30) if not is_prime(n)]

[10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28]

Every natural number is built, in a unique way, out of prime numbers:

Theorem 1.1.6 (Fundamental Theorem of Arithmetic). Every natural
number can be written as a product of primes uniquely up to order.

Note that primes are the products with only one factor and 1 is the
empty product.

Remark 1.1.7. Theorem 1.1.6, which we will prove in Section 1.1.4, is trick-
ier to prove than you might first think. For example, unique factorization
fails in the ring

Z[
√
−5] = {a+ b

√
−5 : a, b ∈ Z} ⊂ C,

where 6 factors in two different ways:

6 = 2 · 3 = (1 +
√
−5) · (1−

√
−5).

1.1.2 The Greatest Common Divisor

We will use the notion of the greatest common divisor of two integers to
prove that if p is a prime and p | ab, then p | a or p | b. Proving this is the
key step in our proof of Theorem 1.1.6.

Definition 1.1.8 (Greatest Common Divisor). Let

gcd(a, b) = max {d ∈ Z : d | a and d | b} ,

unless both a and b are 0 in which case gcd(0, 0) = 0.

For example, gcd(1, 2) = 1, gcd(6, 27) = 3, and for any a, gcd(0, a) =
gcd(a, 0) = a.

If a 6= 0, the greatest common divisor exists because if d | a then d ≤ |a|,
and there are only |a| positive integers ≤ |a|. Similarly, the gcd exists when
b 6= 0.

Lemma 1.1.9. For any integers a and b, we have

gcd(a, b) = gcd(b, a) = gcd(±a,±b) = gcd(a, b− a) = gcd(a, b+ a).

Proof. We only prove that gcd(a, b) = gcd(a, b − a), since the other cases
are proved in a similar way. Suppose d | a and d | b, so there exist integers
c1 and c2 such that dc1 = a and dc2 = b. Then b−a = dc2−dc1 = d(c2−c1),
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so d | b− a. Thus gcd(a, b) ≤ gcd(a, b− a), since the set over which we are
taking the max for gcd(a, b) is a subset of the set for gcd(a, b − a). The
same argument with a replaced by −a and b replaced by b− a, shows that
gcd(a, b− a) = gcd(−a, b− a) ≤ gcd(−a, b) = gcd(a, b), which proves that
gcd(a, b) = gcd(a, b− a).

Lemma 1.1.10. Suppose a, b, n ∈ Z. Then gcd(a, b) = gcd(a, b− an).

Proof. By repeated application of Lemma 1.1.9, we have

gcd(a, b) = gcd(a, b− a) = gcd(a, b− 2a) = · · · = gcd(a, b− an).

Assume for the moment that we have already proved Theorem 1.1.6. A
naive way to compute gcd(a, b) is to factor a and b as a product of primes
using Theorem 1.1.6; then the prime factorization of gcd(a, b) can be read
off from that of a and b. For example, if a = 2261 and b = 1275, then
a = 7 · 17 · 19 and b = 3 · 52 · 17, so gcd(a, b) = 17. It turns out that
the greatest common divisor of two integers, even huge numbers (millions
of digits), is surprisingly easy to compute using Algorithm 1.1.13 below,
which computes gcd(a, b) without factoring a or b.

To motivate Algorithm 1.1.13, we compute gcd(2261, 1275) in a different
way. First, we recall a helpful fact.

Proposition 1.1.11. Suppose that a and b are integers with b 6= 0. Then
there exists unique integers q and r such that 0 ≤ r < |b| and a = bq + r.

Proof. For simplicity, assume that both a and b are positive (we leave the
general case to the reader). Let Q be the set of all nonnegative integers n
such that a− bn is nonnegative. Then Q is nonempty because 0 ∈ Q and Q
is bounded because a− bn < 0 for all n > a/b. Let q be the largest element
of Q. Then r = a − bq < b, otherwise q + 1 would also be in Q. Thus q
and r satisfy the existence conclusion.

To prove uniqueness, suppose that q′ and r′ also satisfy the conclusion.
Then q′ ∈ Q since r′ = a− bq′ ≥ 0, so q′ ≤ q, and we can write q′ = q −m
for some m ≥ 0. If q′ 6= q, then m ≥ 1 so

r′ = a− bq′ = a− b(q −m) = a− bq + bm = r + bm ≥ b

since r ≥ 0, a contradiction. Thus q = q′ and r′ = a− bq′ = a− bq = r, as
claimed.

For us, an algorithm is a finite sequence of instructions that can be fol-
lowed to perform a specific task, such as a sequence of instructions in a
computer program, which must terminate on any valid input. The word “al-
gorithm” is sometimes used more loosely (and sometimes more precisely)
than defined here, but this definition will suffice for us.
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Algorithm 1.1.12 (Division Algorithm). Suppose a and b are integers
with b 6= 0. This algorithm computes integers q and r such that 0 ≤ r < |b|
and a = bq + r.

We will not describe the actual steps of Algorithm 1.1.12, since it is just
the familiar long division algorithm. Note that it might not be exactly the
same as the standard long division algorithm you learned in school, because
we make the remainder positive even when dividing a negative number by
a positive number.

We use the division algorithm repeatedly to compute gcd(2261, 1275).
Dividing 2261 by 1275 we find that

2261 = 1 · 1275 + 986,

so q = 1 and r = 986. Notice that if a natural number d divides both 2261
and 1275, then d divides their difference 986 and d still divides 1275. On
the other hand, if d divides both 1275 and 986, then it has to divide their
sum 2261 as well! We have made progress:

gcd(2261, 1275) = gcd(1275, 986).

This equality also follows by applying Lemma 1.1.9. Repeating, we have

1275 = 1 · 986 + 289,

so gcd(1275, 986) = gcd(986, 289). Keep going:

986 = 3 · 289 + 119

289 = 2 · 119 + 51

119 = 2 · 51 + 17.

Thus gcd(2261, 1275) = · · · = gcd(51, 17), which is 17 because 17 | 51. Thus

gcd(2261, 1275) = 17.

Aside from some tedious arithmetic, that computation was systematic, and
it was not necessary to factor any integers (which is something we do not
know how to do quickly if the numbers involved have hundreds of digits).

Algorithm 1.1.13 (Greatest Common Division). Given integers a, b, this
algorithm computes gcd(a, b).

1. [Assume a > b > 0] We have gcd(a, b) = gcd(|a|, |b|) = gcd(|b|, |a|),
so we may replace a and b by their absolute values and hence assume
a, b ≥ 0. If a = b, output a and terminate. Swapping if necessary, we
assume a > b. If b = 0, we output a.

2. [Quotient and Remainder] Using Algorithm 1.1.12, write a = bq + r,
with 0 ≤ r < b and q ∈ Z.
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3. [Finished?] If r = 0, then b | a, so we output b and terminate.

4. [Shift and Repeat] Set a← b and b← r, then go to Step 2.

Proof. Lemmas 1.1.9–1.1.10 imply that gcd(a, b) = gcd(b, r) so the gcd does
not change in Step 4. Since the remainders form a decreasing sequence of
nonnegative integers, the algorithm terminates.

Example 1.1.14. Set a = 15 and b = 6.

15 = 6 · 2 + 3 gcd(15, 6) = gcd(6, 3)

6 = 3 · 2 + 0 gcd(6, 3) = gcd(3, 0) = 3

Note that we can just as easily do an example that is ten times as big, an
observation that will be important in the proof of Theorem 1.1.19 below.

Example 1.1.15. Set a = 150 and b = 60.

150 = 60 · 2 + 30 gcd(150, 60) = gcd(60, 30)

60 = 30 · 2 + 0 gcd(60, 30) = gcd(30, 0) = 30

SAGE Example 1.1.16. Sage uses the gcd command to compute the great-
est common divisor of two integers. For example,

sage: gcd(97,100)

1

sage: gcd(97 * 10^15, 19^20 * 97^2)

97

Lemma 1.1.17. For any integers a, b, n, we have

gcd(an, bn) = gcd(a, b) · |n|.

Proof. The idea is to follow Example 1.1.15; we step through Euclid’s al-
gorithm for gcd(an, bn) and note that at every step the equation is the
equation from Euclid’s algorithm for gcd(a, b) but multiplied through by n.
For simplicity, assume that both a and b are positive. We will prove the
lemma by induction on a+ b. The statement is true in the base case when
a+ b = 2, since then a = b = 1. Now assume a, b are arbitrary with a ≥ b.
Let q and r be such that a = bq+ r and 0 ≤ r < b. Then by Lemmas 1.1.9–
1.1.10, we have gcd(a, b) = gcd(b, r). Multiplying a = bq + r by n we see
that an = bnq + rn, so gcd(an, bn) = gcd(bn, rn). Then

b+ r = b+ (a− bq) = a− b(q − 1) ≤ a < a+ b,

so by induction gcd(bn, rn) = gcd(b, r) · |n|. Since gcd(a, b) = gcd(b, r), this
proves the lemma.

Lemma 1.1.18. Suppose a, b, n ∈ Z are such that n | a and n | b. Then
n | gcd(a, b).
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Proof. Since n | a and n | b, there are integers c1 and c2, such that a = nc1
and b = nc2. By Lemma 1.1.17, gcd(a, b) = gcd(nc1, nc2) = n gcd(c1, c2),
so n divides gcd(a, b).

With Algorithm 1.1.13, we can prove that if a prime divides the product
of two numbers, then it has got to divide one of them. This result is the
key to proving that prime factorization is unique.

Theorem 1.1.19 (Euclid). Let p be a prime and a, b ∈ N. If p | ab then
p | a or p | b.

You might think this theorem is “intuitively obvious,” but that might be
because the fundamental theorem of arithmetic (Theorem 1.1.6) is deeply
ingrained in your intuition. Yet Theorem 1.1.19 will be needed in our proof
of the fundamental theorem of arithmetic.

Proof of Theorem 1.1.19. If p | a we are done. If p - a then gcd(p, a) = 1,
since only 1 and p divide p. By Lemma 1.1.17, gcd(pb, ab) = b. Since p | pb
and, by hypothesis, p | ab, it follows (using Lemma 1.1.17) that

p | gcd(pb, ab) = b gcd(p, a) = b · 1 = b.

1.1.3 Numbers Factor as Products of Primes

In this section, we prove that every natural number factors as a product
of primes. Then we discuss the difficulty of finding such a decomposition
in practice. We will wait until Section 1.1.4 to prove that factorization is
unique.

As a first example, let n = 1275. The sum of the digits of n is divisible
by 3, so n is divisible by 3 (see Proposition 2.1.9), and we have n = 3 · 425.
The number 425 is divisible by 5, since its last digit is 5, and we have
1275 = 3 · 5 · 85. Again, dividing 85 by 5, we have 1275 = 3 · 52 · 17,
which is the prime factorization of 1275. Generalizing this process proves
the following proposition.

Proposition 1.1.20. Every natural number is a product of primes.

Proof. Let n be a natural number. If n = 1, then n is the empty product
of primes. If n is prime, we are done. If n is composite, then n = ab with
a, b < n. By induction, a and b are products of primes, so n is also a product
of primes.

Two questions immediately arise: (1) is this factorization unique, and
(2) how quickly can we find such a factorization? Addressing (1), what if
we had done something differently when breaking apart 1275 as a product
of primes? Could the primes that show up be different? Let’s try: we have
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1275 = 5 ·255. Now 255 = 5 ·51 and 51 = 17 ·3, and again the factorization
is the same, as asserted by Theorem 1.1.6. We will prove the uniqueness of
the prime factorization of any integer in Section 1.1.4.

SAGE Example 1.1.21. The factor command in Sage factors an integer
as a product of primes with multiplicities. For example,

sage: factor(1275)

3 * 5^2 * 17

sage: factor(2007)

3^2 * 223

sage: factor(31415926535898)

2 * 3 * 53 * 73 * 2531 * 534697

Regarding (2), there are algorithms for integer factorization. It is a major
open problem to decide how fast integer factorization algorithms can be. We
say that an algorithm to factor n is polynomial time if there is a polynomial
f(x) such that for any n the number of steps needed by the algorithm to
factor n is less than f(log10(n)). Note that log10(n) is an approximation
for the number of digits of the input n to the algorithm.

Open Problem 1.1.22. Is there an algorithm that can factor any integer n
in polynomial time?

Peter Shor [Sho97] devised a polynomial time algorithm for factoring
integers on quantum computers. We will not discuss his algorithm further,
except to note that in 2001 IBM researchers built a quantum computer
that used Shor’s algorithm to factor 15 (see [LMG+01, IBM01]). Building
much larger quantum computers appears to be extremely difficult.

You can earn money by factoring certain large integers. Many cryptosys-
tems would be easily broken if factoring certain large integers was easy.
Since nobody has proven that factoring integers is difficult, one way to
increase confidence that factoring is difficult is to offer cash prizes for fac-
toring certain integers. For example, until recently there was a $10,000
bounty on factoring the following 174-digit integer (see [RSA]):

1881988129206079638386972394616504398071635633794173827007
6335642298885971523466548531906060650474304531738801130339
6716199692321205734031879550656996221305168759307650257059

This number is known as RSA-576 since it has 576 digits when written in
binary (see Section 2.3.2 for more on binary numbers). It was factored at the
German Federal Agency for Information Technology Security in December
2003 (see [Wei03]):

398075086424064937397125500550386491199064362342526708406
385189575946388957261768583317
×
472772146107435302536223071973048224632914695302097116459
852171130520711256363590397527
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The previous RSA challenge was the 155-digit number

1094173864157052742180970732204035761200373294544920599091
3842131476349984288934784717997257891267332497625752899781
833797076537244027146743531593354333897.

It was factored on 22 August 1999 by a group of sixteen researchers in four
months on a cluster of 292 computers (see [ACD+99]). They found that
RSA-155 is the product of the following two 78-digit primes:

p = 10263959282974110577205419657399167590071656780803806

6803341933521790711307779

q = 10660348838016845482092722036001287867920795857598929

1522270608237193062808643.

The next RSA challenge is RSA-640:

31074182404900437213507500358885679300373460228427275457201619
48823206440518081504556346829671723286782437916272838033415471
07310850191954852900733772482278352574238645401469173660247765
2346609,

and its factorization was worth $20,000 until November 2005 when it was
factored by F. Bahr, M. Boehm, J. Franke, and T. Kleinjun. This factor-
ization took five months. Here is one of the prime factors (you can find the
other):

16347336458092538484431338838650908598417836700330923121811108
52389333100104508151212118167511579.

(This team also factored a 663-bit RSA challenge integer.)
The smallest currently open challenge is RSA-704, worth $30,000:

74037563479561712828046796097429573142593188889231289084936232
63897276503402826627689199641962511784399589433050212758537011
89680982867331732731089309005525051168770632990723963807867100
86096962537934650563796359

SAGE Example 1.1.23. Using Sage, we see that the above number has 212
decimal digits and is definitely composite:

sage: n = 7403756347956171282804679609742957314259318888\

...9231289084936232638972765034028266276891996419625117\

...8439958943305021275853701189680982867331732731089309\

...0055250511687706329907239638078671008609696253793465\

...0563796359

sage: len(n.str(2))
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704

sage: len(n.str(10))

212

sage: n.is_prime() # this is instant

False

These RSA numbers were factored using an algorithm called the number
field sieve (see [LL93]), which is the best-known general purpose factoriza-
tion algorithm. A description of how the number field sieve works is beyond
the scope of this book. However, the number field sieve makes extensive use
of the elliptic curve factorization method, which we will describe in Sec-
tion 6.3.

1.1.4 The Fundamental Theorem of Arithmetic

We are ready to prove Theorem 1.1.6 using the following idea. Suppose
we have two factorizations of n. Using Theorem 1.1.19, we cancel common
primes from each factorization, one prime at a time. At the end, we dis-
cover that the factorizations must consist of exactly the same primes. The
technical details are given below.

Proof. If n = 1, then the only factorization is the empty product of primes,
so suppose n > 1.

By Proposition 1.1.20, there exist primes p1, . . . , pd such that

n = p1p2 · · · pd.

Suppose that
n = q1q2 · · · qm

is another expression of n as a product of primes. Since

p1 | n = q1(q2 · · · qm),

Euclid’s theorem implies that p1 = q1 or p1 | q2 · · · qm. By induction, we
see that p1 = qi for some i.

Now cancel p1 and qi, and repeat the above argument. Eventually, we
find that, up to order, the two factorizations are the same.

1.2 The Sequence of Prime Numbers

This section is concerned with three questions:

1. Are there infinitely many primes?

2. Given a, b ∈ Z, are there infinitely many primes of the form ax+ b?
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3. How are the primes spaced along the number line?

We first show that there are infinitely many primes, then state Dirichlet’s
theorem that if gcd(a, b) = 1, then ax + b is a prime for infinitely many
values of x. Finally, we discuss the Prime Number Theorem which asserts
that there are asymptotically x/ log(x) primes less than x, and we make a
connection between this asymptotic formula and the Riemann Hypothesis.

1.2.1 There Are Infinitely Many Primes

Each number on the left in the following table is prime. We will see soon
that this pattern does not continue indefinitely, but something similar
works.

3 = 2 + 1

7 = 2 · 3 + 1

31 = 2 · 3 · 5 + 1

211 = 2 · 3 · 5 · 7 + 1

2311 = 2 · 3 · 5 · 7 · 11 + 1

Theorem 1.2.1 (Euclid). There are infinitely many primes.

Proof. Suppose that p1, p2, . . . , pn are n distinct primes. We construct a
prime pn+1 not equal to any of p1, . . . , pn, as follows. If

N = p1p2p3 · · · pn + 1, (1.2.1)

then by Proposition 1.1.20 there is a factorization

N = q1q2 · · · qm

with each qi prime and m ≥ 1. If q1 = pi for some i, then pi | N . Because
of (1.2.1), we also have pi | N − 1, so pi | 1 = N − (N − 1), which is a
contradiction. Thus the prime pn+1 = q1 is not in the list p1, . . . , pn, and
we have constructed our new prime.

For example,

2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509.

Multiplying together the first six primes and adding 1 doesn’t produce a
prime, but it produces an integer that is merely divisible by a new prime.

Joke 1.2.2 (Hendrik Lenstra). There are infinitely many composite num-
bers. Proof. To obtain a new composite number, multiply together the
first n composite numbers and don’t add 1.
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1.2.2 Enumerating Primes

In this section we describe a sieving process that allows us to enumerate
all primes up to n. The sieve works by first writing down all numbers up
to n, noting that 2 is prime, and crossing off all multiples of 2. Next, note
that the first number not crossed off is 3, which is prime, and cross off all
multiples of 3, etc. Repeating this process, we obtain a list of the primes
up to n. Formally, the algorithm is as follows:

Algorithm 1.2.3 (Prime Sieve). Given a positive integer n, this algorithm
computes a list of the primes up to n.

1. [Initialize] Let X = [3, 5, . . .] be the list of all odd integers between 3
and n. Let P = [2] be the list of primes found so far.

2. [Finished?] Let p be the first element of X. If p ≥ √n, append each
element of X to P and terminate. Otherwise append p to P .

3. [Cross Off] Set X equal to the sublist of elements in X that are not
divisible by p. Go to Step 2.

For example, to list the primes ≤ 40 using the sieve, we proceed as
follows. First P = [2] and

X = [3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39].

We append 3 to P and cross off all multiples of 3 to obtain the new list

X = [5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37].

Next we append 5 to P , obtaining P = [2, 3, 5], and cross off the multiples
of 5, to obtain X = [7, 11, 13, 17, 19, 23, 29, 31, 37]. Because 72 ≥ 40, we
append X to P and find that the primes less than 40 are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37.

Proof of Algorithm 1.2.3. The part of the algorithm that is not clear is
that when the first element a of X satisfies a ≥ √n, then each element of
X is prime. To see this, suppose m is in X, so

√
n ≤ m ≤ n and that m is

divisible by no prime that is ≤ √n. Write m =
∏
peii with the pi distinct

primes ordered so that p1 < p2 < . . .. If pi >
√
n for each i and there is

more than one pi, then m > n, a contradiction. Thus some pi is less than√
n, which also contradicts our assumptions on m.

1.2.3 The Largest Known Prime

Though Theorem 1.2.1 implies that there are infinitely many primes, it still
makes sense to ask the question “What is the largest known prime?”
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A Mersenne prime is a prime of the form 2q − 1. According to [Cal] the
largest known prime as of March 2007 is the 44th known Mersenne prime

p = 232582657 − 1,

which has 9,808,358 decimal digits1. This would take over 2000 pages to
print, assuming a page contains 60 lines with 80 characters per line. The
Electronic Frontier Foundation has offered a $100,000 prize to the first
person who finds a 10,000,000 digit prime.

Euclid’s theorem implies that there definitely are infinitely many primes
bigger than p. Deciding whether or not a number is prime is interesting, as
a theoretical problem, and as a problem with applications to cryptography,
as we will see in Section 2.4 and Chapter 3.

SAGE Example 1.2.4. We can compute the decimal expansion of p in Sage,
although watch out as this is a serious computation that may take around
a minute on your computer. Also, do not print out p or s below, because
both would take a very long time to scroll by.

sage: p = 2^32582657 - 1

sage: p.ndigits()

9808358

Next we convert p to a decimal string and look at some of the digits.

sage: s = p.str(10) # this takes a long time

sage: len(s) # s is a very long string (long time)

9808358

sage: s[:20] # the first 20 digits of p (long time)

’12457502601536945540’

sage: s[-20:] # the last 20 digits (long time)

’11752880154053967871’

1.2.4 Primes of the Form ax+ b

Next we turn to primes of the form ax+ b, where a and b are fixed integers
with a > 1 and x varies over the natural numbers N. We assume that
gcd(a, b) = 1, because otherwise there is no hope that ax + b is prime
infinitely often. For example, 2x+ 2 = 2(x+ 1) is only prime if x = 0, and
is not prime for any x ∈ N.

Proposition 1.2.5. There are infinitely many primes of the form 4x− 1.

Why might this be true? We list numbers of the form 4x−1 and underline
those that are prime.

3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, . . .

1The 45th known Mersenne prime may have been found on August 23, 2008 as this

book goes to press.
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Not only is it plausible that underlined numbers will continue to appear
indefinitely, it is something we can easily prove.

Proof. Suppose p1, p2, . . . , pn are distinct primes of the form 4x− 1. Con-
sider the number

N = 4p1p2 · · · pn − 1.

Then pi - N for any i. Moreover, not every prime p | N is of the form
4x + 1; if they all were, then N would be of the form 4x + 1. Since N is
odd, each prime divisor pi is odd so there is a p | N that is of the form
4x − 1. Since p 6= pi for any i, we have found a new prime of the form
4x− 1. We can repeat this process indefinitely, so the set of primes of the
form 4x− 1 cannot be finite.

Note that this proof does not work if 4x− 1 is replaced by 4x+ 1, since
a product of primes of the form 4x− 1 can be of the form 4x+ 1.

Example 1.2.6. Set p1 = 3, p2 = 7. Then

N = 4 · 3 · 7− 1 = 83

is a prime of the form 4x− 1. Next

N = 4 · 3 · 7 · 83− 1 = 6971,

which is again a prime of the form 4x− 1. Again,

N = 4 · 3 · 7 · 83 · 6971− 1 = 48601811 = 61 · 796751.

This time 61 is a prime, but it is of the form 4x+ 1 = 4 · 15 + 1. However,
796751 is prime and 796751 = 4 · 199188− 1. We are unstoppable.

N = 4 · 3 · 7 · 83 · 6971 · 796751− 1 = 5591 · 6926049421.

This time the small prime, 5591, is of the form 4x− 1 and the large one is
of the form 4x+ 1.

Theorem 1.2.7 (Dirichlet). Let a and b be integers with gcd(a, b) = 1.
Then there are infinitely many primes of the form ax+ b.

Proofs of this theorem typically use tools from advanced number theory,
and are beyond the scope of this book (see e.g., [FT93, §VIII.4]).

1.2.5 How Many Primes are There?

We saw in Section 1.2.1 that there are infinitely many primes. In order to
get a sense of just how many primes there are, we consider a few warm-
up questions. Then we consider some numerical evidence and state the
prime number theorem, which gives an asymptotic answer to our question,
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and connect this theorem with a form of the famous Riemann Hypothesis.
Our discussion of counting primes in this section is very cursory; for more
details, read Crandall and Pomerance’s excellent book [CP01, §1.1.5].

The following vague discussion is meant to motivate a precise way to
measure the number (or percentage) of primes. What percentage of natu-
ral numbers are even? Answer: Half of them. What percentage of natural
numbers are of the form 4x − 1? Answer: One fourth of them. What per-
centage of natural numbers are perfect squares? Answer: Zero percent of
all natural numbers, in the sense that the limit of the proportion of perfect
squares to all natural numbers converges to 0. More precisely,

lim
x→∞

#{n ∈ N : n ≤ x and n is a perfect square}
x

= 0,

since the numerator is roughly
√
x and limx→∞

√
x
x = 0. Likewise, it is

an easy consequence of Theorem 1.2.10 that zero percent of all natural
numbers are prime (see Exercise 1.4).

We are thus led to ask another question: How many positive integers ≤ x
are perfect squares? Answer: Roughly

√
x. In the context of primes, we ask,

Question 1.2.8. How many natural numbers ≤ x are prime?

Let

π(x) = #{p ∈ N : p ≤ x is a prime}.

For example,

π(6) = #{2, 3, 5} = 3.

Some values of π(x) are given in Table 1.1, and Figures 1.1 and 1.2 contain
graphs of π(x). These graphs look like straight lines, which maybe bend
down slightly.

SAGE Example 1.2.9. To compute π(x) in Sage use the prime pi(x) com-
mand:

sage: prime_pi(6)

3

sage: prime_pi(100)

25

sage: prime_pi(3000000)

216816

We can also draw a plot of π(x) using the plot command:

sage: plot(prime_pi, 1,1000, rgbcolor=(0,0,1))

Gauss was an inveterate computer: he wrote in an 1849 letter that there
are 216, 745 primes less than 3, 000, 000 (this is wrong but close; the correct
count is 216, 816).
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TABLE 1.1. Values of π(x)

x 100 200 300 400 500 600 700 800 900 1000
π(x) 25 46 62 78 95 109 125 139 154 168

(100, 25)
(200, 46)

(500, 95)

(900, 154)
(1000, 168)

250 500 750 1000

50

100

150

200

FIGURE 1.1. Graph of π(x) for x < 1000

Gauss conjectured the following asymptotic formula for π(x), which was
later proved independently by Hadamard and Vallée Poussin in 1896 (but
will not be proved in this book).

Theorem 1.2.10 (Prime Number Theorem). The function π(x) is asymp-
totic to x/ log(x), in the sense that

lim
x→∞

π(x)

x/ log(x)
= 1.

We do nothing more here than motivate this deep theorem with a few
further observations. The theorem implies that

lim
x→∞

π(x)

x
= lim
x→∞

1

log(x)
= 0,

so for any a,

lim
x→∞

π(x)

x/(log(x)− a)
= lim
x→∞

π(x)

x/ log(x)
− aπ(x)

x
= 1.

Thus x/(log(x)−a) is also asymptotic to π(x) for any a. See [CP01, §1.1.5]
for a discussion of why a = 1 is the best choice. Table 1.2 compares π(x)
and x/(log(x)− 1) for several x < 10000.

The record for counting primes is

π(1023) = 1925320391606803968923.

Note that such computations are very difficult to get exactly right, so the
above might be slightly wrong.

For the reader familiar with complex analysis, we mention a connection
between π(x) and the Riemann Hypothesis. The Riemann zeta function
ζ(s) is a complex analytic function on C \ {1} that extends the function
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TABLE 1.2. Comparison of π(x) and x/(log(x) − 1)

x π(x) x/(log(x)− 1) (approx)
1000 168 169.2690290604408165186256278
2000 303 302.9888734545463878029800994
3000 430 428.1819317975237043747385740
4000 550 548.3922097278253264133400985
5000 669 665.1418784486502172369455815
6000 783 779.2698885854778626863677374
7000 900 891.3035657223339974352567759
8000 1007 1001.602962794770080754784281
9000 1117 1110.428422963188172310675011
10000 1229 1217.976301461550279200775705

2500 5000 7500 10000

250

500

750

1000

1250

25000 50000 75000 100000

2500

5000

7500

10000

FIGURE 1.2. Graphs of π(x) for x < 10000 and x < 100000
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defined on a right half plane by
∑∞
n=1 n

−s. The Riemann Hypothesis is
the conjecture that the zeros in C of ζ(s) with positive real part lie on the
line Re(s) = 1/2. This conjecture is one of the Clay Math Institute million
dollar millennium prize problems [Cla].

According to [CP01, §1.4.1], the Riemann Hypothesis is equivalent to the
conjecture that

Li(x) =

∫ x

2

1

log(t)
dt

is a “good” approximation to π(x), in the following precise sense.

Conjecture 1.2.11 (Equivalent to the Riemann Hypothesis).
For all x ≥ 2.01,

|π(x)− Li(x)| ≤ √x log(x).

If x = 2, then π(2) = 1 and Li(2) = 0, but
√

2 log(2) = 0.9802 . . ., so the
inequality is not true for x ≥ 2, but 2.01 is big enough. We will do nothing
more to explain this conjecture, and settle for one numerical example.

Example 1.2.12. Let x = 4 · 1022. Then

π(x) = 783964159847056303858,

Li(x) = 783964159852157952242.7155276025801473 . . . ,

|π(x)− Li(x)| = 5101648384.71552760258014 . . . ,
√
x log(x) = 10408633281397.77913344605 . . . ,

x/(log(x)− 1) = 783650443647303761503.5237113087392967 . . . .

SAGE Example 1.2.13. We use Sage to graph π(x), Li(x), and
√
x log(x).

sage: P = plot(Li, 2,10000, rgbcolor=’purple’)

sage: Q = plot(prime_pi, 2,10000, rgbcolor=’black’)

sage: R = plot(sqrt(x)*log(x),2,10000,rgbcolor=’red’)

sage: show(P+Q+R,xmin=0, figsize=[8,3])

2500 5000 7500 10000

250

500

750

1000

1250

The topmost line is Li(x), the next line is π(x), and the bottom line is√
x log(x).
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For more on the prime number theorem and the Riemann hypothesis see
[Zag75] and [MS08].

1.3 Exercises

1.1 Compute the greatest common divisor gcd(455, 1235) by hand.

1.2 Use the prime enumeration sieve to make a list of all primes up to
100.

1.3 Prove that there are infinitely many primes of the form 6x− 1.

1.4 Use Theorem 1.2.10 to deduce that lim
x→∞

π(x)

x
= 0.

1.5 Let ψ(x) be the number of primes of the form 4k−1 that are ≤ x. Use
a computer to make a conjectural guess about limx→∞ ψ(x)/π(x).

1.6 So far 44 Mersenne primes 2p−1 have been discovered. Give a guess,
backed up by an argument, about when the next Mersenne prime
might be discovered (you will have to do some online research).

1.7 (a) Let y = 10000. Compute π(y) = #{primes p ≤ y}.
(b) The prime number theorem implies π(x) is asymptotic to x

log(x) .

How close is π(y) to y/ log(y), where y is as in (a)?

1.8 Let a, b, c, n be integers. Prove that

(a) if a | n and b | n with gcd(a, b) = 1, then ab | n.

(b) if a | bc and gcd(a, b) = 1, then a | c.

1.9 Let a, b, c, d, and m be integers. Prove that

(a) if a | b and b | c then a | c.
(b) if a | b and c | d then ac | bd.

(c) if m 6= 0, then a | b if and only if ma | mb.
(d) if d | a and a 6= 0, then |d| ≤ |a|.

1.10 In each of the following, apply the division algorithm to find q and r
such that a = bq + r and 0 ≤ r < |b|:

a = 300, b = 17, a = 729, b = 31, a = 300, b = −17, a = 389, b = 4.

1.11 (a) (Do this part by hand.) Compute the greatest common divisor of
323 and 437 using the algorithm described in class that involves
quotients and remainders (i.e., do not just factor a and b).
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(b) Compute by any means the greatest common divisor of

314159265358979323846264338

and
271828182845904523536028747.

1.12 (a) Suppose a, b and n are positive integers. Prove that if an | bn,
then a | b.

(b) Suppose p is a prime and a and k are positive integers. Prove
that if p | ak, then pk | ak.

1.13 (a) Prove that if a positive integer n is a perfect square, then n
cannot be written in the form 4k + 3 for k an integer. (Hint:
Compute the remainder upon division by 4 of each of (4m)2,
(4m+ 1)2, (4m+ 2)2, and (4m+ 3)2.)

(b) Prove that no integer in the sequence

11, 111, 1111, 11111, 111111, . . .

is a perfect square. (Hint: 111 · · · 111 = 111 · · · 108+3 = 4k+3.)

1.14 Prove that a positive integer n is prime if and only if n is not divisible
by any prime p with 1 < p ≤ √n.
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2
The Ring of Integers Modulo n

A startling fact about numbers is that it takes less than a second to decide
with near certainty whether or not any given 1,000 digit number n is a
prime, without actually factoring n. The algorithm for this involves doing
some arithmetic with n that works differently depending on whether n is
prime or composite. In particular, we do arithmetic with the set (in fact,
“ring”) of integers {0, 1, . . . , n − 1} using an innovative rule for addition
and multiplication, where the sum and product of two elements of that set
is again in that set.

Another surprising fact is that one can almost instantly compute the last
1,000 digits of a massive multi-billion digit number like n = 12341234567890

without explicitly writing down all the digits of n. Again, this calculation
involves arithmetic with the ring {0, 1, . . . , n− 1}.

This chapter is about the ring Z/nZ of integers modulo n, the beauti-
ful structure this ring has, and how to apply it to the above mentioned
problems, among others. It is foundational for the rest of this book. In Sec-
tion 2.1, we discuss when linear equations modulo n have a solution, then
introduce the Euler ϕ function and prove Euler’s Theorem and Wilson’s
theorem. In Section 2.2, we prove the Chinese Remainer Theorem, which
addresses simultaneous solubility of several linear equations modulo co-
prime moduli. With these theoretical foundations in place, in Section 2.3,
we introduce algorithms for doing powerful computations modulo n, in-
cluding computing large powers quickly, and solving linear equations. We
finish in Section 2.4 with a discussion of recognizing prime numbers using
arithmetic modulo n.
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2.1 Congruences Modulo n

Definition 2.1.1 (Group). A group is a set G equipped with a binary
operation G × G → G (denoted by multiplication below) and an identity
element 1 ∈ G such that:

1. For all a, b, c ∈ G, we have (ab)c = a(bc).

2. For each a ∈ G, we have 1a = a1 = a, and there exists b ∈ G such
that ab = 1.

Definition 2.1.2 (Abelian Group). An abelian group is a group G such
that ab = ba for every a, b ∈ G.

Definition 2.1.3 (Ring). A ring R is a set equipped with binary operations
+ and × and elements 0, 1 ∈ R such that R is an abelian group under +,
and for all a, b, c ∈ R we have

• 1a = a1 = a

• (ab)c = a(bc)

• a(b+ c) = ab+ ac.

If, in addition, ab = ba for all a, b ∈ R, then we call R a commutative ring.

In this section, we define the ring Z/nZ of integers modulo n, introduce
the Euler ϕ-function, and relate it to the multiplicative order of certain
elements of Z/nZ.

If a, b ∈ Z and n ∈ N, we say that a is congruent to b modulo n if n | a−b,
and write a ≡ b (mod n). Let nZ = (n) be the subset of Z consisting of all
multiples of n (this is called the “ideal of Z generated by n”).

Definition 2.1.4 (Integers Modulo n). The ring Z/nZ of integers mod-
ulo n is the set of equivalence classes of integers modulo n. It is equipped
with its natural ring structure:

(a+ nZ) + (b+ nZ) = (a+ b) + nZ

(a+ nZ) · (b+ nZ) = (a · b) + nZ.

Example 2.1.5. For example,

Z/3Z = {{. . . ,−3, 0, 3, . . .}, {. . . ,−2, 1, 4, . . .}, {. . . ,−1, 2, 5, . . .}}

SAGE Example 2.1.6. In Sage, we list the elements of Z/nZ as follows:

sage: R = Integers(3)

sage: list(R)

[0, 1, 2]
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We use the notation Z/nZ because Z/nZ is the quotient of the ring Z
by the “ideal” nZ of multiples of n. Because Z/nZ is the quotient of a ring
by an ideal, the ring structure on Z induces a ring structure on Z/nZ. We
often let a or a (mod n) denote the equivalence class a+ nZ of a.

Definition 2.1.7 (Field). A field K is a ring such that for every nonzero
element a ∈ K there is an element b ∈ K such that ab = 1.

For example, if p is a prime, then Z/pZ is a field (see Exercise 2.12).

Definition 2.1.8 (Reduction Map and Lift). We call the natural reduction
map Z → Z/nZ, which sends a to a + nZ, reduction modulo n. We also
say that a is a lift of a + nZ. Thus, e.g., 7 is a lift of 1 mod 3, since
7 + 3Z = 1 + 3Z.

We can use that arithmetic in Z/nZ is well defined is to derive tests for
divisibility by n (see Exercise 2.8).

Proposition 2.1.9. A number n ∈ Z is divisible by 3 if and only if the
sum of the digits of n is divisible by 3.

Proof. Write
n = a+ 10b+ 100c+ · · · ,

where the digits of n are a, b, c, etc. Since 10 ≡ 1 (mod 3),

n = a+ 10b+ 100c+ · · · ≡ a+ b+ c+ · · · (mod 3),

from which the proposition follows.

2.1.1 Linear Equations Modulo n

In this section, we are concerned with how to decide whether or not a linear
equation of the form ax ≡ b (mod n) has a solution modulo n. Algorithms
for computing solutions to ax ≡ b (mod n) are the topic of Section 2.3.

First, we prove a proposition that gives a criterion under which one can
cancel a quantity from both sides of a congruence.

Proposition 2.1.10 (Cancellation). If gcd(c, n) = 1 and

ac ≡ bc (mod n),

then a ≡ b (mod n).

Proof. By definition
n | ac− bc = (a− b)c.

Since gcd(n, c) = 1, it follows from Theorem 1.1.6 that n | a− b, so

a ≡ b (mod n),

as claimed.
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When a has a multiplicative inverse a′ in Z/nZ (i.e., aa′ ≡ 1 (mod n))
then the equation ax ≡ b (mod n) has a unique solution x ≡ a′b (mod n).
Thus, it is of interest to determine the units in Z/nZ, i.e., the elements
which have a multiplicative inverse.

We will use complete sets of residues to prove that the units in Z/nZ
are exactly the a ∈ Z/nZ such that gcd(ã, n) = 1 for any lift ã of a to Z
(it doesn’t matter which lift).

Definition 2.1.11 (Complete Set of Residues). We call a subset R ⊂ Z
of size n whose reductions modulo n are pairwise distinct a complete set of
residues modulo n. In other words, a complete set of residues is a choice of
representative for each equivalence class in Z/nZ.

For example,
R = {0, 1, 2, . . . , n− 1}

is a complete set of residues modulo n. When n = 5, R = {0, 1,−1, 2,−2}
is a complete set of residues.

Lemma 2.1.12. If R is a complete set of residues modulo n and a ∈ Z
with gcd(a, n) = 1, then aR = {ax : x ∈ R} is also a complete set of
residues modulo n.

Proof. If ax ≡ ax′ (mod n) with x, x′ ∈ R, then Proposition 2.1.10 implies
that x ≡ x′ (mod n). Because R is a complete set of residues, this implies
that x = x′. Thus the elements of aR have distinct reductions modulo n. It
follows, since #aR = n, that aR is a complete set of residues modulo n.

Proposition 2.1.13 (Units). If gcd(a, n) = 1, then the equation ax ≡ b
(mod n) has a solution, and that solution is unique modulo n.

Proof. Let R be a complete set of residues modulo n, so there is a unique
element of R that is congruent to b modulo n. By Lemma 2.1.12, aR is also
a complete set of residues modulo n, so there is a unique element ax ∈ aR
that is congruent to b modulo n, and we have ax ≡ b (mod n).

Algebraically, this proposition asserts that if gcd(a, n) = 1, then the map
Z/nZ→ Z/nZ given by left multiplication by a is a bijection.

Example 2.1.14. Consider the equation 2x ≡ 3 (mod 7), and the complete
set R = {0, 1, 2, 3, 4, 5, 6} of coset representatives. We have

2R = {0, 2, 4, 6, 8 ≡ 1, 10 ≡ 3, 12 ≡ 5},

so 2 · 5 ≡ 3 (mod 7).

When gcd(a, n) 6= 1, then the equation ax ≡ b (mod n) may or may
not have a solution. For example, 2x ≡ 1 (mod 4) has no solution, but
2x ≡ 2 (mod 4) does, and in fact it has more than one mod 4 (x = 1
and x = 3). Generalizing Proposition 2.1.13, we obtain the following more
general criterion for solvability.
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Proposition 2.1.15 (Solvability). The equation ax ≡ b (mod n) has a
solution if and only if gcd(a, n) divides b.

Proof. Let g = gcd(a, n). If there is a solution x to the equation ax ≡ b
(mod n), then n | (ax− b). Since g | n and g | a, it follows that g | b.

Conversely, suppose that g | b. Then n | (ax− b) if and only if

n

g
|
(
a

g
x− b

g

)
.

Thus ax ≡ b (mod n) has a solution if and only if a
gx ≡ b

g (mod n
g ) has

a solution. Since gcd(a/g, n/g) = 1, Proposition 2.1.13 implies this latter
equation does have a solution.

In Chapter 4, we will study quadratic reciprocity, which gives a nice
criterion for whether or not a quadratic equation modulo n has a solution.

2.1.2 Euler’s Theorem

Let (Z/nZ)∗ denote the set of elements [x] ∈ Z/nZ such that gcd(x, n) = 1.
The set (Z/nZ)∗ is a group, called the group of units of the ring Z/nZ;

it will be of great interest to us. Each element of this group has an order,
and Lagrange’s theorem from group theory implies that each element of
(Z/nZ)∗ has an order that divides the order of (Z/nZ)∗. In elementary
number theory, this fact goes by the monicker “Fermat’s Little Theorem”
when n is prime and “Euler’s Theorem” in general, and we reprove it from
basic principles in this section.

Definition 2.1.16 (Order of an Element). Let n ∈ N and x ∈ Z and
suppose that gcd(x, n) = 1. The order of x modulo n is the smallest m ∈ N
such that

xm ≡ 1 (mod n).

To show that the definition makes sense, we verify that such an m exists.
Consider x, x2, x3, . . .modulo n. There are only finitely many residue classes
modulo n, so we must eventually find two integers i, j with i < j such that

xj ≡ xi (mod n).

Since gcd(x, n) = 1, Proposition 2.1.10 implies that we can cancel x’s and
conclude that

xj−i ≡ 1 (mod n).

SAGE Example 2.1.17. Use x.multiplicative order() to compute the
order of an element of Z/nZ in Sage.
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sage: R = Integers(10)

sage: a = R(3) # create an element of Z/10Z

sage: a.multiplicative_order()

4

Notice that the powers of a are periodic with period 4, i.e., there are four
powers and they repeat:

sage: [a^i for i in range(15)]

[1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9]

The command range(n) we use above returns the list of integers between
0 and n− 1, inclusive.

Definition 2.1.18 (Euler’s ϕ-function). For n ∈ N, let

ϕ(n) = #{a ∈ N : a ≤ n and gcd(a, n) = 1}.

For example,

ϕ(1) = #{1} = 1,

ϕ(2) = #{1} = 1,

ϕ(5) = #{1, 2, 3, 4} = 4,

ϕ(12) = #{1, 5, 7, 11} = 4.

Also, if p is any prime number then

ϕ(p) = #{1, 2, . . . , p− 1} = p− 1.

In Section 2.2.1, we prove that if gcd(m, r) = 1, then ϕ(mr) = ϕ(m)ϕ(r).
This will yield an easy way to compute ϕ(n) in terms of the prime factor-
ization of n.

SAGE Example 2.1.19. Use the euler phi(n) command to compute ϕ(n)
in Sage:

sage: euler_phi(2007)

1332

Theorem 2.1.20 (Euler’s Theorem). If gcd(x, n) = 1, then

xϕ(n) ≡ 1 (mod n).

Proof. As mentioned above, Euler’s Theorem has the following group-
theoretic interpretation. The set of units in Z/nZ is a group

(Z/nZ)∗ = {a ∈ Z/nZ : gcd(a, n) = 1}

that has order ϕ(n). The theorem then asserts that the order of an element
of (Z/nZ)∗ divides the order ϕ(n) of (Z/nZ)∗. This is a special case of
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the more general fact (Lagrange’s Theorem) that if G is a finite group and
g ∈ G, then the order of g divides the cardinality of G.

We now give an elementary proof of the theorem. Let

P = {a : 1 ≤ a ≤ n and gcd(a, n) = 1}.

In the same way that we proved Lemma 2.1.12, we see that the reductions
modulo n of the elements of xP are the same as the reductions of the
elements of P . Thus

∏

a∈P
(xa) ≡

∏

a∈P
a (mod n),

since the products are over the same numbers modulo n. Now cancel the
a’s on both sides to get

x#P ≡ 1 (mod n),

as claimed.

SAGE Example 2.1.21. We illustrate Euler’s Theorem using Sage. The
Mod(x,n) command returns the equivalence class of x in Z/nZ.

sage: n = 20

sage: k = euler_phi(n); k

8

sage: [Mod(x,n)^k for x in range(n) if gcd(x,n) == 1]

[1, 1, 1, 1, 1, 1, 1, 1]

2.1.3 Wilson’s Theorem

The following characterization of prime numbers, from the 1770s, is called
“Wilson’s Theorem,” though it was first proved by Lagrange.

Proposition 2.1.22 (Wilson’s Theorem). An integer p > 1 is prime if
and only if (p− 1)! ≡ −1 (mod p).

For example, if p = 3, then (p− 1)! = 2 ≡ −1 (mod 3). If p = 17, then

(p− 1)! = 20922789888000 ≡ −1 (mod 17).

But if p = 15, then

(p− 1)! = 87178291200 ≡ 0 (mod 15),

so 15 is composite. Thus Wilson’s theorem could be viewed as a primality
test, though, from a computational point of view, it is probably one of the
world’s least efficient primality tests since computing (n−1)! takes so many
steps.
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Proof. The statement is clear when p = 2, so henceforth we assume that
p > 2. We first assume that p is prime and prove that (p − 1)! ≡ −1
(mod p). If a ∈ {1, 2, . . . , p− 1}, then the equation

ax ≡ 1 (mod p)

has a unique solution a′ ∈ {1, 2, . . . , p− 1}. If a = a′, then a2 ≡ 1 (mod p),
so p | a2−1 = (a−1)(a+1), so p | (a−1) or p | (a+1), so a ∈ {1, p−1}. We
can thus pair off the elements of {2, 3, . . . , p − 2}, each with their inverse.
Thus

2 · 3 · · · · · (p− 2) ≡ 1 (mod p).

Multiplying both sides by p− 1 proves that (p− 1)! ≡ −1 (mod p).
Next, we assume that (p− 1)! ≡ −1 (mod p) and prove that p must be

prime. Suppose not, so that p ≥ 4 is a composite number. Let ` be a prime
divisor of p. Then ` < p, so ` | (p− 1)!. Also, by assumption,

` | p | ((p− 1)! + 1).

This is a contradiction, because a prime can not divide a number a and
also divide a+ 1, since it would then have to divide (a+ 1)− a = 1.

Example 2.1.23. We illustrate the key step in the above proof in the case
p = 17. We have

2·3 · · · 15 = (2·9)·(3·6)·(4·13)·(5·7)·(8·15)·(10·12)·(14·11) ≡ 1 (mod 17),

where we have paired up the numbers a, b for which ab ≡ 1 (mod 17).

SAGE Example 2.1.24. We use Sage to create a table of triples; the first
column contains n, the second column contains (n− 1)! modulo n, and the
third contains −1 modulo n. Notice that the first columns contains a prime
precisely when the second and third columns are equal. (The ... notation
indicates a multi-line command in Sage; you should not type the dots in
explicitly.)

sage: for n in range(1,10):

... print n, factorial(n-1) % n, -1 % n

1 0 0

2 1 1

3 2 2

4 2 3

5 4 4

6 0 5

7 6 6

8 0 7

9 0 8
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2.2 The Chinese Remainder Theorem

In this section, we prove the Chinese Remainder Theorem, which gives
conditions under which a system of linear equations is guaranteed to have
a solution. In the 4th century a Chinese mathematician asked the following:

Question 2.2.1. There is a quantity whose number is unknown. Repeat-
edly divided by 3, the remainder is 2; by 5 the remainder is 3; and by 7 the
remainder is 2. What is the quantity?

In modern notation, Question 2.2.1 asks us to find a positive integer
solution to the following system of three equations:

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)

The Chinese Remainder Theorem asserts that a solution exists, and the
proof gives a method to find one. (See Section 2.3 for the necessary algo-
rithms.)

Theorem 2.2.2 (Chinese Remainder Theorem). Let a, b ∈ Z and n,m ∈
N such that gcd(n,m) = 1. Then there exists x ∈ Z such that

x ≡ a (mod m),

x ≡ b (mod n).

Moreover x is unique modulo mn.

Proof. If we can solve for t in the equation

a+ tm ≡ b (mod n),

then x = a + tm will satisfy both congruences. To see that we can solve,
subtract a from both sides and use Proposition 2.1.13 together with our
assumption that gcd(n,m) = 1 to see that there is a solution.

For uniqueness, suppose that x and y solve both congruences. Then z =
x−y satisfies z ≡ 0 (mod m) and z ≡ 0 (mod n), so m | z and n | z. Since
gcd(n,m) = 1, it follows that nm | z, so x ≡ y (mod nm).

Algorithm 2.2.3 (Chinese Remainder Theorem). Given coprime integers
m and n and integers a and b, this algorithm find an integer x such that
x ≡ a (mod m) and x ≡ b (mod n).

1. [Extended GCD] Use Algorithm 2.3.7 below to find integers c, d such
that cm+ dn = 1.

2. [Answer] Output x = a+ (b− a)cm and terminate.
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Proof. Since c ∈ Z, we have x ≡ a (mod m), and using that cm+ dn = 1,
we have a+ (b− a)cm ≡ a+ (b− a) ≡ b (mod n).

Now we can answer Question 2.2.1. First, we use Theorem 2.2.2 to find
a solution to the pair of equations

x ≡ 2 (mod 3),

x ≡ 3 (mod 5).

Set a = 2, b = 3, m = 3, n = 5. Step 1 is to find a solution to t · 3 ≡ 3− 2
(mod 5). A solution is t = 2. Then x = a+ tm = 2 + 2 · 3 = 8. Since any x′

with x′ ≡ x (mod 15) is also a solution to those two equations, we can
solve all three equations by finding a solution to the pair of equations

x ≡ 8 (mod 15)

x ≡ 2 (mod 7).

Again, we find a solution to t · 15 ≡ 2− 8 (mod 7). A solution is t = 1, so

x = a+ tm = 8 + 15 = 23.

Note that there are other solutions. Any x′ ≡ x (mod 3 · 5 · 7) is also a
solution; e.g., 23 + 3 · 5 · 7 = 128.

SAGE Example 2.2.4. The CRT(a,b,m,n) command in Sage computes an
integer x such that x ≡ a (mod m) and x ≡ b (mod n). For example,

sage: CRT(2,3, 3, 5)

-7

The CRT list command computes a number that reduces to several num-
bers modulo coprime moduli. We use it to answer Question 2.2.1:

sage: CRT_list([2,3,2], [3,5,7])

23

2.2.1 Multiplicative Functions

Recall from Definition 2.1.18 that the Euler ϕ-function is

ϕ(n) = #{a : 1 ≤ a ≤ n and gcd(a, n) = 1}.

Lemma 2.2.5. Suppose that m,n ∈ N and gcd(m,n) = 1. Then the map

ψ : (Z/mnZ)∗ → (Z/mZ)∗ × (Z/nZ)∗. (2.2.1)

defined by
ψ(c) = (c mod m, c mod n)

is a bijection.
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Proof. We first show that ψ is injective. If ψ(c) = ψ(c′), then m | c−c′ and
n | c− c′, so nm | c− c′ because gcd(n,m) = 1. Thus c = c′ as elements of
(Z/mnZ)∗.

Next we show that ψ is surjective, i.e., that every element of (Z/mZ)∗×
(Z/nZ)∗ is of the form ψ(c) for some c. Given a and b with gcd(a,m) = 1
and gcd(b, n) = 1, Theorem 2.2.2 implies that there exists c with c ≡ a
(mod m) and c ≡ b (mod n). We may assume that 1 ≤ c ≤ nm, and
since gcd(a,m) = 1 and gcd(b, n) = 1, we must have gcd(c, nm) = 1. Thus
ψ(c) = (a, b).

Definition 2.2.6 (Multiplicative Function). A function f : N → C is
multiplicative if, whenever m,n ∈ N and gcd(m,n) = 1, we have

f(mn) = f(m) · f(n).

Proposition 2.2.7 (Multiplicativity of ϕ). The function ϕ is multiplica-
tive.

Proof. The map ψ of Lemma 2.2.5 is a bijection, so the set on the left in
(2.2.1) has the same size as the product set on the right in (2.2.1). Thus

ϕ(mn) = ϕ(m) · ϕ(n).

The proposition is helpful in computing ϕ(n), at least if we assume we can
compute the factorization of n (see Section 3.4.1 for a connection between
factoring n and computing ϕ(n)). For example,

ϕ(12) = ϕ(22) · ϕ(3) = 2 · 2 = 4.

Also, for n ≥ 1, we have

ϕ(pn) = pn − pn

p
= pn − pn−1 = pn−1(p− 1), (2.2.2)

since ϕ(pn) is the number of numbers less than pn minus the number of
those that are divisible by p. Thus, e.g.,

ϕ(389 · 112) = 388 · (112 − 11) = 388 · 110 = 42680.

2.3 Quickly Computing Inverses and Huge Powers

This section is about how to solve the equation ax ≡ 1 (mod n) when
we know it has a solution, and how to efficiently compute am (mod n).
We also discuss a simple probabilistic primality test that relies on our
ability to compute am (mod n) quickly. All three of these algorithms are
of fundamental importance to the cryptography algorithms of Chapter 3.
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2.3.1 How to Solve ax ≡ 1 (mod n)

Suppose a, n ∈ N with gcd(a, n) = 1. Then by Proposition 2.1.13 the
equation ax ≡ 1 (mod n) has a unique solution. How can we find it?

Proposition 2.3.1 (Extended Euclidean Representation). Suppose a, b ∈
Z and let g = gcd(a, b). Then there exists x, y ∈ Z such that

ax+ by = g.

Remark 2.3.2. If e = cg is a multiple of g, then cax + cby = cg = e, so
e = (cx)a+ (cy)b can also be written in terms of a and b.

Proof of Proposition 2.3.1. Let g = gcd(a, b). Then gcd(a/g, b/g) = 1, so
by Proposition 2.1.15, the equation

a

g
· x ≡ 1

(
mod

b

g

)
(2.3.1)

has a solution x ∈ Z. Multiplying (2.3.1) through by g yields ax ≡ g
(mod b), so there exists y such that b · (−y) = ax − g. Then ax + by = g,
as required.

Given a, b and g = gcd(a, b), our proof of Proposition 2.3.1 gives a way to
explicitly find x, y such that ax+by = g, assuming one knows an algorithm
to solve linear equations modulo n. Since we do not know such an algorithm,
we now discuss a way to explicitly find x and y. This algorithm will in fact
enable us to solve linear equations modulo n. To solve ax ≡ 1 (mod n)
when gcd(a, n) = 1, use the Algorithm 2.3.7 to find x and y such that
ax+ ny = 1. Then ax ≡ 1 (mod n).

Example 2.3.3. Suppose a = 5 and b = 7. The steps of Algorithm 1.1.13
to compute gcd(5, 7) are as follows. Here we underline certain numbers,
because it clarifies the subsequent back substitution we will use to find x
and y.

7 = 1 · 5 + 2 so 2 = 7− 5

5 = 2 · 2 + 1 so 1 = 5− 2 · 2 = 5− 2(7− 5) = 3 · 5− 2 · 7
On the right, we have back-substituted in order to write each partial re-
mainder as a linear combination of a and b. In the last step, we obtain
gcd(a, b) as a linear combination of a and b, as desired.

Example 2.3.4. That example was not too complicated, so we try another
one. Let a = 130 and b = 61. We have

130 = 2 · 61 + 8 8 = 130− 2 · 61

61 = 7 · 8 + 5 5 = −7 · 130 + 15 · 61

8 = 1 · 5 + 3 3 = 8 · 130− 17 · 61

5 = 1 · 3 + 2 2 = −15 · 130 + 32 · 61

3 = 1 · 2 + 1 1 = 23 · 130− 49 · 61
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Thus x = 23 and y = −49 is a solution to 130x+ 61y = 1.

Example 2.3.5. This example is just like Example 2.3.4 above, except we
make the notation on the right more compact.

130 = 2 · 61 + 8 8 = (1,−2)

61 = 7 · 8 + 5 5 = (−7, 15) = (0, 1)− 7(1,−2)

8 = 1 · 5 + 3 3 = (8,−17) = (1,−2)− (−7, 15)

5 = 1 · 3 + 2 2 = (−15, 32) = (−7, 15)− (8,−17)

3 = 1 · 2 + 1 1 = (23,−49) = (8,−17)− (−15, 32)

Notice at each step that the vector on the right is just the vector from
two steps ago minus a multiple of the vector from one step ago, where the
multiple is the cofficient of what we divide by.

SAGE Example 2.3.6. The xgcd(a,b) command computes the greatest
common divisor g of a and b along with x, y such that ax+ by = g.

sage: xgcd(5,7)

(1, -4, 3)

sage: xgcd(130,61)

(1, 23, -49)

Algorithm 2.3.7 (Extended Euclidean Algorithm). Suppose a and b are
integers and let g = gcd(a, b). This algorithm finds g, x and y such that
ax + by = g. We describe only the steps when a > b ≥ 0, since one can
easily reduce to this case.

1. [Initialize] Set x = 1, y = 0, r = 0, s = 1.

2. [Finished?] If b = 0, set g = a and terminate.

3. [Quotient and Remainder] Use Algorithm 1.1.12 to write a = qb + c
with 0 ≤ c < b.

4. [Shift] Set (a, b, r, s, x, y) = (b, c, x− qr, y − qs, r, s) and go to Step 2.
(This shift step is nicely illustrated in Example 2.3.5.)

Proof. This algorithm is the same as Algorithm 1.1.13, except that we keep
track of extra variables x, y, r, s, so it terminates and when it terminates
d = gcd(a, b). We omit the rest of the inductive proof that the algorithm
is correct, and instead refer the reader to [Knu97, §1.2.1].

Algorithm 2.3.8 (Inverse Modulo n). Suppose a and n are integers and
gcd(a, n) = 1. This algorithm finds an x such that ax ≡ 1 (mod n).

1. [Compute Extended GCD] Use Algorithm 2.3.7 to compute integers
x, y such that ax+ ny = gcd(a, n) = 1.

2. [Finished] Output x.
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Proof. Reduce ax+ny = 1 modulo n to see that x satisfies ax ≡ 1 (mod n).

Example 2.3.9. Solve 17x ≡ 1 (mod 61). First, we use Algorithm 2.3.7 to
find x, y such that 17x+ 61y = 1:

61 = 3 · 17 + 10 10 = 61− 3 · 17

17 = 1 · 10 + 7 7 = −61 + 4 · 17

10 = 1 · 7 + 3 3 = 2 · 61− 7 · 17

3 = 2 · 3 + 1 1 = −5 · 61 + 18 · 17

Thus 17 · 18 + 61 · (−5) = 1 so x = 18 is a solution to 17x ≡ 1 (mod 61).

SAGE Example 2.3.10. Sage implements the above algorithm for quickly
computing inverses modulo n. For example,

sage: a = Mod(17, 61)

sage: a^(-1)

18

2.3.2 How to Compute am (mod n)

Let a and n be integers, and m a nonnegative integer. In this section, we de-
scribe an efficient algorithm to compute am (mod n). For the cryptography
applications in Chapter 3, m will have hundreds of digits.

The naive approach to computing am (mod n) is to simply compute
am = a ·a · · · a (mod n) by repeatedly multiplying by a and reducing mod-
ulo m. Note that after each arithmetic operation is completed, we reduce
the result modulo n so that the sizes of the numbers involved do not get
too large. Nonetheless, this algorithm is horribly inefficient because it takes
m− 1 multiplications, which is huge if m has hundreds of digits.

A much more efficient algorithm for computing am (mod n) involves

writing m in binary, then expressing am as a product of expressions a2
i

, for
various i. These latter expressions can be computed by repeatedly squaring
a2

i

. This more clever algorithm is not “simpler,” but it is vastly more
efficient since the number of operations needed grows with the number
of binary digits of m, whereas with the naive algorithm in the previous
paragraph, the number of operations is m− 1.

Algorithm 2.3.11 (Write a number in binary). Let m be a nonnegative
integer. This algorithm writes m in binary, so it finds εi ∈ {0, 1} such that
m =

∑r
i=0 εi2

i with each εi ∈ {0, 1}.

1. [Initialize] Set i = 0.

2. [Finished?] If m = 0, terminate.

3. [Digit] If m is odd, set εi = 1, otherwise εi = 0. Increment i.
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4. [Divide by 2] Set m =
⌊
m
2

⌋
, the greatest integer ≤ m/2. Goto Step 2.

SAGE Example 2.3.12. To write a number in binary using Sage, use the
str command:

sage: 100.str(2)

’1100100’

Notice the above is the correct binary expansion:

sage: 0*2^0 + 0*2^1 + 1*2^2 + 0*2^3 + 0*2^4 + 1*2^5 + 1*2^6

100

Algorithm 2.3.13 (Compute Power). Let a and n be integers and m a
nonnegative integer. This algorithm computes am modulo n.

1. [Write in Binary] Write m in binary using Algorithm 2.3.11, so am =∏
εi=1 a

2i (mod n).

2. [Compute Powers] Compute a, a2, a2
2

= (a2)2, a2
3

= (a2
2

)2, etc., up
to a2

r

, where r + 1 is the number of binary digits of m.

3. [Multiply Powers] Multiply together the a2
i

such that εi = 1, always
working modulo n.

Example 2.3.14. We can compute the last 2 digits of 791, by finding 791

(mod 100). First, because gcd(7, 100) = 1, we have by Theorem 2.1.20 that
7ϕ(100) ≡ 1 (mod 100). Because ϕ is multiplicative,

ϕ(100) = ϕ(22 · 52) = (22 − 2) · (52 − 5) = 40.

Thus 740 ≡ 1 (mod 100), hence

791 ≡ 740+40+11 ≡ 711 (mod 100).

We now compute 711 (mod 100) using the above algorithm. First, write 11
in binary by repeatedly dividing by 2.

11 = 5 · 2 + 1

5 = 2 · 2 + 1

2 = 1 · 2 + 0

1 = 0 · 2 + 1

So in binary, (11)2 = 1011, which we check:

11 = 1 · 8 + 1 · 2 + 1.
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Next, compute a, a2, a4, a8 and output a8 · a2 · a. We have

a = 7

a2 ≡ 49

a4 ≡ 492 ≡ 1

a8 ≡ 12 ≡ 1

Note: it is easiest to square 49 by working modulo 4 and 25 and using the
Chinese Remainder Theorem. Finally,

791 ≡ 711 ≡ a8 · a2 · a ≡ 1 · 49 · 7 ≡ 43 (mod 100).

SAGE Example 2.3.15. Sage implements the above algorithm for comput-
ing powers efficiently. For example,

sage: Mod(7,100)^91

43

We can also, of course, directly compute 791 in Sage, though we would not
want to do this by hand:

sage: 7^91

80153343160247310515380886994816022539378033762994852

007501964604841680190743

2.4 Primality Testing

Theorem 2.4.1 (Pseudoprimality). An integer p > 1 is prime if and only
if for every a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof. If p is prime, then the statement follows from Proposition 2.1.22.
If p is composite, then there is a divisor a of p with 2 ≤ a < p. If ap−1 ≡ 1
(mod p), then p | ap−1 − 1. Since a | p, we have a | ap−1 − 1, hence there
exists an integer k such that ak = ap−1 − 1. Subtracting, we see that
ap−1 − ak = 1, so a(ap−2 − k) = 1. This implies that a | 1, which is a
contradiction since a ≥ 2.

Suppose n ∈ N. Using Theorem 2.4.1 and Algorithm 2.3.13, we can either
quickly prove that n is not prime, or convince ourselves that n is likely prime
(but not quickly prove that n is prime). For example, if 2n−1 6≡ 1 (mod n),
then we have proved that n is not prime. On the other hand, if an−1 ≡ 1
(mod n) for a few a, it “seems likely” that n is prime, and we loosely refer
to such a number that seems prime for several bases as a pseudoprime.
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There are composite numbers n (called Carmichael numbers) with the
amazing property that an−1 ≡ 1 (mod n) for all a with gcd(a, n) = 1. The
first Carmichael number is 561, and it is a theorem that there are infinitely
many such numbers ([AGP94]).

Example 2.4.2. Is p = 323 prime? We compute 2322 (mod 323). Making a
table as above, we have

i m εi 22
i

mod 323

0 322 0 2
1 161 1 4
2 80 0 16

3 40 0 256
4 20 0 290
5 10 0 120

6 5 1 188
7 2 0 137
8 1 1 35

Thus

2322 ≡ 4 · 188 · 35 ≡ 157 (mod 323),

so 323 is not prime, though this computation gives no information about
how 323 factors as a product of primes. In fact, one finds that 323 = 17 ·19.

SAGE Example 2.4.3. It’s possible to easily prove that a large number is
composite, but the proof does not easily yield a factorization. For example
if

n = 95468093486093450983409583409850934850938459083,

then 2n−1 6≡ 1 (mod n), so n is composite.

sage: n = 95468093486093450983409583409850934850938459083

sage: Mod(2,n)^(n-1)

34173444139265553870830266378598407069248687241

Note that factoring n actually takes much longer than the above computa-
tion (which was essentially instant).

sage: factor(n) # takes up to a few seconds.

1610302526747 * 59285812386415488446397191791023889

Another practical primality test is the Miller-Rabin test, which has the
property that each time it is run on a number n it either correctly asserts
that the number is definitely not prime, or that it is probably prime, and
the probability of correctness goes up with each successive call. If Miller-
Rabin is called m times on n and in each case claims that n is probably
prime, then one can in a precise sense bound the probability that n is
composite in terms of m.
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We state the Miller-Rabin algorithm precisely, but do not prove anything
about the probability that it will succeed.

Algorithm 2.4.4 (Miller-Rabin Primality Test). Given an integer n ≥ 5
this algorithm outputs either true or false. If it outputs true, then n is
“probably prime,” and if it outputs false, then n is definitely composite.

1. [Split Off Power of 2] Compute the unique integers m and k such
that m is odd and n− 1 = 2k ·m.

2. [Random Base] Choose a random integer a with 1 < a < n.

3. [Odd Power] Set b = am (mod n). If b ≡ ±1 (mod n) output true
and terminate.

4. [Even Powers] If b2
r ≡ −1 (mod n) for any r with 1 ≤ r ≤ k − 1,

output true and terminate. Otherwise output false.

If Miller-Rabin outputs true for n, we can call it again with n and if it
again outputs true then the probability that we have incorrectly determined
that n is prime (when n is actually composite) decreases.

Proof. We will prove that the algorithm is correct, but will prove nothing
about how likely the algorithm is to assert that a composite is prime.
We must prove that if the algorithm pronounces an integer n composite,
then n really is composite. Thus suppose n is prime, yet the algorithm
pronounces n composite. Then am 6≡ ±1 (mod n), and for all r with 1 ≤
r ≤ k − 1 we have a2

rm 6≡ −1 (mod n). Since n is prime and 2k−1m =

(n − 1)/2, Proposition 4.2.1 implies that a2
k−1m ≡ ±1 (mod n), so by

our hypothesis a2
k−1m ≡ 1 (mod n). But then (a2

k−2m)2 ≡ 1 (mod n), so
by Proposition 2.5.3 (which is proved right after it is stated, and whose

proof does not depend on this argument), we have a2
k−2m ≡ ±1 (mod n).

Again, by our hypothesis, this implies a2
k−2 ≡ 1 (mod n). Repeating this

argument inductively, we see that am ≡ ±1 (mod n), which contradicts
our hypothesis on a.

Until recently it was an open problem to give an algorithm (with proof)
that decides whether or not any integer is prime in time bounded by a poly-
nomial in the number of digits of the integer. Agrawal, Kayal, and Saxena
recently found the first polynomial-time primality test (see [AKS02]). We
will not discuss their algorithm further, because for our applications to
cryptography Miller-Rabin or pseudoprimality tests will be sufficient. See
[Sho05, Ch. 21] for a book that gives a detailed exposition of this algorithm.

SAGE Example 2.4.5. The is prime command uses a combination of tech-
niques to determines (provably correctly!) whether or not an integer is
prime.

sage: n = 95468093486093450983409583409850934850938459083
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sage: is_prime(n)

False

We use the is prime function to make a table of the first few Mersenne
primes (see Section 1.2.3).

sage: for p in primes(100):

... if is_prime(2^p - 1):

... print p, 2^p - 1

2 3

3 7

5 31

7 127

13 8191

17 131071

19 524287

31 2147483647

61 2305843009213693951

89 618970019642690137449562111

There is a specialized test for primality of Mersenne numbers called the
Lucas-Lehmer test. This remarkably simple algorithm determines provably
correctly whether or not a number 2p − 1 is prime. We implement it in a
few lines of code and use the Lucas-Lehmer test to check for primality of
two Mersenne numbers:

sage: def is_prime_lucas_lehmer(p):

... s = Mod(4, 2^p - 1)

... for i in range(3, p+1):

... s = s^2 - 2

... return s == 0

sage: # Check primality of 2^9941 - 1

sage: is_prime_lucas_lehmer(9941)

True

sage: # Check primality of 2^next_prime(1000)-1

sage: is_prime_lucas_lehmer(next_prime(1000))

False

For more on Mersenne primes, see the Great Internet Mersenne Prime
Search (GIMPS) project at http://www.mersenne.org/.

2.5 The Structure of (Z/pZ)∗

This section is about the structure of the group (Z/pZ)∗ of units modulo
a prime number p. The main result is that this group is always cyclic. We
will use this result later in Chapter 4 in our proof of quadratic reciprocity.
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Definition 2.5.1 (Primitive root). A primitive root modulo an integer n
is an element of (Z/nZ)∗ of order ϕ(n).

We will prove that there is a primitive root modulo every prime p. Since
the unit group (Z/pZ)∗ has order p−1, this implies that (Z/pZ)∗ is a cyclic
group, a fact that will be extremely useful, since it completely determines
the structure of (Z/pZ)∗ as a group.

If n is an odd prime power, then there is a primitive root modulo n (see
Exercise 2.28), but there is no primitive root modulo the prime power 23,
and hence none mod 2n for n ≥ 3 (see Exercise 2.27).

Section 2.5.1 is the key input to our proof that (Z/pZ)∗ is cyclic; here
we show that for every divisor d of p − 1 there are exactly d elements of
(Z/pZ)∗ whose order divides d. We then use this result in Section 2.5.2 to
produce an element of (Z/pZ)∗ of order qr when qr is a prime power that
exactly divides p− 1 (i.e., qr divides p− 1, but qr+1 does not divide p− 1),
and multiply together these elements to obtain an element of (Z/pZ)∗ of
order p− 1.

SAGE Example 2.5.2. Use the primitive root command to compute the
smallest positive integer that is a primitive root modulo n. For example,
below we compute primitive roots modulo p for each prime p < 20.

sage: for p in primes(20):

... print p, primitive_root(p)

2 1

3 2

5 2

7 3

11 2

13 2

17 3

19 2

2.5.1 Polynomials over Z/pZ

The polynomials x2 − 1 has four roots in Z/8Z, namely 1, 3, 5, and 7.
In contrast, the following proposition shows that a polynomial of degree d
over a field, such as Z/pZ, can have at most d roots.

Proposition 2.5.3 (Root Bound). Let f ∈ k[x] be a nonzero polynomial
over a field k. Then there are at most deg(f) elements α ∈ k such that
f(α) = 0.
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Proof. We prove the proposition by induction on deg(f). The cases in which
deg(f) ≤ 1 are clear. Write f = anx

n + · · · a1x+ a0. If f(α) = 0, then

f(x) = f(x)− f(α)

= an(xn − αn) + · · ·+ a1(x− α) + a0(1− 1)

= (x− α)(an(xn−1 + · · ·+ αn−1) + · · ·+ a2(x+ α) + a1)

= (x− α)g(x),

for some polynomial g(x) ∈ k[x]. Next, suppose that f(β) = 0 with β 6= α.
Then (β−α)g(β) = 0, so, since β−α 6= 0 and k is a field, we have g(β) = 0.
By our inductive hypothesis, g has at most n−1 roots, so there are at most
n− 1 possibilities for β. It follows that f has at most n roots.

SAGE Example 2.5.4. We use Sage to find the roots of a polynomials over
Z/13Z.

sage: R.<x> = PolynomialRing(Integers(13))

sage: f = x^15 + 1

sage: f.roots()

[(12, 1), (10, 1), (4, 1)]

sage: f(12)

0

The output of the roots command above lists each root along with its
multiplicity (which is 1 in each case above).

Proposition 2.5.5. Let p be a prime number and let d be a divisor of
p− 1. Then f = xd − 1 ∈ (Z/pZ)[x] has exactly d roots in Z/pZ.

Proof. Let e = (p− 1)/d. We have

xp−1 − 1 = (xd)e − 1

= (xd − 1)((xd)e−1 + (xd)e−2 + · · ·+ 1)

= (xd − 1)g(x),

where g ∈ (Z/pZ)[x] and deg(g) = de − d = p − 1 − d. Theorem 2.1.20
implies that xp−1 − 1 has exactly p− 1 roots in Z/pZ, since every nonzero
element of Z/pZ is a root! By Proposition 2.5.3, g has at most p − 1 − d
roots and xd − 1 has at most d roots. Since a root of (xd − 1)g(x) is a root
of either xd − 1 or g(x) and xp−1 − 1 has p− 1 roots, g must have exactly
p− 1− d roots and xd − 1 must have exactly d roots, as claimed.

SAGE Example 2.5.6. We use Sage to illustrate the proposition.

sage: R.<x> = PolynomialRing(Integers(13))

sage: f = x^6 + 1

sage: f.roots()

[(11, 1), (8, 1), (7, 1), (6, 1), (5, 1), (2, 1)]
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We pause to reemphasize that the analog of Proposition 2.5.5 is false
when p is replaced by a composite integer n, since a root mod n of a
product of two polynomials need not be a root of either factor. For example,
f = x2− 1 = (x− 1)(x+ 1) ∈ Z/15Z[x] has the four roots 1, 4, 11, and 14.

2.5.2 Existence of Primitive Roots

Recall from Section 2.1.2 that the order of an element x in a finite group
is the smallest m ≥ 1 such that xm = 1. In this section, we prove that
(Z/pZ)∗ is cyclic by using the results of Section 2.5.1 to produce an element
of (Z/pZ)∗ of order d for each prime power divisor d of p− 1, and then we
multiply these together to obtain an element of order p− 1.

We will use the following lemma to assemble elements of each order
dividing p− 1 to produce an element of order p− 1.

Lemma 2.5.7. Suppose a, b ∈ (Z/nZ)∗ have orders r and s, respectively,
and that gcd(r, s) = 1. Then ab has order rs.

Proof. This is a general fact about commuting elements of any group; our
proof only uses that ab = ba and nothing special about (Z/nZ)∗. Since

(ab)rs = arsbrs = 1,

the order of ab is a divisor of rs. Write this divisor as r1s1 where r1 | r and
s1 | s. Raise both sides of the equation

ar1s1br1s1 = (ab)r1s1 = 1

to the power r2 = r/r1 to obtain

ar1r2s1br1r2s1 = 1.

Since ar1r2s1 = (ar1r2)s1 = 1, we have

br1r2s1 = 1,

so s | r1r2s1. Since gcd(s, r1r2) = gcd(s, r) = 1, it follows that s = s1.
Similarly r = r1, so the order of ab is rs.

Theorem 2.5.8 (Primitive Roots). There is a primitive root modulo any
prime p. In particular, the group (Z/pZ)∗ is cyclic.

Proof. The theorem is true if p = 2, since 1 is a primitive root, so we may
assume p > 2. Write p− 1 as a product of distinct prime powers qni

i :

p− 1 = qn1
1 qn2

2 · · · qnr
r .

By Proposition 2.5.5, the polynomial xq
ni
i − 1 has exactly qni

i roots, and

the polynomial xq
ni−1

i − 1 has exactly qni−1
i roots. There are qni

i − qni−1
i =
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qni−1
i (qi − 1) elements a ∈ Z/pZ such that aq

ni
i = 1 but aq

ni−1

i 6= 1; each
of these elements has order qni

i . Thus for each i = 1, . . . , r, we can choose
an ai of order qni

i . Then, using Lemma 2.5.7 repeatedly, we see that

a = a1a2 · · · ar

has order qn1
1 · · · qnr

r = p− 1, so a is a primitive root modulo p.

Example 2.5.9. We illustrate the proof of Theorem 2.5.8 when p = 13. We
have

p− 1 = 12 = 22 · 3.
The polynomial x4 − 1 has roots {1, 5, 8, 12} and x2 − 1 has roots {1, 12},
so we may take a1 = 5. The polynomial x3 − 1 has roots {1, 3, 9}, and we
set a2 = 3. Then a = 5 · 3 = 15 ≡ 2 is a primitive root. To verify this, note
that the successive powers of 2 (mod 13) are

2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1.

Example 2.5.10. Theorem 2.5.8 is false if, for example, p is replaced by a
power of 2 bigger than 4. For example, the four elements of (Z/8Z)∗ each
have order dividing 2, but ϕ(8) = 4.

Theorem 2.5.11 (Primitive Roots mod pn). Let pn be a power of an odd
prime. Then there is a primitive root modulo pn.

The proof is left as Exercise 2.28.

Proposition 2.5.12 (Number of primitive roots). If there is a primitive
root modulo n, then there are exactly ϕ(ϕ(n)) primitive roots modulo n.

Proof. The primitive roots modulo n are the generators of (Z/nZ)∗, which
by assumption is cyclic of order ϕ(n). Thus they are in bijection with the
generators of any cyclic group of order ϕ(n). In particular, the number of
primitive roots modulo n is the same as the number of elements of Z/ϕ(n)Z
with additive order ϕ(n). An element of Z/ϕ(n)Z has additive order ϕ(n)
if and only if it is coprime to ϕ(n). There are ϕ(ϕ(n)) such elements, as
claimed.

Example 2.5.13. For example, there are ϕ(ϕ(17)) = ϕ(16) = 24 − 23 =
8 primitive roots mod 17, namely 3, 5, 6, 7, 10, 11, 12, 14. The ϕ(ϕ(9)) =
ϕ(6) = 2 primitive roots modulo 9 are 2 and 5. There are no primitive
roots modulo 8, even though ϕ(ϕ(8)) = ϕ(4) = 2 > 0.

2.5.3 Artin’s Conjecture

Conjecture 2.5.14 (Emil Artin). Suppose a ∈ Z is not −1 or a perfect
square. Then there are infinitely many primes p such that a is a primitive
root modulo p.



44 2. The Ring of Integers Modulo n

There is no single integer a such that Artin’s conjecture is known to
be true. For any given a, Pieter [Mor93] proved that there are infinitely
many p such that the order of a is divisible by the largest prime factor
of p − 1. Hooley [Hoo67] proved that something called the Generalized
Riemann Hypothesis implies Conjecture 2.5.14.

Remark 2.5.15. Artin conjectured more precisely that if N(x, a) is the
number of primes p ≤ x such that a is a primitive root modulo p, then
N(x, a) is asymptotic to C(a)π(x), where C(a) is a positive constant that
depends only on a and π(x) is the number of primes up to x.

2.5.4 Computing Primitive Roots

Theorem 2.5.8 does not suggest an efficient algorithm for finding primitive
roots. To actually find a primitive root mod p in practice, we try a = 2,
then a = 3, etc., until we find an a that has order p − 1. Computing the
order of an element of (Z/pZ)∗ requires factoring p − 1, which we do not
know how to do quickly in general, so finding a primitive root modulo p
for large p seems to be a difficult problem.

Algorithm 2.5.16 (Primitive Root). Given a prime p, this algorithm com-
putes the smallest positive integer a that generates (Z/pZ)∗.

1. [p = 2?] If p = 2 output 1 and terminate. Otherwise set a = 2.

2. [Prime Divisors] Compute the prime divisors p1, . . . , pr of p− 1.

3. [Generator?] If for every pi, we have a(p−1)/pi 6≡ 1 (mod p), then a is
a generator of (Z/pZ)∗, so output a and terminate.

4. [Try next] Set a = a+ 1 and go to Step 3.

Proof. Let a ∈ (Z/pZ)∗. The order of a is a divisor d of the order p− 1 of
the group (Z/pZ)∗. Write d = (p− 1)/n, for some divisor n of p− 1. If a is
not a generator of (Z/pZ)∗, then since n | (p− 1), there is a prime divisor
pi of p− 1 such that pi | n. Then

a(p−1)/pi = (a(p−1)/n)n/pi ≡ 1 (mod p).

Conversely, if a is a generator, then a(p−1)/pi 6≡ 1 (mod p) for any pi. Thus
the algorithm terminates with Step 3 if and only if the a under consideration
is a primitive root. By Theorem 2.5.8, there is at least one primitive root,
so the algorithm terminates.

2.6 Exercises

2.1 Prove that for any positive integer n, the set (Z/nZ)∗ under multi-
plication modulo n is a group.
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2.2 Compute the following gcd’s using Algorithm 1.1.13:

gcd(15, 35) gcd(247, 299) gcd(51, 897) gcd(136, 304)

2.3 Use Algorithm 2.3.7 to find x, y ∈ Z such that 2261x+ 1275y = 17.

2.4 Prove that if a and b are integers and p is a prime, then (a + b)p ≡
ap + bp (mod p). You may assume that the binomial coefficient

p!

r!(p− r)!

is an integer.

2.5 (a) Prove that if x, y is a solution to ax+ by = d, then for all c ∈ Z,

x′ = x+ c · b
d
, y′ = y − c · a

d
(2.6.1)

is also a solution to ax+ by = d.

(b) Find two distinct solutions to 2261x+ 1275y = 17.

(c) Prove that all solutions are of the form (2.6.1) for some c.

2.6 Let f(x) = x2 +ax+ b ∈ Z[x] be a quadratic polynomial with integer
coefficients, for example, f(x) = x2 + x + 6. Formulate a conjecture
about when the set

{f(n) : n ∈ Z and f(n) is prime}

is infinite. Give numerical evidence that supports your conjecture.

2.7 Find four complete sets of residues modulo 7, where the ith set sat-
isfies the ith condition: (1) nonnegative, (2) odd, (3) even, (4) prime.

2.8 Find rules in the spirit of Proposition 2.1.9 for divisibility of an integer
by 5, 9, and 11, and prove each of these rules using arithmetic modulo
a suitable n.

2.9 (*) (The following problem is from the 1998 Putnam Competition.)
Define a sequence of decimal integers an as follows: a1 = 0, a2 =
1, and an+2 is obtained by writing the digits of an+1 immediately
followed by those of an. For example, a3 = 10, a4 = 101, and a5 =
10110. Determine the n such that an is a multiple of 11, as follows:

(a) Find the smallest integer n > 1 such that an is divisible by 11.

(b) Prove that an is divisible by 11 if and only if n ≡ 1 (mod 6).

2.10 Find an integer x such that 37x ≡ 1 (mod 101).
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2.11 What is the order of 2 modulo 17?

2.12 Let p be a prime. Prove that Z/pZ is a field.

2.13 Find an x ∈ Z such that x ≡ −4 (mod 17) and x ≡ 3 (mod 23).

2.14 Prove that if n > 4 is composite then

(n− 1)! ≡ 0 (mod n).

2.15 For what values of n is ϕ(n) odd?

2.16 (a) Prove that ϕ is multiplicative as follows. Suppose m,n are pos-
itive integers and gcd(m,n) = 1. Show that the natural map
ψ : Z/mnZ→ Z/mZ× Z/nZ is an injective homomorphism of
rings, hence bijective by counting, then look at unit groups.

(b) Prove conversely that if gcd(m,n) > 1, then the natural map
ψ : Z/mnZ→ Z/mZ× Z/nZ is not an isomorphism.

2.17 Seven competitive math students try to share a huge hoard of stolen
math books equally between themselves. Unfortunately, six books are
left over, and in the fight over them, one math student is expelled.
The remaining six math students, still unable to share the math books
equally since two are left over, again fight, and another is expelled.
When the remaining five share the books, one book is left over, and
it is only after yet another math student is expelled that an equal
sharing is possible. What is the minimum number of books that allows
this to happen?

2.18 Show that if p is a positive integer such that both p and p2 + 2 are
prime, then p = 3.

2.19 Let ϕ : N→ N be the Euler ϕ function.

(a) Find all natural numbers n such that ϕ(n) = 1.

(b) Do there exist natural numbers m and n such that ϕ(mn) 6=
ϕ(m) · ϕ(n)?

2.20 Find a formula for ϕ(n) directly in terms of the prime factorization
of n.

2.21 (a) Prove that if ϕ : G→ H is a group homomorphism, then ker(ϕ)
is a subgroup of G.

(b) Prove that ker(ϕ) is normal, i.e., if a ∈ G and b ∈ ker(ϕ), then
a−1ba ∈ ker(ϕ).

2.22 Is the set Z/5Z = {0, 1, 2, 3, 4} with binary operation multiplication
modulo 5 a group?
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2.23 Find all four solutions to the equation

x2 − 1 ≡ 0 (mod 35).

2.24 Prove that for any positive integer n the fraction (12n+ 1)/(30n+ 2)
is in reduced form.

2.25 Suppose a and b are positive integers.

(a) Prove that gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1.

(b) Does it matter if 2 is replaced by an arbitrary prime p?

(c) What if 2 is replaced by an arbitrary positive integer n?

2.26 For every positive integer b, show that there exists a positive integer
n such that the polynomial x2 − 1 ∈ (Z/nZ)[x] has at least b roots.

2.27 (a) Prove that there is no primitive root modulo 2n for any n ≥ 3.

(b) (*) Prove that (Z/2nZ)∗ is generated by −1 and 5.

2.28 Let p be an odd prime.

(a) (*) Prove that there is a primitive root modulo p2. (Hint: Use
that if a, b have orders n,m, with gcd(n,m) = 1, then ab has
order nm.)

(b) Prove that for any n, there is a primitive root modulo pn.

(c) Explicitly find a primitive root modulo 125.

2.29 (*) In terms of the prime factorization of n, characterize the integers n
such that there is a primitive root modulo n.

2.30 Compute the last two digits of 345.

2.31 Find the integer a such that 0 ≤ a < 113 and

10270 + 1 ≡ a37 (mod 113).

2.32 Find the proportion of primes p < 1000 such that 2 is a primitive
root modulo p.

2.33 Find a prime p such that the smallest primitive root modulo p is 37.
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3
Public-key Cryptography

In the 1970s, techniques from number theory changed the world forever
by providing, for the first time ever, a way for two people to communicate
secret messages under the assumption that all of their communication is
intercepted and read by an adversary. This idea has stood the test of time.
In fact, whenever you buy something online, you use such a system, which
typically involves working in the ring of integers modulo n. This chapter
tells the story of several such systems.

3.1 Playing with Fire

I recently watched a TV show called La Femme Nikita about a woman
named Nikita who is forced to be an agent for a shady anti-terrorist or-
ganization called Section One. Nikita has strong feelings for fellow agent
Michael, and she most trusts Walter, Section One’s ex-biker gadgets and ex-
plosives expert. Often Nikita’s worst enemies are her superiors and cowork-
ers at Section One. A synopsis for a Season Three episode is as follows:

PLAYING WITH FIRE

On a mission to secure detonation chips from a terrorist or-
ganization’s heavily armed base camp, Nikita is captured as a
hostage by the enemy. Or so it is made to look. Michael and
Nikita have actually created the scenario in order to secretly
rendezvous with each other. The ruse works, but when Birkoff
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FIGURE 3.1. Diffie and Hellman (photos from [Sin99])

[Section One’s master hacker] accidentally discovers encrypted
messages between Michael and Nikita sent with Walter’s help,
Birkoff is forced to tell Madeline. Suspecting that Michael and
Nikita may be planning a coup d’état, Operations and Madeline
use a second team of operatives to track Michael and Nikita’s
next secret rendezvous... killing them if necessary.

What sort of encryption might Walter have helped them to use? I let
my imagination run free, and this is what I came up with. After being
captured at the base camp, Nikita is given a phone by her captors in hopes
that she’ll use it and they’ll be able to figure out what she is really up to.
Everyone is eagerly listening in on her calls.

Remark 3.1.1. In this book, we will assume a method is available for pro-
ducing random integers. Methods for generating random integers are in-
volved and interesting, but we will not discuss them in this book. For an
in-depth treatment of random numbers, see [Knu98, Ch. 3].

Nikita remembers a conversation with Walter about a public-key cryp-
tosystem called the “Diffie-Hellman key exchange.” She remembers that it
allows two people to agree on a secret key in the presence of eavesdroppers.
Moreover, Walter mentioned that though Diffie-Hellman was the first ever
public-key exchange system, it is still in common use today (for example,
in OpenSSH protocol version 2, see http://www.openssh.com/).

Nikita pulls out her handheld computer and phone, calls up Michael, and
they do the following, which is wrong (try to figure out what is wrong as
you read it).

1. Together they choose a big prime number p and a number g with
1 < g < p.

2. Nikita secretly chooses an integer n.
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3. Michael secretly chooses an integer m.

4. Nikita tells Michael ng (mod p).

5. Michael tells mg (mod p) to Nikita.

6. The “secret key” is s = nmg (mod p), which both Nikita and Michael
can easily compute.

Here’s a very simple example with small numbers that illustrates what
Michael and Nikita do. (They really used much larger numbers.)

1. p = 97, g = 5

2. n = 31

3. m = 95

4. ng ≡ 58 (mod 97)

5. mg ≡ 87 (mod 97)

6. s = nmg = 78 (mod 97)

Nikita and Michael are foiled because everyone easily figures out s:

1. Everyone knows p, g, ng (mod p), and mg (mod p).

2. Using Algorithm 2.3.7, anyone can easily find a, b ∈ Z such that
ag + bp = 1, which exists because gcd(g, p) = 1.

3. Then, ang ≡ n (mod p), so everyone knows Nikita’s secret key n,
and hence can easily compute the shared secret s.

To taunt her, Nikita’s captors give her a paragraph from a review of Diffie
and Hellman’s 1976 paper “New Directions in Cryptography” [DH76]:

“The authors discuss some recent results in communications
theory [...] The first [method] has the feature that an unautho-
rized ‘eavesdropper’ will find it computationally infeasible to de-
cipher the message [...] They propose a couple of techniques for
implementing the system, but the reviewer was unconvinced.”

3.2 The Diffie-Hellman Key Exchange

As night darkens Nikita’s cell, she reflects on what has happened. Upon re-
alizing that she mis-remembered how the system works, she phones Michael
and they do the following:
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1. Together Michael and Nikita choose a 200-digit integer p that is likely
to be prime (see Section 2.4), and choose a number g with 1 < g < p.

2. Nikita secretly chooses an integer n.

3. Michael secretly chooses an integer m.

4. Nikita computes gn (mod p) on her handheld computer and tells
Michael the resulting number over the phone.

5. Michael tells Nikita gm (mod p).

6. The shared secret key is then

s ≡ (gn)m ≡ (gm)n ≡ gnm (mod p),

which both Nikita and Michael can compute.

Here is a simplified example that illustrates what they did, that involves
only relatively simple arithmetic.

1. p = 97, g = 5

2. n = 31

3. m = 95

4. gn ≡ 7 (mod p)

5. gm ≡ 39 (mod p)

6. s ≡ (gn)m ≡ 14 (mod p)

3.2.1 The Discrete Log Problem

Nikita communicates with Michael by encrypting everything using their
agreed upon secret key (for example, using a standard symmetric cipher
such as AES, Arcfour, Cast128, 3DES, or Blowfish). In order to understand
the conversation, the eavesdropper needs s, but it takes a long time to
compute s given only p, g, gn, and gm. One way would be to compute n from
knowledge of g and gn; this is possible, but appears to be “computationally
infeasible,” in the sense that it would take too long to be practical.

Let a, b, and n be real numbers with a, b > 0 and n ≥ 0. Recall that the
“log to the base b” function is characterized by

logb(a) = n if and only if a = bn.

We use the logb function in algebra to solve the following problem: Given
a base b and a power a of b, find an exponent n such that

a = bn.
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That is, given a = bn and b, find n.

SAGE Example 3.2.1. The number a = 19683 is the nth power of b = 3
for some n. We quickly find that

n = log3(19683) = log(19683)/ log(3) = 9.

sage: log(19683.0)

9.88751059801299

sage: log(3.0)

1.09861228866811

sage: log(19683.0) / log(3.0)

9.00000000000000

Sage can quickly compute a numerical approximation for log(x), for any x,
by computing a partial sum of an appropriate rapidly-converging infinite
series (at least for x in a certain range).

The discrete log problem is the analog of computing logb(a) but where
both b and a are elements of a finite group.

Problem 3.2.2 (Discrete Log Problem). Let G be a finite group, for ex-
ample, G = (Z/pZ)∗. Given b ∈ G and a power a of b, find a positive
integer n such that bn = a.

As far as we know, finding discrete logarithms in (Z/pZ)∗ when p is
large is “very difficult” in practice. Over the years, many people have been
very motivated to try. For example, if Nikita’s captors could efficiently
solve Problem 3.2.2, then they could read the messages she exchanges with
Michael. Unfortunately, we have no formal proof that computing discrete
logarithms on a classical computer is difficult. Also, Peter Shor [Sho97]
showed that if one could build a sufficiently complicated quantum com-
puter, it could solve the discrete logarithm problem in time bounded by a
polynomial function of the number of digits of #G.

It is easy to give an inefficient algorithm that solves the discrete log
problem. Simply try b1, b2, b3, etc., until we find an exponent n such that
bn = a. For example, suppose a = 18, b = 5, and p = 23. Working modulo
23, we have

b1 = 5, b2 = 2, b3 = 10, . . . , b12 = 18,

so n = 12. When p is large, computing the discrete log this way soon be-
comes impractical, because increasing the number of digits of the modulus
makes the computation take vastly longer.

SAGE Example 3.2.3. Perhaps part of the reason that computing discrete
logarithms is difficult, is that the logarithm in the real numbers is continu-
ous, but the (minimum) logarithm of a number mod n bounces around at
random. We illustrate this exotic behavior in Figure 3.2.

This draws the continuous plot.
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FIGURE 3.2. Graphs of the continuous log and of the discrete log modulo 53.
Which picture looks easier to predict?

sage: plot(log, 0.1,10, rgbcolor=(0,0,1))

This draws the discrete plot.

sage: p = 53

sage: R = Integers(p)

sage: a = R.multiplicative_generator()

sage: v = sorted([(a^n, n) for n in range(p-1)])

sage: G = plot(point(v,pointsize=50,rgbcolor=(0,0,1)))

sage: H = plot(line(v,rgbcolor=(0.5,0.5,0.5)))

sage: G + H

3.2.2 Realistic Diffie-Hellman Example

In this section, we present an example that uses bigger numbers. First, we
prove a proposition that we can use to choose a prime p in such a way that
it is easy to find a g ∈ (Z/pZ)∗ with order p− 1. We have already seen in
Section 2.5 that for every prime p there exists an element g of order p− 1,
and we gave Algorithm 2.5.16 for finding a primitive root for any prime.
The significance of Proposition 3.2.4 below is that it suggests an algorithm
for finding a primitive root that is easier to use in practice when p is large,
because it does not require factoring p−1. Of course, one could also just use
a random g for Diffie-Hellman; it is not essential that g generates (Z/pZ)∗.

Proposition 3.2.4. Suppose p is a prime such that (p−1)/2 is also prime.
Then each element of (Z/pZ)∗ has order one of 1, 2, (p− 1)/2, or p− 1.

Proof. Since p is prime, the group (Z/pZ)∗ is of order p−1. By assumption,
the prime factorization of p − 1 is 2 · ((p − 1)/2). Let a ∈ (Z/pZ)∗. Then
by Theorem 2.1.20, ap−1 = 1, so the order of a is a divisor of p− 1, which
proves the proposition.
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Given a prime p with (p− 1)/2 prime, find an element of order p− 1 as
follows. If 2 has order p− 1, we are done. If not, 2 has order (p− 1)/2 since
2 does not have order either 1 or 2. Then −2 has order p− 1.

Let p = 93450983094850938450983409611. Then p is prime, but (p −
1)/2 is not. So we keep adding 2 to p and testing pseudoprimality using
algorithms from Section 2.4 until we find that the next pseudoprime after p
is

q = 93450983094850938450983409623.

It turns out that q pseudoprime and (q−1)/2 is also pseudoprime. We find
that 2 has order (q − 1)/2, so g = −2 has order q − 1 modulo q, and is
hence a generator of (Z/qZ)∗, at least assuming that q is really prime.

The secret random numbers generated by Nikita and Michael are

n = 18319922375531859171613379181

and
m = 82335836243866695680141440300.

Nikita sends

gn = 45416776270485369791375944998 ∈ (Z/pZ)∗

to Michael, and Michael sends

gm = 15048074151770884271824225393 ∈ (Z/pZ)∗

to Nikita. They agree on the secret key

gnm = 85771409470770521212346739540 ∈ (Z/pZ)∗.

SAGE Example 3.2.5. We illustrate the above computations using Sage.

sage: q = 93450983094850938450983409623

sage: q.is_prime()

True

sage: is_prime((q-1)//2)

True

sage: g = Mod(-2, q)

sage: g.multiplicative_order()

93450983094850938450983409622

sage: n = 18319922375531859171613379181

sage: m = 82335836243866695680141440300

sage: g^n

45416776270485369791375944998

sage: g^m

15048074151770884271824225393

sage: (g^n)^m

85771409470770521212346739540

sage: (g^m)^n

85771409470770521212346739540
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3.2.3 The Man in the Middle Attack

Since their first system was broken, instead of talking on the phone, Michael
and Nikita can now only communicate via text messages. One of her cap-
tors, The Man, is watching each of the transmissions; moreover, he can
intercept messages and send false messages. When Nikita sends a mes-
sage to Michael announcing gn (mod p), The Man intercepts this message,
and sends his own number gt (mod p) to Michael. Eventually, Michael and
The Man agree on the secret key gtm (mod p), and Nikita and The Man
agree on the key gtn (mod p). When Nikita sends a message to Michael she
unwittingly uses the secret key gtn (mod p); The Man then intercepts it,
decrypts it, changes it, and re-encrypts it using the key gtm (mod p), and
sends it on to Michael. This is bad because now The Man can read every
message sent between Michael and Nikita, and moreover, he can change
them in transmission in subtle ways.

One way to get around this attack is to use a digital signature scheme
based on the RSA cryptosystem. We will not discuss digital signatures
further in this book, but will discuss RSA in the next section.

3.3 The RSA Cryptosystem

The Diffie-Hellman key exchange has drawbacks. As discussed in Section
3.2.3, it is susceptible to the man in the middle attack. This section is
about the RSA public-key cryptosystem of Rivest, Shamir, and Adleman
[RSA78], which is an alternative to Diffie-Hellman that is more flexible in
some ways.

We first describe the RSA cryptosystem, then discuss several ways to
attack it. It is important to be aware of such weaknesses, in order to avoid
foolish mistakes when implementing RSA. We barely scratched the surface
here of the many possible attacks on specific implementations of RSA or
other cryptosystems.

3.3.1 How RSA works

The fundamental idea behind RSA is to try to construct a trap-door or
one-way function on a set X. This is an invertible function

E : X → X

such that it is easy for Nikita to compute E−1, but extremely difficult for
anybody else to do so.

Here is how Nikita makes a one-way function E on the set of integers
modulo n.

1. Using a method hinted at in Section 2.4, Nikita picks two large
primes p and q, and lets n = pq.
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2. It is then easy for Nikita to compute

ϕ(n) = ϕ(p) · ϕ(q) = (p− 1) · (q − 1).

3. Nikita next chooses a random integer e with

1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1.

4. Nikita uses the algorithm from Section 2.3.2 to find a solution x = d
to the equation

ex ≡ 1 (mod ϕ(n)).

5. Finally, Nikita defines a function E : Z/nZ→ Z/nZ by

E(x) = xe ∈ Z/nZ.

Note that anybody can compute E fairly quickly using the repeated-
squaring algorithm from Section 2.3.2. Nikita’s public key is the pair of
integers (n, e), which is just enough information for people to easily com-
pute E. Nikita knows a number d such that ed ≡ 1 (mod ϕ(n)), so, as we
will see, she can quickly compute E−1.

To send Nikita a message, proceed as follows. Encode your message, in
some way, as a sequence of numbers modulo n (see Section 3.3.2)

m1, . . . ,mr ∈ Z/nZ,

then send
E(m1), . . . , E(mr)

to Nikita. (Recall that E(m) = me for m ∈ Z/nZ.)
When Nikita receives E(mi), she finds each mi by using that E−1(m) =

md, a fact that follows from Proposition 3.3.1

Proposition 3.3.1 (Decryption Key). Let n be an integer that is a product
of distinct primes and let d, e ∈ N be such that p−1 | de−1 for each prime
p | n. Then ade ≡ a (mod n) for all a ∈ Z.

Proof. Since n | ade − a, if and only if p | ade − a for each prime divisor p
of n, it suffices to prove that ade ≡ a (mod p) for each prime divisor p of n.
If gcd(a, p) 6= 1, then a ≡ 0 (mod p), so ade ≡ a (mod p). If gcd(a, p) = 1,
then Theorem 2.1.20 asserts that ap−1 ≡ 1 (mod p). Since p − 1 | de − 1,
we have ade−1 ≡ 1 (mod p) as well. Multiplying both sides by a shows that
ade ≡ a (mod p).

Thus to decrypt E(mi) Nikita computes

E(mi)
d = (me

i )
d = mi.
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SAGE Example 3.3.2. We implement the RSA cryptosystem using Sage.
The rsa function creates a key with (at most) the given number of bits,
i.e., if bits equals 20, it creates a key n = pq such that n is approximately
220. Typical real-life cryptosystems would choose keys that are 512, 1024,
or 2048 bits long. Try generating large keys yourself using Sage; how long
does it take?

sage: def rsa(bits):

... # only prove correctness up to 1024 bits

... proof = (bits <= 1024)

... p = next_prime(ZZ.random_element(2**(bits//2 +1)),

... proof=proof)

... q = next_prime(ZZ.random_element(2**(bits//2 +1)),

... proof=proof)

... n = p * q

... phi_n = (p-1) * (q-1)

... while True:

... e = ZZ.random_element(1,phi_n)

... if gcd(e,phi_n) == 1: break

... d = lift(Mod(e,phi_n)^(-1))

... return e, d, n

...

sage: def encrypt(m,e,n):

... return lift(Mod(m,n)^e)

...

sage: def decrypt(c,d,n):

... return lift(Mod(c,n)^d)

...

sage: e,d,n = rsa(20)

sage: c = encrypt(123, e, n)

sage: decrypt(c, d, n)

123

3.3.2 Encoding a Phrase in a Number

In order to use the RSA cryptosystem to encrypt messages, it is necessary
to encode them as a sequence of numbers of size less than n = pq. We
now describe a simple way to do this. Note that in any actual deployed
implementation, it is crucial that you add extra random characters (“salt”)
at the beginning of each block of the message, so that the same plain text
encodes differently each time. This helps thwart chosen plain text attacks.

Suppose s is a sequence of capital letters and spaces, and that s does not
begin with a space. We encode s as a number in base 27 as follows: a single
space corresponds to 0, the letter A to 1, B to 2, . . ., Z to 26. Thus “RUN
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NIKITA” is a number written in base 27.

RUN NIKITA ↔ 279 · 18 + 278 · 21 + 277 · 14 + 276 · 0 + 275 · 14

+ 274 · 9 + 273 · 11 + 272 · 9 + 27 · 20 + 1

= 143338425831991 (in decimal).

To recover the letters from the decimal number, repeatedly divide by 27
and read off the letter corresponding to each remainder.

143338425831991 = 5308830586370 · 27 + 1 “A”
5308830586370 = 196623355050 · 27 + 20 “T”
196623355050 = 7282346483 · 27 + 9 “I”

7282346483 = 269716536 · 27 + 11 “K”
269716536 = 9989501 · 27 + 9 “I”

9989501 = 369981 · 27 + 14 “N”
369981 = 13703 · 27 + 0 “ ”
13703 = 507 · 27 + 14 “N”

507 = 18 · 27 + 21 “U”
18 = 0 · 27 + 18 “R”

If 27k ≤ n, then any sequence of k letters can be encoded as above using
a positive integer ≤ n. Thus if we can encrypt integers of size at most n,
then we must break our message up into blocks of size at most log27(n).

SAGE Example 3.3.3. We use Sage to implement conversion between a
string and a number, though in a bit more generally than in the toy illus-
tration above (which used only base 27). The input string s on a computer
is stored in a format called ASCII, so each “letter” corresponds to an inte-
ger between 0 and 255, inclusive. This number is obtained from the letter
using the ord command.

sage: def encode(s):

... s = str(s) # make input a string

... return sum(ord(s[i])*256^i for i in range(len(s)))

sage: def decode(n):

... n = Integer(n) # make input an integer

... v = []

... while n != 0:

... v.append(chr(n % 256))

... n //= 256 # this replaces n by floor(n/256).

... return ’’.join(v)

sage: m = encode(’Run Nikita!’); m

40354769014714649421968722

sage: decode(m)

’Run Nikita!’
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3.3.3 Some Complete Examples

To make the arithmetic easier to follow, we use small prime numbers p and q
and encrypt the single letter “X” using the RSA cryptosystem. First, we
compute the parameters of an RSA cryptosystem.

1. Choose p and q: Let p = 17, q = 19, so n = pq = 323.

2. Compute ϕ(n):

ϕ(n) = ϕ(p · q) = ϕ(p) · ϕ(q) = (p− 1)(q − 1)

= pq − p− q + 1 = 323− 17− 19 + 1 = 288.

3. Randomly choose an e < 288: We choose e = 95.

4. Solve

95x ≡ 1 (mod 288).

Using the GCD algorithm, we find that d = 191 solves the equation.

We have thus computed the parameters of an RSA public key cryptosystem.
The public key is (323, 95), so the encryption function is

E(x) = x95,

and the decryption function is D(x) = x191.
Next, we encrypt the letter “X”. It is encoded as the number 24, since X

is the 24th letter of the alphabet. We have

E(24) = 2495 = 294 ∈ Z/323Z.

To decrypt, we compute E−1:

E−1(294) = 294191 = 24 ∈ Z/323Z.

This next example illustrates RSA but with bigger numbers. Let

p = 738873402423833494183027176953, q = 3787776806865662882378273.

Then,

n = p · q = 2798687536910915970127263606347911460948554197853542169

and

ϕ(n) = (p− 1)(q − 1)

= 2798687536910915970127262867470721260308194351943986944.



3.4 Attacking RSA 61

Using a pseudo-random number generator on a computer, the author ran-
domly chose the integer

e = 1483959194866204179348536010284716655442139024915720699.

Then,

d = 2113367928496305469541348387088632973457802358781610803

Since log27(n) ≈ 38.04, we can encode then encrypt single blocks of
up to 38 letters. Let’s encrypt the string RUN NIKITA, which encodes as
m = 143338425831991. We have

E(m) = me

= 1504554432996568133393088878600948101773726800878873990.

Remark 3.3.4. In practice, one usually choses e to be small, since that does
not seem to reduce the security of RSA, and makes the key size smaller. For
example, in the OpenSSL documentation (see http://www.openssl.org/)
about their implementation of RSA, it states that “The exponent is an odd
number, typically 3, 17 or 65537.”

3.4 Attacking RSA

Suppose Nikita’s public key is (n, e) and her decryption key is d, so ed ≡ 1
(mod ϕ(n)). If somehow we compute the factorization n = pq, then we can
compute ϕ(n) = (p−1)(q−1) and hence compute d. Thus, if we can factor n
then we can break the corresponding RSA public-key cryptosystem.

3.4.1 Factoring n Given ϕ(n)

Suppose n = pq. Given ϕ(n), it is very easy to compute p and q. We have

ϕ(n) = (p− 1)(q − 1) = pq − (p+ q) + 1,

so we know both pq = n and p + q = n + 1 − ϕ(n). Thus, we know the
polynomial

x2 − (p+ q)x+ pq = (x− p)(x− q)
whose roots are p and q. These roots can be found using the quadratic
formula.

Example 3.4.1. The number n = pq = 31615577110997599711 is a product
of two primes, and ϕ(n) = 31615577098574867424. We have

f = x2 − (n+ 1− ϕ(n))x+ n

= x2 − 12422732288x+ 31615577110997599711

= (x− 3572144239)(x− 8850588049),
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where the factorization step is easily accomplished using the quadratic
formula:

−b+
√
b2 − 4ac

2a

=
12422732288 +

√
124227322882 − 4 · 31615577110997599711

2
= 8850588049.

We conclude that n = 3572144239 · 8850588049.

SAGE Example 3.4.2. The following Sage function factors n = pq given n
and ϕ(n).

sage: def crack_rsa(n, phi_n):

... R.<x> = PolynomialRing(QQ)

... f = x^2 - (n+1 -phi_n)*x + n

... return [b for b, _ in f.roots()]

sage: crack_rsa(31615577110997599711, 31615577098574867424)

[8850588049, 3572144239]

3.4.2 When p and q are Close

Suppose that p and q are “close” to each other. Then it is easy to factor n
using a factorization method of Fermat called the Fermat Factorization
Method.

Suppose n = pq with p > q. Then,

n =

(
p+ q

2

)2

−
(
p− q

2

)2

.

Since p and q are “close,”

s =
p− q

2

is small,

t =
p+ q

2

is only slightly larger than
√
n, and t2 − n = s2 is a perfect square. So, we

just try
t = d√ne, t = d√ne+ 1, t = d√ne+ 2, . . .

until t2−n is a perfect square s2. (Here dxe denotes the least integer n ≥ x.)
Then

p = t+ s, q = t− s.
Example 3.4.3. Suppose n = 23360947609. Then

√
n = 152842.88 . . . .
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If t = 152843, then
√
t2 − n = 187.18 . . ..

If t = 152844, then
√
t2 − n = 583.71 . . ..

If t = 152845, then
√
t2 − n = 804 ∈ Z.

Thus s = 804. We find that p = t+ s = 153649 and q = t− s = 152041.

SAGE Example 3.4.4. We implement the above algorithm for factoring an
RSA modulus n = pq, when one of p and q is close to

√
n.

sage: def crack_when_pq_close(n):

... t = Integer(ceil(sqrt(n)))

... while True:

... k = t^2 - n

... if k > 0:

... s = Integer(int(round(sqrt(t^2 - n))))

... if s^2 + n == t^2:

... return t+s, t-s

...

... t += 1

...

sage: crack_when_pq_close(23360947609)

(153649, 152041)

For example, you might think that choosing a random prime, and the
next prime after would be a good idea, but instead it creates an easy-to-
crack cryptosystem.

sage: p = next_prime(2^128); p

340282366920938463463374607431768211507

sage: q = next_prime(p)

sage: crack_when_pq_close(p*q)

(340282366920938463463374607431768211537,

340282366920938463463374607431768211507)

3.4.3 Factoring n Given d

In this section, we show that finding the decryption key d for an RSA
cryptosystem is, in practice, at least as difficult as factoring n. We give a
probabilistic algorithm that given a decryption key determines the factor-
ization of n.

Consider an RSA cryptosystem with modulus n and encryption key e.
Suppose we somehow finding an integer d such that

aed ≡ a (mod n)

for all a. Then m = ed − 1 satisfies am ≡ 1 (mod n) for all a that are
coprime to n. As we saw in Section 3.4.1, knowing ϕ(n) leads directly to a
factorization of n. Unfortunately, knowing d does not seem to lead easily to
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a factorization of n. However, there is a probabilistic procedure that, given
an m such that am ≡ 1 (mod n), will find a factorization of n with “high
probability” (we will not analyze the probability here).

Algorithm 3.4.5 (Probabilistic Algorithm to Factor n). Let n = pq be
the product of two distinct odd primes, and suppose m is an integer such
that am ≡ 1 (mod n) for all a coprime to n. This probabilistic algorithm
factors n with “high probability.” In the steps below, a always denotes an
integer coprime to n = pq.

1. [Divide out powers of 2] If m is even and am/2 ≡ 1 (mod n) for several
randomly chosen a, set m = m/2, and go to Step 1, otherwise let a
be such that am/2 6≡ 1 (mod n).

2. [Compute GCD] Choose a random a and compute g = gcd(am/2 −
1, n).

3. [Terminate?] If g is a proper divisor of n, output g and terminate.
Otherwise go to Step 2.

Before giving the proof, we introduce some more terminology from alge-
bra.

Definition 3.4.6 (Group Homomorphism). Let G and H be groups. A
map ϕ : G→ H is a group homomorphism if for all a, b ∈ G we have ϕ(ab) =
ϕ(a)ϕ(b). A group homomorphism is called surjective if for every c ∈ H
there is a ∈ G such that ϕ(a) = c. The kernel of a group homomorphism
ϕ : G→ H is the set ker(ϕ) of elements a ∈ G such that ϕ(a) = 1. A group
homomorphism is injective if ker(ϕ) = {1}.
Definition 3.4.7 (Subgroup). If G is a group and H is a subset of G, then
H is a subgroup if H is a group under the group operation on G.

For example, if ϕ : G → H is a group homomorphism, then ker(ϕ) is a
subgroup of G (see Exercise 2.21).

We now return to discussing Algorithm 3.4.5. In Step 1, note that m is
even since (−1)m ≡ 1 (mod n), so it makes sense to consider m/2. It is not
practical to determine whether or not am/2 ≡ 1 (mod n) for all a, because
it would require doing a computation for too many a. Instead, we try a
few random a; if am/2 ≡ 1 (mod n) for the a we check, we divide m by 2.
Also note that if there exists even a single a such that am/2 6≡ 1 (mod n),
then half the a have this property, since then a 7→ am/2 is a surjective
homomorphism (Z/nZ)∗ → {±1} and the kernel has index 2.

Proposition 2.5.3 implies that if x2 ≡ 1 (mod p) then x = ±1 (mod p).
In Step 2, since (am/2)2 ≡ 1 (mod n), we also have (am/2)2 ≡ 1 (mod p)
and (am/2)2 ≡ 1 (mod q), so am/2 ≡ ±1 (mod p) and am/2 ≡ ±1 (mod q).
Since am/2 6≡ 1 (mod n), there are three possibilities for these signs, so with
positive probability one of the following two possibilities occurs:

1. am/2 ≡ +1 (mod p) and am/2 ≡ −1 (mod q)
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2. am/2 ≡ −1 (mod p) and am/2 ≡ +1 (mod q).

The only other possibility is that both signs are −1. In the first case,

p | am/2 − 1 but q - am/2 − 1,

so gcd(am/2 − 1, pq) = p, and we have factored n. Similarly, in the second
case, gcd(am/2 − 1, pq) = q, and we again factor n.

Example 3.4.8. Somehow we discover that the RSA cryptosystem with

n = 32295194023343 and e = 29468811804857

has decryption key d = 11127763319273. We use this information and Al-
gorithm 3.4.5 to factor n. If

m = ed− 1 = 327921963064646896263108960,

then ϕ(pq) | m, so am ≡ 1 (mod n) for all a coprime to n. For each a ≤ 20
we find that am/2 ≡ 1 (mod n), so we replace m with

m

2
= 163960981532323448131554480.

Again, we find with this new m that for each a ≤ 20, am/2 ≡ 1 (mod n), so
we replace m by 81980490766161724065777240. Yet again, for each a ≤ 20,
am/2 ≡ 1 (mod n), so we replace m by 40990245383080862032888620. This
is enough, since 2m/2 ≡ 4015382800099 (mod n). Then,

gcd(2m/2 − 1, n) = gcd(4015382800098, 32295194023343) = 737531,

and we have found a factor of n. Dividing, we find that

n = 737531 · 43788253.

SAGE Example 3.4.9. We implement Algorithm 3.4.5 in Sage.

sage: def crack_given_decrypt(n, m):

... n = Integer(n); m = Integer(m); # some type checking

... # Step 1: divide out powers of 2

... while True:

... if is_odd(m): break

... divide_out = True

... for i in range(5):

... a = randrange(1,n)

... if gcd(a,n) == 1:

... if Mod(a,n)^(m//2) != 1:

... divide_out = False

... break
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... if divide_out:

... m = m//2

... else:

... break

... # Step 2: Compute GCD

... while True:

... a = randrange(1,n)

... g = gcd(lift(Mod(a, n)^(m//2)) - 1, n)

... if g != 1 and g != n:

... return g

...

We show how to verify Example 3.4.8 using Sage.

sage: n=32295194023343; e=29468811804857; d=11127763319273

sage: crack_given_decrypt(n, e*d - 1)

737531

sage: factor(n)

737531 * 43788253

We try a much larger example.

sage: e = 22601762315966221465875845336488389513

sage: d = 31940292321834506197902778067109010093

sage: n = 268494924039590992469444675130990465673

sage: p = crack_given_decrypt(n, e*d - 1)

sage: p # random output (could be other prime divisor)

13432418150982799907

sage: n % p

0

3.4.4 Further Remarks

If one were to implement an actual RSA cryptosystem, there are many ad-
ditional tricks and ideas to keep in mind. For example, one can add some
extra random letters to each block of text, so that a given string will en-
crypt differently each time it is encrypted. This makes it more difficult for
an attacker who knows the encrypted and plaintext versions of one message
to gain information about subsequent encrypted messages. In any partic-
ular implementation, there might be attacks that would be devastating in
practice, but which would not require factorization of the RSA modulus.

RSA is in common use, for example, it is used in OpenSSH protocol
version 1 (see http://www.openssh.com/).

We will consider the ElGamal cryptosystem in Sections 6.4.2. It has a
similar flavor to RSA, but is more flexible in some ways.
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Probably the best general purpose attack on RSA is the number field
sieve, which is a general algorithm for factoring integers of the form pq. A
description of the sieve is beyond the scope of this book. The elliptic curve
method is another related general algorithm that we will discuss in detail
in Section 6.3.

SAGE Example 3.4.10. Here is a simple example of using a variant of the
number field sieve (called the quadratic sieve) in Sage to factor an RSA
key with about 192 bits:

sage: set_random_seed(0)

sage: p = next_prime(randrange(2^96))

sage: q = next_prime(randrange(2^97))

sage: n = p * q

sage: qsieve(n)

([6340271405786663791648052309,

46102313108592180286398757159], ’’)

3.5 Exercises

3.1 This problem concerns encoding phrases using numbers using the
encoding of Section 3.3.2. What is the longest that an arbitrary se-
quence of letters (no spaces) can be if it must fit in a number that is
less than 1020?

3.2 Suppose Michael creates an RSA cryptosystem with a very large mod-
ulus n for which the factorization of n cannot be found in a reasonable
amount of time. Suppose that Nikita sends messages to Michael by
representing each alphabetic character as an integer between 0 and 26
(A corresponds to 1, B to 2, etc., and a space  to 0), then encrypts
each number separately using Michael’s RSA cryptosystem. Is this
method secure? Explain your answer.

3.3 For any n ∈ N, let σ(n) be the sum of the divisors of n; for example,
σ(6) = 1 + 2 + 3 + 6 = 12 and σ(10) = 1 + 2 + 5 + 10 = 18. Suppose
that n = pqr with p, q, and r distinct primes. Devise an “efficient”
algorithm that given n, ϕ(n) and σ(n), computes the factorization
of n. For example, if n = 105, then p = 3, q = 5, and r = 7, so the
input to the algorithm would be

n = 105, ϕ(n) = 48, and σ(n) = 192,

and the output would be 3, 5, and 7.

3.4 You and Nikita wish to agree on a secret key using the Diffie-Hellman
key exchange. Nikita announces that p = 3793 and g = 7. Nikita
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secretly chooses a number n < p and tells you that gn ≡ 454 (mod p).
You choose the random number m = 1208. What is the secret key?

3.5 You see Michael and Nikita agree on a secret key using the Diffie-
Hellman key exchange. Michael and Nikita choose p = 97 and g = 5.
Nikita chooses a random number n and tells Michael that gn ≡ 3
(mod 97), and Michael chooses a random number m and tells Nikita
that gm ≡ 7 (mod 97). Brute force crack their code: What is the
secret key that Nikita and Michael agree upon? What is n? What
is m?

3.6 In this problem, you will “crack” an RSA cryptosystem. What is the
secret decoding number d for the RSA cryptosystem with public key
(n, e) = (5352381469067, 4240501142039)?

3.7 Nikita creates an RSA cryptosystem with public key

(n, e) = (1433811615146881, 329222149569169).

In the following two problems, show the steps you take to factor n.
(Don’t simply factor n directly using a computer.)

(a) Somehow you discover that d = 116439879930113. Show how to
use the probabilistic algorithm of Section 3.4.3 to factor n.

(b) In part (a) you found that the factors p and q of n are very
close. Show how to use the Fermat Factorization Method of Sec-
tion 3.4.2 to factor n.
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4
Quadratic Reciprocity

A linear equation
ax ≡ b (mod n)

has a solution if and only if gcd(a, n) divides b (see Proposition 2.1.15).
This chapter is about some amazing mathematics motivated by the search
for a criterion for whether or not a given quadratic equation

ax2 + bx+ c ≡ 0 (mod n)

has a solution. In many cases, the Chinese Remainder Theorem and the
quadratic formula reduce this to the key question of whether a given integer
a is a perfect square modulo a prime p.

The Quadratic Reciprocity Law of Gauss provides a precise answer to
the following question: For which primes p is the image of a in (Z/pZ)∗ a
perfect square? A deep fact, which we will completely prove in this chapter,
is that the answer depends only on the reduction of p modulo 4a. Thus to
decide if a is a square modulo p, one only needs to consider the residue of p
modulo 4a, which is extremely surprising. It turns out that this “reciprocity
law” goes to the heart of modern number theory and touches on advanced
topics such as class field theory and the Langlands program.

There are over a hundred proofs of the Quadratic Reciprocity Law (see
[Lem] for a long list). In this chapter, we give two proofs. The first, which
we give in Section 4.3, is completely elementary and involves keeping track
of integer points in intervals. It is satisfying because one can understand
every detail without much abstraction, but it might be unsatisfying if you
find it difficult to conceptualize what is going on. In contrast, our second
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proof, which we give in Section 4.4, is more abstract and uses a conceptual
development of properties of Gauss sums. You should read Sections 4.1 and
4.2, then at least one of Section 4.3 or Section 4.4, depending on your taste
and how much abstract algebra you know.

In Section 4.5, we return to the computational question of actually find-
ing square roots and solving quadratic equations in practice.

4.1 Statement of the Quadratic Reciprocity Law

In this section, we state the Quadratic Reciprocity Law.

Definition 4.1.1 (Quadratic Residue). Fix a prime p. An integer a not
divisible by p is a quadratic residue modulo p if a is a square modulo p;
otherwise, a is a quadratic nonresidue.

For example, the squares modulo 5 are

12 = 1, 22 = 4, 32 = 4, 42 = 1, (mod 5)

so 1 and 4 are both quadratic residues and 2 and 3 are quadratic non-
residues.

The quadratic reciprocity theorem is the deepest theorem that we will
prove in this book. It connects the question of whether or not a is a
quadratic residue modulo p to the question of whether p is a quadratic
residue modulo each of the prime divisors of a. To express it precisely, we
introduce some new notation.

Definition 4.1.2 (Legendre Symbol). Let p be an odd prime and let a be
an integer. Set

(
a

p

)
=





0 if gcd(a, p) 6= 1,

+1 if a is a quadratic residue, and

−1 if a is a quadratic nonresidue.

We call this symbol the Legendre Symbol.

For example, we have

(
1

5

)
= 1,

(
2

5

)
= −1,

(
3

5

)
= −1,

(
4

5

)
= 1,

(
5

5

)
= 1.

This notation is well entrenched in the literature even though it is also
the notation for “a divided by p;” be careful not to confuse the two.

SAGE Example 4.1.3. Use the legendre symbol command to compute the
Legendre symbol in Sage.
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sage: legendre_symbol(2,3)

-1

sage: legendre_symbol(1,3)

1

sage: legendre_symbol(3,5)

-1

sage: legendre_symbol(Mod(3,5), 5)

-1

Since
(
a
p

)
only depends on a (mod p), it makes sense to define

(
a
p

)
for

a ∈ Z/pZ to be
(
ã
p

)
for any lift ã of a to Z.

Recall (see Definition 3.4.6) that a group homomorphism ϕ : G → H is
a map such that for every a, b ∈ G we have ϕ(ab) = ϕ(a)ϕ(b). Moreover,
we say that ϕ is surjective if for every c ∈ H there is an a ∈ G with
ϕ(a) = c. The next lemma explains how the quadratic residue symbol
defines a surjective group homomorphism.

Lemma 4.1.4. The map ψ : (Z/pZ)∗ → {±1} given by ψ(a) =
(
a
p

)
is a

surjective group homomorphism.

Proof. By Theorem 2.5.8, primitive roots exist, so there is g ∈ (Z/pZ)∗

such that the elements of (Z/pZ)∗ are

g, g2, . . . , g(p−1)/2, g(p+1)/2, . . . , gp−1 = 1.

Since p− 1 is even, the squares of elements of (Z/pZ)∗ are

g2, g4, . . . , g(p−1)/2·2 = 1, gp+1 = g2, . . . , g2(p−1).

Note that the powers of g starting with gp+1 = g2 all appeared earlier
on the list. Thus, the perfect squares in (Z/pZ)∗ are exactly the powers
gn with n = 2, 4, . . . , p − 1, even, and the nonsquares the powers gn with
n = 1, 3, . . . , p− 2, odd. It follows that ψ is a homomorphism since an odd
plus an odd is even, the sum of two evens is even, and odd plus an even is
odd. Moreover, since g is not a square, ψ(g) = −1, so ψ is surjective.

Remark 4.1.5. We rephrase the above proof in the language of group theory.
The group G = (Z/pZ)∗ of order p − 1 is a cyclic group. Since p is odd,
p − 1 is even, so the subgroup H of squares of elements of G has index 2

in G. (See Exercise 4.2 for why H is a subgroup.) Since
(
a
p

)
= 1 if and

only if a ∈ H, we see that ψ is the composition G→ G/H ∼= {±1}, where
we identify the nontrivial element of G/H with −1.

Remark 4.1.6. We can alternatively prove that ψ is surjective without using
that (Z/pZ)∗ is cyclic, as follows. If a ∈ (Z/pZ)∗ is a square, say a ≡ b2
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TABLE 4.1. When is 5 a square modulo p?

p
(

5
p

)
p mod 5

7 −1 2
11 1 1
13 −1 3
17 −1 2
19 1 4
23 −1 3

p
(

5
p

)
p mod 5

29 1 4
31 1 1
37 −1 2
41 1 1
43 −1 3
47 −1 2

(mod p), then a(p−1)/2 = bp−1 ≡ 1 (mod p), so a is a root of f = x(p−1)/2−
1. By Proposition 2.5.3, the polynomial f has at most (p−1)/2 roots. Thus,
there must be an a ∈ (Z/pZ)∗ that is not a root of f , and for that a, we

have ψ(a) =
(
a
p

)
= −1, and trivially ψ(1) = 1, so the map ψ is surjective.

Note that this argument does not prove that ψ is a homomorphism.

The symbol
(
a
p

)
only depends on the residue class of a modulo p, so

making a table of values
(
a
5

)
for many values of a would be easy. Would it

be easy to make a table of
(

5
p

)
for many p? Perhaps, since there appears

to be a simple pattern in Table 4.1. It seems that
(

5
p

)
depends only on

the congruence class of p modulo 5. More precisely,
(

5
p

)
= 1 if and only if

p ≡ 1, 4 (mod 5), i.e.,
(

5
p

)
= 1 if and only if p is a square modulo 5.

Based on similar observations, in the 18th century various mathemati-
cians found a conjectural explanation for the mystery suggested by Ta-
ble 4.1. Finally, on April 8, 1796, at the age of 19, Gauss proved the fol-
lowing theorem.

Theorem 4.1.7 (Gauss’s Quadratic Reciprocity Law). Suppose p and q
are distinct odd primes. Then

(
p

q

)
= (−1)

p−1
2 ·

q−1
2

(
q

p

)
.

Also

(−1

p

)
= (−1)(p−1)/2 and

(
2

p

)
=

{
1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8).

We will give two proofs of Gauss’s formula relating
(
p
q

)
to
(
q
p

)
. The first

elementary proof is in Section 4.3, and the second more algebraic proof is
in Section 4.4.



4.2 Euler’s Criterion 73

In our example, Gauss’s theorem implies that

(
5

p

)
= (−1)2·

p−1
2

(p
5

)
=
(p

5

)
=

{
+1 if p ≡ 1, 4 (mod 5)

−1 if p ≡ 2, 3 (mod 5).

As an application, the following example illustrates how to answer ques-
tions like “is a a square modulo b” using Theorem 4.1.7.

Example 4.1.8. Is 69 a square modulo the prime 389? We have
(

69

389

)
=

(
3 · 23

389

)
=

(
3

389

)
·
(

23

389

)
= (−1) · (−1) = 1.

Here (
3

389

)
=

(
389

3

)
=

(
2

3

)
= −1,

and
(

23

389

)
=

(
389

23

)
=

(
21

23

)
=

(−2

23

)

=

(−1

23

)(
2

23

)
= (−1)

23−1
2 · 1 = −1.

Thus 69 is a square modulo 389.

SAGE Example 4.1.9. We could also do this computation in Sage as follows:

sage: legendre_symbol(69,389)

1

Though we know that 69 is a square modulo 389, we don’t know an
explicit x such that x2 ≡ 69 (mod 389)! This is reminiscent of how we
proved using Theorem 2.1.20 that certain numbers are composite without
knowing a factorization.

Remark 4.1.10. The Jacobi symbol is an extension of the Legendre symbol
to composite moduli. For more details, see Exercise 4.9.

4.2 Euler’s Criterion

Let p be an odd prime and a an integer not divisible by p. Euler used

the existence of primitive roots to show that
(
a
p

)
is congruent to a(p−1)/2

modulo p. We will use this fact repeatedly below in both proofs of Theo-
rem 4.1.7.

Proposition 4.2.1 (Euler’s Criterion). We have
(
a
p

)
= 1 if and only if

a(p−1)/2 ≡ 1 (mod p).
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Proof. The map ϕ : (Z/pZ)∗ → (Z/pZ)∗ given by ϕ(a) = a(p−1)/2 is a
group homomorphism, since powering is a group homomorphism of any
abelian group (see Exercise 4.2). Let ψ : (Z/pZ)∗ → {±1} be the homo-

morphism ψ(a) =
(
a
p

)
of Lemma 4.1.4. If a ∈ ker(ψ), then a = b2 for some

b ∈ (Z/pZ)∗, so

ϕ(a) = a(p−1)/2 = (b2)(p−1)/2 = bp−1 = 1.

Thus ker(ψ) ⊂ ker(ϕ). By Lemma 4.1.4, ker(ψ) has index 2 in (Z/pZ)∗,
i.e., #(Z/pZ)∗ = 2 · # ker(ψ). Since the kernel of a homomorphism is a
group, and the order of a subgroup divides the order of the group, we have
either ker(ϕ) = ker(ψ) or ϕ = 1. If ϕ = 1, the polynomial x(p−1)/2 − 1 has
p − 1 roots in the field Z/pZ, which contradicts Proposition 2.5.3. Thus
ker(ϕ) = ker(ψ), which proves the proposition.

SAGE Example 4.2.2. From a computational point of view, Corollary 4.2.3

provides a convenient way to compute
(
a
p

)
, which we illustrate in Sage:

sage: def kr(a, p):

... if Mod(a,p)^((p-1)//2) == 1:

... return 1

... else:

... return -1

sage: for a in range(1,5):

... print a, kr(a,5)

1 1

2 -1

3 -1

4 1

Corollary 4.2.3. The equation x2 ≡ a (mod p) has no solution if and

only if a(p−1)/2 ≡ −1 (mod p). Thus
(
a
p

)
≡ a(p−1)/2 (mod p).

Proof. This follows from Proposition 4.2.1 and the fact that the polyno-
mial x2 − 1 has no roots besides +1 and −1 (which follows from Proposi-
tion 2.5.5).

As additional computational motivation for the value of Corollary 4.2.3,

note that to evaluate
(
a
p

)
using Theorem 4.1.7 would not be practical if a

and p are both very large, because it would require factoring a. However,

Corollary 4.2.3 provides a method for evaluating
(
a
p

)
without factoring a.

Example 4.2.4. Suppose p = 11. By squaring each element of (Z/11Z)∗, we
see that the squares modulo 11 are {1, 3, 4, 5, 9}. We compute a(p−1)/2 = a5
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for each a ∈ (Z/11Z)∗ and get

15 = 1, 25 = −1, 35 = 1, 45 = 1, 55 = 1,

65 = −1, 75 = −1, 85 = −1, 95 = 1, 105 = −1.

Thus the a with a5 = 1 are {1, 3, 4, 5, 9}, just as Proposition 4.2.1 predicts.

Example 4.2.5. We determine whether or not 3 is a square modulo the
prime p = 726377359.

sage: p = 726377359

sage: Mod(3, p)^((p-1)//2)

726377358

so
3(p−1)/2 ≡ −1 (mod 726377359).

Thus 3 is not a square modulo p. This computation wasn’t difficult, but
it would have been tedious by hand. Since 3 is small, the Quadratic Reci-
procity Law provides a way to answer this question, which could easily be
carried out by hand:

(
3

726377359

)
= (−1)(3−1)/2·(726377359−1)/2

(
726377359

3

)

= (−1) ·
(

1

3

)
= −1.

4.3 First Proof of Quadratic Reciprocity

Our first proof of quadratic reciprocity is elementary. The proof involves
keeping track of integer points in intervals. Proving Gauss’s lemma is the

first step; this lemma computes
(
a
p

)
in terms of the number of integers of

a certain type that lie in a certain interval. We next prove Lemma 4.3.3,
which controls how the parity of the number of integer points in an inter-
val changes when an endpoint of the interval is changed. We then prove

that
(
a
p

)
depends only on p modulo 4a by applying Gauss’s Lemma and

keeping careful track of intervals as they are rescaled and their endpoints
are changed. Finally, in Section 4.3.2, we use some basic algebra to deduce
the Quadratic Reciprocity Law using the tools we’ve just developed. Our
proof follows the one given in [Dav99] closely.

Lemma 4.3.1 (Gauss’s Lemma). Let p be an odd prime and let a be an
integer 6≡ 0 (mod p). Form the numbers

a, 2a, 3a, . . . ,
p− 1

2
a
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and reduce them modulo p to lie in the interval (−p2 ,
p
2 ), i.e., for each of the

above products k ·a find a number in the interval (−p2 ,
p
2 ) that is congruent

to k · a modulo p. Let ν be the number of negative numbers in the resulting
set. Then (

a

p

)
= (−1)ν .

Proof. In defining ν, we expressed each number in

S =

{
a, 2a, . . . ,

p− 1

2
a

}

as congruent to a number in the set

{
1,−1, 2,−2, . . . ,

p− 1

2
,−p− 1

2

}
.

No number 1, 2, . . . , p−12 appears more than once, with either choice of
sign, because if it did then either two elements of S are congruent modulo p
or 0 is the sum of two elements of S, and both events are impossible (the
former case cannot occur because of cancellation modulo p, and in the
latter case we would have ka+ ja ≡ 0 (mod p) for 1 ≤ k, j ≤ (p− 1)/2, so
k+ j ≡ 0 (mod p), a contradiction). The resulting set must be of the form

T =

{
ε1 · 1, ε2 · 2, . . . , ε(p−1)/2 ·

p− 1

2

}
,

where each εi is either +1 or −1. Multiplying together the elements of S
and of T , we see that

(1a) · (2a) · (3a) · · ·
(
p− 1

2
a

)
≡

(ε1 · 1) · (ε2 · 2) · · ·
(
ε(p−1)/2 ·

p− 1

2

)
(mod p),

so
a(p−1)/2 ≡ ε1 · ε2 · · · ε(p−1)/2 (mod p).

The lemma then follows from Proposition 4.2.1, since
(
a
p

)
= a(p−1)/2.

SAGE Example 4.3.2. We illustrate Gauss’s Lemma using Sage. The gauss
function below prints out a list of the normalized numbers appearing in
the statement of Gauss’s Lemma, and returns (−1)ν . In each case below,

(−1)ν =
(
a
p

)
.

sage: def gauss(a, p):

... # make the list of numbers reduced modulo p
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... v = [(n*a)%p for n in range(1, (p-1)//2 + 1)]

... # normalize them to be in the range -p/2 to p/2

... v = [(x if (x < p/2) else x - p) for x in v]

... # sort and print the resulting numbers

... v.sort()

... print v

... # count the number that are negative

... num_neg = len([x for x in v if x < 0])

... return (-1)^num_neg

sage: gauss(2, 13)

[-5, -3, -1, 2, 4, 6]

-1

sage: legendre_symbol(2,13)

-1

sage: gauss(4, 13)

[-6, -5, -2, -1, 3, 4]

1

sage: legendre_symbol(4,13)

1

sage: gauss(2,31)

[-15, -13, -11, -9, -7, -5, -3, -1, 2, 4, 6, 8, 10, 12, 14]

1

sage: legendre_symbol(2,31)

1

4.3.1 Euler’s Proposition

For rational numbers a, b ∈ Q, let

(a, b) ∩ Z = {x ∈ Z : a ≤ x ≤ b}

be the set of integers between a and b. The following lemma will help us to
keep track of how many integers lie in certain intervals.

Lemma 4.3.3. Let a, b ∈ Q. Then for any integer n,

# ((a, b) ∩ Z) ≡ # ((a, b+ 2n) ∩ Z) (mod 2)

and

# ((a, b) ∩ Z) ≡ # ((a− 2n, b) ∩ Z) (mod 2),

provided that each interval involved in the congruence is nonempty.

Note that if one of the intervals is empty, then the statement may be false;
for example, if (a, b) = (−1/2, 1/2) and n = −1, then #((a, b)∩Z) = 1 but
#(a, b− 2) ∩ Z = 0.
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Proof. Let dxe denotes the least integer ≥ x. Since n > 0,

(a, b+ 2n) = (a, b) ∪ [b, b+ 2n),

where the union is disjoint. There are 2n integers

dbe, dbe+ 1, . . . , dbe+ 2n− 1

in the interval [b, b + 2n), so the first congruence of the lemma is true in
this case. We also have

(a, b− 2n) = (a, b) minus [b− 2n, b)

and [b−2n, b) contains exactly 2n integers, so the lemma is also true when n
is negative. The statement about # ((a− 2n, b) ∩ Z) is proved in a similar
manner.

Once we have proved the following proposition, it will be easy to deduce
the Quadratic Reciprocity Law.

Proposition 4.3.4 (Euler). Let p be an odd prime and let a be a positive

integer with p - a. If q is a prime with q ≡ ±p (mod 4a), then
(
a
p

)
=
(
a
q

)
.

Proof. We will apply Lemma 4.3.1 to compute
(
a
p

)
. Let

S =

{
a, 2a, 3a, . . . ,

p− 1

2
a

}

and

I =

(
1

2
p, p

)
∪
(

3

2
p, 2p

)
∪ · · · ∪

((
b− 1

2

)
p, bp

)
,

where b = 1
2a or 1

2 (a− 1), whichever is an integer.
We check that every element of S that is equivalent modulo p to some-

thing in the interval (−p2 , 0) lies in I. First suppose that b = 1
2a. Then

bp =
1

2
ap =

p

2
a >

p− 1

2
a,

so each element of S that is equivalent modulo p to an element of (−p2 , 0)
lies in I. Next suppose that b = 1

2 (a− 1). Then

bp+
p

2
=
a− 1

2
p+

p

2
=
p− 1 + a

2
>
p− 1

2
a,

so ((b− 1
2 )p, bp) is the last interval that could contain an element of S that

reduces to (−p2 , 0). Note that the integer endpoints of I are not in S, since



4.3 First Proof of Quadratic Reciprocity 79

those endpoints are divisible by p, but no element of S is divisible by p.
Thus, by Lemma 4.3.1,

(
a

p

)
= (−1)#(S∩I).

To compute #(S ∩ I), first rescale by a to see that

#(S ∩ I) = #

(
1

a
S ∩ 1

a
I

)
= #

(
Z ∩ 1

a
I

)
,

where

1

a
I =

(( p
2a
,
p

a

)
∪
(

3p

2a
,

2p

a

)
∪ · · · ∪

(
(2b− 1)p

2a
,
bp

a

))
,

1
aS = {1, 2, 3, 4, . . . , (p − 1)/2}, and the second equality is because 1

aI ⊂
(0, (p− 1)/2 + 1/2], since

pb

a
≤ pa2

a
=
p

2
=
p− 1

2
+

1

2
.

Write p = 4ac+ r, and let

J =

(( r
2a
,
r

a

)
∪
(

3r

2a
,

2r

a

)
∪ · · · ∪

(
(2b− 1)r

2a
,
br

a

))
.

The only difference between 1
aI and J is that the endpoints of intervals are

changed by addition of an even integer, since

r

2a
− p

2a
=

p

2a
− 2c− p

2a
= −2c.

By Lemma 4.3.3,

ν = #

(
Z ∩ 1

a
I

)
≡ #(Z ∩ J) (mod 2).

Thus
(
a
p

)
= (−1)ν depends only on r and a, i.e., only on p modulo 4a.

Thus if q ≡ p (mod 4a), then
(
a
p

)
=
(
a
q

)
.

If q ≡ −p (mod 4a), then the only change in the above computation is
that r is replaced by 4a− r. This changes J into

K =
(

2− r

2a
, 4− r

a

)
∪
(

6− 3r

2a
, 8− 2r

a

)
∪ · · ·

∪
(

4b− 2− (2b− 1)r

2a
, 4b− br

a

)
.
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Thus K is the same as −J , except even integers have been added to the
endpoints. By Lemma 4.3.3,

#(K ∩ Z) ≡ #

(
1

a
I ∩ Z

)
(mod 2),

so
(
a
p

)
=
(
a
q

)
again, which completes the proof.

The following more careful analysis in the special case when a = 2 helps
illustrate the proof of the above lemma, and the result is frequently useful in
computations. For an alternative proof of the proposition, see Exercise 4.6.

Proposition 4.3.5 (Legendre Lymbol of 2). Let p be an odd prime. Then

(
2

p

)
=

{
1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8).

Proof. When a = 2, the set S = {a, 2a, . . . , 2 · p−12 } is

{2, 4, 6, . . . , p− 1}.

We must count the parity of the number of elements of S that lie in the
interval I = (p2 , p). Writing p = 8c+ r, we have

# (I ∩ S) = #

(
1

2
I ∩ Z

)
= #

((p
4
,
p

2

)
∩ Z

)

= #
((

2c+
r

4
, 4c+

r

2

)
∩ Z

)
≡ #

((r
4
,
r

2

)
∩ Z

)
(mod 2),

where the last equality comes from Lemma 4.3.3. The possibilities for r are
1, 3, 5, 7. When r = 1, the cardinality is 0; when r = 3, 5 it is 1; and when
r = 7 it is 2.

4.3.2 Proof of Quadratic Reciprocity

It is now straightforward to deduce the Quadratic Reciprocity Law.

First Proof of Theorem 4.1.7. First suppose that p ≡ q (mod 4). By swap-
ping p and q if necessary, we may assume that p > q, and write p− q = 4a.
Since p = 4a+ q,

(
p

q

)
=

(
4a+ q

q

)
=

(
4a

q

)
=

(
4

q

)(
a

q

)
=

(
a

q

)
,

and (
q

p

)
=

(
p− 4a

p

)
=

(−4a

p

)
=

(−1

p

)
·
(
a

p

)
.
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Proposition 4.3.4 implies that
(
a
q

)
=
(
a
p

)
, since p ≡ q (mod 4a). Thus

(
p

q

)
·
(
q

p

)
=

(−1

p

)
= (−1)

p−1
2 = (−1)

p−1
2 ·

q−1
2 ,

where the last equality is because p−1
2 is even if and only if q−1

2 is even.
Next suppose that p 6≡ q (mod 4), so p ≡ −q (mod 4). Write p+ q = 4a.

We have
(
p

q

)
=

(
4a− q
q

)
=

(
a

q

)
, and

(
q

p

)
=

(
4a− p
p

)
=

(
a

p

)
.

Since p ≡ −q (mod 4a), Proposition 4.3.4 implies that
(
a
q

)
=
(
a
p

)
. Since

(−1)
p−1
2 ·

q−1
2 = 1, the proof is complete.

4.4 A Proof of Quadratic Reciprocity Using Gauss
Sums

In this section, we present a beautiful proof of Theorem 4.1.7 using algebraic
identities satisfied by sums of “roots of unity.” The objects we introduce
in the proof are of independent interest, and provide a powerful tool to
prove higher-degree analogs of quadratic reciprocity. (For more on higher
reciprocity, see [IR90]. See also Section 6 of [IR90], on which the proof
below is modeled.)

Definition 4.4.1 (Root of Unity). An nth root of unity is a complex
number ζ such that ζn = 1. A root of unity ζ is a primitive nth root of
unity if n is the smallest positive integer such that ζn = 1.

For example, −1 is a primitive second root of unity, and ζ =
√−3−1

2 is
a primitive cube root of unity. More generally, for any n ∈ N the complex
number

ζn = cos(2π/n) + i sin(2π/n)

is a primitive nth root of unity (this follows from the identity eiθ = cos(θ)+
i sin(θ)). For the rest of this section, we fix an odd prime p and the primitive
pth root ζ = ζp of unity.

SAGE Example 4.4.2. In Sage, use the CyclotomicField command to
create an exact pth root of ζ unity. Expressions in ζ are always re-expressed
as polynomials in ζ of degree at most p− 1.

sage: K.<zeta> = CyclotomicField(5)

sage: zeta^5

1
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sage: 1/zeta

-zeta^3 - zeta^2 - zeta - 1

Definition 4.4.3 (Gauss Sum). Fix an odd prime p. The Gauss sum as-
sociated to an integer a is

ga =

p−1∑

n=1

(
n

p

)
ζan,

where ζ = ζp = cos(2π/p) + i sin(2π/p) = e2πi/p.

Note that p is implicit in the definition of ga. If we were to change p,
then the Gauss sum ga associated to a would be different. The definition
of ga also depends on our choice of ζ; we’ve chosen ζ = ζp, but could have
chosen a different ζ and then ga could be different.

SAGE Example 4.4.4. We define a gauss sum function and compute the
Gauss sum g2 for p = 5:

sage: def gauss_sum(a,p):

... K.<zeta> = CyclotomicField(p)

... return sum(legendre_symbol(n,p) * zeta^(a*n)

... for n in range(1,p))

sage: g2 = gauss_sum(2,5); g2

2*zeta^3 + 2*zeta^2 + 1

sage: g2.complex_embedding()

-2.2360679775 + 3.33066907388e-16*I

sage: g2^2

5

Here, g2 is initially output as a polynomial in ζ5, so there is no loss of
precision. The complex embedding command shows some embedding of g2
into the complex numbers, which is only correct to about the first 15 digits.
Note that g22 = 5, so g2 = −

√
5.

We compute a graphical representation of the Gauss sum g2 as follows
(see Figure 4.1):

zeta = CDF(exp(2*pi*I/5))

v = [legendre_symbol(n,5) * zeta^(2*n) for n in range(1,5)]

S = sum([point(tuple(z), pointsize=100) for z in v])

show(S + point(tuple(sum(v)), pointsize=100, rgbcolor=’red’))

Figure 4.1 illustrates the Gauss sum g2 for p = 5. The Gauss sum is
obtained by adding the points on the unit circle, with signs as indicated,
to obtain the real number −

√
5. This suggests the following proposition,

whose proof will require some work.

Proposition 4.4.5 (Gauss Sum). For any a not divisible by p,

g2a = (−1)(p−1)/2p.
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FIGURE 4.1. The red dot is the Gauss sum g2 for p = 5

SAGE Example 4.4.6. We illustrate using Sage that the proposition is cor-
rect for p = 7 and p = 13:

sage: [gauss_sum(a, 7)^2 for a in range(1,7)]

[-7, -7, -7, -7, -7, -7]

sage: [gauss_sum(a, 13)^2 for a in range(1,13)]

[13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13]

In order to prove the proposition, we introduce a few lemmas.

Lemma 4.4.7. For any integer a,

p−1∑

n=0

ζan =

{
p if a ≡ 0 (mod p),

0 otherwise.

Proof. If a ≡ 0 (mod p), then ζa = 1, so the sum equals the number of
summands, which is p. If a 6≡ 0 (mod p), then we use the identity

xp − 1 = (x− 1)(xp−1 + · · ·+ x+ 1)

with x = ζa. We have ζa 6= 1, so ζa − 1 6= 0 and

p−1∑

n=0

ζan =
ζap − 1

ζa − 1
=

1− 1

ζa − 1
= 0.
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Lemma 4.4.8. If x and y are arbitrary integers, then

p−1∑

n=0

ζ(x−y)n =

{
p if x ≡ y (mod p),

0 otherwise.

Proof. This follows from Lemma 4.4.7 by setting a = x− y.

Lemma 4.4.9. We have g0 = 0.

Proof. By definition

g0 =

p−1∑

n=0

(
n

p

)
. (4.4.1)

By Lemma 4.1.4, the map
( ·
p

)
: (Z/pZ)∗ → {±1}

is a surjective homomorphism of groups. Thus, half the elements of (Z/pZ)∗

map to +1 and half map to −1 (the subgroup that maps to +1 has index

2). Since
(

0
p

)
= 0, the sum (4.4.1) is 0.

Lemma 4.4.10. For any integer a,

ga =

(
a

p

)
g1.

Proof. When a ≡ 0 (mod p), the lemma follows from Lemma 4.4.9, so
suppose that a 6≡ 0 (mod p). Then,

(
a

p

)
ga =

(
a

p

) p−1∑

n=0

(
n

p

)
ζan =

p−1∑

n=0

(
an

p

)
ζan =

p−1∑

m=0

(
m

p

)
ζm = g1.

Here, we use that multiplication by a is an automorphism of Z/pZ. Finally,

multiply both sides by
(
a
p

)
and use that

(
a
p

)2
= 1.

We have enough lemmas to prove Proposition 4.4.5.

Proof of Proposition 4.4.5. We evaluate the sum
∑p−1
a=0 gag−a in two dif-

ferent ways. By Lemma 4.4.10, since a 6≡ 0 (mod p) we have

gag−a =

(
a

p

)
g1

(−a
p

)
g1 =

(−1

p

)(
a

p

)2

g21 = (−1)(p−1)/2g21 ,

where the last step follows from Proposition 4.2.1 and that
(
a
p

)
∈ {±1}.

Thus
p−1∑

a=0

gag−a = (p− 1)(−1)(p−1)/2g21 . (4.4.2)
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On the other hand, by definition

gag−a =

p−1∑

n=0

(
n

p

)
ζan ·

p−1∑

m=0

(
m

p

)
ζ−am

=

p−1∑

n=0

p−1∑

m=0

(
n

p

)(
m

p

)
ζanζ−am

=

p−1∑

n=0

p−1∑

m=0

(
n

p

)(
m

p

)
ζan−am.

Let δ(n,m) = 1 if n ≡ m (mod p) and 0 otherwise. By Lemma 4.4.8,

p−1∑

a=0

gag−a =

p−1∑

a=0

p−1∑

n=0

p−1∑

m=0

(
n

p

)(
m

p

)
ζan−am

=

p−1∑

n=0

p−1∑

m=0

(
n

p

)(
m

p

) p−1∑

a=0

ζan−am

=

p−1∑

n=0

p−1∑

m=0

(
n

p

)(
m

p

)
pδ(n,m)

=

p−1∑

n=0

(
n

p

)2

p

= p(p− 1).

Equate (4.4.2) and the above equality, then cancel (p− 1) to see that

g21 = (−1)(p−1)/2p.

Since a 6≡ 0 (mod p), we have
(
a
p

)2
= 1, so by Lemma 4.4.10,

g2a =

(
a

p

)2

g21 = g21 ,

and the proposition is proved.

4.4.1 Proof of Quadratic Reciprocity

We are now ready to prove Theorem 4.1.7 using Gauss sums.

Proof. Let q be an odd prime with q 6= p. Set p∗ = (−1)(p−1)/2p and recall

that Proposition 4.4.5 asserts that p∗ = g2, where g = g1 =
∑p−1
n=0

(
n
p

)
ζn.
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Proposition 4.2.1 implies that

(p∗)(q−1)/2 ≡
(
p∗

q

)
(mod q).

We have gq−1 = (g2)(q−1)/2 = (p∗)(q−1)/2, so multiplying both sides of the
displayed equation by g yields a congruence

gq ≡ g
(
p∗

q

)
(mod q). (4.4.3)

But wait, what does this congruence mean, given that gq is not an inte-

ger? It means that the difference gq − g
(
p∗

q

)
is a multiple of q in the ring

Z[ζ] of all polynomials in ζ with coefficients in Z.
The ring Z[ζ]/(q) has characteristic q, so if x, y ∈ Z[ζ], then (x+ y)q ≡

xq + yq (mod q). Applying this to (4.4.3), we see that

gq =

(
p−1∑

n=0

(
n

p

)
ζn

)q
≡

p−1∑

n=0

(
n

p

)q
ζnq ≡

p−1∑

n=0

(
n

p

)
ζnq ≡ gq (mod q).

By Lemma 4.4.10,

gq ≡ gq ≡
(
q

p

)
g (mod q).

Combining this with (4.4.3) yields
(
q

p

)
g ≡

(
p∗

q

)
g (mod q).

Since g2 = p∗ and p 6= q, we can cancel g from both sides to find that(
q
p

)
≡
(
p∗

q

)
(mod q). Since both residue symbols are ±1 and q is odd, it

follows that
(
q
p

)
=
(
p∗

q

)
. Finally, we note using Corollary 4.2.3 that

(
p∗

q

)
=

(
(−1)(p−1)/2p

q

)
=

(−1

q

)(p−1)/2(
p

q

)
= (−1)

q−1
2 ·

p−1
2 ·

(
p

q

)
.

4.5 Finding Square Roots

We return in this section to the question of computing square roots. If K
is a field in which 2 6= 0, and a, b, c ∈ K, with a 6= 0, then the two solutions
to the quadratic equation ax2 + bx+ c = 0 are

x =
−b±

√
b2 − 4ac

2a
.
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Now assume K = Z/pZ, with p an odd prime. Using Theorem 4.1.7, we
can decide whether or not b2 − 4ac is a perfect square in Z/pZ, and hence
whether or not ax2 + bx + c = 0 has a solution in Z/pZ. However, The-
orem 4.1.7 says nothing about how to actually find a solution when there
is one. Also note that for this problem we do not need the full Quadratic
Reciprocity Law; in practice, deciding whether an element of Z/pZ is a
perfect square with Proposition 4.2.1 is quite fast, in view of Section 2.3.

Suppose a ∈ Z/pZ is a nonzero quadratic residue. If p ≡ 3 (mod 4), then

b = a
p+1
4 is a square root of a because

b2 = a
p+1
2 = a

p−1
2 +1 = a

p−1
2 · a =

(
a

p

)
· a = a.

We can compute b in time polynomial in the number of digits of p using
the powering algorithm of Section 2.3.

Suppose next that p ≡ 1 (mod 4). Unfortunately, we do not know a
deterministic algorithm that takes a and p as input, outputs a square root
of a modulo p when one exists, and is polynomial-time in log(p).

Remark 4.5.1. There is an algorithm due to Schoof [Sch85] that computes
the square root of a in time O((

√
(|a|)1/2+ε · log(p))9). This beautiful al-

gorithm (which makes use of elliptic curves) is not polynomial time in the
sense described above, since for large a it takes exponentially longer than
for small a.

We next describe a probabilistic algorithm to compute a square root of a
modulo p, which is very quick in practice. Recall the notion of ring from
Definition 2.1.3. We will also need the notion of ring homomorphism and
isomorphism.

Definition 4.5.2 (Homomorphism of Rings). Let R and S be rings. A
homomorphism of rings ϕ : R → S is a map such that for all a, b ∈ R, we
have

• ϕ(ab) = ϕ(a)ϕ(b),

• ϕ(a+ b) = ϕ(a) + ϕ(b), and

• ϕ(1) = 1.

An isomorphism ϕ : R → S of rings is a ring homomorphism that is
bijective.

Consider the ring

R = (Z/pZ)[x]/(x2 − a)

defined as follows. We have

R = {u+ vα : u, v ∈ Z/pZ}
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with multiplication defined by

(u+ vα)(z + wα) = (uz + awv) + (uw + vz)α.

Here α corresponds to the class of x in R.

SAGE Example 4.5.3. We define and work with the ring R above in Sage
as follows (for p = 13):

sage: S.<x> = PolynomialRing(GF(13))

sage: R.<alpha> = S.quotient(x^2 - 3)

sage: (2+3*alpha)*(1+2*alpha)

7*alpha + 7

Let b and c be the square roots of a in Z/pZ (though we cannot easily
compute b and c yet, we can consider them in order to deduce an algorithm
to find them). We have ring homomorphisms f : R → Z/pZ and g : R →
Z/pZ given by f(u+ vα) = u+ vb and g(u+ vα) = u+ vc. Together, these
define a ring isomorphism

ϕ : R −→ Z/pZ× Z/pZ

given by ϕ(u + vα) = (u + vb, u + vc). Choose in some way a random
element z of (Z/pZ)∗, and define u, v ∈ Z/pZ by

u+ vα = (1 + zα)
p−1
2 ,

where we compute (1+zα)
p−1
2 quickly using an analog of the binary power-

ing algorithm of Section 2.3.2. If v = 0, we try again with another random z.
If v 6= 0, we can quickly find the desired square roots b and c as follows.
The quantity u+vb is a (p−1)/2 power in Z/pZ, so it equals either 0, 1, or
−1, so b = −u/v, (1− u)/v, or (−1− u)/v, respectively. Since we know u
and v, we can try each of −u/v, (1− u)/v, and (−1− u)/v and see which
is a square root of a.

Example 4.5.4. Continuing Example 4.1.8, we find a square root of 69
modulo 389. We apply the algorithm described above in the case p ≡ 1
(mod 4). We first choose the random z = 24 and find that (1 + 24α)194 =
−1. The coefficient of α in the power is 0, and we try again with z = 51.
This time, we have (1 + 51α)194 = 239α = u + vα. The inverse of 239 in
Z/389Z is 153, so we consider the following three possibilities for a square
root of 69:

−u
v

= 0
1− u
v

= 153 − 1− u
v

= −153.

Thus, 153 and −153 are the square roots of 69 in Z/389Z.

SAGE Example 4.5.5. We implement the above algorithm in Sage and
illustrate it with some examples.
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sage: def find_sqrt(a, p):

... assert (p-1)%4 == 0

... assert legendre_symbol(a,p) == 1

... S.<x> = PolynomialRing(GF(p))

... R.<alpha> = S.quotient(x^2 - a)

... while True:

... z = GF(p).random_element()

... w = (1 + z*alpha)^((p-1)//2)

... (u, v) = (w[0], w[1])

... if v != 0: break

... if (-u/v)^2 == a: return -u/v

... if ((1-u)/v)^2 == a: return (1-u)/v

... if ((-1-u)/v)^2 == a: return (-1-u)/v

...

sage: b = find_sqrt(3,13)

sage: b # random: either 9 or 3

9

sage: b^2

3

sage: b = find_sqrt(3,13)

sage: b # see, it’s random

4

sage: find_sqrt(5,389) # random: either 303 or 86

303

sage: find_sqrt(5,389) # see, it’s random

86

4.6 Exercises

4.1 Calculate the following by hand:
(

3
97

)
,
(

3
389

)
,
(
22
11

)
, and

(
5!
7

)
.

4.2 Let G be an abelian group, and let n be a positive integer.

(a) Prove that the map ϕ : G → G given by ϕ(x) = xn is a group
homomorphism.

(b) Prove that the subset H of G of squares of elements of G is a
subgroup.

4.3 Use Theorem 4.1.7 to show that for p ≥ 5 prime,

(
3

p

)
=

{
1 if p ≡ 1, 11 (mod 12),

−1 if p ≡ 5, 7 (mod 12).
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4.4 (*) Use that (Z/pZ)∗ is cyclic to give a direct proof that
(
−3
p

)
= 1

when p ≡ 1 (mod 3). (Hint: There is an element c ∈ (Z/pZ)∗ of
order 3. Show that (2c+ 1)2 = −3.)

4.5 (*) If p ≡ 1 (mod 5), show directly that
(

5
p

)
= 1 by the method of

Exercise 4.4. (Hint: Let c ∈ (Z/pZ)∗ be an element of order 5. Show
that (c+ c4)2 + (c+ c4)− 1 = 0, etc.)

4.6 (*) Let p be an odd prime. In this exercise, you will prove that
(

2
p

)
=

1 if and only if p ≡ ±1 (mod 8).

(a) Prove that

x =
1− t2
1 + t2

, y =
2t

1 + t2

is a parameterization of the set of solutions to x2 + y2 ≡ 1
(mod p), in the sense that the solutions (x, y) ∈ Z/pZ are in
bijection with the t ∈ Z/pZ∪{∞} such that 1+t2 6≡ 0 (mod p).
Here, t = ∞ corresponds to the point (−1, 0). (Hint: if (x1, y1)
is a solution, consider the line y = t(x+ 1) through (x1, y1) and
(−1, 0), and solve for x1, y1 in terms of t.)

(b) Prove that the number of solutions to x2 + y2 ≡ 1 (mod p) is
p+ 1 if p ≡ 3 (mod 4) and p− 1 if p ≡ 1 (mod 4).

(c) Consider the set S of pairs (a, b) ∈ (Z/pZ)∗×(Z/pZ)∗ such that

a + b = 1 and
(
a
p

)
=
(
b
p

)
= 1. Prove that #S = (p + 1− 4)/4

if p ≡ 3 (mod 4) and #S = (p − 1 − 4)/4 if p ≡ 1 (mod 4).
Conclude that #S is odd if and only if p ≡ ±1 (mod 8).

(d) The map σ(a, b) = (b, a) that swaps coordinates is a bijection of
the set S. It has exactly one fixed point if and only if there is

an a ∈ Z/pZ such that 2a = 1 and
(
a
p

)
= 1. Also, prove that

2a = 1 has a solution a ∈ Z/pZ with
(
a
p

)
= 1 if and only if

(
2
p

)
= 1.

(e) Finish by showing that σ has exactly one fixed point if and only
if #S is odd, i.e., if and only if p ≡ ±1 (mod 8).

Remark: The method of proof of this exercise can be generalized to
give a proof of the full Quadratic Reciprocity Law.

4.7 How many natural numbers x < 213 satisfy the equation

x2 ≡ 5 (mod 213 − 1)?

You may assume that 213 − 1 is prime.
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4.8 Find the natural number x < 97 such that x ≡ 448 (mod 97). Note
that 97 is prime.

4.9 In this problem, we will formulate an analog of quadratic reciprocity

for a symbol like
(
a
q

)
, but without the restriction that q be a prime.

Suppose n is an odd positive integer, which we factor as
∏k
i=1 p

ei
i .

We define the Jacobi symbol
(
a
n

)
as follows:

(a
n

)
=

k∏

i=1

(
a

pi

)ei
.

(a) Give an example to show that
(
a
n

)
= 1 need not imply that a is

a perfect square modulo n.

(b) (*) Let n be odd and a and b be integers. Prove that the following
holds:

i.
(
a
n

) (
b
n

)
=
(
ab
n

)
. (Thus a 7→

(
a
n

)
induces a homomorphism

from (Z/nZ)∗ to {±1}.)
ii.
(−1
n

)
≡ n (mod 4).

iii.
(
2
n

)
= 1 if n ≡ ±1 (mod 8) and −1 otherwise.

iv. Assume a is positive and odd. Then
(
a
n

)
= (−1)

a−1
2 ·

n−1
2

(
n
a

)

4.10 (*) Prove that for any n ∈ Z, the integer n2 + n + 1 does not have
any divisors of the form 6k − 1.
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5
Continued Fractions

The golden ratio 1+
√
5

2 is equal to the infinite fraction

1 +
1

1 +
1

1 +
1

1 + · · · ,
and the fraction

103993

33102
= 3.14159265301190260407 . . .

is an excellent approximation to π. Both of these observations are explained
by continued fractions.

Continued fractions are theoretically beautiful and provide tools that
yield powerful algorithms for solving problems in number theory. For ex-
ample, continued fractions provide a fast way to write a prime—even a
hundred digit prime—as a sum of two squares, when possible.

Continued fractions are thus a beautiful algorithmic and conceptual tool
in number theory that has many applications. For example, they provide
a surprisingly efficient way to recognize a rational number given just the
first few digits of its decimal expansion, and they give a sense in which e
is “less complicated” than π (see Example 5.3.4 and Section 5.4).

In Section 5.2, we study continued fractions of finite length and lay the
foundations for our later investigations. In Section 5.3, we give the contin-
ued fraction procedure, which associates to a real number x a continued
fraction that converges to x. In Section 5.5, we characterize (eventually)
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periodic continued fractions as the continued fractions of nonrational roots
of quadratic polynomials, then discuss an unsolved mystery concerning
continued fractions of roots of irreducible polynomials of degree greater
than 2. We conclude the chapter with applications of continued fractions
to recognizing approximations to rational numbers (Section 5.6) and writ-
ing integers as sums of two squares (Section 5.7).

The reader is encouraged to read more about continued fractions in
[HW79, Ch. X], [Khi63], [Bur89, §13.3], and [NZM91, Ch. 7].

5.1 The Definition

A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 + · · · .

In this book, we will assume that the ai are real numbers and ai > 0 for
i ≥ 1, and the expression may or may not go on indefinitely. More general
notions of continued fractions have been extensively studied, but they are
beyond the scope of this book. We will be most interested in the case when
the ai are all integers.

We denote the continued fraction displayed above by

[a0, a1, a2, . . .].

For example,

[1, 2] = 1 +
1

2
=

3

2
,

[3, 7, 15, 1, 292] = 3 +
1

7 +
1

15 +
1

1 +
1

292

=
103993

33102
= 3.14159265301190260407 . . . ,
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and

[2, 1, 2, 1, 1, 4, 1, 1, 6] = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 +
1

6

=
1264

465
= 2.7182795698924731182795698 . . .

The second two examples were chosen to foreshadow that continued frac-
tions can be used to obtain good rational approximations to irrational
numbers. Note that the first approximates π, and the second e.

5.2 Finite Continued Fractions

This section is about continued fractions of the form [a0, a1, . . . , am] for
some m ≥ 0. We give an inductive definition of numbers pn and qn such
that for all n ≤ m

[a0, a1, . . . , an] =
pn
qn
. (5.2.1)

We then give related formulas for the determinants of the 2 × 2 matrices( pn pn−1
qn qn−1

)
and

( pn pn−2
qn qn−2

)
, which we will repeatedly use to deduce prop-

erties of the sequence of partial convergents [a0, . . . , ak]. We will use Al-
gorithm 1.1.13 to prove that every rational number is represented by a
continued fraction, as in (5.2.1).

Definition 5.2.1 (Finite Continued Fraction). A finite continued fraction
is an expression

a0 +
1

a1 +
1

a2 +
1

· · ·+ 1
an

where each am is a real number and am > 0 for all m ≥ 1.

Definition 5.2.2 (Simple Continued Fraction). A simple continued frac-
tion is a finite or infinite continued fraction in which the ai are all integers.
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To get a feeling for continued fractions, observe that

[a0] = a0,

[a0, a1] = a0 +
1

a1
=
a0a1 + 1

a1
,

[a0, a1, a2] = a0 +
1

a1 +
1

a2

=
a0a1a2 + a0 + a2

a1a2 + 1
.

Also,

[a0, a1, . . . , an−1, an] =

[
a0, a1, . . . , an−2, an−1 +

1

an

]

= a0 +
1

[a1, . . . , an]

= [a0, [a1, . . . , an]].

SAGE Example 5.2.3. The continued fraction command computes con-
tinued fractions:

sage: continued_fraction(17/23)

[0, 1, 2, 1, 5]

sage: continued_fraction(e)

[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1,

12, 1, 1, 11]

Use the optional second argument bits = n to determine the precision (in
bits) of the input number that is used to compute the continued fraction.

sage: continued_fraction(e, bits=20)

[2, 1, 2, 1, 1, 4, 1, 1, 6]

sage: continued_fraction(e, bits=30)

[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1]

You can obtain the value of a continued fraction and even do arithmetic
with continued fractions:

sage: a = continued_fraction(17/23); a

[0, 1, 2, 1, 5]

sage: a.value()

17/23

sage: b = continued_fraction(6/23); b

[0, 3, 1, 5]

sage: a + b

[1]
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5.2.1 Partial Convergents

Fix a finite continued fraction [a0, . . . , am]. We do not assume at this point
that the ai are integers.

Definition 5.2.4 (Partial convergents). For 0 ≤ n ≤ m, the nth conver-
gent of the continued fraction [a0, . . . , am] is [a0, . . . , an]. These convergents
for n < m are also called partial convergents.

For each n with −2 ≤ n ≤ m, define real numbers pn and qn as follows:

p−2 = 0, p−1 = 1, p0 = a0, · · · pn = anpn−1 + pn−2 · · · ,
q−2 = 1, q−1 = 0, q0 = 1, · · · qn = anqn−1 + qn−2 · · · .

Proposition 5.2.5 (Partial Convergents). For n ≥ 0 with n ≤ m we have

[a0, . . . , an] =
pn
qn
.

Proof. We use induction. The assertion is obvious when n = 0, 1. Suppose
the proposition is true for all continued fractions of length n− 1. Then

[a0, . . . , an] = [a0, . . . , an−2, an−1 +
1

an
]

=

(
an−1 + 1

an

)
pn−2 + pn−3

(
an−1 + 1

an

)
qn−2 + qn−3

=
(an−1an + 1)pn−2 + anpn−3
(an−1an + 1)qn−2 + anqn−3

=
an(an−1pn−2 + pn−3) + pn−2
an(an−1qn−2 + qn−3) + qn−2

=
anpn−1 + pn−2
anqn−1 + qn−2

=
pn
qn
.

SAGE Example 5.2.6. If c is a continued fraction, use c.convergents()

to compute a list of the partial convergents of c.

sage: c = continued_fraction(pi,bits=33); c

[3, 7, 15, 1, 292, 2]

sage: c.convergents()

[3, 22/7, 333/106, 355/113, 103993/33102, 208341/66317]

As we will see, the convergents of a continued fraction are the best ratio-
nal approximations to the value of the continued fraction. In the example
above, the listed convergents are the best rational approximations of π with
given denominator size.
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Proposition 5.2.7. For n ≥ 0 with n ≤ m we have

pnqn−1 − qnpn−1 = (−1)n−1 (5.2.2)

and
pnqn−2 − qnpn−2 = (−1)nan. (5.2.3)

Equivalently,
pn
qn
− pn−1
qn−1

= (−1)n−1 · 1

qnqn−1

and
pn
qn
− pn−2
qn−2

= (−1)n · an
qnqn−2

.

Proof. The case for n = 0 is obvious from the definitions. Now suppose
n > 0 and the statement is true for n− 1. Then

pnqn−1 − qnpn−1 = (anpn−1 + pn−2)qn−1 − (anqn−1 + qn−2)pn−1
= pn−2qn−1 − qn−2pn−1
= −(pn−1qn−2 − pn−2qn−1)

= −(−1)n−2 = (−1)n−1.

This completes the proof of (5.2.2). For (5.2.3), we have

pnqn−2 − pn−2qn = (anpn−1 + pn−2)qn−2 − pn−2(anqn−1 + qn−2)

= an(pn−1qn−2 − pn−2qn−1)

= (−1)nan.

Remark 5.2.8. Expressed in terms of matrices, the proposition asserts that
the determinant of

( pn pn−1
qn qn−1

)
is (−1)n−1, and of

( pn pn−2
qn qn−2

)
is (−1)nan.

SAGE Example 5.2.9. We use Sage to verify Proposition 5.2.7 for the first
few terms of the continued fraction of π.

sage: c = continued_fraction(pi); c

[3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 3]

sage: for n in range(-1, len(c)):

... print c.pn(n)*c.qn(n-1) - c.qn(n)*c.pn(n-1),

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1

sage: for n in range(len(c)):

... print c.pn(n)*c.qn(n-2) - c.qn(n)*c.pn(n-2),

3 -7 15 -1 292 -1 1 -1 2 -1 3 -1 14 -3

Corollary 5.2.10 (Convergents in lowest terms). If [a0, a1, . . . , am] is a
simple continued fraction, so each ai is an integer, then the pn and qn are
integers and the fraction pn/qn is in lowest terms.
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Proof. It is clear that the pn and qn are integers, from the formula that
defines them. If d is a positive divisor of both pn and qn, then d | (−1)n−1,
so d = 1.

SAGE Example 5.2.11. We illustrate Corollary 5.2.10 using Sage.

sage: c = continued_fraction([1,2,3,4,5])

sage: c.convergents()

[1, 3/2, 10/7, 43/30, 225/157]

sage: [c.pn(n) for n in range(len(c))]

[1, 3, 10, 43, 225]

sage: [c.qn(n) for n in range(len(c))]

[1, 2, 7, 30, 157]

5.2.2 The Sequence of Partial Convergents

Let [a0, . . . , am] be a continued fraction and for n ≤ m let

cn = [a0, . . . , an] =
pn
qn

denote the nth convergent. Recall that by definition of continued frac-
tion, an > 0 for n > 0, which gives the partial convergents of a contin-
ued fraction additional structure. For example, the partial convergents of
[2, 1, 2, 1, 1, 4, 1, 1, 6] are

2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465.

To make the size of these numbers clearer, we approximate them using
decimals. We also underline every other number, to illustrate some extra
structure.

2, 3, 2.66667, 2.75000, 2.71429, 2.71875, 2.71795, 2.71831, 2.71828

The underlined numbers are smaller than all of the nonunderlined numbers,
and the sequence of underlined numbers is strictly increasing, whereas the
nonunderlined numbers strictly decrease.

SAGE Example 5.2.12. Figure 5.1 illustrates the above pattern on another
continued fraction using Sage.

sage: c = continued_fraction([1,1,1,1,1,1,1,1])

sage: v = [(i, c.pn(i)/c.qn(i)) for i in range(len(c))]

sage: P = point(v, rgbcolor=(0,0,1), pointsize=40)

sage: L = line(v, rgbcolor=(0.5,0.5,0.5))

sage: L2 = line([(0,c.value()),(len(c)-1,c.value())], \

... thickness=0.5, rgbcolor=(0.7,0,0))

sage: (L+L2+P).show(xmin=0,ymin=1)
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FIGURE 5.1. Graph of a Continued Fraction

We next prove that this extra structure is a general phenomenon.

Proposition 5.2.13 (How Convergents Converge). The even indexed con-
vergents c2n increase strictly with n, and the odd indexed convergents c2n+1

decrease strictly with n. Also, the odd indexed convergents c2n+1 are greater
than all of the even indexed convergents c2m.

Proof. The an are positive for n ≥ 1, so the qn are positive. By Proposi-
tion 5.2.7, for n ≥ 2,

cn − cn−2 = (−1)n · an
qnqn−2

,

which proves the first claim.
Suppose for the sake of contradiction that there exist integers r and m

such that c2m+1 < c2r. Proposition 5.2.7 implies that for n ≥ 1,

cn − cn−1 = (−1)n−1 · 1

qnqn−1

has sign (−1)n−1, so for all s ≥ 0 we have c2s+1 > c2s. Thus it is impossible
that r = m. If r < m, then by what we proved in the first paragraph,
c2m+1 < c2r < c2m, a contradiction (with s = m). If r > m, then c2r+1 <
c2m+1 < c2r, which is also a contradiction (with s = r).

5.2.3 Every Rational Number is Represented

Proposition 5.2.14 (Rational Continued Fractions). Every nonzero ra-
tional number can be represented by a simple continued fraction.
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Proof. Without loss of generality, we may assume that the rational number
is a/b, with b ≥ 1 and gcd(a, b) = 1. Algorithm 1.1.13 gives:

a = b · a0 + r1, 0 < r1 < b

b = r1 · a1 + r2, 0 < r2 < r1

· · ·
rn−2 = rn−1 · an−1 + rn, 0 < rn < rn−1
rn−1 = rn · an + 0.

Note that ai > 0 for i > 0 (also rn = 1, since gcd(a, b) = 1). Rewrite the
equations as follows:

a/b = a0 + r1/b = a0 + 1/(b/r1),

b/r1 = a1 + r2/r1 = a1 + 1/(r1/r2),

r1/r2 = a2 + r3/r2 = a2 + 1/(r2/r3),

· · ·
rn−1/rn = an.

It follows that
a

b
= [a0, a1, . . . , an].

The proof of Proposition 5.2.14 leads to an algorithm for computing the
continued fraction of a rational number.

A nonzero rational number can be represented in exactly two ways; for
example, 2 = [1, 1] = [2] (see Exercise 5.2).

5.3 Infinite Continued Fractions

This section begins with the continued fraction procedure, which associates
a sequence a0, a1, . . . of integers to a real number x. After giving several
examples, we prove that x = limn→∞[a0, a1, . . . , an] by proving that the
odd and even partial convergents become arbitrarily close to each other.
We also show that if a0, a1, . . . is any infinite sequence of positive integers,
then the sequence of cn = [a0, a1, . . . , an] converges. More generally, if an
is an arbitrary sequence of positive reals such that

∑∞
n=0 an diverges then

(cn) converges.

5.3.1 The Continued Fraction Procedure

Let x ∈ R and write
x = a0 + t0
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with a0 ∈ Z and 0 ≤ t0 < 1. We call the number a0 the floor of x, and we
also sometimes write a0 = bxc. If t0 6= 0, write

1

t0
= a1 + t1

with a1 ∈ N and 0 ≤ t1 < 1. Thus t0 = 1
a1+t1

= [0, a1 + t1], which is a
continued fraction expansion of t0, which need not be simple. Continue in
this manner so long as tn 6= 0 writing

1

tn
= an+1 + tn+1

with an+1 ∈ N and 0 ≤ tn+1 < 1. We call this procedure, which associates
to a real number x the sequence of integers a0, a1, a2, . . ., the continued
fraction process.

Example 5.3.1. Let x = 8
3 . Then x = 2 + 2

3 , so a0 = 2 and t0 = 2
3 . Then

1
t0

= 3
2 = 1 + 1

2 , so a1 = 1 and t1 = 1
2 . Then 1

t1
= 2, so a2 = 2, t2 = 0, and

the sequence terminates. Notice that

8

3
= [2, 1, 2],

so the continued fraction procedure produces the continued fraction of 8
3 .

Example 5.3.2. Let x = 1+
√
5

2 . Then

x = 1 +
−1 +

√
5

2
,

so a0 = 1 and t0 = −1+
√
5

2 . We have

1

t0
=

2

−1 +
√

5
=
−2− 2

√
5

−4
=

1 +
√

5

2
,

so a1 = 1 and t1 = −1+
√
5

2 . Likewise, an = 1 for all n. As we will see below,
the following exciting equality makes sense.

1 +
√

5

2
= 1 +

1

1 +
1

1 +
1

1 +
1

1 +
1

1 + · · ·
SAGE Example 5.3.3. The equality of Example 5.3.2 is consistent with the
following Sage calculation:



5.3 Infinite Continued Fractions 103

sage: def cf(bits):

... x = (1 + sqrt(RealField(bits)(5))) / 2

... return continued_fraction(x)

sage: cf(10)

[1, 1, 1, 1, 1, 1, 1, 3]

sage: cf(30)

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 2]

sage: cf(50)

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Example 5.3.4. Suppose x = e = 2.71828182 . . .. Using the continued frac-
tion procedure, we find that

a0, a1, a2, . . . = 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .

For example, a0 = 2 is the floor of 2. Subtracting 2 and inverting, we
obtain 1/0.718 . . . = 1.3922 . . ., so a1 = 1. Subtracting 1 and inverting
yields 1/0.3922 . . . = 2.5496 . . ., so a2 = 2. We will prove in Section 5.4
that the continued fraction of e obeys a simple pattern.

The 5th partial convergent of the continued fraction of e is

[a0, a1, a2, a3, a4, a5] =
87

32
= 2.71875,

which is a good rational approximation to e, in the sense that
∣∣∣∣
87

32
− e
∣∣∣∣ = 0.000468 . . . .

Note that 0.000468 . . . < 1/322 = 0.000976 . . ., which illustrates the bound
in Corollary 5.3.11.

Let’s do the same thing with π = 3.14159265358979 . . .. Applying the
continued fraction procedure, we find that the continued fraction of π is

a0, a1, a2, . . . = 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, . . .

The first few partial convergents are

3,
22

7
,

333

106
,

355

113
,

103993

33102
, · · ·

These are good rational approximations to π; for example,

103993

33102
= 3.14159265301 . . . .

Notice that the continued fraction of e exhibits a nice pattern (see Sec-
tion 5.4 for a proof), whereas the continued fraction of π exhibits no pattern
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that is obvious to the author. The continued fraction of π has been exten-
sively studied, and over 20 million terms have been computed. The data
suggests that every integer appears infinitely often as a partial convergent.
For much more about the continued fraction of π, or of any other sequence
in this book, type the first few terms of the sequence into [Slo].

5.3.2 Convergence of Infinite Continued Fractions

Lemma 5.3.5. For every n such that an is defined, we have

x = [a0, a1, . . . , an + tn],

and if tn 6= 0, then x = [a0, a1, . . . , an,
1
tn

].

Proof. We use induction. The statements are both true when n = 0. If the
second statement is true for n− 1, then

x =

[
a0, a1, . . . , an−1,

1

tn−1

]

= [a0, a1, . . . , an−1, an + tn]

=

[
a0, a1, . . . , an−1, an,

1

tn

]
.

Similarly, the first statement is true for n if it is true for n− 1.

Theorem 5.3.6 (Continued Fraction Limit). Let a0, a1, . . . be a sequence
of integers such that an > 0 for all n ≥ 1, and for each n ≥ 0, set cn =
[a0, a1, . . . an]. Then lim

n→∞
cn exists.

Proof. For any m ≥ n, the number cn is a partial convergent of [a0, . . . , am].
By Proposition 5.2.13, the even convergents c2n form a strictly increasing
sequence and the odd convergents c2n+1 form a strictly decreasing sequence.
Moreover, the even convergents are all ≤ c1 and the odd convergents are
all ≥ c0. Hence α0 = limn→∞ c2n and α1 = limn→∞ c2n+1 both exist, and
α0 ≤ α1. Finally, by Proposition 5.2.7

|c2n − c2n−1| =
1

q2n · q2n−1
≤ 1

2n(2n− 1)
→ 0,

so α0 = α1.

We define

[a0, a1, . . .] = lim
n→∞

cn.
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Example 5.3.7. We illustrate the theorem with x = π. As in the proof of
Theorem 5.3.6, let cn be the nth partial convergent to π. The cn with n
odd converge down to π

c1 = 3.1428571 . . . , c3 = 3.1415929 . . . , c5 = 3.1415926 . . .

whereas the cn with n even converge up to π

c2 = 3.1415094 . . . , c4 = 3.1415926 . . . , c6 = 3.1415926 . . . .

Theorem 5.3.8. Let a0, a1, a2, . . . be a sequence of real numbers such that
an > 0 for all n ≥ 1, and for each n ≥ 0, set cn = [a0, a1, . . . an]. Then
lim
n→∞

cn exists if and only if the sum
∑∞
n=0 an diverges.

Proof. We only prove that if
∑
an diverges, then limn→∞ cn exists. A proof

of the converse can be found in [Wal48, Ch. 2, Thm. 6.1].
Let qn be the sequence of “denominators” of the partial convergents, as

defined in Section 5.2.1, so q−2 = 1, q−1 = 0, and for n ≥ 0, we have

qn = anqn−1 + qn−2.

As we saw in the proof of Theorem 5.3.6, the limit limn→∞ cn exists pro-
vided that the sequence {qnqn−1} diverges to positive infinity.

For n even,

qn = anqn−1 + qn−2
= anqn−1 + an−2qn−3 + qn−4
= anqn−1 + an−2qn−3 + an−4qn−5 + qn−6
= anqn−1 + an−2qn−3 + · · ·+ a2q1 + q0

and for n odd,

qn = anqn−1 + an−2qn−3 + · · ·+ a1q0 + q−1.

Since an > 0 for n > 0, the sequence {qn} is increasing, so qi ≥ 1 for all
i ≥ 0. Applying this fact to the above expressions for qn, we see that for n
even

qn ≥ an + an−2 + · · ·+ a2,

and for n odd
qn ≥ an + an−2 + · · ·+ a1.

If
∑
an diverges, then at least one of

∑
a2n or

∑
a2n+1 must diverge.

The above inequalities then imply that at least one of the sequences {q2n}
or {q2n+1} diverge to infinity. Since {qn} is an increasing sequence, it follows
that {qnqn−1} diverges to infinity.
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Example 5.3.9. Let an = 1
n log(n) for n ≥ 2 and a0 = a1 = 0. By the

integral test,
∑
an diverges, so by Theorem 5.3.8, the continued fraction

[a0, a1, a2, . . .] converges. This convergence is very slow, since, e.g.

[a0, a1, . . . , a9999] = 0.5750039671012225425930 . . .

yet
[a0, a1, . . . , a10000] = 0.7169153932917378550424 . . . .

Theorem 5.3.10. Let x ∈ R be a real number. Then x is the value of the
(possibly infinite) simple continued fraction [a0, a1, a2, . . .] produced by the
continued fraction procedure.

Proof. If the sequence is finite, then some tn = 0 and the result follows by
Lemma 5.3.5. Suppose the sequence is infinite. By Lemma 5.3.5,

x = [a0, a1, . . . , an,
1

tn
].

By Proposition 5.2.5 (which we apply in a case when the partial quotients
of the continued fraction are not integers), we have

x =

1

tn
· pn + pn−1

1

tn
· qn + qn−1

.

Thus, if cn = [a0, a1, . . . , an], then

x− cn = x− pn
qn

=
1
tn
pnqn + pn−1qn − 1

tn
pnqn − pnqn−1

qn

(
1
tn
qn + qn−1

) .

=
pn−1qn − pnqn−1
qn

(
1
tn
qn + qn−1

)

=
(−1)n

qn

(
1
tn
qn + qn−1

) .

Thus

|x− cn| =
1

qn

(
1
tn
qn + qn−1

)

<
1

qn(an+1qn + qn−1)

=
1

qn · qn+1
≤ 1

n(n+ 1)
→ 0.
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In the inequality, we use that an+1 is the integer part of 1
tn

, and is hence

≤ 1
tn
< 1, since tn < 1.

This corollary follows from the proof of Theorem 5.3.10.

Corollary 5.3.11 (Convergence of continued fraction). Let a0, a1, . . . de-
fine a simple continued fraction, and let x = [a0, a1, . . .] ∈ R be its value.
Then for all m, ∣∣∣∣x−

pm
qm

∣∣∣∣ <
1

qm · qm+1
.

Proposition 5.3.12. If x is a rational number, then the sequence a0, a1, . . .
produced by the continued fraction procedure terminates.

Proof. Let [b0, b1, . . . , bm] be the continued fraction representation of x that
we obtain using Algorithm 1.1.13, so the bi are the partial quotients at each
step. If m = 0, then x is an integer, so we may assume m > 0. Then

x = b0 + 1/[b1, . . . , bm].

If [b1, . . . , bm] = 1, then m = 1 and b1 = 1, which will not happen using
Algorithm 1.1.13, since it would give [b0+1] for the continued fraction of the
integer b0 + 1. Thus [b1, . . . , bm] > 1, so in the continued fraction algorithm
we choose a0 = b0 and t0 = 1/[b1, . . . , bm]. Repeating this argument enough
times proves the claim.

5.4 The Continued Fraction of e

The continued fraction expansion of e begins [2, 1, 2, 1, 1, 4, 1, 1, 6, . . .]. The
obvious pattern in fact does continue, as Euler proved in 1737 (see [Eul85]),
and we will prove in this section. As an application, Euler gave a proof
that e is irrational by noting that its continued fraction is infinite.

The proof we give below draws heavily on the proof in [Coh], which
describes a slight variant of a proof of Hermite (see [Old70]). The continued
fraction representation of e is also treated in the German book [Per57], but
the proof requires substantial background from elsewhere in that text.

5.4.1 Preliminaries

First, we write the continued fraction of e in a slightly different form.
Instead of [2, 1, 2, 1, 1, 4, . . .], we can start the sequence of coefficients

[1, 0, 1, 1, 2, 1, 1, 4, . . .]

to make the pattern the same throughout. (Everywhere else in this chap-
ter we assume that the partial quotients an for n ≥ 1 are positive, but
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temporarily relax that condition here and allow a1 = 0.) The numerators
and denominators of the convergents given by this new sequence satisfy a
simple recurrence. Using ri as a stand-in for pi or qi, we have

r3n = r3n−1 + r3n−2
r3n−1 = r3n−2 + r3n−3
r3n−2 = 2(n− 1)r3n−3 + r3n−4.

Our first goal is to collapse these three recurrences into one recurrence
that only makes mention of r3n, r3n−3, and r3n−6. We have

r3n = r3n−1 + r3n−2
= (r3n−2 + r3n−3) + (2(n− 1)r3n−3 + r3n−4)

= (4n− 3)r3n−3 + 2r3n−4.

This same method of simplification also shows us that

r3n−3 = 2r3n−7 + (4n− 7)r3n−6.

To get rid of 2r3n−4 in the first equation, we make the substitutions

2r3n−4 = 2(r3n−5 + r3n−6)

= 2((2(n− 2)r3n−6 + r3n−7) + r3n−6)

= (4n− 6)r3n−6 + 2r3n−7.

Substituting for 2r3n−4 and then 2r3n−7, we finally have the needed col-
lapsed recurrence,

r3n = 2(2n− 1)r3n−3 + r3n−6.

5.4.2 Two Integral Sequences

We define the sequences xn = p3n, yn = q3n. Since the 3n-convergents will
converge to the same real number that the n convergents do, xn/yn also
converges to the limit of the continued fraction. Each sequence {xn}, {yn}
will obey the recurrence relation derived in the previous section (where zn
is a stand-in for xn or yn):

zn = 2(2n− 1)zn−1 + zn−2, for all n ≥ 2. (5.4.1)

The two sequences can be found in Table 5.1. (The initial conditions
x0 = 1, x1 = 3, y0 = y1 = 1 are taken straight from the first few convergents
of the original continued fraction.) Notice that since we are skipping several
convergents at each step, the ratio xn/yn converges to e very quickly.
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TABLE 5.1. Convergents

n 0 1 2 3 4 · · ·
xn 1 3 19 193 2721 · · ·
yn 1 1 7 71 1001 · · ·

xn/yn 1 3 2.714 . . . 2.71830 . . . 2.7182817 . . . · · ·

5.4.3 A Related Sequence of Integrals

Now, we define a sequence of real numbers T0, T1, T2, . . . by the following
integrals:

Tn =

∫ 1

0

tn(t− 1)n

n!
etdt.

Below, we compute the first two terms of this sequence explicitly. (When
we compute T1, we are doing the integration by parts u = t(t−1), dv = etdt.
Since the integral runs from 0 to 1, the boundary condition is 0 when
evaluated at each of the endpoints. This vanishing will be helpful when we
do the integral in the general case.)

T0 =

∫ 1

0

etdt = e− 1,

T1 =

∫ 1

0

t(t− 1)etdt

= −
∫ 1

0

((t− 1) + t)etdt

= −(t− 1)et

∣∣∣∣∣

1

0

− tet
∣∣∣∣∣

1

0

+ 2

∫ 1

0

etdt

= −1− e+ 2(e− 1) = e− 3.

The reason that we defined this series now becomes apparent: T0 =
y0e− x0 and T1 = y1e− x1. In general, it will be true that Tn = yne− xn.
We will now prove this fact.

It is clear that if Tn were to satisfy the same recurrence that the xi and
yi do in (5.4.1), then the above statement holds by induction. (The initial
conditions are correct, as needed.) So, we simplify Tn by integrating by
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parts twice in succession:

Tn =

∫ 1

0

tn(t− 1)n

n!
etdt

= −
∫ 1

0

tn−1(t− 1)n + tn(t− 1)n−1

(n− 1)!
etdt

=

∫ 1

0

( tn−2(t− 1)n

(n− 2)!
+ n

tn−1(t− 1)n−1

(n− 1)!

+ n
tn−1(t− 1)n−1

(n− 1)!
+
tn(t− 1)n−2

(n− 2)!

)
etdt

= 2nTn−1 +

∫ 1

0

tn−2(t− 1)n−2

n− 2!
(2t2 − 2t+ 1) etdt

= 2nTn−1 + 2

∫ 1

0

tn−1(t− 1)n−1

n− 2!
etdt+

∫ 1

0

tn−2(t− 1)n−2

n− 2!
etdt

= 2nTn−1 + 2(n− 1)Tn−1 + Tn−2
= 2(2n− 1)Tn−1 + Tn−2,

which is the desired recurrence.
Therefore, Tn = yne − xn. To conclude the proof, we consider the limit

as n approaches infinity:

lim
n→∞

∫ 1

0

tn(t− 1)n

n!
etdt = 0,

by inspection, and therefore

lim
n→∞

xn
yn

= lim
n→∞

(e− Tn
yn

) = e.

Therefore, the ratio xn/yn approaches e, and the continued fraction expan-
sion [2, 1, 2, 1, 1, 4, 1, 1, . . .] does in fact converge to e.

5.4.4 Extensions of the Argument

The method of proof of this section generalizes to show that the continued
fraction expansion of e1/n is

[1, (n− 1), 1, 1, (3n− 1), 1, 1, (5n− 1), 1, 1, (7n− 1), . . .]

for all n ∈ N (see Exercise 5.6).

5.5 Quadratic Irrationals

The main result of this section is that the continued fraction expansion of
a number is eventually repeating if and only if the number is a quadratic



5.5 Quadratic Irrationals 111

irrational. This can be viewed as an analog for continued fractions of the
familiar fact that the decimal expansion of x is eventually repeating if and
only if x is rational. The proof that continued fractions of quadratic irra-
tionals eventually repeats is surprisingly difficult and involves an interesting
finiteness argument. Section 5.5.2 emphasizes our striking ignorance about
continued fractions of real roots of irreducible polynomials over Q of degree
bigger than 2.

Definition 5.5.1 (Quadratic Irrational). A quadratic irrational is a real
number α ∈ R that is irrational and satisfies a quadratic polynomial with
coefficients in Q.

Thus, for example, (1 +
√

5)/2 is a quadratic irrational. Recall that

1 +
√

5

2
= [1, 1, 1, . . .].

The continued fraction of
√

2 is [1, 2, 2, 2, 2, 2, . . .], and the continued frac-
tion of

√
389 is

[19, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38, . . .].

Does the [1, 2, 1, 1, 1, 1, 2, 1, 38] pattern repeat over and over again?

SAGE Example 5.5.2. We compute more terms of the continued fraction
expansion of

√
389 using Sage:

sage: def cf_sqrt_d(d, bits):

... x = sqrt(RealField(bits)(d))

... return continued_fraction(x)

sage: cf_sqrt_d(389,50)

[19, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38]

sage: cf_sqrt_d(389,100)

[19, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38,

1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1,

2, 1, 1]

5.5.1 Periodic Continued Fractions

Definition 5.5.3 (Periodic Continued Fraction). A periodic continued
fraction is a continued fraction [a0, a1, . . . , an, . . .] such that

an = an+h

for some fixed positive integer h and all sufficiently large n. We call the
minimal such h the period of the continued fraction.
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Example 5.5.4. Consider the periodic continued fraction [1, 2, 1, 2, . . .] =
[1, 2]. What does it converge to? We have

[1, 2] = 1 +
1

2 +
1

1 +
1

2 +
1

1 + · · ·

,

so if α = [1, 2] then

α = 1 +
1

2 +
1

α

= 1 +
1

2α+ 1

α

= 1 +
α

2α+ 1
=

3α+ 1

2α+ 1

Thus 2α2 − 2α− 1 = 0, so

α =
1 +
√

3

2
.

Theorem 5.5.5 (Periodic Characterization). An infinite simple continued
fraction is periodic if and only if it represents a quadratic irrational.

Proof. (=⇒) First suppose that

[a0, a1, . . . , an, an+1, . . . , an+h]

is a periodic continued fraction. Set α = [an+1, an+2, . . .]. Then

α = [an+1, . . . , an+h, α],

so by Proposition 5.2.5

α =
αpn+h + pn+h−1
αqn+h + qn+h−1

.

Here we use that α is the last partial quotient. Thus, α satisfies a quadratic
equation with coefficients in Q. Computing as in Example 5.5.4 and ratio-
nalizing the denominators, and using that the ai are all integers, shows
that

[a0, a1, . . .] = [a0, a1, . . . , an, α]

= a0 +
1

a1 +
1

a2 + · · ·+ 1

α

is of the form c+ dα, with c, d ∈ Q, so [a0, a1, . . .] also satisfies a quadratic
polynomial over Q.
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The continued fraction procedure applied to the value of an infinite sim-
ple continued fraction yields that continued fraction back, so by Proposi-
tion 5.3.12, α 6∈ Q because it is the value of an infinite continued fraction.

(⇐=) Suppose α ∈ R is an irrational number that satisfies a quadratic
equation

aα2 + bα+ c = 0 (5.5.1)

with a, b, c ∈ Z and a 6= 0. Let [a0, a1, . . .] be the continued fraction expan-
sion of α. For each n, let

rn = [an, an+1, . . .],

so
α = [a0, a1, . . . , an−1, rn].

We will prove periodicity by showing that the set of rn’s is finite. If we
have shown finiteness, then there exists n, h > 0 such that rn = rn+h, so

[a0, . . . , an−1, rn] = [a0, . . . , an−1, an, . . . , an+h−1, rn+h]

= [a0, . . . , an−1, an, . . . , an+h−1, rn]

= [a0, . . . , an−1, an, . . . , an+h−1, an, . . . , an+h−1, rn+h]

= [a0, . . . , an−1, an, . . . , an+h−1].

It remains to show there are only finitely many distinct rn. We have

α =
pn
qn

=
rnpn−1 + pn−2
rnqn−1 + qn−2

.

Substituting this expression for α into the quadratic equation (5.5.1), we
see that

Anr
2
n +Bnrn + Cn = 0,

where

An = ap2n−1 + bpn−1qn−1 + cq2n−1,

Bn = 2apn−1pn−2 + b(pn−1qn−2 + pn−2qn−1) + 2cqn−1qn−2, and

Cn = ap2n−2 + bpn−2qn−2 + cp2n−2.

Note that An, Bn, Cn ∈ Z, that Cn = An−1, and that

B2
n − 4AnCn = (b2 − 4ac)(pn−1qn−2 − qn−1pn−2)2 = b2 − 4ac.

Recall from the proof of Theorem 5.3.10 that

∣∣∣∣α−
pn−1
qn−1

∣∣∣∣ <
1

qnqn−1
.
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Thus,

|αqn−1 − pn−1| <
1

qn
<

1

qn−1
,

so

pn−1 = αqn−1 +
δ

qn−1
with |δ| < 1.

Hence,

An = a

(
αqn−1 +

δ

qn−1

)2

+ b

(
αqn−1 +

δ

qn−1

)
qn−1 + cq2n−1

= (aα2 + bα+ c)q2n−1 + 2aαδ + a
δ2

q2n−1
+ bδ

= 2aαδ + a
δ2

q2n−1
+ bδ.

Thus,

|An| =
∣∣∣∣2aαδ + a

δ2

q2n−1
+ bδ

∣∣∣∣ < 2|aα|+ |a|+ |b|.

We conclude that there are only finitely many possibilities for the integer
An. Also,

|Cn| = |An−1| and |Bn| =
√
b2 − 4(ac−AnCn),

so there are only finitely many triples (An, Bn, Cn), and hence only finitely
many possibilities for rn as n varies, which completes the proof. (The proof
above closely follows [HW79, Thm. 177, pg.144–145].)

5.5.2 Continued Fractions of Algebraic Numbers of Higher
Degree

Definition 5.5.6 (Algebraic Number). An algebraic number is a root of a
polynomial f ∈ Q[x].

Open Problem 5.5.7. Give a simple description of the complete contin-
ued fractions expansion of the algebraic number 3

√
2. It begins

[1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, 1, 3, 4, 1, 1, 2, 14,

3, 12, 1, 15, 3, 1, 4, 534, 1, 1, 5, 1, 1, . . .]

The author does not see a pattern, and the 534 reduces his confidence
that he will. Lang and Trotter (see [LT72]) analyzed many terms of the
continued fraction of 3

√
2 statistically, and their work suggests that 3

√
2 has

an “unusual” continued fraction; later work in [LT74] suggests that maybe
it does not.
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Khintchine (see [Khi63, pg. 59])

No properties of the representing continued fractions, analogous
to those which have just been proved, are known for algebraic
numbers of higher degree [as of 1963]. [...] It is of interest to
point out that up till the present time no continued fraction
development of an algebraic number of higher degree than the
second is known [emphasis added]. It is not even known if such
a development has bounded elements. Generally speaking the
problems associated with the continued fraction expansion of al-
gebraic numbers of degree higher than the second are extremely
difficult and virtually unstudied.

Richard Guy (see [Guy94, pg. 260])

Is there an algebraic number of degree greater than two whose
simple continued fraction has unbounded partial quotients? Does
every such number have unbounded partial quotients?

Baum and Sweet [BS76] answered the analog of Richard Guy’s question,
but with algebraic numbers replaced by elements of a field K other than Q.
(The field K is F2((1/x)), the field of Laurent series in the variable 1/x over
the finite field with two elements. An element of K is a polynomial in x plus
a formal power series in 1/x.) They found an α of degree 3 over K whose
continued fraction has all terms of bounded degree, and other elements of
various degrees greater than 2 over K whose continued fractions have terms
of unbounded degree.

5.6 Recognizing Rational Numbers

Suppose that somehow you can compute approximations to some rational
number, and want to figure what the rational number probably is. Com-
puting the approximation to high enough precision to find a period in the
decimal expansion is not a good approach, because the period can be huge
(see below). A much better approach is to compute the simple continued
fraction of the approximation, and truncate it before a large partial quo-
tient an, then compute the value of the truncated continued fraction. This
results in a rational number that has a relatively small numerator and de-
nominator, and is close to the approximation of the rational number, since
the tail end of the continued fraction is at most 1/an.

We begin with a contrived example, which illustrates how to recognize a
rational number. Let

x = 9495/3847 = 2.46815700545879906420587470756433584611385 . . . .
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The continued fraction of the truncation 2.468157005458799064 is

[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1, 328210621945, 2, 1, 1, 1, . . .]

We have

[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1] =
9495

3847
.

Notice that no repetition is evident in the digits of x given above, though
we know that the decimal expansion of x must be eventually periodic, since
all decimal expansions of rational numbers are eventually periodic. In fact,
the length of the period of the decimal expansion of 1/3847 is 3846, which
is the order of 10 modulo 3847 (see Exercise 5.7).

For a slightly less contrived application of this idea, suppose f(x) ∈ Z[x]
is a polynomial with integer coefficients, and we know for some reason that
one root of f is a rational number. We can find that rational number, by
using Newton’s method to approximate each root, and continued fractions
to decide whether each root is a rational number (we can substitute the
value of the continued fraction approximation into f to see if it is actually
a root). One could also use the well-known Rational Root Theorem, which
asserts that any rational root n/d of f , with n, d ∈ Z coprime, has the
property that n divides the constant term of f and d the leading coefficient
of f . However, using that theorem to find n/d would require factoring the
constant and leading terms of f , which could be completely impractical
if they have a few hundred digits (see Section 1.1.3). In contrast, New-
ton’s method and continued fractions should quickly find n/d, assuming
the degree of f isn’t too large.

For example, suppose f = 3847x2 − 14808904x + 36527265. To apply
Newton’s method, let x0 be a guess for a root of f . Iterate using the recur-
rence

xn+1 = xn −
f(xn)

f ′(xn)
.

Choosing x0 = 0, approximations of the first two iterates are

x1 = 2.466574501394566404103909378,

and
x2 = 2.468157004807401923043166846.

The continued fraction of the approximations x1 and x2 are

[2, 2, 6, 1, 47, 2, 1, 4, 3, 1, 5, 8, 2, 3]

and
[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1, 103, 8, 1, 2, 3, . . .].

Truncating the continued fraction of x2 before 103 gives

[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1],

which evaluates to 9495/3847, which is a rational root of f .
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SAGE Example 5.6.1. We do the above calculation using SAGE. First we
implement the Newton iteration:

sage: def newton_root(f, iterates=2, x0=0, prec=53):

... x = RealField(prec)(x0)

... R = PolynomialRing(ZZ,’x’)

... f = R(f)

... g = f.derivative()

... for i in range(iterates):

... x = x - f(x)/g(x)

... return x

Next we run the Newton iteration, and compute the continued fraction of
the result:

sage: a = newton_root(3847*x^2 - 14808904*x + 36527265); a

2.46815700480740

sage: cf = continued_fraction(a); cf

[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1, 103, 8, 1, 2, 3, 1, 1]

We truncate the continued fraction and compute its value.

sage: c = cf[:12]; c

[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1]

sage: c.value()

9495/3847

Another computational application of continued fractions, which we can
only hint at, is that there are functions in certain parts of advanced number
theory (that are beyond the scope of this book) that take rational values
at certain points, and which can only be computed efficiently via approx-
imations; using continued fractions as illustrated above to evaluate such
functions is crucial.

5.7 Sums of Two Squares

In this section, we apply continued fractions to prove the following theorem.

Theorem 5.7.1. A positive integer n is a sum of two squares if and only
if all prime factors of p | n such that p ≡ 3 (mod 4) have even exponent in
the prime factorization of n.

We first consider some examples. Notice that 5 = 12 + 22 is a sum of
two squares, but 7 is not a sum of two squares. Since 2001 is divisible
by 3 (because 2 + 1 is divisible by 3), but not by 9 (since 2 + 1 is not),
Theorem 5.7.1 implies that 2001 is not a sum of two squares. The theorem
also implies that 2 · 34 · 5 · 72 · 13 is a sum of two squares.
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SAGE Example 5.7.2. We use Sage to write a short program that naively
determines whether or not an integer n is a sum of two squares, and if so
returns a, b such that a2 + b2 = n.

sage: def sum_of_two_squares_naive(n):

... for i in range(int(sqrt(n))):

... if is_square(n - i^2):

... return i, (Integer(n-i^2)).sqrt()

... return "%s is not a sum of two squares"%n

We next use our function in a couple of cases.

sage: sum_of_two_squares_naive(23)

’23 is not a sum of two squares’

sage: sum_of_two_squares_naive(389)

(10, 17)

sage: sum_of_two_squares_naive(2007)

’2007 is not a sum of two squares’

sage: sum_of_two_squares_naive(2008)

’2008 is not a sum of two squares’

sage: sum_of_two_squares_naive(2009)

(28, 35)

sage: 28^2 + 35^2

2009

sage: sum_of_two_squares_naive(2*3^4*5*7^2*13)

(189, 693)

Definition 5.7.3 (Primitive). A representation n = x2 + y2 is primitive
if x and y are coprime.

Lemma 5.7.4. If n is divisible by a prime p ≡ 3 (mod 4), then n has no
primitive representations.

Proof. Suppose n has a primitive representation, n = x2 + y2, and let p be
any prime factor of n. Then

p | x2 + y2 and gcd(x, y) = 1,

so p - x and p - y. Since Z/pZ is a field, we may divide by y2 in the equation
x2 + y2 ≡ 0 (mod p) to see that (x/y)2 ≡ −1 (mod p). Thus the Legendre

symbol
(
−1
p

)
equals +1. However, by Proposition 4.2.1,

(−1

p

)
= (−1)(p−1)/2

so
(
−1
p

)
= 1 if and only if (p−1)/2 is even, which is to say p ≡ 1 (mod 4).
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Proof of Theorem 5.7.1 (=⇒). Suppose that p ≡ 3 (mod 4) is a prime,
that pr | n but pr+1 - n with r odd, and that n = x2 + y2. Letting d =
gcd(x, y), we have

x = dx′, y = dy′, and n = d2n′

with gcd(x′, y′) = 1 and

(x′)2 + (y′)2 = n′.

Because r is odd, p | n′, so Lemma 5.7.4 implies that gcd(x′, y′) > 1, which
is a contradiction.

To prepare for our proof of the implication (⇐=) of Theorem 5.7.1, we
reduce the problem to the case when n is prime. Write n = n21n2, where n2
has no prime factors p ≡ 3 (mod 4). It suffices to show that n2 is a sum of
two squares, since

(x21 + y21)(x22 + y22) = (x1x2 − y1y2)2 + (x1y2 + x2y1)2, (5.7.1)

so a product of two numbers that are sums of two squares is also a sum of
two squares. Since 2 = 12 + 12 is a sum of two squares, it suffices to show
that any prime p ≡ 1 (mod 4) is a sum of two squares.

Lemma 5.7.5. If x ∈ R and n ∈ N, then there is a fraction
a

b
in lowest

terms such that 0 < b ≤ n and

∣∣∣x− a

b

∣∣∣ ≤ 1

b(n+ 1)
.

Proof. Consider the continued fraction [a0, a1, . . .] of x. By Corollary 5.3.11,
for each m ∣∣∣∣x−

pm
qm

∣∣∣∣ <
1

qm · qm+1
.

Since qm+1 ≥ qm + 1 and q0 = 1, either there exists an m such that
qm ≤ n < qm+1, or the continued fraction expansion of x is finite and n
is larger than the denominator of the rational number x, in which case we
take a

b = x and are done. In the first case,

∣∣∣∣x−
pm
qm

∣∣∣∣ <
1

qm · qm+1
≤ 1

qm · (n+ 1)
,

so
a

b
=
pm
qm

satisfies the conclusion of the lemma.

Proof of Theorem 5.7.1 (⇐=). As discussed above, it suffices to prove that
any prime p ≡ 1 (mod 4) is a sum of two squares. Since p ≡ 1 (mod 4),

(−1)(p−1)/2 = 1,
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Proposition 4.2.1 implies that −1 is a square modulo p; i.e., there exists r ∈
Z such that r2 ≡ −1 (mod p). Lemma 5.7.5, with n = b√pc and x = − rp ,
implies that there are integers a, b such that 0 < b <

√
p and

∣∣∣∣−
r

p
− a

b

∣∣∣∣ ≤
1

b(n+ 1)
<

1

b
√
p
.

Letting c = rb+ pa, we have that

|c| < pb

b
√
p

=
p√
p

=
√
p

so
0 < b2 + c2 < 2p.

But c ≡ rb (mod p), so

b2 + c2 ≡ b2 + r2b2 ≡ b2(1 + r2) ≡ 0 (mod p).

Thus b2 + c2 = p.

Remark 5.7.6. Our proof of Theorem 5.7.1 leads to an efficient algorithm
to compute a representation of any p ≡ 1 (mod 4) as a sum of two squares.

SAGE Example 5.7.7. We next use Sage and Theorem 5.7.1 to give an
efficient algorithm for writing a prime p ≡ 1 (mod 4) as a sum of two
squares. First we implement the algorithm that comes out of the proof of
the theorem.

sage: def sum_of_two_squares(p):

... p = Integer(p)

... assert p%4 == 1, "p must be 1 modulo 4"

... r = Mod(-1,p).sqrt().lift()

... v = continued_fraction(-r/p)

... n = floor(sqrt(p))

... for x in v.convergents():

... c = r*x.denominator() + p*x.numerator()

... if -n <= c and c <= n:

... return (abs(x.denominator()),abs(c))

Next we use the algorithm to write the first 10-digit prime ≡ 1 (mod 4) as
a sum of two squares:

sage: p = next_prime(next_prime(10^10))

sage: sum_of_two_squares(p)

(55913, 82908)

The above calculation was essentially instantanoues. If instead we use the
naive algorithm from before, it takes several seconds to write p as a sum of
two squares.

sage: sum_of_two_squares_naive(p)

(55913, 82908)
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5.8 Exercises

5.1 If cn = pn/qn is the nth convergent of [a0, a1, . . . , an] and a0 > 0,
show that

[an, an−1, . . . , a1, a0] =
pn
pn−1

and
[an, an−1, . . . , a2, a1] =

qn
qn−1

.

(Hint: In the first case, notice that
pn
pn−1

= an +
pn−2
pn−1

= an +
1

pn−1

pn−2

.)

5.2 Show that every nonzero rational number can be represented in ex-
actly two ways by a finite simple continued fraction. (For example, 2
can be represented by [1, 1] and [2], and 1/3 by [0, 3] and [0, 2, 1].)

5.3 Evaluate the infinite continued fraction [2, 1, 2, 1].

5.4 Determine the infinite continued fraction of 1+
√
13

2 .

5.5 Let a0 ∈ R and a1, . . . , an and b be positive real numbers. Prove that

[a0, a1, . . . , an + b] < [a0, a1, . . . , an]

if and only if n is odd.

5.6 (*) Extend the method presented in the text to show that the con-
tinued fraction expansion of e1/k is

[1, (k − 1), 1, 1, (3k − 1), 1, 1, (5k − 1), 1, 1, (7k − 1), . . .]

for all k ∈ N.

(a) Compute p0, p3, q0, and q3 for the above continued fraction.
Your answers should be in terms of k.

(b) Condense three steps of the recurrence for the numerators and
denominators of the above continued fraction. That is, produce
a simple recurrence for r3n in terms of r3n−3 and r3n−6 whose
coefficients are polynomials in n and k.

(c) Define a sequence of real numbers by

Tn(k) =
1

kn

∫ 1/k

0

(kt)n(kt− 1)n

n!
etdt.

i. Compute T0(k), and verify that it equals q0e
1/k − p0.

ii. Compute T1(k), and verify that it equals q3e
1/k − p3.
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iii. Integrate Tn(k) by parts twice in succession, as in Sec-
tion 5.4, and verify that Tn(k), Tn−1(k), and Tn−2(k) satisfy
the recurrence produced in part 6b, for n ≥ 2.

(d) Conclude that the continued fraction

[1, (k − 1), 1, 1, (3k − 1), 1, 1, (5k − 1), 1, 1, (7k − 1), . . .]

represents e1/k.

5.7 Let d be an integer that is coprime to 10. Prove that the decimal
expansion of 1

d has a period equal to the order of 10 modulo d. (Hint:
For every positive integer r, we have 1

1−10r =
∑
n≥1 10−rn.)

5.8 Find a positive integer that has at least three different representations
as the sum of two squares, disregarding signs and the order of the
summands.

5.9 Show that if a natural number n is the sum of two two rational squares
it is also the sum of two integer squares.

5.10 (*) Let p be an odd prime. Show that p ≡ 1, 3 (mod 8) if and only
if p can be written as p = x2+2y2 for some choice of integers x and y.

5.11 Prove that of any four consecutive integers, at least one is not repre-
sentable as a sum of two squares.
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6
Elliptic Curves

Elliptic curves are number theoretic objects that are central to both pure
and applied number theory. Deep problems in number theory such as the
congruent number problem—which integers are the area of a right triangle
with rational side lengths?—translate naturally into questions about ellip-
tic curves. Other questions, such as the famous Birch and Swinnerton-Dyer
conjecture, describe mysterious structure that mathematicians expect el-
liptic curves to have. One can also associate finite abelian groups to elliptic
curves, and in many cases these groups are well suited to the construc-
tion of cryptosystems. In particular, elliptic curves are widely believed to
provide good security with smaller key sizes, something that is useful in
many applications, for example, if we are going to print an encryption key
on a postage stamp, it is helpful if the key is short! Morover, there is a
way to use elliptic curves to factor integers, which plays a crucial role in
sophisticated attacks on the RSA public-key cryptosystem of Section 3.3.

This chapter is a brief introduction to elliptic curves that builds on the
ideas of Chapters 1–3 and introduces several deep theorems and ideas that
we will not prove. In Section 6.1, we define elliptic curves and draw some
pictures of them, and then in Section 6.2 we describe how to put a group
structure on the set of points on an elliptic curve. Sections 6.3 and 6.4
are about how to apply elliptic curves to two cryptographic problems—
constructing public-key cryptosystems and factoring integers. Finally, in
Section 6.5, we consider elliptic curves over the rational numbers, and ex-
plain a deep connection between elliptic curves and a 1,000-year old un-
solved problem.
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FIGURE 6.1. The elliptic curve y2 = x3 − 5x+ 4 over R

6.1 The Definition

Definition 6.1.1 (Elliptic Curve). An elliptic curve over a field K is a
curve defined by an equation of the form

y2 = x3 + ax+ b,

where a, b ∈ K and −16(4a3 + 27b2) 6= 0.

The condition that −16(4a3 + 27b2) 6= 0 implies that the curve has no
“singular points,” which will be essential for the applications we have in
mind (see Exercise 6.1).

SAGE Example 6.1.2. We use the EllipticCurve command to create an
elliptic curve over the rational field Q and draw the plot in Figure 6.1.

sage: E = EllipticCurve([-5, 4])

sage: E

Elliptic Curve defined by y^2 = x^3 - 5*x + 4

over Rational Field

sage: P = E.plot(thickness=4,rgbcolor=(0.1,0.7,0.1))

sage: P.show(figsize=[4,6])

We will use elliptic curves over finite fields to factor integers in Section 6.3
and to construct cryptosystems in Section 6.4. The following Sage code
creates an elliptic curve over the finite field of order 37 and plots it, as
illustrated in Figure 6.2.
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sage: E = EllipticCurve(GF(37), [1,0])

sage: E

Elliptic Curve defined by y^2 = x^3 + x over

Finite Field of size 37

sage: E.plot(pointsize=45)
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FIGURE 6.2. The elliptic curve y2 = x3 + x over Z/37Z

In Section 6.2, we will put a natural abelian group structure on the set

E(K) = {(x, y) ∈ K ×K : y2 = x3 + ax+ b} ∪ {O}

of K-rational points on an elliptic curve E over K. Here, O may be thought
of as a point on E “at infinity.” Figure 6.2 contains a plot of the points
of y2 = x3 + x over the finite field Z/37Z, though note that we do not
explicitly draw the point at O at infinity.

Remark 6.1.3. If K has characteristic 2 (i.e., we have 1+1 = 0 in K), then
for any choice of a, b, the quantity −16(4a3 + 27b2) ∈ K is 0, so according
to Definition 6.1.1 there are no elliptic curves over K. There is a similar
problem in characteristic 3. If we instead consider equations of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

we obtain a more general definition of elliptic curves, which correctly allows
for elliptic curves in characteristics 2 and 3; these elliptic curves are popular
in cryptography because arithmetic on them is often easier to efficiently
implement on a computer.

6.2 The Group Structure on an Elliptic Curve

Let E be an elliptic curve over a field K, given by an equation y2 =
x3 + ax+ b. We begin by defining a binary operation + on E(K).
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Algorithm 6.2.1 (Elliptic Curve Group Law). Given P1, P2 ∈ E(K), this
algorithm computes a third point R = P1 + P2 ∈ E(K).

1. [Is Pi = O?] If P1 = O set R = P2 or if P2 = O set R = P1 and
terminate. Otherwise write (xi, yi) = Pi.

2. [Negatives] If x1 = x2 and y1 = −y2, set R = O and terminate.

3. [Compute λ] Set λ =

{
(3x21 + a)/(2y1) if P1 = P2,

(y1 − y2)/(x1 − x2) otherwise.

4. [Compute Sum] Then R =
(
λ2 − x1 − x2,−λx3 − ν

)
, where ν = y1−

λx1 and x3 = λ2 − x1 − x2 is the x-coordinate of R.

Note that in Step 3, if P1 = P2, then y1 6= 0; otherwise, we would have
terminated in the previous step.

Theorem 6.2.2. The binary operation + defined in Algorithm 6.2.1 en-
dows the set E(K) with an abelian group structure, with identity O.

Before discussing why the theorem is true, we reinterpret + geometri-
cally, so that it will be easier for us to visualize. We obtain the sum P1 +P2

by finding the third point P3 of intersection between E and the line L deter-
mined by P1 and P2, then reflecting P3 about the x-axis. (This description
requires suitable interpretation in cases 1 and 2, and when P1 = P2.) This is
illustrated in Figure 6.3, in which (0, 2)+(1, 0) = (3, 4) on y2 = x3−5x+4.

SAGE Example 6.2.3. We create the elliptic curve y2 = x3−5x+4 in Sage,
then add together P = (1, 0) and Q = (0, 2). We also compute P+P , which
is the point O at infinity, which is represented in Sage by (0 : 1 : 0), and
compute the sum P +Q+Q+Q+Q, which is surprisingly large.

sage: E = EllipticCurve([-5,4])

sage: P = E([1,0]); Q = E([0,2])

sage: P + Q

(3 : 4 : 1)

sage: P + P

(0 : 1 : 0)

sage: P + Q + Q + Q + Q

(350497/351649 : 16920528/208527857 : 1)

To further clarify the above geometric interpretation of the group law,
we prove the following proposition.

Proposition 6.2.4 (Geometric Group Law). Suppose Pi = (xi, yi), i =
1, 2 are distinct points on an elliptic curve y2 = x3 + ax + b, and that
x1 6= x2. Let L be the unique line through P1 and P2. Then L intersects the
graph of E at exactly one other point

Q =
(
λ2 − x1 − x2, λx3 + ν

)
,

where λ = (y1 − y2)/(x1 − x2) and ν = y1 − λx1.
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FIGURE 6.3. The Group Law: (1, 0) + (0, 2) = (3, 4) on y2 = x3 − 5x+ 4

Proof. The line L through P1, P2 is y = y1 + (x− x1)λ. Substituting this
into y2 = x3 + ax+ b, we get

(y1 + (x− x1)λ)2 = x3 + ax+ b.

Simplifying, we get f(x) = x3 − λ2x2 + · · · = 0, where we omit the co-
efficients of x and the constant term since they will not be needed. Since
P1 and P2 are in L ∩ E, the polynomial f has x1 and x2 as roots. By
Proposition 2.5.3, the polynomial f can have at most three roots. Writing
f =

∏
(x − xi) and equating terms, we see that x1 + x2 + x3 = λ2. Thus,

x3 = λ2 − x1 − x2, as claimed. Also, from the equation for L we see that
y3 = y1 + (x3 − x1)λ = λx3 + ν, which completes the proof.

To prove Theorem 6.2.2 means to show that + satisfies the three axioms
of an abelian group with O as identity element: existence of inverses, com-
mutativity, and associativity. The existence of inverses follows immediately
from the definition, since (x, y) + (x,−y) = O. Commutativity is also clear
from the definition of group law, since in Parts 1–3, the recipe is unchanged
if we swap P1 and P2; in Part 4 swapping P1 and P2 does not change the
line determined by P1 and P2, so by Proposition 6.2.4 it does not change
the sum P1 + P2.

It is more difficult to prove that + satisfies the associative axiom, i.e.,
that (P1 +P2) +P3 = P1 + (P2 +P3). This fact can be understood from at
least three points of view. One is to reinterpret the group law geometrically
(extending Proposition 6.2.4 to all cases), and thus transfer the problem
to a question in plane geometry. This approach is beautifully explained
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with exactly the right level of detail in [ST92, §I.2]. Another approach is to
use the formulas that define + to reduce associativity to checking specific
algebraic identities; this is something that would be extremely tedious to
do by hand, but can be done using a computer (also tedious). A third
approach (see [Sil86] or [Har77]) is to develop a general theory of “divisors
on algebraic curves,” from which associativity of the group law falls out
as a natural corollary. The third approach is the best, because it opens
up many new vistas; however, we will not pursue it further because it is
beyond the scope of this book.

SAGE Example 6.2.5. In the following Sage session, we use the formula
from Algorithm 6.2.1 to verify that the group law holds for any choice
of points P1, P2, P3 on any elliptic curve over Q such that the points
P1, P2, P3, P1 + P2, P2 + P3 are all distinct and nonzero. We define a poly-
nomial ring R in 8 variables.

sage: R.<x1,y1,x2,y2,x3,y3,a,b> = QQ[]

We define the relations the xi will satisfy, and a quotient ring Q in which
those relations are satisfied. (Quotients of polynomial rings are a general-
ization of the construction Z/nZ that may be viewed as the quotient of the
ring Z of integers by the relation that sets n to equal 0.)

sage: rels = [y1^2 - (x1^3 + a*x1 + b),

... y2^2 - (x2^3 + a*x2 + b),

... y3^2 - (x3^3 + a*x3 + b)]

...

sage: Q = R.quotient(rels)

We define the group operation, which assumes the points are distinct.

sage: def op(P1,P2):

... x1,y1 = P1; x2,y2 = P2

... lam = (y1 - y2)/(x1 - x2); nu = y1 - lam*x1

... x3 = lam^2 - x1 - x2; y3 = -lam*x3 - nu

... return (x3, y3)

We define three points, add them together via P1 + (P2 + P3) and (P1 +
(P2 +P3)), and observe that the results are the same modulo the relations.

sage: P1 = (x1,y1); P2 = (x2,y2); P3 = (x3,y3)

sage: Z = op(P1, op(P2,P3)); W = op(op(P1,P2),P3)

sage: (Q(Z[0].numerator()*W[0].denominator() -

... Z[0].denominator()*W[0].numerator())) == 0

True

sage: (Q(Z[1].numerator()*W[1].denominator() -

... Z[1].denominator()*W[1].numerator())) == 0

True
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6.3 Integer Factorization Using Elliptic Curves

In 1987, Hendrik Lenstra published the landmark paper [Len87] that intro-
duces and analyzes the Elliptic Curve Method (ECM), which is a powerful
algorithm for factoring integers using elliptic curves. Lenstra’s method is
also described in [ST92, §IV.4], [Dav99, §VIII.5], and [Coh93, §10.3].

Lenstra’s algorithm is well suited for finding
“medium-sized” factors of an integer N , which to-
day means between 10 to 40 decimal digits. The
ECM method is not directly used for factoring RSA
challenge numbers (see Section 1.1.3), but it is
used on auxiliary numbers as a crucial step in the
“number field sieve,” which is the best known al-
gorithm for hunting for such factorizations. Also,
implementation of ECM typically requires little
memory. H. Lenstra

6.3.1 Pollard’s (p− 1)-Method

Lenstra’s discovery of ECM was inspired by Pollard’s (p−1)-method, which
we describe in this section.

Definition 6.3.1 (Power Smooth). Let B be a positive integer. If n is
a positive integer with prime factorization n =

∏
peii , then n is B-power

smooth if peii ≤ B for all i.

For example, 30 = 2·3·5 is B power smooth for B = 5, 7, but 150 = 2·3·52
is not 5-power smooth (it is B = 25-power smooth).

We will use the following algorithm in both the Pollard p−1 and elliptic
curve factorization methods.

Algorithm 6.3.2 (Least Common Multiple of First B Integers). Given a
positive integer B, this algorithm computes the least common multiple of
the positive integers up to B.

1. [Sieve] Using, for example, the prime sieve (Algorithm 1.2.3), compute
a list P of all primes p ≤ B.

2. [Multiply] Compute and output the product
∏
p∈P p

blogp(B)c.

Proof. Set m = lcm(1, 2, . . . , B). Then,

ordp(m) = max({ordp(n) : 1 ≤ n ≤ B}) = ordp(p
r),

where pr is the largest power of p that satisfies pr ≤ B. Since pr ≤ B <
pr+1, we have r = blogp(B)c.
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SAGE Example 6.3.3. We implement Algorithm 6.3.2 in Sage and compute
the least common multiple for B = 100 using both the above algorithm and
a naive algorithm. We use math.log below so that logp(B) is computed
quickly using double precision numbers.

sage: def lcm_upto(B):

... return prod([p^int(math.log(B)/math.log(p))

... for p in prime_range(B+1)])

sage: lcm_upto(10^2)

69720375229712477164533808935312303556800

sage: LCM([1..10^2])

69720375229712477164533808935312303556800

Algorithm 6.3.2 as implemented above in Sage takes about a second for
B = 106.

Let N be a positive integer that we wish to factor. We use the Pollard
(p − 1)-method to look for a nontrivial factor of N as follows. First, we
choose a positive integer B, usually with at most six digits. Suppose that
there is a prime divisor p of N such that p− 1 is B-power smooth. We try
to find p using the following strategy. If a > 1 is an integer not divisible
by p, then by Theorem 2.1.20,

ap−1 ≡ 1 (mod p).

Let m = lcm(1, 2, 3, . . . , B), and observe that our assumption that p− 1 is
B-power smooth implies that p− 1 | m, so

am ≡ 1 (mod p).

Thus
p | gcd(am − 1, N) > 1.

If gcd(am−1, N) < N also then gcd(am−1, N) is a nontrivial factor of N . If
gcd(am − 1, N) = N , then am ≡ 1 (mod qr) for every prime power divisor
qr of N . In this case, repeat the above steps but with a smaller choice of B
or possibly a different choice of a. Also, it is a good idea to check from the
start whether or not N is not a perfect power Mr and, if so, replace N
by M . We formalize the algorithm as follows:

Algorithm 6.3.4 (Pollard p−1 Method). Given a positive integer N and
a bound B, this algorithm attempts to find a nontrivial factor g of N . (Each
prime p | g is likely to have the property that p− 1 is B-power smooth.)

1. [Compute lcm] Use Algorithm 6.3.2 to compute m = lcm(1, 2, . . . , B).

2. [Initialize] Set a = 2.

3. [Power and gcd] Compute x = am − 1 (mod N) and g = gcd(x,N).

4. [Finished?] If g 6= 1 or N , output g and terminate.
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5. [Try Again?] If a < 10 (say), replace a by a + 1 and go to step 3.
Otherwise, terminate.

For fixed B, Algorithm 6.3.4 often splits N when N is divisible by a
prime p such that p − 1 is B-power smooth. Approximately 15 percent of
primes p in the interval from 1015 and 1015 + 10000 are such that p − 1
is 106 power smooth, so the Pollard method with B = 106 already fails
nearly 85 percent of the time at finding 15-digit primes in this range (see
also Exercise 6.10). We will not analyze Pollard’s method further, since it
was mentioned here only to set the stage for the elliptic curve factorization
method.

The following examples illustrate the Pollard (p− 1)-method.

Example 6.3.5. In this example, Pollard works perfectly. Let N = 5917.
We try to use the Pollard p − 1 method with B = 5 to split N . We have
m = lcm(1, 2, 3, 4, 5) = 60; taking a = 2, we have

260 − 1 ≡ 3416 (mod 5917)

and
gcd(260 − 1, 5917) = gcd(3416, 5917) = 61,

so 61 is a factor of 5917.

Example 6.3.6. In this example, we replace B with a larger integer. Let
N = 779167. With B = 5 and a = 2, we have

260 − 1 ≡ 710980 (mod 779167),

and gcd(260 − 1, 779167) = 1. With B = 15, we have

m = lcm(1, 2, . . . , 15) = 360360,

2360360 − 1 ≡ 584876 (mod 779167),

and
gcd(2360360 − 1, N) = 2003,

so 2003 is a nontrivial factor of 779167.

Example 6.3.7. In this example, we replace B by a smaller integer. Let
N = 4331. Suppose B = 7, so m = lcm(1, 2, . . . , 7) = 420,

2420 − 1 ≡ 0 (mod 4331),

and gcd(2420 − 1, 4331) = 4331, so we do not obtain a factor of 4331. If we
replace B by 5, Pollard’s method works:

260 − 1 ≡ 1464 (mod 4331),

and gcd(260 − 1, 4331) = 61, so we split 4331.
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Example 6.3.8. In this example, a = 2 does not work, but a = 3 does. Let
N = 187. Suppose B = 15, so m = lcm(1, 2, . . . , 15) = 360360,

2360360 − 1 ≡ 0 (mod 187),

and gcd(2360360 − 1, 187) = 187, so we do not obtain a factor of 187. If we
replace a = 2 by a = 3, then Pollard’s method works:

3360360 − 1 ≡ 66 (mod 187),

and gcd(3360360 − 1, 187) = 11. Thus 187 = 11 · 17.

SAGE Example 6.3.9. We implement the Pollard (p − 1)-method in Sage
and use our implementation to do all of the above examples.

sage: def pollard(N, B=10^5, stop=10):

... m = prod([p^int(math.log(B)/math.log(p))

... for p in prime_range(B+1)])

... for a in [2..stop]:

... x = (Mod(a,N)^m - 1).lift()

... if x == 0: continue

... g = gcd(x, N)

... if g != 1 or g != N: return g

... return 1

sage: pollard(5917,5)

61

sage: pollard(779167,5)

1

sage: pollard(779167,15)

2003

sage: pollard(4331,7)

1

sage: pollard(4331,5)

61

sage: pollard(187, 15, 2)

1

sage: pollard(187, 15)

11

6.3.2 Motivation for the Elliptic Curve Method

Fix a positive integer B. If N = pq with p and q prime, and we assume
that p − 1 and q − 1 are not B-power smooth, then the Pollard (p − 1)-
method is unlikely to work. For example, let B = 20 and suppose that
N = 59 · 101 = 5959. Note that neither 59− 1 = 2 · 29 nor 101− 1 = 4 · 25
is B-power smooth. With m = lcm(1, 2, 3, . . . , 20) = 232792560, we have

2m − 1 ≡ 5944 (mod N),
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and gcd(2m − 1, N) = 1, so we do not find a factor of N .
As remarked above, the problem is that p−1 is not 20-power smooth for

either p = 59 or p = 101. However, notice that p − 2 = 3 · 19 is 20-power
smooth. Lenstra’s ECM replaces (Z/pZ)∗, which has order p − 1, by the
group of points on an elliptic curve E over Z/pZ. It is a theorem that

#E(Z/pZ) = p+ 1± s

for some nonnegative integer s < 2
√
p (see [Sil86, §V.1] for a proof). Also,

every value of s subject to this bound occurs, as one can see using “complex
multiplication theory.” For example, if E is the elliptic curve

y2 = x3 + x+ 54

over Z/59Z, then by enumerating points one sees that E(Z/59Z) is cyclic
of order 57. The set of numbers 59 + 1± s for s ≤ 15 contains 14 numbers
that are B-power smooth for B = 20, which illustrates that working with
an elliptic curve gives us more flexibility. For example, 60 = 59 + 1 + 0 is
5-power smooth and 70 = 59 + 1 + 10 is 7-power smooth.

6.3.3 Lenstra’s Elliptic Curve Factorization Method

Algorithm 6.3.10 (Elliptic Curve Factorization Method). Given a posi-
tive integer N and a bound B, this algorithm attempts to find a nontrivial
factor g of N or outputs “Fail.”

1. [Compute lcm] Use Algorithm 6.3.2 to compute m = lcm(1, 2, . . . , B).

2. [Choose Random Elliptic Curve] Choose a random a ∈ Z/NZ such
that 4a3 + 27 ∈ (Z/NZ)∗. Then P = (0, 1) is a point on the elliptic
curve y2 = x3 + ax+ 1 over Z/NZ.

3. [Compute Multiple] Attempt to compute mP using an elliptic curve
analog of Algorithm 2.3.13. If at some point we cannot compute a sum
of points because some denominator in Step 3 of Algorithm 6.2.1 is
not coprime to N , we compute the greatest common divisor g of this
denominator with N . If g is a nontrivial divisor, output it. If every
denominator is coprime to N , output “Fail.”

If Algorithm 6.3.10 fails for one random elliptic curve, there is an option
that is unavailable with Pollard’s (p−1)-method—we may repeat the above
algorithm with a different elliptic curve. With Pollard’s method we always
work with the group (Z/NZ)∗, but here we can try many groups E(Z/NZ)
for many curves E. As mentioned above, the number of points on E over
Z/pZ is of the form p+ 1− t for some t with |t| < 2

√
p; Algorithm 6.3.10

thus has a chance if p+ 1− t is B-power smooth for some t with |t| < 2
√
p.
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6.3.4 Examples

For simplicity, we use an elliptic curve of the form

y2 = x3 + ax+ 1,

which has the point P = (0, 1) already on it.
We factor N = 5959 using the elliptic curve method. Let

m = lcm(1, 2, . . . , 20) = 232792560 = 11011110000000100001111100002,

where x2 means x is written in binary. First, we choose a = 1201 at random
and consider y2 = x3 + 1201x + 1 over Z/5959Z. Using the formula for
P + P from Algorithm 6.2.1 we compute 2i · P = 2i · (0, 1) for i ∈ B =
{4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27}. Then

∑
i∈B 2iP = mP . It turns out

that during no step of this computation does a number not coprime to 5959
appear in any denominator, so we do not split N using a = 1201. Next, we
try a = 389 and at some stage in the computation we add P = (2051, 5273)
and Q = (637, 1292). When computing the group law explicitly, we try to
compute λ = (y1−y2)/(x1−x2) in (Z/5959Z)∗, but we fail since x1−x2 =
1414 and gcd(1414, 5959) = 101. We thus find a nontrivial factor 101 of
5959.

SAGE Example 6.3.11. We implement elliptic curve factorization in Sage,
then use it to do the above example and some other examples.

sage: def ecm(N, B=10^3, trials=10):

... m = prod([p^int(math.log(B)/math.log(p))

... for p in prime_range(B+1)])

... R = Integers(N)

... # Make Sage think that R is a field:

... R.is_field = lambda : True

... for _ in range(trials):

... while True:

... a = R.random_element()

... if gcd(4*a.lift()^3 + 27, N) == 1: break

... try:

... m * EllipticCurve([a, 1])([0,1])

... except ZeroDivisionError, msg:

... # msg: "Inverse of <int> does not exist"

... return gcd(Integer(str(msg).split()[2]), N)

... return 1

sage: set_random_seed(2)

sage: ecm(5959, B=20)

101

sage: ecm(next_prime(10^20)*next_prime(10^7), B=10^3)

10000019
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6.3.5 A Heuristic Explanation

Let N be a positive integer and, for simplicity of exposition, assume that
N = p1 · · · pr with the pi distinct primes. It follows from Lemma 2.2.5 that
there is a natural isomorphism

f : (Z/NZ)∗ −→ (Z/p1Z)∗ × · · · × (Z/prZ)∗.

When using Pollard’s method, we choose an a ∈ (Z/NZ)∗, compute am,
then compute gcd(am−1, N). This gcd is divisible exactly by the primes pi
such that am ≡ 1 (mod pi). To reinterpret Pollard’s method using the
above isomorphism, let (a1, . . . , ar) = f(a). Then (am1 , . . . , a

m
r ) = f(am),

and the pi that divide gcd(am− 1, N) are exactly the pi such that ami = 1.
By Theorem 2.1.20, these pi include the primes pj such that pj − 1 is
B-power smooth, where m = lcm(1, . . . ,m).

We will not define E(Z/NZ) when N is composite, since this is not
needed for the algorithm (where we assume that N is prime and hope for
a contradiction). However, for the remainder of this paragraph, we pretend
that E(Z/NZ) is meaningful and describe a heuristic connection between
Lenstra and Pollard’s methods. The significant difference between Pollard’s
method and the elliptic curve method is that the isomorphism f is replaced
by an isomorphism (in quotes)

“g : E(Z/NZ)→ E(Z/p1Z)× · · · × E(Z/prZ)”

where E is y2 = x3 + ax+ 1, and the a of Pollard’s method is replaced by
P = (0, 1). We put the isomorphism in quotes to emphasize that we have
not defined E(Z/NZ). When carrying out the elliptic curve factorization
algorithm, we attempt to compute mP , and if some components of f(Q)
are O, for some point Q that appears during the computation, but others
are nonzero, we find a nontrivial factor of N .

6.4 Elliptic Curve Cryptography

The idea to use elliptic curves in cryptography was independently proposed
by Neil Koblitz and Victor Miller in the mid 1980s. In this section, we
discuss an analog of Diffie-Hellman that uses an elliptic curve instead of
(Z/pZ)∗. We then discuss the ElGamal elliptic curve cryptosystem.

6.4.1 Elliptic Curve Analogs of Diffie-Hellman

The Diffie-Hellman key exchange from Section 3.2 works well on an elliptic
curve with no serious modification. Michael and Nikita agree on a secret
key as follows:
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1. Michael and Nikita agree on a prime p, an elliptic curve E over Z/pZ,
and a point P ∈ E(Z/pZ).

2. Michael secretly chooses a random m and sends mP .

3. Nikita secretly chooses a random n and sends nP .

4. The secret key is nmP , which both Michael and Nikita can compute.

Presumably, an adversary can not compute nmP without solving the dis-
crete logarithm problem (see Problem 3.2.2 and Section 6.4.3 below) in
E(Z/pZ). For well-chosen E, P , and p, experience suggests that the dis-
crete logarithm problem in E(Z/pZ) is much more difficult than the discrete
logarithm problem in (Z/pZ)∗ (see Section 6.4.3 for more on the elliptic
curve discrete log problem).

6.4.2 The ElGamal Cryptosystem and Digital Rights
Management

This section is about the ElGamal cryptosystem, which works well on an
elliptic curve. This section draws on a paper by a computer hacker named
Beale Screamer who cracked a “Digital Rights Management” (DRM) sys-
tem.

The elliptic curve used in the DRM is an elliptic curve over the finite
field k = Z/pZ, where

p = 785963102379428822376694789446897396207498568951.

The number p in base 16 is

89ABCDEF012345672718281831415926141424F7,

which includes counting in hexadecimal, and digits of e, π, and
√

2. The
elliptic curve E is

y2 = x3 + 317689081251325503476317476413827693272746955927x

+ 79052896607878758718120572025718535432100651934.

We have

#E(k) = 785963102379428822376693024881714957612686157429,

and the group E(k) is cyclic with generator

B = (771507216262649826170648268565579889907769254176,

390157510246556628525279459266514995562533196655).
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Our heroes Nikita and Michael share digital music when they are not
out fighting terrorists. When Nikita installed the DRM software on her
computer, it generated a private key

n = 670805031139910513517527207693060456300217054473,

which it hides in bits and pieces of files. In order for Nikita to play Juno
Reactor’s latest hit juno.wma, her web browser contacts a website that
sells music. After Nikita sends her credit card number, that website allows
Nikita to download a license file that allows her audio player to unlock and
play juno.wma.

As we will see below, the license file was created using the ElGamal
public-key cryptosystem in the group E(k). Nikita can now use her license
file to unlock juno.wma. However, when she shares both juno.wma and the
license file with Michael, he is frustrated because even with the license, his
computer still does not play juno.wma. This is because Michael’s computer
does not know Nikita’s computer’s private key (the integer n above), so
Michael’s computer can not decrypt the license file.

We now describe the ElGamal cryptosystem, which lends itself well to
implementation in the group E(Z/pZ). To illustrate ElGamal, we describe
how Nikita would set up an ElGamal cryptosystem that anyone could use
to encrypt messages for her. Nikita chooses a prime p, an elliptic curve E
over Z/pZ, and a point B ∈ E(Z/pZ), and publishes p, E, and B. She also
chooses a random integer n, which she keeps secret, and publishes nB. Her
public key is the four-tuple (p,E,B, nB).

Suppose Michael wishes to encrypt a message for Nikita. If the message is
encoded as an element P ∈ E(Z/pZ), Michael computes a random integer r
and the points rB and P +r(nB) on E(Z/pZ). Then P is encrypted as the
pair (rB, P + r(nB)). To decrypt the encrypted message, Nikita multiplies
rB by her secret key n to find n(rB) = r(nB), then subtracts this from
P + r(nB) to obtain

P = P + r(nB)− r(nB).

Remark 6.4.1. It also make sense to construct an ElGamal cryptosystem
in the group (Z/pZ)∗.

Returning to our story, Nikita’s license file is an encrypted message to
her. It contains the pair of points (rB, P + r(nB)), where

rB = (179671003218315746385026655733086044982194424660,

697834385359686368249301282675141830935176314718)

and

P + r(nB) = (137851038548264467372645158093004000343639118915,

110848589228676224057229230223580815024224875699).
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When Nikita’s computer plays juno.wma, it loads the secret key

n = 670805031139910513517527207693060456300217054473

into memory and computes

n(rB) = (328901393518732637577115650601768681044040715701,

586947838087815993601350565488788846203887988162).

It then subtracts this from P + r(nB) to obtain

P = (14489646124220757767,

669337780373284096274895136618194604469696830074).

The x-coordinate 14489646124220757767 is the key that unlocks juno.wma.
If Nikita knew the private key n that her computer generated, she could

compute P herself and unlock juno.wma and share her music with Michael.
Beale Screamer found a weakness in the implementation of this system that
allows Nikita to detetermine n, which is not a huge surprise since n is stored
on her computer after all.

SAGE Example 6.4.2. We do the above examples in Sage:

sage: p = 785963102379428822376694789446897396207498568951

sage: E = EllipticCurve(GF(p), \

... [317689081251325503476317476413827693272746955927,

... 79052896607878758718120572025718535432100651934])

sage: E.cardinality()

785963102379428822376693024881714957612686157429

sage: E.cardinality().is_prime()

True

sage: B = E([

... 771507216262649826170648268565579889907769254176,

... 390157510246556628525279459266514995562533196655])

sage: n=670805031139910513517527207693060456300217054473

sage: r=70674630913457179596452846564371866229568459543

sage: P = E([14489646124220757767,

... 669337780373284096274895136618194604469696830074])

sage: encrypt = (r*B, P + r*(n*B))

sage: encrypt[1] - n*encrypt[0] == P # decrypting works

True

6.4.3 The Elliptic Curve Discrete Logarithm Problem

Problem 6.4.3 (Elliptic Curve Discrete Log Problem). Suppose E is an
elliptic curve over Z/pZ and P ∈ E(Z/pZ). Given a multiple Q of P , the
elliptic curve discrete log problem is to find n ∈ Z such that nP = Q.
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For example, let E be the elliptic curve given by y2 = x3 + x + 1 over
the field Z/7Z. We have

E(Z/7Z) = {O, (2, 2), (0, 1), (0, 6), (2, 5)}.

If P = (2, 2) and Q = (0, 6), then 3P = Q, so n = 3 is a solution to the
discrete logarithm problem.

If E(Z/pZ) has order p or p ± 1, or is a product of reasonably small
primes, then there are some methods for attacking the discrete log problem
on E, which are beyond the scope of this book. It is therefore important
to be able to compute #E(Z/pZ) efficiently, in order to verify that the
elliptic curve one wishes to use for a cryptosystem doesn’t have any obvious
vulnerabilities. The naive algorithm to compute #E(Z/pZ) is to try each
value of x ∈ Z/pZ and count how often x3+ax+b is a perfect square mod p,
but this is of no use when p is large enough to be useful for cryptography.
Fortunately, there is an algorithm due to Schoof, Elkies, and Atkin for
computing #E(Z/pZ) efficiently (polynomial time in the number of digits
of p), but this algorithm is beyond the scope of this book.

In Section 3.2.1, we discussed the discrete log problem in (Z/pZ)∗. There
are general attacks called “index calculus attacks” on the discrete log prob-
lem in (Z/pZ)∗ that are slow, but still faster than the known algorithms
for solving the discrete log in a “general” group (one with no extra struc-
ture). For most elliptic curves, there is no known analog of index calculus
attacks on the discrete log problem. At present, it appears that given p,
the discrete log problem in E(Z/pZ) is much harder than the discrete log
problem in the multiplicative group (Z/pZ)∗. This suggests that by us-
ing an elliptic curve-based cryptosystem instead of one based on (Z/pZ)∗,
one gets equivalent security with much smaller numbers, which is one rea-
son why building cryptosystems using elliptic curves is attractive to some
cryptographers. For example, Certicom, a company that strongly supports
elliptic curve cryptography, claims:

“[Elliptic curve crypto] devices require less storage, less power,
less memory, and less bandwidth than other systems. This al-
lows you to implement cryptography in platforms that are con-
strained, such as wireless devices, handheld computers, smart
cards, and thin-clients. It also provides a big win in situations
where efficiency is important.”

For an up-to-date list of elliptic curve discrete log challenge problems
that Certicom sponsors, see [Cer]. For example, in April 2004, a specific
cryptosystem was cracked that was based on an elliptic curve over Z/pZ,
where p has 109 bits. The first unsolved challenge problem involves an
elliptic curve over Z/pZ, where p has 131 bits, and the next challenge after
that is one in which p has 163 bits. Certicom claims at [Cer] that the 163-bit
challenge problem is computationally infeasible.
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FIGURE 6.4. Louis J. Mordell

6.5 Elliptic Curves Over the Rational Numbers

Let E be an elliptic curve defined over Q. The following is a deep theorem
about the group E(Q).

Theorem 6.5.1 (Mordell). The group E(Q) is finitely generated. That is,
there are points P1, . . . , Ps ∈ E(Q) such that every element of E(Q) is of
the form n1P1 + · · ·+ nsPs for integers n1, . . . ns ∈ Z.

Mordell’s theorem implies that it makes sense to ask whether or not
we can compute E(Q), where by “compute” we mean find a finite set
P1, . . . , Ps of points on E that generate E(Q) as an abelian group. There
is a systematic approach to computing E(Q) called “descent” (see, for
example, [Cre97, Cre, Sil86]). It is widely believed that the method of
descent will always succeed, but nobody has yet proved that it will. Proving
that descent works for all curves is one of the central open problems in
number theory, and is closely related to the Birch and Swinnerton-Dyer
conjecture (one of the Clay Math Institute’s million dollar prize problems).
The crucial difficulty amounts to deciding whether or not certain explicitly
given curves have any rational points on them or not (these are curves that
have points over R and modulo n for all n).

The details of using descent to compute E(Q) are beyond the scope of
this book. In several places below, we will simply assert that E(Q) has
a certain structure or is generated by certain elements. In each case, we
computed E(Q) using a computer implementation of this method.

6.5.1 The Torsion Subgroup of E(Q)

For any abelian group G, let Gtor be the subgroup of elements of finite
order. If E is an elliptic curve over Q, then E(Q)tor is a subgroup of
E(Q), which must be finite because of Theorem 6.5.1 (see Exercise 6.6).
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One can also prove that E(Q)tor is finite by showing that there is a prime
p and an injective reduction homomorphism E(Q)tor ↪→ E(Z/pZ), then
noting that E(Z/pZ) is finite. For example, if E is y2 = x3 − 5x+ 4, then
E(Q)tor = {O, (1, 0)} ∼= Z/2Z.

The possibilities for E(Q)tor are known.

Theorem 6.5.2 (Mazur, 1976). Let E be an elliptic curve over Q. Then
E(Q)tor is isomorphic to one of the following 15 groups:

Z/nZ for n ≤ 10 or n = 12,

Z/2Z× Z/2n for n ≤ 4.

SAGE Example 6.5.3. We compute the structure of the torsion subgroups
of some elliptic curves. In each case, the output of the function T (a, b)
below is a pair c, d ∈ Z (or integer c) such that the torsion subgroup of
y3 = x3 + ax+ b is Z/cZ× Z/dZ.

sage: T = lambda v: EllipticCurve(v

... ).torsion_subgroup().invariants()

sage: T([-5,4])

[2]

sage: T([-43,166])

[7]

sage: T([-4,0])

[2, 2]

sage: T([-1386747, 368636886])

[8, 2]

6.5.2 The Rank of E(Q)

The quotient E(Q)/E(Q)tor is a finitely generated free abelian group, so
it is isomorphism to Zr for some integer r, called the rank of E(Q). For
example, one can prove that if E is y2 = x3 − 5x+ 4, then E(Q)/E(Q)tor
is generated by the point (0, 2).

SAGE Example 6.5.4. We use Sage to compute the ranks of some elliptic
curves y2 = x3 +ax+ b. The function r(a, b) below returns the rank of this
curve over Q.

sage: r = lambda v: EllipticCurve(v).rank()

sage: r([-5,4])

1

sage: r([0,1])

0

sage: r([-3024, 46224])

2

sage: r([-112, 400])
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3

sage: r([-102627, 12560670])

4

The following is a folklore conjecture, not associated with any particular
mathematician:

Conjecture 6.5.5. There are elliptic curves over Q of arbitrarily large
rank.

The world record is the following curve, whose rank is at least 28:

y2+xy + y = x3 − x2−
20067762415575526585033208209338542750930230312178956502x+

344816117950305564670329856903907203748559443593191803612 . . .

. . . 66008296291939448732243429

It was discovered in May 2006 by Noam Elkies of Harvard University.

6.5.3 The Congruent Number Problem

Definition 6.5.6 (Congruent Number). We call a nonzero rational num-
ber n a congruent number if ±n is the area of a right triangle with rational
side lengths. Equivalently, n is a congruent number if the system of two
equations

a2 + b2 = c2

1

2
ab = n

has a solution with a, b, c ∈ Q.

For example, 6 is the area of the right triangle with side lengths 3, 4,
and 5, so 6 is a congruent number. Less obvious is that 5 is also a congruent
number; it is the area of the right triangle with side lengths 3/2, 20/3, and
41/6. It is nontrivial to prove that 1, 2, 3, and 4 are not congruent numbers.
Here is a list of the integer congruent numbers up to 50:

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47.

Every congruence class modulo 8 except 3 is represented in this list,
which incorrectly suggests that if n ≡ 3 (mod 8) then n is not a congruent
number. Though no n ≤ 218 with n ≡ 3 (mod 8) is a congruent number,
n = 219 is a congruent number congruent and 219 ≡ 3 (mod 8).

Deciding whether an integer n is a congruent number can be subtle, since
the simplest triangle with area n can be very complicated. For example,
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as Zagier pointed out, the number 157 is a congruent number, and the
“simplest” rational right triangle with area 157 has side lengths

a =
6803298487826435051217540

411340519227716149383203
and b =

411340519227716149383203

21666555693714761309610
.

This solution would be difficult to find by a brute force search.
We call congruent numbers “congruent” because of the following proposi-

tion, which asserts that any congruent number is the common “congruence”
between three perfect squares.

Proposition 6.5.7. Suppose n is the area of a right triangle with rational
side lengths a, b, c, with a ≤ b < c. Let A = (c/2)2. Then

A− n, A, and A+ n

are all perfect squares of rational numbers.

Proof. We have

a2 + b2 = c2

1

2
ab = n

Add or subtract 4 times the second equation to the first to get

a2 ± 2ab+ b2 = c2 ± 4n

(a± b)2 = c2 ± 4n
(
a± b

2

)2

=
( c

2

)2
± n

= A± n

The main motivating open problem related to congruent numbers is to
give a systematic way to recognize them.

Open Problem 6.5.8. Give an algorithm which, given n, outputs whether
or not n is a congruent number.

Fortunately, the vast theory developed about elliptic curves has some-
thing to say about the above problem. In order to understand this connec-
tion, we begin with an elementary algebraic proposition that establishes a
link between elliptic curves and the congruent number problem.

Proposition 6.5.9 (Congruent numbers and elliptic curves). Let n be a
rational number. There is a bijection between

A =

{
(a, b, c) ∈ Q3 :

ab

2
= n, a2 + b2 = c2

}
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and

B =
{

(x, y) ∈ Q2 : y2 = x3 − n2x, with y 6= 0
}

given explicitly by the maps

f(a, b, c) =

(
− nb

a+ c
,

2n2

a+ c

)

and

g(x, y) =

(
n2 − x2

y
, −2xn

y
,
n2 + x2

y

)
.

The proof of this proposition is not deep, but involves substantial (ele-
mentary) algebra and we will not prove it in this book.

For n 6= 0, let En be the elliptic curve y2 = x3 − n2x.

Proposition 6.5.10 (Congruent number criterion). The rational num-
ber n is a congruent number if and only if there is a point P = (x, y) ∈
En(Q) with y 6= 0.

Proof. The number n is a congruent number if and only if the set A from
Proposition 6.5.9 is nonempty. By the proposition A is nonempty if and
only if B is nonempty.

Example 6.5.11. Let n = 5. Then En is y2 = x3 − 25x, and we notice that
(−4,−6) ∈ En(Q). We next use the bijection of Proposition 6.5.9 to find
the corresponding right triangle:

g(−4,−6) =

(
25− 16

−6
,−−40

−6
,

25 + 16

−6

)
=

(
−3

2
,−20

3
,−41

6

)
.

Multiplying through by−1 yields the side lengths of a rational right triangle
with area 5. Are there any others?

Observe that we can apply g to any point in En(Q) with y 6= 0. Using
the group law, we find that 2(−4,−6) = (1681/144, 62279/1728) and

g(2(−4,−6)) =

(
−1519

492
,−4920

1519
,

3344161

747348

)
.

This example foreshadows Theorem 6.5.14.

Example 6.5.12. Let n = 1, so E1 is defined by y2 = x3 − x. Since 1 is not
a congruent number, the elliptic curve E1 has no point with y 6= 0. See
Exercise 6.11.

SAGE Example 6.5.13. We implement the cong function in Sage, which
returns a triple (a, b, c) whose entries are the sides of a rational right triangle
of area n if one exists, and returns False if there are no such triangles.
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sage: def cong(n):

... G = EllipticCurve([-n^2,0]).gens()

... if len(G) == 0: return False

... x,y,_ = G[0]

... return ((n^2-x^2)/y,-2*x*n/y,(n^2+x^2)/y)

sage: cong(6)

(3, 4, 5)

sage: cong(5)

(3/2, 20/3, 41/6)

sage: cong(1)

False

sage: cong(13)

(323/30, 780/323, 106921/9690)

sage: (323/30 * 780/323)/2

13

sage: (323/30)^2 + (780/323)^2 == (106921/9690)^2

True

Theorem 6.5.14 (Infinitely Many Triangles). If n is a congruent number,
then there are infinitely many distinct right triangles with rational side
lengths and area n.

We will not prove this theorem, except to note that one proves it by
showing that En(Q)tor = {O, (0, 0), (n, 0), (−n, 0)}, so the elements of the
set B in Proposition 6.5.9 all have infinite order. Hence, B is infinite so A
is infinite.

Tunnell has proved that the Birch and Swinnerton-Dyer conjecture (al-
luded to above), implies the existence of an elementary way to decide
whether or not an integer n is a congruent number. We state Tunnell’s
elementary way in the form of a conjecture.

Conjecture 6.5.15. Let a, b, c denote integers. If n is an even square-free
integer, then n is a congruent number if and only if

#
{

(a, b, c) ∈ Z3 : 4a2 + b2 + 8c2 =
n

2
: c is even

}

= #
{

(a, b, c) : 4a2 + b2 + 8c2 =
n

2
: c is odd

}
.

If n is odd and square free then n is a congruent number if and only if

#
{

(a, b, c) : 2a2 + b2 + 8c2 = n : c is even
}

= #
{

(a, b, c) : 2a2 + b2 + 8c2 = n : c is odd
}
.

Enough of the Birch and Swinnerton-Dyer conjecture is known to prove
one direction of Conjecture 6.5.15. In particular, it is a very deep theorem
that if we do not have equality of the displayed cardinalities, then n is not
a congruent number.
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The even more difficult (and still open!) part of Conjecture 6.5.15 is the
converse: If one has equality of the displayed cardinalities, prove that n is
a congruent number. The difficulty in this direction, which appears to be
very deep, is that we must somehow construct (or prove the existence of)
elements of En(Q). This has been accomplished in some cases due to the
groundbreaking work of Gross and Zagier ([GZ86]) but much work remains
to be done.

The excellent book [Kob84] is about congruent numbers and Conjec-
ture 6.5.15, and we encourage the reader to consult it. The Birch and
Swinnerton-Dyer conjecture is a Clay Math Institute million dollar millen-
nium prize problem (see [Cla, Wil00]).

6.6 Exercises

6.1 Write down an equation y2 = x3 + ax + b over a field K such that
−16(4a3+27b2) = 0. Precisely what goes wrong when trying to endow
the set E(K) = {(x, y) ∈ K ×K : y2 = x3 + ax + b} ∪ {O} with a
group structure?

6.2 One rational solution to the equation y2 = x3 − 2 is (3, 5). Find a
rational solution with x 6= 3 by drawing the tangent line to (3, 5) and
computing the second point of intersection.

6.3 Let E be the elliptic curve over the finite field K = Z/5Z defined by
the equation

y2 = x3 + x+ 1.

(a) List all 9 elements of E(K).

(b) What is the structure of E(K), as a product of cyclic groups?

6.4 Let E be the elliptic curve defined by the equation y2 = x3 + 1. For
each prime p ≥ 5, let Np be the cardinality of the group E(Z/pZ)
of points on this curve having coordinates in Z/pZ. For example, we
have that N5 = 6, N7 = 12, N11 = 12, N13 = 12, N17 = 18, N19 =
12, , N23 = 24, and N29 = 30 (you do not have to prove this).

(a) For the set of primes satisfying p ≡ 2 (mod 3), can you see a
pattern for the values of Np? Make a general conjecture for the
value of Np when p ≡ 2 (mod 3).

(b) (*) Prove your conjecture.

6.5 Let E be an elliptic curve over the real numbers R. Prove that E(R)
is not a finitely generated abelian group.

6.6 (*) Suppose G is a finitely generated abelian group. Prove that the
subgroup Gtor of elements of finite order in G is finite.
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6.7 Suppose y2 = x3+ax+b with a, b ∈ Q defines an elliptic curve. Show
that there is another equation Y 2 = X3 + AX + B with A,B ∈ Z
whose solutions are in bijection with the solutions to y2 = x3+ax+b.

6.8 Suppose a, b, c are relatively prime integers with a2 + b2 = c2. Then
there exist integers x and y with x > y such that c = x2 + y2 and
either a = x2 − y2, b = 2xy or a = 2xy, b = x2 − y2.

6.9 (*) Fermat’s Last Theorem for exponent 4 asserts that any solution
to the equation x4 + y4 = z4 with x, y, z ∈ Z satisfies xyz = 0. Prove
Fermat’s Last Theorem for exponent 4, as follows.

(a) Show that if the equation x2 + y4 = z4 has no integer solutions
with xyz 6= 0, then Fermat’s Last Theorem for exponent 4 is
true.

(b) Prove that x2 +y4 = z4 has no integer solutions with xyz 6= 0 as
follows. Suppose n2 +k4 = m4 is a solution with m > 0 minimal
among all solutions. Show that there exists a solution with m
smaller using Exercise 6.8 (consider two cases).

6.10 This problem requires a computer.

(a) Show that the set of numbers 59 + 1± s for s ≤ 15 contains 14
numbers that are B-power smooth for B = 20.

(b) Find the proportion of primes p in the interval from 1012 and
1012 + 1000 such that p− 1 is B = 105 power smooth.

6.11 (*) Prove that 1 is not a congruent number by showing that the
elliptic curve y2 = x3−x has no rational solutions except (0,±1) and
(0, 0), as follows:

(a) Write y = p
q and x = r

s , where p, q, r, s are all positive integers

and gcd(p, q) = gcd(r, s) = 1. Prove that s | q, so q = sk for
some k ∈ Z.

(b) Prove that s = k2, and substitute to see that p2 = r3 − rk4.

(c) Prove that r is a perfect square by supposing that there is a
prime ` such that ord`(r) is odd, and analyzing ord` of both
sides of p2 = r3 − rk4.

(d) Write r = m2, and substitute to see that p2 = m6−m2k4. Prove
that m | p.

(e) Divide through by m2 and deduce a contradiction to Exer-
cise 6.9.
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Answers and Hints

• Chapter 1. Prime Numbers

2. They are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97.

3. Emulate the proof of Proposition 1.2.5.

• Chapter 2. The Ring of Integers Modulo n

2. They are 5, 13, 3, and 8.

3. For example, x = 22, y = −39.

4. Hint: Use the binomial theorem and prove that if r ≥ 1, then p
divides

(
p
r

)
.

7. For example, S1 = {0, 1, 2, 3, 4, 5, 6}, S2 = {1, 3, 5, 7, 9, 11, 13},
S3 = {0, 2, 4, 6, 8, 10, 12}, and S4 = {2, 3, 5, 7, 11, 13, 29}. In each
we find Si by listing the first seven numbers satisfying the ith
condition, then adjust the last number if necessary so that the
reductions will be distinct modulo 7.

8. An integer is divisible by 5 if and only if the last digits is 0 or 5.
An integer is divisible by 9 if and only if the sum of the digits
is divisible by 9. An integer is divisible by 11 if and only if the
alternating sum of the digits is divisible by 11.

9. Hint for part (a): Use the divisibility rule you found in Exer-
cise 1.8.
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10. 71

11. 8

12. As explained on page 23, we know that Z/nZ is a ring for any n.
Thus to show that Z/pZ is a field it suffices to show that every
nonzero element a ∈ Z/pZ has an inverse. Lift a to an element
a ∈ Z, and set b = p in Proposition 2.3.1. Because p is prime,
gcd(a, p) = 1, so there exists x, y such that ax+py = 1. Reducing
this equality modulo p proves that a has an inverse x (mod p).
Alternatively, one could argue just like after Definition 2.1.16
that am = 1 for some m, so some power of a is the inverse of a.

13. 302

15. Only for n = 1, 2. If n > 2, then n is either divisible by an
odd prime p or 4. If 4 | n, then 2e − 2e−1 divides ϕ(n) for some
e ≥ 2, so ϕ(n) is even. If an odd p divides n, then the even
number pe − pe−1 divides ϕ(n) for some e ≥ 1.

16. The map ψ is a homomorphism since both reduction maps

Z/mnZ→ Z/mZ and Z/mnZ→ Z/nZ

are homomorphisms. It is injective because if a ∈ Z is such that
ψ(a) = 0, then m | a and n | a, so mn | a (since m and n are
coprime), so a ≡ 0 (mod mn). The cardinality of Z/mnZ is mn
and the cardinality of the product Z/mZ × Z/nZ is also mn,
so ψ must be an isomorphism. The units (Z/mnZ)∗ are thus in
bijection with the units (Z/mZ)∗ × (Z/nZ)∗.

For the second part of the exercise, let g = gcd(m,n) and set
a = mn/g. Then a 6≡ 0 (mod mn), but m | a and n | a, so
a ker(ψ).

17. We express the question as a system of linear equations modulo
various numbers, and use the Chinese remainder theorem. Let
x be the number of books. The problem asserts that

x ≡ 6 (mod 7)

x ≡ 2 (mod 6)

x ≡ 1 (mod 5)

x ≡ 0 (mod 4)

Applying CRT to the first pair of equations, we find that x ≡ 20
(mod 42). Applying CRT to this equation and the third, we find
that x ≡ 146 (mod 210). Since 146 is not divisible by 4, we add
multiples of 210 to 146 until we find the first x that is divisible
by 4. The first multiple works, and we find that the aspiring
mathematicians have 356 math books.
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18. Note that p = 3 works, since 11 = 32 + 2 is prime. Now suppose
p 6= 3 is any prime such that p and p2 + 2 are both prime.
We must have p ≡ 1 (mod 3) or p ≡ 2 (mod 3). Then p2 ≡ 1
(mod 3), so p2 + 2 ≡ 0 (mod 3). Since p2 + 2 is prime, we must
have p2 +2 = 3, so p = 1, a contradiction as p is assumed prime.

19. For (a) n = 1, 2, see solution to Exercise 2.15. For (b), yes there
are many such examples. For example, m = 2, n = 4.

20. By repeated application of multiplicativity and Equation (2.2.2)
on page 31, we see that if n =

∏
i p
ei
i is the prime factorization

of n, then

ϕ(n) =
∏

i

(peii − pei−1i ) =
∏

i

pei−1i ·
∏

i

(pi − 1).

23. 1, 6, 29, 34

24. Let g = gcd(12n+1, 30n+2). Then g | 30n+2−2·(12n+1) = 6n.
For the same reason, g also divides 12n + 1 − 2 · (6n) = 1, so
g = 1, as claimed.

27. There is no primitive root modulo 8, since (Z/8Z)∗ has order
4, but every element of (Z/8Z)∗ has order 2. Prove that if ζ is
a primitive root modulo 2n, for n ≥ 3, then the reduction of ζ
mod 8 is a primitive root, a contradiction.

28. 2 is a primitive root modulo 125.

29. Let
∏m
i=1 p

ei
i be the prime factorization of n. Slightly generaliz-

ing Exercise 16, we see that

(Z/nZ)∗ ∼=
∏

(Z/peii Z)∗.

Thus (Z/nZ)∗ is cyclic if and only if the product (Z/peii Z)∗ is
cyclic. If 8 | n, then there is no chance (Z/nZ)∗ is cyclic, so
assume 8 - n. Then by Exercise 2.28, each group (Z/peii Z)∗ is
itself cyclic. A product of cyclic groups is cyclic if and only the
orders of the factors in the product are coprime (this follows from
Exercise 2.16). Thus (Z/nZ)∗ is cyclic if and only if the numbers
pi(pi − 1), for i = 1, . . . ,m are pairwise coprime. Since pi − 1 is
even, there can be at most one odd prime in the factorization of
n, and we see that (Z/nZ)∗ is cyclic if and only if n is an odd
prime power, twice an odd prime power, or n = 4.

• Chapter 3. Public-Key Cryptography

1. The best case is that each letter is A. Then the question is to find
the largest n such that 1 + 27 + · · ·+ 27n ≤ 1020. By computing



152 6. Elliptic Curves

log27(1020), we see that 2713 < 1020 and 2714 > 1020. Thus
n ≤ 13, and since 1+27+ · · ·+27n−1 < 27n, and 2 ·2713 < 1020,
it follows that n = 13.

2. This is not secure, since it is just equivalent to a “Ceaser Ci-
pher,” that is a permutation of the letters of the alphabet, which
is well-known to be easily broken using a frequency analysis.

3. If we can compute the polynomial

f = (x−p)(x−q)(x−r) = x3−(p+q+r)x2+(pq+pr+qr)x−pqr,

then we can factor n by finding the roots of f , for example,
using Newton’s method (or Cardona’s formula for the roots of a
cubic). Because p, q, r, are distinct odd primes, we have

ϕ(n) = (p− 1)(q − 1)(r − 1) = pqr − (pq + pr + qr) + p+ q + r,

and
σ(n) = 1 + (p+ q + r) + (pq + pr + qr) + pqr.

Since we know n, ϕ(n), and σ(n), we know

σ(n)− 1− n = (p+ q + r) + (pq + pr + qr), and

ϕ(n)− n = (p+ q + r)− (pq + pr + qr).

We can thus compute both p + q + r and pq + pr + qr, hence
deduce f and find p, q, r.

• Chapter 4. Quadratic Reciprocity

1. They are all 1, −1, 0, and 1.

3. By Proposition 4.3.4, the value of
(

3
p

)
depends only on the re-

duction ±p (mod 12). List enough primes p such that ±p reduce
to 1, 5, 7, 11 modulo 12 and verify that the asserted formula holds
for each of them.

7. Since p = 213 − 1 is prime, there are either two solutions or no
solutions to x2 ≡ 5 (mod p), and we can decide which using
quadratic reciprocity. We have

(
5

p

)
= (−1)(p−1)/2·(5−1)/2

(p
5

)
=
(p

5

)
,

so there are two solutions if and only if p = 213−1 is ±1 mod 5.
In fact, p ≡ 1 (mod 5), so there are two solutions.

8. We have 448 = 296. By Euler’s Theorem, 296 = 1, so x = 1.
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9. For (a), take a = 19 and n = 20. We found this example us-
ing the Chinese remainder theorem applied to 4 (mod 5) and 3
(mod 4), and used that

(
19
20

)
=
(
19
5

)
·
(
19
4

)
= (−1)(−1) = 1, yet

19 is not a square modulo either 5 or 4, so is certainly not a
square modulo 20.

10. Hint: First reduce to the case that 6k − 1 is prime, by using
that if p and q are primes not of the form 6k − 1, then neither
is their product. If p = 6k − 1 divides n2 + n + 1, it divides
4n2 + 4n + 4 = (2n + 1)2 + 3, so −3 is a quadratic residue
modulo p. Now use quadratic reciprocity to show that −3 is not
a quadratic residue modulo p.

• Chapter 5. Continued Fractions

9. Suppose n = x2 + y2, with x, y ∈ Q. Let d be such that dx, dy ∈
Z. Then d2n = (dx)2 + (dy)2 is a sum of two integer squares, so
by Theorem 5.7.1, if p | d2n and p ≡ 3 (mod 4), then ordp(d

2n)
is even. We have ordp(d

2n) is even if and only if ordp(n) is even,
so Theorem 5.7.1 implies that n is also a sum of two squares.

11. The squares modulo 8 are 0, 1, 4, so a sum of two squares reduces
modulo 8 to one of 0, 1, 2, 4, or 5. Four consecutive integers that
are sums of squares would reduce to four consecutive integers in
the set {0, 1, 2, 4, 5}, which is impossible.

• Chapter 6. Elliptic Curves

2. The second point of intersection is (129/100, 383/1000).

3. The group is cyclic of order 9, generated by (4, 2). The elements
of E(K) are

{O, (4, 2), (3, 4), (2, 4), (0, 4), (0, 1), (2, 1), (3, 1), (4, 3)}.

4. In part (a), the pattern is that Np = p+ 1. For part (b), a hint
is that when p ≡ 2 (mod 3), the map x 7→ x3 on (Z/pZ)∗ is an
automorphism, so x 7→ x3 + 1 is a bijection. Now use what you
learned about squares in Z/pZ from Chapter 4.

5. For all sufficiently large real x, the equation y2 = x3 + ax + b
has a real solution y. Thus, the group E(R) is not countable,
since R is not countable. But any finitely generated group is
countable.

6. In a course on abstract algebra, one often proves the nontrivial
fact that every subgroup of a finitely generated abelian group
is finitely generated. In particular, the torsion subgroup Gtor is
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finitely generated. However, a finitely generated abelian torsion
group is finite.

7. Hint: Multiply both sides of y2 = x3 + ax + b by a power of a
common denominator, and “absorb” powers into x and y.

8. Hint: see Exercise 4.6.
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This paper is about how to compute the Hermite normal form
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a matrix. We describe the fastest implementation for computing
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1. Introduction

This paper is about how to compute the Hermite normal form of a random integer matrix in
practice. We describe the best known algorithm for random matrices, due to Micciancio and Warin-
schi [MW01] and explain some new ideas that make it practical. We also apply these techniques to
give a new algorithm for computing the saturation of a module, and present timings.

In this paper we do not concern ourselves with nonrandom matrices, and instead refer the reader
to [SL96,Sto98] for the state of the art for worse case complexity results. Our motivation for focusing
on the random case is that it comes up frequently in algorithms for computing with modular forms.

Among the numerous notions of Hermite normal form, we use the following one, which is the
closest to the familiar notion of reduced row echelon form.

Definition 1.1 (Hermite normal form). For any n × m integer matrix A the Hermite normal form (HNF) of
A is the unique matrix H = (hi, j) such that there is a unimodular n × n matrix U with U A = H , and
such that H satisfies the following two conditions:
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• there exist a sequence of integers j1 < · · · < jn such that for all 0 � i � n we have hi, j = 0 for all
j < ji (row echelon structure),

• for 0 � k < i � n we have 0 � hk, ji < hi, ji (the pivot element is the greatest along its column and
the coefficients above are nonnegative).

Thus the Hermite normal form is a generalization over Z of the reduced row echelon form of
a matrix over Q. Just as computation of echelon forms is a building block for many algorithms for
computing with vector spaces, Hermite normal form is a building block for algorithms for computing
with modules over Z (see, e.g., [Coh93, Chapter 2]).

Example 1.2. The HNF of the matrix

A =

⎛
⎜⎜⎜⎝

−5 8 −3 −9 5 5

−2 8 −2 −2 8 5

7 −5 −8 4 3 −4

1 −1 6 0 8 −3

⎞
⎟⎟⎟⎠

is

H =

⎛
⎜⎜⎜⎝

1 0 3 237 −299 90

0 1 1 103 −130 40

0 0 4 352 −450 135

0 0 0 486 −627 188

⎞
⎟⎟⎟⎠ .

Notice how the entries in the answer are quite large compared to the input.
Heuristic observations: For a random n × m matrix A with n � m, the number of digits of each

entry of the rightmost m − n + 1 columns of H are similar in size to the determinant of the left n × n
submatrix of A. For example, a random 250 × 250 matrix with entries in [−232,232] has HNF with
entries in the last column all having about 2590 digits and determinant with about 2590 digits, but
all other entries are likely to be very small (e.g., a single digit).

There are numerous algorithms for the computing HNF’s, including [KB79,DKLET87,Bra89,MW01].
We describe an algorithm that is based on the heuristically fast algorithm by Micciancio and Warin-
schi [MW01], updated with several practical improvements.

In the rest of this paper, we mainly address computation of the HNF of a square nonsingular ma-
trix A. We also briefly explain how to reduce the general case to the square case, discuss computation
of saturation, and give timings. We give an outline of the algorithm in Section 2 and present more
details in Sections 3, 5 and 6. The cases of more rows than columns and more columns than rows is
discussed in the Section 7. In Section 9, we sketch the main features of our implementation in Sage,
and compare the computation time for various class of matrices.

2. Outline of the algorithm when A is square

For the rest of this section, let A = (ai, j)i, j=0,...,n−1 be an n × n matrix with integer entries. There
are two key ideas behind the algorithm of [MW01] for computing the HNF of A.

1. Every entry in the HNF H of a square matrix A is at most the absolute value of the determinant
det(A), so one can compute H be working modulo the determinant of H . This idea was first
introduced and developed in [DKLET87].

2. The determinant of A may of course still be extremely large. Micciancio and Warinschi’s clever
idea is to instead compute the Hermite form H ′ of a small-determinant matrix constructed
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Fig. 2.1. Distribution of the determinants in (2.1), for 500 random matrices with n = 100 and entries uniformly chosen to satisfy
log2 ‖A‖ = 100. Only 9 elements had a determinant larger than 200, and the largest one was 6816.

from A using the Euclidean algorithm and properties of determinants. Then we recover H from
H ′ via three update steps.

We now explain the second key idea in more detail. Consider the following block decomposition
of A:

A =
⎡
⎣ B b

cT an−1,n

dT an,n

⎤
⎦ ,

where B is the upper left (n − 2) × (n − 1) submatrix of A, and b, c, d are column vectors. Let
d1 = det

([
B cT

])
and d2 = det

([
B dT

])
. Use the extended Euclidean algorithm to find integers s, t

such that

g = sd1 + td2,

where g = gcd(d1,d2).
Since the determinant is linear in row operations, we have

det

([
B

scT + tdT

])
= g. (2.1)

For random matrices, g is likely to be very small. Fig. 2.1 illustrates the distribution of such gcd’s, on
a set of 500 random integer matrices of dimension 100 with 100-bit coefficients.

Algorithm 1 (on page 4) is essentially the algorithm of Micciancio and Warinschi. Our main im-
provement over their work is to greatly optimize Steps 3, 4 and 8. Step 8 is performed by a procedure
they call AddColumn (see Algorithm 3 in Section 5 below), and steps 9 and 10 by a procedure they
call AddRow (see Algorithm 4 in Section 6 below).

3. Double determinant computation

There are many algorithms for computing the determinant of an integer matrix A. One algorithm
involves computing the Hadamard bound on det(A), then computing the determinant modulo p for
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Algorithm 1: Hermite Normal Form [MW01]

Data: A: an n × n nonsingular matrix over Z
Result: H : the Hermite normal form of A
begin1

Write A =
[

B b
cT an−1,n

dT an,n

]
2

Compute d1 = det
([

B
cT

])
3

Compute d2 = det
([

B
dT

])
4

Compute the extended gcd of d1 and d2: g = sd1 + td25

Let C =
[

B
scT +tdT

]
6

Compute H1, the Hermite normal form of C , by working modulo g as explained in Section 47

below. (NOTE: In the unlikely case that g = 0 or g is large, we compute H1 using any HNF
algorithm applied to C , e.g., by recursively applying the main algorithm of this paper to C .)

Obtain from H1 the Hermite form H2 of
[

B b
scT +tdT san−1,n+tan,n

]
8

Obtain from H2 the hermite form H3 of
[

B b
cT an−1,n

]
9

Obtain from H3 the Hermite form H of

[
B b

cT an−1,n

dT an,n

]
10

end11

sufficiently many p using an (asymptotically fast) Gaussian elimination algorithm, and finally using a
Chinese remainder theorem reconstruction. This algorithm has bit complexity

O
(
n4(logn + log ‖A‖) + n3 log2 ‖A‖),

or O(nω+1(log n + log‖A‖)) with fast matrix arithmetic (see [GG99, Chapter 5]).
Abbott, Bronstein and Mulders [ABM99] propose another determinant algorithm based on solving

Ax = v for a random integer vector v using an iterative p-adic solving algorithm (e.g., [Dix82,MC79]).
In particular, by Cramer’s rule the greatest common divisor of the denominators of the entries of x
is a divisor d of D = det(A). The unknown integer D/d can be recovered by computing it modulo p
for several primes and using the Chinese remainder theorem; usually D/d is very small, so this is
fast. This approach has a similar worst case bit complexity: O(n4 + n3(log n + log ‖A‖)2) but a better
average case complexity of O(n3(log2 n + log ‖A‖)2).

The computation time can also be improved by allowing early termination in the Chinese remain-
der algorithm: once a reconstruction stabilizes modulo several primes, the result is likely to remain
the same with a certified probability, and one can avoid the remaining modular computations.

Further details on practical implementations for computing determinants of integer matrices can
be found in [DU06].

Storjohann [Sto05] obtains the best known bit complexity for computing determinants using a Las
Vegas algorithm. He obtains a complexity of O˜(nω log‖A‖), where ω is the exponent for matrix mul-
tiplication. However, no implementation of this algorithm is known that is better in practice than the
p-adic lifting based method for practical problem sizes. Consequently, we based our implementation
on this latter algorithm by [ABM99].

The computation of the two determinants (Steps 3 and 4) therefore involves the solving of two
systems, with very similar matrices. We reduce it to only one system solution in the generic case using
the following lemma. Since this is a bottleneck in the algorithm, this factor of two savings is huge in
practice.
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Algorithm 2: Double determinant computation

Data: B: an (n − 1) × n matrix over Z
Data: c,d: two vectors in Zn

Result: (d1,d2) = (det(
[

BT c
]
),det(

[
BT d

]
))

begin
Solve the system

[
BT c

]
x = d using Dixon’s p-adic lifting

Then yi = −xi/xn , yn = 1/xn solves
[

BT d
]

y = c by Lemma 3.1, unless xn = 0, in which case
we use the usual determinant algorithm to compute the determinants of the two matrices
u1 = lcm(denominators(x))
u2 = lcm(denominators(y))

Compute Hadamard’s bounds h1 and h2 on the determinants of
[

BT c
]

and
[

BT d
]

Select a set of primes (pi) s.t.
∏

i pi > max(h1/u1,h2/u2)

foreach pi do
compute BT = LU P , the LUP decomposition of BT mod pi
q = ∏n−1

i=1 Ui,i mod pi

x = L−1c mod pi
y = L−1d mod pi

v(i)
1 = qxn mod pi

v(i)
2 = qyn mod pi

reconstruct v1 and v2 from (v(i)
1 ) and (v(i)

2 ) using CRT
return (d1,d2) = (u1 v1, u2 v2)

end

Lemma 3.1. Let A be an n × (n − 1) matrix and c and d column vectors of degree n, and assume that the
augmented matrices [A|c] and [A|d] are both invertible. Let x = (xi) be the solution of [A|c]x = d. If xn �= 0,
then the solution y = (yi) to [A|d]y = c is

y =
(

− x1

xn
,− x2

xn
, . . . ,− xn−1

xn
,

1

xn

)
.

Proof. Write ai for the ith column of A. The equation [A|c]x = d is thus (
∑n−1

i=1 ai xi) + cxn = d, so

(
∑n−1

i=1 ai xi)−d = −xnc. Dividing both sides by −xn yields (
∑n−1

i=1 (− xi
xn

)ai)+ 1
xn

d = c, which proves the
lemma. �

Example 3.2. Let A =
[

1 2
−4 3
2 −5

]
, c = (−1,3,5)T , and d = (2,−3,4)T . The solution to [A|c]x = d is

x =
(

111

68
,

35

68
,

45

68

)
.

Thus

y =
(

− x1

x3
,− x2

x3
,

1

x3

)
=

(
−37

15
,−7

9
,

68

45

)
.

Algorithm 2 (on page 5) describes how the two determinants are computed using Lemma 3.1.
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4. Hermite form modulo g

Recall that C is a square nonsingular matrix with “small” determinant g . Step 7 of Algorithm 1
(on page 4) is to compute the HNF of C as explained in [DKLET87, §3]. There it is proved that since

g = det(C), the Hermite normal form of
[

C
gI

]
is

[
H
0

]
where H is the Hermite normal form of C . Using

this result, to compute H , we apply the standard row reduction Hermite normal form algorithm
to C , always reducing all numbers modulo g . Conceptually, think of this as adding multiples of the
rows of g I , which does not change the resulting Hermite form. At the end of this process we obtain a
matrix H = (hij) with 0 � hij < g for all i j. There is one special case; since the product of the diagonal
entries of the Hermite form of C is g , if the lower right entry of H is 0, then we replace it by g . Then
the resulting matrix H is the Hermite normal form of C .

For additional discussion of the modular Hermite form algorithm, see [Coh93, §2.4, p. 71] which
describes the algorithm in detail, including a discussion of our above remark about replacing 0 by g .

Example 4.1. Let C =
[

5 26
2 11

]
. Then g = det(C) = 3, and the reduction mod g of C is

[
2 2
2 2

]
. Subtracting

the second row from the first yields
[

2 2
0 0

]
, which is already reduced modulo 3. Then multiplying

through the first row by −1 and reducing modulo 3 again, we obtain
[

1 1
0 0

]
. Then, as mentioned

above, since the lower right entry is 0, we replace it by g = 3, obtaining the Hermite normal form

H =
[

1 1
0 3

]
.

5. Add a column

Step 8 of Algorithm 1 is to find a column vector e such that

[ H1 e ] = U

[
B b

scT + tdT an−1,n

]
(5.1)

is in Hermite form, for a unimodular matrix U .
By hypothesis C =

[
B

scT +tdT

]
is invertible, so from (5.1), one gets

e = U

[
b

an−1,n−1

]

= H1

[
B

scT + tdT

]−1 [
b

an−1,n−1

]
.

In [MW01], the column e is computed using multi-modular computations and a tight bound on
the size of the entries of e. We instead use the p-adic lifting algorithm of [Dix82,MC79] to solve the
system

[
B

scT + tdT

]
x =

[
b

an−1,n−1

]
.

However, the last row scT + tdT typically has much larger coefficients than the rest of the matrix, thus
unduly penalizing the complexity of finding a solution. Our key idea is to replace the row scT + tdT

by a random row u that has small entries such that the resulting matrix is still invertible, find the
solution y of this modified system, then recover x as follows. Let {k} be a basis of the 1-dimensional
kernel of B . Then the sought for solution of the original system is

x = y + αk,
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Algorithm 3: AddColumn

Data: B =
[

B1 b2

bT
3 b4

]
: an n × n matrix over Z, where B1 is (n − 1) × (n − 1) and b2,b3 are vectors

Data: H1: the Hermite normal form of
[

B1

bT
3

]
Result: H : the Hermite normal form of B
begin

Pick a random vector u such that |ui | � ‖B‖ ∀i

Solve
[

B1
u

]
y =

[
b2
b4

]
Compute a kernel basis vector k of B1

α = b4 − bT
3 ·y

bT
3 ·k

x = y + αk
e = H1x
return [H1 e]

end

where α satisfies

(
scT + tdT ) · (y + αk) = an−1,n−1.

By linearity of the dot product, we have

α = an−1,n−1 − (scT + tdT ) · y

(scT + tdT ) · k
.

Note that if (scT +tdT ) ·k = 0, then Ck = 0, which would contradict our assumption that C =
[

B
scT +tdT

]
is invertible.

6. Add a row

Steps 9 and 10 of Algorithm 1 consist of adding a new row to the current Hermite form and
updating it to obtain a new matrix in Hermite form.

The principle is to eliminate the new row with all existing pivots and update the already computed
parts when necessary. Algorithm 4 (on page 8) describes this in more detail.

7. The nonsquare case

In the case where the matrix is rectangular, with dimensions m × n, we reduce to the case of a
square nonsingular matrix as follows: first compute the column and row rank profile (pivot columns
and subset of independent rows) of A modulo a random word-size prime. With high probability, the
matrix A has the same column and row rank profile over Q, so we can now apply Algorithm 1 to the
square nonsingular r × r matrix obtained by picking the row and column rank profile submatrix of A
over Z.

The additional rows and columns are then incorporated as follows:

additional columns: use Algorithm 3 (AddColumn) with a block of column vectors instead of just
one column. If this fails, then we computed the rank profile incorrectly, in which case we
start over with a different random prime.

additional rows: use Algorithm 4 (AddRow) for each additional row.
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Algorithm 4: AddRow

Data: A: an m × n matrix in Hermite normal form
Data: b: a vector of degree n

Result: H : the Hermite normal form of
[

A
b

]
begin

forall pivots ai, ji of A do
if b ji = 0 then

continue
if Ai, ji |b ji then

b := b − b ji /Ai, ji Ai,1...n

else
/* Extended gcd based elimination */
(g, s, t) = XGCD(ai, ji ,b ji ) ; /* so g = sai, ji + tb ji */
Ai,1...n := sAi,1...n + tb ji

b := b ji /g Ai,1...n − Ai, ji /gb
for k = 1 to i − 1 do

/* Reduces row k with row i */
Ak,1...n := Ak,1...n − �Ak, ji /Ai, ji �Ai,1...n

if b �= 0 then
let j be the index of the first nonzero element of b
insert bT between rows i and i + 1 such that ji < j < ji+1

Return H =
[

A
b

]
end

8. Saturation

If M is a submodule of Zn for some n, then the saturation of M is Zn ∩ (QM), i.e., the intersection
with Zn of the Q-span of any basis of M . For example, if M has rank n, then the saturation of M just
equals Zn . Also, kernels of homomorphisms of free Z-modules are saturated. Saturation comes up in
many number theoretic algorithms, e.g., saturation is an important step in computing a basis over Z
for the space of q-expansions of cuspidal modular forms of given weight and level, and comes up in
explicit computation with homology of modular curves using modular symbols.

There is a well-known connection between saturation and Hermite form. If A is a basis matrix
for M , and H is the Hermite form of the transpose of A with any 0 rows at the bottom deleted (so H
is square), then H−1 A is a matrix whose rows are a basis for the saturation of M . Thus computation
of a saturation of a matrix reduces to computation of one Hermite form and solving a system H X = A.

If A is sufficiently random, then the Hermite form matrix H has a very large last column and all
other entries are small, so we exploit the trick in Section 6 and instead solve a much easier system.

9. Implementation

Our implementation of the algorithms described in this paper are included in Sage [Ste]. This
implementation relies on IML [SC] for the solution of integer systems using p-adic lifting, and on
LinBox [Lin] for the computation of determinants modulo p (the IML and LinBox libraries are
both part of Sage). Our implementation is primarily optimized for the square case.

We illustrate computing a Hermite normal form and saturation in Sage.

sage: A = matrix(ZZ,3,5,[-1,2,5,65,2,4,-1,-3,1,-2,-1,-2,1,-1,1])
sage: A
[-1 2 5 65 2]
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[ 4 -1 -3 1 -2]
[-1 -2 1 -1 1]
sage: A.hermite_form()
[ 1 0 17 259 7]
[ 0 1 31 453 13]
[ 0 0 40 582 17]
sage: A.saturation()
[-1 2 5 65 2]
[ 4 -1 -3 1 -2]
[-1 -2 1 -1 1]

There are implementations of Hermite normal form algorithms in NTL [Sho], PARI [PAR],
GAP [GAP], Maple and Mathematica. The algorithm in this paper is asymptotically better than these
standard implementations.
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1 Introduction

Let E be an elliptic curve defined over Q. The order of vanishing ran at s = 1 of the Hasse-Weil L-series
L(E/Q, s) of E is defined because E is modular (see [BCDT01, Wil95]). The Birch and Swinnerton-Dyer (BSD)
rank conjecture [Bir65] asserts that ran is equal to the algebraic rank ralg of E(Q). The BSD formula then gives
a conjectural formula for the leading coefficient of the Taylor expansion about s = 1 of L(E/Q, s); this formula
resembles the analytic class number formula. The BSD rank conjecture is known for curves with ran ≤ 1, but
there has been relatively little progress toward the BSD rank conjecture when ran ≥ 2.

In the late 1980s, Kolyvagin wrote several landmark papers that combined the Gross-Zagier theorem [GZ86]
about heights of Heegner points over quadratic imaginary fields K, a theorem [BFH90] about nonvanishing of
special values of twists of L-functions, and relations involving Hecke operators between Heegner points over ring
class fields of K to prove that if ran ≤ 1, then the BSD rank conjecture is true for E. Kolyvagin wrote [Kol91a]
on the case of general rank, in which he computes the elementary invariants of the Selmer groups of any elliptic
curve E of any rank in terms of properties of Heegner points, assuming a certain nontriviality hypothesis. It was
until recently unclear whether or not this hypothesis was ever satisfied for any curve with ran ≥ 2. Fortunately,
this hypothesis has now been confirmed numerically (with high probability) in one case of a rank 2 curve [JLS08].

We review some of Kolyvagin’s results and conjectures from [Kol91a], then make a new conjecture that
refines Kolyvagin’s conjectures. Using reduction modulo p of Heegner points, we introduce a definition of finite
index subgroups Wp ⊂ E(K), one for each prime p that is inert in K. Let yK ∈ E(K) be the associated Heegner
point as in Equation (1) below. Then these subgroups Wp generalize the group ZyK in the case ran = 1. For any
ran ≥ 1, we give a description of Wp, which is conditional on truth of the BSD conjecture and our conjectural
refinement of Kolyvagin’s conjecture. We then deduce the following conditional theorem (see Theorems 7.5 and
7.7), up to an explicit finite set of primes: (a) the set of indexes [E(K) : Wp] is finite, and (b) the subgroups Wp

with [E(K) : Wp] maximal satisfy a higher-rank generalization of the Gross-Zagier formula (see (5) below). We
also give numerical data and a new conjecture about the existence of Gross-Zagier subgroups.

We leave open far more questions than we answer, and we intend to follow up on these questions in
subsequent papers. For example, perhaps the definition of the groups Wp can be refined and generalized in
various ways, and results similar to those in this paper proved about them. It would be interesting to find a
practical algorithm that can provably compute the groups Wp for a particular p, assuming that E(K) has already
been computed. We also hope to find a higher-rank analogue of the Gross-Zagier formula over the Hilbert class
field of K, involving the Petersson inner product, modular forms, and Rankin-Selberg convolutions LA(f, s), as
in [GZ86], which is consistent with the results we prove about the groups Wp in this paper. It would also be
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2 W.A. STEIN

valuable to give proofs of the results of [Kol91a] building on [McC91] instead of [Kol91b], possibly using results
from the present paper.

We briefly outline the structure of this paper. In the first few sections, we state the BSD conjecture and
Gross-Zagier formula, define Kolyvagin points, state Kolyvagin’s conjectures, and then define certain finite index
subgroups Wp of E(K). In the rest of the paper, we study reduction mod p, conditionally deduce the structure
of Wp, and give some numerical examples.

More precisely, we do the following. In Section 2 we state the full Birch and Swinnerton-Dyer conjecture
over an imaginary quadratic field K, and state a generalized Gross-Zagier formula for elliptic curves of any
rank. In Section 3, we introduce the Kolyvagin points Pλ on E over ring class fields of K, and deduce some key
properities of these points. We state Kolvagin’s conjectures from [Kol91a] along with some of their consequences
in Section 4. We also state a conjecture that refines Kolyvagin’s conjectures and also refines a conjecture of
Gross-Zagier. In Section 5 we use reductions of Kolyvagin points to define, for every prime p that is inert in K,
a finite index subgroup Wp of E(K). Section 6 lays some general foundations for our later determination of the
structure of Wp by studying the image of a fixed Q ∈ E(K) in E(Fp2)/(p+ 1). Section 7 presents a conditional
proof that (up to primes not in the set B(E)) maximal index subgroups exist and that they satisfy our generalized
Gross-Zagier formula. Finally, in Section 8 we numerically investigate the existence of Gross-Zagier subgroups
of E(K), and give evidence for a higher-rank generalization of a conjecture of Gross-Zagier.

Acknowledgement: We thank R. Bradshaw, K. Buzzard, C. Citro, J. Coates, C. Cornut, M. Flach, R.
Greenberg, B. Gross, D. Jetchev, K. Lauter, B. Mazur, R. Miller, and Tonghai Yang for helpful conversations.
We thank Amod Agashe and Andrei Jorza for carefully reading a draft of the paper and providing many helpful
comments, and we thank the anonymous referee for much helpful feedback.

“It is always good to try to prove true theorems.”

– Bryan Birch

1.1 Notation and Conventions

Let A be an abelian group. Let Ator be the subgroup of elements of A of finite order and let A/ tor = A/Ator

denote the quotient of A by its torsion subgroup. Let A[n] be the subgroup of elements of A of order n, and for
any prime `, let A(`) be the subgroup of elements of `-power order. For z ∈ A, let e = ord`(z) be the largest
integer e such that z = `ey for some y ∈ A, or ord`(z) =∞ if the set of e is unbounded. If a1, . . . , an are elements
of an additive or multiplicative group A, we let 〈a1, . . . , an〉 denote the subgroup of A generated by the ai.

Throughout this paper, E denotes an elliptic curve defined over Q of conductor N , and K is a quadratic
imaginary field with D = disc(K) coprime to N that satisfies the Heegner hypothesis—each prime dividing N
splits in K. We fix an ideal N in OK such that OK/N is cyclic of order N . Let H be the Hilbert class field of
K, let π : X0(N)→ E be a fixed choice of modular parametrization (see Section 3 below), and let

yK = TrH/K(π((C/OK ,N−1/OK))) ∈ E(K) (1)

be the Heegner point associated to K.
Let c denote the Manin constant of E (see Section 2), and cq the Tamagawa numbers of E at primes q | N .

Unless otherwise stated, everywhere in this paper p denotes a prime that is inert in K.

2 Gross-Zagier Subgroups

In this section, we fix our notation and conventions, and define the Manin constant. Then we recall the statement
of the full Birch and Swinnerton-Dyer conjecture over an imaginary quadratic field K. We give a new definition
of Gross-Zagier subgroups of E(K) and prove that they all satisfy a Gross-Zagier style formula. When ran = 1,
we prove that ZyK is the unique Gross-Zagier subgroup, up to torsion.

Let E be an elliptic curve over Q and let K be a quadratic imaginary field that satisfies the Heegner
hypothesis – so K has discriminant D < −4, each prime dividing the conductor N of E splits in K, and
gcd(D,N) = 1. Let OK be the ring of integers of K. Let ED denote the quadratic twist of E by D. Throughout
this paper, except briefly in Section 8, we always assume that

ran(E/Q) > ran(ED/Q) ≤ 1 (2)

Recall that under the Heegner hypothesis the sign of the functional equation of

L(E/K, s) = L(E/Q, s) · L(ED/Q, s)
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is −1, so the sign in the functional equations for L(E/Q, s) and L(ED/Q, s) are different, hence

ords=1 L(E/Q, s) 6≡ ords=1 L(ED/Q, s) (mod 2).

Proposition 2.1. Suppose E is an elliptic curve with ran(E/Q) > 0. Then there exist infinitely many D
satisfying the Heegner hypothesis with

ran(E/Q) > ran(ED/Q) ≤ 1.

Proof. The main theorem of [BFH90] implies the existence of infinitely many D with ran(ED/Q) ≤ 1. Since
ran(E/Q) > 0 and ran(E/Q) 6≡ ran(ED/Q) (mod 2), the inequality ran(E/Q) > ran(ED/Q) also holds.

Let ω = 2πicf(z)dz be the pullback of a minimal invariant differential on E, where f(z) ∈ S2(Γ0(N)) is a
cuspidal newform, and c is the Manin constant of E (see [ARS06]). For each prime q | N , let cq be the Tamagawa
number of E at q. Set r = ran(E/K) = ords=1 L(E/K, s), which is defined since every elliptic curve over Q is
modular. Let ‖ω‖2 =

∫
E(C) ω ∧ iω = 2 ·Vol(C/Λ). The Shafarevich-Tate group of E over a number field M is

X(E/M) = ker

(
H1(M,E)→

⊕

v

H1(Mv, E)

)
.

The following is a formulation of the Birch and Swinnerton-Dyer conjecture [GZ86, pg. 311] over K.

Conjecture 2.2 (Birch and Swinnerton-Dyer). The Mordell-Weil group E(K) has rank r = ords=1 L(E/K, s),
the Shafarevich-Tate group X(E/K) is finite, and

L(r)(E/K, 1)

r!
=

#X(E/K) · ‖ω‖2 · Reg(E/K) ·
(∏

q|N cq
)2

#E(K)2tor ·
√
|D|

. (3)

Let Xan be the order of X(E/K) that is predicted by Conjecture 2.2. The existence of the Cassels-Tate
pairing implies that if X(E/K) is finite, then #X(E/K) is a perfect square, so Conjecture 2.2 implies that√
Xan is an integer. Recall from Section 1.1 that A/ tor = A/Ator.

Definition 2.3 (Gross-Zagier subgroup). A Gross-Zagier subgroup W ⊂ E(K) is a torsion-free subgroup such
that ED(Q) ⊂W + E(K)tor, the quotient E(K)/ tor/W is cyclic, and

[E(K) : W ] = c ·
∏

cq ·
√
Xan. (4)

For any set S of primes, we say that a subgroup W ⊂ E(K) is a Gross-Zagier subgroup up to primes not
in S if W has no p-torsion for p 6∈ S and all the conditions of Definition 2.3 holds up to primes not in S.

We will numerically investigate the existence of Gross-Zagier subgroups in Section 8, assuming that
Conjecture 2.2 is true. Even the existence of Gross-Zagier subgroups of every E(K) is far from clear, since
if they exist, then #E(K)tor divides c

∏
cq ·
√
Xan. In fact, we will give an example of an E(K) that does not

have any Gross-Zagier subgroups (this example does not satisfy (2)).
In the following proposition we do not assume the Conjecture 2.2. Thus Xan a priori could just be some

meaningless transcendental number. Also, for any subgroup H ⊂ E(K), we write Reg(H) for the absolute value
of the determinant of the height pairing matrix on any basis for H modulo torsion.

Proposition 2.4. If W is a Gross-Zagier subgroup, then W satisfies the generalized Gross-Zagier formula:

L(r)(E/K, 1)

r!
=

‖ω‖2
c2 ·

√
|D|
· Reg(W ). (5)

More generally, a torsion-free subgroup W ⊂ E(K) satisfies the generalized Gross-Zagier formula if and only if
it has index c ·∏ cq ·

√
Xan in E(K).

Proof. The BSD formula (3) with #X(E/K) replaced by Xan implies that (5) holds if and only if

‖ω‖2
c2 ·

√
|D|
· Reg(W ) =

Xan · ‖ω‖2 · Reg(E/K) ·
(∏

p|N cq
)2

#E(K)2tor ·
√
|D|

. (6)

Our hypotheses that [E(K) : W ] is finite and that W is torsion free imply that

[E(K) : W ]2 =
Reg(W ) ·#E(K)2tor

Reg(E/K)
(7)

Manipulate (6) by cancelling everything in common on both sides and putting the regulators and torsion on the

left, and everything else on the right. The substitution (7) then shows that [E(K) : W ]2 = c2 ·
(∏

q|N cq
)2
·Xan

if and only if (5) holds. Taking square roots proves the proposition.
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Corollary 2.5. Let yK ∈ E(K) be the Heegner point after fixing a choice of ideal N as in Equation (1), and
assume that E has analytic rank 1. Then the Gross-Zagier subgroups of E(K) are the cyclic groups 〈yK + P 〉,
for all P ∈ E(K)tor.

Proof. By [Kol88], E(K) is of rank 1, and by Proposition 2.4 the Gross-Zagier formula [GZ86, Thm. 2.1,
pg. 311] implies that [E(K) : 〈yK〉] = c

∏
cq
√
Xan (see also, [GZ86, Conj. 2.2, pg. 311]). Since E(K)/ tor is free of

rank 1 and 〈yK〉 is torsion free, E(K)/ tor/〈yK〉 is cyclic, so 〈yK〉 is a Gross-Zagier subgroup. The same argument
proves this with yK replaced by yK + P for any P ∈ E(K)tor, since yK and yK + P have the same height.
If W is any Gross-Zagier subgroup, then since E(K) has rank one we must have W ≡ 〈yK〉 (mod E(K)tor), so
W = 〈yK + P 〉 for some P ∈ E(K)tor.

3 Heegner and Kolyvagin Points

In this section, we define certain subsets Λk`n ⊂ Z of positive square-free integers. For each integer λ ∈ Λk`n , we
consider the corresponding ring class field Kλ, and we define elements Iλ, Jλ ∈ Z[Gal(Kλ/K)]. We then apply
these group ring elements to the Heegner points yλ ∈ E(Kλ) to obtain the Kolyvagin points Pλ ∈ E(Kλ). Finally,
we prove the Gal(Kλ/K)-equivariance of the equivalence class Pλ + `nE(K) in E(K)/`nE(K).

For any integer m, let am = am(E) be the mth coefficient of the L-series
∑
am/m

s attached to E. Let `
be any prime and n any positive integer. For any nonnegative integer k, let Λk`n be the set of squarefree positive
integers λ = p1 . . . pk coprime to N , where each pi is inert in K and

api ≡ pi + 1 ≡ 0 (mod `n).

When k = 0, we set Λ0
`n = {1}. The Chebotarev density theorem implies that Λk`n is infinite for any k ≥ 1.

Recall from Section 1.1 that we fixed an ideal N in OK such that OK/N is cyclic of order N , and let
Oλ = Z + λOK be the order in OK of conductor λ. Let X0(N) be the compact modular curve defined over Q
that classifies isomorphism classes of elliptic curves equipped with a cyclic subgroup of order N . Fix a choice of
minimal modular parametrization π : X0(N)→ E, which exists by the modularity theorem [BCDT01, Wil95].
For each λ ∈ Λk`n , the Heegner point

xλ = [(C/Oλ, (N ∩Oλ)−1/Oλ)] ∈ X0(N)(Kλ)

is defined over the ring class field Kλ of K of conductor λ.

Definition 3.1 (Heegner point). The Heegner point yλ associated to λ ∈ Λk`n is

yλ = π(xλ) ∈ E(Kλ).

We emphasize that that yλ depends on the choice of modular parametrization πE and the ideal N in OK
with OK/N = Z/NZ. However, once we fix that data, the Heegner points for all λ are defined.

For λ ∈ Λk`n , let Gλ = Gal(Kλ/K1) and note that we have a canonical isomorphism

Gλ ∼=
∏

p|λ
Gp,

where the group Gp = Gal(Kp/K1) = 〈tp〉 is cyclic of order p+ 1, with some (non-canonical) choice tp of
generator. Let

Ip =

p∑

i=1

itip ∈ Z[Gp] and Iλ =
∏

p|λ
Ip ∈ Z[Gλ].

Let R be a set of representatives in Gal(Kλ/K) for the quotient group Gal(Kλ/K)/Gal(Kλ/K1) ∼= Gal(K1/K),
and let

Jλ =
∑

g∈R
g ∈ Z[Gλ].

Definition 3.2 (Kolyvagin Point). The Kolyvagin point Pλ associated to λ ∈ Λk`n is

Pλ = JλIλyλ ∈ E(Kλ).
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Note that P1 = yK ∈ E(K).
Let R = End(E/C) and let B(E) be the set of odd primes ` that do not divide disc(R) and such

that the `-adic representation Gal(Q/Q)→ AutR(Tate`(E)) is surjective. By a theorem of Serre [Ser72], the
set B(E) contains all but finitely many primes (see [GJP+09] for algorithms to bound B(E)). Let Tp be
the pth Hecke operator on the Jacobian J0(N) of X0(N), and for each prime p | λ, let Trp be the trace
J0(N)(Kλ)→ J0(N)(Kλ/p).

Proposition 3.3. The points yλ form an Euler system, in the sense that if λ = pλ′ for a prime p and λ ∈ Λ`,
then yλ = Frob℘(yλ′) (mod ℘) for all primes ℘ of Kλ over p, and Trp(xλ) = Tp(xλ′) in J0(N).

Proof. See [Gro91, Prop. 3.7].

Proposition 3.4. We have

[Iλyλ] ∈ (E(Kλ)/`nE(Kλ))Gλ and [Pλ] ∈ (E(Kλ)/`nE(Kλ))Gal(Kλ/K)

Proof. Though standard (see, e.g., [Gro91, Prop. 3.6]) this proposition plays a key role in Section 5, so we
give a proof here for the convenience of the reader. The first statement implies the second, since [Pλ] is the
Gal(K1/K) trace of [Iλyλ]. It remains to prove the first inclusion. For this, it suffices to show that [Iλyλ] is fixed
by tp for all primes p | λ, as these elements generate Gλ. We will prove this by showing that (tp − 1)Iλyλ lies in
`nE(Kλ).

Write λ = pλ′. We have

(tp − 1)Ip = (tp − 1) ·
(

p∑

i=1

itip

)
= p+ 1− Trp, (8)

where as above Trp = TrKλ/Kλ′ . Note that this is the only place in the proof where we use the explicit definition
of Ip as

∑p
i=1 it

i
p, and in fact we could instead replace Ip by any element I of Z[Gλ] such that

(tp − 1)I = p+ 1− Trp,

but doing so does not seem to lead to anything interesting. Note that the Euler system relation (see
Proposition 3.3) and our hypothesis that ap ≡ 0 (mod `n) together imply that

Trp Iλ′yλ = Iλ′ Trp yλ = Iλ′apyλ′ ∈ `nE(Kλ).

We have
(tp − 1)Iλ = (tp − 1)IpIλ′ = (p+ 1− Trp)Iλ′

in Z[Gλ], so since p+ 1 ≡ 0 (mod `n)

(tp − 1)Iλyλ = (p+ 1)Iλ′yλ − Trp Iλ′yλ ∈ `nE(Kλ).

4 Kolyvagin’s Conjectures and their Consequences

For any prime ` and positive integer n, let

Λ`n =
⋃

all k≥0
Λk`n

be the set of square-free positive integers λ such that `n | gcd(ap, p+ 1) for each p | λ. In this section, we define
maps n,m : Λ` → Z ∪ {∞} that measure `-divisibility properties of λ and Pλ for all λ ∈ Λ`. We state Kolyvagin’s
“Conjecture A” that there exists λ with m(λ) 6=∞, then state Kolyvagin’s structure theorem, which describes

the structure of Sel(`
b)(E/K), for b sufficiently large, in terms of the maps n and m. Finally, we state Kolyvagin’s

stronger “Conjecture D”, which basically asserts that if f is the smallest nonnegative integer such that m(λ) 6=∞
for some λ ∈ Λf` , then for sufficiently large k the cohomology classes τλ,`n with λ ∈ Λf`n+k generate a subgroup

of Sel(`
n)(E/K) that equals the image of a subgroup V of E(K). To motivate Conjecture 4.9, we prove that it

implies that rank(E(Q)) = f + 1 and X(E/K)(`) is finite for each ` ∈ B(E) and determine the structure of V
(see Proposition 4.11).
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Recall that we defined ord` in Section 1.1. Define two set-theoretic maps

n,m : Λ` → Z ∪ {∞}

by
n(λ) = max{e : λ ∈ Λ`e} and m(λ) = ord`([Pλ]),

where [Pλ] denotes the equivalence class of Pλ in E(Kλ)/`n(λ)E(Kλ). For each integer k ≥ 0, let

m`,k = min(m(Λk` )) and m` = min(m(Λ`)) = min({m`,k : k ≥ 0}).

Also, let
f` = min{k : m`,k <∞} ≤ ∞, (9)

where we let f` =∞ if m` =∞.
Kolyvagin proves [Kol91b, Thm. C] that m`,0 ≥ m`,1 ≥ m`,2 ≥ . . . .

Conjecture 4.1 (Kolyvagin’s Conjecture A`). m` <∞. Equivalently, there exists λ ∈ Λ` such that [Pλ] 6= 0.

See [JLS08] for the first computational evidence for Conjecture 4.1. For example, for a specific rank 2 elliptic
curve, that paper shows that m3 = m3,1 = 0 and f3 = 1, assuming that the numerical computation of a certain
Heegner point yλ was done to sufficient precision. (If the computation were not done to sufficient precision it is
highly likely that we would haved detected this.)

Conjecture 4.1 is quite powerful, as the following theorem shows. For an abelian group A of odd order
with an action of complex conjugation, let A+ denote the +1 eigenspace for conjugation and A− the minus
eigenspace, so A = A+ ⊕A−. As always, we continue to assume our minimality hypothesis that

ran(E/Q) > ran(ED/Q) ≤ 1.

Theorem 4.2 (Kolyvagin). Let ` ∈ B(E), suppose Conjecture 4.1 is true for `, and let f = f`. For every k, let
bk = `m`,k−m`,k+1 . Then for every n ≥ m`,f , we have

Sel(`
n)(E/Q) = Sel(`

n)(E/K)+ ≈ (Z/`nZ)f+1 ⊕ (Z/bf+1Z)2 ⊕ (Z/bf+3Z)2 ⊕ · · ·

and
Sel(`

n)(ED/Q) = Sel(`
n)(E/K)− ≈ (Z/`nZ)h ⊕ (Z/bfZ)2 ⊕ (Z/bf+2Z)2 ⊕ · · ·

where h = rank(ED(Q)) ≤ 1.

Proof. The leftmost equality in the above two equations is true because ` is odd, and Theorem 1 of [Kol91a]

implies both of the rightmost equalities, but possibly with Sel(`
n)(E/K)+ and Sel(`

n)(E/K)− swapped and a
different value for h. Theorem 1 of [Kol91a] is proved by inductively constructing cohomology classes with good
properties with respect to certain localization homomorphisms. To finish the proof, we establish that these two
Selmer groups are not swapped and that h = rank(ED(Q)).

First note that by [Kol88, BFH90], our hypothesis that ran(ED/Q) ≤ 1 implies that ran(ED/Q) =
rank(ED(Q)) and X(ED/Q) is finite.

If f = 0, then the Heegner point yK has infinite order, so by [GZ86] we have ran(E/K) = 1 and by [Kol88],
E(K) has rank 1 and X(E/K) is finite. By our minimality hypothesis, we have ran(E/Q) > ran(ED/Q),
so ran(E/Q) = rank(E(Q)) = 1 and ran(ED/Q) = rank(ED(Q)) = 0. Thus the two displayed Selmer groups

Sel(`
n)(E/K)± are in the claimed order. Moreover, h = 0 = rank(ED(Q)).
Next assume f > 0. Then one of the two Selmer groups contained (Z/`nZ)f+1 for arbitrarily large n.

Since we know that X(ED/Q) is finite and rank(ED(Q)) ≤ 1 but f + 1 ≥ 2, the Selmer group that contains

(Z/`nZ)f+1 must be Sel(`
n)(E/K)+. Thus again we see that the two displayed Selmer groups are in the claimed

order. Also, again h = rank(ED(Q)) follows.

Remark 4.3. Suppose the hypotheses of Theorem 4.2 are satisfied. Then comparing the conclusion about the
choice of signs in Theorem 4.2 with the statement of Theorem 1 in [Kol91a] shows that f + 1 ≡ ran(E/Q)
(mod 2), which implies the parity conjecture for the Selmer group of E at `.

Proposition 4.4. Let ` ∈ B(E). Then f` = rank(E(Q))− 1 if and only if X(E/Q)(`) is finite and Conjec-
ture 4.1 holds for `.
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Proof. First suppose f` = rank(E(Q))− 1. Then f` 6=∞, so Conjecture 4.1 holds. To prove that X(E/Q)(`)

is finite, use Theorem 4.2 and that by our rank hypothesis the image of E(Q) in Sel(`
n)(E/Q) is (Z/`nZ)f+1.

Thus X(E/Q)[`n] is a quotient of the `n-torsion subgroup of the finite group (Z/bf+1Z)2 ⊕ (Z/bf+3Z)2 ⊕ · · · ,
so X(E/Q)(`) is finite.

Conversely, suppose the `-primary group X(E/Q)(`) is finite and that Conjecture 4.1 holds. Let b

be a positive integer such that `bX(E/Q)(`) = 0. Then the map Sel(`
b)(E/Q)→X(E/Q)(`) is surjective,

and for every integer n ≥ b, the map Sel(`
n)(E/Q)[`b]→X(E/Q)(`) is also surjective, since Sel(`

b)(E/Q)→
Sel(`

n)(E/Q)[`b]. The image of `b Sel(`
n)(E/Q) in X(E/Q)(`) is trivial. Since ` ∈ B(E) we have E(Q)tor[`] = 0,

so exactness of the sequence

0→ E(Q)/`nE(Q)→ Sel(`
n)(E/Q)→X(E/Q)(`)→ 0

implies that `b Sel(`
n)(E/Q) ≈ `b(Z/`nZ)r, where r = rank(E(Q)). On the other hand, if we also choose

`b ≥ bf+1, then Theorem 4.2 implies that `b Sel(`
n)(E/Q) ≈ `b(Z/`nZ)f+1. We conclude that r = f + 1.

Kolyvagin’s other conjectures involve H1(K,E[`∞]) = lim−→
m

H1(K,E[`m]).

Lemma 4.5. Suppose E(K)[`] = 0. Then for every m ≥ 1, the natural map H1(K,E[`m])→ H1(K,E[`∞]) is
injective.

Proof. This lemma is of course very well known, but we give a proof for completeness. It suffices to show
that for any pair a, b of nonnegative integers that the map

H1(K,E[`a])→ H1(K,E[`a+b]) (10)

is injective. Taking Galois cohomology of 0→ E[`a]→ E[`a+b]→ E[`a+b]/E[`a]→ 0 we see that
H0(K,E[`a+b]/E[`a]) surjects onto the kernel of (10). We have an exact sequence of Galois modules

0→ E[`a]→ E[`a+b]
`a−→ E[`b]→ 0,

so H0(K,E[`a+b]/E[`a]) ∼= H0(K,E[`b]) = E(K)[`b] = 0, since E(K)[`] = 0.

We now define Galois cohomology classes associated to the Kolyvagin points Pλ. For λ ∈ Λ`n with ` ∈ B(E),
let τλ,`n ∈ H1(K,E[`n]) be the image of Pλ under the map

(E(Kλ)/`nE(Kλ))Gal(Kλ/K) ↪→ H1(Kλ, E[`n])Gal(Kλ/K) ∼= H1(K,E[`n]),

where the last map is an isomorphism because ` ∈ B(E) (see, e.g., [Gro91, §4]). Kolyvagin also remarks that one
can define Galois cohomology classes τλ,`n for ` 6∈ B(E) and all λ ∈ Λ`k0+n , where k0 is the smallest nonnegative
even integer such that `k0/2E(K)(`) = 0 and K is the compositum of all Kλ for λ ∈ Λ. Of course, for all ` ∈ B(E)
we have k0 = 0.

Let τ ′λ,`n be the image in H1(K,E[`∞]) of τλ,`n (note that for the moment we are not assuming that

` ∈ B(E), so the natural map H1(K,E[`m])→ H1(K,E[`∞]) need not be injective). For any integers a ≥ 0,
k ≥ k0 and n ≥ 1, let

V ak,`n = 〈τ ′λ,`n : λ ∈ Λa`n+k〉 ⊂ H1(K,E[`∞])

Since Λa`n+k+1 ⊂ Λa`n+k , we have

V a0,`n ⊃ V a1,`n ⊃ V a2,`n ⊃ · · · .
We have `τλ,`n+1 = τλ,`n , because the following diagram commutes, with G = Gal(Kλ/K):

(E(Kλ)/`k+n+1E(Kλ))G
� � // H1(Kλ, E[`k+n+1])G

(E(Kλ)/`k+nE(Kλ))G
� � //

[`]

OO

H1(Kλ, E[`k+n])G

OO

Thus `V ak,`n+1 ⊂ V ak,`n .
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We say {τλ,`n} is a strong nonzero system if there exists a ≥ 0 such that for all k ≥ k0 there exists n such
that V ak,`n 6= 0. In other words, if one continues the grid of subgroups of H1(K,E[`∞]) below infinitely far to the
right and up in the obvious way, then it is not the case that sufficiently far to the right every single group is 0.

...
...

...

V a0,`3 V a1,`3oo V a2,`3oo · · ·oo

V a0,`2 V a1,`2oo V a2,`2oo · · ·oo

V a0,` V a1,`oo V a2,`oo · · ·oo

Conjecture 4.6 (Kolyvagin’s Conjecture B`). {τλ,`n} is a strong nonzero system.

Remark 4.7. Kolyvagin remarks [Kol91a, pg. 258] that if ` ∈ B(E), then {τλ,`n} is a strong nonzero system if
and only if there exists n such that V a0,`n 6= 0. By Lemma 4.5, this is the case if and only if some τ is nonzero.
So for ` ∈ B(E), Conjectures 4.1 is true if and only if Conjecture 4.6 is true.

The following conjecture is motivated by Theorem 4.2 and the conjecture that X(E/K) is finite.

Conjecture 4.8 (Kolyvagin’s Conjecture C). The set of primes ` such that m` 6= 0 is finite.

Let ran = ords=1 L(E, s), and let ε = (−1)ran−1. For any module A with an action of complex conjugation
σ, and ν ∈ {0, 1}, let Aν = (1− (−1)νεσ)A.

Conjecture 4.9 (Kolyvagin’s Conjecture D`). There exists ν ∈ {0, 1} and a subgroup V ⊂ (E(K)/E(K)tor)
ν

such that 1 ≤ rank(V ) ≡ ν (mod 2) and for all n ≥ 1 and all sufficiently large k, one has

V ak,`n ≡ V (mod `n(E(K)/ tor)),

where a = rank(V )− 1.

The following conjecture is the natural generalization to higher rank of the hypothesis when ran(E/Q) = 1
that the Hegner point yK has infinite order.

Conjecture 4.10 (Kolyvagin’s Conjecture D). There exists a single subgroup V of E(K) such that Conjec-
ture 4.9 holds simultaneously for all ` with that V .

Conjecture 4.9 has numerous consequences. Much of the following proposition is implicitly stated without
any proofs in [Kol91a, pg. 258–259], so we give complete proofs below.

Proposition 4.11. Assume our running minimality hypothesis that ran(E/Q) > ran(ED/Q) ≤ 1. Suppose
Conjecture 4.9 is true for ` ∈ B(E) and let f = f`. Then

1. (E(K)/E(K)tor)
ν = (E(K)/E(K)tor)

+,
2. a = f ,
3. rank(E(Q)) = f + 1,
4. X(E/K)(`) is finite,
5. ran(E/Q) ≡ rank(E(Q)) (mod 2), and
6. V ⊗ Z` = `mfE(Q)⊗ Z`.

Proof. By Conjecture 4.9, there exists ν ∈ {0, 1} and a subgroup V ⊂ (E(K)/E(K)tor)
ν such that 1 ≤

rank(V ) ≡ ν (mod 2) and for all n > 0 and all sufficiently large k we have

V ak,`n ≡ V (mod `nE(K)tor),

where a = rank(V )− 1.

If rank(V ) = 1, then a = 0, so V 0
k,`n 6= 0 for some k, so since f is the smallest integer such that V fk,`n 6= 0,

this implies that f = 0 giving Part 2; thus the Heegner point yK has infinite order and ran(E/K) = 1. Since
ran(E/Q) > ran(ED/Q), we have ran(E/Q) = 1 and ran(ED/Q) = 0, so Parts 1,3,4, 5 follows. Finally, Part 6
follows since V 0

k,`n is just the image of the Heegner point yK under the connecting homomorphism, and
ord`(yK) = mf .
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Next assume that rank(V ) > 1. By our minimality hypothesis, ran(ED/Q) ≤ 1, so rank(ED(Q)) ≤ 1, hence
V 6⊂ (E(K)/E(K)tor)

−, so V ⊂ (E(K)/E(K)tor)
+, which proves Part 1. We have f ≤ a since V ak,`n 6= 0 for

some k ≥ 0. Also, since f <∞, Theorem 4.2 implies that rank(E(Q)) ≤ f + 1. Since rank((E(K)/E(K)tor)
+) =

rank(E(Q)), we have

a+ 1 = rank(V ) ≤ rank(E(Q)) ≤ f + 1 ≤ a+ 1.

We conclude that the above inequalities are equalities, so a = f which proves Part 2, and rank(E(Q)) = f + 1,
which proves Part 3. Also because rank(E(Q)) = f + 1, Theorem 4.2 implies that X(E/Q)(`) is finite, so
since X(ED/Q)) is also finite, Part 4 is true. Considering the definition of the Aν before the statement of
Conjecture 4.9, we see that 1− (−1)ν(−1)ran−1σ = 1 + σ, so ν ≡ ran (mod 2). Since part of Conjecture 4.9
is that rank(V ) ≡ ν (mod 2), and we proved that rank(V ) = rank(E(Q)), we conclude that ran ≡ rank(E(Q))

(mod 2), which is Part 5. By [Kol91a, Thm. 3], for all k ≥ mf the subgroup V fk,`n ⊂ H1(K,E[`∞]) contains

(`mfZ/`nZ)f+1 = δ(`mfE(Q)), so `mfE(Q)⊗ Z` ⊂ V ⊗ Z`. On the other hand, by definition of mf , every
cohomology class τλ,`n is contained in `mf H1(K,E[`n]). Thus δ(V ) ⊂ `mf H1(K,E[`∞]), so V ⊂ `mfE(Q). This
proves Part 6.

Recall from Section 2 that c is the Manin constant of E and the cq are the Tamagawa numbers of E. We
make the following new refinement of Kolyvagin’s Conjecture 4.8.

Conjecture 4.12. We have m` = ord`(c ·
∏
q|N cq).

Theorem 7.5 and Theorem 7.7 below serve as our motivation to make Conjecture 4.12. In particular,
Kolyvagin proved that at primes ` ∈ B(E), Conjecture 4.12 is equivalent to [GZ86, Conj 2.2, pg 311] in the
special case when E has analytic rank 1 over K.

5 Mod p Kolyvagin Points and Kolyvagin Subgroups

As always, we assume E is an elliptic curve over Q, that K is a quadratic imaginary field satisfying the Heegner
hypothesis, and p is a prime that is inert in K. The Heegner hypothesis implies that the primes of bad reduction
for E split in K, so p must be a prime of good reduction. For each such prime, we define a finite-index subgroup
Wp of E(K). We do this by extending Kolyvagin’s construction of points Pλ to obtain a new well-defined
construction of elements of the quotient group

E(Fp)/(p+ 1) = E(Fp)/(p+ 1)E(Fp)

for any inert prime p. Thus this section takes Kolyvagin’s definition of points Pλ one step further to define
elements of E(Fp)/(p+ 1). We first compute the structure of the odd part of the group E(Fp)/(p+ 1) for any
good prime p. We then use properties of splitting of primes in certain ring class fields to define the canonical
reduction Rp,λ ∈ E(Fp)/(p+ 1) of the Kolyvagin points Pλ, and consider the subgroup Xp of E(Fp)/(p+ 1)
generated by the Rp,λ for certain λ. We then define Wp to be the inverse image of Xp and finish with some
results about the structure of Wp.

If A is a finite abelian group, the odd part of A is the subgroup of A of all elements of odd order, and if n
is an integer, the odd part of n is n/2ord2(n).

Lemma 5.1. The odd part of E(Fp)/(p+ 1) is cyclic of order the odd part of gcd(p+ 1, ap).

Proof. Suppose ` is an odd prime divisor of #(E(Fp)/(p+ 1)). If the `-primary subgroup of E(Fp)/(p+ 1)
is not cyclic, then since ` 6= p we have E(Fp)[`] ≈ (Z/`Z)2. The Weil pairing induces an isomorphism of Galois

modules
∧2

E[`] ∼= µ` and E[`] ⊂ E(Fp), so µ` ⊂ F∗p, hence ` | (p− 1). Since ` divides #(E(Fp)/(p+ 1)) and `
is prime, we have ` | (p+ 1), so ` | gcd(p− 1, p+ 1) = 2, a contradiction, since ` is odd.

The group E(Fp) has order p+ 1− ap, and we just proved above that E(Fp)(`) is cyclic for any odd prime
divisor ` of p+ 1. Thus the quotient `-primary group (E(Fp)/(p+ 1))(`) = (E(Fp)(`))/(p+ 1) has order `m,
where

m = ord`(gcd(p+ 1,#E(Fp))) = ord`(gcd(p+ 1, p+ 1− ap)) = ord`(gcd(p+ 1, ap)).

Taking the product over all odd primes `, shows that the odd part of E(Fp)/(p+ 1) has order the odd part of
gcd(p+ 1, ap).
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Remark 5.2. 1. Lemma 5.1 is true even if p is a good prime that is not inert in K (in fact, the lemma and
proof have nothing to do with K).

2. Lemma 5.1 is false if we do not restrict to odd parts. For example, if E is y2 = x3 − x and p = 3, then
E(F3) ≈ (Z/2Z)2, so E(F3)/4 ≈ (Z/2Z)2 is not cyclic.

3. For every prime `, there exists infinitely many primes p such that E(Fp)(`) is not cyclic. Indeed, by the
Chebotarev density theorem there are infinitely many p that split completely in the field Q(E[`]), and for
these p we have (Z/`Z)2 ⊂ E(Fp).

Lemma 5.3. If p is inert in K and does not divide λ, then the prime ideal pOK of K splits completely in Kλ.
In particular, if p ∈ Λ1

`n and λ ∈ Λ`n with p - λ, then pOK splits completely in Kλ.

Proof. (Compare line −3 on page 103 of [Kol91b].) Since p is inert, the ideal pOK is a prime principal ideal
of OK , hence splits completely in the Hilbert class field K1. As explained in [Gro91, pg. 238], class field theory
identifies Gal(Kλ/K1) with C = (OK/λOK)∗/(Z/λZ)∗. The image of p is trivial in C, so the Frobenius element
attached to pOK is trivial, hence pOK splits completely in the ring of integers of Kλ, as claimed.

Define the reduction map E(K)→ E(Fp2) by reducing the Néron model E of E over OK modulo pOK ,
and using the natural maps E(K) ∼= E(OK)→ EFp2 (Fp2) ∼= E(Fp2). Let πp : E(K)→ E(Fp)/(p+ 1) be the

composition of reduction modulo the prime ideal pOK with TrFp2/Fp : E(Fp2)→ E(Fp) followed by quotienting

out by the subgroup (p+ 1)E(Fp). Fix a choice ℘ of prime ideal of Kλ over pOK . Extend πp to a map
π℘ : E(Kλ)→ E(Fp)/(p+ 1) by quotienting out by ℘, as illustrated in the following diagram:

E(Kλ)

mod ℘

**UUUUUUUUUUUUUUUUUUUUU

E(K)

OO

∼= //

πp

%%

E(OK) // E(Fp2)

trace

��
E(Fp)

��
E(Fp)/(p+ 1)

For each ` | (p+ 1), let v` = ord`(gcd(ap, p+ 1)), and define π℘,` : E(Kλ)→ (E(Fp)/(p+ 1))(`) by

π℘,`(S) = π℘

(
p+ 1

`v`
S

)
.

We now study how the homomorphism π℘,` depends on our choice of prime of ℘ over pOK .

Proposition 5.4. The map π℘,` induces a well-defined (independent of choice of ℘) homomorphism

ϑ : (E(Kλ)/`v`E(Kλ))
Gal(Kλ/K) → E(Fp)/(p+ 1).

Proof. Let [S] ∈ (E(Kλ)/`v`E(Kλ))
Gal(Kλ/K)

with S ∈ E(Kλ). If ℘′ is another prime of Kλ over pOK , then
because the Galois group acts transitively on the primes over a given prime, there is σ ∈ Gal(Kλ/K) such that
π℘′,`(S) = π℘,`(σ(S)). Since [S] is Gal(Kλ/K)-equivariant, we have σ(S) = S + `v` ·Q, for some Q ∈ E(Kλ), so

ϑ([σ(S)]) = π℘,`(σ(S))

= π℘

(
p+ 1

`v`
σ(S)

)

= π℘

(
p+ 1

`v`
S

)
+ π℘((p+ 1)Q)

= π℘,`(S) + 0 = ϑ([S]),

where π℘((p+ 1)Q) = (p+ 1)π℘(Q) is 0, since the group E(Fp)/(p+ 1) is killed by p+ 1.
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By Proposition 3.4, [Pλ] is in the domain of the homomorphism ϑ of Proposition 5.4.

Definition 5.5 (Mod p Kolyvagin Point). The mod p Kolyvagin point associated to p ∈ Λ1
`n and λ ∈ Λ`n is

Rp,λ = ϑ([Pλ]) ∈ E(Fp)/(p+ 1),

where ϑ is as in Proposition 5.4.

As above, let v` = ord`(gcd(ap, p+ 1)). For each k ≥ 0, let

Xk,p =

〈
Rp,λ : λ ∈

⋃

`

Λf`
`v`+k

〉
⊂ E(Fp)/(p+ 1) (11)

be the subgroup generated by all mod p Kolyvagin points associated to λ that are a product of f` primes, where
f` is from Equation (9). Note that the subscript of Λ in (11) is `v`+k, and we take the union over all ` thus
obtaining a subgroup Xk,p that need not be `-primary for any `, despite Rp,λ being `-primary. Let

Xp =
⋂

k≥0
Xk,p.

Let Wk,p be the inverse image of Xk,p under the map πp:

Wk,p = π−1p (Xk,p) ⊂ E(K),

and
Wp = π−1p (Xp) ⊂ E(K).

Since E(Fp)/(p+ 1) is finite, Wk,p and Wp have finite index in E(K); also, by Lemma 5.1, the odd part of this
index divides gcd(p+ 1, ap) .

Remark 5.6. Note that ED(Q) is in the kernel of the trace map, hence in the kernel of πp, so ED(Q) ⊂Wp.
Thus it is possible that Wp contains torsion, hence Wp in general need not be a Gross-Zagier subgroup as in
Definition 2.3. In a future paper, we intend to give a more refined definition of a sequence of groups W a

p , for
each a ≥ 0, which better accounts for torsion. We would then search for a Gross-Zagier style formula for each
group W a

p for a ≤ f + 1, in order to more closely relate ran(E/Q) to f + 1.

6 Controlling the Reduction Map

The main result of this section is a proof that under certain hypothesis, if a point Q has infinite order and n is
a positive integer, then there are infinitely many primes p such that the image of Q in E(Fp2)/(p+ 1) has order
divisible by n. We prove this using Galois cohomology and by converting a condition on `-divisibility of points
into a Chebotarev condition. We will use this result later to study the maximum index [E(K) : Wp] that can
occur and prove a generalized Gross-Zagier formula for such Wp.

Let E, K, etc., be as above, and let ` ∈ B(E), where B(E) is the set of primes defined on page 5. Suppose
Q ∈ E(K) has infinite order, and let n be an odd positive integer. Suppose that for each prime ` | n, the set of
cardinalities {# H1(K(E[`j ])/K,E[`j ]) : j ≥ 1} is bounded. This hypothesis is satisfied if ` ∈ B(E), since then
H1(K(E[`j ])/K,E[`j ]) = 0 for all j (see [Gro91, pg. 241] and [GJP+09, Prop. 5.2]).

Proposition 6.1. Let Q and n be as above. Let S be the set of primes p such that p is inert in K, p splits
completely in K(E[n])/K, and the image of Q in E(Fp2)/(p+ 1)E(Fp2) has order divisible by n. Then S has
positive (Dirichlet) density.

Proof. Let m =
∏
`eii with `i the distinct primes that divide n, and ei any positive integers, which we

will fix later in the argument. Fix any i, and let L = K(E[
∏
j 6=i `j ]), which is a Galois extension of K. Define

homomorphisms Ψi, f , g, and h as in the following commutative diagram:

E(K(E[m]))/`eii E(K(E[m])) � � // H1(K(E[m]), E[`eii ])

H1(L(E[`eii ]), E[`eii ])

f

OO

H1(K(E[`eii ]), E[`eii ])

h

OO

E(K)/`eii E(K)

OO

ψi

==

� � // H1(K,E[`eii ])

g

OO
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The horizontal maps above are induced by the short exact sequence coming from multiplication by `eii , and
the vertical maps on the right are the restriction maps. The diagram commutes so the order of the image of Q
in E(K(E[m]))/`eii E(K(E[m])) is the same as the order of Ψi(Q).

By hypothesis and the inflation restriction sequence the cardinality of ker(g) is bounded independently of
i and ei. Also, [L : K] depends only on the set of prime divisors `i of n, not their exponents, so

# ker(h) = # H1(L(E[`eii ])/K(E[`eii ]), E[`eii ]) = # Hom(Gal(L(E[`eii ])/K(E[`eii ])), E[`eii ])

is also bounded independent of ei, because every homomorphism has image in the fixed subset E[`di ], where d
is the exponent of the group Gal(L/K). Finally, the map f is injective, since

ker(f) ∼= H1(K(E[m])/L(E[`eii ]), E[`eii ])

and # Gal(K(E[m])/L(E[`eii ])) is divisible only by the primes `j for j 6= i and these are all coprime to
#E[`eii ] = `2eii . We conclude that there is an integer b such that # ker(Ψi) ≤ `bi , and this bound holds no
matter how we increase the numbers ei and ej (for all j).

The above proof that ker(Ψi) is uniformly bounded is completely general. See Remark 6.3 for a sketch of
an alternative proof of this bound in the special case when ` ∈ B(E) for all ` | n, which is the only case we will
use in this paper.

Because ker(Ψi) is uniformly bounded independent of our choice of ei, for each i, we can choose ei large

enough so that Ψi(Q) has order divisible by `
ord`i (n)

i . Then for each i, let di be maximal such that `dii divides Q
in E(K(E[m])). Note that di < ei for each i, since Ψi(Q) 6= 0 and Ψ(Q) is an element of a group that is killed
by `eii . Since m =

∏
`eii , we have `di+1

i | m, so

Mi = K

(
E[m],

1

`di+1
i

Q

)

does not depend on the choice of `di+1
i th root of Q, is a Galois extension of K(E[m]), and [Mi : K(E[m])] is a

nontrivial power of `i. Thus the Mi for all i are linearly disjoint as extensions of K(E[m]).
Let M be the compositum of the fields Mi defined above. Since the Mi are linearly disjoint nontrivial

extensions of K(E[m]), there exists an automorphism σ ∈ Gal(M/Q) such that σ|K(E([m])) is complex
conjugation, and σ|Mi has order divisible by `i for each i. By the Chebotarev density theorem, there is a positive
density of primes p ∈ Z that are unramified in M and have Frobenius the class of σ. Such primes are inert in
K since complex conjugation acts nontrivially on K, split completely in K(E[m])/K since complex conjugation
has order 2, and each prime over p in K(E[m]) does not split completely in any of the extensions Mi/K(E[m])
since [Frobp]|Mi

= σ|Mi
has order divisible by `i > 2. Note that this is the only place in the argument where we

use that n is odd.
Let p be any prime as in the previous paragraph. We have

E(Fp2)/`eii E(Fp2) ∼= (Z/`eii Z)2

since pOK splits completely in K(E[m]) and `eii | m. Also, the Frobenius condition implies that the primes of
Mi over pOK do not have residue class degree 1, so since Mi is generated by any choice of 1

`di+1Q, the reduction

Q of Q modulo any prime over pOK is not divisible by `di+1
i in E(Fp2). Note that `dii divides Q, because the

prime pOK splits completely in K(E[m])/K and `dii divides Q in K(E[m]), so di is the largest integer such that

`dii divides the image of Q in E(Fp2). We conclude that for each i the image of Q in E(Fp2)/`eii E(Fp2) has order
the same as the order of Ψi(Q).

By hypothesis, ei ≥ ord`i(n) and Ψi(Q) has order divisible by `
ord`i (n)

i for each i, so the image of Q in
E(Fp2)/mE(Fp2) has order divisible by n. For any such p, we also have that the characteristic polynomial of the
class of Frobp in Gal(Q(E[m])/Q) acting on E[m] is x2 − apx+ p (mod m). On the other hand, since [Frobp]
on E[m] is the class of complex conjugation and complex conjugation acts nontrivially (since m is odd) hence
has characteristic polynomial x2 − 1, we have x2 − apx+ p ≡ x2 − 1 (mod m). Thus m | (p+ 1), so the image
of Q in E(Fp2)/(p+ 1)E(Fp2) also has order divisible by n, which completes the proof.

Remark 6.2. Proposition 6.1 is analogous to the statement that if x, n ∈ Z with gcd(n, x) = 1 and Q(ζn, n
√
x)

is an extension of Q(ζn) of degree n, then there exist a positive density of primes p such that the multiplicative
order of x modulo p is divisible by n. The proof of this statement resembles the proof of Proposition 6.1, except
we work with the field Q(ζn, n

√
x). The idea of the proof of Proposition 6.1 is well-known to experts who study

questions such as the Lang-Trotter conjecture about reduction of points on elliptic curves.
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Remark 6.3. If for every prime ` | n we have ` ∈ B(E), we can alternatively use that K(E[`∞1 ]) and K(E[`∞2 ])
are linearly disjoint for distinct odd primes `1 and `2 in B(E) to give a different proof that the maps Ψi have
uniformly bounded kernel in Proposition 6.1. In that case we have that Gal(K(E[n])/K) ≈ GL2(Z/nZ), so

ker
(

H1(K,E[n])→ H1(K(E[n]), E[n])
)
∼= H1(K(E[n])/K,E[n]) = H1(GL2(Z/nZ), (Z/nZ)2) = 0,

where the last group is 0 by a standard group cohomology argument (see, e.g., [Ste02, §5.1]). This implies that
the maps Ψi are all injective. The linear disjointness of K(E[`∞1 ]) and K(E[`∞2 ]) for the distinct odd primes `1
and `2 follows by a Galois theory argument using the structure of GL2(Z/`nZ). We thank R. Greenberg for this
observation.

7 Maximal Index Subgroups Wp

As above, we assume that E is an elliptic curve over Q with positive analytic rank and that K = Q(
√
D)

is a quadratic imaginary field that satisfies the Heegner hypothesis and the minimality hypothesis that
ran(E/Q) > ran(ED/Q) ≤ 1.

Recall that for each inert prime p of K we defined a subgroup Xp ⊂ E(Fp)/(p+ 1) in Equation (11) of
Section 5. This was a group got by reducing Kolyvagin points associated to all primes ` modulo a choice
of prime over p. In this section, for all ` ∈ B(E) we conditionally compute, in terms of m`,f , the `-primary
part Xp(`) of this subgroup Xp ⊂ E(Fp)/(p+ 1). We relate our refinement of Kolyvagin’s conjectures to the

generalized Gross-Zagier formula (5). We also conditionally compute Xp in terms of c ·∏ cq ·
√

#X(E/K) using
Theorem 4.2. We apply our description of Xp to prove that, up to primes not in B(E), the subgroups Wp with
[E(K) : Wp] maximal are all Gross-Zagier subgroups of E(K).

Proposition 7.1. Conjecture 4.9 implies that for every ` ∈ B(E),

Xp(`) =
p+ 1

`v`
· πp(`m`,fE(Q)),

where v` = ord`(p+ 1).

Proof. Let Φ be the composite homomorphism

(E(Kλ)/`v`E(Kλ))
Gal(Kλ/K)

↪→ H1(Kλ, E[`v` ])Gal(Kλ/K) ∼= H1(K,E[`v` ]),

and let δ : E(K)→ H1(K,E[`v` ]). We are assuming Conjecture 4.9, so we may apply Proposition 4.11 Part 6

(taking into account Lemma 4.5), to see that for all k sufficiently large we have δ(`m`,fE(Q)) = V fk,`v` . Thus

δ(`m`,fE(Q)) = 〈Φ([Pλ]) : λ ∈ Λf
`v`+k

〉.

Let i : E(K)→ (E(Kλ)/`v`E(Kλ))
Gal(Kλ/K)

. For any Q ∈ E(K) we have p+1
`v` · πp(Q) = ϑ(i(Q)) where ϑ is as

in Proposition 5.4. Since δ = Φ ◦ i and Φ is injective, the group Xk,p(`) generated by all ϑ([Pλ]) is equal to
ϑ(i(`m`,fE(Q))). Since this is true for all sufficiently large k, the proposition follows for Xp.

Theorem 7.5 below generalizes [Kol91b, Thm. E] to arbitrary rank. To prove it we first prove some lemmas
and make a definition.

Lemma 7.2. Suppose A is a nonzero finitely generated free abelian group and ϕ : A→ Z/dZ is a surjective
homomorphism. For every nonzero integer c we have [A : ϕ−1(ϕ(cA))] = gcd(c, d).

Proof. Let B = ϕ−1(ϕ(cA)). We have ϕ(ker(ϕ)) = 0 ⊂ ϕ(cA), so ker(ϕ) ⊂ B. Since ker(ϕ) ⊂ B, the
isomorphism A/ ker(ϕ) ∼= Z/dZ induces an isomorphism A/B ∼= (Z/dZ)/ϕ(B). But ϕ is surjective, so ϕ(B) =
ϕ(ϕ−1(ϕ(cA))) = ϕ(cA) = cϕ(A) = c(Z/dZ), so A/B ∼= (Z/dZ)/(c(Z/dZ)) ∼= Z/ gcd(d, c)Z.

Recall (see page 5) that B(E) is a set of primes that have certain good properties for E. Below, for any
integer n we either let n′ = `ord`(n) be the `-part of n or the maximal divisor of n divisible only by primes in
B(E), depending on whether we are considering the first or second part of the following lemma.

Lemma 7.3. Assume E(Q) has positive rank and let t be a positive integer.

1. If ` ∈ B(E) is such that Xp(`) = p+1
`v` · πp(tE(Q)) for all inert primes p, then

max{ord`([E(K) : Wp]) : all inert p} = ord`(t).
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2. If for all ` ∈ B(E) we have Xp(`) = p+1
`v` · πp(tE(Q)) for all inert primes p, then

max{[E(K) : Wp]
′ : all inert p} = t′.

Proof. Let p be any inert prime, and recall that p is a prime of good reduction, since all bad primes split
in K. By Lemma 5.1, the odd part of the image of πp : E(K)→ E(Fp)/(p+ 1) is a cyclic group Z/nZ for some
integer n. Since πp(E

D(Q)) = 0 (see Remark 5.6), we have

πp(tE(Q))′ = πp(tE(Q) + tED(Q))′ = πp(tE(K))′,

so by Proposition 7.6, W ′p = π−1p (Xp)
′ = π−1p (πp(tE(K))′). Thus Lemma 7.2 implies that [E(K)′ : W ′p] is

gcd(t, n)′. This proves that set of indexes [E(K)′ : W ′p] all divide t′.
We show the maximum equals t′ by proving that there is a positive density of primes p such that the n

above is divisible by t′. By hypothesis, there is a point P ∈ E(Q) of infinite order. By Proposition 6.1, there
exists a positive density of primes p that are inert in K such that πp(P ) ∈ E(Fp)/(p+ 1) has order divisible by
t′. For such p, the n above is thus divisible by t′, so gcd(t, n)′ = t′, which completes the proof.

Let
w` = sup({ord`([E(K) : Wp]) : all inert p}) ≤ ∞. (12)

Lemma 7.4. Suppose ` ∈ B(E), that Conjecture 4.9 is true for E, and assume that p is an inert prime such
that ord`([E(K) : Wp]) is maximal in the sense that it equals w`. Then m`,f = ord`([E(K) : Wp]).

Proof. We are assuming that Conjecture 4.9 is true, so Proposition 7.1 applies and gives an explicit formula
for Xp(`). Namely, we may take t = m`,f in Lemma 7.3. Also, by Conjecture 4.9 (and Proposition 4.11) we have
E(Q) has rank at least 1. The lemma then follows from Lemma 7.3.

Theorem 7.5. Suppose ` ∈ B(E), that Conjectures 2.2 and 4.9 are true for E, and that p is an inert prime
such that w` = ord`([E(K) : Wp]), where w` is as in (12) above. Then Wp satisfies the generalized Gross-Zagier
formula (5) up to a rational factor that is coprime to ` if and only if Conjecture 4.12 is true for `.

Proof. We are assuming Conjecture 4.9, which implies Conjecture 4.1, so we may apply Theorem 4.2, which
has Conjecture 4.1 as a hypothesis. Let bk be as in Theorem 4.2 for our given prime `. Theorem 4.2 implies that

#X(E/K)(`) = #((Z/bfZ)2 ⊕ (Z/bf+1Z)2 ⊕ (Z/bf+2Z)2 ⊕ · · · )
= (bf · bf+1 · · · )2

= `2(m`,f−m`,f+1+m`,f+1−m`,f+2+m`,f+2−··· ) · · ·
= `2(m`,f−m`),

so m`,f −m` = ord`(
√

#X(E/K)(`)).
We will now show that the generalized Gross-Zagier formula (5) holds up to a rational factor that is coprime

to ` if and only if Conjecture 4.12 that m` = ord`(c
∏
cq) is true for `. We will repeatedly use Lemma 7.4 that

m`,f = ord`([E(K) : Wp]).
First, suppose that the generalized Gross-Zagier formula (5) holds up to a rational factor that is coprime

to `. Proposition 2.4 combined with Conjecture 2.2 (that Xan = #X), implies that this hypothesis means that

ord`([E(K) : Wp]) = ord`

(
c
∏
cq ·

√
#X(E/K)(`)

)
. Thus:

m`,f = ord`([E(K) : Wp])

= ord`

(
c
∏

cq ·
√

#X(E/K)(`)
)

= ord`

(
c
∏

cq

)
+ ord`(

√
#X(E/K)(`))

= ord`

(
c
∏

cq

)
+m`,f −m`,

where in the last equality we use the formula for #X(E/K)(`) that we derived above using Theorem 4.2.
Subtracting m`,f from both sides shows that m` = ord`(c

∏
cq).

Conversely, suppose that m` = ord`(c
∏
cq). From Theorem 4.2 we have

m`,f −m` = ord`(
√

#X(E/K)(`)),

so
ord`([E(K) : Wp]) = m`,f = ord`

(
c
∏

cq

)
+m`,f −m` = ord`

(
c
∏

cq ·
√

#X(E/K)(`)
)
.

Proposition 2.4 then implies that Wp satisfies the generalized Gross-Zagier formula up to a rational factor
coprime to `.
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For any integer n, let n′ denote the maximal divisor of n that is divisible only by primes in B(E), and for
any abelian group A, let A′ = A⊗ Z[1/b], where b is the product of the finitely many primes not in B(E). Let

T = c ·
∏

q|N
cq ·

√
#X(E/K).

Proposition 7.6. Conjectures 4.9 and 4.12 together imply that X ′p = πp(TE(Q))′.

Proof. Using the calculation in the first paragraph of the proof of Theorem 7.5 along with Conjecture 4.12
combined with Theorem 4.2, shows that for every ` ∈ B(E), we have

m`,f = ord`(T ).

Since the integers T/`m`,f and (p+ 1)/`v` , for v` = ord`(p+ 1), both act as automorphisms on any `-primary
group,

πp(TE(Q))(`) =

(
T

`m`,f
· πp(`m`,fE(Q))

)
(`)

= πp(`
m`,fE(Q))(`)

=
p+ 1

`v`
· πp(`m`,fE(Q)) = Xp(`),

where the last equality uses Proposition 7.1 (which assumes that Conjecture 4.9 is true). We conclude that
X ′p = π(TE(Q))′.

Theorem 7.7 is a partial converse to Theorem 7.5.

Theorem 7.7. Assume that E(Q) has positive rank. Then Conjectures 4.9 and 4.12 together imply that the
maximum index [E(K)′ : W ′p] over all inert p is (c ·∏ cq ·

√
#X(E/K))′.

Proof. The conjectures we’re assuming allow us to use Proposition 7.6 and hence take t = T in Lemma 7.3.
This proves the theorem.

Conclusion: By Proposition 2.4, if W ′p has maximal index in E(K)′, then imply that we have an equality

L(r)(E, 1)

r!
=
‖ω‖2

c ·
√
|D|
· Reg(Wp),

up to powers of primes not in B(E). Thus the W ′p of maximal index satisfy this generalized Gross-Zagier formula.

Conjecture 7.8. If W ⊂ E(K) is any Gross-Zagier subgroup of index `w` , then there exists an inert prime p
such that W ′p equals W ′.

8 Existence of Gross-Zagier Subgroups

Let E, K, etc., be as in Section 1.1, and let

t = c ·
∏

q|N
cq ·

√
#X(E/K)an.

In this section we investigate the analogue of the conjectures on pages 311–312 of [GZ86]. In particular, the
existence of any Gross-Zagier subgroup for E(K) combined with the BSD conjecture implies that #E(K)tor | t.
The main theorem of [GZ86] thus led Gross-Zagier to make the following conjecture.

Conjecture 8.1 (Gross-Zagier). If E(K) has rank 1, then the integer t is divisible by #E(Q)tor.

Proposition 8.2. Assume the BSD formula. If there exists any subgroup W of E(K) such that the generalized
Gross-Zagier formula (5) holds for W , then #E(K)tor | t. Note that we do not assume W is torsion free.

Proof. Let W be such a subgroup. Arguing as in the proof of Proposition 2.4, we see that

#E(K)2tor · (Reg(W )/Reg(E/K)) = c2 ·


∏

q|N
cq




2

·Xan = t2.

The quotient Reg(W )/Reg(E/K) is a square integer, so taking square roots of both sides yields the claim.
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Because of Proposition 8.2, we view the divisibility #E(K)tor | t as a sort of “litmus test” for whether
there could be a generalization of the Gross-Zagier formula in general. First, we observe that the most naive
generalization of Conjecture 8.1 to higher rank is false (!), as the following example shows.

Example 8.3. Let E be the curve 65a of rank 1 over Q given by y2 + xy = x3 − x and let D = −56. Then
#Xan(E/K) =

∏
cq = c = 1, so t = 1, but #E(Q)tor = 2. Here ED(Q) has rank 2, so rank(E(K)) = 3, and

the rank hypothesis of Conjecture 8.1 is not satisfied.

Proposition 8.4. Suppose rank(E(Q)) > 0 and that t is a positive integer. Then there exists a Gross-Zagier
subgroup W ⊂ E(K) if and only if #E(K)tor | t.

Proof. Suppose W ⊂ E(K) is a Gross-Zagier subgroup. Then [E(K) : W ] = t. By hypothesis W is torsion
free, so E(K)tor ↪→ E(K)/W , so #E(K)tor | #(E(K)/W ) = t.

Conversely, suppose that #E(K)tor | t, and note that by hypothesis E(Q) has positive rank. The group
E(K)/(ED(Q) + E(K)tor) is thus a finitely generated infinite abelian group, so has subgroups of all index.
In particular, it has a subgroup W ′ such that the quotient by W ′ is cyclic of order t/#E(K)tor. Let W̃ be
the inverse image of W ′ in E(K), so E(K)tor, E

D(Q) ⊂ W̃ , and [E(K) : W̃ ] = t/#E(K)tor. Since W̃ is finitely
generated, there exists a torsion free subgroup W ⊂ W̃ such that W ⊕ E(K)tor = W̃ . Then

[E(K) : W ] = #E(K)tor · [E(K) : W̃ ] = #E(K)tor ·
t

#E(K)tor
= t.

Elsewehere in this paper, for technical reasons in order to apply Kolyvagin’s theorems, we made a minimality
hypothesis on ran(ED/Q), and based on extensive numerical data, we conjecture that this is the right hypothesis
to guarantee the existence of Gross-Zagier subgroups W ⊂ E(K).

Conjecture 8.5. If ran(E/Q) > ran(ED/Q) ≤ 1, then #E(K)tor | t. In particular, there exists a Gross-Zagier
subgroup W ⊂ E(K).

We obtain evidence for Conjecture 8.5 using Sage† [S+09, Creb, PAR], Cremona’s tables [Crea],
Proposition 8.4, and assuming the Birch and Swinnerton-Dyer conjecture. More precisely, we check that
Conjecture 8.5 is “probably true” for every elliptic curve of rank ≥ 2 and conductor ≤ 130, 000 and the first
three D that satisfy the Heegner hypothesis, except possibly for the triples (E,D,#E(K)tor) in Table 1 where
the computation of the conjectural order of #X(E/K) took too long.

Table 1: All triples up to conductor 130,000 where we did not yet verify Conjecture 8.5
(8320e1,−191, 2), (9842d1,−223, 3), (9842d1,−255, 3), (9842d1,−447, 3), (74655j1,−251, 3),

(87680a1,−119, 2), (87680a1,−151, 2), (87680b1,−119, 2), (87680b1,−151, 2), (89465a1,−51, 2),
(89465a1,−59, 2), (89465a1,−71, 2), (95545b1,−191, 2), (95545b1,−219, 2), (104585b1,−139, 2),

(104585b1,−179, 2), (104585b1,−191, 2), (114260a1,−231, 2), (114260a1,−239, 2), (114260a1,−431, 2),
(122486a1,−103, 3), (122486a1,−55, 3), (122486a1,−87, 3), (126672r1,−335, 2), (126672r1,−647, 2),

(126672r1,−719, 2), (129940a1,−111, 2), (129940a1,−71, 2), (129940a1,−79, 2)

In our computations, we considered the first three Heegner D, without making the condition ran(ED/Q) ≤ 1.
The conjecture is false without the hypothesis that ran(ED/Q) ≤ 1, as Example 8.3 above shows. Moreover, we
found two further similar examples in which, however, E has rank 2 and ED has rank 3. First, for the curve
E with Cremona label 20672m1, equation y2 = x3 − 431x− 3444 and D = −127, we have rank(E(Q)) = 2,
rank(ED(Q)) = 3, and #E(K)tor = 2, but t = 1. A second example is E given by 18560c1 and D = −151, in
which again rank(E(Q)) = 2, rank(ED(Q)) = 3, #E(K)tor = 2, but t = 1.

This was a large computation that relies on a range of nontrivial computer code, which we carried out as
follows. First we computed #E(K)tor for each of the 78,420 elliptic curve of conductor ≤130,000 with rank ≥ 2
and the first three Heegner D. We then determined whether #E(K)tor divides c ·∏ cq. Since we are verifying
that something divides c ·∏ cq, there is no loss at all in assuming Manin’s conjecture that c = 1 for the optimal
quotient of X0(N). We then computed the Manin constant c for non-optimal curves by finding a shortest isogeny
path from the optimal curve in the isogeny graph of E (there is unfortunately a small possibility of error in
computation of the isogeny graph, due to numerical precision used in the implementation). We found only 37
remaining curves E of rank ≥ 2 such that #E(K)tor - c ·

∏
cq, and 37 · 3 = 111 corresponding pairs (E,D). It

†Running on hardware purchased using National Science Foundation Grant No. DMS-0821725.
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turns out that all of these curves are optimal hence have c = 1. For each of these pairs (E,D) we attempted
to compute #X(E/K)an using Conjecture 2.2 and some results of [GJP+09], and the computation finished
in all but 29 cases. The main difficulty was computing Reg(E/K) in terms of Reg(E/Q) and Reg(ED/Q) by
saturating the sum of E(Q) and ED(Q) in E(K). Computing ED(Q) was sometimes very difficult, since ED

has huge conductor and rank 1, and this sometimes took as long as a day when it completed. For more details,
the reader is urged to read the source code of the Sage command heegner_sha_an in Sage-3.4.1 and later.
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The Modular Degree, Congruence Primes and Multiplicity One

Amod Agashe Kenneth A. Ribet William A. Stein

Abstract.

The modular degree and congruence number are two fundamental
invariants of an elliptic curve over the rational field. Frey and Müller
have asked whether these invariants coincide. Although this question
has a negative answer, we prove a theorem about the relation between
the two invariants: one divides the other, and the ratio is divisible only
by primes whose squares divide the conductor of the elliptic curve. We
discuss the ratio even in the case where the square of a prime does
divide the conductor, and we study analogues of the two invariants
for modular abelian varieties of arbitrary dimension.

1 Introduction

Let E be an elliptic curve over Q. By [BCDT01], we may view E as an
abelian variety quotient over Q of the modular Jacobian J0(N), where N is
the conductor of E. After possibly replacing E by an isogenous curve, we may
assume that the kernel of the map J0(N)→ E is connected, i.e., that E is an
optimal quotient of J0(N).

Let fE =
∑
anq

n ∈ S2(Γ0(N)) be the newform attached to E. The con-
gruence number rE of E is the largest integer such that there is an element
g =

∑
bnq

n ∈ S2(Γ0(N)) with integer Fourier coefficients bn that is orthogonal
to fE with respect to the Peterson innner product, and congruent to fE mod-
ulo rE (i.e., an ≡ bn (mod rE) for all n). The modular degree mE is the degree
of the composite map X0(N) → J0(N) → E, where we map X0(N) to J0(N)
by sending P ∈ X0(N) to [P ]− [∞] ∈ J0(N).

Section 2 is about relations between rE and mE. For example, mE | rE. In
[FM99, Q. 4.4], Frey and Müller asked whether rE = mE. We give examples
in which rE 6= mE, then conjecture that for any prime p, ordp(rE/mE) ≤
1
2 ordp(N). We prove this conjecture when ordp(N) ≤ 1.

In Section 3, we consider analogues of congruence primes and the modular
degree for optimal quotients that are not necessarily elliptic curves; these are
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quotients of J0(N) and J1(N) of any dimension associated to ideals of the
relevant Hecke algebras. In Section 4 we prove the main theorem of this paper,
and in Section 5 we give some new examples of failure of multiplicity one
motivated by the arguments in Section 4.

Acknowledgment. The authors are grateful to A. Abbes, R. Coleman,
B. Conrad, J. Cremona, H. Lenstra, E. de Shalit, B. Edixhoven, L. Merel,
and R. Taylor for several discussions and advice regarding this paper.

2 Congruence Primes and the Modular Degree

Let N be a positive integer and let X0(N) be the modular curve over Q that
classifies isomorphism classes of elliptic curves with a cyclic subgroup of or-
der N . The Hecke algebra T of level N is the subring of the ring of endo-
morphisms of J0(N) = Jac(X0(N)) generated by the Hecke operators Tn for
all n ≥ 1. Let f be a newform of weight 2 for Γ0(N) with integer Fourier
coefficients, and let If be kernel of the homomorphism T → Z[. . . , an(f), . . .]
that sends Tn to an. Then the quotient E = J0(N)/IfJ0(N) is an elliptic
curve over Q. We call E the optimal quotient associated to f . Composing
the embedding X0(N) ↪→ J0(N) that sends ∞ to 0 with the quotient map
J0(N)→ E, we obtain a surjective morphism of curves φE : X0(N)→ E.

Definition 2.1. The modular degree mE of E is the degree of φE.

Congruence primes have been studied by Doi, Hida, Ribet, Mazur and oth-
ers (see, e.g., [Rib83, §1]), and played an important role in Wiles’s work [Wil95]
on Fermat’s last theorem. Frey and Mai-Murty have observed that an appropri-
ate asymptotic bound on the modular degree is equivalent to the abc-conjecture
(see [Fre97, p.544] and [Mur99, p.180]). Thus, results that relate congruence
primes and the modular degree are of great interest.

Theorem 2.2. Let E be an elliptic curve over Q of conductor N , with modular
degree mE and congruence number rE. Then mE | rE and if ordp(N) ≤ 1 then
ordp(rE) = ordp(mE).

We will prove a generalization of Theorem 2.2 in Section 4 below.

The divisibility mE | rE was first discussed in [Zag85, Th. 3], where it is
attributed to the second author (Ribet); however in [Zag85] the divisibility was
mistakenly written in the opposite direction. For some other expositions of
the proof, see [AU96, Lem 3.2] and [CK04]. We generalize this divisibility in
Proposition 4.5. The second part of Theorem 2.2, i.e., that if ordp(N) ≤ 1
then ordp(rE) = ordp(mE), follows from the more general Theorem 3.7 below.
Note that [AU96, Prop. 3.3–3.4] implies the weaker statement that if p - N
then ordp(rE) = ordp(mE), since [AU96, Prop. 3.3] implies

ordp(rE)− ordp(mE) = ordp(#C)− ordp(cE)− ordp(#D),
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Table 1: Differing Modular Degree and Congruence Number

Curve mE rE
54B1 2 6
64A1 2 4
72A1 4 8
80A1 4 8
88A1 8 16
92B1 6 12
96A1 4 8
96B1 4 8

Curve mE rE
99A1 4 12
108A1 6 18
112A1 8 16
112B1 4 8
112C1 8 16
120A1 8 16
124A1 6 12
126A1 8 24

Curve mE rE
128A1 4 32
128B1 8 32
128C1 4 32
128D1 8 32
135A1 12 36
144A1 4 8
144B1 8 16

and by [AU96, Prop. 3.4] ordp(#C) = 0. (Here cE is the Manin constant of E,
which is an integer by results of Edixhoven and Katz-Mazur; see e.g., [ARS06]
for more details.)

Frey and Müller [FM99, Ques. 4.4] asked whether rE = mE in general. After
implementing an algorithm to compute rE in Magma [BCP97], we quickly found
that the answer is no. The counterexamples at conductor N ≤ 144 are given
in Table 1, where the curve is given using the notation of [Cre97]:

For example, the elliptic curve 54B1, given by the equation y2 + xy + y =
x3 − x2 + x− 1, has rE = 6 and mE = 2. To see explicitly that 3 | rE, observe
that the newform corresponding to E is f = q + q2 + q4 − 3q5 − q7 + · · · and
the newform corresponding to X0(27) if g = q− 2q4 − q7 + · · · , so g(q) + g(q2)
appears to be congruent to f modulo 3. To prove this congruence, we checked
it for 18 Fourier coefficients, where the sufficiency of precision to degree 18 was
determined using [Stu87].

In our computations, there appears to be no absolute bound on the p that
occur. For example, for the curve 242B1 of conductor N = 2 · 112 we have1

mE = 24 6= rE = 24 · 11.
We propose the following replacement for Question 4.4 of [FM99]:

Conjecture 2.3. Let E be an optimal elliptic curve of conductor N and p be
any prime. Then

ordp

(
rE
mE

)
≤ 1

2
ordp(N).

We verified Conjecture 2.3 using Magma for every optimal elliptic curve
quotient of J0(N), with N ≤ 539.

If p ≥ 5 then ordp(N) ≤ 2, so a special case of the conjecture is

ordp

(
rE
mE

)
≤ 1 for any p ≥ 5.

1The curve 242a1 in “modern notation.”
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Remark 2.4. It is often productive to parametrize elliptic curves by X1(N)
instead of X0(N) (see, e.g., [Ste89] and [Vat05]). Suppose E is an optimal
quotient of X1(N), let m′

E be the degree of the modular parametrization, and
let r′E be the Γ1(N)-congruence number, which is defined as above but with
S2(Γ0(N)) replaced by S2(Γ1(N)). For the optimal quotient of X1(N) isoge-
nous to 54B1, we find using Magma that m′

E = 18 and r′E = 6. Thus the
equality m′

E = r′E fails, and the analogous divisibility m′
E | r′E no longer holds.

Also, for a curve of conductor 38 we have m′
E = 18 and r′E = 6, so equality

need not hold even if the level is square free. We hope to investigate this in a
future paper.

3 Modular abelian varieties of arbitrary dimension

For N ≥ 4, let Γ be a fixed choice of either Γ0(N) or Γ1(N), let X be the
modular curve over Q associated to Γ, and let J be the Jacobian of X. Let I
be a saturated ideal of the corresponding Hecke algebra T ⊂ End(J), so T/I is
torsion free. Then A = AI = J/IJ is an optimal quotient of J since IJ is an
abelian subvariety.

Definition 3.1. If f =
∑
an(f)q

n ∈ S2(Γ) and If = ker(T →
Z[. . . , an(f), . . .]), then A = Af = J/IfJ is the newform quotient associated
to f . It is an abelian variety over Q of dimension equal to the degree of the
field Q(. . . , an(f), . . .).

In this section, we generalize the notions of the congruence number and the
modular degree to quotients A = AI , and state a theorem relating the two
numbers, which we prove in Sections 4.1–4.2.

Let φ2 denote the quotient map J → A. By Poincare reducibility over Q
there is a unique abelian subvariety A∨ of J that projects isogenously to the
quotient A (equivalently, which has finite intersection with ker(φ2)), and so
by Hecke equivariance of J → A it follows that A∨ is T-stable. Let φ be the
composite isogeny

φ : A∨ φ1−→ J
φ2−→ A.

Remark 3.2. Note that A∨ is the dual abelian variety of A. More generally,
if C is any abelian variety, let C∨ denote the dual of C. There is a canonical
principal polarization J ∼= J∨, and dualizing φ2, we obtain a map φ∨2 : A∨ →
J∨, which we compose with θ−1 : J∨ ∼= J to obtain a map φ1 : A∨ → J . Note
also that ϕ is a polarization (induced by pullback of the theta divisor).

The exponent of a finite group G is the smallest positive integer n such that
every element of G has order dividing n.

Definition 3.3. The modular exponent of A is the exponent of the kernel of
the isogeny φ, and the modular number of A is the degree of φ.
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We denote the modular exponent of A by ñA and the modular number
by nA. When A is an elliptic curve, the modular exponent is equal to the
modular degree of A, and the modular number is the square of the modular
degree (see, e.g., [AU96, p. 278]).

If R is a subring of C, let S2(R) = S2(Γ;R) denote the subgroup of S2(Γ)
consisting of cups forms whose Fourier expansions at the cusp ∞ have coef-
ficients in R. (Note that Γ is fixed for this whole section.) Let S2(Γ;Z)[I]

⊥

denote the orthogonal complement of S2(Γ;Z)[I] in S2(Γ;Z) with respect to
the Petersson inner product.

The following is well known, but we had difficulty finding a good reference.

Proposition 3.4. The group S2(Γ;Z) is of finite rank as a Z-module.

Proof. Using the standard pairing between T and S2(Γ,Z) (see also [Rib83,
Theorem 2.2]) we see that S2(Γ,Z) ∼= Hom(T,Z). Thus S2(Γ,Z) is finitely
generated over Z if and only if T is finitely generated over Z. But the action
of T on H1(J,Z) is a faithful representation that embeds T into Mat2d(Z) ∼=
Z(2d)2 . But Z is Noetherian, so T is finitely generated over Z.

Definition 3.5. The exponent of the quotient group

S2(Γ;Z)

S2(Γ;Z)[I] + S2(Γ;Z)[I]⊥
(1)

is the congruence exponent r̃A of A and its order is the congruence number rA.

Remark 3.6. Note that S2(Γ,Z)⊗Z R = S2(Γ, R); see, e.g., the discussion in
[DI95, §12]. Thus the analogue of Definition 3.5 with Z replaced by an algebraic
integer ring (or even Z) gives a torsion module whose annihilator ideal meets Z
in the ideal generated by the congruence exponent.

Our definition of rA generalizes the definition in Section 2 when A is an
elliptic curve (see [AU96, p. 276]), and the following generalizes Theorem 2.2:

Theorem 3.7. If f ∈ S2(C) is a newform, then

(a) We have ñAf
| r̃Af

, and

(b) If p2 - N , then ordp(r̃Af
) = ordp(ñAf

).

Remark 3.8. When Af is an elliptic curve, Theorem 3.7 implies that the
modular degree divides the congruence number (since for an elliptic curve the
modular degree and modular exponent are the same), i.e.,

√
nAf

| rAf
. In

general, the divisibility nAf
| r2Af

need not hold. For example, there is a

newform of degree 24 in S2(Γ0(431)) such that

nAf
= (211 · 6947)2 - r2Af

= (210 · 6947)2.

Note that 431 is prime and mod 2 multiplicity one fails for J0(431) (see [Kil02]).
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4 Proof of the Main Theorem

In this section we prove Theorem 3.7. We continue using the notation intro-
duced so far.

4.1 Proof of Theorem 3.7 (a)

We begin with a remark about compatibilities. In general, the polarization
of J induced by the theta divisor need not be Hecke equivariant, because if T
is a Hecke operator on J , then on J∨ it acts as WNTWN , where WN is the
Atkin-Lehner involution (see e.g., [DI95, Rem. 10.2.2]). However, on Jnew the
action of the Hecke operators commutes with that of WN , so if the quotient
map J → A factors through Jnew, then the Hecke action on A∨ induced by the
embedding A∨ → J∨ and the action on A∨ induced by φ1 : A∨ → J are the
same. Hence A∨ is isomorphic to φ1(A

∨) as a T-module.
Recall that f is a newform, If = AnnT(f), and J = J0(N). Let B = IfJ ,

so that A∨ + B = J , and J/B ∼= A. The following lemma is well known, but
we prove it here for the convenience of the reader.

Lemma 4.1. HomQ(A∨, B) = 0.

Proof. Pick a prime `. ThenQ`⊗V`(J)ss as aQ`[GQ]-module is a direct sum of
copies of the representations ρg as g ranges through all normalized eigenforms
of weight 2 and level N with coefficients in Q; by a well-known result of the
second author, these representations are absolutely irreducible. Now since f is
a newform and A∨ → A is an isogeny, Q` ⊗ V`(A∨)ss is a direct sum of copies
of ρσ(f) as σ ranges over all embeddings of Kf into Q. Thus, by the analytic
theory of multiplicity one (see [Li75, Cor. 3, pg. 300]), the Galois modules
V`(A

∨) and V`(B) = V`(J)/V`(A
∨) share no common Jordan-Hölder factors

even when coefficients are extended to Q`, so HomQ(A′, B) = 0.

Let T1 be the image of T in End(A∨), and let T2 be the image of T in
End(B). We have the following commutative diagram with exact rows:

0 // T //

��

T1 ⊕T2
//

��

T1 ⊕T2

T

��

// 0

0 // End(J) // End(A∨)⊕ End(B) // End(A
∨)⊕ End(B)

End(J)
// 0.

(2)
Let

e = (1, 0) ∈ T1 ⊕T2,

and let e1 and e2 denote the images of e in the groups (T1 ⊕ T2)/T and
(End(A∨) ⊕ End(B))/End(J), respectively. It follows from Lemma 4.1 that
the two quotient groups on the right hand side of (2) are finite, so e1 and e2
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have finite order. Note that because e2 is the image of e1, the order of e2 is a
divisor of the order of e1.

The denominator of any ϕ ∈ End(J)⊗Q is the smallest positive integer n
such that nϕ ∈ End(J).

Let πA∨ , πB ∈ End(J)⊗Q be projection onto A∨ and B, respectively. Note
that the denominator of πA∨ equals the denominator of πB, since πA∨+πB = 1J ,
so that πB = 1J − πA∨ .

Lemma 4.2. The element e2 ∈ (End(A∨)⊕End(B))/End(J) defined above has
order ñA.

Proof. Let n be the order of e2, so n is the denominator of πA∨ , which, as
mentioned above, is also the denominator of πB. We want to show that n is
equal to ñA, the exponent of A∨ ∩B.

Let iA∨ and iB be the embeddings of A∨ and B into J , respectively. Then

ϕ = (nπA∨ , nπB) ∈ Hom(J,A∨ ×B)

and ϕ ◦ (iA∨ + iB) = [n]A∨×B . We have an exact sequence

0→ A∨ ∩B x7→(x,−x)−−−−−−→ A∨ ×B iA∨+iB−−−−−→ J → 0.

Let ∆ be the image of A∨ ∩B. Then by exactness,

[n]∆ = (ϕ ◦ (iA∨ + iB))(∆) = ϕ ◦ ((iA∨ + iB)(∆)) = ϕ({0}) = {0},

so n is a multiple of the exponent ñA of A∨ ∩B.
To show the opposite divisibility, consider the commutative diagram

0 // A∨ ∩B
x7→(x,−x) //

[ñA]

��

A∨ ×B

([ñA],0)

��

// J //

ψ

��

0

0 // A∨ ∩B
x7→(x,−x) // A∨ ×B // J // 0,

where the middle vertical map is (a, b) 7→ (ñAa, 0) and the map ψ exists because
[ñA](A

∨ ∩ B) = 0. But ψ = ñAπA∨ in End(J)⊗Q. This shows that ñAπA∨ ∈
End(J), i.e., that ñA is a multiple of the denominator n of πA∨ .

Let Ext1 = Ext1Z denote the first Ext functor in the category of Z-modules.

Lemma 4.3. The group (T1⊕T2)/T is isomorphic to the quotient (1) in Def-
inition 3.5, so rA = #((T1 ⊕T2)/T) and r̃A is the exponent of (T1 ⊕T2)/T.
More precisely, Ext1((T1⊕T2)/T,Z) is isomorphic as a T-module to the quo-
tient (1).
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Proof. Apply the Hom(−,Z) functor to the first row of (2) to obtain a three-
term exact sequence

0→ Hom(T1 ⊕T2,Z)→ Hom(T,Z)→ Ext1((T1 ⊕T2)/T,Z)→ 0. (3)

There is a T-equivariant bilinear pairing T × S2(Z) → Z given by (t, g) 7→
a1(t(g)), which is perfect by [AU96, Lemma 2.1] (see also [Rib83, Theorem 2.2]).
Using this pairing, we transform (3) into an exact sequence

0→ S2(Z)[If ]⊕ S2(Γ;Z)[If ]
⊥ → S2(Z)→ Ext1((T1 ⊕T2)/T,Z)→ 0

of T-modules. Here we use that Hom(T2,Z) is the unique saturated Hecke-
stable complement of S2(Z)[If ] in S2(Z), hence must equal S2(Z)[If ]

⊥. Finally
note that if G is any finite abelian group, then Ext1(G,Z) ≈ G as groups, which
gives the desired result.

Lemma 4.4. The element e1 ∈ (T1 ⊕T2)/T has order r̃A.

Proof. By Lemma 4.3, the lemma is equivalent to the assertion that the order r
of e1 equals the exponent of M = (T1 ⊕T2)/T. Since e1 is an element of M ,
the exponent of M is divisible by r.

To obtain the reverse divisibility, consider any element x of M . Let (a, b) ∈
T1 ⊕ T2 be such that its image in M is x. By definition of e1 and r, we
have (r, 0) ∈ T, and since 1 = (1, 1) ∈ T, we also have (0, r) ∈ T. Thus
(Tr, 0) and (0,Tr) are both subsets of T (i.e., in the image of T under the
map T → T1 ⊕T2), so r(a, b) = (ra, rb) = (ra, 0) + (0, rb) ∈ T. This implies
that the order of x divides r. Since this is true for every x ∈ M , we conclude
that the exponent of M divides r.

Proposition 4.5. If f ∈ S2(C) is a newform, then ñAf
| r̃Af

.

Proof. Since e2 is the image of e1 under the right-most vertical homomorphism
in (2), the order of e2 divides that of e1. Now apply Lemmas 4.2 and 4.4.

This finishes the proof of the first statement in Theorem 3.7.

4.2 Proof of Theorem 3.7 (b)

Let T′ be the saturation of T = Z[. . . , Tn, . . .] in End(J0(N)), i.e., the set of ele-
ments of End(J0(N))⊗Q some positive multiple of which lie in T. The quotient
T′/T is a finitely generated abelian group because both T and End(J0(N)) are
finitely generated over Z. Since T′/T is also a torsion group, it is finite.

In Section 4.2.1, we will give some conditions under which T and T′ agree
locally at maximal ideal of T. In Section 4.2.2, we will explain how the ratio
of the congruence number to the modular degree is closely related to the order
of T′/T, and finally deduce that this ratio is 1 (for quotients associated to
newforms) locally at a prime p such that p2 - N .



The Modular Degree and Congruences 9

4.2.1 Multiplicity One

Fixt an integer N and a prime p | N . Suppose for a moment that N is prime,
so p = N . In [Maz77], Mazur proves that T = T′; he combines this result with
the equality

T⊗Q = End(J0(p))⊗Q,

to deduce that T = End(J0(p)). This result, combined with Ribet’s result
[Rib75] or [Rib81] to the effect that T⊗Q = (EndQJ0(N))⊗Q, shows that T

is the full ring of endomorphisms of J0(N) over Q. When N is no longer
necessarily prime, the method of [Maz77] shows that T and T′ agree locally at
a maximal ideal m of T that satisfies a simple condition involving differentials
form mod `, where ` is the residue characteristic of m.

For the sake of completeness, we state and prove a lemma that can be
easily extracted from [Maz77]. Let m be the largest square dividing N and let
R = Z[ 1m ]. Let X0(N)R denote the minimal regular model of X0(N) over R.
Let Ω = ΩX0(N)/R denote the sheaf of regular differentials on X0(N)R, as
in [Maz78, §2(e)]. If ` is a prime such that `2 - N , then X0(N)F`

denotes the
special fiber of X0(N)R at the prime `.

Lemma 4.6 (Mazur). Let m be a maximal ideal of T of residue characteristic `
such that `2 - N . Suppose that

dimT/m H0(X0(N)F`
,Ω)[m] ≤ 1.

Then T and T′ agree locally at m.

Proof. Let M denote the group H1(X0(N)R,OX0(N)), where OX0(N) is the
structure sheaf of X0(N). As explained in [Maz77, p. 95], we have an
action of EndQJ0(N) on M , and the action of T on M via the inclusion
T ⊆ EndQJ0(N) is faithful, so likewise for the action by T′. Hence we have an
injection φ : T′ ↪→ EndTM . Suppose m is a maximal ideal of T that satisfies
the hypotheses of the lemma. To prove that Tm = T′

m it suffices to prove the
following claim:

Claim: The map φ|T is surjective locally at m.

Proof. By Nakayama’s lemma, to show that M is generated as a single el-
ement over T locally at m, it suffices to check that the dimension of the
T/m -vector space M/mM is at most one. Since `2 - N , M/mM is dual
to H0(X0(N)F`

,Ω)[m] (see, e.g., [Maz78, §2]). Since we are assuming that
dimT/mH

0(X0(N)F`
,Ω)[m] ≤ 1, we have dimT/m(M/mM) ≤ 1, which proves

the claim.
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If m is a maximal ideal of the Hecke algebra T of residue characteristic `,
we say that m satisfies multiplicity one for differentials if

dim(H0(X0(N)F`
,Ω)[m]) ≤ 1.

By Lemma 4.6, multiplicity one for H0(X0(N)F`
,Ω)[m] implies that T and T′

agree at m.
There is quite a bit of literature on the question of multiplicity 1 for

H0(X0(N)F`
,Ω)[m]. The easiest case is that ` is prime to the level N :

Lemma 4.7 (Mazur). If m is a maximal ideal of T of residue characteristic `
such that ` - N , then

dimT/m H0(X0(N)F`
,Ω)[m] ≤ 1.

Proof. Mazur deduces this lemma from injectivity of the q-expansion map. The
reader may find the following alternative approach to part of the argument
easier to follow than the one on p. 95 of [Maz77]. We have an F`-vector space
that embeds in F`[[q]], for example a space V of differentials that is killed by
a maximal ideal m. This space is a T/m-vector space, and we want to see
that its dimension over T/m is at most 1. Mazur invokes tensor products and
eigenvectors; alternatively, we note that V embeds in HomF`

(T/m,F`) via the
standard duality that sends v ∈ V to the linear form whose value on a Hecke
operator T is the qth coefficient of v|T . The group HomF`

(T/m,F`) has the
same size as T/m, which completes the argument because HomF`

(T/m,F`)
has dimension 1 as a T/m-vector space.

In the context of Mazur’s paper, where the level N is prime, we see from
Lemma 4.7 that T and T′ agree away from N . Locally at N , Mazur proved
that T = T′ by an analogue of the arguments that he used away from N ; see
Chapter II of [Maz77] (and especially Prop. 9.4 and 9.5 of that chapter) as well
as [MR91], where these arguments are taken up in a context where the level
is no longer necessarily prime (and where one works locally at a prime whose
square does not divide the level). Thus in the prime level case, T = T′, as we
asserted above.

Now let p be a prime such that p ‖ N , and let M = N/p. The question of
multiplicity 1 at p for H0(X0(pM)Fp ,Ω)[m] is discussed in [MR91], where the
authors establish multiplicity 1 for maximal idealsm | p for which the associated
mod p Galois representation is irreducible and not p-old. (A representation of
level pM is p-old if it arises from S2(Γ0(M)).)

If m is a maximal ideal of T of residue characteristic `, then we say that m is
ordinary if T` 6∈ m (note that T` is often denoted U` if ` | N). For our purposes,
the following lemma is convenient:

Lemma 4.8 (Wiles). If m is an ordinary maximal ideal of T of characteristic p,
then

dimT/m H0(X0(pM)Fp ,Ω)[m] ≤ 1.
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This is essentially Lemma 2.2 in [Wil95, pg. 485]; we make a few comments
about how it applies on our situation:

1. Wiles considers X1(M,p) instead of X0(pM), which means that he is
using Γ1(M)-structure instead of Γ0(M)-structure. This surely has no
relevance to the issue at hand.

2. Wiles assumes (on page 480) that p is an odd prime, but again this
assumption is not relevant to our question.

3. The condition that m is ordinary does not appear explicitly in the state-
ment of Lemma 2.2 in [Wil95]; instead it is a reigning assumption in the
context of his discussion.

4. We see by example that Wiles’s “ordinary” assumption is less stringent
than the assumption in [MR91]; note that [MR91] rule out cases where m
is both old and new at p, whereas Wiles is happy to include such cases.
(On the other hand, Wiles’s assumption is certainly nonempty, since it
rules out maximal ideals m that arise from non-ordinary (old) forms of
levelM . Here is an example with p = 2 andM = 11, so N = 22: There is
a unique newform f =

∑
anq

n of level 11, and T = Z[T2] ⊂ End(J0(22)),
where T 2

2 − a2T2 + 2 = 0. Since a2 = −2, we have T ∼= Z[
√
−1]. We

can choose the square root of −1 to be T2 + 1. Then T2 is a generator of
the unique maximal ideal m of T with residue characteristic 2, and this
maximal ideal is not ordinary.)

We now summarize the conclusions we can make from the lemmas so far:

Proposition 4.9. The modules T and T′ agree locally at each maximal ideal m
that is either prime to N or that satisfies the following supplemental hypothe-
sis: the residue characteristic of m divides N only to the first power and m is
ordinary.

Proof. This follows easily from Lemmas 4.6, 4.7, and 4.8.

In Mazur’s original context, where the level N is prime, we have T 2
N = 1

because there are no forms of level 1. Accordingly, each m dividing N is
ordinary, and we recover Mazur’s equality T = T′ in this special case.

4.2.2 Degrees and Congruences

Let e ∈ T ⊗Q be as in Section 4.1, and let p,N,M be as before Lemma 4.8.
The image of e in J0(pM) is the T-stable abelian subvariety denoted A∨ in
Section 4.1, but since we shall now exclusively work with this subvariety rather
than the corresponding optimal quotient of J0(pM) (which was denoted A
earlier), we will now write A to denote the image of e (without risk of confusion).
We also write B to denote the unique T-stable abelian subvariety of J0(pM)
complementary to A.
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For t ∈ T, let tA be the restriction of t to A, and let tB be the image of t in
End(B). Let TA be the subgroup of End(A) consisting of the various tA, and
define TB similarly. As before, we obtain an injection j : T ↪→ TA ×TB with
finite cokernel. Because j is an injection, we refer to the maps πA : T → TA

and πB : T→ TB , given by t 7→ tA and t 7→ tB , respectively, as “projections”.

Definition 4.10. The congruence ideal associated with the projector e is I =
πA(ker(πB)) ⊂ TA.

Viewing TA as TA × {0}, we may view TA as a subgroup of T ⊗ Q ∼=
(TA × TB) ⊗ Q. Also, we may view T as embedded in TA × TB , via the
map j.

Lemma 4.11. We have I = TA ∩T.

A larger ideal of TA is J = AnnTA
(A ∩ B); it consists of restrictions to A

of Hecke operators that vanish on A ∩B.

Lemma 4.12. We have I ⊂ J .

Proof. The image in TA of an operator that vanishes on B also vanishes on
A ∩B.

Lemma 4.13. We have J = TA ∩ End(J0(pM)) = TA ∩T′.

Proof. This is elementary; it is an analogue of Lemma 4.11.

Proposition 4.14. There is a natural inclusion J/I ↪→ T′/T of T-modules.

Proof. Consider the map T → T ⊗Q given by t 7→ te. This homomorphism
factors through TA and yields an injection ιA : TA ↪→ T⊗Q. Symmetrically,
we also obtain ιB : TB ↪→ T ⊗Q. The map (tA, tB) 7→ ιA(tA) + ιB(tB) is an
injection TA × TB ↪→ T ⊗Q. The composite of this map with the inclusion
j : T ↪→ TA × TB defined above is the natural map T ↪→ T ⊗ Q. We thus
have a sequence of inclusions

T ↪→ TA ×TB ↪→ T⊗Q ⊂ End(J0(pM))⊗Q.

By Lemma 4.11 and Lemma 4.13, we have I = TA∩T and J = TA∩T′. Thus
I = J ∩T, where the intersection is taken inside T′. Thus

J/I = J/(J ∩T) ∼= (J +T)/T ↪→ T′/T.

Corollary 4.15. If m is a maximal ideal not in SuppT(T
′/T), then m is not

in the support of J/I, i.e., if T and T′ agree locally at m, then I and J also
agree locally at m.
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Note that the Hecke algebra T acts on J/I through its quotient TA, since
the action of T on I and on J factors through this quotient.

Now we specialize to the case where A is ordinary at p, in the sense that the
image of Tp in TA, which we denote Tp,A, is invertible modulo every maximal
ideal of TA that divides p. (This case occurs when A is a subvariety of the
p-new subvariety of J0(pM), since the square of Tp,A is the identity.)

If m | p is a maximal ideal of T that arises by pullback from a maximal
ideal of TA, then m is ordinary in the sense used above. When A is ordinary
at p, it follows from Proposition 4.9 and Corollary 4.15 that I = J locally at p.
The reason is simple: regarding I and J as TA-modules, we realize that we
need to test that I = J at maximal ideals of TA that divide p. These ideals
correspond to maximal ideals m | p of T that are automatically ordinary, so
we have I = J locally at m because of Proposition 4.9. By Proposition 4.9, we
have T = T′ locally at primes away from the level pM . Thus we conclude that
I = J locally at all primes ` - pM and also at p, a prime that divides the level
pM exactly once.

Suppose, finally, that A is the abelian variety associated to a newform f of
level pM . The ideal I ⊂ TA measures congruences between f and the space of
forms in S2(Γ0(pM)) that are orthogonal to the space generated by f . Also,
A∩B is the kernel in A of the map “multiplication by the modular element e”.
In this case, the inclusion I ⊂ J corresponds to the divisibility ñA | r̃A, and
we have equality at primes at which I = J locally. We conclude that the
congruence exponent and the modular exponent agree both at p and at primes
not dividing pM , which completes our proof of Theorem 3.7(b).

Remark 4.16. The ring

R = End(J0(pM)) ∩ (TA ×TB)

is often of interest, where the intersection is taken in End(J0(pM)) ⊗Q. We
proved above that there is a natural inclusion J/I ↪→ T′/T. This inclusion
yields an isomorphism J/I

∼−→ R/T. Indeed, if (tA, uB) is an endomorphism of
J0(pM), where t, u ∈ T, then (tA, uB) − u = (tA, 0) is an element of J . The
ideals I and J are equal to the extent that the rings T and R coincide. Even
when T′ is bigger than T, its subring R may be not far from T.

5 Failure of Multiplicity One

In this section, we discuss examples of failure of multiplicity one (in two dif-
ferent but related senses). The notion of multiplicity one, originally due to
Mazur [Maz77], has played an important role in several places (e.g., in Wiles’s
proof of Fermat’s last theorem [Wil95]). This notion is closely related to Goren-
steinness of certain Hecke algebras (e.g., see [Til97]). Kilford [Kil02] found
examples of failure of Gorensteinness (and multiplicity one) at the prime 2 for
certain prime levels. Motivated by the arguments in Section 4, in this section
we give examples of failure of multiplicity one for primes (including odd primes)
whose square divides the level.
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5.1 Multiplicity One for Differentials

In connection with the arguments in Section 4, especially Lemmas 4.6 and
4.8, it is of interest to compute the index [T′ : T] for various N . We
can compute this index in Magma, e.g., the following commands com-
pute the index for N = 54: “J := JZero(54); T := HeckeAlgebra(J);

Index(Saturation(T), T);” We obtain Table 2, where the first column con-
tains N and the second column contains [T′ : T]:

Let m be a maximal ideal of the Hecke algebra T ⊂ End(J0(N)) of residue
characteristic p. Recall that we say that m satisfies multiplicity one for differ-
entials if dim(H0(X0(N)Fp

,Ω)[m]) ≤ 1.
In each case in which [T′ : T] 6= 1, Lemma 4.6 implies that there is some

maximal ideal m of T such that dim(H0(X0(N)Fp
,Ω)[m]) > 1, which is an

example of failure of multiplicity one for differentials.
In Table 2, whenever p | [T′ : T], then p2 | 2N . This is a consequence

of Proposition 4.9, which moreover asserts that when 2 exactly divides N and
2 | [T′ : T] then there is a non-ordinary (old) maximal ideal of characteristic 2
in the support of T′/T.

Moreover, notice that Theorem 3.7(b) (whose proof is in Section 4.2) follows
formally from two key facts: that Af is new and that multiplicity one for
differentials holds for ordinary maximal ideals with residue characteristic p || N
and for all maximal ideals with residue characteristic p - N . The conclusion
of Theorem 3.7(b) does not hold for the counterexamples in Section 2 (e.g.,
for 54B1), which are all new elliptic curves, so multiplicity one for differentials
does not hold for certain maximal ideals that arise from the new quotient of the
Hecke algebra. Note that in all examples we have p | (r/m) with p2 | N , which
raises the question: are there non-ordinary counterexamples with p || N?

5.2 Multiplicity One for Jacobians

We say that a maximal ideal m of T satisfies multiplicity one if J0(N)[m] is
of dimension two over T/m. We sometimes use the phrase “multiplicity one
for J0(N)” in order to distinguish this notion from the notion of multiplicity
one for differentials.

Proposition 5.1. Suppose E is an optimal elliptic curve over Q of conduc-
tor N and p is a prime such that p | rE but p - mE. Let m be the annihilator
in T of E[p]. Then multiplicity one fails for m, i.e., dimT/m J0(N)[m] > 2.

Proof. Using the principal polarization E ∼= E∨ we view E as an abelian subva-
riety of J = J0(N) and consider the complementaryT-stable abelian subvariety
A of E (thus A is the kernel of the modular parametrization map J → E). In
this setup, J = E + A, and the intersection of E and A is E[mE ]. Here we
use that the composite map E ' E∨ → J∨ → J → E is a polarization, and
hence is multiplication by a positive integer mE . Because p - mE , we have
E[p] ∩ A = 0. On the other hand, let m be the annihilator of E[p] inside T.
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Table 2: The Index [T′ : T]

11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1
31 1
32 1
33 1
34 1
35 1
36 1
37 1
38 1
39 1
40 1
41 1
42 1
43 1
44 2
45 1
46 2
47 1
48 1
49 1
50 1

51 1
52 1
53 1
54 3
55 1
56 2
57 1
58 1
59 1
60 2
61 1
62 2
63 1
64 2
65 1
66 1
67 1
68 2
69 1
70 1
71 1
72 2
73 1
74 1
75 1
76 2
77 1
78 2
79 1
80 4
81 1
82 1
83 1
84 2
85 1
86 1
87 1
88 8
89 1
90 1

91 1
92 16
93 1
94 4
95 1
96 8
97 1
98 1
99 9
100 1
101 1
102 1
103 1
104 4
105 1
106 1
107 1
108 54
109 1
110 2
111 1
112 8
113 1
114 1
115 1
116 4
117 1
118 2
119 1
120 32
121 1
122 1
123 1
124 16
125 25
126 18
127 1
128 64
129 1
130 1

131 1
132 8
133 1
134 1
135 27
136 16
137 1
138 4
139 1
140 8
141 1
142 8
143 1
144 32
145 1
146 1
147 7
148 4
149 1
150 5
151 1
152 32
153 9
154 1
155 1
156 32
157 1
158 4
159 1
160 256
161 1
162 81
163 1
164 8
165 1
166 2
167 1
168 128
169 13
170 1

171 9
172 8
173 1
174 4
175 5
176 512
177 1
178 1
179 1
180 72
181 1
182 1
183 1
184 1024
185 1
186 4
187 1
188 256
189 243
190 8
191 1
192 4096
193 1
194 1
195 1
196 14
197 1
198 81
199 1
200 80
201 1
202 1
203 1
204 32
205 1
206 4
207 81
208 256
209 1
210 2
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Then J [m] contains E[p] and also A[m], and because p is a congruence prime,
the submodule A[m] ⊂ J [m] is nonzero. Thus the sum E[p] + A[m] is a direct
sum and is larger than E[p], which is of dimension 2 over T/m = Z/pZ. Hence
the dimension of J [m] over T/m is bigger than 2, as claimed.

Proposition 5.1 implies that any example in which simultaneously p - mE

and ordp(rE) 6= ordp(mE) produces an example in which multiplicity one for
J0(N) fails. For example, for the curve 54B1 and p = 3, we have ord3(rE) = 1
but ord3(mE) = 0, so multiplicity one at 3 fails for J0(54).
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1 Introduction

In order to use mathematical software for exploration, we often push the bound-
aries of available computing resources and continuously try to improve our imple-
mentations and algorithms. Most mathematical algorithms require basic build-
ing blocks, such as multiprecision numbers, fast polynomial arithmetic, exact
or numeric linear algebra, or more advanced algorithms such as Gröbner basis
computation or integer factorization. Though implementing some of these basic
foundations from scratch can be a good exercise, the resulting code may be slow
and buggy. Instead, one can build on existing optimized implementations of these
basic components, either by using a general computer algebra system, such as
Magma, Maple, Mathematica or MATLAB, or by making use of the many high
quality open source libraries that provide the desired functionality. These two
approaches both have significant drawbacks. This paper is about Sage,3 which
provides an alternative approach to this problem.

3 http://www.sagemath.org
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Having to rely on a closed propriety system can be frustrating, since it is
difficult to gain access to the source code of the software, either to correct a bug
or include a simple optimization in an algorithm. Sometimes this is by design:

“Indeed, in almost all practical uses of Mathematica, issues about how Math-
ematica works inside turn out to be largely irrelevant. You might think that
knowing how Mathematica works inside would be necessary [...]” (See [Wol].)

Even if we manage to contact the developers, and they find time to make the
changes we request, it might still take months or years before these changes are
made available in a new release.

Fundamental questions of correctness, reproducibility and scientific value
arise when building a mathematical research program on top of proprietary
software (see, e.g., [SJ07]). There are many published refereed papers containing
results that rely on computations performed in Magma, Maple, or Mathemat-
ica.4 In some cases, a specific version of Magma is the only software that can
carry out the computation. This is not the infrastructure on which we want to
build the future of mathematical research.

In sharp contrast, open source libraries provide a great deal of flexibility, since
anyone can see and modify the source code as they wish. However, functionality
is often segmented into different specialized libraries and advanced algorithms
are hidden behind custom interpreted languages. One often runs into trouble
trying to install dependencies before being able use an open source software
package. Also, converting the output of one package to the input format of
another package can present numerous difficulties and introduce subtle errors.

Sage, which started in 2005 (see [SJ05]), attacks this problem by providing:

1. a self-contained distribution of mathematical software that installs from
source easily, with the only dependency being compiler tools,

2. unified interfaces to other mathematical software to make it easier to use all
these programs together, and

3. a new library that builds on the included software packages and implements
a broad range of mathematical functionality.

The rest of this paper goes into more detail about Sage. In Section 1.1,
we describe the Sage graphical user interface. Section 1.2 is about the Sage
development process, Sage days workshops, mailing lists, and documentation.
The subject of Section 2 is the sophisticated way in which Sage is built out of
a wide range of open source libraries and software. In Section 2.1 we explain
how we use Python and Cython as the glue that binds the compendium of
software included in Sage into a unified whole. We then delve deeper into Python,
Cython and the Sage preparser in Section 2.2, and illustrate some applications
to mathematics in Section 2.3. Sage is actively used for research, and in Section 3
we describe some capabilities of Sage in advanced areas of mathematics.
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Fig. 1. The Sage Notebook

1.1 The Notebook

As illustrated in Figure 1, the graphical user interface for Sage is a web applica-
tion, inspired by Google Documents [Goo], which provides convenient access to
all capabilities of Sage, including 3D graphics. In single user mode, Sage works
like a regular application whose main window happens to be your web browser.
In multiuser mode, this architecture allows users to easily set up servers for ac-
cessing their work over the Internet as well as sharing and collaborating with
colleagues. One can try the Sage notebook by visiting www.sagenb.org, where
there are over 30,000 user accounts and over 2,000 published worksheets.

Users also download Sage to run it directly on their computers. We track all
downloads from www.sagemath.org, though there are several other high-profile
sites that provide mirrors of our binaries. Recently, people download about 6,000
copies of Sage per month directly from the Sage website.

1.2 The Sage Development Process

There are over 200 developers from across the world who have contributed to the
Sage project. People often contribute because they write code using Sage as part
of a research project, and in this process find and fix bugs, speed up parts of Sage,
or want the code portion of their research to be peer reviewed. Each contribution
to Sage is first posted to the Sage Trac server trac.sagemath.org; it is then
peer reviewed, and finally added to Sage after all issues have been sorted out
and all requirements are met. Nothing about this process is anonymous; every
step of the peer review process is recorded indefinitely for all to see.

4 Including by the second author of this paper, e.g., [CES03]!
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The Sage Developer’s Guide begins with an easy-to-follow tutorial that guides
developers through each step involved in contributing code to Sage. Swift feed-
back is available through the sage-devel mailing list, and the #sage-devel IRC
chat room on irc.freenode.net (see www.sagemath.org/development.html).

Much development of Sage has taken place at the Sage Days workshops.
There have been two dozen Sage Days [Sagb] and many more are planned. These
are essential to sustaining the momentum of the Sage project and also help ensure
that developers work together toward a common goal, rather than competing
with each other and fragmenting our limited community resources.

A major goal is ensuring that there will be many Sage Days workshops for
the next couple of years. The topics will depend on funding, but will likely in-
clude numerical computation, large-scale bug fixing, L-functions and modular
forms, function fields, symbolic computation, topology, and combinatorics. The
combination of experienced developers with a group of enthusiastic mathemati-
cians at each of these workshops has rapidly increased the developer community,
and we hope that it will continue to do so.

2 Building the Car. . .

With the motto “building the car instead of reinventing the wheel,” Sage
brings together numerous open source software packages (see Table 1 and [Saga]).

Many applications of Sage require using these libraries together. Sage handles
the conversion of data behind the scenes, automatically using the best tool for
the job, and allows the user to concentrate on the problem at hand.

In the following example, which we explain in detail below, Sage uses the
FLINT library [HH] for univariate polynomials over the ring Z of integers,
whereas Singular [DGPS10] is used for multivariate polynomials. The option
to use the NTL library [Sho] for univariate polynomials is still available, if the
user so chooses.

1 sage: R.<x> = ZZ[]

2 sage: type(R.an_element ())

3 <type ’sage.rings ... Polynomial_integer_dense_flint ’>

4 sage: R.<x,y> = ZZ[]

5 sage: type(R.an_element ())

6 <type ’sage.rings ... MPolynomial_libsingular ’>

7 sage: R = PolynomialRing(ZZ, ’x’, implementation=’NTL’)

8 sage: type(R.an_element ())

9 <type ’sage.rings ... Polynomial_integer_dense_ntl ’>
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Table 1. Packages Included With Every Copy of Sage-4.4.2

atlas gap libgcrypt palp scipy sandbox

blas gd libgpg error pari scons

boehm gc gdmodule libm4ri pexpect setuptools

boost genus2reduction libpng pil singular

cddlib gfan linbox polybori sphinx

cliquer ghmm matplotlib pycrypto sqlalchemy

cvxopt givaro maxima pygments sqlite

cython gnutls mercurial pynac symmetrica

docutils gsl moin python sympow

ecl iconv mpfi python gnutls sympy

eclib iml mpfr r tachyon

ecm ipython mpir ratpoints termcap

f2c jinja mpmath readline twisted

flint jinja2 networkx rubiks weave

flintqs lapack ntl sagenb zlib

fortran lcalc numpy sagetex zn poly

freetype libfplll opencdk scipy zodb3

The first line in the example above constructs the univariate polynomial
ring R = Z[x], and assigns the variable x to be the generator of this ring. Note
that Z is represented by ZZ in Sage. The expression R.<x> = ZZ[] is not valid
Python, but can be used in Sage code as a shorthand as explained in Section 2.2.
The next line asks the ring R for an element, using the an_element function,
then uses the builtin Python function type to query its type. We learn that
it is an instance of the class Polynomial_integer_dense_flint. Similarly line
4 constructs R = Z[x, y] and line 7 defines R = Z[x], but this time using the
PolynomialRing constructor explicitly and specifying that we want the under-
lying implementation to use the NTL library.

Often these interfaces are used under the hood, without the user having to
know anything about the corresponding systems. Nonetheless, there are easy
ways to find out what is used by inspecting the source code, and users are
strongly encouraged to cite components they use in published papers. The fol-
lowing example illustrates another way to get a list of components used when a
specific command is run.

sage: from sage.misc.citation import get_systems

sage: get_systems(’integrate(x^2, x)’)

[’ginac’, ’Maxima ’]

sage: R.<x,y,z> = QQ[]

sage: I = R.ideal(x^2+y^2, z^2+y)

sage: get_systems(’I.primary_decomposition ()’)

[’Singular ’]
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2.1 Interfaces

Sage makes it possible to use a wide range of mathematical software packages
together by providing a unified interface that handles data conversion automat-
ically. The complexity and functionality of these interfaces varies greatly, from
simple text-based interfaces that call external software for an individual com-
putation, to using a library as the basis for an arithmetic type. The interfaces
can also run code from libraries written in the interpreted language of another
program. Table 2 lists the interfaces provided by Sage.

Table 2. Sage Interfaces to the above Mathematical Software

Pexpect axiom, ecm, fricas, frobby, gap, g2red, gfan, gnuplot, gp,
kash, lie, lisp, macaulay2, magma, maple, mathematica,
matlab, maxima, mupad, mwrank, octave, phc, polymake,
povray, qepcad, qsieve, r, rubik, scilab, singular, tachyon

C Library eclib, fplll, gap (in progress), iml, linbox, maxima,
ratpoints, r (via rpy2), singular, symmetrica

C Library arithmetic flint, mpir, ntl, pari, polybori, pynac, singular

The above interfaces are the result of many years writing Python and Cython
[BBS] code to adapt Singular [DGPS10], GAP [L+], Maxima [D+], Pari [PAR],
GiNaC/Pynac [B+], NTL [Sho], FLINT [HH], and many other libraries, so that
they can be used smoothly and efficiently in a unified way from Python [Ros].
Some of these programs were originally designed to be used only through their
own interpreter and made into a library by Sage developers. For example lib-
Singular was created by Martin Albrecht in order to use the fast multivariate
polynomial arithmetic in Singular from Sage. The libSingular interface is now
used by other projects, including Macaulay2 [GS] and GFan [Jen].

There are other approaches to linking mathematical software together. The
recent paper [LHK+] reports on the state of the art using OpenMath. Sage takes
a dramatically different approach to this problem. Instead of using a general
string-based XML protocol to communicate with other mathematical software,
Sage interfaces are tailor made to the specific software and problem at hand.
This results in far more efficient and flexible interfaces. The main disadvantage
compared to OpenMath is that the interfaces all go through Sage.

Having access to many programs which can perform the same computation,
without having to worry about data conversion, also makes it easier to double
check results. For example, below we first use Maxima, an open source symbolic
computation package distributed with Sage, to integrate a function, then perform
the same computation using Maple and Mathematica.

sage: var(’x’)

sage: integrate(sin(x^2), x)

1/8*((I - 1)* sqrt (2)* erf ((1/2*I - 1/2)* sqrt (2)*x) + \
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(I + 1)* sqrt (2)* erf ((1/2*I + 1/2)* sqrt (2)*x))* sqrt(pi)

sage: maple(sin(x^2)). integrate(x)

1/2*2^(1/2)* Pi ^(1/2)* FresnelS (2^(1/2)/ Pi ^(1/2)*x)

sage: mathematica(sin(x^2)). Integrate(x)

Sqrt[Pi/2]* FresnelS[Sqrt [2/Pi]*x]

The most common type of interface, called a pexpect interface, communi-
cates with another command line program by reading and writing strings to a
text console, as if another user was in front of the terminal. Even though these
are relatively simple to develop, the overhead of having to print and parse strings
to represent the data makes this process potentially cumbersome and inefficient.
This is the default method of communication with most high level mathemat-
ics software, including commercial and open source programs, such as Maple,
Mathematica, Magma, KASH or GAP.

Sage provides a framework to represent elements over these interfaces, per-
form arithmetic with them or apply functions to the given object, as well as
using a file to pass the data if the string representation is too big. The following
demonstrates arithmetic with GAP elements.

sage: a = gap(’22’)

sage: a*a

484

It is also possible to use pexpect interfaces over remote consoles. In the
following code, we connect to the localhost as a different user and call Math-
ematica functions. Note that the interface can handle indexing vectors as well.

sage: mma = Mathematica(server="rmma60@localhost")

sage: mma("2+2")

4

sage: t = mma("Cos[x]")

sage: t.Integrate(’x’)

Sin[x]

sage: t = mma(’{0,1,2,3}’)

sage: t[2]

1

Sage also includes specialized libraries that are linked directly from compiled
code written in Cython. These are used to handle specific problems, such as the
characteristic polynomial computation in the example below.

sage: M = Matrix(GF(5), 10, 10)

sage: M.randomize ()

sage: M.charpoly(algorithm=’linbox ’)

x^10 + 4*x^9 + 4*x^7 + 3*x^4 + 3*x^3 + 3*x^2 + 4*x + 3

Many basic arithmetic types also use Cython to directly utilize data struc-
tures from efficient arithmetic libraries, such as MPIR or FLINT. An example
of this can be seen at the beginning of this section, where elements of the ring
Z[x] are represented by the class Polynomial_integer_dense_flint.

The Singular interface is one of the most advanced included in Sage. Singular
has a large library of code written in its own language. Previously the only way to
access these functions, which include algorithms for Gröbner basis and primary
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decomposition, was to call Singular through a pexpect interface, passing data
back and forth using strings. Recently, due to work of Michael Brickenstein and
Martin Albrecht, Sage acquired the ability to call these functions directly.

In the example below, we import the function primdecSY from primdec.lib,
and call it the same way we would call a Python function. The interface handles
the conversion of the data to Singular’s format and back. Since Sage already
uses Singular data structures directly to represent multivariate polynomials and
ideals over multivariate polynomial rings, there are no conversion costs. It is only
a matter of passing the right pointer.

sage: pr = sage.libs.singular.ff.primdec__lib.primdecSY

sage: R.<x,y,z> = QQ[]

sage: p = z^2+1; q = z^3+2

sage: I = R.ideal ([p*q^2,y-z^2])

sage: pr(I)

[[[z^2 - y, y^3 + 4*y*z + 4], \

[z^2 - y, y*z + 2, y^2 + 2*z]], \

[[y + 1, z^2 + 1], [y + 1, z^2 + 1]]]

Efforts are under way to extend these capabilities to other programs, for ex-
ample to GAP which provides Sage’s underlying group theory functionality. Up
to now, GAP was only available through its interpreter, through a pexpect inter-
face that was written by Steve Linton. As the following example demonstrates,
the performance of this interface is far from ideal.5

sage: b = gap(’10’)

sage: b*b

100

sage: timeit(’b*b’)

625 loops , best of 3: 289 microseconds per loop

The code snippet above constructs the element b in GAP using the pexpect

interface, and measures the time it takes to square b. Compare these numbers
to the following example, which uses the library interface to GAP, recently de-
veloped by the second author (but not included in Sage yet).

sage: import sage.libs.gap.gap as g

sage: a = g.libgap(’10’); a

10

sage: type(a)

<type ’sage.libs.gap.gap.GapElement ’>

sage: a*a

100

sage: timeit(’a*a’)

625 loops , best of 3: 229 nanoseconds per loop

The library interface is about 1,000 times faster than the pexpect interface.

5 All timings in this paper were performed on an 2.66GHz Intel Xeon X7460 based
computer.



Sage: Unifying Free Mathematical Software 9

2.2 Python - a mainstream language

In line with the principle of not reinventing the wheel, Sage is built on the main-
stream programming language Python, both as the main development language
and the user language. This frees the Sage developers, who are mainly mathe-
maticians, from the troubles of language design, and gives access to an immense
array of general purpose Python libraries and tools.

Python is an interpreted language with a clear, easy to read and learn syntax.
Since it is dynamically typed, it is ideal for rapid prototyping, providing an
environment to easily test new ideas and algorithms.

A fast interpreter In the following Singular session, we first declare the ring
r = Q[x, y, z] and the polynomial f ∈ r, then measures the time to square f

repeatedly, 10,000 times.

singular: int t = timer; ring r = 0,(x,y,z), dp;

singular: def f = y^2*z^2-x^2*y^3-x*z^3+x^3*y*z;

singular: int j; def g = f;

singular: for (j = 1; j <= 10^5; j++) { g = f*f; }

singular: (timer -t), system("--ticks -per -sec");

990 1000

The elapsed time is 990 milliseconds. Next we use Sage to do the same com-
putation, using the same Singular data structures directly, but without going
through the interpreter.

sage: R.<x,y,z> = QQ[]

sage: f = y^2*z^2 - x^2*y^3 - x*z^3 + x^3*y*z; type(f)

<type ’sage.rings.polynomial ... MPolynomial_libsingular ’>

sage: timeit(’for j in xrange (10^5): g = f*f’)

5 loops , best of 3: 91.8 ms per loop

Sage takes only 91.8 milliseconds for the same operation. This difference is
because the Python interpreter is more efficient at performing for loops.

Cython - compiled extensions Python alone is too slow to implement a
serious mathematical software system. Fortunately, Cython [BBS] makes it easy
to optimize parts of your program or access existing C/C++ libraries. It can
translate Python code with annotations containing static type information to
C/C++ code, which is then compiled as a Python extension module.

Many of the basic arithmetic types in Sage are provided by Cython wrappers
of C libraries, such as FLINT for univariate polynomials over Z, Singular for
multivariate polynomials, and Pynac for symbolic expressions.

The code segment below defines a Python function to add integers from 0 to
N and times the execution of this function with the argument 10^7.

sage: def mysum(N):

....: s = int(0)

....: for k in xrange(1,N): s += k

....: return s

....:
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sage: time mysum (10^7)

CPU times: user 0.52 s, sys: 0.00 s, total: 0.52 s

49999995000000

Here is the same function, but the loop index k is declared to be a C integer
and the accumulator s is a C long long.

sage: cython("""

....: def mysum_cython(N):

....: cdef int k

....: cdef long long s = 0

....: for k in xrange(N): s += k

....: return s

....: """)

sage: time mysum_cython (10^7)

CPU times: user 0.01 s, sys: 0.00 s, total: 0.01 s

49999995000000L

The code is compiled and linked to the interpreter on the fly, and the function
mysum_cython is available immediately. Note that the run time for the Cython
function is 60 times faster than the Python equivalent.

Cython also handles the conversion of Python types to C types automatically.
In the following example, we call the C function sinl using Cython to wrap it
in a Python function named sin_c_wrap.

sage: cython("""

....: cdef extern from "math.h":

....: long double sinl(long double)

....: def sin_c_wrap(a):

....: return sinl(a)

....: """)

sage: sin_c_wrap (3.14)

0.0015926529164868282

sage: sin_c_wrap (1)

0.8414709848078965

sage: sin_c_wrap (1r)

0.8414709848078965

Note that the conversion of Sage types in the first two calls to sin_c_wrap or
the Python type integer in the last call is performed transparently by Cython.

The Preparser While Python has many advantages as a programming and
glue language, it also has some undesirable features. Sage hides these problems
by using a preparser to change the commands passed to Python in an interactive
session (or when running a script with the .sage extension). In order to maintain
compatibility with Python, changes performed by the preparser are kept to a
minimum. Moreover, the Sage library code is not preparsed, and is written in
Cython or Python directly.

Python, like C and many other programming languages, performs integer
floor division. This means typing 1/2 results in 0, not the rational number 1/2.
Sage wraps all numeric literals entered in the command line or the notebook
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with its own type declarations, which behave as expected with respect to arith-
metic and have the advantage that they are backed by efficient multiprecision
arithmetic libraries such as MPIR [H+] and MPFR [Z+], which are thousands
of times faster than Python for large integer arithmetic.

To call the preparser directly on a given string, use the preparse function.

sage: preparse("1/2")

’Integer (1)/ Integer (2)’

sage: preparse("1.5")

"RealNumber (’1.5’)"

Adding a trailing r after a number indicates that the preparser should leave
that as the “raw” literal. The following illustrates division with Python integers.

sage: preparse("1r/2r")

’1/2’

sage: 1r/2r

0

Here is the result of performing the same division in Sage.

sage: 1/2

1/2

sage: type (1/2)

<type ’sage.rings.rational.Rational ’>

sage: (1/2). parent ()

Rational Field

The preparser also changes the ^ sign to the exponentiation operator **

and provides a shorthand to create new mathematical domains and name their
generator in one command.

sage: preparse("2^3")

’Integer (2)** Integer (3)’

sage: preparse("R.<x,y> = ZZ[]")

"R = ZZ[’x, y ’]; (x, y,) = R._first_ngens (2)"

2.3 Algebraic, Symbolic and Numerical Tools

Sage combines algebraic, symbolic and numerical computation tools under
one roof, enabling users to choose the tool that best suits the problem. This
combination also makes Sage more accessible to a wide audience—scientists,
engineers, pure mathematicians and mathematics teachers can all use the same
platform for scientific computation.

While not concentrating on only one of these domains might seem to divide
development resources unnecessarily, it actually results in a better overall expe-
rience for everyone, since users do not have to come up with makeshift solutions
to compensate for the lack of functionality from a different field. Moreover, be-
cause Sage is a distributed mostly-volunteer open source project, widening our
focus results in substantially more developer resources.
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Algebraic Tools: The Coercion System An algebraic framework, similar to
that of Magma or Axiom, provides access to efficient data structures and spe-
cialized algorithms associated to particular mathematical domains. The Python
language allows classes to define how arithmetic operations like + and * will be
handled, in a similar way to how C++ allows overloading of operators. How-
ever, the built-in support for overloading in Python is too simple to support
operations with a range of objects in a mathematical type hierarchy.

Sage abstracts the process of deciding what an arithmetic operation means, or
equivalently, in which domain the operation should be performed, in a framework
called the coercion system, which was developed and implemented by Robert
Bradshaw, David Roe, and many others. Implementations of new mathematical
objects only need to define which other domains have a natural embedding to
their domain. When performing arithmetic with objects, the coercion system
will find a common domain where both arguments can be canonically mapped,
perform the necessary type conversions automatically, thus allowing the imple-
mentation to only handle the case where both objects have the same parent.

In the following example, the variable t is an element of Z whereas u is in
Q. In order to perform the addition, the coercion system first deduces that the
result should be in Q from the fact that t can be converted to the domain of u,
namely Q, but canonical conversion in the other direction is not possible. Then
the addition is performed with both operands having the same domain Q.

sage: t = 1

sage: t.parent ()

Integer Ring

sage: u = 1/2

sage: u.parent ()

Rational Field

sage: v = t + u; v

3/2

sage: v.parent ()

Rational Field

Similarly, in the following example, the common domain Q[x] is found for
arguments from Z[x] and Q. Note that in this case, the result is not in the
domain of either of the operands.

sage: R.<x> = ZZ[]

sage: r = x + 1/2

sage: r.parent ()

Univariate Polynomial Ring in x over Rational Field

sage: 5*r

5*x + 5/2

Algebraic Tools: The Category Framework Another abstraction to make
implementing mathematical structures easier is the category framework, whose
development was spearheaded by Nicolas Thiéry and Florent Hivert. Similar
in spirit to the mathematical programming facilities developed in Axiom and
encapsulated in Aldor, the category framework uses Python’s dynamic class
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creation capabilities to combine functions relevant for a mathematical object,
inherited through a mathematical hierarchy, into a class at run time.

This process greatly simplifies the troubles of having to combine object-
oriented programming concepts with mathematical structural concerns, while
keeping efficiency in mind. Efficient implementations can keep the inheritance
hierarchy imposed by the data structures, while generic methods to compute
basic properties are implemented in the category and automatically attached to
the element classes when they are needed.

Symbolic Tools The symbolic subsystem of Sage provides an environment
similar to Maple or Mathematica, where the input is treated only as an expression
without any concern about the underlying mathematical structure.

Sage uses Pynac [ES], a hybrid C++ and Cython library built on top of
GiNaC [B+], to work with symbolic expressions. High level symbolic calculus
problems including symbolic integration, solution of differential equations and
Laplace transforms are solved using Maxima behind the scenes.

Here is an example of how to use the symbolic computation facilities in Sage.
Note that in contrast to other symbolic software such as Maple, variables must
be declared before they are used.

sage: x,y,z = var(’x,y,z’)

sage: sin(x).diff(x)

cos(x)

sage: psi(x). series(x,4)

(-1)*x^(-1) + (-euler_gamma) + (1/6* pi^2)*x + \

(-zeta (3))*x^2 + (1/90* pi^4)*x^3 + Order(x^4)

sage: w = SR.wild() # wildcard for symbolic substitutions

sage: ((x^2+y^2+z^2)* zeta(x)). subs({w^2:5})

15* zeta(x)

Numerical Tools In addition to code for symbolic computation, the standard
numerical Python packages NumPy, SciPy, and Matplotlib are included in Sage,
along with the numerical libraries cvxopt, GSL, Mpmath, and R.

For numerical applications, Robert Bradshaw and Carl Witty developed a
compiler for Sage that converts symbolic expressions into an internal format
suitable for blazingly fast floating point evaluation.

sage: f(x,y) = sqrt(x^2 + y^2)

sage: a = float (2)

sage: timeit(’float(f(a,a))’)

625 loops , best of 3: 216 microseconds per loop

sage: g = fast_float(f)

sage: timeit(’float(g(a,a))’)

625 loops , best of 3: 0.406 microseconds per loop

The fast_float feature is automatically used by the minimize command.

sage: minimize(f, (a,a))

( -5.65756135618e-05, -5.65756135618e-05)
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Performance is typically within a factor of two from what one gets using a direct
implementation in C or Fortran.

3 Afterword

In this article, we have showed that Sage is a powerful platform for developing
sophisticated mathematical software. Sage is actively used in research mathe-
matics, and people use Sage to develop state-of-the-art algorithms. Sage is par-
ticularly strong in number theory, algebraic combinatorics, and graph theory.
For further examples, see the 53 published articles, 11 Ph.D. theses, 10 books,
and 30 preprints at www.sagemath.org/library-publications.html.

For example, Sage has extensive functionality for computations related to
the Birch and Swinnerton-Dyer conjecture. In addition to Mordell-Weil group
computations using [Cre] and point counting over large finite fields using the
SEA package in [PAR], there is much novel elliptic curve code written directly
for Sage. This includes the fastest known algorithm for computation of p-adic
heights [Har07,MST06], and code for computing p-adic L-series of elliptic curves
at ordinary, supersingular, and split multiplicative primes. Sage combines these
capabilities to compute explicitly bounds on Shafarevich-Tate groups of elliptic
curves [SW10]. Sage also has code for computation with modular forms, modular
abelian varieties, and ideal class groups in quaternion algebras.

The MuPAD-combinat project, which was started by Florent Hivert and
Nicolas M. Thiéry in 2000, built the world’s preeminent system for algebraic
combinatorics on top of MuPAD (see [Des06] and [HT05]). Page 54 of [HT05]:
“They [MuPAD] also have promised to release the code source of the library
under a well known open-source license, some day.” In 2008, MuPAD was in-
stead purchased by MathWorks (makers of MATLAB), so MuPAD is no longer
available as a separate product, and will probably never be open source. Instead
it now suddenly costs $3000 (commercial) or $700 (academic).

As a result, the MuPAD-combinat group has spent several years reimplement-
ing everything in Sage (see [T+] for the current status). The MuPAD-combinat
group was not taken by surprise by the failure of MuPAD, but instead were
concerned from the beginning by the inherent risk in building their research
program on top of MuPAD. In fact, they decided to switch to Sage two months
before the bad news hit, and have made tremendous progress porting:

“It has been such a relief during the last two years not to have this
Damocles sword on our head!”

– Nicolas Thiéry
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Abstract

Let E be an elliptic curve over Q and let K be a quadratic imaginary field
that satisfies the Heegner hypothesis. We study the arithmetic of E over
ring class extensions of K, with particular focus on the case when E has
analytic rank at least 2 over Q. We also point out an issue in the literature
regarding generalizing the Gross-Zagier formula, and offer a conjecturally
correct formula.
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1. Introduction

Let E be an elliptic curve over Q. By [Wil95, BCDT01], L(E, s) extends
to an entire function on C, so ran(E/Q) = ords=1 L(E, s) is defined. Let
ralg(E/Q) = rank(E(Q)).

Conjecture 1 (Birch and Swinnerton-Dyer (see [Wil00])). We have

ran(E/Q) = ralg(E/Q).

Let K be a quadratic imaginary field such that all primes dividing the
conductor N of E split in K, and let u = #O×K/2, which is 1 unless K =
Q(
√
−1) or Q(

√
−3). For each squarefree product c of primes that are inert
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in K, let Kc denote the ring class field of conductor c, which is an abelian
extension of K ramified exactly at primes dividing c. Moroever, K1 is the
Hilbert class field of K, and (see [Gro91, §3])

Gal(Kc/K1) ∼= (OK/cOK)×/(Z/cZ)×.

Heegner points are certain points in E(Kc) that are constructed using com-
plex multiplication and a fixed choice of modular parametrization φE : X0(N)→
E of minimal degree. In this paper, we study the subgroup of E(Kc) gener-
ated by Galois conjugates of Heegner points, and relate it to #X(E/Kc).

Our motivation for this paper is that the subgroup W of any Mordell-
Weil group generated by Heegner points typically fits into an analogue of the
BSD conjecture, but with the “difficult” factors such as the Shafarevich-Tate
group and Tamagawa numbers removed (see [Ste10b]). Thus according to
the BSD formula (see Conjecture 12 below), we expect that the index of W
in its saturation (or the closely related index of E(K) +W in E(Kc)) in the
Mordell-Weil group is related to the order of X and Tamagawa numbers.
In Theorem 13 below, which is conditional on the BSD formula (see Con-
jecture 12 below), we compute this index in terms of other invariants of E.
Intriguingly, in order for our result to satisfy certain consistency checks, we
discover that the previously published explicit generalizations of the Gross-
Zagier formula to ring class fields appear to be wrong, e.g., they do not
properly take into account either the conductor of the ring class character or
the degree of the ring class field.

Our hypothesis that every prime dividing N splits in K implies that there
is a factorization of the ideal NOK as NN̄ with OK/N ∼= Z/NZ. Fix an
embedding K ↪→ C and view OK as a lattice in C, so C/OK is a CM elliptic
curve, and N−1/OK defines a cyclic subgroup of order N . Let X0(N) be the
standard modular curve whose affine points over C parameterize isomorphism
classes of pairs (F,C), where F is an elliptic curve over C and C is a cyclic
subgroup of F of order N . Let x1 be the point in X0(N)(K1) defined by the
isomorphism class of (C/OK ,N−1/OK). Using the modular parameterization
φE : X0(N) → E, we obtain a point y1 = φE(x1) ∈ E(K1). Let yK =
TrK1/K(y1) be the trace of y1. After fixing our choice of φE, the point yK is
well defined up to sign, since making a different choice of N replaces yK by
its image under an Atkin-Lehner involution, as explained in [Wat06, §2] or
[Coh07, Thm. 8.7.7], and Atkin-Lehner acts as ±1 on E.

In addition to their central importance to explicit computation of rational
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points on elliptic curves, Heegner points play an essential role in results
toward Conjecture 1 (see, e.g., [Gro91]):

Theorem 2 (Gross-Zagier, Kolyvagin, et al.). Let E/Q be an elliptic curve
with ran(E/Q) ≤ 1. Then ran(E/Q) = ralg(E/Q) and X(E/Q) is finite.

The proof that X(E/Q) is finite also yields an explicit computable up-
per bound on the p-part of #X(E/Q) (see [GJP+09, Thm. 3.4]) at primes
p where ρE,p : GQ → Aut(E[p]) has sufficiently large image (see [Cha05,
GJP+09, Jet08, SW11]). The bound is in terms of [E(K) : ZyK ], for any
choice of K. This bound plays an essential role in verifying the full BSD for-
mula (Conjecture 12) for specific elliptic curves, as in [GJP+09, Mil10, MS10].

If M is any number field, let ĥM denote the Néron-Tate canonical height
on E(M) over M . If S is an extension of M and P ∈ E(M), then ĥS(P ) =
[S : M ] · ĥM(P ) (see [Sil92, Prop. VIII.5.4]). Following [GZ86, §I.6 and §V.2],
we have

‖ωE‖2 =
8π2 · (f, f) · c2

E

deg(φE)
, (1)

where ωE is a minimal differential on E, cE is the Manin constant, deg(φE)
is the modular degree, f is the newform corresponding to E, and (f, f) is
the Petersson inner product of f with itself (see also [GJP+09, §3]).

Remark 3. We assume that cE = 1 in the rest of this paper. As
explained in [ARS06] this should be a harmless assumption, and conjecturally
amounts to working with the optimal elliptic curve isogenous to E.

The following theorem is in [GZ86, §V.2, pg. 311]:

Theorem 4 (Gross-Zagier). We have

L′(E/K, 1) =
‖ωE‖2

u2 ·
√
|DK |

· ĥK(yK).

Let E be an elliptic curve over Q and assume that ran(E/K) = 1. The
subgroup of E(K) generated by the Heegner point plays an essential role in
the proof of Theorem 2. One uses the nontorsion point yK = TrK1/K(y1) to
bound the rank of E(K) from below. There are also higher Heegner points
yc = φE(xc) (see Section 2) that are used to construct elements of various
Selmer groups associated to E, which one then uses to bound the rank of
E(K) from above.
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Assume L′(E/K, 1) 6= 0. Then, as explained in [Ste10b, §2], the Gross-
Zagier formula and the BSD formula for L′(E/K, 1) together imply that

[E(K) : ZyK ]2 = #X(E/K) ·
∏

cv,K ,

where the cv,K are the Tamagawa numbers of E/K. Note that since each
prime divisor p | N splits in K, the product of the Tamagawa numbers
of E/K is the square of

∏
p|N cp, where the cp are the Tamagawa numbers

of E/Q. See the proof of Proposition 14 for related remarks, and [Ste10b,
Prop. 2.4] for a discussion of what happens when E has rank ≥ 2.

In Section 2, we recall the definition of Heegner points over ring class
fields, set up some notation involving characters and corresponding idem-
potent projectors, and discuss generalization of the Gross-Zagier formula to
higher Heegner points. In Section 3, we introduce the subgroup W of E(Kc)
generated by Galois conjugates of Heegner points and describe a theorem of
Bertolini-Darmon that allows us to deduce conditions under which W+E(K)
has finite index in E(Kc). In Section 4, we use a generalization of the Gross-
Zagier formula to derive a formula for Reg(W ), then use the BSD formula
to compute the index of W +E(K) in E(Kc). We also compute the index of
W in its saturation. Section 5 gives an example that illustrates the results of
Section 4. Finally, Section 6 suggests some avenues for future investigation.

2. Higher Heegner Points

Fix a positive squarefree integer c whose prime divisors are inert in K
and coprime to N . Let Oc = Z + cOK and Nc = N ∩ Oc. Then the pair
(C/Oc,N−1

c /Oc) defines a CM elliptic curve equipped with a cyclic subgroup
of order N , and the isomorphism class of this pair defines a point xc ∈
X0(N)(Kc). We use the modular parameterization φE to map xc to a point
yc = φE(xc) ∈ E(Kc).

Let G = Gal(Kc/K) and let

hc = [Kc : K] = # Cl(Oc) = #G

be the class number of the order Oc. For any character χ : G → C×, let eχ
be the idempotent

eχ =
1

hc

∑

σ∈G
χ−1(σ)σ ∈ C[G],
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which projects to the χ-isotypical component of any module. Note that if
σ ∈ G, then σeχ = χ(σ)eχ; also, 1 =

∑
χ:G→C× eχ.

Following [Gro84, (10.1)], we extend the Néron-Tate height pairing 〈 , 〉Kc

on E(Kc) defined by hKc to a Hermitian inner product on the complex vector
space V = E(Kc)⊗Z C by letting

〈αP, βQ〉 = αβ〈P, Q〉Kc (2)

and extending linearly. We also view V as a C[G]-module by making σ ∈ G
act by σ(P ⊗α) = σ(P )⊗α. Since E is defined over Q, the height pairing on
V is Gal(Kc/Q)-equivariant (see [Sil92, Lem. VIII.5.10]), in the sense that
for any σ ∈ Gal(Kc/Q) and P,Q ∈ E(Kc), we have 〈σ(P ), σ(Q)〉 = 〈P,Q〉.

Lemma 5. The χ eigenspaces of V are orthogonal with respect to the height
pairing.

Proof. This is standard, but for the convenience of the reader we give a proof.
If χ, χ′ are two characters of G, then for any P,Q ∈ E(Kc) and σ ∈ G, we
have

〈eχP, eχ′Q〉 = 〈σ(eχP ), σ(eχ′Q)〉
= 〈χ(σ)eχP, χ

′(σ)eχ′Q〉
= χ(σ)χ′(σ)−1〈eχP, eχ′Q〉.

Thus if 〈eχP, eχ′Q〉 6= 0 for some P,Q, then χ(σ)χ′(σ)−1 = 1 for all σ, hence
χ = χ′.

We next explain how the heights ĥKc(eχyc) are related to the special
values of certain L-functions. Let f =

∑
anq

n ∈ S2(Γ0(N)) be the newform
corresponding to E, let χ be a character of G, and let L(f, χ, s) be the
Rankin-Selberg L-series L(f⊗gχ, s), as described in [Gro84, §III]. According
to [Gro84, Prop. 21.2], the sign in the functional equation for L(f, χ, s) is −1,
so L(f, χ, s) vanishes to odd order at s = 1. In [Zha01a, Thm. 1.2.1], Zhang
proves a generalization of the Gross-Zagier formula (Theorem 4 above) that
relates the height of eχyc to L′(f, χ, 1). Unfortunately, the literature on this
formula is inconsistent. For nontrival χ, [JLS09, §A.2] asserts that Zhang’s
theorem implies that

L′(f, χ, 1) =
4(f, f)

u2
√
|DK |

· ĥKc(eχyc). (3)
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The earlier paper [Hay95, Thm. 2] conjectures that the formula is

L′(f, χ, 1) =
8π2(f, f)

u2
√
|DK |

· ĥKc(eχyc). (4)

However, somewhat bizarrely, immediately after stating the above, [Hay95]
then states that the formula is instead

L′(f, χ, 1) =
hc · 8π2(f, f)

u2
√
|DK |

· ĥKc(eχyc). (5)

which is closer to what we expect (see Conjecture 6).
Consistency checks with the BSD formula (see Proposition 14 and the

discussion on page 14 right after the proof of Theorem 13) very strongly
suggest that Equations (3), (4) and (5) are all incorrect. Zhang remarks at
the end of Section 1 of [Zha04], “I would like to thank N. Vatsal and H. Xue
for pointing out many inaccuracies in our previous paper [Zha01a],” and in
an email to the authors: “You are right that my formula cited in your paper
is not accurate. A correct version is in my paper [Zha04].”

Instead, we propose the following closely related formula, which also fea-
tures the conductor of the character χ : Gal(Kc/K) → C×, which is the
smallest integer divisor c′ | c such that χ factors through the natural quo-
tient map Gal(Kc/K)→ Gal(Kc′/K).

Conjecture 6. If χ is a nontrivial character of G, then

L′(f, χ, 1) =
hc · 8π2(f, f)

cond(χ) · u2 ·
√
|DK |

· ĥKc(eχyc).

Remark 7. Zhang has explained to us that one can deduce the above con-
jecture from his [Zha04, Thm 6.1]. Zhang and his students intend to give the
details in a future paper.

3. The Heegner Point Subgroup

In this section we state a theorem of Bertolini-Darmon, and use it to
understand when W +E(K) generates a finite index subgroup of E(Kc). We
also give equivalent conditions under which W and E(K) are orthogonal.

Let E and K be as above. We continue to fix an integer c whose prime
divisors are inert in K and coprime to N , and let ac be the cth Fourier
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coefficient of the newform attached to the elliptic curve E. Consider the
subgroup W = Z[G]yc of E(Kc) spanned by the G-conjugates of yc.

Recall from Section 2 the vector space V = E(Kc)⊗ZC, which is a finite-
dimensional C[G]-module equipped with a G-invariant bilinear Hermitian
height pairing (2). For any character χ of G, let V χ = eχV be the subspace
of V on which G acts via χ. Because 1 =

∑
χ eχ, we have

V =
⊕

χ:G→C×
V χ,

and Lemma 5 asserts that the V χ are mutually orthogonal. Let yc,χ =
eχ(yc) ∈ V χ.

Theorem 8 (Bertolini-Darmon [BD90]). If yc,χ 6= 0 then V χ = Cyc,χ.

Remark 9. The converse of Theorem 8 is the assertion that if yc,χ = 0 then
V χ 6= Cyc,χ = 0. As explained in [BD90], this is consistent with a natural
refinement of the BSD rank conjecture (Conjecture 1), which asserts that V χ

has odd rank (see also [YZZ10, Conj. 1.4.1]). It is a difficult open problem
to come up with any way to construct points in V χ when Cyc,χ = 0.

Proposition 10. If for all nontrivial characters χ of G we have L′(f, χ, 1) 6=
0, then the index [E(Kc) : W + E(K)] is finite.

Proof. By tensoring with C, we see that the claim is equivalent to showing
that the C span of W +E(K) is V . Let χ1 denote the trivial character. Then

V =
⊕

χ:G→C×
V χ = V χ1 ⊕

⊕

χ 6=χ1

V χ.

We have V χ1 = E(K)⊗C. Theorem 8 and our hypothesis that L′(f, χ, 1) 6= 0
for all nontrivial χ imply that W ⊗ C = ⊕χ 6=χ1V

χ,

As explained in [Gro84, §6] and [Gro91, Prop. 3.7], we have TrKc/K(yc) =
acyK , which motivates the appearance of acyK in the following proposition.

Proposition 11. The following are equivalent:

1. The two subgroups W and E(K) of E(Kc) are mutually orthogonal.

2. The point acyK is torsion.

3. ac = 0 or ran(E/K) > 1.
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Proof. To prove that 1 implies 2, suppose that W is orthogonal to E(K).
The height pairing on E(Kc) is 0 only on torsion points, so W ∩ E(K) is a
torsion group. But acyK = TrKc/K(yc) ∈ W ∩ E(K), so acyK is torsion, as
claimed.

To prove that 2 implies 1, assume that acyK is torsion. Choose P ∈ E(K)
and Q ∈ W . For any σ ∈ G, we have

TrKc/K(σ(yc)) = σ(TrKc/K(yc)) = σ(acyK) = acyK ∈ E(K)tor. (6)

Since Q is a linear combination of σ(yc) for various σ, Equation (6) implies
that TrKc/K(Q) is torsion. The height pairing is Galois equivariant, so for all
σ ∈ G, we have 〈P,Q〉 = 〈σP, σQ〉 = 〈P, σQ〉. Thus

〈P,Q〉 =
1

hc

∑

σ∈G
〈P, σQ〉 =

1

hc
〈P,TrKc/K Q〉 = 0.

Finally we observe that 2 and 3 are equivalent. If ac = 0 then acyK = 0.
If ran(E/K) > 1, then Theorem 4 implies that yK is torsion. Conversely,
suppose acyK is torsion. If ac 6= 0, then yK is also torsion, so Theorem 4
implies that ran(E/K) > 1.

4. Regulators and Indexes

In this section we study the index [E(Kc) : W +E(K)], and under certain
hypotheses, conjecturally relate it to various arithmetic invariants of E. In
particular, we prove Theorem 13, which is a conjectural formula for the
index [E(Kc)/tor : (E(K) + W )/tor] under any of the equivalent hypotheses
of Proposition 11.

If H is any subgroup of a Mordell-Weil group E(M), let RegM(H) be
the absolute value of the determinant of the height pairing 〈 , 〉M on a basis
of H. We emphasize here that we use the height relative to M and not the
absolute height on E(Q).

Theorem 13 below is conditional on the BSD formula over number fields.

Conjecture 12 (Birch and Swinnerton-Dyer Formula). If E is an elliptic
curve of rank r over a number field F then

L(r)(E/F, 1)

r!
=

ΩE/F · RegF (E(F )) ·#X(E/F ) ·∏v cv,F√
|DF | ·#E(F )2

tor

,

where DF ∈ Z is the discriminant of F , and the other quantities are as in
[Lan91, III, §5].
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If E is defined over Q and F is totally imaginary, as it is in our application
in which F = K or F = Kc, we have ΩE/F = ‖ωE‖[F :Q], where ‖ωE‖ is as in
Equation (1) (see also [GZ86, §6]).

Much of the rest of this section is devoted to proving the following theo-
rem.

Theorem 13. Assume Conjectures 6 and 12 for E, that ords=1 L(E/K, χ, s) =
1 for each nontrivial ring class character χ of conductor dividing c, and that
acyK is torsion. Let r = ran(E/K) = ords=1 L(E/K, s) and assume that
r = rank(E(K)), as predicted by Conjecture 1. Then

[E(Kc)/tor : (E(K)+W )/tor]
2 =

#X(E/Kc)

#X(E/K)
·
∏

w cw,Kc∏
v cv,K

· #E(K)2
tor

#E(Kc)2
tor

·hr−1
c ·u2hc .

Because of the the Cassels-Tate pairing, we expect that #X(E/Kc) and
#X(E/K) are both perfect squares (see, e.g., [Ste04, Thm. 1.2]). The fol-
lowing Proposition is thus an important consistency check for Theorem 13.

Proposition 14. Theorem 13 predicts that #X(E/Kc)

#X(E/K)
is a perfect square.

Proof. We check that each factor, except the quotient of Shafarevich-Tate
groups appearing in the theorem, is a perfect square, especially the Tama-
gawa number factors. Each prime of bad reduction for E splits in K, and for
the two primes v and v′ over a split prime p of Q, we have cv,K = cv′,K , so

∏

v

cv,K =


∏

p|N
cp,Q




2

.

The extension Kc/K is unramified at each prime of bad reduction for E, and
the formation of Néron models commutes with unramified base change (see
[BLR90, §1.2, Prop. 2]), so for each prime v of K and each prime w of Kc

with w | v, we have cw,Kc = cv,K . Let gv be the number of primes of Kc over
the prime v of K. Then

∏

w of Kc

cw,Kc =
∏

v of K

cgvv,K =
∏

p|N
c2gv
p,Q =


∏

p|N
cgvp,Q




2

.

Finally, the factor hr−1
c is a perfect square since the sign of the functional

equation for L(E/K, s) is odd, so r is odd.
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Lemma 15. With hypotheses as in Theorem 13, L(E/Kc, s) vanishes to
order exactly r + hc − 1 and

L(r+hc−1)(E/Kc, 1)

(r + hc − 1)!
=
L(r)(E/K, 1)

r!
·
∏

χ 6=χ1

L′(E/K, χ, 1). (7)

Proof. The L-function of E over Kc factors as

L(E/Kc, s) =
∏

χ

L(f, χ, s) = L(E/K, s) ·
∏

χ 6=χ1

L(f, χ, s),

where the first product is over characters χ : G → C×, and χ1 is the trivial
character. This implies the order of vanishing statement. The leading coeffi-
cient of the product of power series is the product of the leading coefficients
of those series, which gives the formula for the leading coefficient.

In using Conjecture 12 to deduce Theorem 13, we will make use of an
explicit formula for the discriminant DKc .

Lemma 16. We have
DKc = Dhc

K ·
∏

p|c
p

2·p·hc
p+1

Proof. Consider a prime divisor p | c, and write c = pc′. The prime pOK
above p splits completely in Kc′/K (as explained in [Ste10b, Lem. 5.3]).
Going from Kc′ to Kc, the primes above pOK are totally ramified, with
ramification index [Kc : Kc′ ] = [Kp : K1] = p+1. Combining this information
for all p | c and applying [FT93, Thm. 26, Ch. III], implies that the different
δKc/K is

∏
p|c
∏

p|p p
p. Let p be any prime of Kc over p. As explained above,

since p is inert in K/Q, the prime pOK splits completely in Kc′/K, then
totally and tamely ramifies in Kc/K

′
c, so normKc/Q(p) = p2, and the number

of primes p over a given p is hc/(p+ 1). The different ideal is multiplicative
in towers, and the discriminant is the norm of the different, so

DKc = normKc/Q(δKc/Q)

= normKc/Q(δK/Q · δKc/K)

= normKc/Q(δK/Q) ·
∏

p|c

∏

p|p
normKc/Q(p)p

= Dhc
K ·
∏

p|c
p

2hcp
p+1 .
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The product of prime divisors of c in Lemma 16 can be expressed in terms
of conductors as follows:

Lemma 17. We have

DKc = Dhc
K ·

∏

χ 6=χ1

cond(χ)2. (8)

Proof. Consider the set of characters χ : G → C×. A character χ has
conductor not divisible by p precisely if it factors through Gal(Kc′/K), so
the number of characters χ with conductor not divisible by p is the number
of characters of Gal(Kc′/K), which is # Gal(Kc′/K) = hc/(p+ 1). Thus the
number of characters with conductor divisible by p is hc − hc/(p + 1). As
cond(χ) | c we have

∏

χ 6=χ1

cond(χ) =
∏

p|c
phc−hc/(p+1) =

∏

p|c
phcp/(p+1),

which, combined with Lemma 16, implies the claimed formula.

We will use the following lemma in computing a certain regulator in the
proof of Proposition 19 below.

Lemma 18. Let Mm(a, b) be the m×m matrix with a+ b along the diagonal
and all other entries equal to b. Then detMm(a, b) = (a+mb)am−1.

Proof. The case for m = 1, 2 is clear. For m > 2, first consider the deter-
minant of the matrix M ′

m(a, b) of size m ×m whose entries are all b except
for the first upper off diagonal whose entries are all a + b (see Equation (9)
below). We claim that detM ′

m(a, b) = (−a)m−1b. For m = 1, 2 this is clear.
For larger m we perform a row operation (subtract row 2 from row 1) and
expand by minors, as follows:

detM ′
m(a, b) =

∣∣∣∣∣∣∣∣∣

b a+ b · · · b

b b
. . .

...
...

. . . a+ b
b · · · b b

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

0 a · · · 0

b b
. . .

...
...

. . . a+ b
b · · · b b

∣∣∣∣∣∣∣∣∣
(9)

= −a · detM ′
m−1(a, b) = −a(−a)m−2b = (−a)m−1 · b. (10)
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Using this formula for detM ′
m(a, b) allows us to compute detMm(a, b) as

follows, where in the first step we subtract the last row from the first row:

detMm(a, b) =

∣∣∣∣∣∣∣∣∣

a+ b b · · · b

b a+ b
...

...
. . . b

b · · · b a+ b

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

a 0 · · · −a
b a+ b

...
...

. . . b
b · · · b a+ b

∣∣∣∣∣∣∣∣∣
= a · detMm−1(a, b) + (−1)m(−a) detM ′

m−1(a, b)

= (a+mb) · am−1.

Proposition 19. With hypotheses as in Theorem 13 (but without assuming
any conjectures!), we have

RegKc
(W ) = hhc−2

c ·
∏

χ 6=χ1

ĥKc(yc,χ).

Proof. In this proof we will work everywhere with the images of points in
V = E(Kc)⊗ C, which should not cause confusion.

The hypotheses imply that for each nontrivial character χ, the point yc,χ
has infinite order. Lemma 5 asserts that the yc,χ are mutually orthogonal,
so there is a lattice Λ in W ⊗ C with basis the yc,χ, which has rank hc − 1
(the number of nontrivial characters χ). Because the yc,χ are all nonzero and
orthogonal, we have

RegKc
(Λ) =

∏

χ 6=χ1

ĥKc(yc,χ).

By Proposition 10, the elements (yσc )16=σ∈G are independent and nonzero, so
they form a basis for their Z-span W/tor in V . Let M be the (hc−1)×(hc−1)
change of basis matrix with respect to these two bases. More precisely, if for
any fixed basis of V , we let BΛ be the matrix with rows our chosen basis for
Λ and BW the matrix with rows our basis for W , then BΛ = M · BW . We
have RegKc

(Λ) = det(M)2 · RegKc
(W ), so to compute RegKc

(W ), it suffices
to compute det(M)2. By definition of eχ and using that TrKc/K(yc) = 0 (in
V ) we have

yc,χ =
1

hc

∑

σ∈G
χ−1(σ)yσc =

1

hc

∑

1 6=σ∈G
(χ−1(σ)− 1)yσc ,
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from which we read off the rows of the matrix M . For any two rows Mχi
,Mχj

of M ,

Mχi
·Mχj

=
1

h2
c

∑

16=σ∈G
(χ−1

i (σ)− 1)(χ−1
j (σ)− 1)

=
1

h2
c

∑

σ∈G
(χ−1

i (σ)− 1)(χ−1
j (σ)− 1)

=
1

h2
c

∑

σ∈G
(χiχj)

−1(σ)− χ−1
i (σ)− χ−1

j (σ) + 1 =

{
2
hc

if χi = χ−1
j ,

1
hc

otherwise.

Thus

(detM)2 = detMMT = det(Mχi
·Mχj

)i,j = ±

∣∣∣∣∣∣∣∣∣∣

2
hc

1
hc
· · · 1

hc

1
hc

2
hc

...
...

. . . 1
hc

1
hc
· · · 1

hc
2
hc

∣∣∣∣∣∣∣∣∣∣

,

where the columns in the final matrix have been permuted so we have 2/hc
down the diagonal and 1/hc everywhere else, which only affects the deter-
minant up to sign. To evaluate this determinant we use Lemma 18 with
a = b = 1/hc and m = hc − 1 and obtain

det(M)2 =

(
1

hc
+ (hc − 1) · 1

hc

)
·
(

1

hc

)hc−2

= 1/hhc−2
c .

Thus

RegKc
(W ) = (detM)−2 · RegKc

(Λ) = hhc−2
c ·

∏

χ 6=χ1

ĥKc(yc,χ).

Proof of Theorem 13. Apply Conjecture 12 to the left hand side of Equa-
tion (7), and to the first factor on the right hand side, and Conjecture 6 to
the remaining factors on the right hand side, to get

‖ωf‖2hc · RegKc
(E(Kc)) ·#X(E/Kc) ·

∏
cw,Kc√

|DKc| ·#E(Kc)2
tor
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=
‖ωf‖2 · RegK(E(K)) ·#X(E/K) ·∏ cv,K√

|DK | ·#E(K)2
tor

·
∏

χ 6=χ1

hc · ‖ωf‖2

cond(χ) · u2 ·
√
|DK |

·ĥKc(yc,χ).

Cancelling ‖ωf‖2hc from both sides, and rearranging factors gives

u2hc ·
√
|DK |hc ·

∏
χ 6=χ1

cond(χ)
√
|DKc |

·
∏
cw,Kc∏
cv,K

· #X(E/Kc)

#X(E/K)

(11)

=
RegK(E(K)) · hhc−1

c ·∏χ 6=χ1
ĥKc(yc,χ)

RegKc
(E(Kc))

· #E(Kc)
2
tor

#E(K)2
tor

.

We have r = rank(E(K)), because we are assuming Conjecture 1 for
E/K, and Proposition 11 implies that W and E(K) are orthogonal, so

RegKc
(E(K)+W ) = RegKc

(E(K))·RegKc
(W ) = hrc·RegK(E(K))·RegKc

(W ).
(12)

Combining Equation (12) with Proposition 19 yields

RegK(E(K)) · hhc−1
c ·

∏

χ 6=χ1

ĥKc(yc,χ) = RegK(E(K)) · hc · RegKc
(W )

= h1−r
c · RegKc

(E(K) +W ).

Taking square roots of the absolute value of both sides of the formula in
Lemma 17 and simplify Equation (11) using the above, we obtain

u2hc ·
∏
cw,Kc∏
cv,K

· #X(E/Kc)

#X(E/K)
= h1−r

c · RegKc
(E(K) +W )

RegKc
(E(Kc))

· #E(Kc)
2
tor

#E(K)2
tor

= h1−r
c · [E(Kc)/tor : (E(K) +W )/tor]

2 · #E(Kc)
2
tor

#E(K)2
tor

.

Solving for [E(Kc)/tor : (E(K) +W )/tor]
2 then yields the claimed formula in

Theorem 13.

If we remove the cond(χ) factor from Conjecture 6, then rederive Theo-
rem 13 as in the proof above, the one change is that in Equation (11), instead
of having √

|DK |hc ·
∏

χ 6=χ1
cond(χ)

√
|DKc|

= 1

14



we get an extra factor of √
|DK |hc√
|DKc |

next to u2hc . According to Lemma 16, we have

√
|DKc |√
|DK |hc

=
∏

p|c
p

phc
p+1 .

In the special case when c = p is an odd prime and K has class number 1,
this simplifies to √

|DKc |√
|DK |hc

= p
p(p+1)
p+1 = pp,

which is never a perfect square, which leads to a contradiction (see Proposi-
tion 14).

5. An Example

Suppose E is the elliptic curve 389a given by y2 +y = x3 +x2−2x, which
has rank 2 and conductor 389. The field K = Q(

√
−7) satisfies the Heegner

hypothesis, c = 5 is inert in K, and u = 1. Since K has class number 1,
we have hc = c + 1 = 6. According to [JLS09], the field Kc is obtained by
adjoining a root of

z6 + 1750z5 − 26551875z4 − 570237500z3 + 202540106562500z2

− 292113275671875000z + 134537112978310546875

to K, and we find by computer calculation (or Lemma 16) that

DKc = 510 · 76 = (−7)65(2·5·6)/(5+1).

All of the p-adic Galois representations associated to E are surjective, so
E(Kc)tor = 0. The BSD conjecture and a computation using [S+11] implies
that X(E/K) = 1, and we find by computation that r = ran(E/K) = 3. The
Tamagawa numbers of E at 389 is 1. Assuming the hypothesis of Theorem 13
are satisfied, we have

[E(K5) : E(K) +W ]2 = #X(E/K5) · 62. (13)
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Let σ be a choice of generator for G = Gal(K5/K). As explained in
[JLS09, Ste10a], the Kolyvagin class τ ∈ H1(K,E[3]) associated to y5 is
nonzero and X(E/K)[3] = 0, so there is some nonzero P ∈ E(K)/3E(K)
such that [P ] 7→ [P5] ∈ E(K5)/3E(K5), where P5 =

∑
iσi(y5) ∈ W . Thus

P − P5 = 3Q ∈ 3E(K5), where Q ∈ E(K5) but Q 6∈ E(K) + W . Hence
3 | [E(K5) : E(K) +W ], as predicted by Equation (13).

6. Ideas for Future Work

It would be of interest to compute the relevant L-functions in this pa-
per for several specific examples, using the methods of Dokchitser [Dok04]
or Rubinstein. In addition, one could explicitly compute the Mordell-Weil
group E(Kc) in some examples. It would also be of interest to find ex-
plicit examples that illustrate the situation discussed in Remark 9, in which
ords=1 L(E,χ, s) ≥ 3, since we are currently not aware of any such examples.

Regarding generalizations, it would be natural to fully treat the case when
r = 1, so that W has finite index in E(Kc). It would also be good to extend
the results of this paper to modular abelian varieties Af attached to new-
forms in S2(Γ0(N)). Another possible generalization would be to quadratic
imaginary fields that do not satisfy the Heegner hypothesis, so the modular
curve X0(N) is replaced by a Shimura curve (see, e.g., the extensive work of
Bertolini and Darmon). In another direction, one could likely generalize our
results to elliptic curves (or abelian varieties) over totally real fields, following
the program initiated by Zhang in [Zha01b].

Assume that for all nontrivial χ we have ords=1 L(E,χ, s) = 1. Under
this hypothesis, it would be of great interest to prove the divisibility

#X(E/Kc)

#X(E/K)

∣∣∣ [E(Kc) : E(K) +W ]2,

at least away from an explicit finite list of primes. This might make it possible
to compute X(E/Kc)/X(E/K) for a specific elliptic curve. This would be
a generalization of the explicit upper bounds on #X(E/K) from [GJP+09,
Thm. 3.4]. The cryptic [Ber10, Remark 5.23(1)] is relevant, because it claims
one can prove at least finiteness of X(E/Kc)(χ), in the Shimura curve case,
though warns “The original methods of Kolyvagin, based on the Gross-Zagier
formula, allow to prove a similar statement only when χ is quadratic.” This
should be contrasted with [YZZ10, §1.6, Thm. C], where it is claimed that
under our hypothesis Tian-Zhang have in fact proved that X(E/Kc)(χ) is
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finite, using the original method of Kolyvagin based on their generalization
of the Gross-Zagier formula.
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Kolyvagin’s Conjecture for Specific Higher Rank

Elliptic Curves

William Stein∗

March 26, 2011

Abstract

We study Heegner points and Kolyvagin classes for elliptic curves over Q, with
special focus on curves that have analytic rank at least 2. We reinterpret Kolyva-
gin’s “derived classes” construction in the context of divisors on modular curves
directly in characteristic `, and prove compatibility and multiplicity one results.
We use these results to give the first complete algorithm for explicitly computing
(certain) Kolyvagin classes, and thus verify a conjecture of Kolyvagin for some
specific elliptic curves.

1 Introduction

A higher rank elliptic curve is an elliptic curve E over Q of analytic rank at least 2.
Let K be a quadratic imaginary field such that each prime dividing the conductor of
E splits in K. This paper is about the Galois cohomology classes τc,pn ∈ H1(K,E[pn])
defined by Kolyvagin (see, e.g., [Kol88a, Gro91, McC91]). Our main motivation is the
explicit study of these classes on higher rank elliptic curves, inspired by the results of
[Ste10, BS11] and open conjectures of Kolyvagin (see [Kol91, ÇW08]). In particular,
consider Conjecture A of [Kol91, pg. 255]:

Conjecture 1.1 (Kolyvagin). For each prime p, there is some n and squarefree product
c =

∏
pi of primes that are inert in K with pn | gcd(api , pi + 1) such that τc,pn 6= 0.

For elliptic curves with analytic rank ≤ 1 over K, this conjecture with c = 1 follows
from [GZ86], but for higher rank curves the conjecture is wide open, and we have only
computational data.

The goal of this paper is to shed some light on Conjecture 1.1 by making it more
explicit and computing many examples, as follows. Let pn and c be as in Conjecture 1.1
We adapt Kolyvagin’s construction to define elements in E(F`2) ⊗ (Z/pnZ), then give
an algorithm to compute these elements in many cases. When one of these elements is
nonzero, the corresponding Kolyvagin cohomology class τc,pn is also nonzero, which al-
lows us to verify, in several specific examples, Conjecture 1.1. This is significant because
until now this conjecture had not been verified in even a single case. In particular, we
present a powerful and fairly general approach to explicitly computing information about
particular classes τc,pn ∈ H1(K,Af [pn]) for a modular abelian varieties Af , squarefree
integer c and prime power pn. Thus, our results provide further motivation and much
needed tools for studying Heegner points in the context of higher rank elliptic curves

∗The work was supported by NSF grant 0555776 and the Clay Mathematics Institute.
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and modular abelian varieties. Moreover, we provide new algorithms for computing with
Selmer groups of elliptic curves, which exploit different methods than explicit n-descent
for small n (see [Cre97, §3.5] and [CFO+08]) or explicit Iwasawa theory as in [SW11].

Our approach is inspired by groundbreaking work of Cornut, Vatsal, Gross, Jetchev-
Kane, and Mazur (see [JK10, Cor02, Vat02]), in which they establish nontriviality results
about Heegner points. Our new idea is simple: use rational quaternion algebras to give
an explicit description of the Kolyvagin derived classes construction modulo an auxiliary
prime ` that is inert in the quadratic imaginary field K (see Section 6). Many of the
objects we use play a central role in the work of Cornut mentioned above. We hope
that some of our techniques may also be useful for exploring and refining other ideas
related to extra structure on higher rank elliptic curves arising from Heegner points.

The Birch and Swinnerton-Dyer conjectural rank formula (see Conjecture 3.1 below)
asserts that ords=1 L(E, s) = rank(E(Q)). This conjecture is a theorem when E is an
elliptic curve over Q of analytic rank ≤ 1 (see [BCDT01, GZ86, Kol88b] and Theorem 3.2
below). In sharp contrast, when E is a higher rank curve, the BSD conjecture remains
shrouded in mystery, as do potential generalizations of the Gross-Zagier formula (see,
e.g., [Ste10]). Unfortunately, the many exciting generalizations of the Gross-Zagier
formula to other settings (see [BY09, Zha01, Zha04, YZZ11]) so far seem to yield little
new insight in the higher rank case. As explained in [Ste10], Kolyvagin classes are
potentially relevant to a search for a generalization of the Gross-Zagier formula that
treats higher derivatives. Such a generalization is an incredibly difficult open problem
and anything that might shed light on it is worth investigating. So far, finding a
plausibly-provable conjecture has remained elusive.

The explicit examples in Section 8 involve rank 2 curves (instead of curves of rank
≥ 3), since the notation and computations are substantially simpler when the rank is
2. The theory and algorithms we develop apply to elliptic curves of any rank, and also
to modular abelian varieties. It is thus possible to study many more general situations
using our approach (see Section 9).

This paper is structured as follows. In Section 2 we give an outline of our main
algorithm. Next in Section 3 we recall the BSD conjecture and give some examples,
which motivate our paper. In Section 4 we recall the definition of Heegner points. In
Section 5 we introduce Kolyvagin classes, make some observations, and discuss reduction
of Heegner points modulo a prime over `. In Section 6 we make the action of Galois
on certain objects in characteristic ` more explicit and prove a compatibility result.
In Section 7 we explain in more detail how our algorithm for computing reductions
of Kolyvagin classes works. We combine our above results to obtain an algorithm
to compute Kolyvagin classes, which we apply in Section 8, in which we discuss the
implementation of our algorithm, tables we obtained by running it, and state some
results inspired by this data. Finally, Section 9 discusses a range of related future
projects.

Acknowledgement: The author would like to thank Jennifer Balakrishnan, Ralph
Greenberg, Benedict Gross, Ben Howard, David Kohel, Dimitar Jetchev, Barry Mazur,
Ken Ribet, Karl Rubin, Justin Walker, and Jared Weinstein for helpful discussions.

1.1 Notation and terminology

We use ∼= to denote a canonical isomorphism and ≈ to denote a noncanonical one.
Unless otherwise stated, all tensor products are over Z. We always let p, q, ` denote odd
prime numbers, E an elliptic curve over Q, and K a quadratic imaginary field such that
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each prime dividing the conductor N of E splits in K. Let an denote the nth Dirichlet
series coefficient of the L-series L(E/Q, s) associated to E.

2 Reducing Kolyvagin Classes

As above, let E be an elliptic curve over Q, let K be a quadratic imaginary field such
that each prime dividing the conductor N of E splits in K, let pn be an odd prime
power. Let c be a squarefree product of primes that are inert in K such that for each
prime q | c we have pn | gcd(aq, q + 1), where aq = q + 1−#E(Fq). Let Kc be the ring
(not ray!) class extension of K associated to c, and let σi be a choice of generator of
Gal(Kc/Kc/pi) for each prime divisor pi | c, and let σ = (. . . , σi, . . .). As explained in
Section 5 below, Kolyvagin uses Heegner points to construct a point Pc,σ ∈ E(Kc) such
that [Pc,σ] ∈ (E(Kc) ⊗ Z/pnZ)Gal(Kc/K). Under suitable hypothesis on p (e.g., the p-
adic representation ρE,p is surjective), Kolyvagin then uses Pc,σ to define a cohomology
class τc,pn ∈ H1(K,E[pn]) characterized by

δ([Pc,σ]) = resK,Kc(τc,pn) ∈ H1(Kc, E[pn])Gal(Kc/K),

where δ is the connecting homomorphism of Galois cohomology. (The class τc,pn also
depends on the choice of σ, but we surpress this in our notation.)

We introduce yet another prime ` that is also inert in K and fix a prime λ of Kc over
`. Reduction modulo λ induces a homomorphism E(Kc)⊗ Z/pnZ → E(F`2)⊗ Z/pnZ.
Using Algorithm 2.1 below when n = 1, we compute the image z of [Pc,σ] under the
reduction map. When z 6= 0, we conclude that τc,p is also nonzero.

Algorithm 2.1.

• INPUT: E, K, p, `, c, σ, as above.

• OUTPUT: The (well-defined) image of [Pc,σ] in E(F`2) ⊗ (Z/pZ), via reduction
modulo any prime over ` (it does not matter which), up to some fixed nonzero
scalar that is independent of c. We can compute the image of many different Pc,σ
with respect to a consistent choice of map.

1. Use rational quaternion algebras and theta series of quadratic forms to directly
compute a supersingular point x1 ∈ X0(N)(F`2)ss that is the reduction modulo λ
of a choice of Heegner point x1 ∈ X0(N)(K1). (See Section 7.1.)

2. Apply a mod ` analogue of Kolyvagin’s construction to directly obtain the re-
duction Qc,σ of the “Kolyvagin derived divisor” attached to xc as an element

of Div(X0(N)(F`2)ss). (See Sections 6 and 7.2.) Computing Qc,σ closely re-
sembles computing the image Tc(x1) of x1 under the Hecke operator Tc using
Equation (6.1), but with an appropriate choice of weighting of each summand.

3. Use linear algebra combined with refinements of results of Cornut, Ihara and
Ribet (see Section 7.4) and a multiplicity one theorem (see Theorem 7.14 below)
to compute a fixed nonzero scalar multiple of the image of Qc,σ, hence of Pc,σ,
under the homomorphism of Hecke modules

Div(X0(N)(F`2)ss)⊗ (Z/pZ)→ E(F`2)⊗ (Z/pZ). (2.1)
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Remark 2.2. We emphasize that the steps of Algorithm 2.1 can all be done purely
algebraically, without recourse to any numerical approximations. This contrasts with
the approach of [JLS09], which provides numerical evidence for Kolyvagin’s conjecture in
one case, without proof. In theory the approach of [JLS09] can likely be made rigorous,
but this has not been done in practice in any case, though see [Bra10] which is a step
in that direction. The approach of [JLS09] can be faster for an elliptic curve with large
conductor (with c very small); it is much worse for large c than Algorithm 2.1 (e.g.,
c > 100 would be incredibly hard).

Remark 2.3. Suppose we are only interested in verifying that the image under (2.1)
of Qc,σ is nonzero. Instead of the linear algebra of Step 3, we might be able to use

that (2.1) is a T-module homomorphism, where T is the Hecke algebra; if TQc,σ has
sufficiently large dimension, so that it cannot be contained in the nontrivial kernel, then
we are done. If we take this approach and it works, we do not need to compute (2.1) at
all. However, in some cases this approach cannot work, e.g., we could run into trouble
if there are other elliptic curves of larger rank also of level N .

Remark 2.4. Algorithm 2.1 only computes the reduction of Pc,σ up to a fixed nonzero
scalar, which is enough to show that δ(Pc,σ) 6= 0. The point Pc,σ could in principle be
normalized by finding Pc,σ exactly via a numerical computation, using [JLS09] for one
choice of c for which the image of Pc,σ in E(F`)⊗ (Z/pZ) is nonzero.

To make the steps of Algorithm 2.1 explicit and machine computable, we view
Div(X0(N)(F`2)ss) noncanonically as the set of right ideal classes in an Eichler order R
of level N in the (unique up to isomorphism) rational quaternion algebra ramified at `
and∞, which we compute as explained in [Piz80, Koh01, Koh97, Ste09]. By computing
representation numbers of ternary quadratic forms associated to left orders, we find the
right R-ideals I whose left order admits an optimal embedding of the ring of integers OK
of K; this is the trick we use to compute the reduction x1 ∈ X0(N)(F`2) of x1 modulo
a prime over ` without ever computing x1 itself. Then we use x1 and a parametrization
of the right ideals J ⊂ I such that I/J ∼= (Z/cZ)2 to directly compute the reduction
Qc,σ (see Theorem 7.8 below). An implementation of the algorithm is included in Sage
[S+11].

3 The Birch and Swinnerton-Dyer Conjecture

The BSD conjecture is the main motivation for this paper, so we spend a page recalling
it and emphasizing our ignorance. First we state the conjecture, then state the main
theorem about it, and finish with some remarks about a curve of rank 4 and another of
rank 2.

Let E be an elliptic curve over Q. By [BCDT01, Wil95] the L-series

L(E, s) =

∞∑

n=1

an
ns

attached to E extends to a holomorphic function on all of C, hence the nonnegative
integer

ran(E/Q) = ords=1 L(E, s) ≥ 0

is defined. The BSD conjecture was first introduced by Birch and Swinnerton-Dyer in
the 1960s motivated by computer computations, and was later formulated for abelian
varieties over number fields (see [Bir65, Bir71, Mil72, Tat66, Wil00]).
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Conjecture 3.1 (Birch and Swinnerton-Dyer). For any elliptic curve E defined over
Q we have

rankE(Q) = ran(E/Q).

There is also a conjectural formula of Birch and Swinnerton-Dyer for the leading
coefficient of the series expansion of L(E, s) about s = 1 (see [Lan91, III, §5] for a
general formulation). This formula has now been computationally verified in many
cases; see [GJP+09, Mil10] where the formula is fully proved for all curves with rank
≤ 1 and conductor ≤ 5000.

Results of Kolyvagin, Gross-Zagier, and Bump-Friedberg-Hoffstein (see, e.g., [BFH90,
GZ86, Kol88b]) imply the following theorem.

Theorem 3.2. Conjecture 3.1 is true for elliptic curves E with ords=1 L(E, s) ≤ 1.

As mentioned in the introduction, Conjecture 3.1 remains completely open when
ords=1 L(E, s) ≥ 2. As evidence for Conjecture 3.1, we have tables of specific rank 2
and 3 curves for which the conjecture is known (see, e.g., [Crea, SW02]), and assurances
that many curves have analytic rank ≤ 1 (see [BS10]). There is not a single example of
a curve of rank ≥ 4 for which the conjecture has been verified. Rank 4 is difficult not
because of the complexity of doing computations, but because there is, as of now, no
known algorithm (no matter how slow) that can be used to show that ran(E/Q) ≥ 4.

Example 3.3. Let E be the elliptic curve y2 + xy = x3 − x2 − 79x+ 289. A 2-descent
(using [Creb, S+11]) and point search proves that E has algebraic rank 4, with generators
(−9, 19) , (−8, 23) , (−7, 25) , (4,−7). Applying the methods of [Cre97, Dok04] and the
Gross-Zagier formula, we see that L(E, 1) = L′(E, 1) = 0, L′′(E, 1) is very close to 0,
and L(4)(E, 1) = 214.65233 . . .. But showing that L′′(E, 1) = 0 (which would imply
Conjecture 3.1 for E) is an unsolved problem.

Assume that E is an elliptic curve with ords=1 L(E, s) = 2. Then Conjecture 3.1 as-
serts that rankE(Q) = 2. In the explicit examples Section 8, the Birch and Swinnerton-
Dyer formula predicts that #X(E/Q) = 1, though in fact X(E/Q) is not known to
be finite for any of these curves (or indeed, for any curve of rank ≥ 2). The best that
has been done at present for a general rank 2 curve is to verify that X(E/Q)[p] = 0
for (finitely) many specific p, e.g., using the algorithm of [SW11]. See the recent work
of [CLS09, CLS10] on CM elliptic curves of rank 2. Also, for the rank 2 elliptic curve
of conductor 389, the author used modular symbols, p-adic L-series, p-adic heights,
Iwasawa theory, and results of Kato and Schneider to show that X(E/Q)[p] = 0 for all
primes p < 2466, except possibly the supersingular primes p = 107, 599, and 1049, for
which the approach of [SW11] should work, but take much longer.

4 Quadratic Imaginary Fields and Heegner Points

In this section we recall the definition of Heegner points over ring class fields, and explain
how they behave under taking traces. We will use these points in the next section to
construct derived Galois equivariant classes.

Let E be an elliptic curve over Q of conductor N , and let πE : X0(N) → E be a
fixed choice of minimal modular parametrization. The main theorem of [BFH90] implies
that there exists infinitely many quadratic imaginary fields K = Q(

√
D) of discriminant

D ≤ −5 such that each prime dividing N splits in K. Fix any such K.
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Fix an odd prime power pn with n ≥ 1. Let c =
∏
pi be any product of prime

numbers pi that are each inert in K, coprime to ND, and such that

pn | gcd(api , pi + 1),

for each i. Let Kc be the ring class field associated to the conductor c. As explained in
[Gro91, pg. 238], the field Kc is an abelian extension of the Hilbert class field K1 of K,
is unramified outside c, and is contained in the ray class field associated to c. Moreover,
the reciprocity map of class field theory induces a canonical isomorphism

Gal(Kc/K1) ∼= (OK/cOK)×/(Z/cZ)×, (4.1)

where OK is the ring of integer of K (see Proposition 6.2 below). Let Oc = Z + cOK
be the order in OK of conductor c. Each prime dividing N splits in K, so we can fix a
choice n of ideal in OK with OK/n ∼= Z/NZ.

The Heegner point associated to c is

xc =
[(

C/Oc, (n ∩ Oc)−1/Oc
)]
∈ X0(N)(Kc),

which has image
yc = πE(xc) ∈ E(Kc).

Remark 4.1. There are many possible choices of n in the definition above, which are
parametrized by the different choices of prime ideals of OK over the prime divisors of N .
These different choices are permuted by the action of the Atkin-Lehner operators. The
Atkin-Lehner operators act as ±1 on E, so yc is well-defined up to sign, independent
of the choice of n. See [Wat06] or [Coh07, Thm. 8.7.7] for an explicit description of the
Atkin-Lehner action on Heegner points.

Motivated by the problem of constructing elements of E(Q), it is natural to apply a
trace map to yc.

Proposition 4.2 (The Distribution Relation). We have TrKc/K1
(yc) = ac ·y1 ∈ E(K1).

More generally for each prime q | c, we have TrKc/Kc/q
(yc) = aq · yc/q ∈ E(Kc/q).

Proof. See [Gro84, §6] or [JK10, Lem. 5.2]. The key idea is that if Tc is the cth Hecke
operator, then we have the following equality of divisors on X0(N):

Tc(x1) =
∑

σ∈Gal(Kc/K1)

σ(xc).

To complete the proof, take the image of both sides in E and use that the Hecke operator
Tc acts as ac on E.

Suppose E is a higher rank curve. The Gross-Zagier theorem [GZ86, §5.2] implies
that the height of TrK1/K(y1) ∈ E(K) is a nonzero multiple of L′(E/K, 1). However,
L(E/K, s) = L(E/Q, s) · L(ED/Q, s), and we assumed that ords=1 L(E/Q, s) ≥ 2, so
L′(E/K, 1) = 0. Thus for all c,

TrKc/K(yc) = TrK1/K(acy1) ∈ E(K)tor. (4.2)

Thus the traces of yc are never non-torsion elements of the higher rank Mordell-group
E(Q).
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5 Derived Points and Cohomology Classes, and their
Reduction Modulo `

In this section, we assume that p is an odd prime such that the p-adic representation
ρE,p is surjective.

In Section 5.1 we construct Kolyvagin’s derived classes associated to Heegner points,
then use these in Section 5.2 to construct Galois invariant classes. In Section 5.3 we
explain how to reduce these classes modulo `, and note that if the reduction is ever
nonzero, then so is the class. Section 5.4 contains some consequences of nontriviality in
the special case when E has analytic rank 2.

5.1 Derived points

Let pn be a power of p, and let c = p1 · · · pt be a squarefree product of inert primes
pi such that pn | gcd(api , pi + 1). We recall the construction of Kolyvagin classes here,
since it is important to emphasize the precise dependence on choice of generator of the
Galois group, which impacts our algorithm. Also, we will make some remarks about
this construction that appear to not be in the literature.

Let [yc] denote the image of yc in E(Kc) ⊗ (Z/pnZ). Let q be a prime divisor of
c. The Galois group Gal(Kc/Kc/q) is cyclic of order q + 1. Fix a choice of generator
σ = σq ∈ Gal(Kc/Kc/q), let

P =

q∑

i=1

iσi(yc) ∈ E(Kc),

and let [P ] denote the image of P in E(Kc)⊗ (Z/pnZ), so

[P ] =
∑

i ∈ Z/(q+1)Z
iσi([yc]). (5.1)

Proposition 5.1. As above, assume that pn | gcd(aq, q + 1). Then

[P ] ∈ (E(Kc)⊗ (Z/pnZ))Gal(Kc/Kc/q).

Proof. Applying our choice of generator σ of Gal(Kc/Kc/q) to P , we have

σ([P ]) =
∑

i ∈ Z/(c+1)Z
σiσi([yc]) =

∑

i ∈ Z/(c+1)Z
iσi+1([yc]) (5.2)

=
∑

i ∈ Z/(c+1)Z
(i− 1)σi([yc]) = [P ]− TrKc/Kc/q

([yc]) = [P ]. (5.3)

The first equality in (5.3) is because pn | q + 1, so we can enumerate the elements
of Z/(q + 1)Z in any way we want (in fact, the notation we are using above only
makes sense because pn | q + 1). The final equality in (5.3) holds since pn | aq and
TrKc/Kc/q

(yc) = aqyc/q, by Proposition 4.2.

For each prime pi | c, make a choice σi of generator for Gal(Kc/Kc/pi), and let
σ = (σ1, . . . , σt) be the tuple of those choices. Let

Dc,σ =

t∏

j=1

pj∑

i=1

iσij ∈ Z[Gal(Kc/K1)],
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and let
[Pc,σ] = TrK1/K(Dc,σ([yc])) ∈ (E(Kc)⊗ (Z/pnZ))Gal(Kc/K). (5.4)

Remark 5.2. If we replace the hypothesis that pn | gcd(aq, q + 1) with the hypothesis
that pn | q + 1 and E has analytic rank ≥ 2, then we still have that [Pc,σ] ∈ (E(Kc)⊗
(Z/pnZ))Gal(Kc/K). This is because TrK1/K(y1) is torsion and p is coprime to torsion,
so the proof of Proposition 5.1 still goes through, but with an “obstruction” of acy1,
which vanishes upon taking a trace because of Equation (4.2).

Remark 5.3. The construction also generalizes if we replace the prime power pn by
the ideal I in Z generated by all aq and q + 1 for primes q | c, and we obtain

[Pc,σ] ∈ (E(Kc)⊗ (Z/I))Gal(Kc/K).

More generally, consider the modular Jacobian J = J0(N), and let I be the ideal of
the Hecke algebra T generated by all Tq and q + 1, for prime q | c. Then the above
construction with xc (instead of yc) defines a class

[Rc,σ] = TrK1/K(Dc,σ([xc])) ∈ (J(Kc)⊗T (T/I))Gal(Kc/K)

that maps to [Pc,σ] under the natural map.

The next lemma explains how replacing σi by a different generator of Gal(Kc/Kc/pi)
changes [Pc,σ] by multiplication by an element of (Z/pnZ)×.

Lemma 5.4. For every j ∈ (Z/(pi + 1)Z)×, we have [Pc,(...,σj
i ,...)

] = 1
j [Pc,σ].

Proof. Writing q = pi and s = σi, we have in (Z/(q + 1)Z)[Gal(Kc/K)] that

∑

i ∈ Z/(q+1)Z
isji =

∑

i ∈ Z/(q+1)Z

i

j
si =

1

j
·

∑

i ∈ Z/(q+1)Z
isi.

Lemma 5.5. If E has analytic rank r over Q and c is a product of t primes, then
τ([Pc,σ]) = (−1)r+t+1[Pc,σ]. In particular, if r + t is odd, then

[Pc,σ] ∈ (E(Kc)⊗ (Z/pnZ))Gal(Kc/Q).

Proof. This is just [Gro91, Prop. 5.4(1)], which is proved by noting ([Gro91, Prop. 5.3])
that if τ ∈ Gal(Kc/Q) is complex conjugation on Kc, then τσiτ = σ−i for all i and we
have that τ(yc) = (−1)r+1σ′(yc) + (torsion) for some σ′ ∈ Gal(Kc/K). Thus τ([yc]) =
(−1)r+1σ′([yc]), since p is coprime to any torsion. When c = p1 · · · pt is a product of t
distinct primes, we have (using Lemma 5.4) that τ([Pc,σ]) = (−1)r+1(−1)t[Pc,σ].

Remark 5.6. Following [How04, §1.2], we could alternatively encode the dependence
on the choice of σ in a tensor product. Suppose for simplicity that c is prime. Consider
the element

σ ⊗ [Pc,σ] ∈ Gal(Kc/K1)⊗ (E(Kc)⊗ (Z/pnZ))Gal(Kc/K).

This element does not depend on the choice of generator σ because for any j ∈ (Z/(c+
1)Z)×, if we define the element instead using the generator σj , by Lemma 5.4, we obtain

σj ⊗ [Pc,σj ] = σj ⊗ 1

j
[Pc,σ] = (σj)1/j ⊗ [Pc,σ] = σ ⊗ [Pc,σ],

where by 1/j we mean that element j′ ∈ Z/pnZ such that j′j = 1. This generalizes to
composite c by replacing Gal(Kc/K1) by the tensor product

⊗
pi|c Gal(Kc/Kc/pi).
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Remark 5.7. We can define [Pc,σ] without the hypothesis that each σi is a generator
of Gal(Kc/Kc/pi). If we try to use exactly the definition given above, then the resulting
[Pc,σ] need not be Gal(Kc/K)-equivariant, so we must modify the definition slightly.
Let K ′ be the biggest subfield of Kc that is fixed by all σi, and let ki (which divides

pi + 1) be the order of σi. Let [P ] =
∏t
i=1

∑ki
j=1 jσ

j
i (yc). Then the same argument as

in Proposition 5.1 shows that [P ] ∈ (E(Kc)⊗ (Z/pnZ))Gal(Kc/K
′), and we let

[Pc,σ] = TrK′/K([P ]) ∈ (E(Kc)⊗ (Z/pnZ))Gal(Kc/K).

For example, if c 6= 1 and all σi = 1, then [Pc,σ] = [ac · yK ] = 0, since pn | ac.
For any multiple k of pn, we have the following identity of polynomials:

k−1∑

j=1

jXj =

k
pn−1∑

i=0

Xpn·i ·



pn−1∑

j=1

jXj


 ∈ (Z/pnZ)[X]. (5.5)

Thus in the above construction, if we choose each σi to be of order exactly pn, then
we get (up to scaling by a unit) the same element [Pc,σ] as if each σi is a generator
of Gal(Kc/Kc/pi). The factorization (5.5) thus means we can alternatively view the
Kolyvagin derived point construction as follows. Let K ′c be the compositum of the
degree pn subfields of each Kpi for the primes pi | c. If

D =
∏

pi|c

pn−1∑

j=1

jσji ∈ Z[Gal(K ′c/K1)],

then
[Pc,σ] = TrK1/K([D(TrKc/K′c(yc))]).

5.2 Derived cohomology classes

As explained in [Gro91, §4], under our hypothesis that ρE,p is surjective, the map

H1(K,E[pn])→ H1(Kc, E[pn])Gal(Kc/K)

is an isomorphism, so [Pc,σ] uniquely determines a cohomology class

τc,pn ∈ H1(K,E[pn]).

In the rest of this short section, we make an additional observation in the special case
when ran(E/Q) = 2 and c is prime, since this is the situation for our data in Section 8.

Let res : H1(Q, E[pn])→ H1(Kc, E[pn]) be the restriction map and δ the connecting
homomorphism. Restricting res to Selmer groups, we obtain a commutative diagram:

(E(Kc)⊗ (Z/pnZ))Gal(Kc/Q) Sel(p
n)(E/Kc)

Gal(Kc/Q) X(E/Kc)[p
n]Gal(Kc/Q)

E(Q)⊗ (Z/pnZ) Sel(p
n)(E/Q) X(E/Q)[pn]

δ

δ

res

The following proposition defines an element τc,pn in the Selmer group Sel(p
n)(E/Q),

not just in H1(K,E[pn]) as above.
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Proposition 5.8. If c is prime and ran(E/Q) = 2, then τc,pn ∈ Sel(p
n)(E/Q).

Proof. Since ran(E/Q) is even and c is prime, Lemma 5.5 implies that δ([Pc,σ]) ∈
H1(Kc, E[pn])Gal(Kc/Q). That the image of τc,pn in H1(Q, E)[pn] is locally trivially

(hence in Sel(p
n)(E/Q)) follows from [Gro91, Prop. 6.2] with n = c and m = 1, since

L′(E/K, 1) = 0 hence yK is torsion.

5.3 Reduction modulo `

The following lemma will be helpful when reducing the computation of τc,pn to linear
algebra (see Section 7.4). Below we will consider M = E(F`2) ⊗ (Z/pnZ) as a module
for the action of the nontrivial element Frob` ∈ Gal(F`2/F`); we write M− for the
eigenspace of M on which Frob` acts by −1.

Lemma 5.9. Let pn > 1 be an odd prime power and let ` be a prime such that pn |
gcd(a`, ` + 1). Then the groups E(F`) ⊗ (Z/pnZ) and (E(F`2) ⊗ (Z/pnZ))− are each
cyclic of order pn.

Proof. (See [Ste10, Lem. 5.1].) We have

pn | gcd(a`, `+ 1) | `+ 1− a` = #E(F`).

If E(F`)[p] is noncyclic, then nondegeneracy of the Weil pairing implies that µp ⊂ F×` ,
so p | ` − 1, hence p | gcd(` − 1, ` + 1) = 2, which contradicts that p is odd. Thus
E(F`)[p] is cyclic, so the p-primary part of E(F`) is cyclic of order divisible by pn. For
the second group, apply the above argument to the quadratic twist of E with trace of
Frobenius −a`, and note that pn also divides gcd(−a`, `+ 1).

For any prime ` - c that is inert in K, let λ be a prime ideal over ` in the ring of
integers of the ring class field Kc. Define

zc,σ,` = [Pc,σ] (mod λ) ∈ E(F`2)⊗ (Z/pnZ), (5.6)

which is well defined, independent of the choice of λ. See [Ste10, Prop. 5.4] for the proof
that zc,σ,` is well defined; the reason is that changing λ corresponds to acting on [Pc,σ]
by an automorphism, which does nothing since [Pc,σ] is Gal(Kc/K)-equivariant. Also,
note that by Lemma 5.5, if ran(E/Q) + t is odd, then zc,σ,` ∈ E(F`)⊗ (Z/pnZ); if it is
even, then zc,σ,` ∈ (E(F`2)⊗ (Z/pnZ))−, where the − is for the action of the involution
Frob`.

5.4 Consequences of nontriviality of the elements

We continue with the same notation and running assumptions as above. The first
lemma below links verifying that zc,σ,` 6= 0 to verifying Kolyvagin’s Conjecture A [Kol91,
pg. 255] (see Conjecture 1.1 above).

Lemma 5.10. Suppose c is a squarefree product of inert primes q with pn | gcd(aq, q+1).
If zc,σ,` 6= 0, then τc,pn 6= 0.

Proof. The nonzero element zc,σ,` is the image of [Pc,σ] under the homomorphism

E(Kc)⊗ (Z/pnZ) −→ E(F`2)⊗ (Z/pnZ)

induced by reduction modulo a choice of prime ideal λ over `. Thus if zc,σ,` 6= 0, then
[Pc,σ] 6= 0, so τc,pn = δ([Pc,σ]) 6= 0, since δ is injective.

10



Theorem 5.11. Suppose ran(E/Q) = 2 and that there exists inert primes c, ` (as above)
such that zc,σ,` 6= 0. Then

rankE(Q) ≤ 2

with equality if and only if X(E/Q)(p) is finite. If rankE(Q) = 2, then X(E/Q)[p] = 0.

Proof. If zc,σ,` 6= 0 then by Lemma 5.10, the Kolyvagin cohomology class τc,p ∈
H1(K,E[p]) is nonzero, so Kolyvagin’s Conjecture A [Kol91, pg. 255] is true. The
desired conclusion then follows from [Ste10, Thm 4.2] (which is mainly a restatement
of the main theorem of [Kol91]).

For example, suppose E is a curve with ran(E) = rank(E(Q)) = 2, that X(E/Q)[2] =
0 and that ρE,p is surjective for all odd primes p. If we could somehow prove that
for every prime p, there is a c with zc,σ,` 6= 0, then Theorem 5.11 would imply that
X(E/Q) = 0. This would be an extremely deep result, since at present it is an open
problem to prove unconditionally that the set of all pairs

{(E, p) : X(E/Q)(p) is finite and rank(E) ≥ 2}

is infinite!

6 The Action of Galois and Reduction of Heegner
Points Modulo `

In this section, we prove a result (Theorem 6.6) that is crucial to giving a variant of
Kolyvagin’s derived points construction directly in characteristic `, which is the main
input to Algorithm 2.1. Note that the results in this section are on the level of the
modular curve X0(N), and make no reference to a specific choice of elliptic curve over
Q of conductor N , so they are equally useful in studying modular abelian varieties.

Theorem 6.6 below asserts that there is a compatible action of Gal(Kc/K1) on two
objects. Everything in the current paragraph will be made precise in Section 6.1 below.
Let N be a positive integer and K a quadratic imaginary field such that each prime
dividing N splits in K. Fix a choice of Heegner point x1 ∈ X0(N)(K1). For any
square-free product c of primes that are inert in K, consider the support S of the
divisor Tc(x1) ∈ Div(X0(N)), where Tc is the cth Hecke operator. The Galois group
Gal(Kc/K1) acts transitively on S. Fix an inert prime ` - c and a choice of prime λ of Z
over `. Let E1 be the reduction mod λ of the enhanced elliptic curve corresponding to
x1, and consider the Eichler order R = End(E1). Also, as explained in Proposition 6.2,
use class field theory to identify Gal(Kc/K1) with (OK/cOK)×/(Z/cZ)×. For x ∈ S,
represent x (mod λ) by a right ideal class in R. Then Theorem 6.6 below asserts that
the action of Gal(Kc/K1) on S is compatible with the action of (OK/cOK)×/(Z/cZ)×

on the set of right ideals of R/cR of index c2. This result is somewhat complicated to
state and prove, but we are amply compensated with an alternative interpretation of
Kolyvagin’s derived points construction.

In Section 6.1 we state our main result, then in Section 6.2 we prove it by deriv-
ing certain transformation rules for right ideals. We emphasize that in the arguments
below, c is an arbitrary squarefree product of inert primes, and K is allowed to have
arbitrary class number.

Remark 6.1. Reduction and the Galois action is also considered in [Cor02, §3.3], but
via an adelic formulation that is less explicit and amenable to computation.
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6.1 Notation and statement of theorem

In Section 6.1.1 we explain how Galois and Hecke operators act on higher Heegner
points. In order to see the reduction of these points modulo `, in Section 6.1.2 we
introduce enhanced supersingular elliptic curves, and describe how they relate to points
on modular curves. In Section 6.1.3, we explain how the Hecke operators act on divisors
on enhanced curves, which will be used later in the proof of our main theorem. Finally,
in Section 6.1.4 we precisely state the main theorem of this section, which is critical in
reinterpreting Kolyvagin’s derived classes operator in characteristic `.

6.1.1 Galois and Hecke actions on Heegner points

Let N , K, c, and Kc be as above, and let D = disc(OK). Let Oc = Z+cOK be the order
of conductor c. Let n be a choice of ideal in OK with OK/n ∼= Z/NZ, and let nc = n∩Oc.
As in [Gro84], for any order O (of conductor coprime to N) and any fractional O-
ideals m and a, let (O,m, [a]) denote the Heegner point (C/a,m−1a/a) ∈ X0(N), with
endomorphism ring the order O. In particular, let

xc = (Oc, nc, [Oc]) ∈ X0(N)(Kc).

The elements of (OK/cOK)×/(Z/cZ)× are in bijection with the lines through the
origin in the plane OK/cOK ≈ (Z/cZ)2. These lines are in bijection with the sublattices
of OK of index c. The aforementioned sublattices are fractional Oc = Z + cOK ideals,
and each one represents an element of the kernel of the natural map Cl(Oc)→ Cl(OK).

Proposition 6.2. We have a commutative diagram of abelian groups:

1 // Gal(Kc/K1) //

∼=
��

Gal(Kc/K) //

∼=θ

��

Gal(K1/K) //

∼=
��

1

1 // (OK/cOK)×/(Z/cZ)× // Cl(Oc) // Cl(OK) // 1,

where the rightmost two vertical isomorphisms are induced by the Artin reciprocity map
of class field theory, and the bottom row involves the bijections mentioned above.

Proof. This is standard; see, e.g., [Gro91, §3].

As explained in [Gro84, §4, (4.2)], for [b] ∈ Cl(Oc), we have

(Oc, nc, a)θ(b) = (Oc, nc, ab−1).

Also [Gro84, §6], we have

Tc(x1) = Tc((OK , n,OK)) =
∑

b⊂OK

(Oc, nc, b) ∈ Div(X0(N)), (6.1)

where the sum is over sublattices b ⊂ OK of index c.

Remark 6.3. We emphasize: the b are not ideals of OK , but merely ideals of Oc! If
they were ideals of OK , they would have norm c = #(OK/b), but c is a product of
distinct inert primes, so there are no ideals of OK of norm c.
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6.1.2 Enhanced supersingular elliptic curves in characteristic `

We consider enhanced elliptic curves E = (E,C), where E is an elliptic curve and C ⊂ E
is a cyclic subgroup of order N . The terminology enhanced elliptic curves is used in
[Rib90a, §3].

Recall that we fixed above an inert prime ` - c and a prime λ of Z over `. The set
X0(N)(F`2)ss of supersingular points on the mod λ reduction of X0(N) is the set of
isomorphism classes of enhanced elliptic curves E = (E,C), where E is a supersingular
elliptic curve over F`2 and C ⊂ E is a cyclic subgroup of order N .

Let [E1] = x1 ∈ X0(N)(K1), so E1 is a representative enhanced elliptic curve
corresponding to the Heegner point x1. Since n is an OK-ideal, we have OK = End(E1),
so we obtain an inclusion

OK = End(E1) ↪→ End(E1). (6.2)

Remark 6.4. To see that Equation (6.2) is injective, note that by [ST68, Lem. 2],

reduction modulo the prime λ of Z induces an isomorphism E1[pn]
∼=−−→ E1[pn] for any

prime power pn with p 6= ` and p a prime of good reduction for E1 (the lemma only
asserts the map is surjective, but it is a map between finite groups of the same order,
hence is an isomorphism). If ϕ ∈ End(E1) acts as 0 on E1, then it acts as 0 on E1[p∞],
hence acts as 0 on E1[p∞], hence is 0 (since endomorphisms have finite degree).

The following lemma implies that

[E1] ∈ X0(N)(F`2)ss.

Lemma 6.5. Suppose F is an elliptic curve defined over an extension M of K and that
F has CM by an order O of K. Suppose that ` ∈ Z is a prime that is inert in K such
that ` - [OK : O]. Let λ be a prime of M lying over ` and assume F has good reduction
at λ, and let k be residue field modulo λ. Then the reduction Fk of F modulo λ is a
supersingular elliptic curve.

Proof. This is well known (see [Lan87, Ch. 10, §4, Thm. 10, Case 1] and [Sil94, Exercise
2.30]), but for the convenience of the reader we give a more conceptual proof than the
ones cited above. It follows from the definition of Fk in terms of Néron models that O
acts (functorially) on Fk. Moreover, because ` - [OK : O], the `-torsion subgroup Fk[`] =
Fk(F`)[`] is a vector space over the finite field OK/(`) ≈ F`2 . Thus d = dimF`

Fk[`] is
even. Since Fk is an elliptic curve over a finite field of characteristic `, we have d ≤ 1,
so d = 0, hence Fk is supersingular.

We view X0(N)(F`2)ss as explained in [Rib90a, §3], especially [Rib90a, Rmk. 3.5,
pg 441], which builds on work of Deuring and Shimura. The endomorphism ring R =
End(E1) is an Eichler order of level N in the (unique up to isomorphism) rational
quaternion algebra B ramified at ` and ∞. We have a bijection

X0(N)(F`2)ss
∼=−−−−−→ { right fractional ideal classes in R }, (6.3)

where two (nonzero) fractional right R-ideals I, J ⊂ B are equivalent if there exists
α ∈ B such that αI = J . For any enhanced elliptic curve F, endow Hom(E1,F) with
the structure of right R-module as follows: for ϕ ∈ Hom(E1,F) and r ∈ R we put
ϕ.r = ϕ ◦ r. This bijection sends [F] to the class of a right R-ideal that is isomorphic
as a right R-module to the right R-module Hom(E1,F). Also, we see that the right
R-module Hom(E1,F) is isomorphic to some right R-ideal I as follows. By [Mes86,
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§2.4, pg. 223] or [Rib90a, Lem. 3.17], there exists an isogeny ψ : F → E1. Using such
an isogeny, we obtain an embedding

Hom(E1,F) ↪→ End(E1) = R

given by ϕ 7→ ψ ◦ ϕ, and the right ideal I is the image of Hom(E1,F) under this
embedding. Making a different choice of isogeny ψ replaces I by an equivalent right
ideal.

6.1.3 Action of Hecke operators on supersingular divisors

The Hecke operators Tn act on Div(X0(N)(F`2)ss), as explained in [Rib90a, pg. 443–
445], and this action translates to an action on the free abelian group on the right
R-ideal classes via the bijection (6.3) above, as explained in, e.g., [Koh01, §3.2]. For n
any integer coprime to `N , we have

Tn([I]) =
∑

J⊂I
[J ], (6.4)

where the sum is over right R ideals J ⊂ I with I/J ≈ (Z/nZ)2. We apply (6.4) to
obtain a more explicit description of the image of the unit ideal (which corresponds to
the reduction of x1) under the Hecke operator Tc. Let

R = R⊗ (Z/cZ) ∼= R/cR.

Since c is coprime to N and coprime to the unique finite prime ` that ramifies in B, we
have R⊗ Zc ≈M2(Zc), hence

R ≈M2(Z/cZ) ∼=
⊕

primes p|c
M2(Fp).

For any right ideal I ⊂ R, let Ĩ denote the inverse image of I in R under the natural
surjection R→ R. The right ideals of R correspond to the right ideals of R that contain
cR, so the Hecke operator Tc acts on the unit ideal R via

Tc([R]) =
∑

right ideals I⊂R
with R/I ≈ (Z/cZ)2

[Ĩ]. (6.5)

More generally, for any right R-ideal J with [R : J ] coprime to c, we have

Tc([J ]) =
∑

right ideals I⊂R
with R/I ≈ (Z/cZ)2

[Ĩ ∩ J ].

6.1.4 Statement of the main theorem

As in the diagram of Proposition 6.2 above, let [a] ∈ ker(Cl(Oc)→ Cl(OK)) be an ideal
class, and let [α] ∈ (OK/cOK)×/(Z/cZ)× be the corresponding element, so α ∈ OK .
By replacing a by an equivalent ideal, we may assume that a = Zα + cOK . Suppose
[b] ∈ ker(Cl(Oc)→ Cl(OK)) is another ideal class, with corresponding element [β], and
let θ[b] ∈ Gal(Kc/K1) be the corresponding automorphism. Let Ib ⊂ R be a right ideal
such that

(Oc, nc, b) 7→ [Ĩb] (6.6)
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under composition of reduction modulo λ with the equivalence (6.3) above. There is
such a right ideal Ib because (Oc, nc, b) is in the support of Tc(x1), and [Ĩb] is in the
support of Tc(x1 (mod λ)) (see Equation (6.1)).

The group Gal(Kc/K1) does not act naturally on

X0(N)(F`2)ss = X0(N)(OKc
/λ)ss,

since `OK splits as a product of many primes (of which λ is one of them); of course, the
“useless” decomposition subgroup of Gal(Kc/K1) associated to λ (which has order 1!)
does naturally act. However, as we will now see, Gal(Kc/K1) acts naturally on a subset
of the right ideals of R. The challenge is that we need to compute what happens if we
take xc ∈ X0(N)(Kc), act by Galois, then map the result to X0(N)(F`2), and we can
do this explicitly by instead considering the action of Gal(Kc/K1) on index c2 ideals in
R.

Equation (6.2) asserts that given our choice of λ there is an inclusion OK ↪→ R,
which we fix and use to define a right action of Gal(Kc/K1) on certain right ideals in
R. For α ∈ OK , let α denote the image of α in R. If σ ∈ Gal(Kc/K1) corresponds to
[α] ∈ (OK/cOK)×/(Z/cZ)×, make σ act on the right on the set of right ideals I of R
with R/I ≈ (Z/cZ)2 by Iσ = α−1I. Finally, we state the main result of this section,
which asserts that the natural right action of Gal(Kc/K1) on the support of Tc(x1) in
Div(X0(N)/Kc) is compatible with the right action of Gal(Kc/K1) that we just defined.
We will prove this theorem in Section 6.2 below.

Theorem 6.6. Let σ ∈ Gal(Kc/K1), [b] ∈ ker(Cl(Oc) → Cl(OK)), and let [Ĩb] corre-
spond to (Oc, nc, b) (mod λ) as in Equation 6.6 above. Then

(Oc, nc, b)σ (mod λ) = [Ĩσb ].

6.2 Proof of Theorem 6.6

This section is devoted to giving a proof of Theorem 6.6. When c = 1 the relevant
objects all have cardinality 1 and the statement is trivial, so for the rest of this section
we assume that c > 1. The strategy of the proof is to reinterpret the ideal Ib as the right
annihilator of a certain left ideal, and observe that this left ideal behaves sensibly under
the action of Galois. (The proof is long because we are not sneaking any important
details under the rug.)

We may assume that the representative fractional ideal b is a sublattice of OK of
index c. Let E1 be the enhanced elliptic curve corresponding to the triple (OK , n, [OK ])
and let Eb be the enhanced elliptic curve corresponding to the triple (Oc, nc, [b]). Let
ψb : Eb → E1 be the isogeny of degree c given by the map C/b → C/OK that is

multiplication by 1 on tangent spaces. The complementary (or dual) isogeny ψ̂b : E1 →
Eb is then given by the map C/OK → C/b induced by multiplication by c on C. As
in Section 6.1.2, we use ψb (mod λ) to define a specific R-ideal Ib ⊂ R = End(E1)
that corresponds to [Eb] ∈ X0(N)(F`2)ss. More precisely, the ideal Ib is the image of
Hom(E1,Eb) in R via the map ϑ 7→ ψb ◦ ϑ, i.e.,

Ib = {ψb ◦ ϑ : ϑ : E1 → Eb} ⊂ R = End(E1).

The following lemma follows immediately from the definitions given in Section 6.1:

Lemma 6.7. Under our fixed choices of maps and prime λ, we have

[Eb] (mod λ) ←→ [Ib],

where Ib is defined as above.
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Proposition 6.10 below characterizes Ib as an annihilator of a left R-ideal, which will
be easier to work with. Let

Jb = {ϕ ∈ R : ϕ(ker(ψ̂b)) = 0},

which is a left R-ideal. Thus Jb is the left ideal of all endomorphisms of E1 that factor

through the homomorphism ψ̂b : E1 → Eb:

Eb

  
E1

ψ̂b

>>

ϕ∈Jb
// E1

We will use the following lemma to compute the quotient abelian group R/Jb.

Lemma 6.8. The natural map R→ End(E1[c]) is surjective.

Proof. It suffices to prove that for each prime p | c, the map

ϕ : R⊗ Fp → End(E1[p]) (6.7)

is surjective. Since R is an Eichler order of level N , N is coprime to c and p | c, we
have R⊗Fp = End(E1)⊗Fp. Also, since p 6= `, we have End(E1[p]) ≈ End(Fp⊕Fp) ∼=
M2(Fp), and since E1 is a supersingular elliptic curve, dimFp(R⊗Fp) = rankZR = 4, so

by a dimension count it suffices to prove that ϕ is injective. Suppose f = f⊗1 ∈ R⊗Fp
is a nonzero element of ker(ϕ), with f ∈ End(E1). Then f acts as 0 on E1[p], so f
factors through multiplication by p, which means that there exists g ∈ End(E1) with
f = pg. But then f = pg ⊗ 1 = g ⊗ p = g ⊗ 0 = 0, a contradiction. We conclude that ϕ
is injective, hence surjective.

Lemma 6.9. We have R/Jb ≈ (Z/cZ)2, where we view both sides as quotients of
additive abelian groups.

Proof. We prove this lemma by using Lemma 6.8 to reinterpret the assertion as a state-
ment in M2(Z/cZ), then use linear algebra modulo prime divisors of c to count di-

mensions. The kernel D = ker(ψ̂b) ⊂ E1[c] is a cyclic group of order c. Let J be
the left annihilator in End(E1[c]) ≈ M2(Z/cZ) of D. For each prime p | c, we have
End(E1[p]) ≈ M2(Fp), and the factor of D in E1[p] is of order p. The left annihilator
in M2(Fp) of a 1-dimensional subspace of (Fp)2 has Fp-dimension 2, since it is the 2-
dimensional Fp-vector space of matrices whose rows are both a multiple of v, where v
has dot product 0 with a basis for our 1-dimensional subspace. Putting these factors
for each p together, we see that J is free of rank 2 over Z/cZ.

Since c kills ker(ψ̂b), we see that cR ⊂ Jb. We thus have an isomorphism of abelian
groups

R/Jb →M2(Z/cZ)/J.

It is surjective because of Lemma 6.8. It is injective because Jb is defined to be those
endomorphisms that kill the subgroup D of E1[c], which is a condition we can check in
End(E1[c]). The lemma thus follows.

Next we use the left R-ideal Jb to define a right R-ideal:

I ′b = {ϕ ∈ R : Jbϕ ⊂ cR}.
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Proposition 6.10. We have
Ib = I ′b

Proof. The strategy of the proof is to show that Ib ⊂ I ′b, then observe that both Ib and
I ′b have the same index in R, so they must be equal.

To see that the inclusion Ib ⊂ I ′b hold is a straightforward calculation using the
definitions, as follows. An element ϕ ∈ Ib is by definition of the form ϕ = ψb ◦ϑ, where
ϑ : E1 → Eb and ψb : Eb → E1, as above. Suppose δ ∈ Jb, so δ ∈ End(E1) and

δ(ker(ψ̂b)) = 0, hence δ = δ′ ◦ ψ̂b for some δ′ : Eb → E1. Thus

δ ◦ ϕ = (δ′ ◦ ψ̂b) ◦ (ψb ◦ ϑ) = δ′ ◦ [c] ◦ ϑ ∈ cR,

which proves that Ib ⊂ I ′b.
We next prove that [R : I ′b] = c2, as an application of Lemma 6.9. We have c ∈ I ′b,

so cR ⊂ I ′b ⊂ R, hence I ′b is completely determined by an ideal I
′
b ⊂ R = R⊗ (Z/cZ) ≈

M2(Z/cZ). The ideal I
′
b is the right annihilator of the left ideal Jb ⊂ R. For each prime

p | c, Lemma 6.9 implies that the right annihilator mod p of Jb, i.e., the image of I ′b in
R⊗ Fp ∼= M2(Fp), is proper and nontrivial. We conclude that [R : I ′b] = c2.

Finally we observe that [R : Ib] = c2. In light of Equation (6.5), the ideal Ib is
one of the ideals that appears in the sum in the definition of the Hecke operator Tc, so
[R : Ib] = c2. Since [R : I ′b] = c2 and Ib ⊂ I ′b, it follows that Ib = I ′b, which proves the
proposition.

Suppose [α] ∈ (OK/cOK)×/(Z/cZ)× with α ∈ OK , and let a ⊂ OK be the cor-
responding fractional Oc-ideal (as in Section 6.1.4). Let Jα = Ja. Proposition 6.12
below asserts that the natural right action of (OK/cOK)×/(Z/cZ)× on the left ideals
in R is compatible with the natural right action of (OK/cOK)×/(Z/cZ)× on sublattices
a ⊂ OK of index c. Note the inverse that appears, which makes a left action into a right
action (the group acting is abelian, so we are being slightly pedantic in emphasizing
this). First we prove a lemma about an action on certain kernels.

Lemma 6.11. Suppose [α], [β] ∈ (OK/cOK)×/(Z/cZ)× with α, β ∈ OK . Then

ker(ψ̂αβ) = α ker(ψ̂β).

Proof. As above, let a ⊂ OK be the lattice of index c corresponding to [α]. Also, recall

from page 15 that the map ψ̂α : E1 → Ea is given over the complex numbers by the
map C/OK → C/a induced by multiplication by the integer c on C. We have

E1[c] =

(
1

c
OK
)
/OK ∼= OK/cOK (6.8)

and the lattice a defines a rank 1 subspace of OK/cOK . The isomorphism (6.8) identifies

ker(ψ̂α) ⊂ E1[c] with the image of a inOK/cOK . If b corresponds to [β], then αb = [αβ],
so in terms of this presentation of E1[c], the claimed equality of the lemma follows.

Note that since [α] ∈ (OK/cOK)×/(Z/cZ)×, the image α ∈ R = R⊗ (Z/cZ) of α is
invertible.

Proposition 6.12. Let α, β be as above, let J be a left R-ideal, and let J denote its
image in R. Then

Jαβ = Jβ · α−1,
where α is the image of α in R.
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Proof. The reduction modulo λ map E1[c] to E1[c] is an isomorphism since ` - cN (see

Remark 6.4), so reducing both sides of Lemma 6.11 modulo λ, we see that ker(ψ̂αβ) =

α ker(ψ̂β). Thus

Jαβ ={ϕ ∈ R : ϕ(ker(ψ̂αβ)) = 0}

={ϕ ∈ R : ϕ(α(ker(ψ̂β))) = 0}

={ϕ ∈ R : (ϕα)(ker(ψ̂β)) = 0}
={ϕ ∈ R : ϕα ∈ Jβ} = R ∩ (Jβ · α−1) ⊂ Jβ · α−1.

We thus have an inclusion of (equivalent) fractional left R-ideals

Jαβ ⊂ Jβ · α−1.

Taking the image of both ideals in R gives an inclusion

Jαβ ⊂ Jβ · α−1 ⊂ R.

Right multiplication by an invertible element in R is a bijection, so [R : Jβ · α−1] =
[R : Jβ ] = c2, by Lemma 6.9. Since [R : Jαβ ] = c2, again by Lemma 6.9, it follows that
Jαβ = Jβ · α−1, as claimed.

Proof of Theorem 6.6. We have a, b ⊂ OK two lattices of index c and corresponding
classes

[α], [β] ∈ (OK/cOK)×/(Z/cZ)×.

Let σ ∈ Gal(Kc/K1) be the automorphism corresponding to a ∈ Cl(Oc). Let g ⊂ OK be
the lattice of index c corresponding to the class [α−1β] = [α]−1[β] ∈ (OK/cOK)×/(Z/cZ)×,
so Iα−1β = Ig. Then, under reduction modulo λ, we have

(Oc, nc, b)σ = (Oc, nc, a−1b) 7−→ [Iα−1β ].

For any left or right ideal I of R, let I be the image of I in R = R ⊗ (Z/cZ). By
Proposition 6.10 the right ideal Ib is the right annihilator of the left ideal Jb, and this
is true for any b. By Proposition 6.12, we have that Iα−1β is the right annihilator of

the left ideal Jα−1β = Jβ · α. We thus have

α−1 · Iβ = α−1 · {ϕ ∈ R : Jβ · ϕ = 0}
= {α−1 · ϕ ∈ R : Jβ · ϕ = 0}
= {ϕ ∈ R : Jβ · αϕ = 0}
= {ϕ ∈ R : Jα−1β · ϕ = 0} = Iα−1β ,

where in the third equality we replace ϕ by αϕ, using that multiplication by α defines
a bijection R→ R. The displayed equality proves the theorem.
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7 Reduction of Derived Classes

Let E be an elliptic curve over Q, and let Pc,σ be as in Equation (5.4) of Section 5. In
this section, we apply the general results of Section 6 to give an algorithm to compute
the reduction zc,σ,` ∈ E(F`2)⊗ (Z/pZ) (see Equation 5.6) when p is an odd prime and
E[p] is absolutely irreducible. We will apply this algorithm in Section 8 to verify that
[Pc,σ] 6= 0, in specific examples. It is of interest to verify that [Pc,σ] 6= 0 in specific
examples since, as was mentioned in Section 1, this was until now not known in even a
single case for a curve E of rank ≥ 2.

We continue to assume that E and K satisfy the Heegner hypothesis. The goal of
this section is to give an algorithm that we can use (in some specific examples) to verify
that [Pc,σ] 6= 0 for some c. To do this, we consider the reduction map

r` : E(Kc)⊗ (Z/pnZ)→ E(F`2)⊗ (Z/pnZ), (7.1)

given by reducing points modulo a fixed choice of prime λ over `, where ` - c is a
prime that is inert in K, just as at the end of Section 5. If we find one prime ` such
that zc,σ,` = r`([Pc,σ]) 6= 0, we conclude that [Pc,σ] 6= 0, as desired. We will thus be
concerned primarily with computing whether or not zc,σ,` is 0 in the case when n = 1.

Remark 7.1. Assume that X(E/Q)[p] = 0, that ran(E/Q) = rank(E(Q)) = 2, and
that we have shown that [Pc,σ] 6= 0 for some prime c. Then there is an alternative
approach to compute the line spanned by Pc′,σ′ for any inert prime c′. Jared Weinstein
and the author learned about this idea from Karl Rubin after we implemented and
ran the main algorithm of this paper, and wanted to better understand the data we
obtained. The algorithm builds on [How04] and the Mazur-Rubin theory of Kolyvagin
systems [MR04]. This is the subject of the forthcoming paper [SW10], and we have also
used this algorithm as a double check on the calculations in Section 8. Quick summary:
an easy calculation shows that the line has to be in the kernel of rc; moreover, and this
is deeper, rc fails to have maximal rank if and only if [Pc] = 0.

In Section 7.1 we explain how to compute the reduction map from Heegner points in
characteristic 0 to supersingular points in characteristic ` as an application of Deuring’s
lifting theorem and explicit computation with ternary quadratic forms. Section 7.2 con-
tains the promised reinterpretation of Kolyvagin’s derived classes construction directly
on the divisor group of supersingular points, and Section 7.3 explicitly links this con-
struction with reduction of derived classes from characteristic 0. Section 7.4 refines a
crucial surjectivity result that Cornut used in proving Mazur’s conjecture, which is also
extremely important to our algorithm. Finally, Section 7.5 proves a multiplicity one
theorem, which ensures that we have a general algorithm, rather than just a procedure
that happens to work in every case we try.

7.1 Explicit computation of the reduction map using quaternion
algebras

Let ` be a prime that is inert in K, as above. Following [Ste09, Piz80], let B = B`,∞
be the unique (up to isomorphism) quaternion algebra ramified at ` and ∞, and fix an
Eichler order R of level N in B.

The group of Atkin-Lehner operators of level N has order 2ν , where ν is the number
of prime divisors of N . As discussed in Remark 4.1 above, the Heegner point x1 is only
well defined up to the choice of an ideal n of OK with OK/n ∼= Z/NZ, and there are 2ν
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choices for n. We temporarily write x1,n for the choice of Heegner point x1 associated
to the ideal n.

The prime ` is inert in K, so by Lemma 6.5, each of the points x1,n defines a point on
X0(N)(K1) that reduces to a supersingular point in X0(N)(F`2)ss. Moreover, we have
the bijection of Equation 6.3 between X0(N)(F`2)ss and a certain set of right R-ideal
classes. In terms of this bijection, we compute some x1 ∈ X0(N)(F`2)ss corresponding
to a choice of n as follows. First, we enumerate all right ideal classes [I] using standard
algorithms, e.g., if N is odd by applying the Hecke operator T2 repeatedly, starting with
the unit ideal, and using theta series to check equivalence (see, e.g., [Piz80, Prop. 1.18]).
Then we apply Theorem 7.2 below to find an I such that OK embeds in RI .

Let I be a fractional right R-ideal, and consider the left order

RI = {x ∈ B : xI ⊂ I}

associated to I. We use the Deuring lifting theorem to give an algorithm to compute
x1.

Theorem 7.2 (Deuring). The bijection of Equation (6.3) induces a bijection

{x1,n ∈ X0(N)(F`2)ss : ideals n with OK/n ∼= Z/NZ} ∼=−−→ {[I] : OK embeds in RI}.

Proof. See [GZ85, Prop. 2.7] (see also [JK10, §2] for a generalization in which OK is
replaced by Oc).

To compute a choice of x1 thus reduces to giving an algorithm to decide whether or
not OK embeds in RI . As in [Gro87, pg. 172], let GI ≈ Z3 be the trace zero elements
in 2RI + Z, and let qI : GI → Q be the normalized ternary quadratic form got by
restricting the reduced norm on B to GI .

Lemma 7.3. There is an embedding of OK into RI if and only if the quadratic form
qI represents the absolute value |DK | of the discriminant of OK .

Proof. This follows from [Gro87, Prop. 12.9] (see also [JK10, Lem. 4.1]).

To compute x1 we compute the quadratic form qI for a representative I for each
right ideal class in turn, and decide whether or not it represents |DK |. When we find
one that does, we declare that our representative element is x1 = x1,n, which is well
defined up to the choice of ideal n. In general (e.g., when the class number of K is
bigger than 1), our current formula unfortunately requires computing all x1,n for all n
(see Theorem 7.8).

7.2 Kolyvagin’s derived classes construction in terms of quater-
nion algebras

Let I be a right ideal in our fixed choice of Eichler order R of level N such that I
corresponds to x1,n, computed as above.

Lemma 7.4. By replacing I by an equivalent ideal, we can arrange that I ⊗ (Z/cZ) =
R⊗ (Z/cZ).

Proof. For any prime r - N`, the graph of the Hecke operator Tr is connected (see
[Mes86, §2.4, pg. 223] or [Rib90a, Lem. 3.17]). If we choose r also coprime to c, then
enumerate the right ideals of R by computing the action of Tr, starting with the unit
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ideal, we will cover all the right ideal classes of R; in particular, there is an ideal I ′

equivalent to I obtained via this procedure. From the formula of Equation (6.4) for the
action of Hecke operators, we see that [R : I ′] is a power of r. Thus I ′ ⊗ (Z/cZ) =
R⊗ (Z/cZ), as claimed.

Next we compute a choice of homomorphism

s : R�M2(Z/cZ). (7.2)

This can be done individually for each prime divisor of c, and the maps assembled
together to give s. For example, for each prime divisor q | c, one could consider the
algebra R ⊗ (Z/qZ) and apply [Voi, §4] to find an explicit isomorphism R ⊗ (Z/qZ)→
M2(Z/qZ).

Let q be any prime that is inert in K. Suppose the image of α ∈ OK generates the
cyclic group

(OK/qOK)×/(Z/qZ)×

of order q + 1. Using a fixed choice of embedding of OK into the left order of I from
above (which exists by Theorem 7.2), we view α as an element of B. Let α be the
canonical image of α in M2(Z/qZ) = R/qR using the splitting s of (7.2).

For each i = 0, . . . , q, let

J i = {B ∈M2(Z/qZ) : (1, 0)αiB = 0} ⊂ R/qR.

Suppose [M ] is a right ideal class of R, and (as in Lemma 7.4) choose a representative
right ideal M ⊂ R such that q - [R : M ], so s defines a map M � R. For each i, let Ji
be the inverse image of J i in M . Define

Dq,α([M ]) =

q∑

i=1

i[Ji].

Extending linearly, we define an endomorphism

Dq,α ∈ End(Div(X0(N)(F`2)ss)).

Remark 7.5. We make two remarks about the above operator:

1. The map Dq,α is explicitly computable; it is closely related to computing the
Hecke operator Tq, since Tq([M ]) =

∑q
i=0[Ji] is almost the same as Dq,α([M ]),

except without the coefficient in the enumeration of the Ji’s.

2. The maps Dq,α typically do not commute with the Hecke operators or with each
other.

Next write c = p1 · · · pt, let σ = (σ1, . . . , σt) with σi ∈ Gal(Kc/Kc/pi) be choices of
generators, and let α = (α1, . . . , αt) with αi ∈ OK be the corresponding elements via
the map of Equation 4.1 above. Define

Dc,α =

t∏

i=1

Dpi,αi ∈ End(Div(X0(N)(F`2)ss)).
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7.3 Reduction of Kolyvagin’s derived points

Let f ∈ S2(Γ0(N)) be a newform, let If ⊂ T be the annihilator of f in the Hecke algebra
associated to J0(N), let Af = J0(N)/IfJ0(N) be the corresponding modular abelian
variety with modular parametrization πf : J0(N)→ Af and let

ψf : Div(X0(N)ssF`2
)→ Af (F`2)

be the homomorphism that sends each supersingular point x to πf (x−∞), where πf is
the reduction modulo λ of πf . By [BCDT01], our elliptic curve E is isogeneous to some
Af for a newform f ∈ S2(Γ0(N)) where N is the conductor of E.

Theorem 7.6. We have the following in Af (F`2)⊗ (Z/pnZ):

[πf (Dc,σ(yc))] = [ψf (Dc,α([I]))].

Proof. This follows from Theorem 6.6.

Let
I = {[I] : OK ↪→ RI}

be the set of all right ideal classes of R whose left order admits an embedding of OK .
For each such [I], let nI be half the number of primitive representatives of |DK | by the
ternary quadratic form qI . Let H be the Gal(Q/K)-orbit of the set of all Heegner points
x1,n ∈ X0(N)(K1) for all ideals n ⊂ OK with OK/n ∼= Z/NZ.

Lemma 7.7. For each [I] ∈ I, the number of elements of H reducing to the point of
X0(N)(F`2) corresponding to [I] is equal to nI .

Proof. By [JK10, §2] there is a one-to-one correspondence between the Heegner points
x1,n reducing to [I] and R×I conjugacy classes of embeddings OK ↪→ RI . By [JK10,
Prop. 4.2] there is a (#R×I /2)-to-1 correspondence between embeddings OK ↪→ RI and
primitive representations of |D| by qI . Thus every pair of primitive representations of |D|
by qI corresponds to #R×I embeddings, so half the number of primitive representatives
is the number of R×I conjugacy classes of embeddings.

Theorem 7.8. Let ν be the number of distinct prime divisors of N . We have the
following in Af (F`2)⊗ (Z/pnZ):

πf ([Pc,σ]) = 2−ν ·
∑

[I]∈I
nI · [ψf (Dc,α([I]))] (7.3)

Proof. This follows by combining Lemma 7.7 and Theorem 7.6, and noting that H is
a disjoint union of [K1 : K] Atkin-Lehner orbits, each of size 2ν . Thus in computing
the sum on the right of (7.3) we are computing TrK1/K(Dc,σ(yc)) separately 2ν times,
hence we divide out this extra factor of 2ν , which is harmless since p is odd.

We still have not explained how to explicitly compute the map ψf , so Theorem 7.8
does not yet yield an algorithm. In Section 7.4 we will establish that ψf is surjective after
tensoring with Z/pZ, and in Section 7.5 we give conditions under which ψf is uniquely
determined up to scalars by being Hecke equivariant (“multiplicity one”), which means
we can compute ψf up to a scalar. Alternatively, as mentioned in Remark 2.3, we can
sometimes instead avoid computing ψf at all if we know ψf is surjective by instead
verifying that the T-span of

∑
nIDc,α([I]) is all of X ⊗ Fp.
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7.4 Map from the supersingular module to an optimal abelian
variety quotient

Let ` be an inert prime that does not divide the level N , and let k = F`2 ≈ OK/`OK ,
which is a finite field of order `2. The Hecke algebra T acts via correspondences on many
objects attached to the modular curves X0(N) and X1(N), e.g., via endomorphisms on
the Jacobian J0(N) and also on

X = Div(X0(N)(k)ss) and X0 = Div0(X0(N)(k)ss). (7.4)

Also, T acts on the Shimura subgroup Σ = ker(J0(N) → J1(N)). We say that a T-
module M is Eisenstein (in the sense of [Maz77]) if for any prime p - N , the operator
Tp − (1 + p) annihilates M . For example, [Rib88, Thm. 1] asserts that Σ is Eisenstein.

Let J = J0(N)k, and consider the natural T-module homomorphism

X → J(k) (7.5)

that sends a divisor D ∈ X to the equivalence class of the degree zero divisor D −
deg(D)∞ in the Jacobian.

Proposition 7.9 (Ribet). The cokernel S of the induced map

X0 → J(k) (7.6)

is the Cartier dual Σ∨ of Σ, and the T-module Σ∨ is Eisenstein.

Proof. The following argument is due to Ribet (see [Rib10]). Let F be the `th power
Frobenius endomorphism of J and let V be its dual. We have J(k) = J [1 − F 2]. This
kernel is Cartier dual to J [1− V 2], since it is obtained by dualizing the following exact
sequence (see [Mum70, §15, pg. 143] and [Mil86, §11]):

0→ J [1− F 2]→ J
1−F 2

−−−→ J → 0.

Ribet proved in 1983 (see [Pra95, Prop. 3.6]) that the subgroup J [1− V 2] contains
the reduction modulo ` of the Shimura subgroup Σ of J , and S is the annihilator of Σ
in the natural perfect pairing between J [1− F 2] and J [1− V 2]. The content of [Pra95,
Prop. 3.6] is that the supersingular group is “as large as possible” in the sense that it
is the full annihilator.

In the pairing between J [1 − F 2] and J [1 − V 2], there is the standard formula
〈Tx, y〉 = 〈x, T †y〉, where the dagger refers to the Rosati involution of End(J) and T
is a Hecke operator. The Hecke operators Tn with n coprime to N are self dual with
respect to the Rosati involution.

To see that the group J [1 − F 2]/S is Eisenstein in the sense that Tp = 1 + p on
this quotient for p prime to N , let η be the difference Tp − (1 + p), which is self dual
with respect to the Rosati involution, since Tp is self dual and multiplication by the
integer (1 + p) is also self dual. For x ∈ J [1− F 2], we want to show that η(x) is in the
supersingular divisor class group; by [Pra95, Prop. 3.6], as mentioned above, this is the
same as showing that 〈η(x), y〉 = 0 for all y ∈ Σ. However, η annihilates Σ (see [Rib88,
Thm. 1]), so

〈η(x), y〉 = 〈x, η(y)〉 = 0.
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The following proposition is a refinement of [Cor02, Prop. 4.4]. An optimal quotient
A of J0(N) is any quotient of J0(N) by an abelian subvarieties (see [CS01, §3] for
the basic properties of optimal quotients). For example, the abelian varieties Af of
Section 7.3 above are, up to isogeny, the simple optimal quotients of J0(N) that satisfy
the hypothesis of Proposition 7.10 below.

Proposition 7.10. Let A be any abelian variety optimal quotient of J0(N) such that
ker(J0(N)→ A) is Hecke stable, let m be a non-Eisenstein maximal ideal of T, and let
X0 be as in Equation (7.6). Then the natural map

X0 → A(k)⊗T (T/m) (7.7)

is surjective. In particular, if A[m] is irreducible, then (7.7) is surjective.

Proof. As above, let S be the image of X0 in J(k), and let SA be the image of S in A(k).
Also, let Q = A(k)/SA. In light of Proposition 7.9, we have a commutative diagram of
T-modules with exact rows

0 // S //

��

J(k) //

��

Σ∨ //

��

0

0 // SA // A(k) // Q // 0.

Since A is an optimal quotient of J0(N), there is an abelian variety B such that we
have an exact sequence 0→ B → J0(N)→ A→ 0 of abelian varieties over Q with good
reduction at ` (since ` - N). This sequences reduces to an exact sequence 0 → Bk →
J → Ak → 0 over k by [BLR90, §7.5, Thm. 4] (we have “e < p− 1”, since p = ` is odd
and e = 1). Lang’s theorem (see [Lan56] or [Ser88, §VI.4]) implies that H1(k,Bk) = 0,
so J(k) → A(k) is surjective. The snake lemma then implies that the vertical map
Σ∨ → Q is surjective.

If Σ∨ ⊗T (T/m) ∼= Σ∨/mΣ∨ is nonzero then I = AnnT(Σ∨/mΣ∨) equals m since
m is maximal. Every ηq = Tq − (q + 1) for q - N is in I, since Σ∨ is Eisenstein by
Proposition 7.9. But some ηq 6∈ m, since m is non-Eisenstein, a contradiction. Thus
Σ∨ ⊗T (T/m) = 0, so upon tensoring the rightmost vertical surjection of the above
diagram with T/m, we conclude that Q⊗T (T/m) = 0. Tensoring the bottom row over
T with T/I and using that tensor product is right exact again then implies that (7.7)
is surjective.

Since m is a maximal ideal such that A[m] is irreducible (which implies by definition
that A[m] 6= 0), there is a prime q - N such that ηq = Tq − (1 + q) does not act as 0 on
A[m], since otherwise A[m] would have semisimplification the reducible representation
1⊕χ, where χ is the cyclotomic character. Thus m is non-Eisenstein, and the first part
of the proposition proves the second claim.

7.5 Multiplicity one theorem

The results of this section may be viewed as a partial generalization of [Rib99, Theo-
rem. 2.3] and [Eme02, Thm. 4.2, Thm. 4.6] to more general levels. In particular, we
prove under mild hypothesis that the multiplicity of a certain submodule of the T-module
Div(X0(N)ssF`2

) ⊗ Fp is 1. Our proof proceeds by finding a natural injective map from

this submodule into J0(N`)[p], and observing that the image lies in a 1-dimensional
subspace, as a consequence of a general multiplicity one result for J1(N`). For any
positive integer N , let T(N) denote the ring of Hecke operators acting on S2(Γ0(N)).
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Let N be a positive integer and ` a prime that does divide N , and let X =
Div(X0(N)ssF`2

), as in Equation (7.4). Let f =
∑
anq

n ∈ S2(Γ0(N)) be a newform

of level N and let m0 be a maximal ideal of T(N) such that the following three condi-
tions simultaneously hold:

1. m0 has odd residue characteristic p,

2. a`, `+ 1 ∈ m0, and

3. the 2-dimensional mod p Galois representation ρ attached to m0 is absolutely
irreducible.

By Ribet’s level raising theorem (see [Rib90b]), for each choice of ±1, there is a
maximal ideal m in the Hecke algebra T = T(N`) such that ρm ≈ ρ and T` ± 1 ∈ m.
Letting J = J0(N`), as explained in [RS01, §3.3], we have

J [m] ∼=
t⊕

i=1

ρ, (7.8)

for some integer t ≥ 1 called the multiplicity of m. That t ≥ 1 follows from an argument
of Mazur, as explained in [RS01, §3.3].

Proposition 7.11. We have dimT/m Hom(X,µp)[m] ≤ t.

Proof. The proof is inspired by [Rib94, Prop. 7.7], though that argument takes place in
the midst of a proof by contradiction.

Let G` ≈ Gal(Q`/Q`) be the decomposition subgroup of Gal(Q/Q) associated to
our fixed choice of prime λ of Z over `, and let I` ⊂ G` be the inertia subgroup. Let
k = F`, and let Jk be the special fiber of the Néron model of J at k. By [ST68, Lem. 2],
we have Jk[m] ∼= J [m]I` , and because ρ is unramified at `, we have J [m]I` = J [m], so
Jk[m] ∼= J [m].

Let Φ be the component group of Jk. As explained in [CS01, §4], we have a diagram
with an exact row and exact column, where T is the toric part of J0

k and B is an abelian
variety:

0

T

0 J0
k Jk Φ 0

B

0

Moreover, X0 ∼= Hom(T,Gm), so T ∼= Hom(X0,Gm) and T [p] = Hom(X0, µp).
Hence

Hom(X0, µp)[m] = T [m] ↪→ J0
k [m] ⊂ Jk[m] ∼= J [m]. (7.9)

The representation ρ arises from level N , so is unramified at `. The characteristic
polynomial of ρ(Frob`) is x2 − a`x+ `. Our hypothesis 2 on a` and `+ 1 imply that

x2 − a`x+ ` = x2 − 1 ∈ Fp[x].
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Since x2 − 1 = (x − 1)(x + 1) and p is odd, we have a decomposition of T[D]-modules
J [m] ∼= J [m]+⊕J [m]− and (7.8) implies that the two summands have dimension t. Here
we are using that J [m] = ⊕ρ; if V is the space underlying ρ, then V has dimension 2
and the characteristic polynomial of Frob` on V is (x− 1)(x+ 1), so V + and V − each
have dimension 1.

By [Rib90a, Prop. 3.7–3.8], the action of Frob` on X0 is via −T`. Since T` ± 1 ∈ m
(for some choice of sign), the action of Frob` on the T[D]-module Hom(X0, µp)[m] is
by ±` (because Frob` acts on µp by `th powering). Since ` + 1 ∈ m0, we have ` ≡ ±1
(mod p), so we conclude that Frob` acts on Hom(X0, µp)[m] as either +1 or −1. Thus
the sequence of inclusions of Equation (7.9) sends Hom(X0, µp)[m] to a submodule of
J [m]± for one choice of sign, from which we conclude that

dimT/m Hom(X0, µp)[m] ≤ dimT/m J [m]± = t.

Lemma 7.12. We have X/mX ∼= X0/mX0. (In fact, this lemma is true for any
non-Eisenstein maximal ideal m.)

Proof. It follows from the explicit description of Hecke operators (see Section 6.1.3) that

we have an exact sequence 0→ X0 → X
deg−−→ Z→ 0, where T acts on Z by Tr = r + 1

for r a prime coprime to N`. Tensoring this exact sequence over T with T/m yields an
exact sequence

TorT1 (Z,T/m)→ X/mX → X0/mX0 → Z⊗T (T/m)→ 0.

Since m is non-Eisenstein, Z⊗T (T/m) = 0 and

TorT1 (Z,T/m) = TorT1 (T/m,Z) = Z[m] = 0.

Recall that m is any maximal ideal of level N` arising from level raising, as explained
above (7.8) at the beginning of this section.

Proposition 7.13. We have dimT/m Hom(X,µp)[m] ≥ 1.

Proof. Let A = Af be the optimal quotient of J0(N) attached to f , let k = F`2 , and let
T = T(N). Consider the T[Frob`]-module M = A(k)⊗ T/m0. Proposition 7.10 implies
that the T-module homomorphism

X0 →M ∼= M+ ⊕M−

is surjective. Projection onto a one-dimensional T/m0-subspace of each of M+ and M−

defines a nonzero element of Hom(X0, µp)[m] for each of the two possible choices of m.
Note that Frob2

` = 1 on A[m] by hypothesis, so A[m](k) = A[m](k). Here we also use
that dimT/mA[m] ≥ 1 (see [RS01, §3.3]).

It is elementary that every element of Hom(X,µp)[m] factors through X/mX and
likewise for X0, so by Lemma 7.12 we have

Hom(X,µp)[m] ∼= Hom(X/mX,µp)[m] ∼= Hom(X0/mX0, µp)[m] ∼= Hom(X0, µp)[m].
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Theorem 7.14. If p - N , then dimT/m Hom(X,µp)[m] = 1.

Proof. In light of the above two propositions, it suffices to show that t = 1, where
t is the multiplicity in Equation (7.8). Let f be a cuspidal eigenform in S2(Γ0(N`))
such that AnnT(f) ⊂ m, and view f as an element of S2(Γ1(N`)). Let m1 be the
inverse image of m in T1 = T1(N`) under the natural map T1 → T. Since p > 2 and
p - N`, [Edi92, Th. 9.2, part 1] implies that dimT1/m1

J1(N`)[m1] = 2. The inclusion
J0(N`) → J1(N`) has kernel the Shimura subgroup, which is Eisenstein (by [Rib88,
Thm. 1]), so J0(N`)[m] ↪→ J1(N`)[m1]. Since t ≥ 1, this inclusion implies that t = 1.

8 Implementation and Data

We implemented in Sage1 algorithms based on the above results, and used them to
compute zc,σ,` for 10 different rank 2 curves, and various primes `, primes q = 3, 5, 7,
discriminants D of class number 1, and primes c, as in Table 8.1. Let r` be the reduction
map from Equation (7.1). We choose the pairs (E, `) so that r` is surjective and if `1
and `2 are the first two primes for a given elliptic curve E, then ker(r`1)∩ ker(r`2) = 0.
For each pair (E, `) in the table, we considered all fundamental discriminants D ≤ −5
such that K = Q(

√
D) has class number 1, satisfies the Heegner hypothesis for E, has

ords=1 L(ED, s) ≤ 1, and for which ` is inert. The restriction to class number 1 is not
essential.

8.1 Tables

Table 8.1: Rank 2 curves, discriminants, and primes for which we computed zc,σ,`.

E D p `

389a1 -7 3 5
389a1 -7 3 17
389a1 -7 3 41
389a1 -7 5 19
389a1 -11 3 17
389a1 -11 3 41
389a1 -11 5 19
389a1 -19 3 41
389a1 -67 3 5
389a1 -67 3 41
433a1 -8 5 79
433a1 -8 5 199
433a1 -11 3 17
433a1 -11 3 41
433a1 -11 5 79

E D p `

563a1 -8 3 23
563a1 -163 3 17
563a1 -163 3 23
571b1 -7 3 47
571b1 -7 7 97
571b1 -7 7 167
571b1 -8 3 47
571b1 -8 5 29
571b1 -8 5 149
571b1 -8 7 167
571b1 -19 5 29
571b1 -19 7 97
571b1 -19 7 167
571b1 -67 3 11
571b1 -67 7 97

E D p `

643a1 -8 3 29
643a1 -11 3 29
643a1 -19 3 29
643a1 -43 3 29
643a1 -67 3 11
655a1 -19 3 29
681c1 -8 3 23
709a1 -7 3 5
709a1 -7 3 47
709a1 -43 3 5
709a1 -67 3 5
709a1 -163 3 5
718b1 -7 3 5
997c1 -19 3 41
997c1 -67 3 41

1All computations in this section can be done in Version 4.6.1 using the free open source software
Sage [S+11]. Our implementation was peer reviewed by John Cremona for inclusion in Sage. Some
relevant output files from running the computation can be found at http://wstein.org/home/wstein/

db/kolyconj/. All computations were done under Linux (Ubuntu and Redhat) on several NSF-funded
Sun Fire X4450 servers with 24 2.6Ghz cores and 128GB RAM each, at University of Washington and
University of Georgia, and the computations took a few weeks CPU time.

27



We refer to elliptic curves using Cremona’s notation (see [Crea]). Table 8.1 has columns
E, D, p, `. Each row has the property that E has rank 2, ` is inert in the field K =
Q(
√
D), andK satisfies the Heegner hypothesis for E. Also, we have p | gcd(`+1, a`(E)).

We selected these examples because the Z-rank of Div(X0(N)ssF`2
) is relatively small (the

dimensions are in Table 8.2).
The Tamagawa numbers of all of our curves are 1 or 2, and in all cases ρE,p is

surjective (see Proposition 8.1).
Table 8.2 contains data about the points zc,σ,`. The columns labeled E, D, p,

and ` correspond exactly to the entries in Table 8.2. The column labeled dim gives
the dimension of Div(X0(N)ssF`2

); this dimension directly impacts the runtime of our

implementation. The column labeled max c contains the largest c such that we managed
to compute zc,σ,`. The columns labeled “= 0” and “6= 0” are a count of how many zc,σ,`
are 0 and not 0 among those we computed; note that for each c, ` we compute zc,σ,` for
only one choice of generator σ (see below for how we chose σ), since other choices of
σ would yield a nonzero scalar multiple, hence we often just write zc,`. The columns
labeled zc,` = 0 and zc,` 6= 0 give the first few c such that zc,` is zero or nonzero,
respectively.

A consistency check on Table 8.2 comes from the rows labeled (389a1,−7, 3, 17) and
(389a1,−7, 3, 41), since the reduction maps

E(Q)→ E(F`)⊗ (Z/3Z)

have the same kernel for ` = 17 and 41. Hence the zc,17 6= if and only if zc,41 6= 0, which
was indeed the case in the range of our computations.

In every single case in Table 8.2 we find at least one c such that zc,` 6= 0, so Conjec-
ture 1.1 is true in these cases.

One initially surprising numerical observation we made is that the classes τc,p appear
to not be equidistributed in the most naive possible sense. For example, in our compu-
tations with p = 3, the 0 subspace occurs about twice as much as any other subspace.
Once we know that one class is nonzero, the exact asymptotic distribution of all classes
can then be determined as an application of work of Mazur-Rubin, B. Howard [How04],
and the Chebotarev density theorem. See the forthcoming paper [SW10]. As mentioned
in Remark 7.1 above, this also leads to an alternate way to compute τc,p up to scaling.
This provided an convincing double check on the correctness of our tables.

Tables 8.3–8.4 provide further details about the distribution of elements of

Sel(p)(E/Q) ∼= (Z/pZ)2

coming from this construction. The first 5 columns labeled E, D, p, `1 and `2 specify an
elliptic curve, fundamental discriminant D, a prime p and two primes `1 and `2, chosen
from the data summarized in Table 8.2. As mentioned above, the primes `1 and `2 are
chosen so that the intersection of the two reduction maps to E(F`i)⊗ (Z/pZ) is 0. Since
the Selmer group has dimension 2 and in our implementation we chose the generator
σ ∈ Gal(Kc/K1) ∼= (OK/cOK)×/(Z/cZ)× to be

√
D + n with n ≥ 1 minimal, where

D = disc(K). This allows us to deduce the subspace spanned by τc,p in Sel(p)(E/Q)

with respect to some unknown basis for Sel(p)(E/Q). The column labeled τc,p gives the
normalized generator for this subspace. The next column, labeled # gives the number
of c such that τc,p spans the given subspace, and the last column gives the first few such
primes c.
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Table 8.2: Data about zc,σ,`.

E D q ` dim max c = 0 6= 0 c with zc,` = 0 c with zc,` 6= 0

389a1 -7 3 5 130 19031 152 121 17, 173, 227, 269 41, 59, 83, 587

389a1 -7 3 17 520 14657 122 92 41, 83, 173, 227 5, 59, 503, 587

389a1 -7 3 41 1300 11681 102 74 17, 83, 173, 227 5, 59, 503, 587

389a1 -7 5 19 586 28229 32 67 349, 509, 769, 2539 419, 929, 1049, 1399

389a1 -11 3 17 520 14717 116 101 29, 41, 83, 107 233, 263, 347, 479

389a1 -11 3 41 1300 14879 117 104 17, 29, 83, 107 233, 263, 347, 479

389a1 -11 5 19 586 22189 24 60 239, 569, 1759, 1999 149, 349, 359, 769

389a1 -19 3 41 1300 14699 132 98 29, 53, 107, 227 59, 113, 173, 449

389a1 -67 3 5 130 23663 170 147 41, 113, 281, 347 53, 233, 599, 653

389a1 -67 3 41 1300 15473 129 82 53, 113, 281, 587 5, 233, 347, 503

433a1 -8 5 79 2822 15199 19 30 1319, 2269, 2549, 3079 199, 389, 1039, 1669

433a1 -8 5 199 7162 11149 14 26 1319, 1879, 2269, 2549 79, 389, 1039, 1669

433a1 -11 3 17 580 12473 91 88 131, 239, 293, 359 41, 83, 107, 197

433a1 -11 3 41 1448 11579 82 84 239, 281, 293, 359 17, 83, 107, 131

433a1 -11 5 79 2822 15329 12 37 1889, 2309, 3079, 4759 409, 1289, 1319, 1669

563a1 -8 3 23 1034 14813 113 109 197, 263, 311, 383 47, 173, 191, 269

563a1 -163 3 17 752 15887 123 93 137, 293, 311, 887 23, 59, 191, 269

563a1 -163 3 23 1034 15149 114 92 137, 311, 521, 569 17, 59, 191, 269

571b1 -7 7 97 4576 12011 15 32 167, 503, 937, 1511 349, 839, 881, 1063

571b1 -7 7 167 7914 9547 16 16 97, 503, 937, 1063 349, 839, 881, 1483

571b1 -8 5 149 7056 11159 5 43 29, 1319, 2239, 7639 79, 229, 349, 359

571b1 -8 7 167 7914 12109 8 13 1063, 1861, 2141, 2309 349, 503, 839, 1511

571b1 -19 5 29 1336 15259 16 33 79, 1709, 2179, 2339 439, 829, 1229, 1319

571b1 -19 7 97 4576 13789 9 23 2309, 2953, 4157, 7349 167, 839, 1063, 1511

571b1 -19 7 167 7914 10639 9 13 97, 1063, 1861, 2141 839, 1511, 1931, 3989

571b1 -67 3 11 478 16889 129 108 239, 281, 353, 521 191, 233, 251, 311

571b1 -67 7 97 4576 12641 9 14 503, 2239, 4157, 4507 937, 1063, 1861, 2309

643a1 -8 3 29 1504 12527 104 82 47, 71, 149, 173 167, 263, 359, 431

643a1 -11 3 29 1504 12953 91 93 83, 131, 149, 197 167, 173, 263, 359

643a1 -19 3 29 1504 12143 107 86 89, 293, 509, 641 71, 113, 167, 173

643a1 -43 3 29 1504 12647 102 83 89, 131, 137, 149 71, 113, 503, 521

643a1 -67 3 11 538 14753 115 104 113, 137, 191, 251 197, 311, 353, 443

655a1 -19 3 29 1848 12149 96 77 59, 89, 113, 167 53, 179, 227, 257

681c1 -8 3 23 1672 11909 101 81 29, 47, 167, 263 191, 317, 479, 557

709a1 -7 3 5 238 16061 131 107 47, 257, 269, 419 59, 83, 227, 353

709a1 -7 3 47 2724 9833 92 56 257, 269, 419, 503 5, 59, 83, 227

709a1 -43 3 5 238 16319 131 118 149, 233, 389, 503 137, 179, 227, 257

709a1 -67 3 5 238 16301 133 109 179, 197, 233, 353 137, 239, 281, 503

709a1 -163 3 5 238 16883 138 107 233, 239, 353, 479 59, 137, 149, 257

718b1 -7 3 5 360 15137 122 100 41, 47, 131, 167 101, 251, 353, 839

997c1 -19 3 41 3328 8297 66 63 179, 227, 269, 449 113, 173, 383, 677

997c1 -67 3 41 3328 8231 76 61 179, 191, 311, 347 113, 197, 383, 647
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Table 8.3: Data about normalized elements τc,p ∈ Sel(q)(E/Q) (part 1 of 2)

E D q `1 `2 τc,p # at most first 10 primes c

389a1 −7 3 5 17 (0, 0) 87 173, 227, 269, 479, 509, 761, 797, 929, 1013, 1181
(0, 1) 30 503, 773, 1049, 1193, 1487, 2897, 3359, 4157, 5333, 5843
(1, 0) 35 41, 83, 857, 1151, 1553, 1637, 1907, 2141, 2393, 2441
(1, 1) 34 59, 587, 941, 1307, 1571, 1721, 2273, 2399, 3407, 3797
(1, 2) 27 1091, 1217, 1931, 2579, 3191, 3779, 4493, 5477, 6011, 6173

389a1 −7 3 5 41 (0, 0) 75 17, 173, 227, 269, 479, 509, 761, 797, 929, 1013
(0, 1) 25 503, 773, 1049, 1193, 1487, 2897, 3359, 4157, 5333, 5843
(1, 0) 27 83, 857, 1151, 1553, 1637, 1907, 2141, 2393, 2441, 2477
(1, 1) 29 59, 587, 941, 1307, 1571, 1721, 2273, 2399, 3407, 3797
(1, 2) 19 1091, 1217, 1931, 2579, 3191, 3779, 4493, 5477, 6011, 6173

389a1 −67 3 5 41 (0, 0) 95 113, 281, 587, 857, 1013, 1049, 1187, 1481, 1571, 1583
(0, 1) 25 347, 503, 683, 929, 1319, 1487, 2129, 2687, 3947, 4157
(1, 0) 34 53, 653, 1151, 1553, 1907, 2207, 2393, 2417, 2423, 3167
(1, 1) 26 233, 599, 1181, 1217, 1409, 2657, 3779, 4019, 5387, 5477
(1, 2) 30 941, 1307, 1709, 1721, 2339, 2549, 2909, 3467, 3797, 3821

433a1 −8 5 79 199 (0, 0) 11 1319, 2269, 2549, 3079, 3319, 4349, 4759, 4799, 6949, 7879
(0, 1) 3 6719, 8389, 8669
(1, 0) 3 1879, 4549, 6679
(1, 1) 4 1669, 2879, 5119, 5399
(1, 2) 3 5839, 6029, 9949
(1, 3) 6 2239, 3389, 4079, 5639, 7589, 11149
(1, 4) 9 389, 1039, 2309, 2749, 4789, 6599, 7669, 9349, 9679

433a1 −11 3 17 41 (0, 0) 63 239, 293, 359, 503, 563, 659, 761, 821, 1097, 1217
(0, 1) 21 131, 677, 1031, 1427, 1601, 1979, 2129, 2213, 3797, 4451
(1, 0) 19 281, 479, 857, 1019, 1949, 2207, 2309, 2609, 4421, 5147
(1, 1) 36 83, 107, 701, 941, 953, 1091, 1223, 1667, 1913, 2087
(1, 2) 26 197, 263, 431, 887, 2741, 2837, 3137, 3209, 3659, 3803

563a1 −163 3 17 23 (0, 0) 88 137, 311, 887, 929, 953, 1217, 1223, 1367, 1583, 1733
(0, 1) 28 293, 983, 1433, 1553, 2213, 2843, 3923, 4397, 4691, 5927
(1, 0) 26 521, 569, 587, 863, 1289, 1427, 1637, 3167, 3863, 4481
(1, 1) 31 59, 269, 353, 509, 977, 1709, 1979, 2399, 2801, 3413
(1, 2) 32 191, 317, 761, 827, 1283, 1409, 1871, 3779, 3911, 4049
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Table 8.4: Data about normalized elements τc,p ∈ Sel(q)(E/Q) (part 2 of 2)

E D q `1 `2 τc,p # at most first 10 primes c

571b1 −7 7 97 167 (0, 0) 9 503, 937, 1511, 3989, 4157, 4507, 6691, 7349, 9421
(0, 1) 2 2239, 7489
(1, 0) 6 1063, 1861, 2141, 2309, 5039, 8581
(1, 1) 2 349, 9547
(1, 2) 2 5417, 6131
(1, 3) 4 881, 1931, 2099, 5683
(1, 4) 2 839, 1483
(1, 5) 2 3163, 6229
(1, 6) 2 2953, 6719

571b1 −19 7 97 167 (0, 0) 4 2309, 2953, 4157, 7349
(0, 1) 1 7489
(1, 0) 4 1063, 1861, 2141, 8581
(1, 1) 2 3989, 10639
(1, 2) 3 5417, 6131, 9883
(1, 3) 2 1931, 5683
(1, 4) 2 839, 1511
(1, 5) 1 6691
(1, 6) 2 6719, 10331

709a1 −7 3 5 47 (0, 0) 62 257, 269, 419, 593, 839, 857, 881, 929, 971, 1433
(0, 1) 17 479, 1091, 1319, 1553, 2243, 4049, 4259, 4289, 4973, 5519
(1, 0) 30 503, 647, 677, 1049, 1151, 1181, 1301, 1613, 1697, 2267
(1, 1) 16 353, 521, 563, 1097, 1427, 1637, 1949, 2579, 2621, 2687
(1, 2) 22 59, 83, 227, 773, 983, 1259, 2897, 2939, 3779, 4721
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Table 8.5: Data about non-scaled elements τc,p ∈ Sel(q)(E/Q) (part 1 of 2)

E D q `1 `2 τc,p # at most first 13 primes c

389a1 −7 3 5 17 (0, 0) 87 173, 227, 269, 479, 509, 761, 797, 929, 1013, 1181, 1319, 1511, 1601
(0, 1) 15 1487, 2897, 3359, 4157, 5843, 6317, 6653, 6803, 7229, 7901, 8237, 9551, 10559
(0, 2) 15 503, 773, 1049, 1193, 5333, 6971, 8069, 9371, 9623, 10457, 11483, 11681, 13151
(1, 0) 21 41, 83, 857, 1553, 1637, 2393, 2441, 2477, 3167, 4217, 6053, 6221, 7103
(1, 1) 16 1307, 1571, 1721, 2399, 3407, 4091, 4721, 5171, 6389, 6977, 7451, 8501, 8627
(1, 2) 17 1217, 3191, 3779, 5477, 6011, 6173, 6947, 8363, 8951, 9173, 9929, 11087, 11927
(2, 0) 14 1151, 1907, 2141, 3461, 3617, 6257, 7019, 7727, 10463, 10589, 11171, 12101, 12983
(2, 1) 10 1091, 1931, 2579, 4493, 8039, 10163, 10433, 13313, 13331, 14621
(2, 2) 18 59, 587, 941, 2273, 3797, 4457, 4751, 4973, 5309, 6569, 7817, 8111, 8123

389a1 −7 3 5 41 (0, 0) 75 17, 173, 227, 269, 479, 509, 761, 797, 929, 1013, 1181, 1319, 1511
(0, 1) 13 1487, 2897, 3359, 4157, 5843, 6317, 6653, 6803, 7229, 7901, 8237, 9551, 10559
(0, 2) 12 503, 773, 1049, 1193, 5333, 6971, 8069, 9371, 9623, 10457, 11483, 11681
(1, 0) 16 83, 857, 1553, 1637, 2393, 2441, 2477, 3167, 4217, 6053, 6221, 7103, 8573
(1, 1) 14 1307, 1571, 1721, 2399, 3407, 4091, 4721, 5171, 6389, 6977, 7451, 8501, 8627
(1, 2) 12 1217, 3191, 3779, 5477, 6011, 6173, 6947, 8363, 8951, 9173, 9929, 11087
(2, 0) 11 1151, 1907, 2141, 3461, 3617, 6257, 7019, 7727, 10463, 10589, 11171
(2, 1) 7 1091, 1931, 2579, 4493, 8039, 10163, 10433
(2, 2) 15 59, 587, 941, 2273, 3797, 4457, 4751, 4973, 5309, 6569, 7817, 8111, 8123

389a1 −67 3 5 41 (0, 0) 95 113, 281, 587, 857, 1013, 1049, 1187, 1481, 1571, 1583, 1811, 1889, 2531
(0, 1) 10 347, 503, 683, 929, 1487, 4157, 5639, 13649, 14051, 14969
(0, 2) 15 1319, 2129, 2687, 3947, 4583, 4673, 5867, 6551, 6653, 7109, 8807, 9371, 10259
(1, 0) 16 53, 1151, 1553, 2417, 2423, 3167, 3461, 5279, 5741, 7583, 8741, 8819, 9521
(1, 1) 13 233, 1217, 2657, 3779, 5387, 7649, 7757, 8039, 9041, 10973, 12659, 14879, 15053
(1, 2) 12 1721, 3467, 3821, 5171, 5231, 6143, 10331, 13613, 14033, 14321, 14669, 14717
(2, 0) 18 653, 1907, 2207, 2393, 3617, 4229, 4253, 4937, 5471, 6221, 7019, 7547, 7643
(2, 1) 18 941, 1307, 1709, 2339, 2549, 2909, 3797, 4463, 5237, 6779, 7481, 8627, 8849
(2, 2) 13 599, 1181, 1409, 4019, 5477, 7331, 8093, 8243, 11087, 11489, 12263, 12671, 15083

433a1 −8 5 79 199 (0, 0) 11 1319, 2269, 2549, 3079, 3319, 4349, 4759, 4799, 6949, 7879, 11069
(0, 1) 1 8669
(0, 2) 0
(0, 3) 0
(0, 4) 2 6719, 8389
(1, 0) 2 1879, 6679
(1, 1) 2 1669, 5119
(1, 2) 1 6029
(1, 3) 0
(1, 4) 2 389, 2749
(2, 0) 1 4549
(2, 1) 2 3389, 11149
(2, 2) 0
(2, 3) 1 6599
(2, 4) 1 9949
(3, 0) 0
(3, 1) 1 5839
(3, 2) 6 1039, 2309, 4789, 7669, 9349, 9679
(3, 3) 1 2879
(3, 4) 1 5639
(4, 0) 0
(4, 1) 0
(4, 2) 3 2239, 4079, 7589
(4, 3) 0
(4, 4) 1 5399
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Table 8.6: Data about non-scaled elements τc,p ∈ Sel(q)(E/Q) (part 2 of 2)

E D q `1 `2 τc,p # at most first 13 primes c

433a1 −11 3 17 41 (0, 0) 63 239, 293, 359, 503, 563, 659, 761, 821, 1097, 1217, 1319, 1487, 1613
(0, 1) 11 131, 677, 1031, 1979, 2213, 3797, 4451, 5939, 9437, 9473, 11483
(0, 2) 10 1427, 1601, 2129, 4517, 5189, 5507, 5711, 5741, 9257, 10247
(1, 0) 13 281, 479, 857, 1949, 2207, 2309, 2609, 4421, 5147, 5297, 5519, 10067, 10691
(1, 1) 19 107, 701, 941, 1091, 2087, 2969, 3119, 3527, 4133, 4583, 5279, 5309, 7127
(1, 2) 17 197, 431, 887, 2741, 2837, 3209, 3659, 3803, 4241, 4253, 4523, 6701, 7229
(2, 0) 6 1019, 5231, 5639, 7211, 9467, 10457
(2, 1) 9 263, 3137, 6269, 6299, 7829, 8147, 8861, 9941, 10589
(2, 2) 17 83, 953, 1223, 1667, 1913, 2459, 2591, 3533, 4157, 6113, 6221, 6761, 7487

563a1 −163 3 17 23 (0, 0) 88 137, 311, 887, 929, 953, 1217, 1223, 1367, 1583, 1733, 1811, 1907, 2243
(0, 1) 15 983, 2843, 4397, 5927, 6389, 6869, 7949, 8093, 8363, 8669, 8753, 11159, 11489
(0, 2) 13 293, 1433, 1553, 2213, 3923, 4691, 7673, 8273, 11069, 11243, 12569, 14699, 15149
(1, 0) 12 521, 587, 1637, 4583, 5507, 6449, 8429, 11969, 12161, 12959, 13649, 13907
(1, 1) 12 59, 353, 977, 1979, 2399, 2801, 3413, 4217, 4241, 6701, 10289, 10709
(1, 2) 14 191, 761, 827, 3911, 4391, 6863, 8111, 9419, 9491, 9521, 10133, 12491, 13751
(2, 0) 14 569, 863, 1289, 1427, 3167, 3863, 4481, 4793, 4799, 6323, 6983, 7703, 10067
(2, 1) 18 317, 1283, 1409, 1871, 3779, 4049, 4673, 5783, 6143, 6317, 6971, 9341, 9803
(2, 2) 19 269, 509, 1709, 3617, 4283, 4721, 6551, 7727, 9371, 9887, 10301, 10391, 12497

709a1 −7 3 5 47 (0, 0) 62 257, 269, 419, 593, 839, 857, 881, 929, 971, 1433, 1487, 1511, 1571
(0, 1) 7 479, 1091, 4259, 5519, 6299, 6359, 7481
(0, 2) 10 1319, 1553, 2243, 4049, 4289, 4973, 5843, 5927, 6053, 6803
(1, 0) 16 647, 1049, 1151, 1181, 1697, 2957, 3449, 4283, 4637, 5879, 6047, 7187, 7229
(1, 1) 10 353, 563, 1097, 1427, 1637, 2621, 2687, 3191, 5897, 6221
(1, 2) 7 59, 227, 1259, 4721, 4919, 7829, 7937
(2, 0) 14 503, 677, 1301, 1613, 2267, 2693, 2903, 3491, 3671, 4217, 5393, 8627, 9467
(2, 1) 15 83, 773, 983, 2897, 2939, 3779, 4751, 5381, 6173, 6317, 6737, 6977, 8123
(2, 2) 6 521, 1949, 2579, 3659, 6011, 7649
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8.2 Appendix: remarks about surjectivity of Galois representa-
tions

In order to pass from [Pc,σ] to τc,pn ∈ H1(K,E[pn]) in Section 5.2, we assumed that p
is an odd prime such that

ρE,p : Gal(Q/Q)→ GL2(Zp)

is surjective. If we assume that E does not have CM (as will be the case for our
examples), the p-adic representation ρE,p : GQ → GL2(Zp) is surjective for all but
finitely many p. Moreover, we can compute all primes p such that ρE,p is not surjective,
as explained in [GJP+09, §2.1] and implemented in Sage (see also forthcoming work of
A. Sutherland [Sut09]). For example, we have the following proposition:

Proposition 8.1. If E is a rank 2 elliptic curve with conductor < 1058, then ρE,p is
surjective for all odd primes p.

Proof. Using the algorithm of [GJP+09, §2.1] as implemented in [S+11] shows that the
mod-p representations ρE,p : GQ → GL2(Fp) are surjective for all rank 2 curves E of
conductor < 1058 and all primes p. As explained in [GJP+09, §2.1], this implies that
the p-adic representation ρE,p is surjective for p ≥ 5.

It remains to deal with p = 3. For p = 3 we use the method of [Elk06], namely that
it is enough to check that j(E)− f(x) has no rational zero, where f(x) is the function

f(x) =
37 · (x2 − 1)3 · (x6 + 3x5 + 6x4 + x3 − 3x2 + 12x+ 16)3 · (2x3 + 3x2 − 3x− 5)

(x3 − 3x− 1)9

of degree 27 from [Elk06, pg. 5]. Elkies remarks (see [Elk10]) that there is a minus sign
in the formula in [Elk06, pg. 5] that does not belong, as we verify by trying the integral
specializations tabulated on [Elk06, pg. 7], and also by factoring f − 1728. Doing this
computation for our curves yields the claimed result.

Remark 8.2. Andrew Sutherland used the techniques of [Sut09] to show [Sut10] that
“the rank 2 elliptic curves with conductor less than 1058 all have surjective Galois images
in GL2(Z/16Z).” We thus also expect that ρE,2 is surjective for all rank 2 curves with
conductor less than 1058.

Remark 8.3. The rank 2 curve 1058c1 has a rational 3 isogeny.

9 Related Projects

There are several future projects that are suggested by this paper, and we briefly sketch
some of the most promising ones here.

We can do the same computations as we do here, but for modular abelian varieties
Af attached to newforms with ords=1 L(f, s) ≥ 2. There is a table of such abelian
varieties in [AS05]. For example, we carried out this computation for the modular
abelian variety 1061b of dimension 2 and indeed verified the natural higher dimensional
analogue of Kolyvagin’s conjecture for this abelian variety (for p = 3). Note that
Kolyvagin appears to have never explicitly made such a conjecture, though of course
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he considers modular abelian varieties in [KL89]. We could also use our method to
show that X(Af/Q)[p] = 0 for a particular Af , even when ordL(f, s) ≤ 1. This
may require extending Kolyvagin’s structure theorem to abelian varieties, or otherwise
making results of [KL89] more explicit.

We could verify Conjecture 1.1 for the rank 3 elliptic curve of conductor 5077, and
possibly some other rank 3 curves. Indeed, Jennifer Balakrishnan and the author have
verified Conjecture 1.1 at least for 5077a for p = 3.

It would be of interest to generalize Algorithm 2.1 to treat the case pn with n > 1
or the case when ρE,p is reducible. We could also consider an example such as the rank
2 curve 916c1 and p = 3 in which p divides a Tamagawa number.

Since we are doing explicit computation, it would also be interesting to closely
investigate the case p = 2; this is particularly exciting when ran(E/Q) = 2, since, after
a harmless trace (as in Remark 5.7), we find that the points yc, for c prime, are defined

over real quadratic extensions of Q, and define explicit elements of Sel(2)(E/Q) that
define globally trivial [2]-coverings X → E. For example, if we take E to be 389a,
K = Q(

√
−7) and c = 3, then y3 is defined over a cyclic degree 4 extension K3 of K;

the trace z3 of y3 to the quadratic subfield of K3 is defined over the real quadratic field
Q(
√

21); it is the point

z3 =

(
−131

84
,

1091

3528

√
21− 1

2

)
.

Also, we find that 0 6= τ3,2 = δ((0, 0)) ∈ Sel(2)(E/Q). Is there any connection between
these Heegner points over real quadratic fields and Stark-Heegner points?

Much of the work of Kolyvagin and Gross-Zagier has been generalized to totally real
fields by Zhang and his students. Likewise, it would be of interest to see to what extent
the results of this paper generalize to totally real fields.

It would also be of interest to investigate rank 2 curves E for which ED exhibits
some unusual behavior, e.g., nontrivial odd X or rank ≥ 3. For example, for E the
curve 389a of rank 2, and K = Q(

√
−264), which has class number 8, the twist ED

has rank 3, so Kolyvagin’s structure theorem implies that [Pc,σ] = 0 for all prime c, and
it would be interesting to (a) computationally observe this, and (b) find a c that is a
product of primes for which [Pc,σ] 6= 0. Similarly, if we take K = Q(

√
−667), then K

has class number 4 and 5 | #X(ED/Q); thus we expect that [Pc,5] = 0 for all prime c.
Again it would beinteresting to observe this computationally, and find a prime c such
that [Pc,52 ] 6= 0.

As a challenge, we could attempt to verify Conjecture 1.1 for the rank 4 elliptic
curve of conductor 234446 given by the equation y2 + xy = x3 − x2 − 79x+ 289. This
computation is at the edge of feasible, so it will require very sophisticated linear algebra
or some other new idea.

References

[AS05] Agashe Agashe and William Stein, Visible evidence for the Birch and
Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank
zero, Math. Comp. 74 (2005), no. 249, 455–484 (electronic), With an
appendix by J. Cremona and B. Mazur, http://wstein.org/papers/

shacomp/. MR 2085902

[BCDT01] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of
elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001),

35



no. 4, 843–939 (electronic), http://math.stanford.edu/~conrad/papers/
tswfinal.pdf. MR 2002d:11058

[BFH90] Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein, Nonvanishing
theorems for L-functions of modular forms and their derivatives, In-
vent. Math. 102 (1990), no. 3, 543–618, http://wstein.org/papers/bib/
bump-friedberg-hoffstein-nonvanishing.pdf. MR 1074487 (92a:11058)

[Bir65] B. J. Birch, Conjectures concerning elliptic curves, Proceedings of Sym-
posia in Pure Mathematics, VIII, Amer. Math. Soc., Providence, R.I.,
1965, http://wstein.org/papers/bib/Birch-Conjectures_Concerning_
Elliptic_Curves.pdf, pp. 106–112. MR 30 #4759

[Bir71] B. J. Birch, Elliptic curves over Q: A progress report, 1969 Num-
ber Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State
Univ. New York, Stony Brook, N.Y., 1969), Amer. Math. Soc., Prov-
idence, R.I., 1971, http://wstein.org/papers/bib/Birch-Elliptic_

curves_over_Q-A_Progress_Report.pdf, pp. 396–400.

[BLR90] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Springer-
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Abstract. We explain how to use results from Iwasawa theory to obtain

information about p-parts of Tate-Shafarevich groups of specific elliptic curves
over Q. Our method provides a practical way to compute #X(E/Q)(p) in

many cases when traditional p-descent methods are completely impractical

and also in situations where results of Kolyvagin do not apply, e.g., when the
rank of the Mordell-Weil group is greater than 1. We apply our results along

with a computer calculation to show that X(E/Q)[p] = 0 for the 1,534,422

pairs (E, p) consisting of a non-CM elliptic curve E over Q with conductor
≤ 30,000, rank ≥ 2, and good ordinary primes p with 5 ≤ p < 1000 and

surjective mod-p representation.

1. Introduction

The papers [GJP+09, Mil10] describe verification of the Birch and Swinnerton-
Dyer conjecture for elliptic curves of conductor ≤ 5000 with rank ≤ 1 by a com-
putational application of Euler system results of Kato and Kolyvagin combined
with explicit descent. The main motivation for the present paper is to develop
algorithms using Iwasawa theory, in order to enable verification of the conjecture
in new directions, e.g., large-scale verification of assertions about X(E/Q), when
E has rank at least 2. The present paper naturally complements related projects
by Perrin-Riou [PR03] and Coates [CLS09, Coa11]. Moreover, we fill small gaps
in the literature (e.g., precision bounds in Section 3) and take the opportunity to
correct errors in the literature (e.g., Lemma 4.2) that we found in the course of
implementing algorithms.

In Sections 2–7 we recall the main objects and theorems involved in the classical
and p-adic Birch and Swinnerton-Dyer conjectures (BSD conjectures), correct some
minor errors in the literature, and state a tight error bound that is essential for
rigorous computation with p-adic L-series. These sections gather together disparate
results and provide unified notation and fill minor gaps. In Section 3, we define
p-adic L-functions and explain how to compute them. Next we define the p-adic
regulator, treating separately the cases of split multiplicative and supersingular
reduction, and recall p-adic analogues of the BSD conjecture. In Section 6, we
recall the basic definitions and results for the algebraic p-adic L-functions defined
using Iwasawa theory. This leads to the statement of the main conjecture and
Kato’s theorem.
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2 WILLIAM STEIN AND CHRISTIAN WUTHRICH

In Section 8 we discuss using p-adic results to bound X(E)(p) when E has
analytic rank 0, and Section 9 covers the case when the analytic rank is 1. In
Section 10 we describe a conditional algorithm for computing the rank of an elliptic
curve that uses p-adic methods and hence differs in key ways from the standard
n-descent approach. Similarly, Section 11 contains an algorithm that applies to
curves of any rank, and either computes X(E/Q)(p) or explicitly disproves some
standard conjecture. In Section 12 we give examples that illustrate the algorithms
described above in numerous cases, including verifying for a rank 2 curve E that
X(E/Q)(p) = 0 for a large number of p, as predicted by the BSD conjecture. In
particular, we prove the following theorem via a computation of p-adic regulators
and p-adic L-functions, which provides evidence for the BSD conjecture for curves
of rank at least 2:

Theorem 1.1. Let X be the set of 1,534,422 pairs (E, p), where E is a non-CM
elliptic curve over Q with rank at least 2 and conductor ≤30,000, and p ≥ 5 is a
good ordinary prime for E with p < 1000 such that the mod p representation is
surjective. Then X(E/Q)[p] = 0 for each of the pairs in X.

1.1. Background. Let E be an elliptic curve defined over Q and let

(1.1) y2 + a1 x y + a3 y = x3 + a2 x
2 + a4 x + a6

be the unique global minimal Weierstrass equation for E with a1, a3 ∈ {0, 1} and
a2 ∈ {−1, 0, 1}. Mordell proved that the set of rational points E(Q) is an abelian
group of finite rank r = rank(E(Q)). Birch and Swinnerton-Dyer conjectured
that r = ords=1 L(E, s), where L(E, s) is the Hasse-Weil L-function of E (see
Conjecture 2.1 below). We call ran = ords=1 L(E, s) the analytic rank of E, which
is defined since L(E, s) can be analytically continuted to all C (see [BCDT01]).

There is no known algorithm (procedure that has been proved to terminate)
that computes r in all cases. We can computationally obtain upper and lower
bounds in any particular case. One way to give a lower bound on r is to search for
linearly independent points of small height via the method of descent. We can also
use constructions of complex and p-adic Heegner points in some cases to bound
the rank from below. To compute an upper bound on the rank r, in the case of
analytic ranks 0 and 1, we can use Kolyvagin’s work on Euler systems of Heegner
points; for general rank, the only known method is to do an n-descent for some
integer n > 1. The 2-descents implemented by Cremona [Cre97], by Simon [Sim02]
in Pari [PAR11] (and SAGE [S+11b]), and the 2, 3, 4, etc., descents in Magma
[BCP97] (see also [CFO+08, CFO+09, CFO+11]), are particularly powerful. But
they may fail in practice to compute the exact rank due to the presence of 2 or
3-torsion elements in the Tate-Shafarevich group.

The Tate-Shafarevich group X(E/Q) is a torsion abelian group associated to
E/Q. It is the kernel of the localization map loc in the exact sequence

0 −→X(E/Q) −→ H1(Q, E)
loc−−→

⊕

υ

H1(Qυ, E),

where the sum runs over all places υ in Q. The arithmetic importance of this group
lies in its geometric interpretation. There is a bijection from X(E/Q) to the Q-
isomorphism classes of principal homogeneous spaces C/Q of E which have points
everywhere locally. In particular, such a C is a curve of genus 1 defined over Q
whose Jacobian is isomorphic to E. Nontrivial elements in X(E/Q) correspond to
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curves C that defy the Hasse principle, i.e., have a point over every completion of
Q, but have no points over Q.

Conjecture 1.2. Shafarevich and Tate The group X(E/Q) is finite.

The rank r and the Tate-Shafarevich group X(E/Q) are encoded in the Selmer
groups of E. Fix a prime p, and let E(p) denote the Gal(Q̄/Q)-module of all torsion
points of E whose orders are powers of p. The Selmer group Selp(E/Q) is defined
by the following exact sequence:

0 −→ Selp(E/Q) −→ H1(Q, E(p)) −→
⊕

υ

H1(Qυ, E) .

Likewise, for any positive integer m, the m-Selmer group is defined by the exact
sequence

0→ Sel(m)
(E/Q)→ H1(Q, E[m]) −→

⊕

υ

H1(Qυ, E)

where E[m] is the subgroup of elements of order dividing m in E.
It follows from the Kummer sequence that there are short exact sequences

0 −→ E(Q)/mE(Q) −→ Sel(m)
(E/Q) −→X(E/Q)[m] −→ 0

and
0 −→ E(Q)⊗Qp/Zp −→ Selp(E/Q) −→X(E/Q)(p) −→ 0 .

If the Tate-Shafarevich group is finite, then the Zp-corank of Selp(E/Q) is equal

to the rank r of E(Q).
The finiteness of X(E/Q) is only known for curves of analytic rank 0 and 1, in

which case computation of Heegner points and Kolyvagin’s work on Euler systems
gives an explicit computable multiple of its order [GJP+09]. The group X(E/Q)
is not known to be finite for even a single elliptic curve with ran ≥ 2. In such
cases, the best we can do using current techniques is hope to bound the p-part
X(E/Q)(p) of X(E/Q), for specific primes p. Even this might not a priori be
possible, since it is not known that X(E/Q)(p) is finite. However, if it were the case
that X(E/Q)(p) is finite (as Conjecture 1.2 asserts), then this could be verified by

computing Selmer groups Sel(p
n)

(E/Q) for sufficiently many n (see, e.g., [SS04]).

Note that practical unconditional computation of Sel(p
n)

(E/Q) via the method of
descent is prohibitively difficult for all but a few very small pn.

We present in this paper two algorithms using p-adic L-functions Lp(E, T ), which
are p-adic analogs of the complex function L(E, s) (see Section 3 for the definition).
Both algorithms rely heavily on the work of Kato [Kat04], which is a major break-
through in the direction of a proof of the p-adic version of the BSD conjecture (see
Section 5). The possibility of using these results to compute information about
the Tate-Shafarevich group is well known to specialists and was for instance men-
tioned in [Col04] which gives a nice overview of the p-adic BSD conjecture. For
supersingular primes such methods were used by Perrin-Riou in [PR03] to calculate
X(E/Q)(p) in many interesting cases when p is a prime of supersingular reduction.

Our first algorithm, which we describe in Section 10, finds a provable upper
bound for the rank r of E(Q) by computing approximations to the p-adic L-series
for various small primes p. Any upper bound on the vanishing of Lp(E, T ) at T = 0
is also an upper bound on the rank r.

The second algorithm, which we discuss in Section 11, gives a new method for
computing bounds on the order of X(E/Q)(p), for specific primes p. We will
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exclude p = 2, since traditional descent methods work well at p = 2, and Iwasawa
theory is not as well developed for p = 2. We also exclude some primes p, e.g.,
those for which E has additive reduction, since much of the theory we rely on has
not yet been developed in this case.

Our second algorithm uses again the p-adic L-functions Lp(E, T ), but also re-
quires that the full Mordell-Weil group E(Q) is known. Its output, if it yields any
information, is a proven upper bound on the order of X(E/Q)(p); in particular, we
expect it to often prove the finiteness of the p-primary part of the Tate-Shafarevich
group. But it will not in general be able to give any information about the struc-
ture of X(E/Q)(p) as an abelian group or any information on its elements. For
such finer results on the Tate-Shafarevich group, one general method is to use pn-
descents as described above. In some cases, we can also use visibility [AS02] to
relate X(E/Q)(p) to Mordell-Weil groups of other elliptic curves or abelian va-
rieties. Assuming Kolyvagin’s conjecture, it may also be possible to compute the
structure of X(E/Q)(p), for E of any rank, by making Kolyvagin’s Euler system
explicit in some cases (see forthcoming work of the first author and Jared Weinstein
that builds on [Kol91b], and the remarks at the end of [Kol91a]). The computabil-
ity of our upper bound on #X(E/Q)(p) relies on several conjectures, such as the
finiteness of X(E/Q)(p) and Conjectures 4.1 and 4.4 on the nondegeneracy of the
p-adic height on E.

Under the assumption of the main conjecture (see Section 7), the number output
by our algorithm equals the order of X(E/Q)(p). There are several cases when
this conjecture is known to hold by Greenberg and Vatsal in [GV00], by Grigorov
in [Gri05], and in a forthcoming paper by Skinner and Urban [SU10]. In particular,
under appropriate hypotheses, [SU10] prove the main conjecture for elliptic curves
with good ordinary reduction (see Theorem 7.5 below). Thus in some cases, the
upper bound on X(E/Q)(p) that we obtain is actually a lower bound too, if all
the computations go through, e.g. the p-adic height is nondegenerate and we find
enough points to verify that the rank is equal to the order of vanishing.

Note that our algorithms can in principle be extended to give bounds in some
cases on the rank of E(K) and #X(E/K)(p) for number fields K which are abelian
extensions of Q (here we still assume E is defined over Q).

Acknowledgments. It is a pleasure to thank John Coates, Henri Darmon, Jerôme
Grand’maison, Ralph Greenberg and Dimitar Jetchev for helpful discussions and
comments. We are also greatly indebted to Robert Pollack who shared his code for
computing p-adic L-functions and helped with the error estimates in Section 3. We
also thank Mark Watkins, who independently implemented in Magma some of the
algorithms of this paper, and in so doing found bugs in our implementation and
discovered mistakes in an early draft of this manuscript.

2. The Birch and Swinnerton-Dyer conjecture

Let E be an elliptic curve defined over Q. If the BSD conjecture (Conjecture 2.1
below) were true, it would yield an algorithm to compute both the rank r and the
order of X(E/Q).

Let E be an elliptic curve over Q, and let L(E, s) be the Hasse-Weil L-function
associated to the Q-isogeny class of E. According to [BCDT01] (which completes
work initiated in [Wil95]), the function L(E, s) is holomorphic on the whole complex
plane. Let ωE be the invariant differential dx/(2y + a1x + a3) of the minimal
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Weierstrass equation (1.1) of E. We write ΩE =
∫
E(R)

ωE ∈ R>0 for the Néron

period of E.

Conjecture 2.1. Birch and Swinnerton-Dyer

(1) The order of vanishing of the Hasse-Weil function L(E, s) at s = 1 is equal
to the rank r = rank(E(Q)).

(2) The leading coefficient L∗(E, 1) of the Taylor expansion of L(E, s) at s = 1
satisfies

(2.1)
L∗(E, 1)

ΩE

=

∏
υ cυ ·#X(E/Q)

(#E(Q)tor)2
· Reg(E/Q)

where the Tamagawa numbers are denoted by cυ and Reg(E/Q) is the regu-
lator of E, i.e., the discriminant of the Néron-Tate canonical height pairing
on E(Q).

Below we write #X(E/Q)an for the order of X(E/Q) that is predicted by
Conjecture 2.1.

Cassels proved in [Cas65] that if Conjecture 2.1 is true for an elliptic curve E
over Q, then it is true for all curves that are Q-isogenous to E.

Proposition 2.2 (Manin). If Conjecture 2.1 is true, then there is an algorithm to
compute r and #X(E/Q).

Proof. Manin proved this result in [Man71, §11], but we recall the essential ideas
here. By searching for points in E(Q) we obtain a lower bound on r, which gets
closer to the true rank r the longer we run the search. At some point this lower
bound will equal r, but without using further information we have no way to know
if that has occurred. As explained, e.g., in [Cre97, Coh07, Dok04], we can for any
k compute L(k)(E, 1) to any precision. Such computations yield upper bounds on
ran. In particular, if we compute L(k)(E, 1) and it is nonzero (to the precision
of our computation), then ran ≤ k. Eventually this method will also converge to
give the correct value of ran, though again without further information we do not
know when this will occur. However, if we know Conjecture 2.1, we know that
r = ran, hence at some point the lower bound on r computed using point searches
will equal the upper bound on ran computed using the L-series. At this point, by
Conjecture 2.1 we know the true value of both r and ran.

Once r is known, we can compute E(Q) via a point search (as explained in
[Cre97, §3.5] or [Ste07a, §1.2]), hence we can approximate Reg(E/Q) to any desired
precision. All quantities in (2.1) except #X(E/Q) can then be approximated to
any desired precision. Solving for #X(E/Q) in (2.1) and computing all other
quantities to large enough precision to determine the integer #X(E/Q)an then
determines #X(E/Q), as claimed. �

The above algorithm would only produce the order of X(E/Q) but no informa-
tion about its structure as an abelian group. We could compute the structure of

X(E/Q) by computing the group Sel(n)
(E/Q) where n2 = #X(E/Q), which is

possible since Sel(m)
(E/Q) is computable for all m. The algorithms in Section 10

and 11 mimic the ideas of the proof of Proposition 2.2, but they replace the complex
L-function by a p-adic L-series and use that much is known unconditionally about
p-adic analogues of the BSD conjecture.
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3. The p-adic L-function

We will assume for the rest of this article that E does not admit complex multi-
plication, though curves with complex multiplication are an area of active research
for these methods (see e.g., [Rub99, PR04, CLS09, CLS10]).

Formulating a p-adic analogue of the BSD conjecture requires a p-adic ana-
logue of the analytic function L(E, s), as introduced by Mazur and Swinnerton-
Dyer [MSD74, MTT86]. In this section, we recall the definition of this p-adic
L-function, and fill a gap in the literature by giving a complete recipe for how to
compute it in all cases, including proven error bounds on each coefficient.

Let π : X0(N) −→ E be the modular parametrization and let cπ be the Manin
constant, i.e., the positive integer satisfying cπ · π∗ωE = 2πif(τ)dτ with f the
newform associated to E. When E is an optimal quotient (so the dual map E →
Jac(X0(N)) is injective), Manin conjectured that cπ = 1, and much work has been
done toward this conjecture (see [Edi91, ARS06]).

Given a rational number r, define

λ+(r) = −πi ·
(∫ i∞

r

f(τ) dτ +

∫ i∞

−r
f(τ) dτ

)
∈ R.

There is a basis {γ+, γ−} of H1(E,Z) such that
∫
γ+
ωE is equal to ΩE if E(R) is

connected and to 1
2 ΩE otherwise. By a theorem of Manin [Man72], we know that

λ+(r) belongs to Q · ΩE. For all r ∈ Q, the modular symbol [r]+ ∈ Q is

[r]+ =
λ+(r)

ΩE
.

In particular, we have [0]+ = L(E, 1) · Ω−1
E . The quantity [r]+ can be computed

algebraically using modular symbols and linear algebra (see [Cre97] and [Ste07b]).
Let p be a prime of semistable reduction. We write1 ap for the trace of Frobenius.

Suppose first that E has good reduction at p, and let Ẽ denote the reduction of a
minimal model of E modulo p. Then Np = p + 1 − ap is the number of points on

Ẽ(Fp). Let X2 − ap ·X + p be the characteristic polynomial of Frobenius and let
α ∈ Q̄p be a root of this polynomial such that ordp(α) < 1. There are two choices
of α if E has supersingular reduction at p and there is a single possibility for α
when E has good ordinary reduction at p. Next suppose E has bad multiplicative
reduction at p. Then ap is 1 if the reduction is split multiplicative and ap is −1 if it
is nonsplit multiplicative reduction. In either multiplicative case, we define α = ap.

As in [MTT86, §I.10], define a measure on Z×p with values in Q(α) by

µα(a+ pkZp) =

{
1
αk
·
[
a
pk

]+ − 1
αk+1 ·

[
a

pk−1

]+
if E has good reduction,

1
αk
·
[
a
pk

]+
otherwise.

for any k ≥ 1 and a ∈ Z×p (by
[
a
pk

]+
we mean

[
a′

pk

]+
where a′ ∈ Z is equivalent to a

modulo pk, which is well defined because of the modular symbols relations). Given
a continuous character χ on Z×p with values in the completion Cp of the algebraic
closure of Qp, we may integrate χ against µα.

1The context should make it clear if we mean traces ap of Frobenius, coefficients ai as in (1.1),

or series coefficients as in Proposition 3.1.
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We assume henceforth that p is odd.2 As in [MTT86, §I.13], any invertible
element x of Z×p can be written as ω(x) · 〈x〉 where ω(x) is a (p− 1)-st root of unity
and 〈x〉 belongs to 1 + pZp. We call ω the Teichmüller character. We define the
analytic p-adic L-function by

Lα(E, s) =

∫

Z×p
〈x〉s−1 dµα(x) for all s ∈ Zp.

where by 〈x〉s−1 we mean expp((s−1) · logp(〈x〉)), and expp and logp are the p-adic
exponential and logarithm. The function Lα(E, s) extends to a locally analytic
function in s on the disc defined by |s−1| < 1 (see the first proposition of [MTT86,
§I.13]).

Let ∞G be the Galois group of the cyclotomic extension Q(µp∞) obtained by
adjoining to Q all p-power roots of unity. By κ we denote the cyclotomic character

∞G −→ Z×p . Because the cyclotomic character is an isomorphism, choosing a

topological generator γ in Γ = ∞G(p−1) amounts to picking a generator κ(γ) of
1 + pZ×p . With this choice, we may convert the function Lα(E, s) into a p-adic

power series in T = κ(γ)s−1 − 1. We write Lα(E, T ) for this series in Qp(α)[[T ]].
We have

(3.1) Lα(E, T ) =

∫

Z×p
(1 + T )

logp(〈x〉)
logp(κ(γ)) dµα(x) .

For each integer n ≥ 1, define a polynomial

Pn(T ) =

p−1∑

a=1



pn−1−1∑

j=0

µα
(
ω(a)(1 + p)j + pnZp

)
· (1 + T )j


 ∈ Qp(α)[T ].

Note that Pn(T ) depends on the choice of α, but for simplicity we do not include
α in the notation.

Proposition 3.1. We have

lim
n→∞

Pn(T ) = Lα(E, T ),

where the convergence is coefficient-by-coefficient, in the sense that if Pn(T ) =∑
j an,jT

j and Lα(E, T ) =
∑
j ajT

j, then limn→∞ an,j = aj .

We now give a proof of this convergence and in doing so obtain an explicit upper
bound for |aj − an,j |, which is critical to making the computation of Lα(E, T )
algorithmic, and which appears to not be explicitly stated in the literature.

For any choice ζr of pr-th root of unity in Cp, let χr be the Cp-valued character
of Z×p of order pr obtained by composing the map 〈 〉 : Z×p → 1+pZp defined above
with the map 1 + pZp → C∗p that sends 1 + p to ζr. Note that the conductor of χr
is pr+1.

Lemma 3.2. Let ζr be a pr-th root of unity with 1 ≤ r ≤ n− 1, and let χr be the
corresponding character of order pr, as above. Then

Pn(ζr − 1) =

∫

Z×p
χr dµα.

In particular, note that the right hand side does not depend on n.

2Everything in this section can be done for p = 2 with 1 + p replaced by an integer that is

congruent to 5 modulo 8, and various other slight modifications.
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Proof. Writing χ = χr, we have

Pn(ζr − 1) =

p−1∑

a=1

pn−1−1∑

j=0

µα
(
ω(a)(1 + p)j + pnZp

)
· ζjr

=

p−1∑

a=1

pn−1−1∑

j=0

µα
(
ω(a)(1 + p)j + pnZp

)
· χ
(
(1 + p)j

)

=
∑

b∈(Z/pnZ)×

µα (b+ pnZp) · χ(b) =

∫

Z×p
χ dµα.

In the second to the last equality, we use that

(Z/pnZ)× ∼= (Z/pZ)× × (1 + p(Z/pnZ))

to sum over lifts of b ∈ (Z/pnZ)× of the form ω(a)(1 + p)j , i.e., a Teichmüller lift
times a power of (1+p)j . In the last equality, we use that χ has conductor dividing
pn, so is constant on the residue classes modulo pn, and use the Riemann sums
definition of the given integral. �

For each positive integer n, let wn(T ) = (1 + T )p
n − 1.

Corollary 3.3. We have in Qp(α)[T ] that

wn−1(T ) divides Pn+1(T )− Pn(T ).

Proof. By Lemma 3.2, Pn+1(T ) and Pn(T ) agree on ζj − 1 for 0 ≤ j ≤ n − 1 and
any choice ζj of pj-th root of unity, so their difference vanishes on every root of

the polynomial wn−1(T ) = (1 + T )p
n−1 − 1. The claimed divisibility follows, since

wn−1(T ) has distinct roots. �

Lemma 3.4. Let f(T ) =
∑
j bjT

j and g(T ) =
∑
j cjT

j be in O[T ] with O the ring

of integers of a finite field extension of Qp. If f(T ) divides g(T ), then

ordp(cj) ≥ min
0≤i≤j

ordp(bi).

Proof. We have f(T )k(T ) = g(T ) with k(T ) ∈ O[T ]. The lemma follows by using
the definition of polynomial multiplication and the nonarchimedean property of
ordp. �

As above, let an,j be the j-th coefficient of the polynomial Pn(T ). Let

cn = max(0,−min
j

ordp(an,j))

so that pcnPn(T ) ∈ (Zp[α])[T ]. For any j > 0, let

en,j = min
1≤i≤j

ordp

(
pn

i

)
.

Proposition 3.5. For all n ≥ 0, we have an+1,0 = an,0, and for j > 0,

ordp(an+1,j − an,j) ≥ en−1,j −max(cn, cn+1).
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Proof. Corollary 3.3 implies that there is a polynomial h(T ) ∈ Qp(α)[T ] with
wn−1(T ) · h(T ) = Pn+1(T ) − Pn(T ). Let c ≤ max(cn, cn+1) be the integer such
that pc · (Pn+1(T ) − Pn(T )) ∈ Zp[α][T ] is primitive. Multiply both sides of the
above equation by pc, to get

wn−1(T ) · pch(T ) = pcPn+1(T )− pcPn(T ) ∈ Zp[α][T ].

The right hand side is primitive and integral, so it is reducible in Zp[α][T ]. Since
wn−1(T ) is integral, we must have pch(T ) ∈ Zp[α][T ]. Applying Lemma 3.4 and
renormalizing by pc gives c+ ordp(an+1,j − an,j) ≥ en−1,j , so

ordp(an+1,j − an,j) ≥ en−1,j − c ≥ en−1,j −max(cn, cn+1).

�

Lemma 3.6. The ck are uniformly bounded above.

Proof. Tracing through the definitions and using that ordp(1/α) > 1, we see that
the lemma is equivalent to showing that the modular symbol [x]+ appearing in
the definition of µα has bounded denominator. By the Abel-Jacobi theorem, the
quotient of the image of the modular symbol map [x] modulo Z2 ≈ H1(E,Z) is
equal to the image of the cuspidal subgroup C of J0(N). In particular, a bound
on the denominator of [x]+ is the largest power of p that divides the exponent of
the image of C in E(Q̄). The claim follows since C is finite, since it is generated
by finitely many “Manin symbols” as explained in [Man72, Thm. 2.7] or [Cre97,
Ch. 2], and C is torsion as noted on the footnote of [Man72, pg. 35]. �

For j fixed, en−1,j − max(cn+1, cn) goes to infinity as n grows since the ck are
uniformly bounded above, by Lemma 3.6. Thus, {an,j} is a Cauchy sequence and
Proposition 3.5 implies that

ordp(aj − an,j) ≥ en−1,j −max(cn, cn+1).

3.1. The p-adic multiplier. In this section we specialize the definition of p-adic
multiplier from [MTT86, §I.14] to the case of an elliptic curve. For a prime p of
good reduction, we define the p-adic multiplier by

(3.2) εp =
(
1− 1

α

)2
.

Note that ordp(εp) is equal to 2 ordp(Np) where Np = p+ 1− ap is the number of

points in Ẽ(Fp).
For a prime of bad multiplicative reduction, we put

εp = 1− 1
α =

{
0 if p is split multiplicative,

2 if p is nonsplit.

3.2. Interpolation property. The p-adic L-function constructed above satisfies
an interpolation property with respect to the complex L-function (see [MTT86,
§I.14]). For instance, we have that

Lα(E, 0) = Lα(E, 1) =

∫

Z×p
dµα = εp ·

L(E, 1)

ΩE

.
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A similar formula holds when integrating nontrivial characters of Z×p against dµα.
If χ is the character on ∞G sending γ to a root of unity ζ of exact order pn, then

Lα(E, ζ − 1) =
1

αn+1
· pn+1

G(χ−1)
· L(E,χ−1, 1)

ΩE

.

Here G(χ−1) is the Gauss sum and L(E,χ−1, 1) is the Hasse-Weil L-function of E
twisted by χ−1.

3.3. The good ordinary case. Suppose that the reduction of the elliptic curve at
the prime p is good and ordinary, so ap is not divisible by p. As mentioned before,
in this case there is a unique choice of root α of the characteristic polynomial
x2− apx+ p that satisfies ordp(α) < 1. Since α is an algebraic integer, this implies
that ordp(α) = 0, so α is a unit in Zp. We get therefore a unique p-adic L-function
that we will denote simply by Lp(E, T ) = Lα(E, T ).

Proposition 3.7. Let E be an elliptic curve with good ordinary reduction at a
prime p > 2 such that E[p] is irreducible. Then the series Lp(E, T ) belongs to
Zp[[T ]].

Proof. See [GV00, Prop. 3.7] with χ = 1. �

We next illustrate the above material with a few numerical examples, one for
each type of reduction. Let E0/Q be the curve

(3.3) E0 : y2 + x y = x3 − x2 − 4x + 4

which is labeled 446d1 in Cremona’s tables [Cre]. The Mordell-Weil group E0(Q)
is isomorphic to Z2 generated by the points (2, 0) and (1,−1). We consider the
prime p = 5 where E0 has good and ordinary reduction. As the number of points
Np = 10 is divisible by p, this is an anomalous prime in the terminology of [Maz72].
Using [S+11b], we compute an approximation to the p-adic L-series as explained
above with n = 5 to find

L5(E0, T ) =O(54) · T + (5 + 52 + 3 · 53 + O(54)) · T 2

+ (2 · 5 + 3 · 52 + 3 · 53 + O(54)) · T 3 + (4 · 52 + 4 · 53 + O(54)) · T 4

+ (4 · 5 + 4 · 52 + O(53)) · T 5

+ (1 + 2 · 5 + 52 + 4 · 53 + O(54)) · T 6 + O(T 7) .

We see that the order of vanishing is at least 1 as follows. The interpolation
formula implies that L5(E0, 0) = 0 since [0]+ = 0. We will give an explanation for
the vanishing of the coefficient of T 1 later in the comments right after Theorem 6.1.
We remark that the coefficient of T 2 has valuation 1, but the coefficient of T 6 is a
unit.

3.4. Multiplicative case. We separate the cases of split and nonsplit multiplica-
tive reduction. In fact, if the reduction is nonsplit, then the description of the good
ordinary case applies just the same. But if the reduction is split multiplicative (the
“exceptional case” in [MTT86]), then the p-adic L-series must have a trivial zero,
i.e., Lp(E, 0) = 0 because εp = 0. By a result of Greenberg and Stevens [GS93] (see
also [Kob06] for a proof using Kato’s Euler system), we know that

dLp(E, T )

d T

∣∣∣∣
T=0

=
1

logp κ(γ)
· logp(qE)

ordp(qE)
· L(E, 1)

ΩE
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where qE denotes the Tate period of E over Qp. It is now known thanks to [BDGP96]
that logp(qE) is nonzero. Hence we define the p-adic L -invariant as

(3.4) Lp =
logp(qE)

ordp(qE)
6= 0 .

We refer to [Col10] for a detailed discussion of the different L -invariants and their
connections.

3.5. The supersingular case. In the supersingular case, that is when ap ≡ 0
(mod p), we have two roots α and β both of valuation 1

2 . An analysis of the
functions Lα and Lβ is in [Pol03]. The series Lα(E, T ) might not have integral
coefficients in Qp(α). Nevertheless we can still extract two integral series L±p (E, T ).
We will not need this description.

There is a way of rewriting the p-adic L-series which relates more easily to
the p-adic height defined in the next section. We follow Perrin-Riou’s description
in [PR03].

As before, ωE denotes the chosen invariant differential on E. Let ηE = x · ωE.
The pair {ωE, ηE} forms a basis of the Dieudonné module

Dp(E) = Qp ⊗H1
dR(E/Q).

This Qp-vector space comes equipped with a canonical Frobenius endomorphism ϕ
that acts on it linearly. We normalize it in the following way, which makes it equal
to 1

p ·F with F being the Frobenius as used in [MST06] and [Ked01, Ked03, Ked04].

Let t be any uniformizer at the point OE at infinity on E, e.g., take t = −xy . Let

ν be a class in Dp(E) represented by the differential
∑
cn · tn−1 dt with cn ∈ Qp.

Then ϕ(ν) can be represented by the differential
∑
cn · tpn−1 dt. In particular

ϕ(dt) = tp−1 dt. The characteristic polynomial of ϕ is equal to X2−p−1 apX+p−1.
Write Lα(E, T ) as G(T ) + α · H(T ) with G(T ) and H(T ) in Qp[[T ]]. Then we

define
Lp(E, T ) = G(T ) · ωE + ap ·H(T ) · ωE − p ·H(T ) · ϕ(ωE) ,

which we view as a formal power series with coefficients in Dp(E)⊗Qp[[T ]], which
contains exactly the same information as Lα(E, T ). See [PR03, §1] for a direct def-
inition. Since the invariant differential ωE depends on the choice of the Weierstrass
equation (1.1), the expression Lp(E, T ) is also dependent on this choice. However,
if we write the series in the basis {ωE, ϕ(ωE)} rather than in {ωE, ηE}, then the co-
ordinates as above are independent. The Dp-valued L-series satisfies again certain
interpolation properties,3 e.g.,

(1− ϕ)−2 Lp(E, 0) =
L(E, 1)

ΩE

· ωE ∈ Dp(E) .

See Section 12.2 for an example.

3.6. Additive case. The case of additive reduction is much harder to treat, though
we are optimistic that such a treatment is possible. We have not tried to include the
possibility of additive reduction in our algorithm, especially because the existence
of the p-adic L-function is not yet guaranteed in general. Note that there are two
interesting papers [Del98] and [Del02] of Delbourgo on this subject.

3Perrin-Riou writes in [PR03] the multiplier as (1 − ϕ)−1 · (1 − p−1ϕ−1) and she multiplies

the right hand side with L(E/Qp, 1)−1 = Np · p−1. It is easy to see that (1−ϕ) · (1− p−1ϕ−1) =

1− ϕ+ (ϕ− ap · p−1) + p−1 = Np · p−1.
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3.7. Quadratic twists. When the curve E is not semistable, we can try to use
the modular symbols of a quadratic twist E† of E in the computation of the p-adic
L-function for E. This leads to dramatic speedups when the quadratic twist has
lower conductor than E.

Suppose that there exists a fundamental discriminant D of a quadratic field
satisfying the following conditions:

• p does not divide D,
• D2 divides N ,
• M = N/D2 is coprime to D, and
• the conductor N† of the quadratic twist E† of E by D is of the form M ·Q

with Q dividing D.

Then ψ = (D· ) is the Dirichlet character associated to the quadratic field Q(
√
D)

over which E and E† become isomorphic. Let f†E be the newform of level N†

associated to the isogeny class of E†. As explained in [MTT86, §II.11], the twist of

f†E by ψ is equal to fE and we can use their formula (I.8.3)

(3.5) fE(τ) =
1

G(ψ)

∑

u mod |D|
ψ(u) · f†E

(
τ +

u

|D|
)
.

Here G(ψ) is as before the Gauss sum of ψ, whose value we know to be the square

root
√
D of D in R>0 or in i·R>0. Let cR be the number of connected components of

E(R), which is also the number of connected components of E†(R). We write Ω−
E†

for cR ·
∫
γ− ωE† , similar to ΩE† = Ω+

E† = cR ·
∫
γ+ ωE† with the notations from (3.1).

We also put

λ−(r) = πi ·
(∫ i∞

r

−
∫ i∞

−r

)
f(τ) dτ

and [r]− = λ−(r)/Ω−E . As for the modular symbol [r]+, we have [r]− ∈ Q. Follow-
ing [MTT86], we define the quantity η such that

√
D · Ω+

E = η · Ωsign(D)

E† .

It is known that η is either 1 or 2.
Now we can compute the modular symbol [r]+ for the curve E in terms of

modular symbols for E†. Suppose first that D > 0.

λ+
E(r) =πi ·

(∫ i∞

r

+

∫ i∞

−r

)
1√
D

D−1∑

u=1

ψ(u)f†E
(
τ +

u

D

)
dτ

=
πi√
D

D−1∑

u=1

ψ(u)

∫ i∞

r+u/D

f†E(τ)dτ

+
πi√
D

D−1∑

v=1

ψ(D − v)

∫ i∞

−r
f†E
(
τ + 1− v

D

)
dτ

=
πi√
D

D−1∑

u=1

ψ(u)

(∫ i∞

r+u/D

+

∫ i∞

−r−u/D

)
f†E(τ)dτ

=
1√
D

D−1∑

u=1

ψ(u)λ+
E†

(
r +

u

D

)
.
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We used that ψ(u) = sign(D)ψ(D−u), that f†E(τ +1) = f†E(τ) and Equation (3.5).
Similarly for D < 0, we find

λ+
E(r) =

−1√
D

|D|−1∑

u=1

ψ(u)λ−
E†

(
r +

u

D

)
.

Therefore, we have for any fundamental discriminant D

[r]+E =
sign(D)

η

|D|−1∑

u=1

(D
u

)
·
[
r +

u

D

]sign(D)

E†
.

We can also express the unit eigenvalue α of Frobenius in terms of the corresponding
α† unit eigenvalue for E† as

α = ψ(p) · α†.
In summary, we can evaluate the approximations to the p-adic L-function of E using
only modular symbols of the curve E† with smaller conductor. The estimations for
the error of these approximations remain exactly the same.

We recalled that the computation of the modular symbols [r]± can be done
purely algebraically. Unfortunately, the algebraic computation determines them
only up to one single fixed choice of sign. If [0]+ is nonzero, we can simply compare
the value of the modular symbol at 0 with L(E, 1)/ΩE and adjust the sign when
needed. If L(E, 1) = 0, we can use the above formula to compute [0]+

E† for some

quadratic twist E† with nonvanishing L-value. So we can easily adjust the unknown
sign. Also, if we only know the modular symbols up to a rational multiple, we can
use these formulae to scale them.

We should also add here that we can not possibly do a similar thing with quartic
or sextic twists when they exist. This is due to the fact that the extension over
which the twists become isomorphic is no longer an abelian extension. So we would
have to twist the modular symbols with a Galois representation of dimension at
least 2. Nevertheless there is a way of using these twists for computing the p-adic
L-function as explained in [CLS09], using the fact that these curves have complex
multiplication.

4. p-adic heights

The second term that we will generalize in the BSD formula is the real-valued
regulator. In p-adic analogues of the conjecture we replace it by a p-adic regulator,
which we define using a p-adic analogue of the height pairing. We follow here the
generalized version [BPR93] and [PR03].

Let ν be an element of the Dieudonné module Dp(E) (see Section 3.5). We will
define a p-adic height function hν : E(Q) −→ Qp which depends linearly on the
vector ν. Hence it is sufficient to define it on the basis ω = ωE and η = ηE.

If ν = ω, then we define

hω(P ) = logE(P )2

where logE is the linear extension of the p-adic elliptic logarithm

logÊ : Ê(pZp) −→ pZp

defined on the formal group Ê, by integrating our fixed differential ωE.
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For ν = η, we define the p-adic sigma function of Bernardi as in [Ber81] to be
the solution σ of the differential equation

−x =
d

ωE

(
1

σ
· dσ
ωE

)

such that σ(OE) = 0, dσ
ωE

(OE) = 1, and σ(−P ) = −σ(P ). If we denote by t = −xy
the uniformizer at OE, we may develop the sigma function as a series in t:

σ(t) = t+
a1

2
t2 +

a2
1 + a2

3
t3 +

a3
1 + 2a1a2 + 3a3

4
t4 + · · · ∈ Q((t)),

where the ai are the coefficients of the Weierstrass equation (1.1). As a function

on the formal group Ê(pZp), it converges for all t with ordp(t) >
1
p−1 .

We say that a point P in E(Q) has good reduction at a prime p if P reduces to
the identity component of the special fiber of the Néron model of E at p. Given a
point P in E(Q) there exists a multiple m ·P such that σ(m ·P ) converges and such
that m · P has good reduction at all primes. Denote by e(m · P ) ∈ Z the square
root of the denominator of the x-coordinate of m · P . Define

hη(P ) =
2

m2
· logp

(
e(m · P )

σ(m · P )

)
.

Bernardi [Ber81] proves that this function is quadratic and satisfies the parallelo-
gram law.

Finally, if ν = aω + b η then put

hν(P ) = a hω(P ) + b hη(P ) .

Since this function is quadratic and satisfies the parallelogram law, it induces a
bilinear symmetric pairing 〈·, ·〉ν with values in Qp defined by

〈P,Q〉ν =
1

2
·
(
hν(P +Q)− hν(P )− hν(Q)

)
.

Note that all these definitions are dependent on the choice of the Weierstrass equa-
tion. It is easy to verify that the pairing is zero if one of the points is a torsion
point.

4.1. The good ordinary case. Since we have only a single p-adic L-function in
the case that the reduction is good ordinary, we have also to pin down a canonical
choice of a p-adic height function. This was first done by Schneider [Sch82] and
Perrin-Riou [PR82]. We refer to [MT91] and [MST06] for more details.

Let να = aω+ b η be an eigenvector of ϕ on Dp(E) associated to the eigenvalue
1
α . The value e2 = E2(E,ωE) = −12 · ab is the value of the Katz p-adic Eisenstein
series of weight 2 at (E,ωE). If a point P has good reduction at all primes and lies
in the range of convergence of σ(t), we define the canonical p-adic height of P to
be

ĥp(P ) =
1

b
· hνα(P )

= −a
b
· logE(P )2 + 2 log

(
e(P )

σ(P )

)

= 2 logp

(
e(P )

exp( e224 logE(P )2) · σ(P )

)
= 2 logp

(
e(P )

σp(P )

)
.(4.1)
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The function σp, defined by the last line, is called the canonical sigma-function,
see [MT91]; it is known to lie in Zp[[t]]. The p-adic height defined here is up to a
factor of 2 the same as in [MST06].4 It is also important to note that the function

ĥp is independent of the Weierstrass equation.

We write 〈·, ·〉p for the canonical p-adic height pairing on E(Q) associated to ĥp,
and Regp(E/Q) for the discriminant of the height pairing on E(Q)/E(Q)tor.

Conjecture 4.1. Schneider [Sch82] The canonical p-adic height is nondegenerate
on E(Q)/E(Q)tor. In other words, the canonical p-adic regulator Regp(E/Q) is
nonzero.

Apart from the special case treated in [Ber82] of curves with complex multipli-
cation of rank 1, there are hardly any results on this conjecture. See also [Wut04].

We return to our running example curve E0 from Section 3.3. The methods
of [MST06, Har08] permit us to quickly compute to relatively high precision the
p-adic regulator of E0. We have

E2(E0, ωE) = 3 · 5 + 4 · 52 + 53 + 54 + 55 + 2 · 56 + 4 · 57 + 3 · 59 + O(510),

and the regulator associated to the canonical p-adic height is

(4.2) Regp(E0/Q) = 2 · 5 + 2 · 52 + 54 + 4 · 55 + 2 · 57 + 4 · 58 + 2 · 59 + O(510).

4.2. The multiplicative case. When E has multiplicative reduction at p, if we
want to have the same closed formula in the p-adic version of the BSD conjecture
for multiplicative primes as for other ordinary primes, the p-adic height has to be
changed slightly. We use the description of the p-adic regulator given in [MTT86,
§II.6]. Alas, their formula is not correct, as explained in [Wer98], so we use the
corrected version.

If the reduction is nonsplit multiplicative, we use the same formula (4.1) to define
the p-adic height as for the good ordinary case.

We assume for the rest of this section that the reduction is split multiplicative.
We use Tate’s p-adic uniformization (see for instance in [Sil94, Ch. V]). We have an
explicit description of the height pairing in [Sch82]. Let qE be the Tate parameter
of the elliptic curve E over Qp, so we have an analytic homomorphism ψ : Q̄×p −→
E(Q̄p) whose kernel is precisely qZE. The image of Z×p under ψ is equal to the
subgroup of points of E(Qp) lying on the connected component of the reduction

modulo p of the Néron model of E. Let C be the constant such that ψ∗(ωE) = C · duu
where u is a uniformizer of Q×p at 1. The value of the p-adic Eisenstein series of
weight 2 is

e2 = E2(E,ωE) = C2 ·


1− 24 ·

∑

n≥1

∑

d|n
d · qnE


 .

Then we use the formula as in the good ordinary case to define the canonical sigma
function σp(t(P )) = exp( e224 logE(P )2) · σ(t(P )). We could also have used directly
the formula

σp(u) =
u− 1

u1/2
·
∏

n≥1

(1− qnE · u)(1− qnE/u)

(1− qnE)2

4This factor is needed if we do not want to modify the p-adic version of the BSD conjecture

(Conjecture 5.1).
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where u ∈ 1+pZp is the unique preimage of P ∈ Ê(pZp) under the Tate parametriza-

tion ψ, where Ê is the formal group of E at p.
Let P be a point in E(Q) having good reduction at all finite places and with

trivial reduction at p. Then we define

ĥp(P ) = 2 logp

(
e(P )

σp(t(P ))

)
− logp(u)2

logp(qE)

with u as above. The p-adic regulator is formed as before but with this modified

p-adic height ĥp.

4.3. The supersingular case. In the supersingular case, we do not find a canoni-
cal p-adic height with values in Qp. Instead, the height has values in the Dieudonné
module Dp(E), as explained in [BPR93] and [PR03].

First, if the rank of the curve is 0, we define the p-adic regulator of E/Q to be
ω = ωE ∈ Dp(E). Thus assume for the rest of this section that the rank r of E(Q)
is positive. Let ν = aω+ b η be any element of Dp(E) not lying in Qp ω, (so b 6= 0).
It can be easily checked that the value of

Hp(P ) =
1

b
· (hν(P ) · ω − hω(P ) · ν) ∈ Dp(E)

is independent of the choice of ν. We will call this the Dp-valued height on E(Q).
But note that it depends on the choice of the Weierstrass equation of E: if we
change coordinates by putting

(4.3) x′ = u2 · x+ r and y′ = u3 · y + s · x+ t,

then the Dp-valued height H ′p(P ) computed in the new coordinates x′, y′ will satisfy

H ′p(P ) = 1
u ·Hp(P ) for all points P ∈ E(Q).

On Dp(E) there is a canonical alternating bilinear form [·, ·] characterized by
the property that [ωE, ηE] = 1. Write Regν ∈ Qp for the regulator of hν on
E(Q)/E(Q)tor. Then we have the following lemma which is a corrected version5 of
[PR03, Lem. 2.6].

Lemma 4.2. Suppose that the rank r of E(Q) is positive. There exists a unique
element Regp(E/Q) in Dp(E) such that for all ν ∈ Dp(E) not in Qpω, we have

(4.4) [Regp(E/Q), ν] =
Regν

[ω, ν]r−1
.

Furthermore, if the rank r is 1, then Regp(E/Q) = Hp(P ) for a generator P . If

the Weierstrass equation is changed as in (4.3), the regulator Reg′p(E/Q) computed

in the new equation satisfies Reg′p(E/Q) = 1
u · Regp(E/Q).

We call Regp(E/Q) ∈ Dp(E) the Dp-valued regulator of E/Q, or better, of the
chosen Weierstrass equation.

Proof. Since hω is made out of the square of the linear function logE, the matrix
of the associated pairing on a basis {Pi} of E(Q) modulo torsion has entries of

5The wrong normalization in [PR03] only influences the computations for curves of rank greater
than 1. It seems that, by chance, the computations in [PR03] were done with a ν in Dp(E) such

that [ω, ν] = 1, so that the normalization did not enter into the end results.
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the form logE(Pi) · logE(Pj) and hence has rank 1. Therefore the regulator of the
pairing associated to ν = a · ω + b · η is equal to

Regaω+bη = a · br−1 ·X + br · Y
for some constants X and Y . In fact, we must have X = Regω+η −Regη and
Y = Regη. Therefore the expression on the right hand side of (4.4) is linear in ν.
More explicitly, we may define

Regp(E/Q) = Y · ω −X · η.
The formula for the case of rank 1 is then also immediate. The variance of the
regulator with the change of the equation can be checked just as for Hp. �

We continue to assume that the rank r of E/Q is positive, as in Lemma 4.2.
Define the fine Mordell-Weil group as in [Wut07] to be the kernel

M(E/Q) = ker
(
E(Q)⊗ Zp −→ E(Qp)p-adic completion

)
,

which is a free Zp-module of rank r − 1. The bilinear form associated to the
normalized p-adic height

hν(P )

[ω, ν]
,

can be restricted to obtain a pairing

〈·, ·〉0 : M(E/Q)× (E(Q)⊗ Zp) −→ Qp .

It is then independent of the choice of ν 6∈ Qpω. We call the regulator of this bilinear
form 〈·, ·〉0 on a basis of M(E/Q) the fine regulator Reg0(E/Q) ∈ Qp, which is an
element of Qp defined up to multiplication by a unit in Zp.

Lemma 4.3. Suppose there exists a point Q in E(Q) ⊗ Zp such that M(E/Q) +
ZpQ = E(Q)⊗ Zp. Then

[Regp(E/Qp), ω] ≡ logE(Q)2 · Reg0(E/Q) (mod Z×p ).

Proof. From the proof of the Lemma 4.2, we only have to show that

X = Regω+η −Regη ≡ hω(Q) Reg0(E/Q).

By hypothesis, there is a basis of M(E/Q) that we can complete to a basis of
E(Q)⊗ Zp by adding Q to it. If M is the matrix of the pairing for η in this basis,
then the matrix for ω + η is obtained by changing the entry for 〈Q,Q〉 by adding
hω(Q) to it. Since X is the difference of the two determinants, it is hω(Q) times
the determinant of 〈·, ·〉η on the basis of M(E/Q), which equals Reg0(E/Q) by
definition. �

This lemma proves the last equality in [PR03, §2]. We should mention that
the formula just above it, linking Regp(E/Q) to Hp(Q) ·Reg0(E/Q), is not known
to hold as it can not be assumed in general that we can find a point Q as in
the lemma above which is orthogonal to M(E/Q). In particular, the Dp-valued
regulator Regp(E/Q) is nonzero provided the fine regulator does not vanish, because
logE(Q) 6= 0.

Conjecture 4.4. Perrin-Riou [PR93, Conjecture 3.3.7.i] The fine regulator of E/Q
is nonzero for all primes p. In particular, Regp(E/Q) 6= 0 for all primes where E
has supersingular reduction.
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Conjecture 3.3.7.ii’ in [PR93], which asserts that Regν is nonzero for at least one
ν, is implied by the above conjecture. This is explained in remark iii) following the
conjecture there, if we use the fact that the weak Leopoldt conjecture is now known
for E and p.

We have presented here how to compute the p-adic regulator in the basis {ω, η},
but in order to compare it later to the leading term of the p-adic L-function, it is
better to write it in terms of the basis {ω, ϕ(ω)}. In particular, we would then have
a vector whose coordinates are independent of the chosen Weierstrass equation.

In [BPR93, pg. 232], there is an algorithm for computing the action of ϕ by
successive approximation using the expansion of ω in terms of a uniformizer t. It is
dramatically more efficient to replace this by the computation of ϕ using Monsky-
Washnitzer cohomology as explained in [Ked01, Ked03, Ked04, Har08].

4.4. Normalization. In view of Iwasawa theory, it is natural to normalize the
heights and the regulators depending on the choice of the generator γ. In this way
the heights depend on the choice of an isomorphism Γ −→ Zp rather than on the

Zp-extension only. This normalization can be achieved by simply dividing ĥp(P )
and hν(P ) by κ(γ). The regulators will be divided by logp κ(γ)r where r is the
rank of E(Q). Hence we write

Regγ(E/Q) =
Regp(E/Q)

log(κ(γ))r
.

5. The p-adic Birch and Swinnerton-Dyer conjecture

5.1. The ordinary case. The following conjecture is due to Mazur, Tate and
Teitelbaum [MTT86]. Rather than formulating it for the function Lα(E, s), we
state it directly for the series Lp(E, T ). It is then a statement about the expansion
of this function at T = 0 rather than at s = 1.

Conjecture 5.1. Mazur, Tate and Teitelbaum [MTT86] Let E be an elliptic curve
with good ordinary reduction or with multiplicative reduction at a prime p.

• The order of vanishing of the p-adic L-function Lp(E, T ) at T = 0 is equal
to the rank r = rank(E(Q)), unless E has split multiplicative reduction at
p in which case the order of vanishing is equal to r + 1.
• The leading term L∗p(E, 0) satisfies

(5.1) L∗p(E, 0) = εp ·
∏
υ cυ ·#X(E/Q)

(#E(Q)tor)2
· Regγ(E/Q)

unless the reduction is split multiplicative in which case the leading term is

(5.2) L∗p(E, 0) =
Lp

log(κ(γ))
·
∏
υ cυ ·#X(E/Q)

(#E(Q)tor)2
· Regγ(E/Q),

where Lp is as in Equation (3.4).

The conjecture asserts exact equality, not just equality up to a p-adic unit. How-
ever, the current approaches to the conjecture, which involve the main conjecture
of Iwasawa theory, prove results up to a p-adic unit, since the characteristic power
series is only defined up to a unit, as we will see in Section 7.

Again, we consider the curve E0 (see Equation (3.3)) for an example in the good
ordinary case. For this curve, we have

∏
cυ = 2 and E0(Q)tor = 0, so all the terms
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in the expression above can be computed except for the unknown size of X(E0/Q).
The p-adic BSD conjecture predicts that

#X(E0/Q) = 1 + O(53)

which is consistent with the complex BSD conjecture, which predicts that X(E0/Q)
is trivial.

5.2. The supersingular case. The conjecture in the case of supersingular reduc-
tion is given in [BPR93] and [PR03]. The conjecture relates an algebraic and an
analytic value in the Qp-vector space Dp(E) of dimension 2. (The fact that we have
two coordinates was used by Kurihara and Pollack in [KP07] to construct global
points via a p-adic analytic computation.)

Conjecture 5.2. Bernardi and Perrin-Riou [BPR93] Let E be an elliptic curve
with supersingular reduction at a prime p.

• The order of vanishing of the Dp-valued L-series Lp(E, T ) at T = 0 is equal
to the rank r of E(Q).
• The leading term L∗p(E, 0) satisfies

(5.3) (1− ϕ)
−2 · L∗p(E, 0) =

∏
υ cυ ·#X(E/Q)

(#E(Q)tor)2
· Regγ(E/Q) ∈ Dp(E) .

We emphasize that both sides of (5.3) are dependent on the Weierstrass equation.
But under a change of the form x′ = u2 · x+ r, they both get multiplied by 1

u and
hence the conjecture is independent of this choice.

6. Iwasawa theory of elliptic curves

We suppose from now on that p > 2. Let ∞Q be the cyclotomic Zp-extension
of Q, which is a Galois extension of Q whose Galois group is Γ. Let Λ be the
completed group algebra Zp[[Γ]]. We use a fixed topological generator γ of Γ to
identify Λ with Zp[[T ]] by sending γ to 1 + T . Any finitely generated Λ-module
admits a decomposition up to quasi-isomorphism as a direct sum of elementary
Λ-modules. Denote by nQ the n-th layer of the Zp-extension, so nQ is a subfield of

∞Q and Gal(nQ/Q) ≈ Z/pnZ. As in Section 1.1, we define the p-Selmer group of
E over nQ by the exact sequence

0 −→ Selp(E/nQ) −→ H1(nQ, E(p)) −→
⊕

υ

H1(nQυ, E)

with the product running over all places υ of nQ. Over the full Zp-extension, we
define Selp(E/∞Q) to be the direct limit lim−→Selp(E/nQ) with respect to the maps

induced by the restriction maps H1(nQ, E(p)) −→ H1(n+1Q, E(p)). The group
Selp(E/∞Q) encodes information about the growth of the rank of E(nQ) and of

the size of X(E/nQ)(p) as n tends to infinity. We will consider the Pontryagin
dual

X(E/∞Q) = Hom
(
Selp(E/∞Q),Qp/Zp

)
,

which is a finitely generated Λ-module (see [CS00]). For further introduction to
these objects, see [Gre01].
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6.1. The ordinary case. Assume that the reduction at p is either good ordinary
or of multiplicative type. Kato’s theorem (see [Kat04, Thm. 17.4]), which uses the
work of Rohrlich [Roh84], states that X(E/∞Q) is a torsion Λ-module, so we may
associate to it a characteristic series

(6.1) fE(T ) ∈ Zp[[T ]]

that is well-defined up to multiplication by a unit in Zp[[T ]]×.
The following result is due to Schneider [Sch85] and Perrin-Riou [PR82], and

the multiplicative case is due to Jones [Jon89]. Note that it uses the analytic and
algebraic p-adic height defined by Schneider in [Sch82]; taking into account the
mentioned correction by Werner, these heights agree with the height in Section 4.2.

Theorem 6.1 (Schneider, Perrin-Riou, Jones). The order of vanishing of fE(T )
at T = 0 is at least equal to the rank r. It is equal to r if and only if the p-adic
height pairing is nondegenerate (Conjecture 4.1) and the p-primary part of the Tate-
Shafarevich group X(E/Q)(p) is finite (Conjecture 1.2). In this case the leading
term of the series fE(T ) has the same valuation as

εp ·
∏
υ cυ ·#X(E/Q)(p)

(#E(Q)(p))2
· Regγ(E/Q),

unless the reduction is split multiplicative in which case the same formula holds with
εp replaced by Lp/ log(κ(γ)).

Let us consider again our running example curve E0. We have computed the 5-
adic regulator and found that it is nonzero. The above theorem shows that the order
of vanishing of fE0

(T ) is at least equal to the rank. The finiteness of X(E0/Q)(5)
is now equivalent to the statement that the order of vanishing of fE0(T ) is equal
to the rank 2 of E0. If this is the case, then the leading coefficient has valuation
equal to

ord5(f∗E0
(0)) = ord5(#X(E0/Q)(5)) + 1,

since ord5(Reg5(E0/Q)) = 1 by Equation (4.2) and cv, ε5 and torsion are coprime
to 5.

For general E, if the valuation of the leading term of fE(T ) is positive we call p
an irregular6 prime for E. For irregular primes either the Mordell-Weil rank of E
over ∞Q is larger than the rank of E(Q) or the Tate-Shafarevich group X(E/∞Q)
is no longer finite or both. We will determine exactly what happens for E0 with
p = 5 in Section 7.1 below.

6.2. The supersingular case. The supersingular case is more complicated, since
the Λ-module X(E/∞Q) is not torsion. A beautiful approach to the supersingular
case has been found by Pollack [Pol03] and Kobayashi [Kob03]. As mentioned above
(in Section 3.5), there are two p-adic series L±p (E, T ) to which will correspond two

new Selmer groups X±(E/∞Q), which are Λ-torsion. Despite the advantages of
this ±-theory, we use the approach of Perrin-Riou here (see [PR03, §3]).

Let TpE be the Tate module and define H1
loc to be the projective limit of the

cohomology groups H1(nQp, TpE) with respect to the corestriction maps. Here

nQp is the localization of nQ at the unique prime p above p. Perrin-Riou [PR94]

6For a good introduction to such terminology and the basics of Iwasawa theory of elliptic

curves, we refer the reader to [Gre99].
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constructed a Λ-linear Coleman map Col from H1
loc to a submodule of Qp[[T ]] ⊗

Dp(E).
Define the fine Selmer group to be the kernel

R(E/nQ) = ker (Sel(E/nQ) −→ E(nQp)⊗Qp/Zp) .

It is again a consequence of the work of Kato, namely [Kat04, Thm. 12.4], that the
Pontryagin dual Y (E/∞Q) of R(E/∞Q) is a Λ-torsion module. Denote by gE(T )
its characteristic series.

Let Σ be any finite set of places in Q containing the places of bad reduction for
E and the places ∞ and p. Let GΣ(nQ) denote the Galois group of the maximal
extension of nQ unramified at all places which do not lie above Σ. Next we define
H1

glob as the projective limit of H1(GΣ(nQ), TpE). It is a Λ-module of rank 1 and
it is independent of the choice of Σ.

By Kato again, the Λ-module H1
glob is torsion-free and H1

glob ⊗ Qp has Λ ⊗ Qp-
rank 1. Choose now any element ∞c in H1

glob such that Zc = H1
glob/(Λ · ∞c) is

Λ-torsion. Typically such a choice could be the “zeta element” of Kato, i.e., the
image of his Euler system in H1

glob. Write hc(T ) for the characteristic series of Zc.

Then we define an algebraic equivalent of the Dp(E)-valued L-series by

fE(T ) = Col(∞c) · gE(T ) · hc(T )−1 ∈ Qp[[T ]]⊗Dp(E)

where by Col(∞c) we mean the image under the Coleman map Col of the localization
of ∞c to H1

loc. The resulting series fE(T ) is independent of the choice of ∞c. Of
course, fE(T ) is again only defined up to multiplication by a unit in Λ×.

Again we have a result due to Perrin-Riou [PR93]:

Theorem 6.2 (Perrin-Riou). The order of vanishing of fE(T ) at T = 0 is at
least equal to the rank r. It is equal to r if and only if the Dp(E)-valued regula-
tor Regp(E/Q) is nonzero (Conjecture 4.4) and the p-primary part of the Tate-
Shafarevich group X(E/Q)(p) is finite (Conjecture 1.2). In this case the leading
term of the series (1− ϕ)−2 fE(T ) has the same valuation as

∏

υ

cυ ·#X(E/Q)(p) · Regp(E/Q) .

Note that the proof of this theorem in the appendix of [PR03] for the supersin-
gular case uses the formula in Lemma 4.3 rather than the wrong definition of the
regulator. Also we simplified the right hand term in comparison to (5.3), because
the reduction at p is supersingular, so Np ≡ 1 (mod p), hence #E(Q)tor must be a
p-adic unit.

7. The Main Conjecture

The main conjecture links the two p-adic power series (3.1) and (6.1) of the
previous sections. We formulate everything simultaneously for the ordinary and
the supersingular case, even though they are of a quite different nature. We still
assume that p 6= 2.

Conjecture 7.1. Main conjecture of Iwasawa theory for elliptic curves If E has
good or nonsplit multiplicative reduction at p, then there exists an element u(T ) in
Λ× such that Lp(E, T ) = fE(T ) ·u(T ). If the reduction of E at p is split multiplica-
tive, then there exists such a u(T ) in T · Λ×.



22 WILLIAM STEIN AND CHRISTIAN WUTHRICH

Our statement above of the main conjecture for supersingular primes is equiv-
alent to Kato’s formulation in [Kat04, Conj. 12.10] and to Kobayashi’s version
in [Kob03]. In the notation of Section 6.2, it asserts that gE(T ) = hc(T ), where c
is Kato’s zeta element.

Much is now known about this conjecture. To the elliptic curve E we attach the
p-adic representation

ρp : Gal(Q̄/Q)→ Aut(Tp(E)) ≈ GL2(Zp)

and its reduction

ρ̄p : Gal(Q̄/Q)→ Aut(E[p]) ≈ GL2(Fp).

Serre [Ser72] proved that ρ̄p is almost always surjective (note our running hypothesis
that E does not have complex multiplication) and that for curves with multiplicative
reduction at p, surjectivity can only fail when there is an isogeny of degree p defined
over Q (see [Ser96] and [RS01, Prop. 1.1] for the case p = 2 of this statement, though
the theorem below has the hypothesis that p is odd).

Proposition 7.2. If p ≥ 5 then ρ̄p is surjective if and only if ρp is surjective.

Proof. See [GJP+09, §2.1] for references for this and related results. �

Kato’s Theorem 7.3. Suppose that E has semistable reduction at p and that ρp is
surjective. Then there exists a series d(T ) in Λ such that Lp(E, T ) = fE(T ) · d(T ).
If the reduction is split multiplicative then T divides d(T ).

The main ingredient for this theorem is in [Kat04, Thm. 17.4], which addresses
the good ordinary case when ρ̄p is surjective. For the exceptional case we refer
to [Kob06], which treats the case of split multiplicative reduction (i.e., where ex-
ceptional zeroes appear).

For the remaining cases, we obtain only a weaker statement:

Kato’s Theorem 7.4. Suppose that ρ̄p is not surjective. Then there is an integer
m ≥ 0 such that fE(T ) divides pm · Lp(E, T ).

Greenberg and Vatsal [GV00] have shown that in certain cases the main conjec-
ture holds when E[p] is reducible. Recently, Skinner-Urban have proved the main
conjecture in many more cases. The following is a slightly weaker form of [SU10,
Thm. 1]:

Theorem 7.5 (Skinner-Urban). Suppose that E has good ordinary reduction at p,
that ρp is surjective and that there exists a prime q of multiplicative reduction such
that ρ̄p is ramified at q. Then the main conjecture holds, i.e., Lp(E, T ) is equal to
fE(T ), up to a unit in Λ.

The condition on the extra prime q is satisfied if E has split multiplicative
reduction at q and p does not divide the Tamagawa number cq. If E has non-split
multiplicative reduction, one has to check that p does not divide the Tamagawa
number over the unramified quadratic extension of Qq. Equivalently, in both cases
of multiplicative reduction, the representation ρ̄p is ramified at q if p - ordq(∆E),
as explained in [RS01, §2.4].
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7.1. The Example. Consider again the curve E0 (see Equation (3.3)) and the
good ordinary prime p = 5. Kato’s theorem implies that fE0(T ) divides Lp(E0, T ).
Since we have found two linearly independent points of infinite order in E0(Q), we
know that the rank of E0(Q) is at least 2. Hence the order of vanishing of fE0

(T )
at T = 0 is at least 2 and, by Theorem 7.3, so is the order of vanishing of Lp(E0, T ).
By explicitly computing an approximation to Lp(E0, T ) we see that the order of
vanishing cannot be larger than 2. Therefore the rank of E0(Q) is equal to the
order of vanishing of the p-adic L-series.

But we know more now. The fact that the order of vanishing of fE0
(T ) is equal

to 2 shows that the 5-primary part of X(E0/Q) cannot be infinite. We compute
the p-adic valuation of the leading term of fE0

(T ) by approximating Regp(E) and
using Theorem 6.1. Comparing the leading term of Lp(E0, T ), which has valuation
1, and the leading term of fE0

(T ), which has valuation 1 + ord5(#X(E0/Q)(5)),
shows that the 5-primary part of X(E0/Q) is trivial.

Moreover, the series fE0
(T ) and Lp(E0, T ) have the same leading term, which

implies that the main conjecture holds, i.e., fE0(T ) ∈ Lp(E0, T ) ·Λ×. By analyzing
the series Lp(E0, T ), one can show that

fE0
(T ) = T · ((T + 1)5 − 1) · u(T )

for a unit u(T ) ∈ Λ×. Let 1Q be the first layer of the Z5-extension of Q. Unless
the Tate-Shafarevich group X(E/1Q)(5) is infinite, Iwasawa theory predicts that
the rank of the Mordell-Weil group E0(1Q) is 6. Doing a quick search it is easy
to find points of infinite order in E0(1Q) which are not defined over Q. Therefore,
we know that the rank of E0(1Q) and of E0(∞Q) is 6 and that X(E0/1Q)(5)
and X(E0/∞Q)(5) are finite. For more examples of such factorizations of p-adic
L-series we refer to [Pol].

8. If the L-series does not vanish

Suppose the Hasse-Weil L-function L(E, s) does not vanish at s = 1. In this case,
Kolyvagin proved that E(Q) and X(E/Q) are finite. In particular, Conjecture 1.2
is valid; also, Conjectures 4.1 and 4.4 are trivially true in this case.

Let p > 2 be a prime of semistable reduction such that the representation ρ̄p
is surjective. By the interpolation property, we know that Lp(E, 0) is nonzero,
unless E has split multiplicative reduction.

8.1. The good ordinary case. In the ordinary case we have

ε−1
p · Lp(E, 0) =

L(E, 1)

ΩE

= [0]+,

which is a nonzero rational number by [Man72]. In the following inequality, we
use Theorem7 6.1 of Perrin-Riou and Schneider for the first equality and Kato’s

7In the case of analytic rank 0, the theorem is actually relatively easy and well explained

in [CS00, Ch. 3].
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Theorem 7.3 on the main conjecture for the inequality in the second line.

ordp

(
εp ·

∏
υ cυ ·#X(E/Q)(p)

(#E(Q)(p))2

)
= ordp(fE(0))

≤ ordp(Lp(E, 0))

= ordp

(
L(E, 1)

ΩE

)
+ ordp(εp)

Hence, we have the following upper bound on the p-primary part of the Tate-
Shafarevich group

ordp (#X(E/Q)(p)) ≤ ordp

(
L(E, 1)

ΩE

)
− ordp

( ∏
cυ

(#E(Q)tor)2

)

= ordp(#X(E/Q)an).(8.1)

Under the assumption of the main conjecture, this is sharp. In particular, if the
conditions of Theorem 7.5 are satified for p, then we have the equality

ordp(#X(E/Q)(p)) = ordp(#X(E/Q)an).

This is Theorem 2.a in [SU10].

8.2. The multiplicative case. If the reduction is nonsplit, then the above holds
just the same, because in all the theorems involved the nonsplit case never differs
from the good ordinary case (only the split multiplicative case is exceptional). If
instead the reduction is split multiplicative, we have that Lp(E, 0) = 0 and

L′p(E, 0) =
Lp

log κ(γ)
· L(E, 1)

ΩE

=
Lp

log κ(γ)
· [0]+ 6= 0 .

Since the p-adic multiplier is the same on the algebraic as on the analytic side, we
can once again compute as above to obtain the same bound (8.1).

8.3. The supersingular case. For the supersingular Dp(E)-valued series, we have

(1− ϕ)−2 · Lp(E, 0) =
L(E, 1)

ΩE

· ωE = [0]+ · ωE,

which is a nonzero element of Dp(E). The Dp(E)-valued regulator Regp(E/Q) is
equal to ωE. We may therefore concentrate solely on the coordinate in ωE. Write
ordp(fE(0)) for the p-adic valuation of the leading coefficient of the ωE-coordinate
of fE(T ). Again we obtain an inequality by using Theorem 6.2:

ordp

(∏

υ

cυ ·#X(E/Q)(p)

)
= ordp((1− ϕ)−2 fE(0))

≤ ordp((1− ϕ)−2 Lp(E, 0))

= ordp

(
L(E, 1)

ΩE

)
.

So we have once again that #X(E/Q)(p) is bounded from above by the highest
power of p dividing #X(E/Q)an.
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8.4. Conclusion. Summarizing the above computations, we have

Theorem 8.1 (Kato, Perrin-Riou, Schneider). Let E be an elliptic curve such that
L(E, 1) 6= 0. Then X(E/Q) is finite and

#X(E/Q)
∣∣∣ C · L(E, 1)

ΩE

· (#E(Q)tor)
2

∏
cυ

where C is a product of a power of 2 and of powers of primes of additive reduction
and of powers of primes for which the representation ρ̄p is not surjective.

This improves [Rub00, Cor. 3.5.19].

9. If the L-series vanishes to the first order

We suppose for this section that E has good ordinary reduction at p and that
the complex L-series L(E, s) has a zero of order 1 at s = 1. Kolyvagin’s theorem
implies that X(E/Q) is finite and that the rank of E(Q) is equal to 1. Let P be
a choice of generator of the Mordell-Weil group modulo torsion. Suppose that the

p-adic height ĥp(P ) is nonzero. A theorem of Perrin-Riou in [PR87] asserts the
following equality of rational numbers:

1

Reg(E/Q)
· L
′(E, 1)

ΩE

=
1

Regp(E/Q)
· L′p(E, 0)

(1− 1
α )2 · log(κ(γ))

,

where, on the left hand side, the canonical real-valued regulator Reg(E/Q) = ĥ(P )
appears along with the leading coefficient of L(E, s), while, on the right hand side,

we have the p-adic regulator Regp(E/Q) = ĥp(P ) and the leading term of the p-
adic L-series. By the BSD conjecture (or its p-adic analogue), this rational number
should be equal to

∏
cυ ·#X(E/Q) · (#E(Q)tor)

−2. By Kato’s theorem, we know
that the characteristic series fE(T ) of the Selmer group divides Lp(E, T ), at least
up to a power of p. Hence the series fE(T ) has a zero of order 1 at T = 0 and
its leading term divides the above rational number in Qp (here we use that E(Q)
has rank 1 so T | fE(T )). Imposing the additional hypothesis that ρp is surjective,
Theorem 7.3 implies the above divisibility over Zp (rather than just up to a power
of p), and we thus arrive at the following theorem.

Theorem 9.1 (Kato, Perrin-Riou). Let E/Q be an elliptic curve with good ordinary
reduction at the odd prime p. Assume that the p-adic regulator of E is nonzero.
Suppose that the representation ρp is surjective. If L(E, s) has a simple zero at
s = 1, then

ordp(#X(E/Q)(p)) ≤ ordp

(
(#E(Q)tor)

2

∏
cυ

· 1

Reg(E/Q)
· L
′(E, 1)

ΩE

)

= ordp(#X(E/Q)(p)an).

In other words the upper bound asserted by the BSD conjecture is true up to a
factor involving only bad and supersingular primes, and primes p for which ρ̄p is
not surjective or the p-adic regulator is 0.

The above theorem has as a hypothesis that the reduction is good ordinary,
because this is the only case when we know a proof of the p-adic Gross-Zagier
formula. It would be interesting to obtain a generalization of the p-adic Gross-
Zagier formula to the supersingular case.
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10. Algorithm for an upper bound on the rank

Let E/Q be an elliptic curve. In this section we explain how to compute upper
bounds on the rank r of the Mordell-Weil group E(Q). For this purpose, we choose
a prime p satisfying the following conditions:

• p > 2,
• E has good reduction at p.

By computing the analytic p-adic L-function Lp(E, T ) to a certain precision, we
find an upper bound, say b, on the order of vanishing of Lp(E, T ) at T = 0. Note
that a theorem of Rohrlich [Roh84] guarantees that Lp(E, T ) is not zero. Then

b ≥ ordT=0 Lp(E, T ) ≥ ordT=0 fE(T ) ≥ r

by Kato’s Theorems 7.3 and 7.4 and by Theorems 6.1 and 6.2. Hence we have an
upper bound on the rank r.

Proposition 10.1. The computation of an approximation of the p-adic L-series
of E for an odd prime p of good reduction produces an upper bound on the rank r
of the Mordell-Weil group E(Q).

By searching for points of small height on E, we also obtain a lower bound on
the rank r. Simultaneously, we can increase the precision of the computation of
the p-adic L-function in order to try to lower the bound b. Eventually, the lower
bound is equal to the upper bound, unless the p-adic BSD Conjecture 5.1 or 5.2
is false. This is similar to the conditional algorithm described in Proposition 2.2,
except that we do know here that our upper bounds are unconditional. We do
not know unconditionally that this procedure terminates after finitely many steps.
Summarizing we can claim the following.

Proposition 10.2. Let E be an elliptic curve, and assume that there is a prime
p of good reduction such that the p-adic BSD conjecture is true. Then there is an
algorithm that computes the rank r of E using p-adic L-functions.

Of course, the procedure for computing bounds on the rank r using m-descents
has the same properties: it tries to determine the rank by searching for points and
by bounding r from above by the rank of the various m-Selmer groups. Unless
all the p-primary parts of the Tate-Shafarevich group are infinite, this procedure
returns the rank r after a finite number of steps.

But the two algorithms are fundamentally different, since the m-descent algo-
rithm is fast and there are optimized implementations for small m, but it would be
prohibitively time-consuming for larger m (e.g., m ≥ 13). In contrast, computing
the p-adic L-series even for p around 1000 is reasonably efficient, assuming one can
compute the relevant modular symbols spaces.

10.1. Technical remarks. The second condition above (good reduction) on the
prime p is too strict. We may actually allow primes of multiplicative reduction,
too. Of course in the exceptional case, when E has split multiplicative reduction,
the upper bound b on the order of vanishing of the p-adic L-function Lp(E, T ) at
T = 0 satisfies b ≥ r + 1.

Note that, assuming that the p-adic BSD conjecture holds, it is easy to predict
the needed precision in the computation of the p-adic L-series. So we can compute
immediately with the precision that should be sufficient and concentrate on the
search for points of small heights.
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For practical purposes, we take p as small as possible. The computation of the
leading term of Lp(E, T ) using the algorithm of Section 3 for curves of higher rank
r is time-consuming for large p. Also we should avoid primes p with supersingular
or split multiplicative reduction as there the needed precision is much higher and
the computation of b is much slower.

Also the speed of the computation of Lp(E, T ) using modular symbols depends
on the size of the conductor. As the conductor grows, the determination of the
rank, when it is larger than 1, using the descent method becomes much more
efficient than the use of p-adic L-series computed using modular symbols following
the linear algebra algorithm of [Cre97]. However, using p-adic L-series may provide
an advantage when considering families of quadratic twists.

An advantage to the descent method is that the determination of the m-Selmer
group for some m > 1 can be used for the search of points of infinite order. If the
elements of the Selmer group can be expressed as coverings, it is more efficient to
search for rational points on the coverings rather than on the elliptic curve itself.

11. The algorithm for the Tate-Shafarevich group

The second algorithm takes as input an elliptic curve E and a prime p and tries
to compute an upper bound on the p-primary part of X(E/Q). To apply the
results above, we impose the following conditions on (E, p):

• p > 2,
• E does not have additive reduction at p,
• the image of ρ̄p is the full group GL2(Fp).

As mentioned above, these conditions apply to all but finitely many primes p.

Algorithm 11.1. Given an elliptic curve E/Q and a prime p satisfying the above
conditions, this procedure either gives an upper bound for #X(E/Q)(p) or terminates
with an error.

(1) Attempt to determine the rank r and the full Mordell-Weil group E(Q). Exit
with an error if we fail to do this.

(2) Compute higher and higher approximations to the p-adic regulator of E over
Q using the algorithm in [MST06, Har08]. Exit with an error if after a pre-
determined number of steps, the p-adic height pairing is not shown to be
nondegenerate.

(3) Using modular symbols, compute an approximation of the coefficient L∗p(E, 0)
of the leading term of the p-adic L-series Lp(E, T ). If the order of vanishing

ordT=0 Lp(E, T )

is equal to r (or r + 1 if E has split multiplicative reduction at p), then we
print that X(E/Q)(p) is finite, otherwise we increase the precision of the
computation of Lp(E, T ). If, after some prespecified cutoff, this fails to prove
that ordT=0 Lp(E, T ) = r (or r + 1), then exit with an error.

(4) Compute the remaining information, including the Tamagawa numbers cυ and
the p-adic multiplier εp. If p is a good ordinary prime or a prime at which E
has nonsplit multiplicative reduction, let

bp = ordp(L∗p(E, 0))− ordp(εp)

−
∑

υ

ordp(cυ)− ordp(Regγ(E/Q)).



28 WILLIAM STEIN AND CHRISTIAN WUTHRICH

If p is supersingular, let

bp = ordp((1− ϕ)−2 L∗p(E, 0))− ordp(Regp(E/Q))−
∑

υ

ordp(cυ).

Finally, if E has split multiplicative reduction at p, let

bp = ordp(L∗p(E, 0))− ordp(Lp)

−
∑

υ

ordp(cυ)− ordp(Regγ(E/Q)) .

(5) Output that #X(E/Q)(p) is bounded by pbp .

Proof. At Step 4, we have shown that Conjecture 4.1 (or Conjecture 4.4 in the
supersingular case) on the nondegeneracy of the p-adic regulator holds and that
X(E/Q)(p) is indeed finite by Theorem 6.1 (or Theorem 6.2 in the supersingular
case). Moreover this theorem shows that

ordp(#X(E/Q)(p)) = ordp(f
∗
E(0)) + ordp

(
(#E(Q)(p))2

εp ·
∏
υ cυ

· 1

Regγ(E/Q)

)

in the ordinary case (or the same formula where εp is replaced by Lp in the split
multiplicative case) and

ordp(#X(E/Q)(p)) = ordp((1− ϕ)−2 f∗E(0))− ordp(Regp(E/Q))−
∑

υ

ordp(cυ)

in the supersingular case. Note that #E(Q)(p) = 1 since we assumed that ρ̄p is
surjective. Finally, we use Kato’s Theorem 7.3 that

ordp(f
∗
E(0)) ≤ ordp(L∗p(E, 0))

to prove that bp is indeed an upper bound on ordp(#X(E/Q)(p)). �
In the next proposition we summarize the discussion of this section.

Proposition 11.2. Let E be an elliptic curve and p > 2 a prime for which E
has semistable reduction. If Conjectures 4.1 and 4.4 hold and if we are able to
determine the Mordell-Weil group of E, then there is a algorithm to verify that the
p-primary part of X(E/Q) is finite. If moreover the representation ρ̄p is surjective,
then the algorithm produces an upper bound on #X(E/Q)(p). If Conjecture 7.1
holds then the result of the algorithm is equal to the order of X(E/Q)(p).

11.1. Technical remarks. In Step 1 of Algorithm 11.1 we may use several ways
to determine the rank and the Mordell-Weil group. E.g., first compute the modular
symbol [0]+. If it is not zero, we have that L(E, 1) 6= 0 and the rank has to be 0.
If the order of vanishing of L(E, s) at s = 1 is 1, we may use Heegner points to
find the full Mordell-Weil group, which then is of rank 1. Otherwise we use descent
methods or the algorithm in the previous section to bound the rank from above and
search for points to find a lower bound. When enough points are found to generate
a group of finite index, we saturate the group using infinite descent in order to find
the full group E(Q). In practice this step does not create any problems as Step 3
is usually computationally more difficult.

In Step 3, it is easy to determine the precision that will be needed to compute
the p-adic valuation of the leading term L∗p(E, 0) if we assume the complex and the
p-adic version of the BSD conjecture. Hence it is easy to decide when to exit at
this step.
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The algorithm exits with an error only if the Mordell-Weil group could not be
determined (in Step 1), if Conjecture 4.1 or 4.4 is wrong (in Step 2), if the p-primary
part of X(E/Q) is infinite or if the main conjecture is false (both in Step 3). Hence
only weaker variants of the p-adic Birch and Swinnerton-Dyer conjecture are needed.

Another application of the algorithm is the following remark. If, for a given
elliptic curve E and a prime p, the algorithm yields as output that the p-primary
part of X(E/Q) is trivial, then the algorithm has actually also proved the main
conjecture for E and p. Because we know by then that Lp(E, T ) and the character-
istic series fE(T ) of the Selmer group have the same order of vanishing at T = 0 and
the leading terms have the same valuation. Since, by Kato’s theorem fE(T ) divides
Lp(E, T ), we know then that the quotient is a unit in Zp[[T ]]. Such calculations
and especially this remark on how to verify the main conjecture in special cases are
already contained in [PR03] for supersingular primes p.

12. Numerical results

The algorithms described above were implemented by the authors in Sage (see
[S+11b]) and all of the calculations given below can be carried out using Sage and
PSage [S+11a].

12.1. A split multiplicative example. To give an example of a curve with split
multiplicative reduction, we use the same curve as before (see Equation (3.3))

E0 : y2 + x y = x3 − x2 − 4x + 4

but with the prime p = 223. Of course, there is no hope in practice that an explicit
223-descent could be used to compute the order of X(E0/Q)(223). However, we
can compute the p-adic regulator and the L -invariant to high precision quickly
using Tate’s parametrization of E0:

Regp(E0/Q) = 153 · 2232 + 125 · 2233 + 124 · 2234 + O(2235),

L = 179 · 223 + 85 · 2232 + 30 · 2233 + O(2234).

The computation of the p-adic L-series is more time consuming8. But as we only
need the first p-adic digit to prove the triviality of X(E0/Q)(223), we only need
to sum over 222 · 223 modular symbols. This yields

Lp(E0, T ) = O(2234) + O(2231) · T + O(2231) · T 2 + (139 + O(223)) · T 3 + O(T 4).

In fact, we know that the first three coefficients vanish as we are in the exceptional
case, so the leading term has valuation 0. From these computations, we see that
the p-adic BSD conjecture predicts that

#X(E0/Q) ≡ 1 (mod 223);

in particular, we may conclude that X(E0/Q)(223) = 0.

8The optimized implementation mentioned in Section 12.4 does this entire computation in less

than one second total time, including the modular symbols space computation.
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12.2. A supersingular example. Let E be the elliptic curve

E : y2 + x = x3 + x2 + 2x + 2

listed as curve 1483a1 in Cremona’s tables. The curve has rank 2 generated by
(−1, 0) and (0, 1). The reduction of E at p = 5 is supersingular. The p-adic
L-series is

Lp(E, T ) =
(
(1 + O(5)) · T 2 + (1 + O(5)) · T 3 + O(T 4)

)
· ωE

+
(
(4 · 5 + O(52)) · T 2 + (4 · 5 + O(52)) · T 3 + O(T 4)

)
· ϕ(ωE)

where we have already taken in account that the first two terms vanish. We compute
the normalized Dp-valued regulator

Regγ(E/Q) =
(
1 + 2 · 5 + 3 · 52 + 53 + O(55)

)
· ωE

+
(
4 · 5 + 4 · 52 + 4 · 53 + 54 + 2 · 55 + O(56)

)
· ϕ(ωE) .

Hence the p-adic BSD conjecture predicts that

(
1 + O(5)

)
ωE +

(
4 · 5 + O(52)

)
ϕ(ωE) =

#X(E/Q) ·
((

1 + O(5)
)
ωE +

(
4 · 5 + O(52)

)
ϕ(ωE)

)
.

In particular, we have shown that X(E/Q)(5) is trivial. It follows from Iwasawa-
theoretic consideration as in [PR03] that, if #X(E/nQ)(5) = 5en then

en =
p

p2 − 1
· pn + O(1) .

12.3. An example whose Tate-Shafarevich group is nontrivial. Let E be
the elliptic curve given by

E : y2 + x y = x3 + 16353089x − 335543012233

which is labeled 858k2 in [Cre]. The curve has rank 0 and is semistable, and the
full BSD conjecture predicts that the Tate-Shafarevich group X(E/Q) consists of
two copies of Z/7Z.

We may compute the 7-adic L-series, which yields

L7(E, T ) =72 · (2 · 72 + 73 + 74 + 3 · 75 + O(76) + (5 · 72 + O(73)) · T
+ (3 + 4 · 7 + 5 · 72 + O(73)) · T 2 + O(T 3))

On the algebraic side, we find that the constant term of the characteristic series of
E has valuation 2 + ord7(#X(E/Q)). So our algorithm yields the correct upper
bound, that #X(E/Q)(7) ≤ 72. We can change to the curve 858k1 with a 7-
isogeny and prove there directly that the upper bound on the 7-primary part of the
Tate-Shafarevich group is 1, so by isogeny invariance of the Birch and Swinnerton-
Dyer conjecture it follows that #X(E/Q)(7) = 72. (Of course, this can be shown
with other methods for this curve of rank 0, e.g., by using Heegner points.) Since
we know the exact order of X(E/Q), we deduce that the main conjecture holds.
(Also, this can be deduced from Theorem 7.5 taking q = 11.)

Once again we learn even more from the computation of the p-adic L-series.
Iwasawa theory tells us that the order of the Tate-Shafarevich group grows quickly
(for an ordinary prime) in the Z7-extension. Namely if #X(E/nQ) = 7en then
en = 2 · 7n + 2 · n+ O(1).
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12.4. Tate-Shafarevich Groups of Elliptic Curves of Rank at Least 2. Ac-
cording to [Cre], for every elliptic curve with rank ≥ 2 and conductor up to 130,000,
the BSD conjecture predicts that X(E/Q) = 0. In this section, we describe the
computation we did to verify Theorem 1.1, which gives evidence for this observa-
tion, at least up to conductor 30,000.

Consider a pair (E, p) consisting of

(1) an optimal elliptic curve E defined over Q with rank r ≥ 2 and conductor
≤ 30,000, and

(2) a good ordinary prime p with 5 ≤ p < 1,000 such that ρ̄E,p : GQ →
Aut(E[p]) is surjective.

There are 9,679 such curves E and 1,534,422 such pairs (E, p). For each pair, we
do the following:

(1) Show that r = ordT Lp(E, T ).
(2) Compute the conjectural order of X(E/Q) according to Conjecture 5.1

mod p, and check that it is 1 +O(p).

As explained in the proof of Algorithm 11.1, our hypotheses on p then imply that
X(E/Q)[p] = 0. As evidence for Conjecture 5.1 and as a double check on our
implementation, we also verify the conjecture to precision O(p) for each pair (E, p).

(1) We compute9 approximations to Lp(E, T ) that are sufficient to show that
ordT (Lp(E, T )) = r. For 1,523,413 of our 1,534,422 pairs (E, p), we did
this by computing P2 ≡ Lp(E, T ) (mod (p, T 5)); for the remaining 11,009
pairs, we computed to higher precision.

(2) For all of our pairs (E, p), we computed the p-adic regulator Regp(E) ∈ Qp
to precision at least O(p12). In all cases this computation confirmed that
Regp(E) 6= 0.

(3) With the above data for our pairs (E, p), it was then straightforward to
compute the conjectural order of X(E/Q) according to Conjecture 5.1,
and in all cases we got 1 +O(p), so X(E/Q)[p] = 0.

Remark 12.1. In fact, we carried out the regulator calculation mentioned above
for all pairs (E, p) with 5 ≤ p < 1000 good ordinary for which the conductor of
E is ≤ 130,000 and the rank is ≥ 2. A selection of large ordp(Regp(E)) is given
in Table 1. For example, for the first curve 53770a1 with p = 7, the conductor
factors as 53770 = 2 · 5 · 19 · 283, the Tamagawa numbers are 12, 2, 6, 1, which are
all coprime to 7, we have X(E/Q)an = 1, and N7 = 9, which is coprime to 7, but

Reg7(E) = 77 · 419257219506 +O(721)

is divisible by a rather large power of 7. The leading coefficient of the 7-adic L-series
vanishes to order 7− rank(E), as expected, so X(E/Q)(7) = 0:

L7(E, T ) = O(79) +O(76)T +
(
6 · 75 +O(76)

)
T 2 +

(
3 · 75 +O(76)

)
T 3

+
(
5 + 5 · 7 + 2 · 74 + 75 +O(76)

)
T 4 +O(T 5)

Remark 12.2. A very hard case is (E, p) = (17856j1, 757), in which E has rank 2
and

Regp(E) = 261 · 7574 + 531 · 7575 + 293 · 7576 + 309 · 7577 + · · ·

9The computation of the approximate p-adic L-series for all of our pairs (E, p) took several

months of CPU time using an optimized implementation of the algorithm of Section 3.
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The leading coefficient of the 757-adic L-series must be divisible by 7572, so we must
compute L7(E, T ) (mod 7573), which is enormously time consuming, even with our
highly optimized implementation, since each power of p increases the complexity
by a factor of p (and, in addition, we use slower arbitrary precision arithmetic to
avoid overflow). The computation took over two months of CPU time, and yielded

L757(T ) = O(7573) +O(7573)T +
(
399 · 7572 +O(7573)

)
T 2 + · · ·

Thus the p-adic BSD conjecture predicts that #X(E/Q)(757) ≡ 1 (mod 757),
hence X(E/Q)[757] = 0.

Table 1. Various examples in which ordp(Regp(E)) is large

Curve Rank p Regp(E)

53770a1 2 7 77 · 419257219506 +O(721)
60237b1 2 7 77 · 195984223121 +O(721)
65088bm1 2 5 57 · 3628814228 +O(521)
71236b1 2 5 57 · 2905505203 +O(521)
74220b1 2 7 77 · 411568240919 +O(721)
82096e1 2 11 117 · 163096174634581 +O(1121)
91143f1 2 17 177 · 32722747582988964 +O(1721)
101552a1 2 5 57 · 1575344534 +O(521)
116634k1 2 5 57 · 1877361868 +O(521)
121212q1 2 5 57 · 5806958402 +O(521)
123888bm1 2 7 77 · 537125029809 +O(721)
127368d1 2 13 137 · 485242111874635 +O(1321)
27448d1 3 5 56 · 115188708423 +O(522)
53122a1 3 5 56 · 31988633 +O(522)
90953a1 3 7 76 · 28674298268349 +O(722)

Let E be the elliptic curve 389a of rank 2. We verified for a large number of
primes p that X(E/Q)[p] = 0.

Theorem 12.3. Let E be the rank 2 elliptic curve of conductor 389. Then for 2 and
all 5,005 good ordinary primes p < 48,859 except p = 16,231 we have X(E/Q)[p] =
0. For each such p, the p-adic BSD conjectural order of X is congruent to 1
modulo p. This only excludes the following bad or supersingular primes and the
good ordinary prime 16,231:

p =107, 389, 599, 1049, 2957, 6661, 8263, 9397, 9551, 14633, 15101, 28591,

30671, 30869, 31799, 34781, 36263, 45161.

Proof. This is a computation similar to the one described above that takes several
weeks CPU time. �
Remark 12.4. For the prime p = 16,231, we have ordp(Regp) = 3 instead of 2 =
rank(E). Thus the computation is roughly 16,231 times as difficult as it is for
nearby primes using our algorithm, so we estimate it would take several CPU
years to finish. It should be possible to instead deal with this exceptional case
efficiently using the overconvergent modular symbols approach of Pollack-Stevens
[PS11], when a suitable implementation is available.
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Remark 12.5. We have excluded supersingular primes from this section not because
our algorithms do not apply (they do apply), but because our implementations are
significantly slower in this case. We hope to address this shortcoming in future
work.
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ber Theory, Paris 1980-81, Progr. Math., vol. 22, Birkhäuser Boston, 1982, pp. 1–11.
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(2004), no. 294, ix, 251–319.
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1.1 Introduction 3

1.1 Introduction

The goal of the Sage project (http://www.sagemath.org) is to create a

viable free open source alternative to Magma, MapleTM, Mathematica R©,

and MATLAB R©, which are the most popular non-free closed source

mathematical software systems.1 Magma is (by far) the most advanced

non-free system for structured abstract algebraic computation, Mathe-

matica and Maple are popular and highly developed systems that shine

at symbolic manipulation, and MATLAB is the most popular system for

applied numerical mathematics. Together there are over 3,000 employ-

ees working at the companies that produce the four Ma’s listed above,

which take in over a hundred million dollars of revenue annually.

By a viable free alternative to the Ma’s, we mean a system that will

have the important mathematical features of each Ma, with compara-

ble speed. It will have 2d and 3d graphics, an interactive graphical user

interface, and documentation, including books, papers, school and col-

lege curriculum materials, etc. A single alternative to all of the Ma’s is

not necessarily a drop-in replacement for any of the Ma’s; in particu-

lar, it need not run programs written in the custom languages of those

systems. Thus an alternative may be philosophically different than the

open source system Octave, which understands the MATLAB source lan-

guage and attempts to implement the entire MATLAB library. Develop-

ment could instead focus on implementing functions that users demand,

rather than systematically trying to implement every single function of

the Ma’s. The culture, architecture, and general look and feel of such a

system would be very different than that of the Ma’s.

In Section 1.2 we explain some of the motivation for starting the Sage

project, in Section 1.3 we describe the basic architecture of Sage, and in

Section 1.4 we sketch aspects of the history of the project.

1.2 Motivation for Starting Sage

Each of the Ma’s cost substantial money, and is hence expensive for

me, my collaborators, and students. The Ma’s are not owned by the

community like Sage is, or Wikipedia is, for that matter.

The Ma’s are closed, which means that the implementation of some

1 Maple is a trademark of Waterloo Maple Inc. Mathematica is a registered
trademark of Wolfram Research Incorporated. MATLAB is a registered
trademark of MathWorks. I will refer to the four systems together as “the Ma’s”
in the rest of this article.
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algorithms are secret, in which case you are not allowed to modify or

extend them.

“You should realize at the outset that while knowing about the internals of
Mathematica may be of intellectual interest, it is usually much less important
in practice than you might at first suppose. Indeed, in almost all practical uses
of Mathematica, issues about how Mathematica works inside turn out to be
largely irrelevant. Particularly in more advanced applications of Mathematica,
it may sometimes seem worthwhile to try to analyze internal algorithms in
order to predict which way of doing a given computation will be the most
efficient. [...] But most often the analyses will not be worthwhile. For the
internals of Mathematica are quite complicated..”

– The Mathematica Documentation

The philosophy espoused in Sage, and indeed by the vast open source

software community, is exactly the opposite. We want you to know about

the internals, and when they are quite complicated, we want you to

help make them more understandable. Indeed, Sage’s growth depends

on you analyzing how Sage works, improving it, and contributing your

improvements back.

sage: crt(2, 1, 3, 5) # Chinese Remainder Theorem
11
sage: crt? # ? = documentation and examples
Returns a solution to a Chinese Remainder Theorem ...
...
sage: crt?? # ?? = source code
def crt (...):
...

g, alpha , beta = XGCD(m, n)
q, r = (b - a). quo_rem(g)
if r != 0:

raise ValueError("No solution ...")
return (a + q*alpha*m) % lcm(m, n)

Moreover, by browsing http://hg.sagemath.org/sage-main/, you can

see exactly who wrote or modified any particular line of code in the Sage

library, when they did it, and why. Everything included in Sage is free

and open source, and it will foreover remain that way.

“I see open source as Science. If you don’t spread your ideas in the open, if
you don’t allow other people to look at how your ideas work and verify that
they work, you are not doing Science, you are doing Witchcraft. Traditional
software development models, where you keep things inside a company and
hide what you are doing, are basically Witchcraft. Open source is all about
the fact that it is open; people can actually look at what you are doing, and
they can improve it, and they can build on top of it. [...] One of my favorite
quotes from history is Newton: ‘If I had seen further, it has been by standing
on the shoulders of giants.’”
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– Linus Torvalds.
Listen at http://www.youtube.com/watch?v=bt_Y4pSdsHw

The design decisions of the Ma’s are not made openly by the commu-

nity. In contrast, important decisions about Sage development are made

via open public discussions and voting that is archived on public mailing

lists with thousands of subscribers.

Every one of the Ma’s uses a special mathematics-oriented inter-

preted programming language, which locks you into their product, makes

writing some code outside mathematics unnecessarily difficult, and im-

pacts the number of software engineers that are experts at programming

in that language. In contrast, the user language of Sage is primarily

the mainstream free open source language Python http://python.org,

which is one of the world’s most popular interpreted programming lan-

guages. The Sage project neither invented nor maintains the underly-

ing Python language, but gains immediate access to the IPython shell,

Python scientific libraries (such as NumPy, SciPy, CVXopt and Mat-

PlotLib), and a large Python community with major support from big

companies such as Google. In comparison to Python, the Ma’s are small

players in terms of language development. Thus for Sage most of the

problems of language development are handled by someone else.

The bug tracking done for three of four of the Ma’s is currently secret2,

which means that there is no published accounting of all known bugs,

the status of work on them, and how bugs are resolved. But the Ma’s

do have many bugs; see the release notes of each new version, which

lists bugs that were fixed3. Sage also has bugs, which are all publicly

tracked at http://trac.sagemath.org, and there are numerous “Bug

Days” workshops devoted entirely to fixing bugs in Sage. Moreover, all

discussion about resolving a given bug, including peer review of solu-

tions, is publicly archived. We note that sadly even some prize winning4

free open source systems, such as GAP http://www.gap-system.org/,

do not have an open bug tracking system, resulting in people reporting

the same bugs over and over again.

Each of the Ma’s is a combination of secret unchangeable compiled

code and less secret interpreted code. Users with experience program-

ming in compiled languages such as Fortran or C++ may find the loss of

a compiler to be frustrating. None of the Ma’s has an optimizing compiler

that converts programs written in their custom interpreted language to a

2 MATLAB has an open bug tracker, though it requires free registration to view.
3 See also http://cybertester.com/ and http://maple.bug-list.org/.
4 Jenks Prize, 2008
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fast executable binary format that is not interpreted at runtime.5 In con-

trast, Sage is tightly integrated with Cython6 http://www.cython.org,

which is a ython-to-C/C++ compiler that speeds up code execution and

has support for statically declaring data types (for potentially enor-

mous speedups) and natively calling existing C/C++/Fortran code.

For example, enter the following in a cell of the Sage notebook (e.g.,

http://sagenb.org):

def python_sum2(n):
s = int(0)
for i in xrange(1, n+1):

s += i*i
return s

Then enter the following in another cell:

%cython
def cython_sum2(long n):

cdef long i, s = 0
for i in range(1, n+1):

s += i*i
return s

The second implementation, despite looking nearly identical, is nearly a

hundred times faster than the first one (your timings may vary).

sage: timeit(’python_sum2 (2*10^6) ’)
5 loops , best of 3: 154 ms per loop
sage: timeit(’cython_sum2 (2*10^6) ’)
125 loops , best of 3: 1.76 ms per loop
sage: 154/1.76
87.5

Of course, it is better to choose a different algorithm. In case you don’t

remember a closed form expression for the sum of the first n squares,

Sage can deduce it:

sage: var(’k, n’)
sage: factor(sum(k^2, k, 1, n))

5 MATLAB has a compiler, but “the source code is still interpreted at run-time,
and performance of code should be the same whether run in standalone mode or
in MATLAB.” Mathematica also has a Compile function, but simply compiles
expressions to a different internal format that is interpreted, much like Sage’s
fast callable function.

6 The Cython project has received extensive contributions from Sage developers,
and is very popular in the world of Python-based scientific computing.
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1/6*(n + 1)*(2*n + 1)*n

And now our simpler fast implementation is:

def sum2(n):
return n*(2*n+1)*(n+1)/6

Just as above, we can also use the Cython compiler:

%cython
def c_sum2(long n):

return n*(2*n+1)*(n+1)/6

Comparing times, we see that Cython is 10 times faster:

sage: n = 2*10^6
sage: timeit(’sum2(n)’)
625 loops , best of 3: 1.41 microseconds per loop
sage: timeit(’c_sum2(n)’)
625 loops , best of 3: 0.145 microseconds per loop
sage: 1.41/.145
9.72413793103448

In this case, the enhanced speed comes at a cost, in that the answer is

wrong when the input is large enough to cause an overflow:

sage: c_sum2 (2*10^6) # WARNING: overflow
-407788678951258603

Cython is very powerful, but to fully benefit from it, one must under-

stand machine level arithmetic data types, such as long, int, float, etc.

With Sage you have that option.

1.3 What is Sage?

The goal of Sage is to compete with the Ma’s, and the intellectual prop-

erty at our disposal is the complete range of GPL-compatibly licensed

open source software.

Sage is a self-contained free open source distribution of about 100

open source software packages and libraries7 that aims to address all

7 See the list of packages in Sage at http://sagemath.org/packages/standard/.
The list includes R, Pari, Singular, GAP, Maxima, GSL, Numpy, Scipy, ATLAS,
Matplotlib, and many other popular programs.
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computational areas of pure and applied mathematics. The download

of Sage contains all dependencies required for the normal functioning of

Sage, including Python itself. Sage includes a substantial amount of code

that provides a unified Python-based interface to these other packages.

Sage also includes a library of new code written in Python, Cython and

C/C++, which implements a huge range of algorithms.

1.4 History

I made the first release of Sage in February 2005, and at the time called it

“Software for Arithmetic Geometry Experimentation.” I was a serious

user of, and contributor to, Magma at the time, and was motivated to

start Sage for many of the reasons discussed above. In particular, I was

personally frustrated with the top-down closed development model of

Magma, the fact that several million lines of the source code of Magma

are closed source, and the fees that my colleagues had to pay in order to

use the substantial amount of code that I contributed to Magma. Despite

my early naive hope that Magma would be open sourced, it never was.

So I started Sage motivated by the dream that someday the single most

important item of software I use on a daily basis would be free and open.

David Joyner, David Kohel, Joe Wetherell, and Martin Albrecht were

also involved in the development of Sage during the first year.

In February 2006, the National Science Foundation funded a 2-day

workshop called “Sage Days 2006” at UC San Diego, which had about

40 participants and speakers from several open and closed source math-

ematical software projects. After doing a year of fulltime mostly solitary

work on Sage, I was surprised by the positive reception of Sage by mem-

bers of the mathematical research community. What Sage promised was

something many mathematicians wanted. Whether or not Sage would

someday deliver on that promise was (and for many still is) an open

question.

I had decided when I started Sage that I would make it powerful

enough for my research, with or without the help of anybody else, and

was pleasantly surprised at this workshop to find that many other people

were interested in helping, and understood the shortcomings of existing

open source software, such as GAP and PARI, and the longterm need to

move beyond Magma. Six months later, I ran another Sage Days work-

shop, which resulted in numerous talented young graduate students, in-

cluding David Harvey, David Roe, Robert Bradshaw, and Robert Miller,
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getting involved in Sage development. I used startup money from Uni-

versity of Washington to hire Alex Clemesha as a fulltime employee to

implement 2d graphics and help create a notebook interface to Sage.

I also learned that there was much broader interest in such a system,

and stopped referring to Sage as being exclusively for “arithmetic ge-

ometry”; instead, Sage became “Software for Algebra and Geometry

Experimentation.” Today the acronym is deprecated.

The year 2007 was a major turning point for Sage. Far more people

got involved with development, we had four Sage Days workshops, and

prompted by Craig Citro, we instituted a requirement that all new code

must have tests for 100% of the functions touched by that code, and ev-

ery modification to Sage must be peer reviewed. Our peer review process

is much more open than in mathematical research journals; everything

that happens is publicly archived at http://trac.sagemath.org. Dur-

ing 2007, I also secured some funding for Sage development from Mi-

crosoft Research, Google, and NSF. Also, a German graduate student

studying cryptography, Martin Albrecht presented Sage at the Trophées

du Libre competition in France, and Sage won first place in “Scientific

Software”, which led to a huge amount of good publicity, including arti-

cles in many languages around the world and appearances8 on the front

page of http://slashdot.org.

In 2008, I organized 7 Sage Days workshops at places such as IPAM

(at UCLA) and the Clay Mathematics Institute, and for the first time,

several people besides me made releases of Sage. In 2009, we had 8 more

Sage Days workshops, and the underlying foundations of Sage improved,

including development of a powerful coercion architecture. This coercion

model systematically determines what happens when performing opera-

tions such as a + b, when a and b are elements of potentially different

rings (or groups, or modules, etc.).

sage: R.<x> = PolynomialRing(ZZ)
sage: f = x + 1/2; f
x + 1/2
sage: parent(f)
Univariate Polynomial Ring in x over Rational Field

We compare this with Magma (V2.17-4), which has a more ad hoc co-

ercion system:

8 For example, http://science.slashdot.org/story/07/12/08/1350258/
Open-Source-Sage-Takes-Aim-at-High-End-Math-Software
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> R<x> := PolynomialRing(IntegerRing ());
> x + 1/2

^
Runtime error in ’+’: Bad argument types
Argument types given: RngUPolElt[RngInt], FldRatElt

Robert Bradshaw and I also added support for beautiful browser-

based 3D graphics to Sage, which involved writing a 3D graphics library,

and adapting the free open source JMOL Java library (see http://jmol.

sourceforge.net/) for rendering molecules to instead plot mathemat-

ical objects.

sage: f(x,y) = sin(x - y) * y * cos(x)
sage: plot3d(f, (x,-3,3), (y,-3,3), color=’red’)

In 2009, following a huge amount of porting work by Mike Hansen,

development of algebraic combinatorics in Sage picked up substantial

momentum, with the switch of the entire MuPAD-combinat group to

Sage (forming sage-combinat http://wiki.sagemath.org/combinat),

only months before the formerly free system MuPAD R©9 was bought

out by Mathworks (makers of MATLAB). In addition to work on Lie

theory by Dan Bump, this also led to a massive amount of work on a

category theoretic framework for Sage by Nicolas Thiery.

In 2010, there were 13 Sage Days workshops in many parts of the

world, and grant funding for Sage significantly improved, including new

NSF funding for undergraduate curriculum development. I also spent

much of my programming time during 2010–2011 developing a number

theory library called psage http://code.google.com/p/purplesage/,

which is currently not included in Sage, but can be easily installed.

9 MuPAD is a registered trademark of SciFace Software GmbH & Co.
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Many aspects of Sage make it an ideal tool for teaching mathematics,

so there’s a steadily growing group of teachers using it: for example,

there have been MAA PREP workshops on Sage for the last two years,

and a third is likely to run next summer, there are regular posts on the

Sage lists about setting up classroom servers, and there is an NSF-funded

project called UTMOST (see http://utmost.aimath.org/) devoted to

creating undergraduate curriculum materials for Sage.

The page http://sagemath.org/library-publications.html lists

101 accepted publications that use Sage, 47 preprints, 22 theses, and 16

books, and there are surely many more “in the wild” that we are not

aware of. According to Google Analytics, the main Sage website gets

about 2,500 absolute unique visitors per day, and the website http:

//sagenb.org, which allows anybody to easily use Sage through their

web browser, has around 700 absolute unique visitors per day.

For many mathematicians and students, Sage is today the mature,

open source, and free foundation on which they can build their research

program.
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Numerical computation of Chow-Heegner points

associated to pairs of elliptic curves∗†

William Stein

February 5, 2012

Abstract

In this paper, we consider a special case of Chow-Heegner points that
has a simple concrete description due to Shouwu Zhang. Given a pair E, F
of nonisogenous elliptic curves, and surjective morphisms ϕE : X0(N) →
E and ϕF : X0(N) → F of curves over Q, we associate a rational point
P ∈ E(Q). We describe a numerical approach to computing P , state some
motivating results of Zhang et al. about the height of P , and present a
table of data.

1 Introduction: Zhang’s Construction

Consider a pair E,F of nonisogenous elliptic curves over Q and fix surjective
morphisms from X0(N) to each curve. We do not assume that N is the con-
ductor of either E or F , though N is necessarily a multiple of the conductor.

X0(N)
ϕE

||

ϕF

""
E F

Let (ϕE)∗ : Div(X0(N)) → Div(E) and ϕ∗F : Div(F ) → Div(X0(N)) be the
pushforward and pullback maps on divisors on algebraic curves. Let Q ∈ F (C)
be any point, and let

PϕE ,ϕF ,Q =
∑

(ϕE)∗ϕ
∗
F (Q) ∈ E(C),

where
∑

means the sum of the points in the divisor using the group law on E,
i.e., given a divisor D =

∑
niPi ∈ Div(E), we have (

∑
D)−∞ ∼ D−deg(D)∞,

which uniquely determines
∑
D.

∗Work on this paper was partly supported by National Science Foundation Grant No.
DMS-0821725.
†A modified version of this paper will be published as an appendix to [DDLR11].
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Proposition 1.1. The point PϕE ,ϕF ,Q does not depend on the choice of Q.

Proof. The composition (ϕE)∗ ◦ ϕ∗F induces a homomorphism of elliptic curves

ψ : Pic0(F ) = Jac(F )→ Jac(E) = Pic0(E).

Our hypothesis that E and F are nonisogenous implies that ψ = 0. We denote
by [D] the linear equivalence class of a divisor in the Picard group. If Q′ ∈ F (C)
is another point, then under the above composition of maps,

[Q−Q′] 7→ [(ϕE)∗ϕ
∗
F (Q)− (ϕE)∗ϕ

∗
F (Q′)] = [PQ − PQ′ ].

Thus the divisor PQ − PQ′ is linearly equivalent to 0. But F has genus 1, so
there is no rational function on F of degree 1, hence PQ = PQ′ , as claimed.

We let PϕE ,ϕF
= PϕE ,ϕF ,Q ∈ E(C), for any choice of Q.

Corollary 1.2. We have PϕE ,ϕF
∈ E(Q).

Proof. Taking Q = O ∈ F (Q), we see that the divisor (ϕE)∗ ◦ϕ∗F (Q) is rational,
so its sum is also rational.

In the rest of this paper, we write PE,F = PϕE ,ϕF
when E and F are both

optimal curves of the same conductor N , and ϕE and ϕF are as in Section 5.

1.1 Outline

In Section 2 we discuss an example in which E and F both have conductor 37.
Section 3 is about a formula of Yuan-Zhang-Zhang for the height of PE,F in
terms of the derivative of an L-function, in some cases. In Section 4, we discuss
the connection between this paper and the paper [DDLR11] about computing
Chow-Heegner points using iterated integrals. The heart of the paper is Sec-
tion 5, which describes our numerical approach to approximating PE,F . Finally,
Section 5.2 presents a table of points PE,F .

Acknowledgements: We would like to thank Ralph Greenberg, Ken Ribet,
Barry Mazur, Karl Rubin, Shouwu Zhang, and Jon Bober for helpful conversa-
tions related to this paper, and especially thank Xinyi Yuan for introducing us
to this topic, Henri Darmon for encouraging us to flesh out the details and write
it up for publication, and Victor Rotger for clarifying some issues in Section 3.
We would also like to thank John Cremona for refereeing the corresponding Sage
[S+11] code and Cremona, Bas Edixhoven and Samit Dasgupta for contributions
to Section 5.1.

2 Example: N = 37

The smallest conductor curve of rank 1 is the curve E with Cremona label 37a
(see [Cre]). The paper [MSD74] discusses the modular curve X0(37) in detail.
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It gives the affine equation y2 = −x6−9x4−11x2+37 for X0(37), and describes
how X0(37) is equipped with three independent involutions w, T and S. The
quotient of X0(37) by w is E, the quotient by T is an elliptic curve F with
F (Q) ≈ Z/3Z and Cremona label 37b, and the quotient by S is the projective
line P1.

X0(37)

ϕE

xx
ϕF

�� &&
E = X/w F = X/T P1 = X/S

The maps ϕE and ϕF have degree 2, by virtue of being induced by an involution.
As explained in [MSD74], the fiber over Q = 0 ∈ F (Q) contains 2 points:

1. the cusp [∞] ∈ X0(37)(Q), and

2. the noncuspidal affine rational point (−1,−4) = T (∞) ∈ X0(37)(Q).

We have ϕE([∞]) = 0 ∈ E(Q), and [MSD74, Prop. 3, pg. 30] implies that

ϕF ((−1,−4)) = (6, 14) = −6(0,−1),

where (0,−1) generates E(Q). We conclude that

PE,F = (6, 14) and [E(Q) : ZPE,F ] = 6.

On [MSD74, pg. 31], they remark: “It would be of the utmost interest to link
this index to something else in the theory.”

This remark motivates our desire to compute more examples. Unfortunately,
it is very difficult to generalize the above approach directly, since it involves com-
putations with X0(37) and its quotients that rely on explicit defining equations.
Just as there are multiple approaches to computing Heegner points, there are
several approaches to computing PE,F :

• a Gross-Zagier style formula for the height of PE,F (see Section 3),

• explicit evaluation of iterated integrals (see Section 4), and

• numerical approximation of the fiber in the upper half plane over a point
on F using a polynomial approximation to ϕF (see Section 5).

This paper is mainly about the last approach listed above.

3 The Formula of Yuan-Zhang-Zhang

Consider a special case of the triple product L-function of [GK92]

L(E,F, F, s) = L(E, s) · L(E,Sym2(F ), s), (1)

where E and F are elliptic curves of the same conductor N , and all L-functions
are normalized so that 1/2 is the center of the critical strip. The following
theorem is proved in [YZZ11]:
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Theorem 3.1 (Yuan-Zhang-Zhang). Assume that the local root number of
L(E,F, F, s) at every prime of bad reduction is +1 and that the root number

at infinity is −1. Then ĥ(PE,F ) = (∗) · L′(E,F, F, 12 ), where (∗) is nonzero.

Remark 3.2. The above formula resembles the Gross-Zagier formula

ĥ(PK) = (∗) · (L(E/Q, s) · L(EK/Q, s))′|s= 1
2
,

where K is a quadratic imaginary field satisfying certain hypotheses.

If one could evaluate L′(E,F, F, 12 ), e.g., by applying the algorithm of [Dok04],
along with the factor (∗) in the theorem, this would yield an algorithm to com-
pute ±PE,F (mod E(Q)tor) when the root number hypothesis is satisfied. Un-
fortunately, it appears that nobody has numerically evaluated the formula of
Theorem 3.1 in any interesting cases.

When E and F have the same squarefree conductor N , [GK92, §1] implies
that the local root number of L(E,F, F, s) at p is the same as the local root
number of E at p; computing the local root number when the level is not square
free is more complicated.

Proposition 3.3. Assume that E and F have the same squarefree conductor
N , that the local root numbers of E at primes p | N are all +1 (equivalently,
that we have ap(E) = −1) and that ran(E/Q) = 1. Then L(E,Sym2 F, 12 ) 6= 0

if and only if ĥ(PE,F ) 6= 0.

Proof. By hypothesis, we have L(E, 12 ) = 0 and L′(E, 12 ) 6= 0. Theorem 3.1 and
the factorization (1) imply that

ĥ(PE,F ) = (∗) · L′(E, 1

2
) · L(E,Sym2 F,

1

2
),

from which the result follows.

Section 5.2 contains numerous examples in which E has rank 1, F has rank
0, and yet PE,F is a torsion point. The first example is when E is 91b and
F is 91a. Then PE,F = (1, 0) is a torsion point (of order 3). In this case, we
cannot apply Proposition 3.3 since ε7 = ε13 = −1 for E. Another example is
when E is 99a and F is 99c, where we have PE,F = 0, and ε3 = ε11 = +1, but
Proposition 3.3 does not apply since the level is not square free. Fortunately,
we found an example with squarefree level 158 = 2 · 79: here E is 158b, F is
158d, we have PE,F = 0 and ε2 = ε79 = +1, so Proposition 3.3 implies that
L(E,Sym2 F, 12 ) = 0.

4 Iterated Complex Path Integrals

The paper [DDLR11] contains a general approach using iterated path integrals
to compute certain Chow-Heegner points, of which PE,F is a specific instance.
Comparing our data (Section 5.2) with theirs, we find that if E and F are opti-
mal elliptic curves over Q of the same conductor N ≤ 100, if e, f ∈ S2(Γ0(N))
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are the corresponding newforms, and if Pf,e,1 ∈ E(Q) ⊗Q Q the associated
Chow-Heegner point in the sense of [DDLR11], then 2PE,F = Pf,e,1. This is
(presumably) a consequence of [DRS11].

5 A Numerical Approach to Computing PE,F

The numerical approach to computing P that we describe in this section uses
relatively little abstract theory. It is inspired by work of Delaunay (see [Del02])
on computing the fiber of the map X0(389) → E over rational points on the
rank 2 curve E of conductor 389. We make no guarantee about how many digits
of our approximation to PE,F are correct, instead viewing this as an algorithm
to produce something that is useful for experimental mathematics only.

Let h be the upper half plane, and let Y0(N) = Γ0(N)\h ⊂ X0(N) be the
affine modular curve. Let E and F be nonisogenous optimal elliptic curve quo-
tients of X0(N), with modular parametrization maps ϕE and ϕF , and assume
both Manin constants are 1. Let ΛE and ΛF be the period lattices of E and F ,
so E ∼= C/ΛE and F ∼= C/ΛF . Viewed as a map [τ ] 7→ C/ΛE , we have, using
square brackets to denote equivalence classes, that

ϕE([τ ]) =

[ ∞∑

n=1

an
n
e2πinτ

]
,

and similarly for ϕF , where an = an(E) are the L-series coefficients of E (see
[Cre97, §2.10], which uses the oppositive sign convention). For any positive
integer B, define the polynomial

ϕE,B =
B∑

n=1

an
n
Tn ∈ Q[T ],

and similarly for ϕF,B .
To approximate PE,F , we proceed as follows. First we make some choices,

and after making these choices we run the algorithm, which will either find a
“probable” numerical approximation to PE,F or fail.

• y ∈ R>0 – minimum imaginary part of points in fiber,

• d ∈ Z>0 – degree of the first approximation to ϕF in Step 1 below,

• r ∈ R 6=0 – real number specified to b bits of precision that defines Q ∈ C/Λ,

• b′ – bits of precision when dividing points into Γ0(N) orbits, and

• n – number of trials before we give up and output FAIL.

We compute PE,F,Q using an approach that will always fail if Q is a ram-
ification point. Our algorithm will also fail if any points in the fiber over Q
are cusps. This is why we do not allow r = 0. One can modify the algorithm
to work when Q is an unramified torsion point by using modular symbols and
keeping track of images of cusps.

To increase our confidence that we have computed the right point PE,F , we
often carry out the complete computation with more than one choice of r.
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1. Low precision roots: Compute all complex double precision roots of the
polynomial ϕF,d−r. One way to do this is to use “balanced QR reduction
of the companion matrix”, as implemented in GSL.1 Record the roots that
correspond to τ ∈ h with Im(τ) ≥ y.

2. High precision roots: Compute B such that if Im(τ) ≥ y, then

∣∣∣∣∣
∞∑

n=B+1

an(F )

n
τn

∣∣∣∣∣ < 2−b,

where b is the number of bits of precision of r. Summing the tail end of
the series and using that |an| ≤ n (see [GJP+09, Lem. 2.9]), we find that

B =

⌈
log(2−(b+1) · (1− e−2πy1))

−2πy

⌉

works. Next, compute the polynomial ϕF,B ∈ Q[T ], and use Newton
iteration to refine all roots saved in Step 1 to roots α of f = ϕF,B−r ∈ R[T ]
such that |f(α)| < 2−b. Save those roots that correspond to τ ∈ h with
Im(τ) ≥ y.

3. Γ0(N)-orbits: Divide the τ ’s from Step 2 into Γ0(N)-equivalence classes,
testing equivalence to the chosen bit precision b′ ≤ b, as explained in
Section 5.1. It is easy to efficiently compute the modular degree mF =
deg(ϕF ) (see [Wat02]). If we find mF distinct Γ0(N) classes of points,
we suspect that we have found the fiber over [r], so we map each element
of the fiber to E using ϕE and sum, then apply the elliptic exponential
to obtain PE,F to some precision, then output this approximation and
terminate. If we find more than mF distinct classes, there was an error
in the choices of precision in our computation, so we output FAIL (and
suggest either increasing b or decreasing b′).

4. Try again: We did not find enough points in the fiber. Systematically
replace r by r+mΩF , for m = 1,−1, 2,−2, . . ., where ΩF is the least real
period of F , then try again going to Step 1 and including the new points
found. If upon trying n choices r +mΩF in a row we find no new points,
we output FAIL and terminate the algorithm.

5.1 Determining Γ0(N) equivalency

The field of meromorphic functions invariant under Γ0(N) is generated by j(z)
and j(Nz), so if two points z1 and z2 in the upper half plane are equivalent
under Γ0(N), then z1 and z2 are equivalent under SL2(Z) and Nz1 and Nz2 are
also equivalent under SL2(Z). Because of singularities in the affine curve defined

1GSL is the the GNU scientific library, which is part of Sage [S+11]. Rough timings of
GSL for this computation: it takes less than a half second for degree 500, about 5 seconds for
degree 1000, about 45 seconds for degree 2000, and several minutes for degree 3000.
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by j(z) and j(Nz), the converse is not true: for example, z1 = (−2 + i)/5 and
z2 = (2 + i)/5 are equivalent under SL2(Z) as are 5z1 and 5z2, but z1 and z2
are not equivalent under Γ0(5). This is why the algorithm we give below must
take into account singularities.

Suppose we are given arbitrary z1 and z2 in the upper half plane. We first
find g1, g2 ∈ SL2(Z) such that wi = gi(zi) is the canonical representative for zi
in the standard fundamental domain for SL2(Z), as explained in [Cre97, §2.14]
but using interval arithmetic to avoid rounding errors. If w1 6= w2, then z1 and
z2 are not equivalent under SL2(Z), so they cannot be equivalent under Γ0(N).
Thus let w = g1(z1) = g2(z2). The elements of PSL2(Z) that send z1 to z2 are
the finitely many elements g−12 Ag1, for A ∈ Stab(w), so we check whether any
g−12 Ag1 is in Γ0(N). The only elements of the standard fundamental domain
for SL2(Z) with nontrivial stabilizers are w = i, with stabilizer generated by
S ∈ PSL2(Z) of order 2, and w = e2πi/3 with stabilizer generated by ST , where
T corresponds to z 7→ z + 1.

5.2 Data

We implemented the above algorithm in Sage [S+11]2. The columns of the ta-
bles below are as follows. The columns labeled E and F contain Cremona labels
for elliptic curves, and those labeled rE and rF contain the corresponding ranks.
The column labeled E(Q) gives a choice of generators P1, P2, . . . for the Mordell-
Weil group, with rE points of infinite order listed first, then 0, 1 or 2 torsion
points listed with a subscript of their order. The column labeled PE,F contains
a rational point close to the numerically computed Chow-Heegner point, repre-
sented in terms of the generators Pi from the column labeled E(Q), where P1

is the first generator, P2 the second, and so on. The columns labeled mE and
mF give the modular degrees of E and F . The column labeled ε’s contains the
local root numbers of L(E, s) at each bad prime. The notes column refers to
the notes after the table, which give information about the input parameters
needed to compute PE,F .

We believe that the values of PE,F are “likely” to be correct, but we empha-
size again that they are not proven correct. In the table we give an exact point,
but the algorithm computes a numerical approximation P̃E,F to PE,F ∈ E(Q).
We find what we call PE,F in the table by running through several hundred

low height points in E(Q) and find the one closest to P̃E,F ; in all cases, the

coordinates of the point we list are within 10−5 of the coordinates of P̃E,F .
The table contains every pair E,F of nonisogenous optimal elliptic curves of

the same conductor N ≤ 184 with rE = 1, and most (but not all) with N ≤ 250.
It also contains a few additional miscellaneous examples, e.g., with rE = 0 and
some of larger conductor with rF = 2. Most rows took only a few seconds
to compute, though ones with mF large in some cases took much longer; the
total CPU time to compute the entire table was about 8 hours. Unless otherwise
noted, we used y = 10−4, d = 500, b′ = 20, and r = 0.1 with 53 bits of precision,

2See http://trac.sagemath.org/sage_trac/ticket/11975.
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as in Section 5. We also repeated all computations with at least one additional
value of r 6= 0.1, and in every case got the same result (usually we used r = 0.2).

5.3 Discussion

In the table we always have 2 | [E(Q)/ tor : ZPE,F ]. In may be possible to
prove this in some cases by using that when ran(E) = 1 then the sign in the
functional equation for L(E, s) is −1, so at least one nontrivial Atkin-Lehner
involution wq acts as +1 on E, which means that the map X0(N)→ E factors
through X0(N) → X0(N)/wq. Also, there are four cases in which the index
[E(Q)/tor : ZPE,F ] is divisible by a prime ` ≥ 5. They are (106b, 106c, ` = 11),
(118a, 118d, ` = 7), (121b, 121d, ` = 7), and (158b, 158c, ` = 7). These prime
divisors do not appear to have anything to do with the invariants of E and F ,
individually.
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E εp’s rE E(Q) mE F rF mF PE,F Notes

37a + 1 (0,−1) 2 37b 0 2 −6P1

37b − 0 (8, 18)3 2 37a 1 2 P1

57a ++ 1 (2, 1) 4 57c 0 12 8P1

57a ++ 1 (2, 1) 4 57b 0 3 −8P1

57b −+ 0 (7/4,−11/8)2, (1,−1)2 3 57a 1 4 0

57b −+ 0 (7/4,−11/8)2, (1,−1)2 3 57c 0 12 0

57c −+ 0 (2, 4)5 12 57a 1 4 3P1

57c −+ 0 (2, 4)5 12 57b 0 3 P1

58a ++ 1 (0,−1) 4 58b 0 4 8P1

58b −+ 0 (−1, 2)5 4 58a 1 4 3P1

77a ++ 1 (2, 3) 4 77b 0 20 24P1 (1)

77a ++ 1 (2, 3) 4 77c 0 6 −4P1

89a + 1 (0,−1) 2 89b 0 5 4P1

91a ++ 1 (0, 0) 4 91b 1 4 4P1

91b −− 1 (−1, 3), (1, 0)3 4 91a 1 4 P2

92b −− 1 (1, 1) 6 92a 0 2 0

99a ++ 1 (2, 0), (−1, 0)2 4 99b 0 12 −4P1

99a ++ 1 (2, 0), (−1, 0)2 4 99c 0 12 0

99a ++ 1 (2, 0), (−1, 0)2 4 99d 0 6 2P1

102a + ++ 1 (2,−4), (0, 0)2 8 102b 0 16 −8P1 (1)

102a + + + 1 (2,−4), (0, 0)2 8 102c 0 24 32P1

106b ++ 1 (2, 1) 8 106a 0 6 −4P1

106b ++ 1 (2, 1) 8 106c 0 48 −88P1

106b ++ 1 (2, 1) 8 106d 0 10 12P1

112a ++ 1 (0,−2), (−2, 0)2 8 112b 0 4 0

112a ++ 1 (0,−2), (−2, 0)2 8 112c 0 8 0

118a ++ 1 (0,−1) 4 118b 0 12 −8P1 (1)

118a ++ 1 (0,−1) 4 118c 0 6 4P1

118a ++ 1 (0,−1) 4 118d 0 38 −28P1

121b + 1 (4, 5) 4 121a 0 6 4P1

121b + 1 (4, 5) 4 121c 0 6 4P1

121b + 1 (4, 5) 4 121d 0 24 −28P1 (2)

123a −− 1 (−4, 1), (−1, 4)5 20 123b 1 4 0

123b ++ 1 (1, 0) 4 123a 1 20 4P1

124a −− 1 (−2, 1), (0, 1)3 6 124b 0 6 0

128a + 1 (0, 1), (−1, 0)2 4 128b 0 8 0

128a + 1 (0, 1), (−1, 0)2 4 128c 0 4 0

128a + 1 (0, 1), (−1, 0)2 4 128d 0 8 0

129a ++ 1 (1,−5) 8 129b 0 15 −8P1

130a +−− 1 (−6, 10), (−1, 10)6 24 130b 0 8 0

130a +−− 1 (−6, 10), (−1, 10)6 24 130c 0 80 0

135a ++ 1 (4,−8) 12 135b 0 36 0 (1)

136a −− 1 (−2, 2), (0, 0)2 8 136b 0 8 0

138a + ++ 1 (1,−2), (−2, 1)2 8 138b 0 16 −16P1 (1)

138a + + + 1 (1,−2), (−2, 1)2 8 138c 0 8 −8P1

141a −− 1 (−3,−5) 28 141b 0 12 0

141a −− 1 (−3,−5) 28 141c 0 6 0

141a −− 1 (−3,−5) 28 141d 1 4 0
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E εp’s rE E(Q) mE F rF mF PE,F Notes

141a - - 1 (−3,−5) 28 141e 0 12 0

141d ++ 1 (0,−1) 4 141a 1 28 −12P1

141d ++ 1 (0,−1) 4 141b 0 12 4P1

141d ++ 1 (0,−1) 4 141c 0 6 4P1

141d ++ 1 (0,−1) 4 141e 0 12 4P1

142a - - 1 (1, 1) 36 142b 1 4 0

142a - - 1 (1, 1) 36 142c 0 9 0

142a −− 1 (1, 1) 36 142d 0 4 0

142a −− 1 (1, 1) 36 142e 0 324 0 (2)

142b ++ 1 (−1, 0) 4 142a 1 36 4P1 (1)

142b ++ 1 (−1, 0) 4 142c 0 9 −4P1

142b ++ 1 (−1, 0) 4 142d 0 4 4P1

142b ++ 1 (−1, 0) 4 142e 0 324 8P1 (2)

152a ++ 1 (−1,−2) 8 152b 0 8 0

153a ++ 1 (0, 1) 8 153b 1 16 8P1

153a ++ 1 (0, 1) 8 153c 0 8 8P1

153a ++ 1 (0, 1) 8 153d 0 24 0

153b −− 1 (5,−14) 16 153a 1 8 0

153b −− 1 (5,−14) 16 153d 0 24 0

154a + ++ 1 (5, 3), (−6, 3)2 24 154b 0 24 −24P1

154a + ++ 1 (5, 3), (−6, 3)2 24 154c 0 16 16P1

155a −− 1 (5/4, 31/8), (0, 2)5 20 155b 0 8 0

155a −− 1 (5/4, 31/8), (0, 2)5 20 155c 1 4 0

155c ++ 1 (1,−1) 4 155a 1 20 −12P1

155c ++ 1 (1,−1) 4 155b 0 8 4P1

156a −+− 1 (1, 1), (2, 0)2 12 156b 0 12 0 (1)

158a −− 1 (−1,−4) 32 158b 1 8 0

158a −− 1 (−1,−4) 32 158c 0 48 0 (1)

158a −− 1 (−1,−4) 32 158d 0 40 0

158a −− 1 (−1,−4) 32 158e 0 6 0

158b ++ 1 (0,−1) 8 158a 1 32 −8P1

158b ++ 1 (0,−1) 8 158c 0 48 −56P1 (1)

158b ++ 1 (0,−1) 8 158d 0 40 0

158b ++ 1 (0,−1) 8 158e 0 6 −8P1

160a ++ 1 (2,−2), (1, 0)2 8 160b 0 8 0

162a ++ 1 (−2, 4), (1, 1)3 12 162b 0 6 0

162a ++ 1 (−2, 4), (1, 1)3 12 162c 0 6 0

162a ++ 1 (−2, 4), (1, 1)3 12 162d 0 12 0

170a +−− 1 (0, 2), (1,−1)2 16 170d 0 12 0

170a +−− 1 (0, 2), (1,−1)2 16 170e 0 20 0

171b −− 1 (2,−5) 8 171a 0 12 0

171b −− 1 (2,−5) 8 171c 0 96 0 (1)

171b −− 1 (2,−5) 8 171d 0 32 0

175a −− 1 (2,−3) 8 175b 1 16 0 (1)

175a −− 1 (2,−3) 8 175c 0 40 0 (1)

175b ++ 1 (−3, 12) 16 175a 1 8 16P1

175b ++ 1 (−3, 12) 16 175c 0 40 16P1 (1)

176c −− 1 (1,−2) 8 176b 0 8 0 (1)
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E εp’s rE E(Q) mE F rF mF PE,F Notes

176c −− 1 (1,−2) 8 176a 0 16 0

176c −− 1 (1,−2) 8 176b 0 8 0 (1)

184a −− 1 (0, 1) 8 184c 0 12 0

184a −− 1 (0, 1) 8 184d 0 24 0

184b ++ 1 (2,−1) 8 184a 1 8 0

184b ++ 1 (2,−1) 8 184c 0 12 0

184b ++ 1 (2,−1) 8 184d 0 24 0

185a ++ 1 (4,−13) 48 185b 1 8 8P1

185a ++ 1 (4,−13) 48 185c 1 6 24P1

185b −− 1 (0, 2) 8 185c 1 6 0

185c ++ 1 (−5/4, 3/8), (−1, 0)2 6 185b 1 8 2P1

189a ++ 1 (−1,−2) 12 189b 1 12 −12P1

189a ++ 1 (−1,−2) 12 189c 0 12 12P1

189b −− 1 (−3, 9), (3, 0)3 12 189a 1 12 0

189b −− 1 (−3, 9), (3, 0)3 12 189c 0 12 0

190a −+− 1 (13,−47) 88 190b 1 8 0

190a −+− 1 (13,−47) 88 190c 0 24 0 (1)

190b + ++ 1 (1, 2) 8 190c 0 24 16P1 (1)

192a ++ 1 (3, 2), (−1, 0)2 8 192b 0 8 0

192a ++ 1 (3, 2), (−1, 0)2 8 192c 0 8 0

192a ++ 1 (3, 2), (−1, 0)2 8 192d 0 8 0

196a −− 1 (0,−1) 6 196b 0 42 0 (1)

198a +−− 1 (−1,−4), (−4, 2)2 32 198b 0 32 0 (1)

198a +−− 1 (−1,−4), (−4, 2)2 32 198c 0 32 0

198a +−− 1 (−1,−4), (−4, 2)2 32 198d 0 32 0 (1)

198a +−− 1 (−1,−4), (−4, 2)2 32 198e 0 160 0 (1)

200b −− 1 (−1, 1), (−2, 0)2 8 200c 0 24 0

200b −− 1 (−1, 1), (−2, 0)2 8 200d 0 40 0 (1)

200b −− 1 (−1, 1), (−2, 0)2 8 200e 0 24 0

201a ++ 1 (1,−2) 12 201b 1 12 4P1

201b −− 1 (−1, 2) 12 201a 1 12 0

201c ++ 1 (16,−7) 60 201a 1 12 −24P1

201c ++ 1 (16,−7) 60 201b 1 12 8P1

203b −− 1 (2,−5) 8 203a 0 48 0

203b −− 1 (2,−5) 8 203c 0 12 0

205a −− 1 (−1, 8), (2, 1)4 12 205b 0 16 0

205a −− 1 (−1, 8), (2, 1)4 12 205c 0 8 0

208a −− 1 (4,−8) 16 208c 0 12 0

208a −− 1 (4,−8) 16 208d 0 48 0 (1)

208b ++ 1 (4, 4) 16 208a 1 16 0 (1)

208b ++ 1 (4, 4) 16 208c 0 12 0

208b ++ 1 (4, 4) 16 208d 0 48 0 (1)

212a −− 1 (2, 2) 12 212b 0 21 0

214a −− 1 (0,−4) 28 214b 1 12 0 (1)

214a −− 1 (0,−4) 28 214d 0 12 0

214b ++ 1 (0, 0) 12 214a 1 28 −8P1 (1)

214b ++ 1 (0, 0) 12 214d 0 12 −4P1
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E εp’s rE E(Q) mE F rF mF PE,F Notes

214c ++ 1 (11, 10) 60 214a 1 28 −4P1 (1)

214c ++ 1 (11, 10) 60 214d 0 12 16P1

214c ++ 1 (11, 10) 60 214b 1 12 12P1 (1)

216a ++ 1 (−2,−6) 24 216b 0 24 0

219a ++ 1 (2,−1) 12 219c 1 60 −12P1 (1)

219a ++ 1 (2,−1) 12 219b 1 12 −4P1

216a ++ 1 (−2,−6) 24 216d 0 72 0

219b −− 1 (−3/4,−1/8), (0, 1)3 12 219a 1 12 0

219b −− 1 (−3/4,−1/8), (0, 1)3 12 219c 1 60 0 (1)

219c ++ 1 (−6, 7), (10,−5)2 60 219a 1 12 −12P1

219c ++ 1 (−6, 7), (10,−5)2 60 219b 1 12 4P1

220a −−+ 1 (−7, 11), (15, 55)6 36 220b 0 12 0

224a ++ 1 (1, 2), (0, 0)2 8 224b 0 8 0

225a ++ 1 (1, 1) 8 225b 0 40 0 (1)

225e −− 1 (−5, 22) 48 225a 1 8 0 (1)

225e −− 1 (−5, 22) 48 225b 0 40 0 (1)

228b −+− 1 (3, 6) 24 228a 0 18 0

232a ++ 1 (2,−4) 16 232b 0 16 0

234c + + + 1 (1,−2), (−2, 1)2 16 234b 0 48 0 (1)

234c + + + 1 (1,−2), (−2, 1)2 16 234e 0 20 0 (1)

235a −− 1 (−2, 3) 12 235c 0 18 0 (1)

236a −− 1 (1,−1) 6 236b 0 14 0

238a −−+ 1 (24, 100), (−8, 4)2 112 238b 1 8 0 (1)

238a −−+ 1 (24, 100), (−8, 4)2 112 238c 0 16 0 (1)

238a −−+ 1 (24, 100), (−8, 4)2 112 238d 0 16 0 (1)

238b + ++ 1 (1, 1), (0, 0)2 8 238a 1 112 12P1 (1)

238b + ++ 1 (1, 1), (0, 0)2 8 238c 0 16 −4P1 (1)

238b + ++ 1 (1, 1), (0, 0)2 8 238d 0 16 4P1 (1)

240c + + + 1 (1, 2), (0, 0)2 16 240a 0 16 0

240c + + + 1 (1, 2), (0, 0)2 16 240d 0 16 0 (1)

243a + 1 (1, 0) 6 243b 0 9 0 (1)

245a −− 1 (7, 17) 48 245c 1 32 0

246d + ++ 1 (3,−6), (4,−2)2 48 246a 0 84 24P1 (1)

446a ++ 1 (4,−6) 24 446d 2 88 0 (2)

446b −− 1 (5,−10) 56 446d 2 88 0 (2)

446d +− 2 - 88 446a 1 12 0 (1)

446d +− 2 - 88 446b 1 56 0 (1)

681a ++ 1 (4, 4) 32 681c 2 96 −24P1 (2)

Notes:

(1) We used y = 10−5 and d = 1500, which takes a few minutes.

(2) We used y = 1
2 · 10−5 and d = 3000, which takes over an hour.

12



References

[Cre] J. E. Cremona, Elliptic Curves Data, http://www.warwick.ac.uk/

~masgaj/ftp/data/.

[Cre97] , Algorithms for modular elliptic curves, second ed., Cam-
bridge University Press, Cambridge, 1997, http://www.warwick.

ac.uk/~masgaj/book/fulltext/.

[DDLR11] Henri Darmon, Michael Daub, Sam Lichtenstein, and Victor Rotger,
The Effective Computation of Iterated Integrals and Chow-Heegner
Points on Triple Products, In Preparation (2011).

[Del02] Christophe Delaunay, Formes modulaires et invariants de courbes
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Abstract. We describe a tabulation of (conjecturally) modular elliptic curves

over the field Q(
√

5) up to the first curve of rank 2. Using an efficient imple-

mentation of an algorithm of Lassina Dembélé [Dem05], we computed tables

of Hilbert modular forms of weight (2, 2) over Q(
√

5), and via a variety of

methods we constructed corresponding elliptic curves, including (again, con-

jecturally) all elliptic curves over Q(
√

5) that have conductor with norm less
than or equal to 1831.

1. Introduction

1.1. Elliptic Curves over Q. Tables of elliptic curves over Q have been of great
value in mathematical research. Some of the first such tables were those in Antwerp
IV [BK75], which included all elliptic curves over Q of conductor up to 200, and
also a table of all elliptic curves with bad reduction only at 2 and 3.

Cremona’s book [Cre97] gives a detailed description of algorithms that together
output a list of all elliptic curves over Q of any given conductor, along with extensive
data about each curve. The proof that his algorithm outputs all curves of given
conductor had to wait for the proof of the full modularity theorem in [BCDT01].
Cremona has subsequently computed tables [Cre] of all elliptic curves over Q of
conductor up to 220,000, including Mordell-Weil groups and other extensive data
about each curve; he expects to soon reach his current target, conductor 234,446,
which is the smallest known conductor of a rank 4 curve.

In a different direction, Stein-Watkins (see [SW02, BMSW07]) created a table
of 136,832,795 elliptic curves over Q of conductor ≤ 108, and a table of 11,378,911
elliptic curves over Q of prime conductor ≤ 1010. There are many curves of large
discriminant missing from the Stein-Watkins tables, since these tables are made by
enumerating curves with relatively small defining equations, and discarding those
of large conductor, rather than systematically finding all curves of given conductor
no matter how large the defining equation.

1.2. Why Q(
√

5)? Like Q, the field F = Q(
√

5) is a totally real field, and many
of the theorems and ideas about elliptic curves over Q have been generalized to
totally real fields. As is the case over Q, there is a notion of modularity of elliptic
curves over F , and work of Zhang [Zha01] has extended many results of Gross-
Zagier [GZ86] and Kolyvagin [Kol91] to the context of elliptic curves over totally
real fields.

This work is supported by NSF grant DMS-0757627, administered by the American Institute

of Mathematics.
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If we order totally real number fields K by the absolute value of their discrim-
inant, then F = Q(

√
5) comes next after Q (the Minkowski bound implies that

|DK | ≥ (nn/n!)2, where n = [K : Q], so if n ≥ 3 then |DK | > 20). That 5 divides
disc(F ) = 5 thwarts attempts to easily generalize the method of Taylor-Wiles to

elliptic curves over F , which makes Q(
√

5) even more interesting. The field F also
has 31 CM j-invariants, which is far more than any other quadratic field (see Sec-

tion 5). Letting ϕ = 1+
√
5

2 , we have that the group of units {±1} × 〈ϕ〉 of the ring
R = OF = Z[ϕ] of integers of F is infinite, leading to additional complications.
Finally, F has even degree, which makes certain computations more difficult, as
the cohomological techniques of [GV11] are not available.

1.3. Modularity conjecture. The following conjecture is open:

Conjecture 1.1 (Modularity). The set of L-functions of elliptic curves over F
equals the set of L-functions associated to cuspidal Hilbert modular newforms over
F of weight (2, 2) with rational Hecke eigenvalues.

Given the progress on modularity theorems initiated by [Wil95], we are opti-
mistic that Conjecture 1.1 will be proved. We officially assume Conjecture 1.1 for
the rest of this paper.

In Section 2 we sketch how to compute Hilbert modular forms using arithmetic
in quaternion algebras. Section 3 gives numerous methods for finding an elliptic
curve corresponding to a Hilbert modular form. Section 4 addresses how to find
all curves that are isogenous to a given curve. In Section 5 we enumerate the CM
j-invariants in F . We discuss some projects for future work in Section 6. Finally,
Section 7 contains tables that summarize various information about our dataset
[BDKM+12].

Acknowledgements. We would like to thank John Cremona, Tom Fisher,
Noam Elkies, Richard Taylor, and John Voight for helpful conversations. We would
especially like to thank Joanna Gaski for providing (via the method of Section 3.1)
the explicit table of elliptic curves that kickstarted this project. We used Sage

[S+12] extensively throughout this project.

2. Computing Hilbert modular forms over F

In Section 2.1 we sketch Dembélé’s approach to computing Hilbert modular forms
over F , then in Section 2.2 we make some remarks about our fast implementation.

2.1. Hilbert modular forms and quaternion algebras. Dembélé [Dem05] in-
troduced an algebraic approach via the Jacquet-Langlands correspondence to com-
puting Hilbert modular forms of weight (2, 2) over F . The Hamiltonian quaternion
algebra F [i, j, k] over F is ramified exactly at the two infinite places, and contains
the maximal order

S = R

[
1

2
(1− ϕi+ ϕj),

1

2
(−ϕi+ j + ϕk),

1

2
(ϕi− ϕj + k),

1

2
(i+ ϕj − ϕk)

]
.

For any nonzero ideal n in R = OF , let P1(R/n) be the set of equivalence classes of
column vectors with two coprime entries a, b ∈ R/n modulo the action of (R/n)∗.
We use the notation [a : b] to denote the equivalence class of ( ab ). For each prime
p | n, we fix a choice of isomorphism F [i, j, k] ⊗ Fp ≈ M2(Fp), which induces a
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left action of S∗ on P1(R/n). The Jacquet-Langlands correspondence implies that
the space of Hilbert modular forms of level n and weight (2, 2) is noncanonically
isomorphic as a module over the Hecke algebra

T = Z[Tp : p nonzero prime ideal of R]

to the finite dimensional complex vector space V = C[S∗\P1(R/n)]. The action of
Tp, for p - n, is Tp([x]) =

∑
[αx], where the sum is over the classes [α] ∈ S/S∗

with Nred(α) = πp (reduced quaternion norm), where πp is a fixed choice of totally
positive generator of p.

2.2. Remarks on Computing with P1(R/n). In order to implement the algo-
rithm sketched in Section 2.1, it is critical that we can compute with P1(R/n) very,
very quickly. For example, to apply the method of Section 3.7 below, in some cases
we have to compute tens of thousands of Hecke operators. Thus in this section we
make some additional remarks about this fast implementation.

When n = pe is a prime power, it is straightforward to efficiently enumerate
representative elements of P1(R/pe), since each element [x : y] of P1(R/pe) has a
unique representative of the form [1 : b] or [a : 1] with a divisible by p, and these
are all distinct. It is easy to put any [x : y] in this canonical form and enumerate
the elements of P1(R/pe), after choosing a way to enumerate the elements of R/pe.
An enumeration of R/pe is easy to give once we decide on how to represent R/pe.

In general, factor n =
∏m
i=1 p

ei
i . We have a bijection P1(R/n) ∼=

∏m
i=1 P1(R/peii ),

which allows us to reduce to the prime power case, at the expense of having to
compute the bijection R/n ∼=

∏
R/peii . To this end, we represent elements of R/n

as m-tuples in
∏
R/peii , thus making computation of the bijection trivial.

To minimize dynamic memory allocation, thus speeding up the code by an order
of magnitude, in the implementation we make some arbitrary bounds; this is not
a serious constraint, since the linear algebra needed to isolate eigenforms for levels
beyond this bound is prohibitive. We assume m ≤ 16 and each individual peii ≤ 231,
where pi is the residue characteristic of pi. In all cases, we represent an element
of R/peii as a pair of 64-bit integers, and represent an element of R/n as an array
of 16 pairs of 64-bit integers. We use this representation in all cases, even if n is
divisible by less than 16 primes; the gain in speed coming from avoiding dynamic
memory allocation more than compensates for the wasted memory.

Let pe be one of the prime power factors of n, and let p be the residue charac-
teristic of p. We have one of the following cases:

• p splits in R; then R/p ∼= Z/pZ and we represent elements of R/pe as pairs
(a, 0) mod pe with the usual addition and multiplication in the first factor.

• p is inert in R; then R/pe ∼= (Z/peZ)[x]/(x2 − x − 1), and we represent
elements by pairs (a, b) ∈ Z/peZ with multiplication

(a, b)(c, d) = (ac+ bd, ad+ bd+ bc) mod pe.

• p is ramified and e = 2f is even; this is exactly the same as the case when
p is inert but with e replaced by f , since R/peR ∼= (Z/pfZ)[x]/(x2−x−1).

• p is ramified (so p = 5) and e = 2f − 1 is odd; the ring A = R/pe is trickier
than the rest, because it is not of the form Z[x]/(m, g) where m ∈ Z and
g ∈ Z[x]. We have A ≈ (Z/5fZ)[x]/(x2− 5, 5f−1x), and represent elements
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of A as pairs (a, b) ∈ (Z/5f )× (Z/5f−1Z), with arithmetic given by

(a, b) + (c, d) = (a+ c mod 5f , b+ d mod 5f−1)

(a, b) · (c, d) = (ac+ 5bd mod 5f , ad+ bc mod 5f−1).

We find that ϕ ∈ R 7→ (1/2, 1/2).

3. Strategies for finding an elliptic curve attached to a Hilbert
modular form

In this section we describe various strategies to find an elliptic curve associated
to each of the Hilbert modular forms computed in Section 2. Let f be a rational
cuspidal Hilbert newform of weight (2, 2) as in Section 2. According to Conjec-
ture 1.1, there is some elliptic curve Ef over F such that L(f, s) = L(Ef , s). (Note
that Ef is only well defined up to isogeny.) Unlike the case for elliptic curves over
Q (see [Cre97]), there seems to be no known efficient direct algorithm to find Ef .
Nonetheless, there are several approaches coming from various directions, which
are each efficient in some cases.

Everywhere below, we continue to assume that Conjecture 1.1 is true and assume
that we have computed (as in Section 2) the Hecke eigenvalues ap ∈ Z of all rational
Hilbert newforms of some level n, for Norm(p) ≤ B a good prime, where B is large
enough to distinguish newforms. In some cases we will need far more ap in order
to compute with the L-function attached to a newform. We will also need the ap
for bad p in a few cases, which we obtain using the functional equation for the
L-function (as an application of Dokchitser’s algorithm [Dok04]).

We define the norm conductor of an elliptic curve over F to be the absolute norm
of the conductor ideal of the curve.

In Section 3.1 we give a very simple enumeration method for finding curves, then
in Section 3.2 we refine it by taking into account point counts modulo primes; to-
gether, these two methods found a substantial fraction of our curves. Sections 3.3
and 3.4 describe methods for searching in certain families of curves, e.g., curves
with a torsion point of given order or curves with a given irreducible mod ` Ga-
lois representation. Section 3.5 is about how to find all twists of a curve with
bounded norm conductor. In Section 3.6 we mention the Cremona-Lingham algo-
rithm, which relies on computing all S-integral points on many auxiliary curves.
Finally, Section 3.7 explains in detail an algorithm of Dembélé that uses explicit
computations with special values of L-functions to find curves.

3.1. Extremely naive enumeration. The most naive strategy is to systemati-
cally enumerate elliptic curves E : y2 = x3 + ax + b, with a, b ∈ R, and for each
E, to compute ap(E) for p not dividing Disc(E) by counting points on E reduced
modulo p. If all the ap(E) match with those of the input newform f up to the
bound B, we then compute the conductor nE , and if it equals n, we conclude from
the sufficient largeness of B that E is in the isogeny class of Ef .

Under our hypotheses, this approach provides a deterministic and terminating
algorithm to find all Ef . However, it can be extremely slow when n is small but
the simplest curve in the isogeny class of Ef has large coefficients. For example,
using this search method it would be infeasible to find the curve (3.1) computed by
Fisher using the visibility of X[7].
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3.2. Sieved enumeration. A refinement to the approach discussed above uses the
ap values to impose congruence conditions modulo p on #Ẽ(R/p). If f is a newform

with Hecke eigenvalues ap, then #Ẽf (R/p) = N(p) + 1− ap. Given p not dividing
the level n, we can find all elliptic curves modulo p with the specified number of
points, especially when N(p) + 1 − ap has few prime factors. We impose these
congruence conditions at multiple primes pi, use the Chinese Remainder Theorem,
and lift the resulting curves modulo R/(

∏
pi) to non-singular curves over R.

While this method, like the previous one, will eventually terminate, it too is very
ineffective if every E in the class of isogenous curves corresponding to f has large
coefficients. However in practice, by optimally choosing the number of primes pi,
a reasonably efficient implementation of this method can be obtained.

3.3. Torsion families. We find elliptic curves of small conductor by specializing
explicit parametrizations of families of elliptic curves over F having specified torsion
subgroups. We use the parametrizations of [Kub76].

Theorem 3.1 (Kamienny-Najman, [KN12]). The following is a complete list of
torsion structures for elliptic curves over F :

Z/mZ, 1 ≤ m ≤ 10, m = 12,

Z/2Z⊕ Z/2mZ, 1 ≤ m ≤ 4,

Z/15Z.
Moreover, there is a unique curve with 15-torsion.

We use the following proposition to determine in which family to search.

Proposition 3.2. Let ` be a prime and E a curve over F . Then ` | #E′(F )tor for
some curve E′ in the isogeny class of E if and only if ` | N(p) + 1− ap for all odd
primes p at which E has good reduction.

Proof. If ` | #E′(F )tor, from the injectivity of the reduction map at good primes

[Kat81, Appendix], we have that ` | #Ẽ′(Fp) = N(p) + 1 − ap. The converse
statement is one of the main results of [Kat81]. �

By applying Proposition 3.2 for all ap with p up to some bound, we can decide
whether or not it is likely that some curve in the isogeny class of E contains an
F -rational `-torsion point. If this is the case, then we search over those families
of curves with rational `-torsion. With a relatively small search space, we thus
find many curves with large coefficients more quickly than with the algorithm of
Section 3.1. For example, we first found the curve E given by

y2 + ϕy = x3 + (27ϕ− 43)x+ (−80ϕ+ 128)

with norm conductor 145 by searching for curves with torsion subgroup Z/7Z.

3.4. Congruence families. Suppose that we are searching for a curve E and we
already know another curve E′ with E[`] ≈ E′[`], where ` is some prime and
E[`] is irreducible. If ` = 7, 11 then we can use techniques of Fisher [Fis12] to
attempt to search through the finitely many curves with mod `Galois representation
isomorphic to E[`]. We used this approach to find the curve E given by

(3.1) y2 + ϕxy = x3 + (ϕ− 1)x2+

(−257364ϕ− 159063)x+ (−75257037ϕ− 46511406)
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with conductor −38ϕ + 10, which has norm 1476. Given just the ap, we noticed
that E[7] ≈ E′[7], where E′ has norm conductor 369, then Fisher used a Magma
[BCP97] program to find rational points on a certain quartic surface that param-
etrize curves with the same E′[7]. Fortunately, our curve E was amongst those
curves. We had already found E′ via a naive search, since it is given by the equa-
tion y2 + (ϕ+ 1) y = x3 + (ϕ− 1)x2 + (−2ϕ)x.

3.5. Twisting. Let E be an elliptic curve F . A twist E′ of E is a curve over F
that is isomorphic to E over some extension of F . A quadratic twist is a twist in
which the extension has degree 2. We can use twisting to find curves that may
otherwise be difficult to find as follows: starting with a known elliptic curve E of
some (small) conductor, we compute its twists of conductor up to some bound, and
add them to our table.

More explicitly, if E is given by y2 = x3 + ax+ b and d ∈ F ∗, then the twist Ed

of E by d is given by dy2 = x3 + ax + b; in particular, we may assume that d is
square free. The following is well known:

Proposition 3.3. If n is the conductor of E and d ∈ F ∗ is coprime to n, then the
conductor of Ed is divisible by d2n.

Proof. There are choices of Weierstrass equations such that ∆(Ed) = 212d6∆(E),
where ∆ is the discriminant. Thus the curve Ed has bad reduction at each prime
that divides d, because twisting introduces a 6th power of the squarefree d into the
discriminant, and d is coprime to ∆(E), so no change of Weierstrass equation can
remove this 6th power. Moreover, Ed is isomorphic to E over an extension of the
base field, so Ed has potentially good reduction at each prime dividing d. Thus the
reduction at each prime dividing d is additive. The conductor is unchanged at the
primes dividing n because of the formula relating the conductor, discriminant and
reduction type (see [Sil92, App. C,§15]), that formation of Néron models commutes
with unramified base change, and the fact that at the primes that divide n the
minimal discriminant of Ed is the same as that of E. �

To find all twists Ed with norm conductor at most B, we twist E by all d of the
form ±ϕδd0d1, where δ ∈ {0, 1}, d0 is a product of a fixed choice of generators for
the prime divisors of n, d1 is a squarefree product of a fixed choice of generators of
primes not dividing n, and |N(d1)| ≤

√
B/C, where C is the norm of the product of

the primes that exactly divide n. We know from 3.3 that this search is exhaustive.
For example, let E be given by y2 + xy + ϕy = x3 + (−ϕ− 1)x2 of con-

ductor 5ϕ − 3 having norm 31. Following the above strategy to find twists of
norm conductor ≤ B := 1831, we have C = 31 and square-free d1 such that
|N(d1)| ≤

√
B/C ≈ 7.6 . . .. Thus d1 ∈ {1, 2, ϕ, 2ϕ} and checking all possibilities

for ϕδd0d1, we find the curve E−ϕ−2 having norm conductor 775 and the curve
E5ϕ−3 having norm conductor 961. Other twists have larger norm conductors, e.g.,
E2 has norm conductor 126976 = 212 · 31.

3.6. Curves with good reduction outside S. We use the algorithm of Cremona
and Lingham from [CL07] to find all elliptic curves E having good reduction at
primes outside of a finite set S of primes in F . This algorithm has limitations
over a general number field K due to the difficulty of finding a generating set for
E(K) and points on E defined over OK . Using Cremona’s Magma implementation
of the algorithm, we found several curves not found by other methods, e.g., y2 +
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(ϕ+ 1)xy+y = x3−x2+(−19ϕ− 39)x+(−143ϕ− 4) , which has norm conductor
1331.

3.7. Special values of twisted L-series. In [Dem08], Lassina Dembélé outlines
some methods for finding modular elliptic curves from Hilbert modular forms over
real quadratic fields. Formally, these methods are not proven to be any better than
a direct search procedure, as they involve making a large number of guesses, and a
priori we do not know just how many guesses we will need to make. And unlike other
methods described in this paper, this method requires many Hecke eigenvalues,
and computing these takes a lot of time. However, this method certainly works
extremely well in many cases, and after tuning it by using large tables of curves
that we had already computed, we are able to use it to find more curves that we
would have had no hope of finding otherwise; we will give an example of one of
these curves later.

When the level n is not square, Dembélé’s method relies on computing or guessing
periods of the curve by using special values of L-functions of twists of the curve.
In particular, the only inputs required are the level of the Hilbert modular form
and its L-series. So we suppose that we know the level n = (N) of the form, where
N is totally positive, and that we have sufficiently many coefficients of its L-series
ap1 , ap2 , ap3 , . . ..

Let σ1 and σ2 denote the embeddings of F into the real numbers, with σ1(ϕ) ≈
1.61803 . . .. For an elliptic curve E over F we get two associated embeddings into
the complex numbers, and hence a pair of period lattices. We let Ω+

E and Ω−E ,
which we refer to as the periods of E, be the least real and imaginary periods
of the lattice which come from the embedding σ1, and as the period lattices are
interchanged when E is replaced with its conjugate curve, we let Ω+

E
and Ω−

E
denote

the least real and imaginary periods of the lattice under the embedding σ2.
For ease, we write

Ω++
E = Ω+

EΩ+

E
Ω+−
E = Ω+

EΩ−
E

Ω−+E = Ω−EΩ+

E
Ω−−E = Ω−EΩ−

E
.

We refer to these numbers as the mixed periods of E.

3.7.1. Recovering the curve from its mixed periods. If we know these mixed periods
to sufficient precision, it is not hard to recover the curve E. Without the knowledge
of the discriminant of the curve, we do not know the lattice type of the curve and
its conjugate, but there are only a few possibilities for what they might be. This
gives us a few possibilities for the j-invariant of E. Observe that σ1(j(E)) is either
j(τ1(E)) or j(τ2(E)) and σ2(j(E)) is either j(τ1(E)) or j(τ2(E)), where

τ1(E) =
Ω−+E
Ω++
E

=
Ω−E
Ω+
E

τ2(E) =
1

2

(
1 +

Ω−+E
Ω++
E

)
=

1

2

(
1 +

Ω−E
Ω+
E

)

τ1(E) =
Ω+−
E

Ω++
E

=
Ω−E
Ω+
E

τ2(E) =
1

2

(
1 +

Ω+−
E

Ω++
E

)
=

1

2

(
1 +

Ω−
E

Ω+

E

)

and j(τ) is the familiar

j(τ) = e−2πiτ + 744 + 196884e2πiτ + 21493760e4πiτ + · · · .
We try each pair of possible embeddings for j(E) in turn, and recognize possibilities
for j(E) as an algebraic number. We then construct curves E′ corresponding to each
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possibility for j(E). By computing a few ap(E), we should be able to determine
whether we have chosen the correct j-invariant, in which case E′ will be a twist of
E. We can then recognize which twist it is in order to recover E.

In practice, of course, as we have limited precision, and as j(E) will not be
an algebraic integer, it may not be feasible to directly determine its exact value,
especially if its denominator is large.

To get around the problem of limited precision, we suppose that we have some
extra information; namely, the discriminant ∆E of the curve we are looking for.
With ∆E in hand we can directly determine which τ to choose: if σ1(∆E) > 0
then σ1(j(E)) = j(τ1(E)), and if σ1(∆E) < 0 then σ1(j(E)) = j(τ2(E)), and
similarly for σ2. We then compute σ1(c4(E)) = (j(τ)σ1(∆E))1/3 and σ2(c4(E)) =
(j(τ ′)σ2(∆E))1/3.

Using the approximations of the two embeddings of c4, we can recognize c4
approximately as an algebraic integer. Specifically, we compute

α =
σ1(c4) + σ2(c4)

2
and β =

σ1(c4)− σ2(c4)

2
√

5
.

Then c4 = α+ β
√

5, and we can find c6.
In practice, there are two important difficulties we must overcome: we do not

know ∆E and it may be quite difficult to get high precision approximations to the
mixed periods, and thus we may not be able to easily compute c4. Thus, we actually
proceed by choosing a ∆guess from which we compute half-integers α and β and

an integer a + bϕ ≈ α + β
√

5, arbitrarily rounding either a or b if necessary. We
then make some choice of search range M , and for each pair of integers m and n,
bounded in absolute value by M , we try each c4,guess = (a+m) + (b+ n)ϕ.

Given c4,guess, we attempt to solve

c6,guess = ±
√
c34,guess − 1728∆guess,

and, if we can, we use these to construct a curve Eguess. If Eguess has the correct
conductor and the correct Hecke eigenvalues, we declare that we have found the
correct curve; otherwise, we proceed to the next guess.

For a choice of ∆guess, we will generally start with the conductor NE , and then
continue by trying unit multiples and by adding in powers of factors of NE .

3.7.2. Guessing the mixed periods. We have thus far ignored the issue of actu-
ally finding the mixed periods of the curve that we are looking for. Finding
them presents an extra difficulty as our procedure involves even more guesswork.
Dembélé’s idea is to use special values of twists of the L-function L(f, s). Specif-
ically, we twist by primitive quadratic Dirichlet characters over OF , which are
homomorphisms χ : (OF /c)∗ → ±1, pulled back to OF .

In the case of odd prime conductor, which we will stick to here, there is just
a single primitive quadratic character, which is the quadratic residue symbol. A
simple way to compute it is by making a table of squares, or by choosing a primitive
root of g ∈ (OF /c)∗, assigning χ(g) = −1, and again making a table by extending
multiplicatively. Alternatively, one could use a reciprocity formula as described in
[BS10]. For general conductor, one can compute with products of characters having
prime conductor.
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For a given f and a primitive χ, we can construct the twisted L-function

L(f, χ, s) =
∑

m⊆OF

χ(m)am
N(m)s

,

where m is a totally positive generator of m. (Note that χ is not well defined
on ideals, but is well defined on totally positive generators of ideals.) L(f, χ, s)
will satisfy a functional equation similar to that of L(f, s), but the conductor is
multiplied by Norm(c)2 and the sign is multiplied by χ(−N). The key to finding
the mixed periods of E is contained in the following conjecture that Dembélé has
distilled from [BDG04], and we have stated specifically for Q(

√
5).

Conjecture 3.4. If χ is a primitive quadratic character with conductor c relatively
prime to the conductor of E, with χ(ϕ) = s′ and χ(1 − ϕ) = s, (where s, s′ ∈
{+,−} = {±1}), then

Ωs,s
′

E = cχτ(χ)L(E,χ, 1)
√

5,

for some integer cχ, where τ(χ) is the Gauss sum

τ(χ) =
∑

α mod c

χ(α) exp
(

2πiTr
(
α/m

√
5
))

,

with m a totally positive generator of c.

Remark 3.5. The Gauss sum is more innocuous than it seems. For odd conductor
c it is of size

√
Norm(c), while for an even conductor it is of size

√
2 Norm(c). Its

sign is a 4-th root of unity, and whether it is real or imaginary can be deduced

directly from the conjecture, as it matches with the sign of Ωs,s
′

E . In particular,
τ(χ) is real when χ(−1) = 1 and imaginary when χ(−1) = −1, which is a condition
on Norm(c) mod 4, as χ(−1) ≡ Norm(c) (mod 4). This can all be deduced, for
example, from [BS10].

Also, note that Dembélé writes this conjecture with an additional factor of 4π2;
this factor does not occur with the definition of L(f, s) that we have given.

Remark 3.6. Contained in this conjecture is the obstruction to carrying out the
method described here when n is a square. In this case, the sign of L(f, χ, s) will be
completely determined by whether or not χ(ϕ) = χ(1− ϕ), so we can only obtain
information about either Ω−− and Ω++ or Ω−+ and Ω+−, and we need three of
these values to find E.

With this conjecture in place, we can describe a method for guessing the mixed
periods of E. Now, to proceed, we construct four lists of characters up to some
conductor bound M (we are restricting to odd prime modulus here for simplicity,
as primitivity is ensured, but this is not necessary):

Ss,s
′

= {χ mod p : χ(ϕ) = s′, χ(1−ϕ) = s, (p, n) = 1,Norm(p) < M,χ(−N) = εE}.
Here s, s′ ∈ {+,−} = ±1 again. We will consider these lists to be ordered by
the norms of the conductors of the characters in increasing order, and index their

elements as χs,s
′

0 , χs,s
′

1 , χs,s
′

2 , . . .. For each character we compute the central value
of the twisted L-function to get four new lists

Ls,s′ = {iss′
√

5 Norm(p)L(E,χ, 1), χ ∈ Ss,s′} = {Ls,s
′

0 ,Ls,s
′

1 , . . .}.
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These numbers should now all be integer multiples of the mixed periods, so to get
an idea of which integer multiples they might be, we compute each of the ratios

Ls,s
′

0

Ls,s′k

=
c
χs,s′
0

c
χs,s′
k

∈ Q, k = 1, 2, . . . ,

attempt to recognize these as rational numbers, and choose as an initial guess

Ωss
′

E,guess = Ls,s
′

0

(
lcm

{
numerator

(
Ls,s

′

0

Ls,s′k

)
, k = 1, 2, . . .

})−1
.

3.7.3. An example. We give an example of an elliptic curve that we were only able
to find by using this method. At level n = (−38ϕ + 26) we found a newform f ,
computed

a(2)(f) = −1, a(−2ϕ+1)(f) = 1, a(3)(f) = −1,

a(−3ϕ+1)(f) = −1, a(−3ϕ+2)(f) = −6, · · · , a(200ϕ−101)(f) = 168

and determined, by examining the L-function, that the sign of the functional equa-
tion should be −1. (In fact, we do not really need to know the sign of the functional
equation, as we would quickly determine that +1 is wrong when attempting to find
the mixed periods.) Computing the sets of characters described above, and choosing
the first 3 of each, we have

S−− = {χ(ϕ+6), χ(7), χ(7ϕ−4)}, S−+ = {χ(−3ϕ+1), χ(5ϕ−2), χ(ϕ−9)}
S+− = {χ(−4ϕ+3), χ(5ϕ−3), χ(−2ϕ+13)} S++ = {χ(ϕ+9), χ(9ϕ−5), χ(ϕ+13)}.

By using the 5133 eigenvalues above as input to Rubinstein’s lcalc [Rub11], we
compute the lists of approximate values

L−− = {−33.5784397862407,−3.73093775400387,−18.6546887691646}
L−+ = {18.2648617736017i, 32.8767511924831i, 3.65297235421633i}
L+− = {41.4805656925342i, 8.29611313850694i, 41.4805677827298i}
L++ = {32.4909970742969, 162.454985515474, 162.454973589303}.

Note that lcalc will warn us that we do not have enough coefficients to obtain good
accuracy, and we make no claim as far as the accuracy of these values is concerned.
Hoping that the ends will justify the means, we proceed forward.

Dividing each list by the first entry, and recognizing the quotients as rational
numbers, we get the lists

{1.000, 9.00000000005519, 1.80000000009351} ≈ {1, 9, 9/5}
{1.000, 0.555555555555555, 5.00000000068986} ≈ {1, 5/9, 5}
{1.000, 4.99999999999994, 0.999999949610245} ≈ {1, 5, 1}
{1.000, 0.199999999822733, 0.200000014505165} ≈ {1, 1/5, 1/5},
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which may give an indication of the accuracy of our values. We now proceed with
the guesses

Ω−−E,guess ≈ −33.5784397862407/9 ≈ − 3.73093775402141

Ω−+E,guess ≈ 18.2648617736017i/5 ≈ 3.65297235472034i

Ω+−
E,guess ≈ 41.4805656925342i/5 ≈ 8.29611313850683i

Ω++
E,guess ≈ 32.4909970742969 = 32.4909970742969.

These cannot possibly be all correct, as Ω−−E Ω++
E = Ω−+E Ω+−

E . Still, we can choose
any three and get a reasonable guess, and in fact we may choose all possible triples,
dividing some of the guesses by small rational numbers, and choosing the fourth
guess to be consistent with the first three; we build a list of possible embeddings
of j(E), which will contain the possibility σ1(j(E)) ≈ 1.365554233954 × 1012,
σ2(j(E)) ≈ 221270.95861123, which is a possibility if

Ω−+E = Ω−+E,guess, Ω+−
E = Ω+−

E,guess, Ω−+E =
Ω−+E,guess

2
, Ω++

E =
Ω++
E,guess

8
.

Cycling through many discriminants, we eventually try

∆guess = ϕ · 25 · (19ϕ− 13),

which leads us to the guess

σ1(c4,guess) = (σ1(j(E))σ1(∆guess))
1/3 ≈ 107850.372979378

σ2(c4,guess) = (σ2(j(E))σ2(∆guess))
1/3 ≈ 476.625892034286.

We have enough precision to easily recognize this as

c4,guess =
108327 + 48019

√
5

2
= 48019ϕ+ 30154,

and √
c34,guess − 1728∆guess

does in fact have two square roots: ±(15835084ϕ+9796985). We try both of them,
and the choice with the minus sign gives the curve

y2 + ϕxy + ϕy = x3 + (ϕ− 1)x2 + (−1001ϕ− 628)x+ (17899ϕ+ 11079) ,

which has the correct conductor. We compute a few values of ap for this curve, and
it turns out to be the one that we are looking for.

4. Enumerating the curves in an isogeny class

Given an elliptic curve E/F , we wish to find representative isomorphism classes
for all elliptic curves E′/F that are isogenous to E via an isogeny defined over F .
The analogue of this problem over Q has an algorithmic solution as explained in
[Cre97, §3.8]; it relies on:

(1) Mazur’s theorem [Maz78] that if ψ : E → E′ is a Q-rational isogeny of
prime degree, then deg(ψ) ≤ 163.

(2) Formulas of Vélu [Vél71] that provide a way to explicitly enumerate all p-
isogenies (if any) with domain E. Vélu’s formulas are valid for any number
field, but so far there has not been an explicit generalization of Mazur’s
theorem for any number field other than Q.
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Remark 4.1. Assume the generalized Riemann hypothesis. Then work of Larson-
Vaintrob from [LV] implies that there is an effectively computable constant CF such
that any prime degree isogeny over F has degree at most CF .

Since we are interested in specific isogeny classes, we can use the algorithm
described in [Bil11] that takes as input a specific non-CM elliptic curve E over a
number field K, and outputs a provably finite list of primes p such that E might
have a p-isogeny. The algorithm is particularly easy to implement in the case when
K is a quadratic field, as explained in [Bil11, §2.3.4]. Using this algorithm combined
with Vélu’s formulas, we were able to enumerate all isomorphism classes of curves
isogenous to the curves we found via the methods of Section 3, and thus divide our
curves up into isogeny classes.

5. CM elliptic curves over F

In this section we make some general remarks about CM elliptic curves over F .
The main surprise is that there are 31 distinct Q-isomorphism classes of CM elliptic
curves defined over F , more than for any other quadratic field.

Proposition 5.1. The field F has more isomorphism classes of CM elliptic curves
than any other quadratic field.

Proof. Let K be a quadratic extension of Q. Let HD denote the Hilbert class
polynomial of the CM order OD of discriminant D, so HD ∈ Q[X] is the min-
imal polynomial of the j-invariant jD of any elliptic curve E = ED with CM
by OD. Since K is Galois, we have jD ∈ K if and only if HD is either lin-
ear or quadratic with both roots in K. The D for which HD is linear are the
thirteen values −3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163. Ac-
cording to [Cre92], the D for which HD is quadratic are the following 29 discrimi-
nants:

− 15,−20,−24,−32,−35,−36,−40,−48,−51,−52,−60,

− 64,−72,−75,−88,−91,−99,−100,−112,−115,−123,

− 147,−148,−187,−232,−235,−267,−403,−427.

By computing discriminants of these Hilbert class polynomials, we obtain the
following table:

Field D so HD has roots in field Field D so HD has roots in field

Q(
√

2) −24,−32,−64,−88 Q(
√

21) −147

Q(
√

3) −36,−48 Q(
√

29) −232

Q(
√

5)
−15,−20,−35,−40,−60, Q(

√
33) −99

−75,−100,−115,−235 Q(
√

37) −148

Q(
√

6) −72 Q(
√

41) −123

Q(
√

7) −112 Q(
√

61) −427

Q(
√

13) −52,−91,−403 Q(
√

89) −267

Q(
√

17) −51,−187

The claim follows because the Q(
√

5) row is largest, containing 9 entries. There are

thus 31 = 2 · 9 + 13 distinct CM j-invariants in Q(
√

5).
�
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6. Related future projects

It would be natural to extend the tables to the first known curve of rank 3 over
F , which may be the curve y2 + y = x3 − 2x+ 1 of norm conductor 1632 = 26569.
It would also be interesting to make a table in the style of [SW02], and compute
analytic ranks of the large number of curves that we would find; this would benefit
from Sutherland’s smalljac program, which has very fast code for computing L-
series coefficients. Some aspects of the tables could also be generalized to modular
abelian varieties Af attached to Hilbert modular newforms with not-necessarily-
rational Hecke eigenvalues; in particular, we could enumerate the Af up to some
norm conductor, and numerically compute their analytic ranks.

7. Tables

As explained in Sections 3 and 4, assuming Conjecture 1.1, we found the complete
list of elliptic curves with norm conductor up to 1831, which is the first norm
conductor of a rank 2 curve over F . The complete dataset can be downloaded from
[BDKM+12].

In each of the following tables #isom refers to the number of curves, #isog refers
to the number of classes, n refers to the conductor of the given elliptic curve, and
Weierstrass equations are given in the form [a1, a2, a3, a4, a6].

Table 7.1 gives the number of curves and isogeny classes we found. Note that
in these counts we do not exclude conjugate curves, i.e., if σ denotes the nontrivial
element of Gal(F/Q), then we count E and Eσ separately if they are not isomorphic.

Table 7.1. Curves over Q(
√

5)

rank #isog #isom smallest Norm(n)

0 745 2174 31

1 667 1192 199

2 2 2 1831

total 1414 3368 -

Table 7.2 gives counts of the number of isogeny classes of curves in our data of
each size; note that we find some isogeny classes of cardinality 10, which is bigger
than what one observes with elliptic curves over Q.

Table 7.2. Number of Isogeny classes of a given size

size

bound 1 2 3 4 6 8 10 total

199 2 21 3 20 8 9 1 64

1831 498 530 36 243 66 38 3 1414
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Table 7.3 gives the number of curves and classes up to a given norm conductor
bound. Note that the first curve of rank 1 has norm conductor 199, and there are
no curves of norm conductor 200.

Table 7.3. Counts of classes and curves with bounded norm con-
ductors and specified ranks

#isog #isom

rank rank

bound 0 1 2 total 0 1 2 total

200 62 2 0 64 257 6 0 263

400 151 32 0 183 580 59 0 639

600 246 94 0 340 827 155 0 982

800 334 172 0 506 1085 285 0 1370

1000 395 237 0 632 1247 399 0 1646

1200 492 321 0 813 1484 551 0 2035

1400 574 411 0 985 1731 723 0 2454

1600 669 531 0 1200 1970 972 0 2942

1800 729 655 0 1384 2128 1178 0 3306

1831 745 667 2 1414 2174 1192 2 3368

Table 7.4 gives the number of curves and classes with isogenies of each degree;
note that we do not see all possible isogeny degrees. For example, the elliptic curve
X0(19) has rank 1 over F , so there are infinitely many curves over F with degree
19 isogenies (unlike over Q where X0(19) has rank 0). We also give an example
curve (that need not have minimal conductor) with an isogeny of the given degree.

Table 7.4. Isogeny degrees

degree #isog #isom example curve Norm(n)

None 498 498 [ϕ+ 1, 1, 1, 0, 0] 991

2 652 2298 [ϕ,−ϕ+ 1, 0,−4, 3ϕ− 5] 99

3 289 950 [ϕ,−ϕ,ϕ,−2ϕ− 2, 2ϕ+ 1] 1004

5 65 158 [1, 0, 0,−28, 272] 900

7 19 38 [0, ϕ+ 1, ϕ+ 1, ϕ− 1,−3ϕ− 3] 1025

Table 7.5 gives the number of curves with each torsion structure, along with an
example curve (again, not necessarily with minimal conductor) with that torsion
structure.
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Table 7.5. Torsion subgroups

structure #isom example curve Norm(n)

1 296 [0,−1, 1,−8,−7] 225

Z/2Z 1453 [ϕ,−1, 0,−ϕ− 1, ϕ− 3] 164

Z/3Z 202 [1, 0, 1,−1,−2] 100

Z/4Z 243 [ϕ+ 1, ϕ− 1, ϕ, 0, 0] 79

Z/2Z⊕ Z/2Z 312 [0, ϕ+ 1, 0, ϕ, 0] 256

Z/5Z 56 [1, 1, 1, 22,−9] 100

Z/6Z 183 [1, ϕ, 1, ϕ− 1, 0] 55

Z/7Z 13 [0, ϕ− 1, ϕ+ 1, 0,−ϕ] 41

Z/8Z 21 [1, ϕ+ 1, ϕ, ϕ, 0] 31

Z/2Z⊕ Z/4Z 51 [ϕ+ 1, 0, 0,−4,−3ϕ− 2] 99

Z/9Z 6 [ϕ,−ϕ+ 1, 1,−1, 0] 76

Z/10Z 12 [ϕ+ 1, ϕ, ϕ, 0, 0] 36

Z/12Z 6 [ϕ,ϕ+ 1, 0, 2ϕ− 3,−ϕ+ 2] 220

Z/2Z⊕ Z/6Z 11 [0, 1, 0,−1, 0] 80

Z/15Z 1 [1, 1, 1,−3, 1] 100

Z/2Z⊕ Z/8Z 2 [1, 1, 1,−5, 2] 45

We computed the invariants in the Birch and Swinnerton-Dyer conjecture for
our curves, and solved for the conjectural order of X; Table 7.6 gives the number
of curves in our data having each order of X as well as a minimal conductor curve
exhibiting each of these orders.

Table 7.6. X

#X #isom first curve having #X Norm(n)

1 3191 [1, ϕ+ 1, ϕ, ϕ, 0] 31

4 84 [1, 1, 1,−110,−880] 45

9 43
[ϕ+ 1,−ϕ, 1,−54686ϕ− 35336,

76−7490886ϕ− 4653177]

16 16
[1, ϕ, ϕ+ 1,−4976733ϕ− 3075797,

45−6393196918ϕ− 3951212998]

25 2 [0,−1, 1,−7820,−263580] 121

36 2
[1,−ϕ+ 1, ϕ, 1326667ϕ− 2146665,

1580
880354255ϕ− 1424443332]
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NON-COMMUTATIVE IWASAWA THEORY FOR MODULAR FORMS

J. COATES, T. DOKCHITSER, Z. LIANG, W. STEIN, R. SUJATHA

Abstract. The aim of the present paper is to give evidence, largely numerical, in
support of the non-commutative main conjecture of Iwasawa theory for the motive of
a primitive modular form of weight k > 2 over the Galois extension of Q obtained
by adjoining to Q all p-power roots of unity, and all p-power roots of a fixed integer
m > 1. The predictions of the main conjecture are rather intricate in this case because
there is more than one critical point, and also there is no canonical choice of periods.
Nevertheless, our numerical data agrees perfectly with all aspects of the main conjecture,
including Kato’s mysterious congruence between the cyclotomic Manin p-adic L-function,
and the cyclotomic p-adic L-function of a twist of the motive by a certain non-abelian
Artin character of the Galois group of this extension.

1. Introduction

Let z be a variable in the upper half complex plane, and put q = e2πiz. Let

(1) f(z) =
∞∑

n=1

anq
n,

be a primitive cusp form of conductor N (in the sense of [18]), with trivial character,
and weight k > 2. For simplicity, we shall always assume that the Fourier coefficients
an (n ≥ 1) of f are in Q. Let p be an odd prime number. The aim of the present paper
is to provide some evidence, largely numerical, for the validity of the non-commutative
main conjecture of Iwasawa theory for the motive M(f) attached to f over the p-adic Lie
extension

F∞ = Q(µp∞ ,m
1/pn , n = 1, 2, . . . ),

which is obtained by adjoining to Q the group µp∞ of all p-power roots of unity, and
all p-power roots of some fixed integer m > 1. In this case, the analytic continuation
and functional equation for the complex L-function L(f, φ, s) of f twisted by any Artin
character φ of the Galois group of F∞ over Q are well-known consequences of the theory
of automorphic base change. The points s = 1, . . . , k−1 are critical for all of the complex
L-functions L(f, φ, s), and we show that essentially the same arguments as in [1] enable
one to prove the expected algebraicity statement at these points. Moreover, these values

2000 Mathematics Subject Classification. Primary 11F67; Secondary 11F33, 11R23.
T. Dokchitser was supported by a Royal Society University Research Fellowship, Z. Liang by the

National Natural Sciences Foundation of China (Grant Nos. 11001183 and 11171231), W. Stein from
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are all non-zero, except perhaps for the central value s = k/2; in particular, there is
always at least one non-zero critical value since k > 2.

In [2], a precise main conjecture was formulated for an elliptic curve over any p-adic
Lie extension of a number field F containing the cyclotomic Zp-extension of F , and under
the assumption that the elliptic curve is ordinary at the prime p. This was generalized
to arbitrary ordinary motives in [8], and it is a special case of the main conjecture of
[8] which we consider here. Thus we assume that p is an odd prime number such that
(p, ap) = (p,N) = 1. One of the underlying ideas of the non-commutative main conjecture
is to prove the existence of a p-adic L-function, which interpolates a canonical normal-
ization of the critical values L(f, φ, n), where n = 1, . . . , k − 1, and φ runs over all Artin
representations of the Galois group

G = Gal(F∞/Q).

We denote these normalized L-values by Lcan
p (f, φ, n) (for the precise definition, see for-

mulae (68), (69) and (71) in §5). The definition of these normalized L-values requires
making a choice of canonical periods for the form f , and, until such a time as the main
conjectures of non-commutative Iwasawa theory are fully proven, we are only able to make
an educated guess at present as to what these canonical periods should be. However, as
we explain in §5, Manin’s work on the construction of the p-adic L-function for our mod-
ular form f over the field Q(µp∞) gives some information about these canonical periods,
which is relevant for our numerical examples.

As we explain in more detail in §5, the existence of a p-adic L-function attached to f over
the non-abelian extension F∞ of Q, when combined with the work of Kato [14], implies the
existence of the following mysterious congruence between two p-adic L-functions attached
to f over certain abelian sub-extensions of F∞/Q. We are very grateful to M. Kakde for
explaining to us how this congruence follows from Kato’s work. Let σ denote the (p− 1)-
dimensional representation of G given by the direct sum of the irreducible representations
of Gal(Q(µp)/Q). Let ρ be the unique irreducible representation of dimension p − 1 of
the Galois group of the field

F = Q(µp,m
1/p)

over Q, where we now assume that m > 1 is p-power free. Write Qcyc for the cyclotomic
Zp-extension of Q, and Ξ for the group of irreducible characters of finite order of Γ =
Gal(Qcyc/Q). Further, let χp denote the character giving the action of Gal(Q̄/Q) on µp∞ .
We fix a topological generator γ of Γ, and put u = χp(γ). The work of Manin [16] proves
that there exists a unique power series H(σ, T ) in the ring R = Zp[[T ]] such that

(2) H(σ, ψ(γ)ur − 1) = Lcan
p (f, σψ, k/2 + r),

for all ψ in Ξ, and all integers r with −k/2 + 1 ≤ r ≤ k/2 − 1. On the other hand, the
conjectural existence of a good p-adic L-function for f over the field F∞ would imply, in
particular, the existence of a power series H(ρ, T ) in the ring R such that

(3) H(ρ, ψ(γ)ur − 1) = Lcan
p (f, ρψ, k/2 + r),
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for all ψ in Ξ, and all integers r with −k/2 + 1 ≤ r ≤ k/2 − 1. Then Kato’s work [14]
implies the following conjectural congruence between formal power series

(4) H(ρ, T ) ≡ H(σ, T ) mod pR.

This conjectural congruence in R has the following consequences for our critical L-values.
Firstly, on evaluation of our power series at the relevant point in pZp, we deduce from (2)
and (3) that the congruence

(5) Lcan
p (f, ρ, n) ≡ Lcan

p (f, σ, n) mod pZp
should hold for n = 1, . . . , k − 1. Secondly, if we assume the additional property that

(6) L(f, σ, k/2) = L(f, ρ, k/2) = 0,

then we would have that H(ρ, T ) and H(σ, T ) both belong to the ideal TR. It is then
clear from (2), (3) and (4) that the stronger congruence

(7) Lcan
p (f, ρ, n) ≡ Lcan

p (f, σ, n) mod p2Zp
should hold for n = 1, . . . , k − 1.

Our numerical computations (see §6) verify the first congruence (5) for the prime p = 3
and a substantial range of cube free integers m > 1, for three forms f of weight 4 and
conductors 5, 7, 121, and one form f of weight 6 and conductor 5, all of which are ordinary
at 3. These computations require us to determine numerically the Fourier coefficients an
of these forms f for n in the range 1 ≤ n ≤ 108. In addition, for the two forms of
weight 4 and conductors 7 and 121, we prove that (6) holds for all integers m > 1,
and happily, our numerical results show that the sharper congruence (7) holds for these
two forms and the prime p = 3 for a good range of cube free integers m > 1. When
f is a complex mutliplication form, some cases of the congruence (4) have already been
established theoretically by Delbourgo and Ward [3] and Kim [15]. However, when f is
not a complex multiplication form, our numerical data seems to provide the first hard
evidence in support of the mysterious non-abelian congruence (4) between abelian p-adic
L-functions.

We warmly thank T. Bouganis, M. Kakde, and D. Kim for very helpful advice on the
writing of this paper.

2. Algebraicity of L-values

As in the Introduction, let f given by (1) be a primitive cusp form of conductor N ≥ 1
with trivial character and weight k > 2 (thus k is necessarily even). For simplicity, we
always assume that the Fourier coefficients an (n ≥ 1) of f belong to Q. The complex
L-function attached to f is

(8) L(f, s) =
∞∑

n=1

an/n
s.
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This L-function has the following Euler product. For any prime p, let

(9) τp : Gal(Q̄/Q)→ AutQp(Vp)

be the p-adic Galois representation attached to f ; here Vp is a two dimensional vector
space over the field Qp of p-adic numbers. If q is any prime distinct from p, define the
polynomial

(10) Pq(f,X) = det(1− τp(Frob−1
q )X | V Iq

p ),

where Iq is the inertial subgroup of the decomposition group of any fixed prime of Q̄ above
q, and Frobq denote the Frobenius automorphism of q. Moreover, if (q,N) = 1, we have

(11) Pq(f,X) = 1− aqX + qk−1X2.

Then

(12) L(f, s) =
∏

q

Pq(f, q
−s)−1

when Re(s) > 1 + (k − 1)/2. Defining

(13) Λ(f, s) = N s/2(2π)−sΓ(s)L(f, s),

we know, since Hecke, that Λ(f, s) is entire and satisfies the functional equation

(14) Λ(f, s) = w(f)Λ(f, k − s)
where w(f) = ±1 is the sign in the functional equation. The critical values of L(f, s) are
at the points s = 1, . . . , k − 1. Following Shimura [23], [24], we introduce the following
naive periods for f , which we have normalized in view of our later numerical calculations.
Define

(15) Ω−(f) = iw(f)(2π)−1L(f, 1).

Since the Euler product for L(f, s) converges to a positive real number when s is real
and s > 1 + (k − 1)/2, it is clear from the functional equation (14), that Ω−(f) is
purely imaginary in the upper half plane. Motivated again by numerical calculations, we
assume throughout the following simplifying hypothesis (see [7] for examples in which this
hypothesis fails).

Hypothesis H1: L(f, 2) 6= 0 when k = 4.

We then define

(16) Ω+(f) = w(f)(2π)−2 L(f, 2).

Again, Ω+(f) is always a positive real number when k > 4, and presumably (it would, of
course, be implied by the generalized Riemann Hypothesis) this remains true even when
k = 4, although this value is outside the region of convergence of the Euler product.
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Theorem 2.1. (See [23],[24]) (i) If n is an odd integer such that 1 ≤ n ≤ k − 1, then

(2πi)−nL(f, n)/Ω−(f) ∈ Q;

(ii) If n is an even integer such that 1 ≤ n ≤ k − 1, then

(2πi)−nL(f, n)/Ω+(f) ∈ Q.

In what follows, we shall mainly be interested in the L-functions of f twisted by Artin
characters. We rapidly recall the definitions of these L-functions. By an Artin represen-
tation, we mean a homomorphism

(17) φ : Gal(Q̄/Q)→ AutQ̄(W )

which factors through the Galois group of a finite extension of Q; here W is a vector space
of finite dimension over Q̄. Put

d(φ) = dimQ̄(W ).

For each prime p, let

Mp(f) = Vp ⊗Qp Q̄p, Mp(φ) = W ⊗Q̄ Q̄p.

Then

(18) L(f, φ, s) = Π
q
Pq(f, φ, q

−s)−1,

where

(19) Pq(f, φ,X) = det
(
(1− Frob−1

q X) | (Mp(f)⊗Q̄p
Mp(φ))Iq

)
(q 6= p)

is the Euler product attached to the tensor product Galois representation Mp(f) ⊗Q̄p

Mp(φ). The Euler product (18) converges in the region Re(s) > 1 + (k− 1)/2. It is one of
the fundamental problems of number theory to prove the analytic continuation and the
following conjectural functional equation for L(f, φ, s). Let N(f, φ) be the conductor of
the family of p-adic representations Mp(f)⊗Q̄p

Mp(φ), and define

(20) Λ(f, φ, s) = N(f, φ)s/2
(
(2π)−sΓ(s)

)d(φ)
L(f, φ, s).

Then conjecturally

(21) Λ(f, φ, s) = w(f, φ)Λ(f, φ̂, k − s),

where w(f, φ) is an algebraic number of complex absolute value 1, and φ̂ is the contra-
gredient representation of φ. There is one important case in which this result is known.

Theorem 2.2. Let K be any finite Galois extension of Q with Galois group Gal(K/Q)
abelian. Let ψ be an abelian character of K and define φ to be the induced character of
Gal(Q̄/Q). Then Λ(f, φ, s) is entire and satisfies the functional equation (21).
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Proof. Since K is an abelian extension of Q, the base change of f to K, which we denote
by πK(f), exists as a cuspidal automorphic representation of GL2/K. The results of
Jacquet-Langlands then establish the analytic continuation and functional equation for
the automorphic L-function of πK(f), twisted by the abelian character ψ of K, which
we view as a Hecke character of GL1/K. We denote this automorphic L-function by
L(πK(f), ψ, s). On the other hand, by the theory of base change, and the local Langlands
correspondence for GL2, L(πK(f), ψ, s) coincides with L(f, φ, s) defined by the Euler
product (18). This completes the proof on noting that the functional equation (21)
coincides with the automorphic functional equation. �

The following conjectural generalisation of Theorem 2.1 is folklore. Given an Artin
representation φ as in (17), define d+(φ) (resp. d−(φ)) to be the dimension of the subspaces
of W on which complex conjugation acts like +1, (resp. as −1). If n is any integer, we
write

(22) d+
n (φ) = d(−1)n(φ), d−n (φ) = d(−1)n+1

(φ).

Conjecture 2.3. For every Artin representation φ of Gal(Q̄/Q), and all integers n =
1, . . . , k − 1, we have

(23)
L(f, φ, n)(

(2πi)nd(φ) × Ω+(f)d
+
n (φ) × Ω−(f)d

−
n (φ)
) ∈ Q̄.

Of course, when φ has dimension 1, this conjecture is a well known consequence of
the theory of higher weight modular symbols. However, as in [1], we shall study special
cases of this conjecture by using the work of Shimura [23] on the special values of Rankin
products of Hilbert modular forms for totally real number fields. Let K be an arbitrary
totally real field, which is Galois over Q, with Gal(K/Q) abelian. Take g to be any Hilbert
modular form relative to K, which corresponds to an Artin representation θ of dimension
2 of Gal(Q̄/K). The form g has parallel weight 1 and level equal to the conductor of θ.
We denote the Artin L-series of θ by

L(θ, s) =
∑

a

c(a)(Na)−s,

where a runs over all integral ideals of K. Further, let L(f/K, s) be the complex L-
function attached to the restriction of the Galois representation (13) to Gal(Q̄/K), and
write

L(f/K, s) =
∑

a

b(a)(Na)−s,

for its corresponding Dirichlet series. Since we have assumed K to be an abelian extension
of Q, the base change to K of our modular form f also exists as a primitive cusp form for
the Hilbert modular group of K. We denote this base change by fK . It has parallel weight
k, trivial character, and level dividing NOK , where OK is the ring of integers of K. In
what follows, we will be primarily interested in the complex L-series defined by the tensor
product of the Artin representation θ and the Galois representation (13) of f restricted
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to Gal(Q̄/K). We denote this L-series by L(fK , θ, s), and recall that it is defined by the
Euler product

L(fK , θ, s) =
∏

v

Pv(fK , θ, (Nv)−s)−1,

where v runs over all finite places of K, and

(24) Pv(fK , θ,X) = det
(

1− Frob−1
v X |

(
Mp(f)⊗Q̄p

Wθ

)Iv)
;

here Wθ is a two dimensional Q̄p-vector space realizing θ, and Iv is the inertial subgroup
of a place of Q̄ above v. Of course, by the inductive property of L-functions, we also have

(25) L(fK , θ, s) = L(f, φθ, s),

where φθ is the Artin representation of Gal(Q̄/Q) induced from the representation θ of
Gal(Q̄/K).

On the other hand, the classical theory of Rankin products (see [25, §4]) considers
instead the complex L-series D(fK , g, s) defined by

(26) D(fK , g, s) = Ln(ψ, 2s− k + 1)×
∑

a

c(a)b(a)N(a)−s

with a running over all integral ideals of K; here n is the least common multiple of the
levels of fK and g, ψ is the character of g, and Ln(ψ, s) is the imprimitive L-series of
ψ where the Euler factors at the primes dividing n have been omitted. A well-known
classical argument shows that D(fK , g, s) has the Euler product expansion

(27) D(fK , g, s) =
∏

v

Dv(fK , g, (Nv)−s)−1

where

(28) Dv(fK , g, X) = det
(
1− Frob−1

v X |
(
Mp(f)Iv ⊗Q̄p

W Iv
θ

))
.

Thus the complex L-functions L(fK , θ, s) and D(fK , g, s) coincide, except for the possible
finite set of Euler factors at places v for which

(29)
(
Mp(f)⊗Q̄p

Wθ

)Iv 6=
(
Mp(f)Iv ⊗Q̄p

W Iv
θ

)
.

To avoid this technical difficulty, we impose an additional simplifying hypothesis.

Lemma 2.4. Assume that for each prime q such that q2 | N , that q does not divide
the conductor of the representation of Gal(Q̄/Q) induced from θ. Then for every prime
number p, and every finite place v of K which does not lie above p, we have

(30)
(
Mp(f)⊗Q̄p

Wθ)
)Iv

= (Mp(f))Iv ⊗Q̄p
(Wθ)

Iv ,

where Iv denotes the inertial subgroup at v. In particular, D(fK , g, s) = L(fK , θ, s).
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Proof. Suppose that v lies above a prime q, where q 6= p. Assume first that (q,N) = 1.
Then Iq, and hence also Iv, acts trivially on Mp(f), and so (30) is plain. Suppose next that
q divides N but q2 does not divide N . Then it is well known that the image of Iq, hence
also that of Iv, in the automorphism group of Mp(f) is infinite, and that Mp(f)Iq has
dimension one over Q̄p. Clearly the same assertions remain valid if we replace Iq by any
open subgroup I ′q of Iq. Thus we must have Mp(f)Iv = Mp(f)I

′
v for every open subgroup

I ′v of Iv. Since some open subgroup of Iv acts trivially on Wθ, (30) follows immediately.
Finally, if q2 divides N , the hypothesis of the lemma shows that Iv acts trivially on Wθ,
whence (30) is again clearly true.

�
Our next result relates the automorphic period of fK to the periods Ω+(f) and Ω−(f).

We normalize the Petersson inner product on the space of cusp forms of level dividing
NOK for the Hilbert modular group of K as in [25] (see formula (2.7) on p. 651).

Proposition 2.5. Let K be a real abelian field, and write fK for the base change of f to
K. Then

(31)
(2πi)(1−k)βπβk〈fK , fK〉K

(Ω+(f)× Ω−(f))β
∈ Q,

where β = [K : Q].

We shall use the following notation in the proof of this proposition. If ψ is any abelian
character of K, write L(f/K, ψ, s) for the primitive L-function attached to the tensor
product of ψ with the restriction of (13) to Gal(Q̄/K). Also, for any abelian character χ
of Q, we write χK for the restriction of χ to Gal(Q̄/K).

Lemma 2.6. Let K be any real abelian extension of Q and η any abelian character of Q.
Then there exists an abelian character χ of Q as follows. For all σ in Gal(Q̄/Q), we have

(1) L(f/K, χσK , k/2) 6= 0 and L(f/K, χσKηK , k/2) 6= 0;
(2) L(f/K, χσK , s) (resp. L(f/K, χσKηK , s)) has Euler factor equal to 1 at all places of

K where χσK (resp. χσKηK) is ramified.

Proof. Let Σ be any finite set of primes of Q containing the primes dividing N , the primes
dividing the conductor of η, and the primes which ramify in K. By an important theorem
of Rohrlich [22], there exists a finite abelian extension M of Q, unramified outside Σ, such
that L(f, λ, k/2) 6= 0 for every abelian character λ of Q that is unramified outside Σ, and
which does not factor through Gal(M/Q). By enlarging M if necessary, we can assume
that M ⊃ K. Let NK be the conductor of f/K, and ∆M/K the relative discriminant of
M over K. Also, if ξ is an abelian character of K, write N (ξ) for its conductor. Let χ
be any abelian character of Q such that, for every prime v of K above Σ, we have

(32) ordv(N (χK)) > max
{

ordv(∆M/K), ordv(N (η)), ordv(NK)
}
.

Such a character can always be found by taking a character of Gal(Q(µm)/Q) for suffi-
ciently large m. Let v be any place of K above Σ, and put

tv = max
{

ordv(∆M/K), ordv(NK)
}
.
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Thanks to (32), it is clear, that for each σ in Gal(Q̄/Q), we have

(33) ordv(N (χσK)) = ordv(N (χσKη)) > tv.

In particular, none of these characters can factor through Gal(M/K). Moreover, it is also
easily seen from (33) that

(
Mp(f)⊗Q̄p

χσK
)Iv

=
(
Mp(f)⊗Q̄p

χσKη
)Iv

= 0,

whence the final assertion of the lemma is clear. �
We now prove that the left hand side of (31) is an algebraic number. Take J = K(i),

and let η be any abelian character of Q such that J is the fixed field of the kernel of ηK .
Now let χ be an abelian character of Q having the properties specified in Lemma 2.6, and
write χJ for the restriction of χ to Gal(Q̄/J). Note that the representation of Gal(Q̄/K)
induced by χJ is θ = χK ⊕ χKηK . Write g for the Hilbert modular form relative to K
which corresponds to θ. Thus g has parallel weight one, and character ηKχ

2
K . Moreover,

by the second assertion of Lemma 2.5, we have the exact equality of L-functions

(34) D(fK , g, s) = L(f/K, θ, s).

On the other hand, since K is abelian over Q, we also have the identity

(35) L(f/K, θ, s) =

β∏

j=1

L(f, χζj, s)L(f, χηζj, s),

where ζ1, . . . , ζd denote the characters of Gal(K/Q).

The desired algebraicity assertion follows by evaluating both sides of (35) at s = k/2,
noting that this common value is non-zero by Lemma 2.6, and then applying Shimura’s
algebraicity results to each L-function. Indeed, Theorem 4.2 of [25] shows that

(36)
D(fK , g, k/2)

(2πi)βπβk〈fK , fK〉τK(ηKχ2
K)
∈ Q̄,

where τK(ηKχ
2
K) denotes the Gauss sum for the character ηKχ

2
K of Gal(Q̄/K) (see (3.9)

of [25] for the definition of this Gauss sum). On the other hand, recalling that χζj(−1) 6=
χζjη(−1) for j = 1, . . . , β, it follows from [24, Theorem 1] that

(37)

β∏
j=1

L(f, χζj, k/2)× L(f, χηζj, k/2)

(2πi)βk × (Ω+(f)Ω−(f))β ×
β∏
j=1

τQ(χζj)τQ(χηζj)

∈ Q̄;

here τQ(κ) denotes the usual Gauss sum of an abelian character κ of Q. Combining
(36)and (37), it follows immediately that the left hand side of (31) is an algebraic number.
Moreover, a more detailed analysis, exactly as in the proof of [1, Theorem 3.4] shows that
this algebraic number is invariant under the action of Gal(Q̄/Q), completing the proof of
Proposition 2.5. �
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As a first application of Proposition 2.5, we establish the following case of Conjecture
2.3.

Theorem 2.7. Assume F is an imaginary number field with Gal(F/Q) abelian. Let ψ
be any abelian character of Gal(Q̄/F ), and let φ be the induced character of Gal(Q̄/Q).
Assume that, for every prime q such that q2 divides N , q does not divide the conductor
of φ. Then Conjecture 2.3 is valid for f and φ.

Proof. Let K be the maximal real subfield of F , and let θ be the representation of
Gal(Q̄/K) induced from ψ. Thus θ is a two dimensional Artin representation of Gal(Q̄/K),
and we let g be the associated Hilbert modular form as above. Then, by Lemma 30,

(38) D(fK , g, s) = L(fK , θ, s) = L(f, φ, s).

But, assuming n is an integer with 1 ≤ n ≤ k − 1, it is shown in [25, (4.10)] that

(39)
(2πi)−2nβD(fK , g, n)

(2πi)β(1−k)πβk〈fK , fk〉K
∈ Q̄.

Now making use of Lemma 2.6, and noting that

d(φ) = 2β, d+
n (φ) = d−n (φ) = β,

the algebraicity statement (23) follows on putting s = n in (38). This completes the proof
of Theorem 2.7. �

Again following the ideas of [1], we now prove a refined version of Conjecture 2.3 for
Artin representations φ which factor through the Galois group over Q of the field

(40) Fr = Q(µpr ,m
1/pr);

here p is an odd prime number, r ≥ 1 is an integer, µpr is the group of pr-th roots of unity,
and m is an integer > 1. For simplicity, we shall always assume that m is not divisible by
the p-th power of an integer > 1. In order to state the refinement of (23), we first recall
the epsilon-factors of the Artin representation φ (for a fuller discussion, see [5, §6.2]). Fix
the Haar measure µ on Qp determined by µ(Zp) = 1, and the additive character α of Qp

given by

α(zp−t) = e2iπz/pt , for z ∈ Zp.
Write εp(φ) for the local epsilon-factor of φ at the prime p, which is uniquely determined
by this choice of µ and α. For each integer n = 1, . . . , k − 1, define

(41) L∗p(f, φ, n) =
L(f, φ, n)εp(φ)(

(2πi)nd(φ) × Ω+(f)d
+
n (φ) × |Ω−(f)|d−n (φ)

)

Hypothesis H2: For all primes q such that q2 divides N , we have (q,mp) = 1.

Theorem 2.8. Assume that the Artin representation φ factors through Gal(Fr/Q) for
some integer r ≥ 1, where Fr is given by (40). Suppose in addition that Hypotheses H1
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and H2 are valid. Then Λ(f, φ, s) is entire, and satisfies the functional equation (21).
Moreover, for all integers n = 1, . . . , k − 1, L∗p(f, φ, n) is an algebraic number satisfying

(42) L∗p(f, φ, n)σ = L∗p(f, φ
σ, n)

for all σ in Gal(Q̄/Q).

Proof. As remarked above, the proof we now give follows closely that given in [1], where
f was assumed to have weight k = 2, and therefore corresponded to an isogeny class of
elliptic curves defined over Q. For each integer r ≥ 1, define Kr = Q(µpr) and write Kr for
its maximal real subfield. Note that Gal(Fr/Kr) is cyclic of order pr, since m is assumed
to be p-power free. Put

(43) F∞ =
⋃

r≥1

Fr, K∞ =
⋃

r≥1

Kr, G = Gal(F∞/Q).

For this proof, define ρ to be the representation of Gal(Fr/Q) induced by any character
of exact order pr of Gal(Fr/Kr). It is then easy to see that ρ is irreducible, and that
every irreducible Artin representation φ of G is of the form λ or ρλ for some integer
r ≥ 1,where λ is a one dimensional character of Gal(K∞/Q). For the proof of Theorem
2.8, we may assume that φ is irreducible. Now it is clear from these remarks that every
irreducible Artin representation φ of G is induced from an abelian character of Kr for
some integer r ≥ 1. Thus Theorem 2.2 implies that Λ(f, φ, s) is entire and satisfies the
functional equation (21). Also, noting that F∞/Q is unramified outside of the primes
dividing mp, we conclude from Theorem 2.7 that L∗p(f, φ, n) is an algebraic number for
all Artin characters φ of G and all integers n = 1, . . . , k − 1. Thus it remains to establish
(42) for irreducible φ.

If d(φ) = 1, one can easily deduce (42) from [23, Theorem 1]. Assuming d(φ) > 1, it
follows that for some integer r ≥ 1, φ is induced by an abelian character of Kr of the form
ψλKr , where ψ is a character of Gal(Fr/Kr) of exact order pr, and λKr is the restriction
to Gal(Q̄/Kr) of a one dimensional character λ of Gal(K∞/Q). We define θ to be the
two dimensional Artin representation of Gal(Q̄/Kr) induced by ψλKr , and take g to be
the corresponding Hilbert modular form relative to Kr of parallel weight one. Let ν be
the abelian character of Kr defining the quadratic extension Kr/Kr, and let λKr be the
restriction of λ to Gal(Q̄/Kr). Since the determinant of θ is equal to νλ2

Kr
, g will have

character νλ2
Kr
. Moreover, noting that Hypothesis H2 is valid for f and φ because the

conductor of φ can only be divisible by primes dividing mp, we conclude from Lemma 2.4
that

(44) D(fKr , g, s) = L(fKr , θ, s) = L(f, φ, s).

Taking s = n with 1 ≤ n ≤ k − 1, it then follows from [25, Theorem 4.2] that

(45) A(f, φ, n) :=
L(f, φ, n)

(2πi)d(φ)(1+2n−k)/2 × πkd(φ)/2 × 〈fK , fK〉Kr × τKr(νλ
2
Kr

)

satisfies
A(f, φ, n)σ = A(f, φσ, n)
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for all σ in Gal(Q̄/Q); here τKr(νλ
2
Kr

) is the Gauss sum of the abelian character νλ2
Kr

of
Kr, as defined by [25, (3.9)]. Noting that

d(φ) = 2[Kr : Q], d+(φ) = d−(φ) = [Kr : Q],

we conclude easily from (31) and [1, Proposition 4.5] that the last assertion of Theorem
2.8 will hold if and only if

(46)

( ∏

q 6=p,∞
εq(φ)

)σ

=
∏

q 6=p,∞
εq(φ

σ),

for all σ in Gal(Q̄/Q). But (46) is an immediate consequence of the fact that ρ can be
realized over Q, and the equation

εq(φ) = εq(λ)dim(ρ) sgn
(
det(ρ)(qeq(ρ))

)
,

which holds for all q 6= p, since λ is unramified at q; here eq(ρ) = ordq(N (ρ)), with N (ρ)
denoting the conductor of ρ. This completes the proof. �

3. Interlude on root numbers

Recall that F = Q(µp,m
1/p). From now on, write ρ for the unique irreducible repre-

sentation of Gal(F/Q) of dimension p− 1; it is induced from any non-trivial character of
Gal(F/K). We now describe the local root numbers

wq(f, ρ) =
εq(f, ρ)

|εq(f, ρ)|
and the corresponding global root number w(f, ρ) under the hypothesis H2 above. This
global root number is the sign in the functional equation of the twisted L-function
L(f, ρ, s). A similar computation in weight 2, i.e., for elliptic curves, was carried out
by V. Dokchitser [6].

Theorem 3.1. Let f =
∑

n ane
2πinz be a primitive cusp form of conductor N with trivial

character, and weight k ≥ 2. Assume that for all primes q such that q2|N , we have
(q,mp) = 1. Then, for every finite prime q, the local root number wq(f, ρ) is given by

wq(f, ρ) = wq(ρ)2 ×





( q
p
)ordq(N) if (q, pm) = 1,

−sgn ap if q = p, ordp(N) = 1 and mp−1 ≡ 1 mod p2,
1 otherwise.

Further, the global root number is given by

w(f, ρ) = (−1)
p−1
2 δ

∏

q-pm

(q
p

)ordq(N)

,

where δ = −sgn ap when both ordp(N) = 1 and mp−1 ≡ 1 mod p2, and 1 otherwise.
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Proof. Let l be any prime distinct from q, and as before, let Vl be the l-adic Galois
representation attached to f . Put n(V ) = ordq(N), and let n(ρ) be such that qn(ρ) is
the q-part of the conductor of ρ. We note that the determinant det ρ of ρ equals ( ·

p
),

the non-trivial quadratic character of Gal(Q(µp)/Q). Recall that the inverse local Euler
factors of L(f, s) are

Pq(f, T ) =





1− aqT + qk−1T 2 if (q,N) = 1,
1− aqT if ordq(N) = 1,
1 if ordq(N) ≥ 2.

The local root numbers wq(f, ρ) can be computed as follows:-
Case 1 ((q,N) = 1): In this case Vl is unramified, and we can use the unramified twist
formula [26, 3.4.6],

wq(f, ρ) = wq(ρ)dimVl · sgn((detVl)(q
n(ρ))).

Here sgn z = z
|z| for z ∈ C, and we evaluate the one-dimensional character detV on

a number qn(ρ) ∈ Q×q via the local reciprocity map. The second term is trivial since
detVl is a power of a cyclotomic character which takes positive values on Q×q . Thus

wq(f, ρ) = wq(ρ)2, as asserted.

Case 2 (ordq(N) = 1): Here aq 6= 0, dimV
Iq
l = 1, the action of inertia Iq is unipotent(

1
0
∗
1

)
, and the action of Frobenius is

(
aq
0

∗
a−1
q pk/2

)
, where k is the weight of f ; the top left

corner can be seen e.g. from the local factor. Write (Vl ⊗ ρ)ss for the semi-simplification
of Vl⊗ ρ. Writing τ = Frobq, the semi-simplification formula for ε-factors [26, 4.2.4] gives

wq(f, ρ) = wq((Vl ⊗ ρ)ss) sgn det(−τ |((Vl⊗ρ)ss)Iq )

sgn det(−τ |(Vl⊗ρ)Iq )

= wq(ρ⊕ ρ)
sgn det(−aqτ |ρIq )sgn det(−a−1

q pk/2τ |ρIq )

sgn det(−aqτ |ρIq )

= sgn det(−aqτ |ρIq)−1

= wq(ρ)2sgn(−aq)dqsgn det(τ |ρIq)−1;

here dq denotes the dimension of ρIq . It remains to determine ρIq and the action of Frobe-
nius on it. Let J = Q(m1/p). There is an equality of L-functions

ζJ(s) = ζ(s)L(ρ, s).

By considering the ramification of q in J/Q and comparing the local factors at q, we find
that

Pq(ρ, T ) =





1 + · · ·+ ( q
p
)T p−1 if q - pm,

1 if q|m,
1− T if p = q and m is a pth power in Z×p ,
1 if p = q and m is not a pth power in Z×p .

In particular, dq is even (and so sgn(−aq)dq = 1) in all but the third case, and det(τ |ρIq) =
1 in all but the first case; in the first case,

det(τ |ρIq) = det(τ |ρ) =
(q
p

)
=
(q
p

)ordq(N)

,
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as asserted by the formula. Finally, if p - m, then it is easy to see by Hensel’s lemma
that m is a pth power in Z×p if and only if it is a pth power in (Z/p2Z)×, which is in turn

equivalent to the condition mp−1 ≡ 1 mod p2.

Case 3 (ordq(N) ≥ 2): By assumption, q - mp, so ρ is unramified. Then wq(ρ) = 1, and
by the unramified twist formula

wq(f, ρ) = wq(Vl)
dim ρ · sgn((detρ)(qn(V ))) = (±1)p−1( q

p
)n(V ) = ( q

p
)n(V ),

as claimed.
Turning to the global root number, we have

w(f, ρ) =
∏

v

wv(f, ρ),

the product being taken over all places v of Q. As ρ is self-dual,
∏

v

wv(ρ)2 = w(ρ)2 = 1,

and the remaining contribution from the real place is (−1)
p−1
2 (see e.g. [6]). This completes

the proof. �

Example 3.2. We compute the global root numbers w(f, ρ) when p = 3 and f is one of
the primitive cusp forms with (N, k) = (5, 4), (5, 6), (7, 4) or (121, 4) that we will use in
§6 to illustrate the congruences. In these cases, the answer does not actually depend on
the weight.

• If f has level 5, then δ = 1 as (3, N) = 1, whence

w(f, ρ) = (−1)
3−1
2 · 1 ·

{
(5

3
) if (5,m) = 1

1 if ord5(m) ≥ 1
=

{
1 if (5,m) = 1
−1 if ord5(m) ≥ 1.

• Similarly, if f has level 7, then (5
3
) = −1 is replaced by (7

3
) = +1 and we get

w(f, ρ) = −1 for every m. (cf. also [6, §7.1], first example).
• Finally, if f has level 121, then (5

3
) is replaced by (11

3
)ord11(121) = +1, and we again

get w(f, ρ) = −1 for every m.

The congruence that we verify involves the twists of f by ρ and by the regular represen-
tation σ of Gal(K/Q) ∼= (Z/pZ)×. It easy to check that the root numbers wq(f, σ) and
w(f, σ) are given by the formula in Theorem 3.1 with m = 1. When p - N the formula
becomes

w(f, σ) = (−1)
p−1
2

∏

q|N

(q
p

)ordq(N)

= (−1)
p−1
2

(N
p

)
.

In particular, for p = 3 the global root number w(f, σ) is +1 for the form of level 5, and
−1 for the forms of level 7 and 121.
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4. An analogue of a result of Hachimori-Matsuno

The aim of this section is to establish an analogue for our primitive cusp form f of
results of Hachimori-Matsuno [10] for elliptic curves, over the fields

(47) K∞ = Q(µp∞), F cyc = Q(µp∞ ,m
1/p),

where again m is an integer > 1 which is p-power free. Such a result has already been
established in [20], but we wish to give a slightly more explicit result in order to explain
its connexion with the congruence (5). Write χp for the character giving the action of
Gal(Q̄/Q) on µp∞ . As usual, for each n ∈ Z, write Zp(n) for the free Zp-module of rank one
on which Gal(Q̄/Q) acts via χnp . If W is any Gal(Q̄/Q)-module, which is also a Zp-module,

define W (n) = W ⊗Zp Zp(n), endowed with the natural diagonal action of Gal(Q̄/Q).

Let Vp be the underlying Qp-vector space of the Galois representation τp attached to f .
Fix once and for all a Zp-lattice Tp in Vp, which is stable under the action of Gal(Q̄/Q).
We stress that we always view Vp as the cohomology group, not the homology group of
the motive M(f). We assume from now on that p and f satisfy:-

Hypothesis H3: The odd prime p is good ordinary for f , i.e., p is an odd prime such
that (p,N) = (p, ap) = 1.

As p is a good ordinary prime, it is shown in [17] that there exists a one dimensional
subspace V 0

p of Vp such that the inertial subgroup of Gal(Q̄p/Qp) acts on Vp/V
0
p by χ1−k

p .
Hence if we define

(48) Ap∞ = Vp(k − 1)/Tp(k − 1),

and define A0
p∞ to be the image of V 0

p (k − 1) in Ap∞ , then Ap∞/A
0
p∞ is unramified at p.

For each finite extension F of Q, define F cyc to be the cyclotomic Zp-extension of F , i.e.,
the compositum of F with the cyclotomic Zp-extension of Q. We follow Greenberg and
define the Selmer group of Ap∞ over F cyc by
(49)

Sel(Ap∞/F cyc) = Ker


H1(F cyc, Ap∞)→

∏

w-p

H1(F cyc
w , Ap∞)×

∏

w|p
H1(F cyc

w , Ap∞/A
0
p∞)


 ,

where w runs over all finite places of F cyc, and F cyc
w denotes the union of the completions

at w of the finite extensions of Q contained in F cyc. Write

(50) X(Ap∞/F cyc) = Hom(Sel(Ap∞/F cyc),Qp/Zp)
for the compact Pontryagin dual of Sel(Ap∞/F cyc). Assuming F is Galois over Q, both
Sel(Ap∞/F cyc) and X(Ap∞/F cyc) are endowed with canonical left actions of Gal(F cyc/Q),
and these extend by continuity to left module structures over the Iwasawa algebra

Λ(Gal(F cyc/Q)) = lim
←

Zp[Gal(M/Q)],

where M runs over the finite Galois extensions of Q contained in F cyc.
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We shall need the following fundamental result of Kato (see [13]). Note that for K =
Q(µp), we have Kcyc = Q(µp∞).

Theorem 4.1. Assume Hypothesis H3. Then X(Ap∞/Kcyc) is a torsion Λ(Gal(Kcyc/Q))-
module.

Theorem 4.1 implies that the quotient

(51) X(Ap∞/Kcyc)/(X(Ap∞/Kcyc)(p))

is a finitely generated Zp-module, where X(Ap∞/Kcyc)(p) denotes the p-primary submod-
ule. Define λ(f/F cyc) to be the Zp-rank of (51). We shall also need to consider the Euler
factors of the complex L-function L(f/K, s) at places v with (v,Np) = 1. Let qv denote
the characteristic of the residue field of v, and write qrvv for the absolute norm of v. Then
these Euler factors are given explicitly by

(52) Pv(f/K, X) = det(1− Frob−1
v X | Vp) = 1− bvX + qrv(k−1)

v X2,

where Frobv = Frobrvqv , and bv ∈ Z. Since qrvv ≡ 1 mod p, it is clear that for all integers n,
we have

(53) Pv(f/K, q−rvnv ) ≡ 2− bv mod p,

when both sides are viewed as elements of Zp. In particular the question whether or not
the left hand side lies in pZp is independent of n. Define P2 to be the set of all places w
of Kcyc such that, writing v = w | K, we have

(54) P2 = {w : (qv, Np) = 1, qv | m, and ordp(2− bv) > 0}.
Similarly, suppose v is a place of K, with residue characteristic qv 6= p and ordqvN = 1.
Then the Euler factor Pv(f/K, X) is given explicitly by

(55) Pv(f/K, X) = det(1− Frob−1
v X | V Iv

p ) = 1− bvX,
where bv = arvqv , with qrvv again being the absolute norm of v. Note again that

Pv(f/K, q−rvnv ) ≡ 1− bv mod p

for all integers n. Also, since a2
qv = qk−2

v and qrvv ≡ 1 mod p, we always have b2
v ≡ 1 mod p.

Define P1 to be the set of all places w of Kcyc such that, writing v = w | K, we have

(56) P1 = {w : ordqvN = 1, qv | m and bv ≡ 1 mod p}

To establish an analogue for f of the theorem of Hachimori-Matsuno, we shall need the
following additional hypothesis.

Hypothesis H4: X(Ap∞/Kcyc) is a finitely generated Zp-module.

Recall that Kcyc = Q(µp∞) and F cyc = Q(µp∞ ,m
1/p).
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Theorem 4.2. Assume Hypotheses H2, H3 and H4. Then X(Ap∞/F
cyc) is also a finitely

generated Zp-module and

(57) λ(f/F cyc) = pλ(f/Kcyc) +
∑

w∈P2

2(p− 1) +
∑

w∈P1

(p− 1).

Proof. Put ∆ = Gal(F/K) = Gal(F cyc/Kcyc). If B is any ∆-module, we recall that the
Herbrand quotient h∆(B) is defined by

h∆(B) =
#H2(∆, B)

#H1(∆, B)
,

whenever the cohomology groups are both finite.
Entirely similar arguments to those given for elliptic curves in [10] show that, under

the hypotheses H2, H3 and H4, X(Ap∞/F
cyc) is indeed a finitely generated Zp-module,

and we have

(58) λ(f/F cyc) = pλ(f/Kcyc) + (p− 1)ordp(h∆(Sel(Ap∞/F
cyc))

where h∆(Ap∞/F
cyc) is finite.

Let Σ denote the set of primes of Kcyc lying above the rational primes dividing Nmp.
As in [10, §4], well-known arguments from Galois cohomology show that

(59) h∆(Sel(Ap∞/F
cyc)) =

∏

w∈Σ

h∆


∏

u|w
H1(F cyc

u , Cw)




where u runs over the places of F cyc above w, and

(60) Cw = Ap∞ , or Ap∞/A
0
p∞

according as w does not or does lie above p. Moreover, since a prime w of Kcyc either splits
completely or has a unique prime above it in F cyc, it is clear that the right hand side of
(59) simplifies to a product of the h∆(H1(F cyc

u , Cw)), where w now runs over the primes
in Σ which do not split completely in F cyc. Assume from now on that w is a prime of Kcyc

which does not split in F cyc. In particular, this means that the residue characteristic qw
of w must divide pm. Since F cyc

u and Kcyc
w contain µp∞ , their absolute Galois groups have

p-cohomological dimension at most 1. As ∆ is cyclic of order p, it then follows easily from
the Hochschild-Serre spectral sequence that

(61) H i(∆, H1(F cyc
u , Cw)) ' H i(∆, Cw(F cyc

u )),

where Cw(F cyc
u ) = H0(F cyc

u , Cw).

Lemma 4.3. Assume there is a unique prime u of F cyc above p, and put w = u | Kcyc.
Then we have

h∆(H1(F cyc
u , Cw)) = 1.
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Proof. Since Cw is unramified, and F cyc
u is a totally ramified extension of Qp, we have

Cw(F cyc
u ) = H0(Gal(F̄p/Fp), Cw).

But Frobp acts on Cw by multiplication by the p-adic unit root of 1 − apX + pk−1X2.
However, this unit root cannot be equal to 1 as it has complex absolute value p(k−1)/2.
Hence Cw(F cyc

u ) must be finite, and thus has Herbrand quotient equal to 1. �
Write qw for the residue characteristic of w.

Lemma 4.4. Assume that w is a prime of Kcyc such that (qw, Np) = 1, and qw divides m.
Then there is a unique prime u of F cyc above w, and h∆(H1(F cyc

u , Cw)) = p−2 if w ∈ P2,
and h∆(H1(F cyc

u , Cw)) = 1 otherwise.

Proof. The first assertion of the lemma is clear since w must ramify in F cyc because qw
divides m. As (qw, Np) = 1, we know that the inertial subgroup Iw of the absolute Galois
group of Qqw acts trivially on Vp. We claim that Iw also acts trivially on Cw = Ap∞ .
Indeed, we have an exact sequence of Galois modules

0→ Tp → Vp → Cw → 0,

whence one obtains the long exact sequence

(62) 0→ Tp → Vp → CIw
w → H1(Iw, Tp)→ H1(Iw, Vp).

As the inertial action is trivial on Tp and Vp, and qw 6= p, we see that

H1(Iw, Tp) = Hom(Jw, Tp), H
1(Iw, Vp) = Hom(Jw, Vp),

where Jw is the Galois group of the unique tamely ramified Zp-extension of Kcyc
w . Thus

the last map in (62) is injective, and so CIw
w = Cw as claimed.

Let v be the restriction of w to K. We next show that Cv(Kv) 6= 0 if and only if v ∈ P2.
Since Cv is unramified, we have the commutative diagram with exact rows

0 −−−→ Tp −−−→ Vp −−−→ Cw −−−→ 0

δv

y δv

y δv

y
0 −−−→ Tp −−−→ Vp −−−→ Cw −−−→ 0

where δv is the map given by applying Frobv − 1. The characteristic polynomial of Frobv
acting on Vp is X2Pv(f/K, X−1). The roots of this polynomial have complex absolute

value q
rv(k−1)/2
v , and thus are distinct from 1. Hence the middle vertical map in the above

diagram is an isomorphism. It follows from the snake lemma that Cw(Kv) has order equal
to the cokernel of the left hand vertical map, which is equal to the exact power of p
dividing Pv(f/K, 1). But

Pv(f/K, 1) = 1− bv + qrv(k−1)
v ≡ (2− bv) mod p,

showing that Cw(Kv) 6= 0 if and only if w ∈ P2.

Our next claim is that Cw = Cw(Kcyc) if and only if Cw(Kv) 6= 0. As Gal(Kcyc
w /Kv) is

pro-p, Nakayama’s lemma shows that Cw(Kv) = 0 implies that Cw(Kcyc
w ) = 0. Conversely,
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assume that Cw(Kv) 6= 0. We then assert that the extension Kv(Cw) is a pro-p extension
of Kv. To prove this, let (Cw)p be the kernel of multiplication by p on Cw. It is easily seen
that the extension Kv(Cw)/Kv((Cw)p) is pro-p. On the other hand, choosing an Fp-basis
of (Cw)p in which the first element belongs to Cw(Kv), and noting that the determinant
of (Cw)p is trivial because it is equal to ωrv(k−1), where ω is the cyclotomic character mod
p, it follows that the extension Kv((Cw)p)/Kv is a p-extension. Thus Kv(Cw) is a pro-p
extension of Kv, and it is unramified as inertia acts trivially on Cw. Hence we must have
Kv(Cw) = Kcyc

w .

It is now clear from (60) that h∆(H1(F cyc
u , Cw)) = 0 if w 6∈ P2, and h∆(H1(F cyc

u , Cw)) =
p−2 if w ∈ P2. This completes the proof of the lemma. �
Lemma 4.5. Assume that w is a prime of Kcyc such that ordqwN = 1 and qw divides m.
Then there is a unique prime u of F cyc above w, and h∆(H1(F cyc

u , Cw)) = p−1 if w ∈ P1,
and h∆(H1(F cyc

u , Cw)) = 1 otherwise.

Proof. The first assertion is clear, since w must ramify in F cyc, because qv divides m.
Again, let v be the restriction of w to K. Since ordqwN = 1, we have

Pv(f/K, X) = 1− bvX
where we recall that b2

v ≡ 1 mod p. Let Wp be the subspace V
Ip
p of Vp, so that Gal(Q̄qv/Fv)

acts on Wp via the unramified character η with η(Frobv) = bv. Choosing a basis of Vp with
the first basis element being a basis of Wp, the representation of Gal(Q̄qv/Fv) on Vp must

be of the form

(
η ∗
0 λ

)
, where λ is a character of Gal(Q̄qv/Fv). As the determinant of Vp

is the cyclotomic character to the power (k − 1), we conclude that λ is also unramified.
Moreover, the image of the restriction of this representation to Gal(Q̄qv/Knr

v ) is infinite,
where Knr

v is the maximal unramified extension of Kv. Since η takes values in Z×p , it is clear
that the restriction of η to Gal(Knr

v /Kcyc
w ) is the trivial character if and only if w ∈ P1.

Similarly, writing v′ for the restriction of u to F , and recalling that Fv′/Kv is totally
ramified, it follows that the restriction of η to Gal(F nr

v′ /F
cyc
u ) is the trivial character if and

only if w ∈ P1. One concludes easily that, if w 6∈ P1, then Cw(F cyc
u ) must be finite, and

if w ∈ P1, then the divisible subgroup of Cw(F cyc
u ) has Zp-corank 1. In view of (60), the

assertion of the lemma is now clear.
�

Combining (58), (59), and Lemmas 3.3, 3.4 and 3.5, the proof of Theorem 4.2 is now
complete. �

5. The congruence from non-commutative Iwasawa theory

As before, let

(63) F = Q(µp,m
1/p), K = Q(µp)

where p is an odd prime, and m > 1 is an integer which is not divisible by the p-th power of
an integer > 1. Assume throughout this section that Hypotheses H1, H2, and H3 are valid.
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Let φ be an Artin representation of Gal(F∞/Q). For each integer n = 1, . . . , k − 1, we
recall that L∗p(f, φ, n) is defined by (41). By Theorem 2.8, we know that L∗p(f, φ, n) is an
algebraic number. Very roughly speaking, the non-commutative p-adic L-function seeks to
interpolate the numbers L∗p(f, φ, n), as φ, and n both vary. While there has been important
recent progress on the study of these non-commutative p-adic L-functions for the Tate
motive over totally real number fields (see [12],[21]), very little is still known about their
existence for other motives, including the motive attached to our modular form f . In
the present paper, we shall only discuss what is perhaps the simplest congruence between
abelian p-adic L-functions, which would follow from the existence of a non-commutative
p-adic L-function for the motive of f over the field F∞. A specialization of this congruence
for elliptic curves has been studied in the earlier paper [5].

To state this congruence, we must first make a canonical modification of the values
L∗p(f, φ, n), given by (41) following [2], [8]. Recall that since (p, apN) = 1, the Euler
factor

Pp(f,X) = 1− apX + pk−1X2

can be written as

(64) Pp(f,X) = (1− αX)(1− βX),

where α is a unit in Zp, and ordp(β) = k − 1. We shall also need the Euler factors of the
complex L-series L(φ, s) of the Artin representation φ, which are defined by

(65) Pq(φ,X) = det
(
1− Frob−1

q X |Ml(φ)Iq
)

where l is any prime distinct from q. As before, let d(φ) be the dimension of φ. Moreover,
writing N (φ) for the conductor of φ, define

(66) ep(φ) = ordp(N (φ)).

Recall that Pq(f, φ,X) defined by (17) is the Euler factor at the prime q of the complex
L-function L(f, φ, s). Recall also that, for n = 1, . . . k − 1,

(67) L∗p(f, φ, n) =
L(f, φ, n)εp(φ)(

(2πi)nd(φ) × Ω+(f)d
+
n (φ) × |Ω−(f)|d−n (φ)

) .

We then define

(68) Mp(f, φ, n) = Γ(n)d(φ)×L∗p(f, φ, n)×Pp(f, φ, p−n)× Pp(φ̂, p
n−1/α)

Pp(φ, α/pn)
× (pn−1/α)ep(φ),

and

(69) Lp(f, φ, n) = Mp(f, φ, n)
∏

q 6=p, q|m
Pq(f, φ, q

−n),

where q runs over the prime factors of m distinct from p. It is these modified L-values,
defined using the naive periods Ω+(f) and Ω−(f), which we shall actually compute in a
number of numerical examples.
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Secondly, in order to obtain p-adic L-functions which will in the end satisfy the main
conjectures of Iwasawa theory, we may also have to adjust the naive periods Ω+(f) and
Ω−(f) by certain non-zero rational numbers. Writing Ωcan

+ (f) and Ωcan
− (f) for these canon-

ical periods, we will have

(70) Ωcan
+ (f) = c+(f)Ω+(f), Ωcan

− (f) = c−(f)Ω−(f)

for certain non-zero rational numbers c+(f) and c−(f). It is then natural to define

(71) Lcan
p (f, φ, n) = c+(f)−d

+
n (φ)c−(f)−d

−
n (φ)Lp(f, φ, n).

It is these modified values Lcan
p (f, φ, n) which should satisfy the non-abelian congruences

for the p-adic L-functions arising in the main conjectures. However, in our present state
of knowledge, we do not know in general how to determine c+(f) and c−(f) precisely.
Nevertheless, as we shall now explain, the work of Manin on the p-adic L-function of f
for the extension K∞/Q provides some partial information on this question.

Theorem 5.1. Let σ be the sum of the irreducible characters of Gal(K1/Q), where K1 =
Q(µp). If L(f, σ, k/2) = 0, then Lcan

p (f, σ, n) belongs to pZp for n = 1, . . . , k − 1.

Proof. Let χp be the character giving the action of Gal(Q̄/Q) on µp∞ . Fix a topological
generator γ of Gal(Kcyc/K1) and put u = χp(γ). The work of Manin then shows [16] that
there exists a power series g(T ) in Zp[[T ]] such that

(72) g(ur − 1) = M can
p (f, σ, k/2 + r),

for all integers r with −k/2 + 1 ≤ r ≤ k/2− 1, and where

M can
p (f, σ, n) = (c+(f)c−(f))(1−p)/2Mp(f, σ, n).

Here it is understood that the canonical periods are those for which we expect g(T ) to
be a characteristic power series for the dual Selmer group of f over K∞. Assuming that
L(f, σ, k/2) = 0, it follows that

g(0) = 0,

and so g(un − 1) ∈ pZp for all integers n. The assertion of the theorem then follows on
noting that ∏

q 6=p, q|m
Pq(f, σ, q

−n)

lies in Zp for all n ∈ Z. This completes the proof. �

Example 5.2. Take f to be the unique primitive eigenform of level 7 and weight 4, and
p = 3. Then L(f, σ, 2) = 0. Moreover, we see from Table II in §6 that L3(f, σ, 1) ∈ 3Z3. In
view of Theorem 5.1, this strongly suggests that in this case, we must have ord3(c+(f)) =
ord3(c−(f)) = 0.
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Example 5.3. Take f to be the complex multiplication form of level 121 and weight 4,
which is attached to the cube of the Grössencharacter of the elliptic curve over E over
Q given by the equation (79), of conductor 121 and with complex multiplication by the
full ring of integers of the field L = Q(

√
−11), and again take p = 3. Then L(f, σ, 2) = 0.

However, we see from Table III in §6 that L3(f, σ, 1) is a 3-adic unit when m = 3, 7 or 11.
Hence the naive periods Ω+(f) and Ω−(f) cannot be the good periods, and at least one
of ord3(c+(f)) or ord3(c−(f)) must be strictly less than zero. In fact, in this case we do
know the canonical periods for f , since, for all good ordinary primes p for f , we know the
periods for which the relevant cyclotomic main conjecture for f over Kcyc is valid. This is
because this cyclotomic main conjecture can easily be deduced from the main conjecture
for E over the field obtained by adjoining to L the coordinates of all p-power division
points on E; and this latter main conjecture is proven for all good ordinary primes p for
E by the work of Yager and Rubin. Invoking the Chowla-Selberg formula, we see easily
that the explicit values of these canonical periods can be taken as follows. Let

Θ = Γ(1/11)Γ(3/11)Γ(4/11)Γ(5/11)Γ(9/11).

Then

(73) Ωcan
+ (f) =

√
11×Θ3/(2π)9, Ωcan

− (f) = iΘ3/(2π)9.

Direct computations show that

(74) Ω+(f)/Ωcan
+ (f) = 1/22, Ω−(f)/Ωcan

− (f) = 3,

whence

(75) ord3(c+(f)) = 0, ord3(c−(f)) = −1,

precisely as required.

As in the Introduction, let σ be the Artin representation of dimension (p− 1) given by
the direct sum of the one dimensional characters of Gal(K/Q). Define ρ to be the repre-
sentation of Gal(F/Q) induced from any non-trivial degree one character of Gal(F/K).
Thus ρ also has dimension (p− 1), and is easily seen to be irreducible (cf. [5]). Moreover,
both σ and ρ are self-dual, can be realized over Z, and their reductions modulo p are iso-
morphic. Let R = Zp[[T ]] be the ring of formal power series in an indeterminate T with
coefficients in Zp. As explained in the Introduction, the work of Manin [16] establishes
the existence of a power series H(σ, T ) in R satisfying the interpolation property (2) It
is conjectured that there exists a power series H(ρ, T ) in R satisfying the interpolation
condition (3).

Conjecture 5.4. (Congruence Conjecture). Assume Hypotheses H1, H2, H3. Then there
exists a power series H(ρ, T ) in R satisfying the interpolation property (3), and we have
the congruence of power series

(76) H(ρ, T ) ≡ H(σ, T ) mod pR.
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We are grateful to M. Kakde for pointing out to us that the congruence (76) is simply
a special case of the congruences predicted by Kato in [13], and we now briefly explain
why this is the case. Assume for simplicity that Hypothesis H4 is also valid. Recall that
G denotes the Galois group of F∞ over Q, and write Λ(G) for the Iwasawa algebra of G,
S for the canonical Ore set in Λ(G), which is defined in [2], and Λ(G)S for its localization
at S. In addition, define G0 = Gal(K∞/Q), and for each integer n ≥ 1, let Gn be the
unique closed subgroup of index pn−1 in Gal(Qcyc/Q). Write Sn for the canonical Ore set
of [2] in the Iwasawa algebra Λ(Gn). In [13], Kato defines a canonical map

θG,S : K1(Λ(G)S)→
∏

n≥0

K1(Λ(Gn)Sn),

and characterizes its image by a remarkable set of congruences which we do not state in
detail here. In particular, writing θG,S(α) = (αn) for any element α of K1(Λ(G)S), we
always have

(77) N(α0) ≡ α1 mod p,

where N denotes the norm map from K1(Λ(G0)S0) to K1(Λ(G1)S1). Now take α to be
the conjectural p-adic L-function for f over F∞, which we denote by ζ(f/F∞). Let us
also identify Λ(G1) with the formal power series ring R = Zp[[T ]] by mapping the fixed
topological generator γ of G1 to 1 + T . Then it follows essentially from the construction
of the map θG,S and the interpolation properties of these p-adic L-functions that we will
have

N(ζ(f/F∞)0) = H(σ, T ), ζ(f/F∞)1 = H(ρ, T ).

Thus the congruence (76) is indeed just a special case of the congruence (77) of Kato, as
claimed.

As was pointed out in the Introduction, if we evaluate both sides of the congruence
(76) at the appropriate points in pZp, we deduce the following congruence of normalized
L-values from (2) and (3):-

Conjecture 5.5. Assume Hypotheses H1, H2 and H3. Then for all integers n = 1, . . . , k−
1, we have

(78) Lcan
p (f, ρ, n) ≡ Lcan

p (f, σ, n) mod p.

We end this section by explaining how this latter congruence is intimately connected
with Theorem 4.2. Let P1 and P2 be the set of places of K∞ = Q(µp∞) defined by (56)
and (54) respectively.

Lemma 5.6. Let q be any rational prime with q dividing m and (q,Np) = 1. Then all
primes of Kcyc above q belong to P2 if and only if ordp(Pq(f, σ, q

−n)) > 0 for some integer
n.

Proof. Let q have exact order rq modulo p, and let v be a prime of K above q. Then one
sees immediately that

Pq(f, σ,X) = (1− bvXrq + q(k−1)rqX2rq)
p−1
rq ,
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where bv is defined by (52). Since qrq ≡ 1 mod p, the assertion of the lemma is now plain
from the definition of P2. �
Lemma 5.7. Let q be any rational prime not equal to p such that q divides m and
ordq(N) = 1 .Then all primes of Kcyc above q belong to P1 if and only if ordp(Pq(f, σ, q

−n)) >
0 for some integer n.

Proof. Let q have exact order rq and let v be a prime of K above q. Since σ is unramified
at q, one sees easily that

Pq(f, σ,X) = (1− bvXrq)
p−1
rq ,

where bv is defined by (55), and hence the assertion of the lemma is clear. �
By the work of Manin, we always have M can

p (f, σ, n) is in Zp for n = 1, . . . , k − 1.
Hence we conclude from Lemmas 5.6 and 5.7 that Lcan

p (f, σ, n) ∈ pZp if either P1 or P2

is non-empty. On the other hand, assuming Hypotheses H1-H4, Theorem 4.2 shows that
X(Ap∞/F

cyc) is infinite if either P1 or P2 is non-empty. But X(Ap∞/F
cyc) is infinite if

and only if its characteristic element as a Λ(Gal(F cyc/F ))-module is not a unit in the
Iwasawa algebra. But the main conjecture for X(Ap∞) predicts that the Lcan

p (f, ρ, n)
are all values of the characteristic power series of X(Ap∞/F

cyc). Thus it would follow
that Lcan

p (f, ρ, n) ∈ pZp if either P1 or P2 is non-empty, in accord with the Congruence
Conjecture 5.5.

6. Numerical data

We refer the reader to Section 6 of [5] for a detailed discussion of how the computations
are carried out in the case of a primitive form of weight 2. Entirely similar arguments
(see [4]) apply to the calculation of the numerical values Lp(f, φ, n), for n = 1, . . . , k − 1,

for our given primitive modular form f =
∞∑
n=1

anq
n of conductor N . We do not enter into

the details here, apart from listing the explicit Euler factors which occur for the primes
dividing pm. As before, let

K = Q(µp), F = Q(µp,m
1/p),

where m is a p-power free integer > 1. As earlier, we write φ for either the direct sum σ
of the one dimensional characters of Gal(K/Q) or the unique irreducible representation
ρ of dimension p− 1 of Gal(F/Q), and note that both of these Artin representations are
self-dual. We suppose that p is an odd prime number satisfying (p, ap) = (p,N) = 1.
In addition, we assume that Hypothesis H2 holds. As earlier, let Pp(φ,X) denote the
polynomial in X giving the inverse Euler factor at p of the complex L-series L(φ, s) of the
Artin representation φ, and Pq(f, φ,X) the polynomial giving the inverse Euler factor at
a prime q of the complex L-series L(f, φ, s).

Lemma 6.1. We have that Pp(σ,X) = 1 − X, and Pp(f, σ,X) = Pp(f,X). If m ≡
±1 mod p2, then Pp(ρ,X) = 1−X, and Pp(f, ρ,X) = Pp(f,X). Otherwise, both Pp(ρ,X)
and Pp(f, ρ,X) are equal to 1.
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�

Lemma 6.2. Let q be any prime factor of m distinct from p, and write rq for the order
of q modulo p. Then we have:-

(1) Pq(f, σ,X) = Pv (f/K, Xrq)
p−1
rq , where Pv(f/K, X) is the Euler factor of f over

K at any prime v of K above q if (q,N) = 1.

(2) Pq(f, σ,X) =
(
1− arqq Xrq

) p−1
rq if ordq(N) = 1.

(3) Pq(f, ρ,X) = 1.

�

We remark that the computations require knowledge of the Fourier coefficients an of
f for n ranging from 1 up to approximately the square root of the conductor of the
complex L-function L(f, φ, s). Since these conductors are very large even for small N ,
this explains why we need to know explicitly the an for 1 ≤ n ≤ 108, and why we are
essentially restricted to the case of the prime p = 3. For our primitive cusp form f of small
conductor, we computed these Fourier coefficients an using [SAGE] as follows. We use
linear algebra to express f explicitly as a polynomial in terms of Eisenstein series (we only
used small conductor forms f where this was possible), then we evaluate this expression
using arithmetic with polynomials of large degree over the integers. This high precision
evaluation took about 1 day of CPU time in some cases, and relies on the fast FFT-based
polynomial arithmetic from http://flintlib.org, and optimized code for computing
coefficients of Eisenstein series due to Craig Citro, along with other optimizations specific
to this problem. For evaluation of the CM form of level 121 and weight 4, we computed
the Fourier coefficients dp for the corresponding elliptic curve of weight 2 (using [19]),
then obtained the coefficients ap of the weight 4 form as the sum of the cubes of the
roots of X2 − dpX + p, and finally extended these multiplicatively to obtain all of the
coefficients an.

For even k ≥ 2, let Ek(q) ∈ Q[[q]] denote the weight k Eisenstein series of level 1,
normalized so that the coefficient of q is 1. For integers t ≥ 1, define E∗2(qt) = E2(q) −
tE2(qt), which is a holomorphic modular form of level t and weight 2. We consider 4
explicit primitive forms; 3 have expressions in terms of Eisenstein series, and the fourth in
terms of an elliptic curve with complex multiplication. The first 3 are the unique primitive
forms on Γ0(p) with given weight. The fourth form f is the complex multiplication form
of conductor 121 which is attached to the cube of the Grossencharacter of the elliptic
curve

(79) y2 + y = x3 − x2 − 7x+ 10.

This curve has complex multiplication by the full ring of integers of Q(
√
−11), and has

conductor 121 when viewed as a curve over Q. The following table gives the first few
terms of the q-expansion of these four forms, and note that, in each case, 3 is an ordinary
prime because the coefficient of q3 is not divisible by 3.
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Conductor Weight Primitive form

5 4 −250
3 E4(q5)− 10

3 E4(q) + 13E∗2(q5)2 = q − 4q2 + 2q3 + 8q4 − 5q5 + · · ·

7 4 −147
2 E4(q7)− 3

2E4(q) + 5E∗2(q7)2 = q − q2 − 2q3 − 7q4 + 16q5 + · · ·

5 6 521
6 E6(q5)− 1

30E6(q) + 248E∗2(q5)E4(q5) = q + 2q2 − 4q3 − 28q4 + 25q5 + · · ·

121 4 q + 8q3 − 8q4 + 18q5 + 37q9 − 64q12 + 144q15 + 64q16 + · · ·

The first two tables below provide numerical evidence in support of the congruences
(5), and the third and fourth table below provides evidence in support of the stronger
congruence (7). The notation used in these four tables is as follows. We have taken
p = 3, and assume that φ denotes either σ or ρ, so that d(φ) = 2. For each integer
n = 1, . . . , k − 1, put
(80)

L∗3(f, φ, n) = L(f, φ, n)ε3(φ)(2πi)−2n(Ω+(f)|Ω−(f)|)−1, P3(f, φ, n) =
∏

q|3m
Pq(f, φ, q

−n),

and define

L3(f, φ, n) = Γ(n)2 × L∗3(f, φ, n)× P3(f, φ, n)× P3(φ, 3n−1/α)

P3(φ, α/3n)
× (3n−1/α)e3(φ).

We also write N(f, φ) for the conductor of the complex L-function L(f, φ, s). it is easily
seen that ε3(σ) is equal to the positive square root of 3. Moreover, ε3(ρ) = 35 when
ord3(m) ≥ 1. When (3,m) = 1, we have that ε3(ρ) is equal to 3 when m ≡ ±1 mod 32,
and is equal to 33 otherwise. If r is any integer ≥ 1, and w is an integer, the symbol
w +O(3r) will denote a 3-adic integer which is congruent to w modulo 3r.

The reader should also bear in mind the following comments about the signs of the
values L∗3(f, φ, n) given in our tables below. Since φ can be realized over Q, it follows
from the convergence of the Euler product that L(f, φ, n) is strictly positive for n =
k/2 + 1, . . . , k−1; in addition, the generalized Riemann hypothesis would also imply that
the value at n = k/2 should either be zero or strictly positive (and this is the case in all of
our numerical examples) Thus, by Theorem (2.8), L∗3(f, φ, n) is a rational number,which
will have the sign (−1)nw(f, φ) for n = 1, . . . , k/2 − 1 by the functional equation (21);
and the sign of L∗3(f, φ, k/2) should be (−1)k/2 if it is non-zero.

Finally, we recall (see Example 5.3 in section 5) that, for the form f of conductor 121
and weight 4, the periods in Table IV are the naive periods, and that they must be replaced
by the canonical periods defined in Example 5.3 to deduce the stronger congruence (7) in
this case.
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Table I: form f of conductor 5 and weight 4.
L∗3(f, σ, 1) = −100, L∗3(f, σ, 2) = 13

3
.

m L∗3(f, ρ, n) P3(f, ρ, n) P3(f, σ, n) N(f, ρ) L3(f, σ, n) L3(f, ρ, n)

n = 1
2 −25 · 53 · 7 · 13 2·52

3
1 24 · 36 · 52 1 +O(3) 1 +O(3)

3 −24 · 54 · 13 · 41 2·5
3

1 310 · 52 2 +O(3) 2 +O(3)

5 25 · 3 · 52 · 13 · 17 0 1 36 · 54 0 2 · 31 +O(32)

6 −25 · 53 · 13 · 1801 2·52
3

1 24 · 310 · 52 1 +O(3) 1 +O(3)

7 − 28·53·13·23·41
7

23·55
3·72 1 36 · 52 · 74 2 +O(3) 2 +O(3)

10 23 · 3 · 53 · 13 0 2·5
3

24 · 32 · 54 0 1 · 31 +O(32)

11 − 210·53·13·2311
11

25·53·41
3·112 1 36 · 52 · 114 1 +O(3) 1 +O(3)

12 −26 · 53 · 13 · 839 2·52
3

1 24 · 310 · 52 1 +O(3) 1 +O(3)

13 −24 · 53 · 11 · 13 · 43 · 53 25·53·112
3·132 1 36 · 52 · 134 2 +O(3) 2 +O(3)

14 −25 · 54 · 132 · 251 23·56
3·72 1 24 · 36 · 52 · 74 1 +O(3) 1 +O(3)

15 29 · 3 · 52 · 13 · 281 0 1 310 · 54 0 2 · 31 +O(32)

17 − 24·53·13·31·167
17

26·52·7·83
3·172

2·5
3

32 · 52 · 174 1 +O(3) 1 +O(3)

19 − 24·54·13·432
19

27·53·72
3·192

2·5
3

32 · 52 · 194 2 +O(3) 2 +O(3)

20 23 · 3 · 52 · 132 · 97 0 1 24 · 36 · 54 0 1 · 31 +O(32)

21 − 24·53·13·3425341
7

23·55
3·72 1 310 · 52 · 74 2 +O(3) 2 +O(3)

22 − 26·53·13·43·13841
11

25·54·41
3·112 1 24 · 36 · 52 · 114 2 +O(3) 2 +O(3)

23 − 28·35·53·13·1409
23

23·32·52·7·79
232

1 36 · 52 · 234 1 · 33 +O(34) 2 · 35 +O(36)

26 −25 · 53 · 13 · 887 25·54·112
3·132

2·5
3

24 · 32 · 52 · 134 1 +O(3) 1 +O(3)

28 − 25·53·13·503
7

23·56
3·72

2·5
3

24 · 32 · 52 · 74 1 +O(3) 1 +O(3)

29 − 24·53·11·13·1678031
29

26·53·23·41
3·292 1 36 · 52 · 294 1 +O(3) 1 +O(3)

30 23 · 3 · 52 · 72 · 13 · 61 · 97 0 1 24 · 310 · 54 0 1 · 31 +O(32)

31 − 24·54·13·79·62351
31

25·55·112
3·312 1 36 · 52 · 314 2 +O(3) 2 +O(3)

33 −24 · 54 · 11 · 13 · 19 · 2879 25·53·41
3·112 1 310 · 52 · 114 1 +O(3) 1 +O(3)

34 −27 · 53 · 13 · 142427 26·53·7·83
3·172 1 24 · 36 · 52 · 174 2 +O(3) 2 +O(3)

35 26·3·52·13·653
7

0 2·5
3

32 · 54 · 74 0 2 · 31 +O(32)

37 − 28·32·54·13·367
37

25·3·53·192
372

2·5
3

32 · 52 · 374 2 · 32 +O(33) 2 · 32 +O(33)

39 −210 · 53 · 71 · 17489 25·53·112
3·132 1 310 · 52 · 134 2 +O(3) 2 +O(3)

41 − 24·53·13·17·31·211·941
41

27·53·17·109
3·412 1 36 · 52 · 414 1 +O(3) 1 +O(3)

42 − 25·53·13·19·859·1801
7

23·56
3·72 1 24 · 310 · 52 · 74 1 +O(3) 1 +O(3)

43 − 26·53·7·13·19·251·491
43

23·55·292
3·432 1 36 · 52 · 434 2 +O(3) 2 +O(3)

44 −25 · 53 · 13 · 421 25·54·41
3·112

2·5
3

24 · 32 · 52 · 114 2 +O(3) 2 +O(3)

45 25 · 3 · 53 · 72 · 13 · 19 0 1 310 · 54 0 2 · 31 +O(32)

46 − 25·33·53·13·7283
23

23·32·53·7·79
232

2·5
3

24 · 32 · 52 · 234 2 · 33 +O(34) 2 · 33 +O(34)

47 28·53·13·232·22567
47

1 23·52·13·67·277
3·472 36 · 52 · 474 1 +O(3) 1 +O(3)
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Table I: form f of conductor 5 and weight 4.
m L∗3(f, ρ, n) P3(f, ρ, n) P3(f, σ, n) N(f, ρ) L3(f, σ, n) L3(f, ρ, n)

50 23 · 3 · 52 · 132 · 97 0 1 24 · 36 · 54 0 1 · 31 +O(32)

51 − 28·54·132·278591
17

26·52·7·83
3·172 1 310 · 52 · 174 1 +O(3) 1 +O(3)

52 −25 · 53 · 2513617 25·54·112
3·132 1 24 · 36 · 52 · 134 1 +O(3) 1 +O(3)

53 − 24·54·13·290161
53

27·52·11·13·179
3·532

2·5
3

32 · 52 · 534 1 +O(3) 1 +O(3)

55 25·3·52·13·12799
11

0 2·5
3

32 · 54 · 114 0 1 · 31 +O(32)

57 − 26·53·13·61·503·4241
19

27·53·72
3·192 1 310 · 52 · 194 2 +O(3) 2 +O(3)

58 − 29·53·13·9208039
29

26·54·23·41
3·292 1 24 · 36 · 52 · 294 2 +O(3) 2 +O(3)

59 − 28·54·13·23·397·853
59

29·53·19·101
3·592 1 36 · 52 · 594 1 +O(3) 1 +O(3)

60 25 · 3 · 52 · 13 · 19 · 3499 0 1 24 · 310 · 54 0 1 · 31 +O(32)

61 26·53·13·179702101
61

1 25·55·432
3·612 36 · 52 · 614 2 +O(3) 2 +O(3)

62 − 25·53·13·307·2879
31

25·56·112
3·312

2·5
3

24 · 32 · 52 · 314 1 +O(3) 1 +O(3)

66 − 28·54·13·6458773
11

25·54·41
3·112 1 24 · 310 · 52 · 114 2 +O(3) 2 +O(3)

67 − 26·53·133·192·4759
67

23·53·4432
3·672 1 36 · 52 · 674 2 +O(3) 2 +O(3)

68 − 25·53·13·10484557
17

26·53·7·83
3·172 1 24 · 36 · 52 · 174 2 +O(3) 2 +O(3)

69 − 26·33·53·13·857·15733
23

23·32·52·7·79
232

1 310 · 52 · 234 1 · 33 +O(34) 2 · 33 +O(34)

70 29·3·54·13·89·131
7

0 1 24 · 36 · 54 · 74 0 1 · 31 +O(32)

71 − 26·53·7·13·31·79·101
71

25·53·47·1381
3·712

2·5
3

32 · 52 · 714 1 +O(3) 1 +O(3)

73 − 24·54·13·17·47·1831
73

27·53·1572
3·732

2·5
3

32 · 52 · 734 2 +O(3) 2 +O(3)

74 − 25·34·53·11·13·523·1031
37

25·3·54·192
372

1 24 · 36 · 52 · 374 1 · 32 +O(33) 1 · 34 +O(35)

75 25 · 3 · 53 · 72 · 13 · 19 0 1 310 · 54 0 2 · 31 +O(32)

76 − 28·53·13·311·7297
19

27·54·72
3·192 1 24 · 36 · 52 · 194 1 +O(3) 1 +O(3)

77 − 28·53·13·2377·60913
7·11

27·57·41
3·72·112 1 36 · 52 · 74 · 114 1 +O(3) 1 +O(3)

82 − 26·54·13·73·4817
41

27·54·17·109
3·412

2·5
3

24 · 32 · 52 · 414 2 +O(3) 2 +O(3)

84 −25 · 53 · 13 · 431 · 10259 23·56
3·72 1 24 · 310 · 52 · 74 1 +O(3) 1 +O(3)

89 − 26·35·53·13·71·293
89

28·3·53·17·131
892

2·5
3

32 · 52 · 894 1 · 32 +O(33) 2 · 35 +O(36)

90 25 · 3 · 52 · 13 · 151 · 463 0 1 24 · 310 · 54 0 1 · 31 +O(32)

91 − 24·54·4519393
7

27·57·112
3·72·132

2·5
3

32 · 52 · 74 · 134 2 +O(3) 2 +O(3)

92 − 25·32·53·13·157·31019
23

23·32·53·7·79
232

1 24 · 36 · 52 · 234 2 · 33 +O(34) 1 · 32 +O(33)

n = 2
2 2·52·13

33
1 52

2·32 24 · 36 · 52 1 +O(3) 1 +O(3)

3 22·52·13
35

1 2·5
32

310 · 52 2 +O(3) 2 +O(3)

5 0 0 24

3·5 36 · 54 1 · 31 +O(32) 0

6 2·52·72·13
35

1 52

2·32 24 · 310 · 52 1 +O(3) 1 +O(3)

7 26·52·13
33·73 1 23·55

32·74 36 · 52 · 74 2 +O(3) 2 +O(3)

10 0 0 22

3
24 · 32 · 54 2 · 31 +O(32) 0

11 26·52·13
33·11 1 25·53·41

32·114 36 · 52 · 114 1 +O(3) 1 +O(3)

12 25·52·13
35

1 52

2·32 24 · 310 · 52 1 +O(3) 1 +O(3)

13 22·52
33·132 1 25·53·112

32·134 36 · 52 · 134 2 +O(3) 2 +O(3)
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Table I: form f of conductor 5 and weight 4.
m L∗3(f, ρ, n) P3(f, ρ, n) P3(f, σ, n) N(f, ρ) L3(f, σ, n) L3(f, ρ, n)

14 2·54·13
33·73 1 2·56

32·74 24 · 36 · 52 · 74 1 +O(3) 1 +O(3)

15 0 0 24

3·5 310 · 54 1 · 31 +O(32) 0

17 22·54·13
3·173

2·5
32

26·52·7·83
32·174 32 · 52 · 174 1 +O(3) 1 +O(3)

19 22·52·133
3·193

2·5
32

27·53·72
32·194 32 · 52 · 194 2 +O(3) 2 +O(3)

20 0 0 22

3
24 · 36 · 54 2 · 31 +O(32) 0

21 22·52·13·672
35·73 1 23·55

32·74 310 · 52 · 74 2 +O(3) 2 +O(3)

22 23·52·13
33·11 1 23·54·41

32·114 24 · 36 · 52 · 114 2 +O(3) 2 +O(3)

23 26·54·13
3·233 1 23·3·52·7·79

234
36 · 52 · 234 1 · 33 +O(34) 1 · 32 +O(33)

26 2·52
3

2·5
32

23·54·112
32·134 24 · 32 · 52 · 134 1 +O(3) 1 +O(3)

28 2·52·13
3·73

2·5
32

2·56
32·74 24 · 32 · 52 · 74 1 +O(3) 1 +O(3)

29 22·52·13·1092
33·293 1 26·53·23·41

32·294 36 · 52 · 294 1 +O(3) 1 +O(3)

30 0 0 22

3
24 · 310 · 54 2 · 31 +O(32) 0

31 22·52·13·1512
33·313 1 25·55·112

32·314 36 · 52 · 314 2 +O(3) 2 +O(3)

33 22·54·72·13
35·113 1 25·53·41

32·114 310 · 52 · 114 1 +O(3) 1 +O(3)

34 23·52·13
33·173 1 24·53·7·83

32·174 24 · 36 · 52 · 174 2 +O(3) 2 +O(3)

35 0 0 26·53
3·74 32 · 54 · 74 1 · 31 +O(32) 0

37 26·3·52·13
373

2·5
32

25·53·192
374

32 · 52 · 374 2 · 32 +O(33) 2 · 32 +O(33)

38 2·52·13·412
33·193 1 25·54·72

32·194 24 · 36 · 52 · 194 1 +O(3) 1 +O(3)

39 26·52·112
35·132 1 25·53·112

32·134 310 · 52 · 134 2 +O(3) 2 +O(3)

41 22·52·112·13
33·413 1 27·53·17·109

32·414 36 · 52 · 414 1 +O(3) 1 +O(3)

42 2·52·13·1492
35·73 1 2·56

32·74 24 · 310 · 52 · 74 1 +O(3) 1 +O(3)

43 24·56·13
33·433 1 23·55·292

32·434 36 · 52 · 434 2 +O(3) 2 +O(3)

44 2·52·72·13
3·113

2·5
32

23·54·41
32·114 24 · 32 · 52 · 114 2 +O(3) 2 +O(3)

45 0 0 24

3·5 310 · 54 1 · 31 +O(32) 0

46 2·3·52·13
233

2·5
32

2·3·53·7·79
234

24 · 32 · 52 · 234 2 · 33 +O(34) 2 · 32 +O(33)

47 210·52·133
33·473 1 23·52·13·67·277

32·474 36 · 52 · 474 1 +O(3) 1 +O(3)

50 0 0 22

3
24 · 36 · 54 2 · 31 +O(32) 0

51 26·52·13·1012
35·173 1 26·52·7·83

32·174 310 · 52 · 174 1 +O(3) 1 +O(3)

52 2·52
33·132 1 23·54·112

32·134 24 · 36 · 52 · 134 1 +O(3) 1 +O(3)

53 22·52·13·292
3·533

2·5
32

27·52·11·13·179
32·534 32 · 52 · 534 1 +O(3) 1 +O(3)

55 0 0 28·5·41
3·114 32 · 54 · 114 2 · 31 +O(32) 0

57 24·52·74·13
35·193 1 27·53·72

32·194 310 · 52 · 194 2 +O(3) 2 +O(3)

58 211·54·13
33·293 1 24·54·23·41

32·294 24 · 36 · 52 · 294 2 +O(3) 2 +O(3)

59 26·52·114·13
33·593 1 29·53·19·101

32·594 36 · 52 · 594 1 +O(3) 1 +O(3)

60 0 0 22

3
24 · 310 · 54 2 · 31 +O(32) 0

61 24·52·72·13·172
33·613 1 25·55·432

32·614 36 · 52 · 614 2 +O(3) 2 +O(3)

62 2·54·72·13
3·313

2·5
32

23·56·112
32·314 24 · 32 · 52 · 314 1 +O(3) 1 +O(3)

66 25·52·13
35·11 1 23·54·41

32·114 24 · 310 · 52 · 114 2 +O(3) 2 +O(3)
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Table I: form f of conductor 5 and weight 4.
m L∗3(f, ρ, n) P3(f, ρ, n) P3(f, σ, n) N(f, ρ) L3(f, σ, n) L3(f, ρ, n)

67 24·52·13·1032
33·673 1 23·53·4432

32·674 36 · 52 · 674 2 +O(3) 2 +O(3)

68 2·52·72·133
33·173 1 24·53·7·83

32·174 24 · 36 · 52 · 174 2 +O(3) 2 +O(3)

69 24·52·13·312
33·233 1 23·3·52·7·79

234
310 · 52 · 234 1 · 33 +O(34) 1 · 32 +O(33)

70 0 0 24·54
3·74 24 · 36 · 54 · 74 2 · 31 +O(32) 0

71 24·52·13·292
3·713

2·5
32

25·53·47·1381
32·714 32 · 52 · 714 1 +O(3) 1 +O(3)

73 22·52·13·432
3·733

2·5
32

27·53·1572
32·734 32 · 52 · 734 2 +O(3) 2 +O(3)

74 2·33·52·13
373

1 23·54·192
374

24 · 36 · 52 · 374 1 · 32 +O(33) 1 · 36 +O(37)

75 0 0 24

3·5 310 · 54 1 · 31 +O(32) 0

76 25·52·133
33·193 1 25·54·72

32·194 24 · 36 · 52 · 194 1 +O(3) 1 +O(3)

77 26·52·13·1012
33·73·113 1 27·57·41

32·74·114 36 · 52 · 74 · 114 1 +O(3) 1 +O(3)

82 23·52·112·13
3·413

2·5
32

25·54·17·109
32·414 24 · 32 · 52 · 414 2 +O(3) 2 +O(3)

83 26·3·52·72·13
833

1 23·3·52·13·31·223
834

36 · 52 · 834 1 · 33 +O(34) 1 · 34 +O(35)

84 2·52·13·1992
35·73 1 2·56

32·74 24 · 310 · 52 · 74 1 +O(3) 1 +O(3)

89 24·33·54·13
893

2·5
32

28·53·17·131
894

32 · 52 · 894 1 · 32 +O(33) 1 · 34 +O(35)

90 0 0 22

3
24 · 310 · 54 2 · 31 +O(32) 0

91 22·52
3·73·132

2·5
32

27·57·112
32·74·134 32 · 52 · 74 · 134 2 +O(3) 2 +O(3)

92 2·3·52·13
233

1 2·3·53·7·79
234

24 · 36 · 52 · 234 2 · 33 +O(34) 2 · 34 +O(35)

93 24·52·13·313·1792
35

1 25·55·112
32·314 310 · 52 · 314 2 +O(3) 2 +O(3)

94 2·52·112·13·192
33·473 1 2·53·13·67·277

32·474 24 · 36 · 52 · 474 2 +O(3) 2 +O(3)

97 26·3·56·13
973

1 211·53·192
974

36 · 52 · 974 2 · 32 +O(33) 2 · 34 +O(35)

Table II: form f of conductor 7 and weight 4.
L∗3(f, σ, 1) = 49, L∗3(f, σ, 2) = L∗3(f, ρ, 2) = 0.

m L∗3(f, ρ, n) P3(f, ρ, n) P3(f, σ, n) N(f, ρ) L3(f, σ, n) L3(f, ρ, n)

2 23 · 3 · 5 · 74 1 5·72
2·3 24 · 36 · 72 1 · 31 +O(32) 1 · 31 +O(32)

3 22 · 3 · 5 · 73 · 132 1 2·7
3

310 · 72 2 · 31 +O(32) 2 · 31 +O(32)

5 27 · 3 · 73 · 71 1 23·72·23
3·52 36 · 54 · 72 1 · 31 +O(32) 1 · 31 +O(32)

6 24 · 3 · 5 · 74 · 113 1 5·72
2·3 24 · 310 · 72 1 · 31 +O(32) 1 · 31 +O(32)

7 22 · 3 · 5 · 72 · 223 1 23·7
3

36 · 74 2 · 31 +O(32) 2 · 31 +O(32)

10 23 · 73 · 239 2·7
3

2·73·23
3·5 24 · 32 · 54 · 72 2 · 31 +O(32) 2 · 31 +O(32)

11 22·3·5·73·211·499
11

1 25·5·72·31
3·112 36 · 72 · 114 1 · 31 +O(32) 1 · 31 +O(32)

12 23 · 3 · 5 · 74 · 241 1 5·72
2·3 24 · 310 · 72 1 · 31 +O(32) 1 · 31 +O(32)

13 28·3·52·73·773
13

1 23·73·112
3·132 36 · 72 · 134 2 · 31 +O(32) 2 · 31 +O(32)

14 23 · 3 · 5 · 72 · 41 · 59 1 2·5·72
3

24 · 36 · 74 1 · 31 +O(32) 1 · 31 +O(32)

15 22 · 3 · 5 · 73 · 13 · 43 · 179 1 23·72·23
3·52 310 · 54 · 72 1 · 31 +O(32) 1 · 31 +O(32)

17 22·32·5·73·1223
17

2·7
3

26·33·5·72
172

32 · 72 · 174 2 · 35 +O(36) 1 · 33 +O(34)

19 211·5·73·37
19

2·7
3

23·52·75
3·192 32 · 72 · 194 2 · 31 +O(32) 2 · 31 +O(32)

20 27 · 3 · 73 · 1213 1 2·73·23
3·5 24 · 36 · 54 · 72 2 · 31 +O(32) 2 · 31 +O(32)

21 213 · 3 · 5 · 72 · 29 1 23·7
3

310 · 74 2 · 31 +O(32) 2 · 31 +O(32)
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Table II: form f of conductor 7 and weight 4.
m L∗3(f, ρ, n) P3(f, ρ, n) P3(f, σ, n) N(f, ρ) L3(f, σ, n) L3(f, ρ, n)

22 24·3·5·73·19·28277
11

1 23·52·73·31
3·112 24 · 36 · 72 · 114 2 · 31 +O(32) 2 · 31 +O(32)

23 22·33·5·73·47·10463
23

1 27·32·52·72
232

36 · 72 · 234 2 · 34 +O(35) 1 · 33 +O(34)

26 23·5·74·3917
13

2·7
3

2·5·74·112
3·132 24 · 32 · 72 · 134 1 · 31 +O(32) 1 · 31 +O(32)

28 24 · 5 · 72 · 13 2·7
3

2·5·72
3

24 · 32 · 74 1 · 31 +O(32) 1 · 31 +O(32)

29 22·3·5·74·1904647
29

1 26·52·73·19
3·292 36 · 72 · 294 1 · 31 +O(32) 1 · 31 +O(32)

30 23 · 3 · 73 · 19 · 266839 1 2·73·23
3·5 24 · 310 · 54 · 72 2 · 31 +O(32) 2 · 31 +O(32)

31 28·3·5·73·307267
31

1 25·52·75
3·312 36 · 72 · 314 2 · 31 +O(32) 2 · 31 +O(32)

33 27·3·5·73·849221
11

1 25·5·72·31
3·112 310 · 72 · 114 1 · 31 +O(32) 1 · 31 +O(32)

34 210·33·5·73·83·101
17

1 24·33·52·73
172

24 · 36 · 72 · 174 1 · 35 +O(36) 1 · 33 +O(34)

35 22 · 72 · 43 · 191 2·7
3

25·72·23
3·52 32 · 54 · 74 1 · 31 +O(32) 1 · 31 +O(32)

37 27·5·73·15937
37

2·7
3

25·73·592
3·372 32 · 72 · 374 2 · 31 +O(32) 2 · 31 +O(32)

38 25·3·52·73·864947
19

1 2·53·76
3·192 24 · 36 · 72 · 194 1 · 31 +O(32) 1 · 31 +O(32)

39 28·3·5·73·957811
13

1 23·73·112
3·132 310 · 72 · 134 2 · 31 +O(32) 2 · 31 +O(32)

41 24·3·52·73·13·173·1693
41

1 27·5·73·11·17
3·412 36 · 72 · 414 1 · 31 +O(32) 1 · 31 +O(32)

42 23 · 3 · 5 · 72 · 37 · 15601 1 2·5·72
3

24 · 310 · 74 1 · 31 +O(32) 1 · 31 +O(32)

43 211·33·5·73·20639
43

1 25·33·75
432

36 · 72 · 434 2 · 35 +O(36) 2 · 33 +O(34)

Table III: form f of conductor 5 and weight 6.
L∗3(f, σ, 1) = −400, L∗3(f, σ, 2) = 62/15, L∗3(f, σ, 3) = −31/1125.

m L∗3(f, ρ, n) P3(f, ρ, n) P3(f, σ, n) N(f, ρ) L3(f, σ, n) L3(f, ρ, n)

n = 1
2 −212 · 52 · 31 · 661 1 27·5·11

3
24 · 36 · 52 1 +O(3) 1 +O(3)

3 −210 · 53 · 13 · 31 · 2953 1 23·11
3

310 · 52 2 +O(3) 2 +O(3)

5 28 · 3 · 5 · 31 · 193 · 211 1 −26 · 11 36 · 54 2 · 31 +O(32) 1 · 31 +O(32)

6 −211 · 53 · 31 · 137 · 39323 1 27·5·11
3

24 · 310 · 52 1 +O(3) 1 +O(3)

7 −212 · 52 · 31 · 14230919 1 29·11·2772
3·72 36 · 52 · 74 2 +O(3) 2 +O(3)

10 27 · 3 · 5 · 31 · 1097 23·11
3

−210 · 5 · 11 24 · 32 · 54 1 · 31 +O(32) 2 · 31 +O(32)

11 − 213·53·31·971·592759
11

1 210·52·72·372
3·11 36 · 52 · 114 1 +O(3) 1 +O(3)

12 −211 · 52 · 72 · 31 · 533063 1 27·5·11
3

24 · 310 · 52 1 +O(3) 1 +O(3)

13 − 210·52·7·11·31·211·6591061
13

1 217·11·172
3

36 · 52 · 134 2 +O(3) 2 +O(3)

14 − 212·54·31·1082124649
7

1 213·5·11·2772
3·72 24 · 36 · 52 · 74 1 +O(3) 1 +O(3)

15 210 · 3 · 5 · 31 · 13697 · 15101 1 −26 · 11 310 · 54 2 · 31 +O(32) 1 · 31 +O(32)

17 − 210·55·7·31·65777
17

23·11
3

210·5·11·2663·4093
3·172 32 · 52 · 174 1 +O(3) 1 +O(3)

18 −211 · 52 · 72 · 31 · 533063 1 27·5·11
3

24 · 310 · 52 1 +O(3) 1 +O(3)

19 − 210·52·11·31·14243891
19

23·11
3

219·52·11·1012
3·192 32 · 52 · 194 2 +O(3) 2 +O(3)

20 27 · 3 · 5 · 31 · 59 · 387077 1 −210 · 5 · 11 24 · 36 · 54 1 · 31 +O(32) 2 · 31 +O(32)

21 − 210·52·29·31·104789·2583353
7

1 29·11·2772
3·72 310 · 52 · 74 2 +O(3) 2 +O(3)

23 − 212·33·53·31·32517200203
23

1 29·3·5·11·83·139·2357
232

36 · 52 · 234 1 · 32 +O(33) 1 · 33 +O(34)

26 − 211·52·31·699507967
13

23·11
3

221·5·11·172
3

24 · 32 · 52 · 134 1 +O(3) 1 +O(3)
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Table III: form f of conductor 5 and weight 6.
m L∗3(f, ρ, n) P3(f, ρ, n) P3(f, σ, n) N(f, ρ) L3(f, σ, n) L3(f, ρ, n)

28 − 213·53·29·31·41·113
7

23·11
3

213·5·11·2772
3·72 24 · 32 · 52 · 74 1 +O(3) 1 +O(3)

29 − 210·53·19·31·37·41633381443
29

1 211·53·11·2221·7039
3·292 36 · 52 · 294 1 +O(3) 1 +O(3)

30
27 · 3 · 5 · 132 · 17

·31 · 53 · 1051 · 2713
1 −210 · 5 · 11 24 · 310 · 54 1 · 31 +O(32) 2 · 31 +O(32)

31
−210 · 54 · 1597 · 25447

·254627
1 211·56·11·4632

3·312 36 · 52 · 314 2 +O(3) 2 +O(3)

33 − 210·52·31·79·5727093605801
11

1 210·52·72·372
3·11 310 · 52 · 114 1 +O(3) 1 +O(3)

34
−212 · 52 · 7 · 23

·31 · 227 · 130914857
1 214·52·11·2663·4093

3·172 24 · 36 · 52 · 174 2 +O(3) 2 +O(3)

35 216 · 3 · 5 · 31 · 46049 23·11
3

− 212·11·2772
72

32 · 54 · 74 2 · 31 +O(32) 1 · 31 +O(32)

37 − 212·32·53·31·181·199·9743
37

23·11
3

213·39·11·2412
372

32 · 52 · 374 2 · 310 +O(311) 2 · 32 +O(33)

38 − 214·54·7·31·61·27077·185057
19

1 223·53·11·1012
3·192 24 · 36 · 52 · 194 1 +O(3) 1 +O(3)

39 − 213·52·31·2957·86182236263
13

1 217·11·172
3

310 · 52 · 134 2 +O(3) 2 +O(3)

41 − 210·52·31·3303519970879679
41

1 213·52·11·443·704101
3·412 36 · 52 · 414 1 +O(3) 1 +O(3)

42
−212 · 52 · 72 · 31 · 267139

·5797783
1 213·5·11·2772

3·72 24 · 310 · 52 · 74 1 +O(3) 1 +O(3)

43 − 213·52·19·638839·52230109
31·43 1 29·72·11·1572·3892

3·432 36 · 52 · 434 2 +O(3) 2 +O(3)

n = 2
2 23·31·1759

33
1 2·52·7

32
24 · 36 · 52 1 +O(3) 1 +O(3)

3 28·5·31·1223
35

1 23·5
32

310 · 52 2 +O(3) 2 +O(3)

5 − 26·13·31·37
32·5 1 0 36 · 54 0 2 · 31 +O(32)

6 23·19·31·47·5531
35

1 2·52·7
32

24 · 310 · 52 1 +O(3) 1 +O(3)

7 28·31·47·53813
33·73 1 29·55

32·74 36 · 52 · 74 2 +O(3) 2 +O(3)

10 − 23·312
5

23·5
32

0 24 · 32 · 54 0 1 · 31 +O(32)

11 29·31·28000571
33·113 1 212·53·163

32·114 36 · 52 · 114 1 +O(3) 1 +O(3)

12 25·7·31·145543
35

1 2·52·7
32

24 · 310 · 52 1 +O(3) 1 +O(3)

13 29·31·112051757
33·133 1 213·53

32·132 36 · 52 · 134 2 +O(3) 2 +O(3)

14 23·52·31·65780839
33·73 1 27·56

32·73 24 · 36 · 52 · 74 1 +O(3) 1 +O(3)

15 − 29·31·103·1559
34·5 1 0 310 · 54 0 2 · 31 +O(32)

17 28·31·491·971
3·173

23·5
32

210·52·43·881
32·174 32 · 52 · 174 1 +O(3) 1 +O(3)

18 25·7·31·145543
35

1 2·52·7
32

24 · 310 · 52 1 +O(3) 1 +O(3)

19 27·5·31·418273
3·193

23·5
32

211·53·72·112
32·194 32 · 52 · 194 2 +O(3) 2 +O(3)

20 − 23·31·96457
32·5 1 0 24 · 36 · 54 0 1 · 31 +O(32)

21 29·192·31·647·11827
35·73 1 29·55

32·74 310 · 52 · 74 2 +O(3) 2 +O(3)

23 29·31·1117·156733
233

1 29·34·52·653
234

36 · 52 · 234 2 · 36 +O(37) 2 · 33 +O(34)

26 23·7·31·6916561
3·133

23·5
32

211·54·7
32·132 24 · 32 · 52 · 134 1 +O(3) 1 +O(3)

28 23·17·31·39383
3·73

23·5
32

27·56
32·73 24 · 32 · 52 · 74 1 +O(3) 1 +O(3)

29 28·31·283·3323·64067
33·293 1 210·53·179·1091

32·294 36 · 52 · 294 1 +O(3) 1 +O(3)
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Table III: form f of conductor 5 and weight 6.
m L∗3(f, ρ, n) P3(f, ρ, n) P3(f, σ, n) N(f, ρ) L3(f, σ, n) L3(f, ρ, n)

30 − 23·72·31·3320281
34·5 1 0 24 · 310 · 54 0 1 · 31 +O(32)

31 28·5·73·219638621
33·312 1 211·55·832

32·314 36 · 52 · 314 2 +O(3) 2 +O(3)

33 28·52·31·43·109868293
35·113 1 212·53·163

32·114 310 · 52 · 114 1 +O(3) 1 +O(3)

34 27·31·487·122916679
33·173 1 28·53·7·43·881

32·174 24 · 36 · 52 · 174 2 +O(3) 2 +O(3)

35 − 210·31·10729
5·73

23·5
32

0 32 · 54 · 74 0 2 · 31 +O(32)

37 210·3·5·13·31·59·829
373

23·5
32

217·36·53
374

32 · 52 · 374 2 · 38 +O(39) 2 · 32 +O(33)

38 23·31·1657646829583
33·193 1 29·54·73·112

32·194 24 · 36 · 52 · 194 1 +O(3) 1 +O(3)

39 29·31·1039·3011·62311
35·133 1 213·53

32·132 310 · 52 · 134 2 +O(3) 2 +O(3)

41 27·31·53·709·36628831
33·413 1 212·55·11·13·107

32·414 36 · 52 · 414 1 +O(3) 1 +O(3)

42 23·31·59·59147190533
35·73 1 27·56

32·73 24 · 310 · 52 · 74 1 +O(3) 1 +O(3)

43 29·31·482148655367
33·433 1 29·55·72·592

32·434 36 · 52 · 434 2 +O(3) 2 +O(3)

n = 3
2 − 2·31

36·5 1 52·7
2·33 24 · 36 · 52 1 +O(3) 1 +O(3)

3 − 28·31
310·5 1 23·5

33
310 · 52 2 +O(3) 2 +O(3)

5 0 0 26

32·5 36 · 54 1 · 31 +O(32) 0

6 − 2·31·592
310·5 1 52·7

2·33 24 · 310 · 52 1 +O(3) 1 +O(3)

7 − 26·31·472
36·5·75 1 29·55

33·76 36 · 52 · 74 2 +O(3) 2 +O(3)

10 0 0 22·7
32

24 · 32 · 54 2 · 31 +O(32) 0

11 − 26·31·1812
36·5·115 1 212·53·163

33·116 36 · 52 · 114 1 +O(3) 1 +O(3)

12 − 27·31
310·5 1 52·7

2·33 24 · 310 · 52 1 +O(3) 1 +O(3)

13 − 26·313
36·5·133 1 213·53

33·134 36 · 52 · 134 2 +O(3) 2 +O(3)

14 − 2·53·192·31
36·75 1 25·56

33·75 24 · 36 · 52 · 74 1 +O(3) 1 +O(3)

15 0 0 26

32·5 310 · 54 1 · 31 +O(32) 0

17 − 26·5·31
32·175

23·5
33

210·52·43·881
33·176 32 · 52 · 174 1 +O(3) 1 +O(3)

18 − 27·31
310·5 1 52·7

2·33 24 · 310 · 52 1 +O(3) 1 +O(3)

19 − 210·31
32·5·195

23·5
33

211·53·72·112
33·196 32 · 52 · 194 2 +O(3) 2 +O(3)

20 0 0 22·7
32

24 · 36 · 54 2 · 31 +O(32) 0

21 − 28·31·1912
310·5·75 1 29·55

33·76 310 · 52 · 74 2 +O(3) 2 +O(3)

23 − 26·5·31
34·235 1 29·33·52·653

236
36 · 52 · 234 2 · 36 +O(37) 1 · 32 +O(33)

26 − 2·31·472
32·5·135

23·5
33

29·54·7
33·134 24 · 32 · 52 · 134 1 +O(3) 1 +O(3)

28 − 2·192·31
32·5·75

23·5
33

25·56
33·75 24 · 32 · 52 · 74 1 +O(3) 1 +O(3)

29 − 28·31·7572
36·5·295 1 210·53·179·1091

33·296 36 · 52 · 294 1 +O(3) 1 +O(3)

30 0 0 22·7
32

24 · 310 · 54 2 · 31 +O(32) 0

31 − 28·9672
36·5·314 1 211·55·832

33·316 36 · 52 · 314 2 +O(3) 2 +O(3)

33 − 26·5·313
310·115 1 212·53·163

33·116 310 · 52 · 114 1 +O(3) 1 +O(3)

34 − 23·31·18672
36·5·175 1 26·53·7·43·881

33·176 24 · 36 · 52 · 174 2 +O(3) 2 +O(3)

35 0 0 212·53
32·76 32 · 54 · 74 1 · 31 +O(32) 0

37 − 26·74·31
5·375

23·5
33

217·35·53
376

32 · 52 · 374 2 · 38 +O(39) 2 · 32 +O(33)
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Table III: form f of conductor 5 and weight 6.
m L∗3(f, ρ, n) P3(f, ρ, n) P3(f, σ, n) N(f, ρ) L3(f, σ, n) L3(f, ρ, n)

38 − 2·313·1492
36·5·195 1 27·54·73·112

33·196 24 · 36 · 52 · 194 1 +O(3) 1 +O(3)

39 − 26·72·31·972
310·5·135 1 213·53

33·134 310 · 52 · 134 2 +O(3) 2 +O(3)

41 − 26·31·8812
36·5·415 1 212·55·11·13·107

33·416 36 · 52 · 414 1 +O(3) 1 +O(3)

42 − 2·31·49192
310·5·75 1 25·56

33·75 24 · 310 · 52 · 74 1 +O(3) 1 +O(3)

43 − 26·5·132·31·672
36·435 1 29·55·72·592

33·436 36 · 52 · 434 2 +O(3) 2 +O(3)

Table IV: form f of conductor 121 and weight 4.
L∗3(f, σ, s)(n = 1, 2) = (176, 0) and L3(f, σ, 2) = L3(f, ρ, 2) = 0.

m L∗3(f, ρ, n) P3(f, ρ, n) P3(f, σ, n) N(f, ρ) L3(f, σ, n) L3(f, ρ, n)

2 25 · 3 · 11 · 17 · 37 1 22 · 3 24 · 36 · 114 2 · 32 +O(33) 1 · 31 +O(32)

3 25 · 5 · 11 · 4373 1 22

3
310 · 114 2 +O(3) 2 +O(3)

5 25 · 33 · 11 · 2069 1 28·3
52

36 · 54 · 114 2 · 32 +O(33) 1 · 33 +O(34)

6 23 · 32 · 11 · 83 · 2297 1 22 · 3 24 · 310 · 114 2 · 32 +O(33) 2 · 32 +O(33)

7 25·5·11·349·863
7

1 28

3
36 · 74 · 114 2 +O(3) 2 +O(3)

10 23 · 32 · 11 · 13 · 211 22

3
28·33
52

24 · 32 · 54 · 114 2 · 34 +O(35) 1 · 32 +O(33)

11 28 · 112 1 22

3
36 · 114 2 +O(3) 2 +O(3)

12 25 · 3 · 11 · 13 · 31 · 367 1 22 · 3 24 · 310 · 114 2 · 32 +O(33) 2 · 31 +O(32)

13 25·5·11·29·230281
13

1 24·72
3

36 · 114 · 134 2 +O(3) 2 +O(3)

14 27·3·5·11·439·1129
7

1 28 · 3 24 · 36 · 74 · 114 2 · 32 +O(33) 1 · 31 +O(32)

15 25·3·11·23234851
5

28·3
52

1 310 · 54 · 114 2 · 32 +O(33) 1 · 31 +O(32)

17 25·3·11·29·8219
17

22

3
24 · 33 32 · 114 · 174 2 · 34 +O(35) 2 · 31 +O(32)

19 25·53·112·29·31
19

22

3
26·52

3
32 · 114 · 194 2 +O(3) 2 +O(3)

20 27·32·11·156241
5

1 28·33
52

24 · 36 · 54 · 114 2 · 34 +O(35) 1 · 32 +O(33)

In the remaining four tables, we give some intriguing integrality and squareness asser-
tions for the L-values computed in the previous four tables. Although we do not enter into
any detailed discussion in the present paper, it seems highly likely that these phenomena
can be explained via the Bloch-Kato conjecture, and Flach’s motivic generalization of the
Cassels-Tate pairing. We define M to be the product of the distinct primes dividing m,
but excluding the prime 3. Let N denote the conductor of our primitive form f . For
n = 1, . . . , k − 1, we define

(81) An(f) = |L∗3(f, ρ, n)|Mnε3(ρ)(n−1)/4

In Table V, for the form f of conductor 5 and weight 4, define

B1(f) = A1(f)/(22 × 53 × 13),

B2(f) = A2(f)/(52 × 13).
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Table V: form f of conductor 5 and weight 4.

m B1(f)
√
B2(f)

2 22 · 7 2
3 5 · 41 1
6 22 · 1801 2 · 7
7 24 · 23 · 41 22

11 26 · 2311 22 · 11
12 23 · 839 23

13 11 · 13 · 43 · 53 1
14 22 · 5 · 7 · 13 · 251 2 · 5
17 31 · 167 5
19 5 · 432 13
21 3425341 67
22 23 · 43 · 13841 22 · 11
23 24 · 35 · 1409 22 · 3 · 5
26 22 · 13 · 887 2 · 13
28 22 · 503 2
29 11 · 1678031 109
31 5 · 79 · 62351 151
33 5 · 112 · 19 · 2879 5 · 7
34 24 · 17 · 142427 22

37 24 · 32 · 5 · 367 22 · 3
39 26 · 71 · 17489 22 · 11
41 17 · 31 · 211 · 941 11
42 22 · 19 · 859 · 1801 2 · 149
43 22 · 7 · 19 · 251 · 491 2 · 52

44 22 · 11 · 421 2 · 7
46 22 · 33 · 7283 2 · 3
47 24 · 232 · 22567 24 · 13
51 24 · 5 · 13 · 278591 22 · 101
52 22 · 2513617 2
53 5 · 290161 29
57 22 · 61 · 503 · 4241 2 · 72

58 26 · 9208039 26 · 5
59 24 · 5 · 23 · 397 · 853 22 · 112

62 22 · 307 · 2879 2 · 5 · 7
66 25 · 5 · 6458773 23 · 11
67 22 · 132 · 192 · 4759 2 · 103
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Table V: form f of conductor 5 and weight 4.

m B1(f)
√
B2(f)

68 22 · 10484557 2 · 7 · 13
69 22 · 33 · 857 · 15733 2 · 3 · 31
71 22 · 7 · 31 · 79 · 101 2 · 29
73 5 · 17 · 47 · 1831 43
74 22 · 34 · 11 · 523 · 1031 2 · 33

76 25 · 311 · 7297 23 · 13
77 24 · 7 · 11 · 2377 · 60913 22 · 101
82 23 · 5 · 73 · 4817 22 · 11
83 ? 22 · 32 · 7
84 22 · 7 · 431 · 10259 2 · 199
89 22 · 35 · 71 · 293 2 · 32 · 5
91 5 · 4519393 1
92 22 · 32 · 157 · 31019 2 · 32

93 ? 2 · 313 · 179
94 ? 2 · 11 · 19
97 ? 22 · 32 · 52

In Table VI, for the form f of conductor 7 and weight 4, define

B1(f) = A1(f)/(73 × 5).

Table VI: form f of conductor 7 and weight 4.
m B1(f)
2 22 · 3 · 7
3 3 · 132

5 25 · 3 · 71
6 23 · 3 · 7 · 113
7 3 · 223
10 22 · 239
11 3 · 211 · 499
12 22 · 3 · 7 · 241
13 26 · 3 · 5 · 773
14 22 · 3 · 41 · 59
15 3 · 5 · 13 · 43 · 179
17 32 · 1223
19 29 · 37
20 26 · 3 · 1213
21 211 · 3 · 29
22 23 · 3 · 19 · 28277
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Table VI: form f of conductor 7 and weight 4.
m B1(f)
23 33 · 47 · 10463
26 22 · 7 · 3917
28 23 · 13
29 3 · 7 · 1904647
30 22 · 3 · 19 · 266839
31 26 · 3 · 307267
33 25 · 3 · 849221
34 29 · 33 · 83 · 101
35 43 · 191
37 25 · 15937
38 24 · 3 · 5 · 864947
39 26 · 3 · 957811
41 22 · 3 · 5 · 13 · 173 · 1693
42 22 · 3 · 37 · 15601

In Table VII, for the form f of conductor 5 and weight 6, define

B1(f) = A1(f)/(26 · 31 · 52),

B2(f) = A2(f)/(24 · 31),

B3(f) = A3(f)× 5/(24 · 31).

Table VII: form f of conductor 5 and weight 6.

m B1(f) B2(f)
√
B3(f)

2 25 · 661 1759 1
3 22 · 5 · 13 · 2953 22 · 5 · 1223 2
5 3 · 193 · 211 3 · 52 · 13 · 37 0
6 24 · 5 · 137 · 39323 19 · 47 · 5531 59
7 24 · 7 · 14230919 22 · 47 · 53813 47
10 3 · 1097 3 · 52 · 31 0
11 25 · 5 · 971 · 592759 23 · 28000571 181
12 24 · 72 · 533063 22 · 7 · 145543 23

13 22 · 7 · 11 · 211 · 6591061 23 · 112051757 13 · 31
14 25 · 52 · 1082124649 52 · 65780839 52 · 19
15 22 · 3 · 13697 · 15101 23 · 3 · 52 · 103 · 1559 0
17 22 · 53 · 7 · 65777 22 · 491 · 971 5
18 24 · 72 · 533063 22 · 7 · 145543 23

19 22 · 11 · 14243891 2 · 5 · 418273 22

20 3 · 59 · 387077 3 · 52 · 96457 0
21 22 · 29 · 104789 · 2583353 23 · 192 · 647 · 11827 2 · 191
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Table VII: form f of conductor 5 and weight 6.

m B1(f) B2(f)
√
B3(f)

23 24 · 33 · 5 · 32517200203 23 · 33 · 1117 · 156733 3 · 5
26 24 · 699507967 7 · 6916561 47
28 26 · 5 · 29 · 41 · 113 17 · 39383 19
29 22 · 5 · 19 · 37 · 41633381443 22 · 283 · 3323 · 64067 2 · 757
30 3 · 132 · 17 · 53 · 1051 · 2713 3 · 52 · 72 · 3320281 0
31 22 · 52 · 1597 · 25447 · 254627 22 · 5 · 73 · 219638621 2 · 967
33 22 · 79 · 5727093605801 22 · 52 · 43 · 109868293 5 · 31
34 25 · 7 · 17 · 23 · 227 · 130914857 24 · 487 · 122916679 2 · 1867
35 28 · 3 · 7 · 46049 24 · 3 · 52 · 10729 0
37 24 · 32 · 5 · 181 · 199 · 9743 24 · 32 · 5 · 13 · 59 · 829 3 · 72

38 27 · 52 · 7 · 61 · 27077 · 185057 1657646829583 31 · 149
39 25 · 2957 · 86182236263 23 · 1039 · 3011 · 62311 7 · 97
41 22 · 3303519970879679 2 · 53 · 709 · 36628831 881
42 25 · 73 · 267139 · 5797783 59 · 59147190533 4919
43 25 · 19 · 638839 · 52230109 23 · 482148655367 5 · 13 · 67

In Table VIII, for the CM form f of conductor 121 and weight 4, define

B1(f) = A1(f)/(22 · 11).

Table VIII: form f of conductor 121 and weight 4.
m B1(f)
2 22 · 3 · 17 · 37
3 2 · 5 · 4373
5 2 · 33 · 5 · 2069
6 32 · 83 · 2297
7 2 · 5 · 349 · 863
10 32 · 5 · 13 · 211
11 24 · 112

12 22 · 3 · 13 · 31 · 367
14 24 · 3 · 5 · 439 · 1129
17 2 · 3 · 29 · 8219
19 2 · 53 · 11 · 29 · 31
20 24 · 32 · 156241
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