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We investigate Mazur’s notion of visibility of elements of Shafarevich-Tate

groups of abelian varieties. We give a proof that every cohomology class is

visible in a suitable abelian variety, discuss the visibility dimension, and de-

scribe a construction of visible elements of certain Shafarevich-Tate groups. This

construction can be used to give some of the first evidence for the Birch and

Swinnerton-Dyer Conjecture for abelian varieties of large dimension. We then

give examples of visible and invisible Shafarevich-Tate groups.
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INTRODUCTION

If a genus 0 curve X over Q has a point in every local field Qp and in R,
then it has a global point over Q. For genus 1 curves, this “local-to-global
principle” frequently fails. For example, the nonsingular projective curve
defined by the equation 3x3 + 4y3 + 5z3 = 0 has a point over each local
field and R, but has no Q-point. The Shafarevich-Tate group of an elliptic
curve E, denoted X(E), is a group that measures the extent to which
a local-to-global principle fails for the genus one curves with Jacobian E.
More generally, if A is an abelian variety over a number field K, then
the elements of the Shafarevich-Tate group X(A) of A correspond to the
torsors for A that have a point everywhere locally, but not globally. In
this paper, we study a geometric way of realizing (or “visualizing”) torsors
corresponding to elements of X(A).
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Let A be an abelian variety over a field K. If ι : A ↪→ J is a closed
immersion of abelian varieties, then the subgroup of H1(K,A) visible in J
(with respect to ι) is ker(H1(K,A) → H1(K,J)). We prove that every
element of H1(K,A) is visible in some abelian variety, and give bounds on
the smallest size of an abelian variety in which an element of H1(K,A) is
visible. Next assume that K is a number field. We give a construction
of visible elements of X(A), which we demonstrate by giving evidence
for the Birch and Swinnerton-Dyer conjecture for a certain 20-dimensional
abelian variety. We also give an example of an elliptic curve E over Q of
conductor N whose Shafarevich-Tate group is not visible in J0(N) but is
visible in J0(Np) for some prime p.

This paper is organized as follows. Section 1 contains the definition of
visibility for cohomology classes and elements of Shafarevich-Tate groups.
Then in Section 1.3, we use a restriction of scalars construction to prove
that every cohomology class is visible in some abelian variety. Next, in
Section 2, we investigate the visibility dimension of cohomology classes.
Section 3 contains a theorem that can be used to construct visible elements
of Shafarevich-Tate groups. The final section, Section 4, contains examples
and applications of our visibility results in the context of modular abelian
varieties.
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1. VISIBILITY

In Section 1.1 we introduce visible cohomology classes, then in Sec-
tion 1.2 we discuss visible elements of Shafarevich-Tate groups. In Sec-
tion 1.3, we use restriction of scalars to deduce that every cohomology
class is visible somewhere.

For a field K and a smooth commutative K-group scheme G, we write
Hi(K,G) to denote the group cohomology H i(Gal(Ks/K), G(Ks)) where
Ks is a fixed separable closure of K; equivalently, H i(K,G) denotes the
ith étale cohomology of G viewed as an étale sheaf on Spec(K)ét.
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1.1. Visible Elements of H1(K,A)

In [Maz99], Mazur introduced the following definition. Let A be an
abelian variety over an arbitrary field K.

Definition 1.1. Let ι : A ↪→ J be an embedding of A into an abelian
variety J over K. Then the visible subgroup of H1(K,A) with respect to
the embedding ι is

VisJ(H
1(K,A)) = Ker(H1(K,A)→ H1(K,J)).

The visible subgroup VisJ(H
1(K,A)) depends on the choice of embed-

ding ι, but we do not include ι in the notation, as it is usually clear from
context.

The Galois cohomology group H1(K,A) has a geometric interpretation
as the group of classes of torsors X for A (see [LT58]). To a cohomology
class c ∈ H1(K,A), there is a corresponding variety X over K and a map
A × X → X that satisfies axioms similar to those for a simply transitive
group action. The set of equivalence classes of such X forms a group, the
Weil-Chatelet group of A, which is canonically isomorphic to H1(K,A).

There is a close relationship between visibility and the geometric in-
terpretation of Galois cohomology. Suppose ι : A → J is an embedding
and c ∈ VisJ(H

1(K,A)). We have an exact sequence of abelian varieties
0 → A → J → C → 0, where C = J/A. A piece of the associated long
exact sequence of Galois cohomology is

0→ A(K)→ J(K)→ C(K)→ H1(K,A)→ H1(K,J)→ · · · ,

so there is an exact sequence

0→ J(K)/A(K)→ C(K)→ VisJ (H
1(K,A))→ 0. (1.1)

Thus there is a point x ∈ C(K) that maps to c. The fiber X over x is a
subvariety of J , which, when equipped with its natural action of A, lies in
the class of torsors corresponding to c. This is the origin of the terminology
“visible”. Also, we remark that when K is a number field, VisJ (H

1(K,A))
is finite because it is torsion and is the surjective image of the finitely
generated group C(K).

1.2. Visible Elements of X(A)

Let A be an abelian variety over a number field K. The Shafarevich-
Tate group of A, which is defined below, measures the failure of the local-
to-global principle for certain torsors. The Shafarevich-Tate group of A
is

X(A) := Ker

(

H1(K,A)→
∏

v

H1(Kv, A)

)

,

where the product is over all places of K.
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Definition 1.2. If ι : A ↪→ J is an embedding, then the visible sub-
group of X(A) with respect to ι is

VisJ (X(A)) := X(A) ∩VisJ (H
1(K,A)) = Ker(X(A)→X(J)).

1.3. Every Element is Visible Somewhere

Proposition 1.3. Every element of H1(K,A) is visible in some abelian
variety J .

Proof. Fix c ∈ H1(K,A). There is a finite separable extension L of K
such that resL(c) = 0 ∈ H1(L,A). Let J = ResL/K(AL) be the Weil re-
striction of scalars from L to K of the abelian variety AL (see [BLR90,
§7.6]). Thus J is an abelian variety over K of dimension [L : K] · dim(A),
and for any scheme S over K, we have a natural (functorial) group isomor-
phism AL(SL) ∼= J(S). The functorial injection A(S) ↪→ AL(SL) ∼= J(S)
corresponds via Yoneda’s Lemma to a naturalK-group scheme map ι : A→
J , and by construction ι is a monomorphism. But ι is proper and thus is
a closed immersion (see [Gro66, §8.11.5]). Using the Shapiro lemma one
finds, after a tedious computation, that there is a canonical isomorphism
H1(K,J) ∼= H1(L,A) which identifies ι∗(c) with resL(c) = 0.

Remark 1.4.

1. In [CM00], de Jong gave a totally different proof of the above propo-
sition in the case when A is an elliptic curve over a number field.
His argument actually displays A as visible inside the Jacobian of a
curve.

2. L. Clozel has remarked that the method of proof above is a standard
technique in the theory of algebraic groups.

2. THE VISIBILITY DIMENSION

Let A be an abelian variety over a field K and fix c ∈ H1(K,A).

Definition 2.1. The visibility dimension of c is the minimum of the
dimensions of the abelian varieties J such that c is visible in J .

In Section 2.1 we prove an elementary lemma which, when combined
with the proof of Proposition 1.3, gives an upper bound on the visibility
dimension of c in terms of the order of c and the dimension of A. Then, in
Section 2.2, we consider the visibility dimension in the case when A = E
is an elliptic curve. After summarizing the results of Mazur and Klenke on
the visibility dimension, we apply a theorem of Cassels to deduce that the
visibility dimension of c ∈X(E) is at most the order of c.
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2.1. A Simple Bound

The following elementary lemma, which the second author learned from
Hendrik Lenstra, will be used to give a bound on the visibility dimension
in terms of the order of c and the dimension of A.

Lemma 2.2. Let G be a group, M be a finite (discrete) G-module, and
c ∈ H1(G,M). Then there is a subgroup H of G such that resH(c) = 0 and
#(G/H) ≤ #M .

Proof. Let f : G → M be a cocycle corresponding to c, so f(τσ) =
f(τ) + τf(σ) for all τ, σ ∈ G. Let H = ker(f) = {σ ∈ G : f(σ) = 0}.
The map τH 7→ f(τ) is a well-defined injection from the coset space G/H
to M .

The following is a general bound on the visibility dimension.

Proposition 2.3. The visibility dimension of any c ∈ H1(K,A) is at
most d · n2d where n is the order of c and d is the dimension of A.

Proof. The map H1(K,A[n])→ H1(K,A)[n] is surjective and A[n] has
order n2d, so Lemma 2.2 implies that there is an extension L of K of degree
at most n2d such that resL(c) = 0. The proof of Proposition 1.3 implies
that c is visible in an abelian variety of dimension [L : K] ·dimA ≤ dn2d.

2.2. The Visibility Dimension for Elliptic Curves

We now consider the case when A = E is an elliptic curve over a
number field K. Mazur proved in [Maz99] that every nonzero c ∈X(E)[3]
has visibility dimension 2 (note that Proposition 2.3 only implies that the
visibility dimension is ≤ 3). Mazur’s result is particularly nice because
it shows that c is visible in an abelian variety that is isogenous to the
product of two elliptic curves. Using similar techniques, T. Klenke proved
in [Kle01] that every nonzero c ∈ H1(K,E)[2] has visibility dimension 2
(note that Proposition 2.3 only implies that the visibility dimension of any
c ∈ H1(K,E)[2] is ≤ 4). It is unknown whether the visibility dimension
of every nonzero element of H1(K,E)[3] is 2, and it is not known whether
elements of X(E)[5] must have visibility dimension 2.

When c lies in X(E) we use a classical result of Cassels to strengthen
the conclusion of Proposition 2.3.

Proposition 2.4. Let E be an elliptic curve over a number field K
and let c ∈ X(E). Then the visibility dimension of c is at most the order
of c.

Proof. Let n be the order of c. In view of the restriction of scalars
construction in the proof of Proposition 1.3, it suffices to show that there
is an extension L of K of degree n such that resL(c) = 0. Without the
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hypothesis that c lies in X(E), such an extension L might not exist, as
Cassels observed in [Cas63]. However, in that same paper, Cassels proved
that such an L exists when c ∈X(E) (see also [O’N01] for another proof).

Remark 2.5. In contrast to the case of dimension 1, it seems to be an
open problem to determine whether or not elements of X(A)[n] split over
an extension of degree n.

3. CONSTRUCTION OF VISIBLE ELEMENTS

The goal of this section is to state and prove the main result of this pa-
per, which we use to construct visible elements of Shafarevich-Tate groups
and sometimes give a nontrivial lower bound for the order of the Shafarevich-
Tate group of an abelian variety, thus providing new evidence for the con-
jecture of Birch and Swinnerton-Dyer (see Section 4.1 and [AS02]). The
Tamagawa numbers cA,v and cB,v will be defined in Section 3.1 below.

Theorem 3.1. Let A and B be abelian subvarieties of an abelian vari-
ety J over a number field K such that A∩B is finite. Let N be an integer
divisible by the residue characteristics of primes of bad reduction for B.
Suppose n is an integer such that for each prime p | n, we have ep < p− 1
where ep is the largest ramification of any prime of K lying over p, and
that

gcd



n, N ·#(J/B)(K)tor ·#B(K)tor ·
∏

all places v

(cA,v · cB,v)



 = 1,

where cA,v = #ΦA,v(F`) (resp., cB,`) is the Tamagawa number of A (resp.,
B) at v (see Section 3.1 for the definition of ΦA,v). Suppose furthermore
that B[n] ⊂ A as subgroup schemes of J . Then there is a natural map

ϕ : B(K)/nB(K)→ VisJ (X(A)),

such that ker(ϕ) ⊂ J(K)/(B(K) + A(K)). If A(K) has rank 0, then
ker(ϕ) = 0 (more generally, ker(ϕ) has order at most nr where r is the
rank of A(K)).

Remark 3.2. Mazur has proved similar results for elliptic curves using
flat cohomology (unpublished), and discussions with him motivated this
theorem.

In Section 3.1 we recall a definition of the Tamagawa numbers of an
abelian variety. In Section 3.2 we prove a lemma, which gives a condition
under which there is an unramified nth root of an unramified point. In
Section 3.3, we use the snake lemma to produce a map

B(K)/nB(K) ↪→ VisJ(H
1(K,A))
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with bounded kernel. Finally, in Section 3.4, we use a local analysis at each
place of K to show that the image of the above map lies in X(A).

3.1. Tamagawa Numbers

Let A be an abelian variety over a local fieldK with residue class field k,
and let A be the Néron model of A over the ring of integers of K. The
closed fiber Ak of A need not be connected. Let A0

k denote the geometric
component of A that contains the identity. The group ΦA = Ak/A

0
k of

connected components is a finite group scheme over k. This group scheme
is called the component group of A, and the Tamagawa number of A is
cA = #ΦA(k).

Now suppose that A is an abelian variety over a global field K. For
every place v ofK, the Tamagawa number of A at v, denoted cA,v or just cv,
is the Tamagawa number of AKv

, where Kv is the completion of K at v.

3.2. Smoothness and Surjectivity

In this section, we recall some well-known lemmas that we will use in
Section 3.4 to produce unramified cohomology classes. The authors are
grateful to B. Conrad for explaining the proofs of these lemmas.

Lemma 3.3. If G is a finite-type smooth commutative group scheme
over a strictly henselian local ring R and the fibers of G over R are (geo-
metrically) connected, then the multiplication map

nG : G(R)→ G(R)

is surjective when n ∈ R×.

Proof. Pick an element g ∈ G(R) and form the cartesian diagram

Yg
ψ

//

²²

Spec(R)

g

²²

G
nG

// G

We want to prove that ψ has a section. Since R is strictly henselian, by
[Gro67, 18.8.1] it suffices to show that Yg is étale over R with non-empty
closed fiber, or more generally that nG is étale and surjective.

By Lemma 2(b) of [BLR90, §7.3], nG is étale. The image of the étale
nG must be an open subgroup scheme, and on fibers over Spec(R) we get
surjectivity since an open subgroup scheme of a smooth connected (hence
irreducible) group scheme over a field must fill up the whole space [Gro70,
VIA, 0.5].
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Lemma 3.4. Let A be an abelian variety over the fraction field K of a
strictly henselian dvr (e.g., K could be the maximal unramified extension
a local field). Let n be an integer not divisible by the residue characteristic
of K. Suppose that x is a point of A(K) whose reduction lands in the
identity component of the closed fiber of the Néron model of A. Then there
exists z ∈ A(K) such that nz = x.

Proof. Let A denote the Néron model of A over the valuation ring R
of K, and let A0 denote the “identity component” (i.e., the open subgroup
scheme obtained by removing the non-identity components of the closed
fiber of A). The hypothesis on the reduction of x ∈ A(K) = A(R) says
exactly that x ∈ A0(R). Since connected schemes over a field are geomet-
rically connected when there is a rational point [Gro65, Prop. 4.5.13], the
fibers of A0 over Spec(R) are geometrically connected. The lemma now
follows from Lemma 3.3 with G = A0.

Remark 3.5. M. Baker noted that this argument can also be formulated
in terms of formal groups when R is the strict henselization of a complete
dvr.

Lemma 3.6. Let J
φ
→ C be a smooth surjective morphism of schemes

over a strictly Henselian local ring R. Then the induced map J (R)→ C(R)
is surjective.

Proof. The argument is similar to that of the proof of Lemma 3.3. Pick
an element g ∈ C(R) and form the cartesian diagram

Yg
ψ

//

²²

Spec(R)

g

²²

J
φ

// C

We want to prove that ψ has a section. Since φ is smooth, ψ is also smooth.
By [Gro67, 18.5.17], to show that ψ has a section, we just need to show
that the closed fiber of ψ has a section (i.e., a rational point). But this
closed fiber is smooth and non-empty (since φ is surjective); also its base
field is separably closed since R is strictly Henselian. Hence by [BLR90,
Cor. 2.2.13], the closed fiber has an R-rational point.

3.3. Visible Elements of H1(K,A)

In this section, we produce a map B(K)/nB(K) → VisJ (H
1(K,A))

with bounded kernel.

Lemma 3.7. Let A and B be abelian subvarieties of an abelian variety J
over a number field K such that A ∩ B is finite. Suppose n is a natural
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number such that

gcd (n, #(J/B)(K)tor ·#B(K)tor) = 1

and B[n] ⊂ A as subgroup schemes of J . Then there is a natural map

ϕ : B(K)/nB(K)→ VisJ(H
1(K,A))

such that ker(ϕ) ⊂ J(K)/(B(K) + A(K)). If A(K) has rank 0, then
ker(ϕ) = 0 (more generally, ker(ϕ) has order at most nr where r is the
rank of A(K)).

Proof. First we produce a map ϕ : B(K)/nB(K)→ Vis(H1(K,A)) by
using that B[n] ⊂ A hence a certain map factors through multiplication
by n. Then we use the snake lemma and our hypothesis that n does not
divide the orders of certain torsion groups to bound the dimension of the
kernel of ϕ.

The quotient J/A is an abelian variety C over K. The long exact
sequence of Galois cohomology associated to the short exact sequence

0→ A→ J → C → 0

begins

0→ A(K)→ J(K)→ C(K)
δ
−→ H1(K,A)→ · · · . (3.1)

Let ψ be map B → C obtained by composing the inclusion B ↪→ J with
the quotient map J → C. Since B[n] ⊂ A, we see that ψ factors through
multiplication by n, so the following diagram commutes:

B

²²

ψ

ÃÃ
A

A

A

A

A

A

A

n
// B

²²

A // J // C.

Using that B[n](K) = {0}, we obtain the following commutative diagram,
all of whose rows and columns are exact:

K0

²²

K1

²²

K2

²²

0 // B(K)
n

//

²²

B(K)

π

&&
N

N

N

N

N

N

N

N

N

N

//

²²

B(K)/nB(K) //

ϕ

²²

0

0 // J(K)/A(K) //

²²

C(K) // δ(C(K)) // 0

K3,

(3.2)
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where K0, K1 and K2 are the indicated kernels and K3 is the indicated
cokernel. Exactness of the top row expresses the fact that B[n](K) =
{0}, and the bottom exact row arises from the exact sequence (3.1) above.
The first vertical map B(K) → J(K)/A(K) is induced by the inclusion
B(K) ↪→ J(K) composed with the quotient map J(K) → J(K)/A(K).
The second vertical map B(K) → C(K) exists because the composition
B ↪→ J → C has kernel B ∩ A, which contains B[n], by assumption. The
third vertical map exists because π contains nB(K) in its kernel, so that π
factors through B(K)/nB(K).

The sequence (1.1) on page 3 implies that the image of ϕ is contained
in VisJ(H

1(K,A)). The snake lemma gives an exact sequence

K0 → K1 → K2 → K3.

Because B → C has finite kernel, K1 ⊂ B(K)tor. Since B[n](K) = {0}
and K2 is an n-torsion group, the map K1 → K2 is the 0 map. Thus
K2 = ker(ϕ) is isomorphic to a subgroup of K3 = J(K)/(A(K) + B(K)),
as claimed.

Any torsion in the quotient J(K)/B(K) is of order coprime to n because
J(K)/B(K) is a subgroup of (J/B)(K), and gcd(n,#(J/B)(K)tor) = 1, by
assumption. Thus if A(K) is a torsion group, K3 = (J(K)/B(K))/A(K)
has no nontrivial torsion of order dividing n, so when A(K) has rank zero,
ker(ϕ) = 0.

Consider the map ψ : A(K) → J(K)/B(K). To show that ker(φ)
has order at most nr, where r is the rank of A(K), it suffices to show
that coker(ψ)[n] has order at most nr. To prove the latter statement, by
the structure theorem for finite abelian groups, it suffices to prove it for
the case when n is a power of a prime. Moreover, we may assume that
A(K) and J(K)/B(K) have no prime-to-n torsion. Then J(K)/B(K)
is in fact torsion-free, and so we may also assume A(K) is torsion-free.
With these assumptions, the statement we want to prove follows easily by
elementary group-theoretic arguments (in particular, by considering of the
Smith normal form of the matrix representing ψ).

3.4. Proof of Theorem 3.1

Proof of Theorem 3.1. The proof proceeds in two steps. The first step
is to use the hypothesis that B[n] ⊂ A to produce a map B(K)/nB(K)→
VisJ(H

1(K,A))[n]. This was done in Section 3.3. The second step is to
perform a local analysis at each place v of K in order to prove that the
image of this map consists of locally-trivial cohomology classes. We divide
this local analysis into three cases:

1. When v is real archimedian, we use that gcd(2, n) = 1. (We know that
for any p | n we have p > 2 because 1 ≤ ep < p− 1, by assumption.)
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2. When gcd(char(v), n) = 1, we use the result of Section 3.2 and a
relationship between unramified cohomology and the cohomology of
a component group.

3. When gcd(char(v), n) 6= 1, for each prime p | n, the reduction of J is
abelian and by hypothesis ep < p − 1, so we can apply an exactness
theorem from [BLR90].

We now deduce that the image of B(K)/nB(K) in H1(K,A) lies in
X(A). Fix an element x ∈ B(K). To show that π(x) ∈ X(A), it suffices
to show that resv(π(x)) = 0 for all places v of K.

Case 1. v real archimedian: At a real archimedian place v, the
restriction resv(π(x)) is killed by 2 and the odd n, hence resv(π(x)) = 0.

Case 2. gcd(char(v), n) = 1: Suppose that gcd(char(v), n) = 1. Let
m = cB,v = ΦB,v(Fv) be the Tamagawa number of B at v. The reduction
of mx lies in the identity component of the closed fiber BFv

of the Néron
model of B at v, so by Lemma 3.4, there exists z ∈ B(Kur

v ) such that
nz = mx. Thus the cohomology class resv(π(mx)) is defined by a cocycle
that sends σ ∈ Gal(Kv/Kv) to σ(z)−z ∈ A(K

ur
v ) (see diagram (3.2) for the

definition of π). In particular, resv(π(mx)) is unramified at v. By [Mil86,
Prop. 3.8],

H1(Kur
v /Kv, A(K

ur
v )) = H1(Kur

v /Kv,ΦA,v(Fv)),

where ΦA,v is the component group of A at v. The Herbrand quotient of a
finite module is 1 (see, e.g., [Ser79, VIII.4.8]), so

#ΦA,v(Fv) = #H1(Kur
v /Kv,ΦA,v(Fv)).

Thus the order of resv(π(mx)) divides both #ΦA,v(Fv) and n. Since by
assumption gcd(#ΦA,v(Fv), n) = 1, it follows that resv(π(mx)) = 0, hence
m resv(π(x)) = 0. Again, since the order of π(x) divides n, and gcd(n,m) =
1, we have resv(π(x)) = 0.

Case 3. gcd(char(v), n) = p 6= 1: Suppose that char(v) = p | n.
Let R be the ring of integers of Kur

v , and let A, J , and C be the Néron
models of A, J , and C, respectively. Since ep < p − 1 and J has abelian
reduction at v (since p - N), by [BLR90, Thm. 7.5.4(iii)], the induced

sequence 0 → A → J
φ
→ C → 0 is exact, which means that φ is faithfully

flat and surjective with scheme-theoretic kernel A. Since φ is faithfully flat
with smooth kernel, φ is smooth (see, e.g., [BLR90, 2.4.8]). By Lemma 3.6,
J (R)→ C(R) is a surjection; i.e., J(Kur

v )→ C(Kur
v ) is a surjection.

So resv(π(x)) is unramified, and again by [Mil86, Prop. 3.8],

H1(Kur
v /Kv, A) ∼= H1(Kur

v /Kv,ΦA,v(Fv)).

But H1(Kur
v /Kv,ΦA,v(Fv)) = {0}, since ΦA,v(Fv) is trivial, as A has good

reduction at v (because p - N). Thus resv(π(x)) = 0.
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4. SOME EXAMPLES

This section contains some examples of visible and invisible elements of
Shafarevich-Tate groups. Section 4.1 uses Theorem 3.1 to produce nontriv-
ial visible elements of X(A), where A is a 20-dimensional modular abelian
variety, thus giving evidence for the BSD conjecture. In Section 4.2 we show
that an invisible Shafarevich-Tate group from [CM00] becomes visible at a
higher level.

In [AS02], we describe the notation used below (which is standard)
and the algorithms that we used to carry out the computations described
below. We also report on a large number of similar computations, which
were performed using the second author’s modular symbols package, which
is part of Magma (see [BCP97]).

4.1. Visibility in an Abelian Variety of Dimension 20

Using the methods described in [AS02], we find that S2(Γ0(389)) con-
tains exactly five Galois-conjugacy classes of newforms, and these are de-
fined over extensions of Q of degrees 1, 2, 3, 6, and 20. Thus J = J0(389)
decomposes, up to isogeny, as a product A1×A2×A3×A6×A20 of abelian
varieties, where d = dimAd and Ad is the quotient corresponding to the
appropriate Galois-conjugacy class of newforms.

Next we consider the arithmetic of each Ad. Using [AS02], we find that

L(A1, 1) = L(A2, 1) = L(A3, 1) = L(A6, 1) = 0,

and
L(A20, 1)

ΩA20

=
52 · 2?

97
,

where 2? is a power of 2. Using [AS02], we find that #A20(Q) = 97 and
the Tamagawa number of A20 at 389 is also 97. The BSD Conjecture
then predicts that #X(A20) = 52 · 2?. The following proposition provides
support for this conjecture.

Proposition 4.1. There is an inclusion

(Z/5Z)2 ∼= A1(Q)/5A1(Q) ↪→ VisJ(X(A∨
20)).

Proof. Let A = A∨
20, B = A∨

1 = A1 and J = A + B ⊂ J0(389). Using
algorithms in [AS02], we find that A∩B ∼= (Z/4)2× (Z/5Z)2, so B[5] ⊂ A.
Since 5 does not divide the numerator of (389 − 1)/12, it does not divide
the Tamagawa numbers or the orders of the torsion subgroups of A, B, J ,
and J/B (we also verified this using a modular symbols computations), so
Theorem 3.1 implies that there is an injective map

A1(Q)/5A1(Q) ↪→ VisJ(X(A∨
20).

To finish, note that Cremona [Cre97] has verified that A1(Q) ≈ Z× Z.
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4.2. Invisible Elements that Becomes Visible at Higher Level

Consider the elliptic curve E of conductor 5389 = 17 · 317 defined by
the equation

y2 + xy + y = x3 − 35590x− 2587197.

In [CM00], Cremona and Mazur observe that the BSD conjecture implies
that #X(E) = 9, but they find that VisJ0(5389)(X(E)[3]) = {0}. We will
now verify, without assuming any conjectures, that 9 | #X(E) and that
these 9 elements of X(E) are visible in J0(5389 · 7).

First note that the mod 3 representation ρE,3 attached to E is irre-
ducible because E is semistable and admits no 3-isogeny (according to
[Cre]). The newform attached to E is

fE = q + q2 − 2q3 − q4 + 2q5 − 2q6 − 2q7 + · · · ,

and a2
7 = (−2)2 ≡ (7+1)2 (mod 3), so Ribet’s level-raising theorem [Rib90]

implies that there is a newform g of level 7·5389 that is congruent modulo 3
to fE . This observation led us to the following proposition.

Proposition 4.2. Map E to J0(7 · 5389) by the sum of the two maps
on Jacobians induced by the two degeneracy maps X0(7·5389)→ X0(5389).
The image E′ of E in J0(7 · 5389) is 2-isogenous to E and

(Z/3Z)2 ⊂ VisJ0(7·5389)(X(E′)).

Proof. It is easy to see from the discussion in [Rib90] that the kernel
of the sum of the two degeneracy maps J0(5389)→ J0(7 · 5389) is a group
of 2-power order, so E′ is isogenous to E via an isogeny of degree a power
of 2.

Consider the elliptic curve F defined by y2 − y = x3 + x2 + 34x− 248.
Using Cremona’s programs tate and mwrank we find that F has conductor
7 · 5389, and that F (Q) ∼= Z × Z. The Tamagawa numbers of F at 7, 17,
and 317 are 1, 2, and 1, respectively. The newform attached to F is

fF = q − 2q2 + q3 + 2q4 − q5 − 2q6 − q7 + · · ·

and, by [Stu87], we prove that fE(q) + fE(q
7) ≡ fF (mod 3) by checking

this congruence for the first 7632 = [SL2(Z) : Γ0(7 · 5389)]/6 terms. Since
2 ≤ k < 3 and 3 - 7 · 5389, the first part of the multiplicity one theorem of
[Edi92, §9] implies that F [3] = E ′[3].

Finally, we apply Theorem 3.1 with A = E ′, B = F , J = A + B ⊂
J0(7 · 5389), N = 7 · 5389, and n = 3. It is routine to check the hypoth-
esis. For example, the hypothesis that J/B has no Q-rational 3-torsion
can be checked as follows. Cremona’s online tables imply that E admits
no 3-isogeny, so E[3] is irreducible. Since J/B is isogenous to E, the rep-
resentation (J/B)[3] is also irreducible, so (J/B)(Q)[3] = {0}. Thus, by
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Theorem 3.1, we have (Z/3Z)2 ⊂ VisJ(X(E′)). To finish the proof, note
that VisJ(X(E′)) ⊂ VisJ0(7·5389)(X(E′)).

Since E′ is 2-isogenous to E and 9 | #X(E ′), it follows that 9 | #X(E),
as predicted by the BSD conjecture.
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Études Sci. Publ. Math. (1967), no. 32, 361.
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