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CUSPIDAL MODULAR SYMBOLS ARE TRANSPORTABLE

WILLIAM A. STEIN and HELENA A. VERRILL

Abstract

Modular symbols of weight 2 for a congruence subgroup0 satisfy the
identity{α, γ (α)} = {β, γ (β)} for all α, β in the extended upper half
plane andγ ∈ 0. The analogue of this identity is false for modular
symbols of weight greater than 2. This paper provides a definition
of transportable modular symbols, which are symbols for which an
analogue of the above identity holds, and proves that every cuspidal
symbol can be written as a transportable symbol. As a corollary, an
algorithm is obtained for computing periods of cuspforms.

Introduction

It is well known that modular symbols of weight 2 for a congruence subgroup0 satisfy the
identity {α, γ (α)} = {β, γ (β)} for all α, β in the extended upper half plane andγ ∈ 0.
The analogue of this identity is, in general, false for modular symbols of weight greater
than 2. To investigate further, we define transportable modular symbols, which are symbols
that can be expressed in such a way that an analogue of the above identity holds. We then
prove that every cuspidal symbol is transportable. As a corollary, we obtain an algorithm
for computing periods of cuspforms.

In Section1 we review the definition of modular symbols. In Section2 we define trans-
portable modular symbols, and prove our main theorem. Section3 contains an application
of our transportability result to the computation of periods of modular forms. Finally, Sec-
tion 4 contains two examples in which we verify the assertion of Theorem2.4 and apply
the period computation algorithm.

1. Modular symbols

In Section1.1we recall the definition of modular symbols given in [5]; then in Section1.2
we introduce a slight generalization of the definition. LetN andk be positive integers with
k > 2, and letε : Z/NZ → C be a Dirichlet character moduloN .

1.1. Definition

Let M be the abelian group generated by all symbols{α, β} with α, β ∈ P1(Q), modulo
the relations{α, β} + {β, γ } + {γ, α} = 0, and modulo any torsion. LetVk−2 denote the
group of homogeneous polynomials inZ[X, Y ] of degreek − 2.
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Cuspidal modular symbols are transportable

Each elementγ = (
a b
c d

) ∈ SL(2, Z) acts on the left onVk−2 by

γ (P (X, Y )) = P(dX − bY, −cX + aY ),

and onMk = Vk−2 ⊗ M by

γ (P ⊗ {α, β}) = γ (P ) ⊗ {γ (α), γ (β)}.
Fix a Dirichlet characterε : Z/NZ → C, and denote byZ[ε] the ring generated by the
image ofε. We also viewε as a homomorphism00(N) → C∗ by settingε

(
a b
c d

) = ε(d).
The spaceMk(N, ε) of modular symbolsof level N and characterε is the quotient of

the Z[ε]-moduleMk ⊗ Z[ε] by theZ[ε]-submodule generated byγ (x) − ε(γ )x for all
x ∈ Mk, for all γ ∈ 00(N), and by any torsion. Denote byP {α, β} the image ofP ⊗{α, β}
in Mk(N, ε). TheQ[ε]-vector space

Mk(N, ε; Q) = Mk(N, ε) ⊗Z Q

containsMk(N, ε).
Let B be the free abelian group generated by all symbols{α}, for α ∈ P1(Q). Define

a left action of SL(2, Z) onBk = Vk−2 ⊗ B by

γ (P ⊗ {α}) = γ (P ) ⊗ {γα}.
The spaceBk(N, ε)of boundary symbolsis the quotient ofBk⊗Z[ε]by theZ[ε]-submodule
generated byγ (x) − ε(γ )x for all x ∈ Bk, for all γ ∈ 00(N), and by any torsion. The
subspaceSk(N, ε) of cuspidal symbolsis the kernel of the mapδ : Mk(N, ε) → Bk(N, ε)

given byδ(P {α, β}) = P {β} − P {α}.
Whenε = 1 is the trivial character, we shall also writeMk(00(N)) for Mk(N, 1), and

similarly for Sk andBk.

1.2. Extended modular symbols

It is useful to extend the notion of modular symbols to allow symbols of the formP {z, w}
wherez andw are arbitrary elements ofh∗ = h ∪ P1(Q).

Definition 1 (Extended modular symbols).The groupMk of extended modular symbols
is the free abelian group with basis the set of all symbolsP {z, w} with z, w ∈ h∗, subject
to the relationsP {u, v} + P {v, w} + P {w, u} = 0.

Note thatMk is of uncountable rank overZ. It is equipped with an action of00(N);
we letMk(N, ε) be the largest torsion-free quotient ofMk by the relationsγ x = ε(γ )x

for γ ∈ 00(N).

2. Transportable modular symbols

In Section2.1 we define transportable modular symbols, and we prove an elementary
proposition that motivates the definition. Section2.2, which is the heart of this paper,
contains a proof that every cuspidal modular symbol is transportable.

2.1. Definition

Definition 2 (Transportable). A modular symbol istransportableif it can be written in
the form

m∑
i=1

Pi{∞, γi(∞)},
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Cuspidal modular symbols are transportable

for γi ∈ 00(N) andPi ∈ Vk−2 with

m∑
i=1

Pi{∞, γi(∞)} =
m∑

i=1

Pi{α, γi(α)}

for all α ∈ h∗, where the equality takes place inMk(N, ε).

Whenk = 2, the identity{∞, γ (∞)} = {α, γ (α)} holds for anyα ∈ h∗, so in weight 2
there is a plentiful supply of transportable modular symbols.

Proposition 2.1. For anyγ ∈ 00(N), P ∈ Vk−2 andα ∈ h∗,

P {∞, γ (∞)} = P {α, γ (α)} + (
P − ε(γ )γ −1P

){∞, α}
= ε(γ )

(
γ −1P

){α, ∞} − P {γ (α), ∞}. (1)

In particular,

P {∞, γ (∞)} = P {α, γ (α)} ⇔ P = ε(γ )γ −1P. (2)

Proof. If x ∈ Mk(N, ε) is a modular symbol andγ ∈ 00(N), thenγ x = ε(γ )x, where, as
usual,ε is viewed as a homomorphism00(N) → C∗ via ε

( (
a b
c d

) ) = ε(d). In particular,
ε(γ )γ −1x = x, so

P {∞, γ (∞)} = P {∞, α} + P {α, γ (α)} + P {γ (α), γ (∞)}
= P {∞, α} + P {α, γ (α)} + ε(γ )γ −1(P {γ (α), γ (∞)})
= P {∞, α} + P {α, γ (α)} + ε(γ )

(
γ −1P

){α, ∞}
= P {α, γ (α)} + P {∞, α} − ε(γ )

(
γ −1P

){∞, α}
= P {α, γ (α)} + (

P − ε(γ )γ −1P
){∞, α}.

The remaining statements of the proposition now follow easily.

Example 2.2. In some cases it is easy to give a formula for symbols that are obviously
transportable. Suppose thatk > 2 is an even integer. IfP is a polynomial such thatγ (P ) = P

for someγ ∈ 00(N), thenP {∞, γ (∞)} is transportable. Givenγ ∈ 00(N), an example
of such aP is

P(X, Y ) = (
cX2 + (d − a)XY − bY 2)(k−2)/2

.

We found this polynomial by viewingVk−2 as the(k − 2)th symmetric product of the
2-dimensional space on which00(N) acts naturally. Ifγ , which has determinant 1, has
eigenvaluesα andα−1, then the eigenvalues of the(k − 2)-fold symmetric product ofγ
are given byαk−2−2j for 0 6 j 6 k − 2. Although we have not been able to find a
counterexample, the authors see no reason to believe that transportable symbols of the form
given in this example always spanSk(N; Q).

More generally, given any sequence of matricesγ1, . . . , γn in 00(N), it is a simple matter
of linear algebra to give transportable symbols of the form

∑n
i=1 Pi{∞, γi∞}. This follows

from Lemma2.3, which shows that this symbol is transportable exactly when(P1, . . . , Pn)

is in the kernel of the map
⊕n

i=1(1 − γ −1
i ) from

⊕n
i=1 Vk−2 to Vk−2.
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Cuspidal modular symbols are transportable

2.2. Characterization of transportable modular symbols

Lemma 2.3. A modular symbol inMk(N, ε; Q) is transportable if and only if it can be
written in the form

∑m
i=1 Pi{∞, γi(∞)} with∑

Pi =
∑

ε(γi)γ
−1
i Pi .

Proof. This follows from Proposition2.1.

Figure1 illustrates Lemma2.3with a trivial-character example.
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r
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r

β∞
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r
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-Q

r

βα

C
C
C
CO
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C
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The modular symbol

P {∞, γ∞} + Q{γ∞, β∞}
= P {∞, γ∞}+Q{∞, β∞}−Q{∞, γ∞}

can be ‘transported’ to

P {α, γ α} + Q{γα, βα},
provided that

P + Q − Q = γ −1P + β−1Q − γ −1Q.

Figure 1: ‘Transporting’ a transportable modular symbol.

Theorem 2.4. A modular symbol is transportable if and only if it is cuspidal.

Proof. By Lemma2.3, every transportable modular symbols is cuspidal, so we must prove
that every cuspidal symbol is transportable.

Let I = IN,ε be the ideal in the group ring of00(N) generated by all elements
of the form ε(γ ) − γ for γ ∈ 00(N). Suppose thatv ∈ Sk(N, ε). Use the relation
{α, β} = {∞, β} − {∞, α} ∈ M to see that anyv is the image of an elementṽ ∈ Mk

of the form

ṽ =
∑
β∈Q

Pβ ⊗ {∞, β} ∈ Mk

with only finitely manyPβ nonzero. For later convenience, we setP∞ = 0, and take sums
over allβ ∈ P 1(Q). The boundary mapδ lifts in a natural way toMk = Vk−2 ⊗ M, as
illustrated.

I (Vk−2 ⊗ M) //

��

I (Vk−2 ⊗ B)

��
Vk−2 ⊗ M

δ̃ //

��

Vk−2 ⊗ B

��
Sk(N, ε)

� � // Mk(N, ε)
δ // Bk(N, ε)
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Bearing in mind torsion, our assumption thatδ(v) = 0 implies that for some nonzero
M ∈ Z, we haveMδ̃(ṽ) ∈ I (Vk−2 ⊗ B). So there areQγ,β ∈ Vk−2, for γ ∈ 00(N) and
β ∈ P1(Q), only finitely β many nonzero, such that

Mδ̃(ṽ) =
∑
γ,β

(
ε(γ ) − γ

)(
Qγ,β ⊗ {β}).

We now use a summation trick.

Mδ̃(ṽ) = M
∑
β

(
Pβ ⊗ {β} − Pβ ⊗ {∞})

=
∑
γ,β

(
ε(γ )Qγ,β ⊗ {β} − (γQγ,β) ⊗ {γβ})

=
∑
γ,β

ε(γ )Qγ,β ⊗ {β} − (γQγ,γ −1β) ⊗ {β}

=
∑
γ,β

(
ε(γ )Qγ,β − γQγ,γ −1β

) ⊗ {β}.

This shows that

M
∑
β

(
Pβ ⊗ {β} − Pβ ⊗ {∞}) =

∑
γ,β

(
ε(γ )Qγ,β − γQγ,γ −1β

) ⊗ {β}. (3)

Equating terms, we deduce that forβ 6= ∞,

MPβ =
∑
γ

(
ε(γ )Qγ,β − γQγ,γ −1β

)
. (4)

Using this expression forPβ , as well as the fact thatε(γ )γ −1 acts trivially onMk(N, ε),
we find that

Mv = M
∑
β

Pβ{∞, β} =
∑
γ,β

(
ε(γ )Qγ,β − γQγ ,γ −1β

){∞, β}

=
∑
γ,β

ε(γ )Qγ,β − ε(γ )γ −1((γQγ ,γ −1β){∞, β})

=
∑
γ,β

ε(γ )Qγ,β{∞, β} − ε(γ )Qγ,γ −1β

{
γ −1∞, γ −1β

}

=
∑
γ,β

ε(γ )Qγ,β{∞, β} − ε(γ )Qγ,β

{
γ −1∞, β

}

=
∑
γ,β

ε(γ )Qγ,β

{∞, γ −1∞}
. (5)

Equating coefficients of{∞} in Equation3, we have

−M
∑
β

Pβ =
∑
γ

(
ε(γ )Qγ,∞ − γQγ,γ −1∞

)
,

which, combining with Equation4, and recalling thatP∞ = 0, means that

−
∑

γ,β 6=∞

(
ε(γ )Qγ,β − γQγ,γ −1β

) =
∑
γ

(
ε(γ )Qγ,∞ − γQγ,γ −1∞

)
,
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and hence ∑
γ,β

(
ε(γ )Qγ,β − γQγ,β

) = 0.

Using the expression

v = − 1
M

∑
β,γ

ε(γ )Qγ,β

{∞, γ −1∞}
obtained from Equation5, we see that this is the condition forv to be transportable.

Corollary 2.5. Fix α ∈ h∗. Every element ofSk(N, ε) is a sum of modular symbols of the
formP {α, γ (α)}.
Proof. Let x ∈ Sk(N, ε). Proposition2.1 implies thatx is transportable, so there existPi

andγi such that

x =
∑

Pi{∞, γi(∞)} =
∑

Pi{β, γi(β)}
for anyβ ∈ h∗. Takingβ = α proves the corollary.

Remark 2.6.
1. Whenk = 2, the corollary follows from [4, Section 1], which asserts that map

00(N) → S2(00(N)) = H1(X0(N), Z) sendingγ to {α, γ (α)} is a surjective group
homomorphism.

2. In Proposition2.7below, we shall prove more generally that every element ofMk(N, ε)

is a sum of modular symbols of the formP {α, γ (α)}, as long as we allowα to vary
overP1(Q).

2.3. What space do the symbolsP {∞, γ (∞)} span?

Suppose thatN andk are positive integers, withk even.

Definition 3. For anyα ∈ P1(Q), let Wα denote the subspace ofMk(00(N); Q) spanned
by symbols of the formP {α, γ (α)}, for P ∈ Vk−2 andγ ∈ 00(N).

Corollary2.5 draws our attention toW∞. SinceW∞ containsSk(00(N)), it is natural
to ask how much bigger it is. As mentioned in Remark2.6, whenk = 2, Manin proved that
for anyα ∈ P1(Q), we haveWα = W∞ = S2(00(N); Q). We now computeWα for any
weightk > 2.

Proposition 2.7. Suppose thatk > 2. Then the spaceWα is equal to the inverse image
under the boundary mapδ of the one-dimensional subspaceVk−2{α} ⊂ Bk(00(N); Q).

HencedimWα = dimSk(00(N); Q) + 1 andMk(00(N); Q) = ∑
α∈P1(Q) Wα.

Proof. In [5, Section 1.4], Merel shows thatVk−2{α} has dimension 1 (see the proof of
[5, Section 1.4, Proposition 4]), and thatP(X, Y ){u/v} is nonzero ifP(u, v) 6= 0.

Corollary 2.5 implies thatWα contains the kernelSk(00(N)) of the boundary mapδ.
It thus suffices to show thatδ(Wα) = Vk−2{α}. ForP ∈ Vk−2 andγ ∈ 00(N), we have

δ(P {α, γ (α)}) = P {γ (α)} − P {α} = (γ −1P − P){α} ∈ Vk−2{α},
soδ(Wα) ⊂ Vk−2{α}.
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Forγ = (
1 0
N 1

) ∈ 00(N), we have

δ
(
Xk−3Y {α, γ (α)}) = (

γ −1(Xk−3Y ) − Xk−3Y
){α}

= (
Xk−3(NX + Y ) − Xk−3Y

){α}
= NXk−2{α}.

If α 6= 0, then, as mentioned above,Xk−2{α} 6= 0. (If α = 0, useXYk−3 andγ = (
1 N
0 1

)
instead.) Because there is a nonzero element inδ(Wα) and Vk−2{α} has dimension 1,
it follows that δ(Wα) = Vk−2{α}. The final claim of the proposition is true because
Bk(00(N); Q) = ∑

α∈P1(Q) Vk−2{α}.

Corollary 2.8. Fix α ∈ P1(Q). ThenWα = Mk(00(N); Q) if and only ifN = 1.

Proof. WhenN = 1, γ can be any element of SL2(Z), so the assertion is clear. Next,
suppose thatWα = Mk(00(N); Q). If k = 2, then by [4, Section 1],Wα = Sk(00(N); Q),
soN = 1 since there is always a weight 2 Eisenstein series whenN > 1. Next, suppose that
k > 2. By [5, Section 1.4, Proposition 5],δ is surjective and by [5, Section1.4, Proposition 5]
the dimension of the image ofδ equals #00(N)\P1(Q). Combining Proposition2.7 with
our assumption thatWα = Mk(00(N); Q) implies that #00(N)\P1(Q) = 1, soN = 1,
as claimed.

3. Application to computing periods of newforms

The authors were led to introduce transportable modular symbols in order to study the
error term(P − ε(γ )γ −1P){∞, α} of equation1 of Proposition2.1 in the context of
computing periods of newforms. There are many ways to compute periods of newforms,
but we hope that the method given below will be of value in some contexts.

Section3.1 contains an algorithm for computing periods that relies on Theorem2.4.
We present a potentially more efficient method in Section3.2.

3.1. An algorithm for computing periods

Letf = ∑
anq

n ∈ Sk(N, ε) be a cuspform, and letx ∈ Mk(N, ε) be a modular symbol.
Then〈f, x〉 is a linear combination of integrals of the form

〈
f, XmY k−2−m{α, ∞}〉 = 2πi

∫ i∞

α

f (z)zmdz, (6)

(see [5, Section 1.5]), whereα ∈ h∗ and the integerm satisfies 06 m 6 k − 2. If α ∈ h,
then the imaginary part ofα is positive, so

2πi

∫ i∞

α

f (z)zmdz =
∑
n>1

ancn,

where

cn = 2πi

∫ i∞

α

zme2πinzdz.

The reversal of summation and integration is justified because the sum converges absolutely.
We compute thecn using the following formula, which we obtain using repeated integration
by parts.
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Lemma 3.1. ∫ i∞

α

e2πinzzmdz = e2πinα
m∑

s=0

{
(−1)sαm−s

(2πin)s+1
·

m∏
j=(m+1)−s

j

}
.

If α has large imaginary part, thecn will rapidly converge to 0 asn → ∞. However, the
reversal of summation and integration above need not be valid whenα is a real number, so for
computational purposes we are led to express periods in terms of integrals with end points
that are inh. Whenk = 2, this is easy because of the identity{∞, γ (∞)} = {α, γ (α)},
which is valid for anyα ∈ h∗. However, this identity can fail whenk > 2; the failure is
made precise in Proposition2.1.

Since we can take the real part ofα to be greater than 0, each of the terms on the right-hand
side of Equation1 can be computed using the sum given by Lemma3.1.

We showed in Section2 that every cuspidal modular symbol can be expressed as a sum
of symbols of the formP {∞, γ (∞)}. Periods of modular symbols of this form can then be
computed using the following algorithm.

Algorithm 3.2. Given a tripleγ ∈ 00(N), P ∈ Vk−2 andg ∈ Sk(N, ε), this algorithm
computes the period integral〈g, P {∞, γ (∞)}〉.

Expressγ as
(

a b
cN d

) ∈ 00(N), and setα = (−d + i)/cN in Proposition2.1.

Replacing γ by −γ if necessary, we find that the imaginary parts ofα and
γ (α) = (a + i)/cN are both equal to the positive number 1/cN .

Equation6 and Lemma3.1 can now be used to compute the period integrals provided
by Proposition2.1.

3.2. TheWN -trick

In this section, in order to obtain a potentially more efficient way of computing periods
than Algorithm3.2, we generalize the method of Cremona [3] to even integer weightk > 2.
In Algorithm 3.2, with γ = (

a b
cN d

)
, the endpoints of the corresponding integrals have

imaginary part 1/cN . However, using the following trick, one can increase the imaginary
part of all the endpoints involved to at least 1/d

√
N , which is sometimes a significant

improvement.

Recall that the Atkin–Lehner involutionW = WN is induced by the matrix
(

0 −1
N 0

)
;

it acts on modular forms by sending a cuspformf ∈ Sk(N, ε) to the form

f |W(z) = N−k/2z−kf (−1/(Nz)) ∈ Sk

(
N, ε−1).

If f is an eigenvector forW , then necessarilyε = ε−1. For the rest of this section, we
assume thatε2 = 1. ThenW acts onMk(N, ε) by

W
(
P(X, Y ){α, β}

)
= P(Y, −NX)

Nk/2−1

{
− 1

Nα
, − 1

Nβ

}
,

and this action is compatible with the integration pairing.
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Proposition 3.3. Let g ∈ Sk(N, ε) be a cuspform that is an eigenform for the Atkin–
Lehner involutionW having eigenvaluew. Then for any transportable modular symbol∑m

j=1 Pj {∞, γj (∞)} withγj ∈ 00(N) andPj ∈ Vk−2, we have for anyα ∈ h the following
formula: 〈

g,

m∑
j=1

Pj {∞, γj (∞)}
〉

=
〈
g,

m∑
j=1

w
Pj (Y, −NX)

Nk/2−1
{W(α), ∞}

+
m∑

j=1

(
Pj − w

Pj (Y, −NX)

Nk/2−1

) {
i√
N

, ∞
}

−
m∑

j=1

Pj

{
γj (α), ∞}〉

.

HereW(α) = −1/(Nα).

If γj =
(

aj bj

c d

)
, wherec andd are fixed integers that do not depend onj , then〈

g,

m∑
j=1

Pj {∞, γj (∞)}
〉

=
〈
g,

m∑
j=1

w
Pj (Y, −NX)

Nk/2−1

{
c

d
+ i

d
√

N
, ∞

}

+
m∑

j=1

(
Pj − w

Pj (Y, −NX)

Nk/2−1

) {
i√
N

, ∞
}

−
m∑

j=1

Pj

{
bj

d
+ i

d
√

N
, ∞

}〉
.

Proof. By Proposition2.1, our condition of transportability implies that we have
m∑

j=1

Pj {∞, γj (∞)} =
m∑

j=1

Pj {α, γj (α)}.

The steps of the following computation are described below.

〈g, Pj {α, γj (α)}〉
=

〈
g, Pj

{
α,

i√
N

}
+ Pj

{
i√
N

, W(α)

}
+ Pj {W(α), γj (α)}

〉

=
〈
g, w

W(Pj )

Nk/2−1

{
W(α),

i√
N

}
+ Pj

{
i√
N

, W(α)

}
+ Pj {W(α), γj (α)}

〉

=
〈
g,

(
w

W(Pj )

Nk/2−1
− Pj

) {
W(α),

i√
N

}
+ Pj {W(α), ∞} − Pj {γj (α), ∞}

〉

=
〈
g, w

W(Pj )

Nk/2−1
{W(α), ∞} +

(
Pj − w

W(Pj )

Nk/2−1

) {
i√
N

, ∞
}

− Pj {γj (α), ∞}
〉
.

In the first step, we break the path fromα toγj (α) into three paths. In the second step, we
apply theW -involution to the first term, and use the fact that the action ofW is compatible
with the pairing〈 , 〉. The third step involves combining the first two terms, and breaking
up the third. In the final step, we replace{W(α), i/

√
N} by {W(α), ∞} + {∞, i/

√
N},

and regroup. Taking the sum of both sides of the expression overj from 1 tom gives the
first result of the proposition.
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Now, following Cremona [2, Section 2.10.8], in order to simultaneously maximize the
imaginary parts ofγj (α) andW(α), we take

α = γ −1
1

(
b1

d
+ i

d
√

N

)
.

In this case we have

W(α) = c

d
+ i

d
√

N

and

γj (α) = bj

d
+ i

d
√

N
.

The second formula then follows.

Remark 3.4. Letγ = (
a b
c d

) ∈ 00(N). Since the imaginary parts of the termsi/
√

N , γj (α)

andW(α) in the second part of the proposition are all relatively large, the sums appearing
in Equation6 converge relatively quickly ifd is small. However, we emphasize thatit is
extremely important to chooseγj in Proposition3.3with d small; otherwise, the series will
converge very slowly.

4. Examples

The example of Section4.1illustrates some of the results of this paper for the weight-12
modular form1, and Section4.2 concerns a nonrational form of level 11 and weight 4.
The computations below were done using the first author’s implementation of the algorithms
of [6] in Magma [1].

4.1. The weight-12 form1

Let f = 1 = q · ∏(1− qn)24 be the unique normalized eignform inS12(1). The space
M12(1; Q) of modular symbols has dimension 3, and is spanned bya1 = X10{0, ∞},
a2 = X8Y 2{0, ∞}, and a3 = X9Y {0, ∞}, and the cuspidal subspaceS12(1; Q) has
dimension 2, and is spanned bya2 anda3.

As explained in Example2.2, there is a transportable modular symbol associated to each
nonidentity elementγ ∈ SL2(Z). The transportable symbol(

2X2 + 2XY − Y 2)5{∞, 1
2

} = −300X9Y {0, ∞}
is attached to

(
1 1
2 3

)
, and

−4665600X8Y 2{0, ∞} − 87300X9Y {0, ∞}
is attached to

( −8 5
19 −12

)
. Together, these two transportable symbols spanS12(1; Q).

The period map8f sendsXiY 10−i{0, ∞} to 2πi
∫ ∞

0 zif (z) dz. These integrals are, up
to scalars, special values ofL(f, s) at critical integers, so they could be computed using
any of the standard methods. In any case, we obtain an approximation for the period map:

8f (a1) ∼ 0.0374412812,

8f (a2) ∼ −0.0159703242,

8f (a3) ∼ −0.0232962319i.
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The period lattice3 of f is spanned by8f ((1/14)a2) and 8f ((1/48)a3). (The frac-
tions appear becauseS12(1; Z) has basis(1/14)a2 and (1/48)a3.) SinceC/3 is a one-
dimensional torus, it makes sense to consider the corresponding elliptic curve overC. This
is the elliptic curvey2 = x3 − 27c4x − 54c6, wherec4 ∼ 28091951348793344.58 and
c6 ∼ −4.70682548×1024. Thej -invariant of this curve is approximately 2592849.394270.
Is j a transcendental number?

4.2. Level11, weight4

The unique normalized eigenform inS4(00(11)) is

f = q + αq2 + (−4α + 3)q3 + (2α − 6)q4 + (8α − 7)q5 + · · · ,

whereα2 − 2α − 2 = 0. The spaceM4(00(11); Q) has basis

a1 = X2{0, ∞},
a2 = (

64X2 + 16XY + Y 2){ − 1
8, 0

}
,

a3 = (
49X2 + 14XY + Y 2){ − 1

7, 0
}
,

a4 = (
25X2 + 10XY + Y 2){ − 1

5, 0
}
,

a5 = (
100X2 + 20XY + Y 2){ − 1

10, 0
}
,

a6 = Y 2{∞, 0}.
The subspaceS4(00(11); Q) has basisb1 = a2 − a6, b2 = a3 − a6, b3 = a4 − a6,
b4 = a5 − a6.

As explained in Example2.2, there is a transportable modular symbol associated to each
nonidentity elementγ ∈ 00(11). For example the transportable symbol(

11X2 − 11XY + Y 2){∞, 10
11

} = 11(a5 − a6)

is associated toγ = ( 10 −1
11 −1

)
. The symbol

−5
4b1 + 5

4b2 − 1
4b3 + 1

4b4

is the transportable symbol associated to
( 5 −1

11 −2

)
. The symbol

−9
8b1 − 19

8 b2 + 19
8 b3 + 99

8 b4

is associated to
(

4 1
11 3

)
, and

−27
8 b1 + 11

8 b2 + 9
8b3 + 49

8 b4

is associated to
( 3 −2

11 −7

)
. Together, these four transportable symbols spanS4(00(11); Q).

In order to illustrate Section2.3, we remark that symbols of the formP {∞, γ (∞)}
do not span all ofM4(00(11); Q), but they do span a space bigger thanS4(00(11); Q).
Corollary 2.5 implies that their span containsS4(00(11); Q); however, the symbol
Y 2{∞, 1/11} does not lie inS4(00(11); Q).
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