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This talk reports on a collaborative project to verify the Birch and
Swinnerton-Dyer conjecture for specific elliptic curves.

Joint Paper: Grigor Grigorov, Andrei Jorza, Stefan Patrikis, Corina
Tarnita-Patrascu. (All were Harvard students!) And Aron Lum (UCSD).

Acknowledgement: John Cremona, Stephen Donnelly, Noam Elkies,
Ralph Greenberg, Barry Mazur, Robert Pollack, Nick Ramsey, Tony
Scholl, Michael Stoll, and Cristian Wuthrich.

William Stein Verifying the Full Birch and Swinnerton-Dyer Conjecture in Specific Cases



MAIN THEOREM

Main Thereom. Suppose E is a non-CM elliptic curve of conductor

N <1000 and rank <1 and p is a prime that does not divide any
Tamagawa number of E and that E has no rational p-isogenies, or that
E has CM and p? { N. Then the p-part of the full Birch and
Swinnerton-Dyer conjectural formula is true for E.
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Once upon a time...
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CONJECTURES PROLIFERATED

“The subject of this lecture is rather a special one. | want to describe
some computations undertaken by myself and Swinnerton-Dyer on
EDSAC, by which we have calculated the zeta-functions of certain elliptic
curves. As a result of these computations we have found an analogue for
an elliptic curve of the Tamagawa number of an algebraic group; and
conjectures have proliferated. [...] though the associated theory is both
abstract and technically complicated, the objects about which | intend to
talk are usually simply defined and often machine computable;
experimentally we have detected certain relations between
different invariants, but we have been unable to approach proofs of
these relations, which must lie very deep.” — Birch 1965
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BIRCH AND SWINNERTON-DYER (UTRECHT, 2000)
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THE L-FUNCTION

Theorem (Wiles et al., Hecke) The following function extends to a

holomorphic function on the whole complex plane:

Here a, = p+ 1 — #E(F,) for all p{ Ag. Note that formally,

. 1 p p
L E,].: = S — -
(£:1) mll(l_ap.p_1+p.p_2) H(,,_apH) 157

piA ptA

Standard extension to L(E,s) at bad primes.
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REAL GRAPH OF THE L-SERIES OF
y2t+y=x3—x

L(E,s)

Real s

\

Zero of order 1 at s =1
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MOoORE GRAPHS OF ELLIPTIC CURVE
L-FUNCTIONS
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ABSOLUTE VALUE OF L-SERIES ON COMPLEX
PLANE FOR y? 4+ y = x3 — x
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THE BIRCH AND SWINNERTON-DYER
CONJECTURE

Conjecture: Let E be any elliptic curve over Q. The order of vanishing of
L(E,s) as s = 1 equals the rank of E(Q).
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KOLYVAGIN AND (GROSS-ZAGIER

Theorem (Kolyvagin, Gross, Zagier, et al.) If the ordering of vanishing
ords—1 L(E,s) is < 1, then the BSD rank conjecture is true for E.
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REFINED BSD Conjectural Formula

LO(E, 1) Qe-Rege [, nc
r! #E(Q)er

- #III(E)

#E(Q)ior — order of torsion
¢, — Tamagawa numbers

QF - real volume = fE(R) WE

Regg — regulator of E

II(E) = Ker (HY(Q, E) — @, H'(Qv, E)) -
Shafarevich-Tate group
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THE SHAFAREVICH-TATE GROUP

II(E) = Ker <H1(Q, E) — P H(Q., E))

The elements of II(E) correspond to (classes of) genus one curves X
with Jacobian E that have a point over each p-adic field and R. For
example, the curve 3x3 +4y3 + 523 = 0 is in III(x® + y* + 6023 = 0).

Computing III(E) in practice is challenging! It took decades until the
first example was computed (by Karl Rubin).
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JOHN CREMONA’S BOOK
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MAIN Theorem

Thereom Suppose E is a non-CM elliptic curve of conductor < 1000 and
rank <1 and p is a prime that does not divide any Tamagawa number of
E and that E has no rational p-isogenies. Then the p-part of the full
BSD conjectural formula is true for E.

The rest of this talk is about the proof.
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TooLs

o SAGE: | did most of this computation using
SAGE: System for Algebra and Geometry Computation
See my other talk for more about SAGE.

@ Google search: sage.math

@ Magma: | used Magma only for some 3 and 4-descents, since
unfortunately the world’s only implementation of 3 and 4-descents
is in Magma.
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BSD CONJECTURE AT p

Conjecture (BSD(E, p))

Let (E, p) denote a pair consisting of an elliptic curve E over Q and a
prime p. Then E(Q) has the predicted rank, III(E)[p*°] is finite and

LOV(E, 1) - (#E(Q)eor)?
r'-Qe-Rege- [, )

ordp(#III(E)[p™]) = ord, (

Theorem (Cassels): The truth of BSD(E, p) is invariant under isogeny.

Remark (Zagier): Implicit is that the fraction on the right is an integer.
| think this is not known for even a single curve of rank > 2.
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COMPUTATIONAL EVIDENCE FOR BSD

All of the quantities in the BSD conjecture, except for #I11(E/Q), have
been computed by Cremona for conductor < 130000.

e Cremona (Ch. 4, pg. 106): In Cremona’s book, there are exactly
four optimal curves with conjecturally nontrivial III(E):

571A, 681B, 960D, 960N

o Cremona verified BSD(E, 2) for all curves in his book, except 571A,
960D, and 960N.
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THE FOUR NONTRIVIAL III’S

Conclusion: BSD for the curves in Cremona’s book is the assertion that
II(E) is trivial for all but the following four optimal elliptic curves with
conductor at most 1000:

Curve | a-invariants II(E),
571A | [0,-1,1,-929,-105954] 4
681B | [1,1,0,-1154,-15345] 9
960D | [0,-1,0,-900,-10098] 4
960N | [0,1,0,-20,-42] 4

As we will see, we can deal with these four curves...
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VICTOR KOLYVAGIN

ﬁ E \‘\5.\\4
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KOLYVAGIN’S THEOREM

Kolyvagin: When r,, <1, get computable multiple of #III(E).

Let K be a quadratic imaginary field in which all primes dividing the
conductor of E split (assume disc(K) < —4 is coprime to conductor). Let
yk € E(K) be the corresponding Heegner point.

Theorem (Kolyvagin)

Suppose E is a non-CM elliptic curve and p is an odd prime such that
PE.p Is surjective and ords—; L(E/K,s) = 1. Then

ord,(#II(Ek)) < 2 - ord,([E(K) : Zyk]).
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KATO’S THEOREM

Kato: When r,, =0, get bound on #III(E).

Theorem (Kato)

Let E be an optimal elliptic curve over Q of conductor N, and let p be a
prime such that p{ 6N and pg , is surjective. If L(E,1) # 0, then III(E)

is finite and
L(E,1)
Qe '

ord,(#III(E)) < ord, (

This theorem follows from recent work of Matsuno; see also work of
Mazur-Rubin.
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Di1visOrR OF ORDER

Back to our four curves...

@ Using a 2-descent we see that 4 | #I1I(E) for 571A, 960D, 960N.

@ For E = 681B: Using visibility (or a 3-descent) we see that
9 | #1II(E).
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MULTIPLE OF ORDER

© For E = 6818, the mod 3 representation is surjective, and
3| [E(K) : yk] for K = Q(+/—8), so Kolyvagin's theorem implies
that #III(E) = 9, as required.

@ Kolyvagin's theorem and computation == #III(E) = 4’ for 571A,
960D, 960N.

@ Using Magma's FourDescent command, we compute Sel”(E/Q)
for 571A, 960D, 960N and deduce that #II(E) = 4.
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THE 18 OPTIMAL CURVES OF RANK > 2

There are 18 optimal curves with conductor < 1000 and rank > 2 (all
have rank 2):

389A, 433A, 446D, 563A, 571B, 643A, 655A, 664A, 631C,
707A, 7T09A, 718B, 794A, 817A, 916C, 944E, 997B, 997C

For these E perhaps nobody currently knows how to show that III(E) is
finite, let alone trivial.

But p-adic L-functions, Iwasawa theory, Schneider’s theorem, etc., would
give a finite interesting list of p for a given curve.

Current joint work with Cristian Wuthrich.
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SUMMARY

@ There are 2463 optimal curves of conductor at most 1000.
o Of these, 18 have rank 2, which leaves 2445 curves.

o Of these, 2441 have conjecturally trivial III.

o Of these, 44 have CM.

We prove BSD(E, p) for the remaining 2397 curves at primes p that do
not divide Tamagawa numbers and for which pg , is irreducible.
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DETERMINING im(pg ,) C Aut(E[p])

Theorem (Cojocaru, Kani, and Serre)

If E is a non-CM elliptic curve of conductor N, and

46 1\/?
> YN st
p=l+—=-N 11 <1+£> :

prime £|N

then pg , is surjective.

William Stein Verifying the Full Birch and Swinnerton-Dyer Conjecture in Specific Cases



DETERMINING im(pg ,) C Aut(E[p])

Proposition (-, Grigorov, Serre (Inv. 1972))

Let E be an elliptic curve over Q of conductor N and let p > 5 be a
prime. For each prime £ 4 p - N with a; £ 0 (mod p), let

s(0) = <"’5P4€) € {0,-1, 11},

where the symbol (+) is the Legendre symbol. If —1 and +1 both occur
as values of s({), then pg , is surjective. If s(¢) € {0,1} for all £, then
im(pg ,) is contained in a Borel subgroup (i.e., reducible), and if

s(¢) € {0, -1} for all ¢, then im(pg ,,) is a nonsplit torus.

This proposition and division polynomials leads to an algorithm to
compute the image of pg , for all p. (Tables now available online.)
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GENERALIZATIONS OF KOLYVAGIN’S THEOREM

Theorem (Cha)

If pt Dk, p>t N, and pg , is irreducible, then

ord,(#LI(E/K)) < 2 - ord,([E(K) : Zyk]).

Theorem (Donnelly, Jorza, Patrikis, Stoll, —)

If E is a non-CM curve over Q, K is a quadratic imaginary field that
satisfies the Heegner hypothesis, and p is an odd prime such that
p1#E' (K)o for any curve E' that is Q-isogenous to E, then

ordp(#111(E)) < 2ord,([E(K) : Zyk]),

unless disc(K) is divisible by exactly one prime ¢, in which case we only
deduce the conclusion when p # (.

A

Dimitar Jetchev: Berkeley Ph.D. thesis in progress with further deeper
refinements.
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COMPUTING INDEXES OF HEEGNER POINT

Use the Gross-Zagier formula to compute h(yx) from special values of
L-functions. When we can compute E(K) we obtain the index using
properties of heights. If E(K) is too difficult to compute, we can use the
Cremona-Prickett-Siksek height bound and direct search to bound

[E(K) : Zyk]:

Example

Let E be 906E1 which has rank 0. All pg , are surjective. Kato's theorem
implies only 2, 3,151 could divide #III(E). What about 15177 The first few

Heegner discriminants are
—23,-71,—-119, —143, —263, —335.

Grozz-Zagier implies heights ~ 7705, 20400, 33785, 19284, 39658, 63256.
Finding these Heegner points could be difficult. Let F be the quadratic twist
of E by —23. The CPS bound for F is B = 13.649. ... Search for points on F
of naive logarithmic height < 21, and find no points, so

[E(K) : Zyk] < 1/7705/(2 - (21 — 13.649)) ~ 22.89 < 23.

V.
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MAJOR OBSTRUCTION: TAMAGAWA NUMBERS

Serious Issue: The Gross-Zagier formula and the BSD conjecture
together imply that if an odd prime p divides a Tamagawa number, then

p|[E(K) : Zyk].
@ Rank 0: If E has ro, =0, and p > 5, and pge,, is surjective, then
Kato's theorem (and Mazur, Rubin, et al.) imply that

ord,(#II(E)) < ord,(L(E,1)/QE),
so squareness of #III(E) frequently helps.
@ Rank 1: In many cases with ry, = 1, there is a big Tamagawa

number—there are 91 optimal curves up to conductor 1000 with
Tamagawa number divisible by a prime p > 7.
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CONCLUSION

Throw in explicit 3 and 4-descents to deal with a handful of reluctant
cases. Everything works out so that all our techniques are just enough to
prove the main theorem. If Cremona’s book were larger, this might not
have been the case. (His website now includes data up to conductor
130,000.)

For complete details, see:

http://sage.math.washington.edu/papers/bsdalg/
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FuTureE PROJECTS

© [CM] Verify the BSD conjecture for CM curves up to some conductor.
About half of rank 0 and half of rank 1. Very extensive theory here,
beginning with Rubin—should be relative “easy”, especially for rank 0.
(Mostly done project with UCSD grad student Aron Lum.)

@ [Tamagawa] Verify the BSD conjecture at primes p that divide a
Tamagawa number. Use Schneider's theorems about p-adic BSD,
computation of p-adic regulators and p-adic height pairings. (Joint
project with Cristian Wuthrich.) Also D. Jetchev, Berkeley grad student,
has results in this direction by refining Kolyvagin's theorem.

© [Big Rank] Verify the p-part of the BSD conjecture at many primes
p < 100 for a single curve of rank 2. (Assuming analytic III(E) is an
integer.) Related to recent paper of Perrin-Riou that uses p-adic BSD.

@ [Isogenies] Verify the BSD conjecture at primes p that are the degree of
an isogeny from E. Mazur's “Eisenstein descent” does prime level case;
but then p = 2. Perhaps direct p-descent is doable, or use congruences...

© [Extend] Consider curves of conductor > 1000. Have to verify
nontriviality of big III(E)'s; use visibility and Grigor Grigorov's thesis.
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