The conjecture

The two examples computed in Section 6 show that for an abelian subvariety $ A$ of $ J_0(N)$ an invisible element of $ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, A)$ at the base level $ N$ might become visible at a multiple level $ NM$ . We state a general conjecture according to which any element of $ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, A)$ should have such a property.

theorem_type[conjecture][theorem][][plain][][] Let tex2html_wrap_inline$h = 0$ or tex2html_wrap_inline$1$. Suppose that tex2html_wrap_inline$A$ is an abelian subvariety of tex2html_wrap_inline$J_h(N)$ and tex2html_wrap_inline$c&isin#in;OT2wncyrmnSh(Q, A)$. Then there is a positive integer tex2html_wrap_inline$M$, and a homomorphism of abelian varieties tex2html_wrap_inline$&iota#iota;:A &rarr#to;J_h(NM)$ of finite degree coprime to the order of tex2html_wrap_inline$c$ such that tex2html_wrap_inline$&iota#iota;_*c=0$.

Conjecture 7.1.1   Let $ h = 0$ or $ 1$ . Suppose $ A$ is a $ J_h$ -modular abelian variety and $ c \in {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q},A)$ . Then there is a $ J_h$ -modular abelian variety $ C$ and an inclusion $ \iota : A \to C$ such that $ \iota_* c = 0$ .

Remark 7.1.2   For any prime $ \ell$ , the Jacobian $ J_h(N)$ comes equipped with two morphisms $ \alpha^*, \beta^* : J_h(N) \rightarrow J_h(N \ell)$ induced by the two degeneracy maps $ \alpha, \beta : X_h(\ell N) \rightarrow X_h(N)$ between the modular curves of levels $ \ell N$ and $ N$ , and it is natural to consider visibility of $ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(\mathbb{Q}, A)$ in $ J_h(N\ell)$ via morphisms $ \iota$ constructed from these degeneracy maps.

Remark 7.1.3   It would be interesting to understand the set of all levels $ N$ of $ J_h$ -modular abelian varieties $ C$ that satisfy the conclusion of the conjecture.

William Stein 2006-06-21