{{{id=1| x = var('x') K.=NumberField(x^2-x-1) import psage.modform.hilbert.sqrt5.tables as sqrt5 import nosqlite db=nosqlite.Client(DATA+'localdb').db db2=nosqlite.Client('/home/psharaba/ECdb').db from psage.ellcurve.minmodel.sqrt5 import canonical_model /// }}} {{{id=2| ######################################################### ############# isogeny classes ############### ######################################################### def ap(E,p): return E.change_ring(p.residue_field()).trace_of_frobenius() R. = GF(2)[] def frob(E,p): t = ap(E,p) return ch^2 - ap(E, p)*ch + int(p.norm()) def disc(E, p): t = ap(E, p) return t^2 - 4*p.norm() def isogeny_primes(E, norm_bound, isog_degree_bound): #Returns prime for which E has an isogeny P = [p for p in sqrt5.ideals_of_bounded_norm(norm_bound) if p.is_prime() and E.has_good_reduction(p)] w = set(primes(isog_degree_bound+1)) i = 0 w.remove(2) while len(w) > 0 and i < len(P): d = disc(E, P[i]) w = [ell for ell in w if not (legendre_symbol(d,ell) == -1)] i = i +1 i = 0 while i < len(P): if frob(E,P[i]).is_irreducible(): break i = i+1 if i == len(P): w.insert(0,2) return w def closed_under_multiplication_by_m(E, f, m): """ INPUT: - E -- elliptic curve in *short* Weierstrass form - f -- a polynomial that defines a finite subset S of E[p] that is closed under [-1] - m -- integer m >= 2 coprime to p. We assume that p is odd. OUTPUT: - True if [m]*S = S, and False otherwise. """ K = E.base_field() h = E.multiplication_by_m(m, x_only=True) n = h.numerator(); d = h.denominator() S. = K[] psi = n.parent().hom([x,0]) tau = f.parent().hom([x]) r = tau(f).resultant(psi(n)-Z*psi(d), x) r0 = S.hom([0,f.parent().gen()])(r) return r0.monic() == f.monic() def is_subgroup(E, f, p): """ INPUT: - E -- elliptic curve in *short* Weierstrass form - f -- a polynomial that defines a finite subset S of E[p] that is closed under [-1] - p -- an odd prime OUTPUT: - True exactly if S union {0} is a group. """ m = primitive_root(p) return closed_under_multiplication_by_m(E, f, m) def isogeny_class_computation(E, p): if p != 2: E = E.short_weierstrass_model() F = E.division_polynomial(p).change_ring(K) candidates = [f for f in divisors(F) if f.degree() == (p-1)/2 and is_subgroup(E,f,p)] v = [] w = [] for f in candidates: try: v.append(E.change_ring(K).isogeny(f).codomain()) w.append(f) except ValueError: pass v = [F.change_ring(K).global_minimal_model() for F in v] return v else: w = [Q for Q in E.torsion_subgroup() if order(Q)==2] v = [E.isogeny(E(Q)).codomain() for Q in w] return v def curve_isogeny_vector(E): #Returns isogeny class and adjacency matrix curve_list = [E] i = 0 Adj = matrix(50) ins = 1 norm_bound, isog_degree_bound = 500,500 while i < len(curve_list): isolist = isogeny_primes(curve_list[i],norm_bound, isog_degree_bound) for p in isolist: for F in isogeny_class_computation(curve_list[i],p): bool = True for G in curve_list: if F.is_isomorphic(G): bool = False Adj[i,curve_list.index(G)]=p #if a curve in the isogeny class computation is isom Adj[curve_list.index(G),i]=p #to a curve already in the list, we want a line if bool: curve_list.append(F.global_minimal_model()) Adj[i,ins]=p Adj[ins,i]=p ins += 1 i+=1 Adj = Adj.submatrix(nrows=len(curve_list),ncols=len(curve_list)) return {'curve_list':curve_list, 'adjacency_matrix':Adj, 'norm_bound':norm_bound, 'isog_degree_bound':isog_degree_bound, 'subgroup_checked':True} def compute_isogeny_classes(): if 'isoclass' in db.curves.columns(): #X = db('select weq from curves where isoclass is NULL order by N') # since the isoclasses are all wrong anyways... X = db('select weq from curves order by N') else: X = db('select weq from curves order by N') print "%s left to do"%len(X) def comp(weq): ainvs = weq E = EllipticCurve(K, ainvs) iso = curve_isogeny_vector(E) d = {'isoclass':iso} db.curves.update(d, weq=weq) print d for A in range(len(X)): B=X[A][0] comp(B) print A /// }}} {{{id=39| test=db2('select N,cond1,ainv1,found from N1k ORDER BY N') /// }}} {{{id=5| for s in range(len(test)): A=test[s] db.curves.insert({'N':int(A[0]), 'cond': A[1], 'weq': A[2], 'found': A[3]}) /// }}} {{{id=3| %time X = db('select weq,N from curves order by N') for r1 in range(len(X)): weq1=X[r1][0] weq2=eval(X[r1][0]) E = EllipticCurve(K, weq2) iso = curve_isogeny_vector(E) Tot=iso['curve_list'] India=iso['adjacency_matrix'] hotel=[] for g1 in range(len(Tot)): A=list(Tot[g1].a_invariants()) hotel.append(str(A).replace(' ','')) db.curves.update({'isoclass':str(hotel), 'mtrx': str(India)}, weq=str(weq1)) #print weq1 #print hotel #print India print r1 /// WARNING: Output truncated! full_output.txt 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 ... 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 CPU time: 5570.97 s, Wall time: 5623.03 s }}} {{{id=8| test=db('SELECT N, cond,weq,isoclass,mtrx,found from curves ORDER BY N') /// }}} {{{id=31| for s in range(len(test)): A=str(test[s][4]).replace('\n','') A=A.replace('][',',') A='('+A.replace(' ',',')+')' B=len(eval(test[s][3])) M=matrix(B,eval(A)) mat = "matrix(%s,%s)"%(M.nrows(),str(M.list()).replace(' ','')) db.curves.update({'mtrx':mat},weq=test[s][2]) /// }}} {{{id=60| print 'done with computing isogenies' /// done with computing isogenies }}} {{{id=7| for s in range(len(test)): A=test[s] if A[5]=='J': db.curvesU.insert({'N':A[0], 'cond': A[1], 'weq': A[2], 'mtrx': A[4], 'found': 'J'}) B=eval(A[3]) for t in range(1,len(B)): E=EllipticCurve(K,eval(B[t])) F=canonical_model(E.global_minimal_model()).a_invariants() G=str([F[0],F[1],F[2],F[3],F[4]]).replace(' ','') db.curvesU.insert({'N':A[0], 'cond': A[1], 'weq': G, 'mtrx':A[4], 'found': 'JI'}) if A[5]=='CL': db.curvesU.insert({'N':A[0], 'cond': A[1], 'weq': A[2], 'mtrx': A[4], 'found': 'CL'}) B=eval(A[3]) for t in range(1,len(B)): E=EllipticCurve(K,eval(B[t])) F=canonical_model(E.global_minimal_model()).a_invariants() G=str([F[0],F[1],F[2],F[3],F[4]]).replace(' ','') db.curvesU.insert({'N':A[0], 'cond': A[1], 'weq': G, 'mtrx':A[4], 'found': 'CLI'}) if A[5]=='TF': db.curvesU.insert({'N':A[0], 'cond': A[1], 'weq': A[2], 'mtrx': A[4], 'found': 'TF'}) B=eval(A[3]) for t in range(1,len(B)): E=EllipticCurve(K,eval(B[t])) F=canonical_model(E.global_minimal_model()).a_invariants() G=str([F[0],F[1],F[2],F[3],F[4]]).replace(' ','') db.curvesU.insert({'N':A[0], 'cond': A[1], 'weq': G, 'mtrx':A[4], 'found': 'TFI'}) if A[5]=='QT': db.curvesU.insert({'N':A[0], 'cond': A[1], 'weq': A[2], 'mtrx': A[4], 'found': 'QT'}) B=eval(A[3]) for t in range(1,len(B)): E=EllipticCurve(K,eval(B[t])) F=canonical_model(E.global_minimal_model()).a_invariants() G=str([F[0],F[1],F[2],F[3],F[4]]).replace(' ','') db.curvesU.insert({'N':A[0], 'cond': A[1], 'weq': G, 'mtrx':A[4], 'found': 'QTI'}) /// }}} {{{id=10| test=db('SELECT N,weq from curves ORDER BY N') /// }}} {{{id=12| for s in range(len(test)): A=test[s] E=EllipticCurve(K,eval(B[t])) F=canonical_model(E.global_minimal_model()).a_invariants() G1=str([F[0],F[1],F[2],F[3],F[4]]).replace(' ','') db.curves.update({'weq': G1}, weq=A[]) /// }}} {{{id=13| db.curvesU.count() /// (86,) }}} {{{id=14| f=open('/home/psharaba/CCLU.txt') /// }}} {{{id=15| list(db.curves.find(weq=f.readline().split()[2])) /// [{u'mtrx': u'matrix(2,[0,3,3,0])', u'weq': u'[0,a+1,a,-9*a-9,-31*a-23]', u'cond': u'-11*a+8', u'isoclass': u"['[0,a+1,a,-9*a-9,-31*a-23]', '[0,a+1,a,a+1,0]']", u'N': 145}] }}} {{{id=16| for r in f.readlines(): A=r.split() db.curves.update({'found':'CL'}, weq=A[2]) /// }}} {{{id=17| len(list(db.curves.find(found='CL'))) /// 63 }}} {{{id=18| len(list(db.curves.find(found='CLI'))) /// 0 }}} {{{id=19| 169+63 /// 232 }}} {{{id=23| test=db('select N,cond,weq,mtrx,found from curvesU ORDER BY N') /// }}} {{{id=26| len(test) /// 48 }}} {{{id=20| def printer(): J=open('/home/psharaba/Isogenies.txt','w') for y in test: S=[] for entry in y: s=str(entry) s.replace(' ','') S.append(s) J.write(' '.join(S)+'\n') /// }}} {{{id=24| printer() /// }}} {{{id=42| K.=NumberField(x^2-x-1) embs=K.embeddings(RR) #def grabber(s): # return eval('['+s.split('[')[1].split(']')[0]+']') #returns a-invariants def list_maker(N,cond,eqn): ret = [N,cond,eqn] # #we want to add new text to each line, so we take off # ret = [s] #\n first and define our list to eventually be returned #now we create the elliptic curve over K defined by the a-invariants E = EllipticCurve(K,eval(eqn)) T = E.torsion_subgroup() # calculations for rank bounds TI = T.invariants() # t2 = len([a for a in TI if a%2 == 0]) # simon = E.simon_two_descent() # ret.append(str(simon[0])) #append upper rank bound ret.append(str(simon[1] - t2)) #append lower rank bound D=K(E.discriminant()) #calculate discriminant t='' #create string to add + or - for m in embs: e=m(D) if sgn(e)<0: t+='-' else: t+='+' t+=',' ret.append(t[:-1]) #append disc signs tor=E.torsion_order() ret.append(tor) fac=D.factor() k=[str(e) for p,e in fac] #calculate disc ord ret.append(','.join(k)) #append disc ord #the next section adds ord_(j). There are certain curves (eg N=729 #2) which have #j-invariant 0. The denominator_ideal function is not defined for j=0, so we set #the value to be 1 if this is the case. # try: # denfac = K(E.j_invariant()).denominator_ideal().factor() # except ValueError: # denfac = [(1,1)] z=K(E.j_invariant()) if z: denfac=z.denominator_ideal().factor() if denfac: ret.append(','.join([str(e) for p,e in denfac])) else: ret.append('0') else: ret.append('0') #we still want a value for the table if denfac == [] # l=[str(e) for p,e in denfac] # ret.append(','.join(l)) #append j-ord ret.append(','.join([str(e) for e in E.tamagawa_numbers()])) #append tamagawa z = E.conductor().factor() ret.append(','.join([str(E.kodaira_symbol(p)) for p,e in z])) #append kodaira ret.append(B[3]) ret.append(B[4]) return ret #output_string takes in the current line of data to be written to the new file #it adds the correct spacing after each entry which is defined below def output_string(curr_data): ret = '' for i,s in enumerate(curr_data): ret += s ret += (2+width[i]-len(s))*' ' return ret+'\n' /// }}} {{{id=43| f=open('/home/psharaba/Isogenies.txt') /// }}} {{{id=44| f.readline().split() /// ['31', '5*a-2', '[1,a+1,a,a,0]', 'matrix(6,[0,2,0,0,0,0,2,0,2,2,0,0,0,2,0,0,2,2,0,2,0,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0])', 'J'] }}} {{{id=38| data=[] broken=[] for s in f.readlines(): B=s.split() try: data.append(list_maker(B[0],B[1],B[2])) except TypeError: broken.append(B) #width = [0 for i in range(8)] #sets uniform width for each column #for cur_data in data: # for i,e in enumerate(cur_data): # t = len(e) # if t > width[i]: # width[i] = t g = open('/home/psharaba/IsogeniesU.txt','w') for curr_data in data: for i,thing in enumerate(curr_data): curr_data[i] = str(thing) g.write(' '.join(curr_data)+'\n') #writes data to new file g ^^ f.close() g.close() /// }}} {{{id=45| broken /// [] }}} {{{id=47| def eta(alpha): return (alpha*alpha).trace() def find_small(alpha): while True: plus=a*alpha minus=alpha/a if eta(plus)", line 1, in File "_sage_input_9.py", line 10, in exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("ZGIuTjFrLmRlbGV0ZSgp"),globals())+"\\n"); execfile(os.path.abspath("___code___.py"))' + '\n', '', 'single') File "", line 1, in File "/tmp/tmpWB_Isa/___code___.py", line 2, in exec compile(u'db.N1k.delete()' + '\n', '', 'single') File "", line 1, in File "/home/wstein/nosqlite/nosqlite.py", line 1025, in delete self.database(cmd) File "/home/wstein/nosqlite/nosqlite.py", line 592, in __call__ return self.client(cmds, t, file=self.name, many=many, coerce=coerce) File "/home/wstein/nosqlite/nosqlite.py", line 467, in __call__ return self.server.execute(cmd, t, file, many) File "/home/wstein/nosqlite/nosqlite.py", line 350, in execute o = cursor.execute(c) sqlite3.OperationalError: no such table: N1k }}} {{{id=46| %time for t in f.readlines(): c=t.split() E = EllipticCurve(K,eval(c[2])) s=c[5] F = E.global_minimal_model() F = canonical_model(F).a_invariants() G1 = str([F[0],F[1],F[2],F[3],F[4]]).replace(' ','') H = list(db.N1k.find(ainv1=G1))+list(db.N1k.find(ainv2=G1)) L = len(H) if L==0: E = EllipticCurve(K, [galois_conjugate(K(alpha)) for alpha in F]) F = E.global_minimal_model() F = canonical_model(F).a_invariants() G2 = str([F[0],F[1],F[2],F[3],F[4]]).replace(' ','') J1 = K.ideal(eval(c[1])) J2 = K.ideal(galois_conjugate(K(eval(c[1])))) if J1.integral_basis()[1][0] > J2.integral_basis()[1][0]: J1,J2 = J2,J1 G1,G2 = G2,G1 s = s[2]+','+s[0] db.N1k.insert({'N': int(J1.norm()), 'eta': int(eta_ideal(J1)), 'cond1': str(J1.gen(0)).replace(' ',''), 'cond2': str(J2.gen(0)).replace(' ',''), 'ainv1': G1, 'ainv2': G2, 'rlow': int(c[3]), 'rhi': int(c[4]), 'tor': int(c[6]), 'sign': s, 'ordD': c[7], 'ordj': c[8], 'tama': c[9], 'kod': c[10],'mtrx': c[11],'found': c[12]}) /// CPU time: 376.32 s, Wall time: 397.70 s }}} {{{id=79| db.N1k.count(found='CL') /// (14,) }}} {{{id=154| def period_stuff(E): w = [] v = [] for phi in K.embeddings(RR): B = E.period_lattice(phi).basis() a = B[0].real() if abs(B[1].real()) <1e-20: a *= 2 v.append(float(a)) w.append(B) return v[0], v[1], (v[0]*v[1]) /// }}} {{{id=83| def n_height(E): A=EllipticCurve(K,E).short_weierstrass_model().a_invariants() B=log(max(4*(abs(A[3].norm())^3),27*((A[4].norm())^2))) return B /// }}} {{{id=80| temp=db('select N,cond1,ainv1 from N1k ORDER BY N') for r in range(len(temp)): A=temp[r][2] E=EllipticCurve(K,eval(A)) p0,p1=period_stuff(E) db.N1k.update({'rp0': float(p0), 'rp1': float(p1)},ainv1=A) /// }}} {{{id=84| temp=db('select N,cond1,ainv1,rp0,rp1 from N1k ORDER BY N') for r in range(len(temp)): A=temp[r][2] B=temp[r][3] C=temp[r][4] db.N1k.update({'omega': float(B*C),},ainv1=A) /// }}} {{{id=53| ####Periods, Regulator, Sha #### def period_stuff(E): w = [] v = [] for phi in K.embeddings(RR): B = E.period_lattice(phi).basis() a = B[0].real() if abs(B[1].real()) <1e-20: a *= 2 v.append(float(a)) w.append(B) return v[0], v[1] def saturate_rank_01(E, sat_bound): v = E.simon_two_descent() t2 = E.two_torsion_rank() sel2 = v[1] rank_bound = sel2 - t2 if rank_bound >1: raise NotImplementedError if rank_bound == 0: return 0 Q = v[-1][0] for p in prime_range(sat_bound): if len(Q.division_points(p)) != 0: Q = Q.division_points(p)[0] return Q def regulator_new(E,sat_bound): Q = saturate_rank_01(E,sat_bound) if Q: return Q.height()/2, [Q] else: return int(1), [] def conjectural_sha(E, omega, reg=1, Lstar=1): M = E.tamagawa_product_bsd() sha = RR(sqrt(5))*Lstar*(E.torsion_order())^2/((omega)*reg*M) return sha def comp(weq,lstar): E=EllipticCurve(K,weq) p0,p1=period_stuff(E) omega=p0*p1 R=regulator_new(E,20) Sha=conjectural_sha(E,omega,R[0],lstar) return p0,p1,R[0],Sha /// }}} {{{id=54| def s_func(ainv1): E=EllipticCurve(K,ainv1) D=K(E.discriminant()) t='' for m in embs: e=m(D) if sgn(e)<0: t+='-' else: t+='+' t+=',' return t[:-1] /// }}} {{{id=55| ####Lstar function (with Parallel) #### @parallel(ncpus=6) def l_function(ainv): E=EllipticCurve(K,eval(ainv)) F=EllipticCurve(K,list(E.short_weierstrass_model().a_invariants())) v=F.lseries().dokchitser() f=v.taylor_series(1,6) r_an=0 while abs(f[r_an])<1e-10: r_an += 1 if r_an == 6: raise RuntimeError l=float(f[r_an]) d={'L': l} db.N1k.update(d, ainv1=ainv) return L /// }}} {{{id=56| test=db('select N,ainv1 from N1k ORDER BY N') /// }}} {{{id=57| data=[] for r in range(len(test)): data.append(test[r][1]) /// }}} {{{id=86| data[1] /// u'[a,-1,a+1,-17*a-11,39*a+24]' }}} {{{id=89| db2.N1k.count() /// (297,) }}} {{{id=90| temp=db2('select ainv1,Lstar,a_p from N1k ORDER BY N') /// }}} {{{id=85| test=db('select N,ainv1,a_p from N1k order by N') /// }}} {{{id=92| E. /// }}} {{{id=93| import psage.modform.hilbert.sqrt5.sqrt5 as sq w = sq.primes_of_bounded_norm(100) from psage.ellcurve.minmodel.sqrt5 import canonical_model def ap(E,p): return E.change_ring(p.residue_field()).trace_of_frobenius() def ap_comp(E): q=[] for i in range(len(w)): u=w[i] if E.has_good_reduction(w[i])==True: if not E.conductor().norm()%norm(w[i])==0: try: q.append(ap(E,w[i])) except: q.append('?') else: q.append('?') else: q.append('?') return q /// }}} {{{id=179| E=EllipticCurve(K,[1,a+1,a,a,0]) ap_comp(E) /// [-3, -2, 2, -4, 4, 4, -4, -2, -2, '?', '?', -6, -6, 2, -4, 12, -2, 6, -8, 0, 16, 0, 10, -6] }}} {{{id=182| K.factor(11) /// (Fractional ideal (3*a - 2)) * (Fractional ideal (3*a - 1)) }}} {{{id=183| test=db('select N,cond1, ainv1, rlow, rhi,rank from N1k ORDER BY N') /// }}} {{{id=185| type(test[0][1]) /// }}} {{{id=184| for r in range(len(test)): if type(test[r][1]) != type(int(1)): print test[r] /// WARNING: Output truncated! full_output.txt (31, u'5*a-2', u'[1,a+1,a,a,0]', 0, 0, 0) (31, u'5*a-2', u'[a,-1,a+1,-17*a-11,39*a+24]', 0, 0, 0) (31, u'5*a-2', u'[1,a+1,a,41*a-70,170*a-276]', 0, 0, 0) (31, u'5*a-2', u'[a+1,-a-1,a+1,-1788*a-1105,44001*a+27194]', 0, 0, 0) (31, u'5*a-2', u'[1,a+1,a,31*a-75,141*a-303]', 0, 0, 0) (31, u'5*a-2', u'[a,a,a+1,32197*a-52096,3319586*a-5371204]', 0, 0, 0) (36, u'6', u'[a+1,a,a,0,0]', 0, 0, 0) (36, u'6', u'[a+1,a,a,-10*a-10,10*a+10]', 0, 0, 0) (36, u'6', u'[a+1,a,a,-5*a-5,-51*a-37]', 0, 0, 0) (36, u'6', u'[a+1,a,a,-165*a-165,-1683*a-1221]', 0, 0, 0) (41, u'a+6', u'[0,-a,a,0,0]', 0, 0, 0) (41, u'a+6', u'[0,-a,a,10*a-40,31*a-113]', 0, 0, 0) (45, u'6*a-3', u'[1,1,1,0,0]', 0, 0, 0) (45, u'6*a-3', u'[1,1,1,-5,2]', 0, 0, 0) (45, u'6*a-3', u'[1,1,1,-10,-10]', 0, 0, 0) (45, u'6*a-3', u'[1,1,1,-80,242]', 0, 0, 0) (45, u'6*a-3', u'[1,1,1,-135,-660]', 0, 0, 0) (45, u'6*a-3', u'[1,1,1,35,-28]', 0, 0, 0) (45, u'6*a-3', u'[1,1,1,-2160,-39540]', 0, 2, u'__pickleeJxrYPJm8GZqK2TUAwAM2wJB') (45, u'6*a-3', u'[1,1,1,-110,-880]', 0, 0, 0) (45, u'6*a-3', u'[1,a,a+1,-4976733*a-3075797,-6393196918*a-3951212998]', 0, 2, u'__pickleeJxrYPJm8GZqK2TUAwAM2wJB') (45, u'6*a-3', u'[a,a+1,1,-4364*a-7739,-255406*a-296465]', 0, 2, u'__pickleeJxrYPJm8GZqK2TUAwAM2wJB') (49, u'7', u'[0,-a+1,1,1,0]', 0, 0, 0) (49, u'7', u'[0,-a+1,1,-30*a-29,-102*a-84]', 0, 0, 0) (55, u'a+7', u'[1,-a+1,1,-a,0]', 0, 0, 0) (55, u'a+7', u'[1,-a+1,1,-6*a-5,10*a+6]', 0, 0, 0) (55, u'a+7', u'[1,-a+1,1,-26*a-15,-70*a-44]', 0, 0, 0) (55, u'a+7', u'[a+1,0,a+1,94*a-156,-538*a+870]', 0, 0, 0) (55, u'a+7', u'[a,-a,1,-699*a-432,10856*a+6709]', 0, 0, 0) (55, u'a+7', u'[1,-a+1,1,-21*a-25,-54*a-58]', 0, 0, 0) (55, u'a+7', u'[1,-a+1,1,54*a,-374*a-198]', 0, 0, 0) (55, u'a+7', u'[a+1,0,a+1,599*a-1006,8816*a-14217]', 0, 0, 0) (64, u'8', u'[0,a-1,0,-a,0]', 0, 0, 0) (64, u'8', u'[0,a-1,0,-6*a-5,-11*a-7]', 0, 0, 0) (64, u'8', u'[0,-a,0,11*a-16,-17*a+27]', 0, 0, 0) (64, u'8', u'[0,a-1,0,-11*a-5,17*a+10]', 0, 0, 0) (64, u'8', u'[0,a-1,0,-106*a-65,-647*a-403]', 0, 0, 0) (64, u'8', u'[0,-a,0,106*a-171,647*a-1050]', 0, 0, 0) (71, u'a+8', u'[a,a+1,a,a,0]', 0, 0, 0) (71, u'a+8', u'[a,a+1,a,6*a-5,-2*a+7]', 0, 0, 0) (71, u'a+8', u'[a,a+1,a,-14*a-5,-42*a-27]', 0, 0, 0) (71, u'a+8', u'[a,a+1,a,-4*a-20,-37*a-39]', 0, 0, 0) (76, u'8*a-6', u'[a+1,0,1,-a-1,0]', 0, 0, 0) (76, u'8*a-6', u'[a+1,0,1,4*a+4,8*a-2]', 0, 0, 0) (76, u'8*a-6', u'[a+1,0,1,44*a-196,264*a-1122]', 0, 0, 0) (76, u'8*a-6', u'[a,0,1,54685*a-90021,7490886*a-12144063]', 0, 0, 0) (76, u'8*a-6', u'[1,0,a,a-2,-a+1]', 0, 0, 0) (76, u'8*a-6', u'[a,0,a,-134*a-80,-903*a-561]', 0, 0, 0) (79, u'8*a-5', u'[a+1,a-1,a,0,0]', 0, 0, 0) (79, u'8*a-5', u'[a+1,a-1,a,5*a-10,5*a-10]', 0, 0, 0) (79, u'8*a-5', u'[a+1,a-1,a,-5*a-15,-19*a-29]', 0, 0, 0) (79, u'8*a-5', u'[a,-a,a+1,687*a-1115,10565*a-17095]', 0, 0, 0) (80, u'8*a-4', u'[0,1,0,-1,0]', 0, 0, 0) (80, u'8*a-4', u'[0,1,0,4,4]', 0, 0, 0) (80, u'8*a-4', u'[0,1,0,5*a-16,-17*a+16]', 0, 0, 0) (80, u'8*a-4', u'[0,1,0,-5*a-11,17*a-1]', 0, 0, 0) (80, u'8*a-4', u'[0,1,0,-41,-116]', 0, 0, 0) (80, u'8*a-4', u'[0,1,0,-36,-140]', 0, 0, 0) (80, u'8*a-4', u'[0,a+1,0,-2023*a-1257,-54293*a-33560]', 0, 0, 0) ... (899, u'5*a-33', u'[a+1,a+1,1,-5*a-4,-8*a-3]', 1, 1, 1) (900, u'30', u'[1,0,0,-3,-3]', 0, 0, 0) (900, u'30', u'[1,0,0,-53,-153]', 0, 0, 0) (900, u'30', u'[1,0,0,-28,272]', 0, 0, 0) (900, u'30', u'[1,0,0,-828,9072]', 0, 0, 0) (900, u'30', u'[a+1,-a-1,1,-93*a-93,-525*a-394]', 0, 0, 0) (900, u'30', u'[a+1,-a-1,1,-1443*a-1443,-37245*a-27934]', 0, 2, u'__pickleeJxrYPJm8GZqK2TUAwAM2wJB') (900, u'30', u'[a+1,-a-1,1,7*a+7,-45*a-34]', 0, 0, 0) (900, u'30', u'[a+1,-a-1,1,-343*a-343,3875*a+2906]', 0, 0, 0) (900, u'30', u'[a+1,-a-1,1,-1668*a-1668,47355*a+35516]', 0, 0, 0) (900, u'30', u'[a+1,-a-1,1,-2268*a-2268,10875*a+8156]', 0, 2, u'__pickleeJxrYPJm8GZqK2TUAwAM2wJB') (900, u'30', u'[a+1,-a-1,1,-68*a-68,1275*a+956]', 0, 0, 0) (900, u'30', u'[a+1,-a-1,1,-26668*a-26668,3007355*a+2255516]', 0, 0, 0) (905, u'27*a-16', u'[a+1,-a+1,0,1,0]', 0, 0, 0) (905, u'27*a-16', u'[a+1,-a+1,0,-4,a-6]', 0, 0, 0) (905, u'27*a-16', u'[a+1,-a+1,0,5*a-74,34*a-287]', 0, 0, 0) (905, u'27*a-16', u'[a+1,-a+1,0,-5*a-14,12*a+11]', 0, 0, 0) (905, u'27*a-16', u'[0,-a+1,a+1,0,-a]', 1, 1, 1) (905, u'27*a-16', u'[0,-a,a+1,-7*a-3,12*a+10]', 1, 1, 1) (905, u'27*a-16', u'[0,-a,a+1,213*a-463,1401*a-4842]', 1, 1, 1) (909, u'27*a-12', u'[a,-a+1,1,0,0]', 1, 1, 1) (916, u'-6*a-28', u'[a+1,-a,a,1,0]', 1, 1, 1) (919, u'-3*a-29', u'[a,0,a+1,-a-1,-a]', 1, 1, 1) (919, u'-3*a-29', u'[a,0,a+1,-a+4,7*a-13]', 1, 1, 1) (919, u'-3*a-29', u'[a,a,0,a,0]', 0, 0, 0) (919, u'-3*a-29', u'[a,a,0,-4*a,-6*a-5]', 0, 0, 0) (931, u'-28*a+21', u'[0,-a-1,1,-4*a-2,10*a+6]', 1, 1, 1) (944, u'-28*a+8', u'[0,-a-1,0,-a+1,0]', 0, 0, 0) (944, u'-28*a+8', u'[0,-a-1,0,4*a-4,-4*a]', 0, 0, 0) (956, u'2*a+30', u'[a,-a-1,1,-a-2,-1]', 0, 0, 0) (956, u'2*a+30', u'[1,-1,1,85*a-139,434*a-702]', 0, 0, 0) (956, u'-2*a-30', u'[a,1,1,-2*a-3,a+1]', 1, 1, 1) (956, u'2*a+30', u'[a+1,-a+1,a+1,3*a-8,-4*a+5]', 1, 1, 1) (961, u'31', u'[0,a,1,2,a-2]', 1, 1, 1) (961, u'-5*a-29', u'[0,-a-1,1,-1,2*a+1]', 1, 1, 1) (961, u'-5*a-29', u'[a+1,-a,0,7*a-23,-24*a+20]', 1, 1, 1) (961, u'-5*a-29', u'[1,0,0,-594*a-390,-8580*a-5345]', 1, 1, 1) (961, u'-5*a-29', u'[a,0,0,-66265*a-40952,-9832128*a-6076598]', 1, 1, 1) (961, u'-5*a-29', u'[a+1,-a,0,1017*a-1853,21096*a-35088]', 1, 1, 1) (961, u'-5*a-29', u'[a+1,-a,0,652*a-2048,27054*a-32629]', 1, 1, 1) (961, u'-5*a-29', u'[1,a,a+1,834227*a-1349799,438442396*a-709414712]', 1, 1, 1) (961, u'-5*a-29', u'[0,-a,1,-42*a-53,-192*a-140]', 0, 0, 0) (964, u'28*a-18', u'[a+1,a-1,a,-4*a-1,a]', 0, 0, 0) (964, u'28*a-18', u'[a+1,a-1,a,-9*a-16,-32*a-29]', 0, 0, 0) (964, u'28*a-18', u'[a,-a,a+1,2682*a-4688,86629*a-142543]', 0, 0, 0) (964, u'28*a-18', u'[a+1,-1,1,-2,-a+1]', 1, 1, 1) (964, u'28*a-18', u'[a,a,a,-a-1,-2*a+1]', 1, 1, 1) (971, u'28*a-11', u'[a+1,0,a+1,9*a-17,-19*a+29]', 0, 0, 0) (971, u'28*a-11', u'[1,-a+1,1,-84*a-52,-434*a-263]', 0, 0, 0) (979, u'-6*a-29', u'[a+1,-a+1,a,-2*a-2,a-1]', 1, 1, 1) (979, u'-6*a-29', u'[a+1,-a+1,a,3*a-7,6]', 1, 1, 1) (980, u'28*a-14', u'[1,-1,1,2,-3]', 0, 0, 0) (980, u'28*a-14', u'[1,-1,1,-18,-19]', 0, 0, 0) (980, u'28*a-14', u'[1,-1,1,-268,-1619]', 0, 0, 0) (980, u'28*a-14', u'[1,-1,1,-88,317]', 0, 0, 0) (991, u'a+31', u'[a+1,1,1,0,0]', 1, 1, 1) (991, u'a+31', u'[a,1,a,-3*a-3,2*a]', 0, 0, 0) (991, u'a+31', u'[1,-a-1,a+1,69*a-112,327*a-530]', 0, 0, 0) (995, u'-29*a+7', u'[a,-1,1,-1,0]', 1, 1, 1) (995, u'-29*a+7', u'[a,-1,1,5*a-16,16*a-18]', 1, 1, 1) }}} {{{id=180| wlabel='MJ' /// }}} {{{id=181| label+'I' /// 'MJI' }}} {{{id=99| test[0][1] /// u'[1,a+1,a,a,0]' }}} {{{id=94| E=EllipticCurve(K,[1,a+1,a,a,0]) ap_comp(E),E.conductor() /// ([-3, -2, 2, -4, 4, 4, -4, -2, -2, '?', '?', -6, -6, 2, -4, 12, -2, 6, -8, 0, 16, 0, 10, -6], Fractional ideal (5*a - 2)) }}} {{{id=95| for s in range(len(temp)): E=EllipticCurve(K,eval(temp[s][0])) A=str(ap_comp(E)).replace(' ','') db2.N1k.update({'a_p':A},ainv1=temp[s][0]) print (A, db2.N1k.find_one(ainv1=temp[s][0])['a_p']) /// WARNING: Output truncated! full_output.txt ("[-3,-2,2,-4,4,4,-4,-2,-2,'?','?',-6,-6,2,-4,12,-2,6,-8,0,16,0,10,-6]", u"[-3,-2,2,-4,4,4,-4,-2,-2,'?','?',-6,-6,2,-4,12,-2,6,-8,0,16,0,10,-6]") ("['?',-4,'?',2,2,0,0,0,0,-8,-8,2,2,10,-10,-10,2,2,12,12,0,0,10,10]", u"['?',-4,'?',2,2,0,0,0,0,-8,-8,2,2,10,-10,-10,2,2,12,12,0,0,10,10]") ("[-2,-1,-4,5,-2,6,-1,2,9,4,-10,'?','?',-6,4,-3,-8,6,-12,9,-4,-11,-1,-8]", u"[-2,-1,-4,5,-2,6,-1,2,9,4,-10,'?','?',-6,4,-3,-8,6,-12,9,-4,-11,-1,-8]") ("[-3,'?','?',-4,-4,4,4,-2,-2,0,0,10,10,-14,-4,-4,-2,-2,-8,-8,0,0,-6,-6]", u"[-3,'?','?',-4,-4,4,4,-2,-2,0,0,10,10,-14,-4,-4,-2,-2,-8,-8,0,0,-6,-6]") ("[0,-4,5,-3,-3,0,0,5,5,2,2,2,2,'?',-10,-10,-8,-8,-8,-8,5,5,0,0]", u"[0,-4,5,-3,-3,0,0,5,5,2,2,2,2,'?',-10,-10,-8,-8,-8,-8,5,5,0,0]") ("[-1,'?',-2,'?','?',8,-4,-6,6,-4,8,-6,6,14,0,-12,2,-10,0,0,8,-4,-18,6]", u"[-1,'?',-2,'?','?',8,-4,-6,6,-4,8,-6,6,14,0,-12,2,-10,0,0,8,-4,-18,6]") ("['?',-2,2,-4,-4,4,4,-2,-2,0,0,2,2,10,12,12,-10,-10,8,8,-16,-16,-6,-6]", u"['?',-2,2,-4,-4,4,4,-2,-2,0,0,2,2,10,12,12,-10,-10,8,8,-16,-16,-6,-6]") ("[-1,0,-2,0,0,2,-4,6,-6,8,2,6,12,-4,6,-12,-10,-4,'?','?',-4,14,6,18]", u"[-1,0,-2,0,0,2,-4,6,-6,8,2,6,12,-4,6,-12,-10,-4,'?','?',-4,14,6,18]") ("['?',-3,1,-6,3,'?','?',3,-6,5,5,6,6,-4,6,-12,8,8,0,-9,-1,-1,0,9]", u"['?',-3,1,-6,3,'?','?',3,-6,5,5,6,6,-4,6,-12,8,8,0,-9,-1,-1,0,9]") ("['?',1,-5,2,-3,'?','?',5,-10,-3,7,2,2,0,10,0,12,-8,-8,7,15,5,0,-15]", u"['?',1,-5,2,-3,'?','?',5,-10,-3,7,2,2,0,10,0,12,-8,-8,7,15,5,0,-15]") ("[1,-2,-2,-4,0,4,8,6,-2,0,-8,2,-2,-2,4,-4,10,14,-16,12,'?','?',-14,18]", u"[1,-2,-2,-4,0,4,8,6,-2,0,-8,2,-2,-2,4,-4,10,14,-16,12,'?','?',-14,18]") ("['?','?',-2,0,0,-4,-4,6,6,-4,-4,6,6,-10,12,12,2,2,-12,-12,8,8,-6,-6]", u"['?','?',-2,0,0,-4,-4,6,6,-4,-4,6,6,-10,12,12,2,2,-12,-12,8,8,-6,-6]") ("[-1,0,'?',0,0,-4,-4,0,0,8,8,0,0,14,0,0,2,2,0,0,-16,-16,0,0]", u"[-1,0,'?',0,0,-4,-4,0,0,8,8,0,0,14,0,0,2,2,0,0,-16,-16,0,0]") ("[-1,0,4,-6,0,2,-4,6,6,-4,-4,6,0,-4,12,0,14,-4,12,0,-16,2,'?','?']", u"[-1,0,4,-6,0,2,-4,6,6,-4,-4,6,0,-4,12,0,14,-4,12,0,-16,2,'?','?']") ("[-1,'?',-2,0,0,'?','?',-6,6,8,-4,-6,-6,2,12,12,14,-10,12,0,8,-16,6,-6]", u"[-1,'?',-2,0,0,'?','?',-6,6,8,-4,-6,-6,2,12,12,14,-10,12,0,8,-16,6,-6]") ("[1,-2,'?','?','?',-4,4,-2,6,-8,8,2,-6,2,12,12,-2,-2,-8,8,16,8,-14,2]", u"[1,-2,'?','?','?',-4,4,-2,6,-8,8,2,-6,2,12,12,-2,-2,-8,8,16,8,-14,2]") ("['?','?',-5,-3,-3,5,5,0,0,2,2,-3,-3,-10,0,0,2,2,12,12,-10,-10,15,15]", u"['?','?',-5,-3,-3,5,5,0,0,2,2,-3,-3,-10,0,0,2,2,12,12,-10,-10,15,15]") ("['?','?',5,-3,-3,-5,-5,0,0,2,2,-3,-3,10,0,0,2,2,12,12,10,10,-15,-15]", u"['?','?',5,-3,-3,-5,-5,0,0,2,2,-3,-3,10,0,0,2,2,12,12,10,10,-15,-15]") ("['?',1,0,-3,2,0,-5,'?','?',-8,7,12,-3,5,0,0,2,12,-8,7,-5,-10,0,15]", u"['?',1,0,-3,2,0,-5,'?','?',-8,7,12,-3,5,0,0,2,12,-8,7,-5,-10,0,15]") ("['?',-1,-4,5,-2,-8,-1,'?','?',4,-3,0,-7,1,4,4,6,-8,16,9,-11,10,-8,-1]", u"['?',-1,-4,5,-2,-8,-1,'?','?',4,-3,0,-7,1,4,4,6,-8,16,9,-11,10,-8,-1]") ("[0,1,-5,'?','?',0,0,0,0,7,7,-8,-8,-10,5,5,12,12,-3,-3,-10,-10,15,15]", u"[0,1,-5,'?','?',0,0,0,0,7,7,-8,-8,-10,5,5,12,12,-3,-3,-10,-10,15,15]") ("['?',0,-2,0,-6,2,2,6,0,'?','?',-6,6,14,0,-12,-10,8,0,-12,8,8,-6,6]", u"['?',0,-2,0,-6,2,2,6,0,'?','?',-6,6,14,0,-12,-10,8,0,-12,8,8,-6,6]") ("['?',2,'?',-4,-4,0,0,6,6,4,4,-10,-10,-2,-4,-4,2,2,0,0,12,12,10,10]", u"['?',2,'?',-4,-4,0,0,6,6,4,4,-10,-10,-2,-4,-4,2,2,0,0,12,12,10,10]") ("[1,'?',-6,4,-4,4,-4,'?','?',8,0,10,-6,2,-12,4,-2,-2,0,-16,16,8,-6,10]", u"[1,'?',-6,4,-4,4,-4,'?','?',8,0,10,-6,2,-12,4,-2,-2,0,-16,16,8,-6,10]") ("[2,'?',1,-6,-3,-4,5,'?','?',2,5,-9,0,-4,-9,12,5,-4,12,-6,2,-4,-6,15]", u"[2,'?',1,-6,-3,-4,5,'?','?',2,5,-9,0,-4,-9,12,5,-4,12,-6,2,-4,-6,15]") ("[-2,'?',3,-2,5,-8,-1,'?','?',-10,-3,7,0,8,-3,4,13,-8,-12,2,10,-4,6,13]", u"[-2,'?',3,-2,5,-8,-1,'?','?',-10,-3,7,0,8,-3,4,13,-8,-12,2,10,-4,6,13]") ("[1,'?',-2,4,0,-4,0,-2,-2,'?','?',2,2,-6,12,-12,-2,10,16,-4,16,-8,18,10]", u"[1,'?',-2,4,0,-4,0,-2,-2,'?','?',2,2,-6,12,-12,-2,10,16,-4,16,-8,18,10]") ("['?',2,2,-4,-2,-6,8,8,-6,-8,-4,'?','?',-6,4,0,-8,0,0,0,-4,16,14,10]", u"['?',2,2,-4,-2,-6,8,8,-6,-8,-4,'?','?',-6,4,0,-8,0,0,0,-4,16,14,10]") ("[-1,0,'?',6,0,'?','?',0,-6,-4,-4,12,-6,-10,-6,6,2,14,6,-6,-4,8,12,6]", u"[-1,0,'?',6,0,'?','?',0,-6,-4,-4,12,-6,-10,-6,6,2,14,6,-6,-4,8,12,6]") ("['?',0,-2,'?','?',2,-4,-6,-6,-4,2,0,-6,8,0,12,-10,8,12,0,8,-10,6,6]", u"['?',0,-2,'?','?',2,-4,-6,-6,-4,2,0,-6,8,0,12,-10,8,12,0,8,-10,6,6]") ('[-1,0,4,-3,3,-1,8,-9,-3,-7,-10,6,3,5,12,0,-13,2,0,6,8,8,0,-12]', u'[-1,0,4,-3,3,-1,8,-9,-3,-7,-10,6,3,5,12,0,-13,2,0,6,8,8,0,-12]') ("['?','?','?',0,0,-4,-4,-6,-6,8,8,-6,-6,2,0,0,-10,-10,0,0,8,8,18,18]", u"['?','?','?',0,0,-4,-4,-6,-6,8,8,-6,-6,2,0,0,-10,-10,0,0,8,8,18,18]") ('[-3,2,2,4,0,4,-4,-10,-2,-8,0,-10,2,-2,12,0,14,10,0,12,-4,-16,-6,-14]', u'[-3,2,2,4,0,4,-4,-10,-2,-8,0,-10,2,-2,12,0,14,10,0,12,-4,-16,-6,-14]') ("['?',0,-2,0,0,2,2,-6,-6,-4,-4,6,6,'?',-6,-6,8,8,0,0,8,8,-6,-6]", u"['?',0,-2,0,0,2,2,-6,-6,-4,-4,6,6,'?',-6,-6,8,8,0,0,8,8,-6,-6]") ('[-4,-3,-2,-3,0,-7,2,-6,6,-4,-4,12,-3,5,0,3,-1,-10,-3,-12,-10,-10,12,0]', u'[-4,-3,-2,-3,0,-7,2,-6,6,-4,-4,12,-3,5,0,3,-1,-10,-3,-12,-10,-10,12,0]') ('[3,-2,0,0,-4,-4,0,6,-6,-4,10,4,-6,2,-2,4,-14,14,-12,8,8,10,6,14]', u'[3,-2,0,0,-4,-4,0,6,-6,-4,10,4,-6,2,-2,4,-14,14,-12,8,8,10,6,14]') ('[0,1,0,-3,2,5,0,0,0,2,-8,-8,-3,5,10,-5,7,2,-3,2,-10,10,0,-10]', u'[0,1,0,-3,2,5,0,0,0,2,-8,-8,-3,5,10,-5,7,2,-3,2,-10,10,0,-10]') ("[1,'?',2,-4,-4,4,-4,6,-2,0,0,'?','?',10,-12,4,14,-2,-8,8,0,-8,-6,18]", u"[1,'?',2,-4,-4,4,-4,6,-2,0,0,'?','?',10,-12,4,14,-2,-8,8,0,-8,-6,18]") ("[-1,'?',4,0,6,-4,-4,0,-6,2,2,'?','?',-4,12,-12,2,-10,6,-12,-4,8,-6,0]", u"[-1,'?',4,0,6,-4,-4,0,-6,2,2,'?','?',-4,12,-12,2,-10,6,-12,-4,8,-6,0]") ("[2,0,-2,'?','?','?','?',9,9,5,-10,3,-3,8,-3,-6,-4,2,3,0,8,2,6,6]", u"[2,0,-2,'?','?','?','?',9,9,5,-10,3,-3,8,-3,-6,-4,2,3,0,8,2,6,6]") ("[1,-2,2,'?','?','?','?',-2,-2,-8,-8,-6,10,-6,12,4,-10,-2,8,0,-8,8,10,10]", u"[1,-2,2,'?','?','?','?',-2,-2,-8,-8,-6,10,-6,12,4,-10,-2,8,0,-8,8,10,10]") ("[-3,-4,-4,'?','?','?','?',-10,2,-8,4,0,0,-12,-10,4,-4,6,-14,-8,16,-8,-6,14]", u"[-3,-4,-4,'?','?','?','?',-10,2,-8,4,0,0,-12,-10,4,-4,6,-14,-8,16,-8,-6,14]") ("[-1,0,4,'?','?','?','?',6,-6,-4,-4,-12,0,8,6,-12,-4,2,-6,0,8,-16,6,6]", u"[-1,0,4,'?','?','?','?',6,-6,-4,-4,-12,0,8,6,-12,-4,2,-6,0,8,-16,6,6]") ("[1,2,-2,'?','?','?','?',-2,6,0,0,6,6,6,8,4,-6,-2,-12,0,-16,8,10,18]", u"[1,2,-2,'?','?','?','?',-2,6,0,0,6,6,6,8,4,-6,-2,-12,0,-16,8,10,18]") ("['?','?',4,'?','?',-4,8,-6,0,-4,-10,-6,0,2,12,-6,14,2,-12,0,8,-10,6,-6]", u"['?','?',4,'?','?',-4,8,-6,0,-4,-10,-6,0,2,12,-6,14,2,-12,0,8,-10,6,-6]") ("['?','?',-2,'?','?',-4,-4,6,-6,8,-4,-6,6,2,-12,0,-10,14,0,0,8,-4,-6,-6]", u"['?','?',-2,'?','?',-4,-4,6,-6,8,-4,-6,6,2,-12,0,-10,14,0,0,8,-4,-6,-6]") ("['?','?',0,'?','?',0,0,-10,0,-8,2,2,-8,-10,0,10,2,2,12,-8,0,10,10,-10]", u"['?','?',0,'?','?',0,0,-10,0,-8,2,2,-8,-10,0,10,2,2,12,-8,0,10,10,-10]") ("[0,'?','?',2,2,-5,-5,10,10,-3,-3,-8,-8,-5,-10,-10,7,7,-8,-8,0,0,0,0]", u"[0,'?','?',2,2,-5,-5,10,10,-3,-3,-8,-8,-5,-10,-10,7,7,-8,-8,0,0,0,0]") ("[0,'?','?',2,2,5,5,-10,-10,-3,-3,-8,-8,5,10,10,7,7,-8,-8,0,0,0,0]", u"[0,'?','?',2,2,5,5,-10,-10,-3,-3,-8,-8,5,10,10,7,7,-8,-8,0,0,0,0]") ("[3,'?','?',-4,-4,-4,-4,2,2,0,0,10,10,14,4,4,-2,-2,-8,-8,0,0,6,6]", u"[3,'?','?',-4,-4,-4,-4,2,2,0,0,10,10,14,4,4,-2,-2,-8,-8,0,0,6,6]") ('[-3,-4,-1,-2,0,-5,-7,6,3,-3,8,2,-9,-10,9,-10,0,-14,-3,16,6,-12,-5,-6]', u'[-3,-4,-1,-2,0,-5,-7,6,3,-3,8,2,-9,-10,9,-10,0,-14,-3,16,6,-12,-5,-6]') ('[-3,-3,-5,-3,1,-2,7,-6,-8,3,4,-11,2,6,10,-7,-7,-6,-12,14,-1,-14,-7,0]', u'[-3,-3,-5,-3,1,-2,7,-6,-8,3,4,-11,2,6,10,-7,-7,-6,-12,14,-1,-14,-7,0]') ('[1,-2,2,0,4,4,-4,-2,6,-8,-4,-6,-2,6,-4,-4,-10,-2,16,0,0,8,-6,2]', u'[1,-2,2,0,4,4,-4,-2,6,-8,-4,-6,-2,6,-4,-4,-10,-2,16,0,0,8,-6,2]') ("['?',0,1,-3,0,2,2,-9,0,-4,5,0,-6,-4,6,3,'?','?',6,-3,-1,8,-3,12]", u"['?',0,1,-3,0,2,2,-9,0,-4,5,0,-6,-4,6,3,'?','?',6,-3,-1,8,-3,12]") ("[-4,'?',-5,-3,-3,2,2,3,3,-4,-4,-12,-12,'?',0,0,8,8,0,0,-1,-1,-12,-12]", u"[-4,'?',-5,-3,-3,2,2,3,3,-4,-4,-12,-12,'?',0,0,8,8,0,0,-1,-1,-12,-12]") ('[-3,-3,0,-6,-4,0,8,-5,8,1,-8,-10,0,0,-11,-9,-7,8,4,3,-2,1,8,4]', u'[-3,-3,0,-6,-4,0,8,-5,8,1,-8,-10,0,0,-11,-9,-7,8,4,3,-2,1,8,4]') ("['?',2,-2,-4,4,4,-4,-2,-2,0,0,-2,-2,-10,12,-12,10,10,8,-8,16,-16,-6,-6]", u"['?',2,-2,-4,4,4,-4,-2,-2,0,0,-2,-2,-10,12,-12,10,10,8,-8,16,-16,-6,-6]") ("['?',2,-2,4,-4,-4,4,-2,-2,0,0,-2,-2,-10,-12,12,10,10,-8,8,-16,16,-6,-6]", u"['?',2,-2,4,-4,-4,4,-2,-2,0,0,-2,-2,-10,-12,12,10,10,-8,8,-16,16,-6,-6]") ("['?',-2,2,4,4,-4,-4,-2,-2,0,0,2,2,10,-12,-12,-10,-10,-8,-8,16,16,-6,-6]", u"['?',-2,2,4,4,-4,-4,-2,-2,0,0,2,2,10,-12,-12,-10,-10,-8,-8,16,16,-6,-6]") ... ("[2,3,-2,3,-6,'?','?',0,3,-4,8,'?','?',-4,0,-9,-10,-10,0,15,2,5,-9,12]", u"[2,3,-2,3,-6,'?','?',0,3,-4,8,'?','?',-4,0,-9,-10,-10,0,15,2,5,-9,12]") ("[-1,-2,-2,'?','?',-2,2,-4,2,-8,-4,6,-6,2,6,4,-2,8,'?','?',-10,-2,2,-2]", u"[-1,-2,-2,'?','?',-2,2,-4,2,-8,-4,6,-6,2,6,4,-2,8,'?','?',-10,-2,2,-2]") ("[-3,2,2,'?','?',-8,4,6,6,0,4,2,6,-2,-8,4,6,2,'?','?',-8,-12,-6,10]", u"[-3,2,2,'?','?',-8,4,6,6,0,4,2,6,-2,-8,4,6,2,'?','?',-8,-12,-6,10]") ("['?',2,6,0,0,-4,-4,-2,-2,-8,-8,6,6,'?',4,4,-6,-6,12,12,4,4,10,10]", u"['?',2,6,0,0,-4,-4,-2,-2,-8,-8,6,6,'?',4,4,-6,-6,12,12,4,4,10,10]") ("[-1,-2,'?',-2,-2,-2,0,-6,2,-2,0,-10,6,6,0,-6,-6,6,-8,-12,14,10,'?','?']", u"[-1,-2,'?',-2,-2,-2,0,-6,2,-2,0,-10,6,6,0,-6,-6,6,-8,-12,14,10,'?','?']") ('[-1,-4,0,4,0,-8,-4,-6,-6,0,2,-2,-12,-2,-8,4,4,8,6,0,-16,10,14,6]', u'[-1,-4,0,4,0,-8,-4,-6,-6,0,2,-2,-12,-2,-8,4,4,8,6,0,-16,10,14,6]') ('[-1,-3,1,-3,0,-4,2,-6,-3,-10,2,-12,12,-4,12,0,2,-4,-6,-6,5,-13,6,12]', u'[-1,-3,1,-3,0,-4,2,-6,-3,-10,2,-12,12,-4,12,0,2,-4,-6,-6,5,-13,6,12]') ("['?','?',-4,-4,0,-2,-4,-2,-2,6,-6,'?','?',-4,-8,0,0,-12,10,8,8,0,10,0]", u"['?','?',-4,-4,0,-2,-4,-2,-2,6,-6,'?','?',-4,-8,0,0,-12,10,8,8,0,10,0]") ('[-3,0,-1,1,-3,-7,0,-5,-4,-2,5,4,-8,8,-12,-3,-6,-7,6,6,3,-8,-6,18]', u'[-3,0,-1,1,-3,-7,0,-5,-4,-2,5,4,-8,8,-12,-3,-6,-7,6,6,3,-8,-6,18]') ('[-1,-3,-2,0,3,-4,-4,-9,-6,2,2,-3,3,-13,12,0,2,14,-15,-6,-16,5,18,3]', u'[-1,-3,-2,0,3,-4,-4,-9,-6,2,2,-3,3,-13,12,0,2,14,-15,-6,-16,5,18,3]') ('[-1,0,-5,-3,-3,5,-4,3,0,2,-7,0,12,-4,-12,-3,2,5,6,6,11,-4,-18,-6]', u'[-1,0,-5,-3,-3,5,-4,3,0,2,-7,0,12,-4,-12,-3,2,5,6,6,11,-4,-18,-6]') ("['?',-3,1,'?','?','?','?',-8,-5,-3,-7,2,-12,10,14,0,10,-6,5,-12,13,-9,-13,-16]", u"['?',-3,1,'?','?','?','?',-8,-5,-3,-7,2,-12,10,14,0,10,-6,5,-12,13,-9,-13,-16]") ("['?',3,-2,'?','?','?','?',0,-6,5,-4,3,3,-4,0,-3,-1,-10,9,-6,-10,8,0,-3]", u"['?',3,-2,'?','?','?','?',0,-6,5,-4,3,3,-4,0,-3,-1,-10,9,-6,-10,8,0,-3]") ("['?',-2,-2,'?','?','?','?',2,2,0,-8,-10,-10,6,-8,12,6,-14,16,-8,0,8,6,18]", u"['?',-2,-2,'?','?','?','?',2,2,0,-8,-10,-10,6,-8,12,6,-14,16,-8,0,8,6,18]") ("['?',1,5,'?','?','?','?',0,-5,-3,-3,2,12,10,-10,0,2,2,-3,12,-15,-5,15,0]", u"['?',1,5,'?','?','?','?',0,-5,-3,-3,2,12,10,-10,0,2,2,-3,12,-15,-5,15,0]") ("['?',0,4,'?','?','?','?',-6,6,-4,-4,0,0,-4,6,12,8,-10,6,0,8,8,-6,-18]", u"['?',0,4,'?','?','?','?',-6,6,-4,-4,0,0,-4,6,12,8,-10,6,0,8,8,-6,-18]") ("[-1,-2,-2,-4,2,0,-2,'?','?',-2,-4,0,-12,6,12,-12,0,-8,0,0,6,-4,6,14]", u"[-1,-2,-2,-4,2,0,-2,'?','?',-2,-4,0,-12,6,12,-12,0,-8,0,0,6,-4,6,14]") ("[-3,'?',-2,2,2,-6,-6,2,2,-10,-10,-6,-6,2,6,6,2,2,6,6,-12,-12,2,2]", u"[-3,'?',-2,2,2,-6,-6,2,2,-10,-10,-6,-6,2,6,6,2,2,6,6,-12,-12,2,2]") ("[-1,'?','?',-4,-4,'?','?',-2,2,-8,0,-2,-6,6,-8,4,10,2,-16,4,-8,8,2,6]", u"[-1,'?','?',-4,-4,'?','?',-2,2,-8,0,-2,-6,6,-8,4,10,2,-16,4,-8,8,2,6]") ("[1,'?','?',0,2,'?','?',10,0,-8,-6,-2,6,-4,4,-2,-8,0,-4,0,-4,4,-6,4]", u"[1,'?','?',0,2,'?','?',10,0,-8,-6,-2,6,-4,4,-2,-8,0,-4,0,-4,4,-6,4]") ("[1,'?','?',4,-4,'?','?',-2,6,0,8,-6,-6,10,-4,-12,-10,-10,0,0,-8,8,10,2]", u"[1,'?','?',4,-4,'?','?',-2,6,0,8,-6,-6,10,-4,-12,-10,-10,0,0,-8,8,10,2]") ("[3,'?','?',-4,2,'?','?',-2,-8,0,-6,-2,-2,4,-4,14,4,4,-8,-8,12,12,6,-12]", u"[3,'?','?',-4,2,'?','?',-2,-8,0,-6,-2,-2,4,-4,14,4,4,-8,-8,12,12,6,-12]") ("[-1,-2,-4,'?','?',-4,-6,2,-6,4,0,-2,0,4,-8,4,-8,-10,0,10,'?','?',-2,6]", u"[-1,-2,-4,'?','?',-4,-6,2,-6,4,0,-2,0,4,-8,4,-8,-10,0,10,'?','?',-2,6]") ("['?','?',0,'?','?',6,6,8,-6,4,8,-10,-2,2,-6,4,2,-10,-12,-8,-6,10,-8,-4]", u"['?','?',0,'?','?',6,6,8,-6,4,8,-10,-2,2,-6,4,2,-10,-12,-8,-6,10,-8,-4]") ("['?','?',4,'?','?',2,2,0,-6,8,8,6,-6,-10,6,-12,-10,14,12,0,-10,14,0,-12]", u"['?','?',4,'?','?',2,2,0,-6,8,8,6,-6,-10,6,-12,-10,14,12,0,-10,14,0,-12]") ('[2,-3,4,0,6,-4,-4,-3,-6,5,8,9,3,-4,6,9,-7,2,-15,0,-10,-1,15,-6]', u'[2,-3,4,0,6,-4,-4,-3,-6,5,8,9,3,-4,6,9,-7,2,-15,0,-10,-1,15,-6]') ("[1,2,'?','?','?',-4,4,2,-6,-8,8,-2,6,2,-12,-12,-2,-2,8,-8,16,8,14,-2]", u"[1,2,'?','?','?',-4,4,2,-6,-8,8,-2,6,2,-12,-12,-2,-2,8,-8,16,8,14,-2]") ("[-2,'?',-2,-4,3,3,-5,-6,-8,-9,9,-3,-4,-13,-7,13,6,-12,8,6,-7,4,9,-2]", u"[-2,'?',-2,-4,3,3,-5,-6,-8,-9,9,-3,-4,-13,-7,13,6,-12,8,6,-7,4,9,-2]") ("[-2,'?',0,-6,-5,1,-7,4,8,-5,-7,9,-12,1,11,-1,10,2,0,-2,15,-6,-17,-14]", u"[-2,'?',0,-6,-5,1,-7,4,8,-5,-7,9,-12,1,11,-1,10,2,0,-2,15,-6,-17,-14]") ("[2,'?',-2,0,3,5,5,6,0,-1,-7,-3,0,5,-9,3,2,-4,0,-6,-1,8,-9,-6]", u"[2,'?',-2,0,3,5,5,6,0,-1,-7,-3,0,5,-9,3,2,-4,0,-6,-1,8,-9,-6]") ("[1,0,4,0,4,-2,0,'?','?','?','?',-10,6,10,8,0,4,2,-10,2,6,0,-2,2]", u"[1,0,4,0,4,-2,0,'?','?','?','?',-10,6,10,8,0,4,2,-10,2,6,0,-2,2]") ("[3,0,4,2,-4,2,-8,'?','?','?','?',2,-2,-2,-4,12,-4,-10,10,-4,-4,8,-6,14]", u"[3,0,4,2,-4,2,-8,'?','?','?','?',2,-2,-2,-4,12,-4,-10,10,-4,-4,8,-6,14]") ("[-1,0,-4,-4,-2,0,-2,'?','?','?','?',10,-2,-10,-4,-12,10,0,12,-6,-4,4,6,2]", u"[-1,0,-4,-4,-2,0,-2,'?','?','?','?',10,-2,-10,-4,-12,10,0,12,-6,-4,4,6,2]") ("['?','?','?',2,2,0,0,0,0,-8,-8,2,2,-10,10,10,2,2,12,12,0,0,-10,-10]", u"['?','?','?',2,2,0,0,0,0,-8,-8,2,2,-10,10,10,2,2,12,12,0,0,-10,-10]") ("['?','?','?',0,0,4,4,6,6,8,8,-6,-6,-2,0,0,-10,-10,0,0,-8,-8,-18,-18]", u"['?','?','?',0,0,4,4,6,6,8,8,-6,-6,-2,0,0,-10,-10,0,0,-8,-8,-18,-18]") ("[-1,'?',2,0,0,4,4,10,2,0,-4,2,-6,-2,4,-12,-2,6,8,-12,0,8,-6,6]", u"[-1,'?',2,0,0,4,4,10,2,0,-4,2,-6,-2,4,-12,-2,6,8,-12,0,8,-6,6]") ("[-2,'?',2,-4,-4,2,1,-6,-3,-3,-4,-10,-5,-1,0,4,-5,0,13,6,-3,-1,10,-11]", u"[-2,'?',2,-4,-4,2,1,-6,-3,-3,-4,-10,-5,-1,0,4,-5,0,13,6,-3,-1,10,-11]") ("[-2,'?',-4,-2,-2,-8,-1,2,-5,-3,4,0,7,1,4,4,-1,-8,9,-12,3,-11,-8,-1]", u"[-2,'?',-4,-2,-2,-8,-1,2,-5,-3,4,0,7,1,4,4,-1,-8,9,-12,3,-11,-8,-1]") ("[-3,-1,'?',-3,2,-7,1,-6,-3,-7,4,-4,5,-2,-6,-12,-14,-3,8,6,0,4,14,-1]", u"[-3,-1,'?',-3,2,-7,1,-6,-3,-7,4,-4,5,-2,-6,-12,-14,-3,8,6,0,4,14,-1]") ("['?',0,-5,-2,-4,1,-1,2,-1,-1,-4,-2,-5,6,3,14,-8,-6,-5,-8,6,-4,3,14]", u"['?',0,-5,-2,-4,1,-1,2,-1,-1,-4,-2,-5,6,3,14,-8,-6,-5,-8,6,-4,3,14]") ('[-1,0,-5,3,-6,-4,-4,-6,6,8,5,-6,0,5,-6,9,-10,11,9,-12,-16,-4,-6,15]', u'[-1,0,-5,3,-6,-4,-4,-6,6,8,5,-6,0,5,-6,9,-10,11,9,-12,-16,-4,-6,15]') ('[3,2,-4,-4,4,0,0,2,-2,6,-8,0,-2,8,0,10,-4,0,0,-12,-12,-4,14,-10]', u'[3,2,-4,-4,4,0,0,2,-2,6,-8,0,-2,8,0,10,-4,0,0,-12,-12,-4,14,-10]') ("[0,-2,-5,-1,-1,'?','?',3,-3,-10,-2,0,0,'?',12,-10,-4,2,-4,0,-11,3,0,6]", u"[0,-2,-5,-1,-1,'?','?',3,-3,-10,-2,0,0,'?',12,-10,-4,2,-4,0,-11,3,0,6]") ("['?',2,-2,0,4,6,0,6,-6,-8,-4,0,0,10,'?','?',-12,6,6,-12,16,8,-10,6]", u"['?',2,-2,0,4,6,0,6,-6,-8,-4,0,0,10,'?','?',-12,6,6,-12,16,8,-10,6]") ("['?',2,6,-6,-2,0,2,8,0,0,-8,-6,2,-2,4,6,-6,-10,0,-8,-4,-8,10,2]", u"['?',2,6,-6,-2,0,2,8,0,0,-8,-6,2,-2,4,6,-6,-10,0,-8,-4,-8,10,2]") ("['?',-1,-1,-3,-3,-4,-5,4,4,1,-8,-3,0,8,-6,5,-1,6,-10,-2,-3,8,9,-10]", u"['?',-1,-1,-3,-3,-4,-5,4,4,1,-8,-3,0,8,-6,5,-1,6,-10,-2,-3,8,9,-10]") ("['?',-3,-1,-5,-5,2,-3,-6,0,-3,4,9,-6,-10,6,-5,-7,10,12,-6,1,6,-7,8]", u"['?',-3,-1,-5,-5,2,-3,-6,0,-3,4,9,-6,-10,6,-5,-7,10,12,-6,1,6,-7,8]") ("[0,-2,-1,-2,-4,-1,-5,10,-8,'?','?',9,-3,2,-3,5,-6,-2,3,7,12,-14,0,-14]", u"[0,-2,-1,-2,-4,-1,-5,10,-8,'?','?',9,-3,2,-3,5,-6,-2,3,7,12,-14,0,-14]") ("[0,-1,-5,-1,-4,5,-5,-5,5,'?','?',9,-6,5,5,0,-11,-9,-4,3,-5,0,5,15]", u"[0,-1,-5,-1,-4,5,-5,-5,5,'?','?',9,-6,5,5,0,-11,-9,-4,3,-5,0,5,15]") ("[-3,2,-2,-4,-4,-4,4,-2,2,'?','?',-6,-6,2,-4,12,-2,-6,8,0,16,0,-10,-6]", u"[-3,2,-2,-4,-4,-4,4,-2,2,'?','?',-6,-6,2,-4,12,-2,-6,8,0,16,0,-10,-6]") ("[0,1,5,-1,4,-5,5,-5,-5,'?','?',9,-6,5,5,0,-11,9,4,-3,-5,0,-5,15]", u"[0,1,5,-1,4,-5,5,-5,-5,'?','?',9,-6,5,5,0,-11,9,4,-3,-5,0,-5,15]") ("['?',-3,4,0,0,2,2,-3,3,5,5,0,-6,5,0,-3,8,8,0,-6,-1,-10,-15,0]", u"['?',-3,4,0,0,2,2,-3,3,5,5,0,-6,5,0,-3,8,8,0,-6,-1,-10,-15,0]") ("['?',-1,-2,-2,-2,-6,-4,-3,-1,-1,5,-4,6,-1,6,7,2,2,4,0,1,-16,-15,-6]", u"['?',-1,-2,-2,-2,-6,-4,-3,-1,-1,5,-4,6,-1,6,7,2,2,4,0,1,-16,-15,-6]") ("['?',-3,-4,0,-4,-6,-2,7,1,-7,-5,12,-2,-1,-4,-13,4,-8,-12,14,11,-10,1,12]", u"['?',-3,-4,0,-4,-6,-2,7,1,-7,-5,12,-2,-1,-4,-13,4,-8,-12,14,11,-10,1,12]") ('[-1,-3,4,-3,3,8,2,0,6,2,-4,6,3,-4,0,6,8,2,9,12,-4,2,-6,-15]', u'[-1,-3,4,-3,3,8,2,0,6,2,-4,6,3,-4,0,6,8,2,9,12,-4,2,-6,-15]') ("[-3,0,-4,'?','?',-4,0,2,-6,0,-2,-12,-10,-8,-6,12,0,-6,-4,16,8,2,'?','?']", u"[-3,0,-4,'?','?',-4,0,2,-6,0,-2,-12,-10,-8,-6,12,0,-6,-4,16,8,2,'?','?']") ("['?','?',-6,4,4,0,0,6,6,8,8,2,2,'?',-8,-8,-14,-14,-16,-16,-8,-8,10,10]", u"['?','?',-6,4,4,0,0,6,6,8,8,2,2,'?',-8,-8,-14,-14,-16,-16,-8,-8,10,10]") ('[-1,-1,-3,-4,1,4,-3,8,-8,-8,-2,6,-9,2,-8,4,-1,2,6,-1,3,-4,0,7]', u'[-1,-1,-3,-4,1,4,-3,8,-8,-8,-2,6,-9,2,-8,4,-1,2,6,-1,3,-4,0,7]') ('[1,4,-4,-2,4,0,4,-10,2,0,-4,6,-8,8,0,-4,4,12,-12,0,-8,4,-2,-14]', u'[1,4,-4,-2,4,0,4,-10,2,0,-4,6,-8,8,0,-4,4,12,-12,0,-8,4,-2,-14]') ("[-1,'?',-4,-6,-4,0,4,0,0,2,-10,-2,-2,10,4,-8,2,2,-6,12,-12,4,12,4]", u"[-1,'?',-4,-6,-4,0,4,0,0,2,-10,-2,-2,10,4,-8,2,2,-6,12,-12,4,12,4]") }}} {{{id=91| for s in range(0,len(test)): for t in range(len(temp)): if test[s][2]==temp[t][2]: db.N1k.update({'L': temp[t][1]},ainv1=test[s][1]) print s break /// WARNING: Output truncated! full_output.txt 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 ... 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 }}} {{{id=103| db2.N1k.columns() /// [u'rhi', u'ordD', u'cond1', u'ainv2', u'ainv1', u'cond2', u'tor', u'tama', u'kod', u'sign', u'rlow', u'eta', u'found', u'N', u'ordj', u'nh', u'Lstar', u'fh', u'mtrx', u'label', u'real', u'Sha', u'reg', u'a_p'] }}} {{{id=102| db.N1k.columns() /// [u'cond1', u'ainv2', u'ainv1', u'cond2', u'ordD', u'N', u'rhi', u'sign', u'ordj', u'tor', u'tama', u'kod', u'rlow', u'eta', u'found', u'mtrx', u'fh', u'nh', u'rp1', u'rp0', u'omega', u'Lstar', u'L', u'a_p', u'rank', u'cf2', u'cf1'] }}} {{{id=114| db.N1k.count() /// (864,) }}} {{{id=113| temp2=db('select N,ainv1,cond1,cond2 from N1k ORDER BY N') /// }}} {{{id=115| for r in range(len(temp2)): c=[] cf=[] A=temp2[r] B=K(eval(A[2])) for s in range(len(K.factor(B))): c.append(K.factor(B)[s][0].gens_reduced()[0]) C=K(eval(A[3])) for t in range(len(K.factor(C))): cf.append(K.factor(C)[t][0].gens_reduced()[0]) db.N1k.update({'cf1': str(c).replace(' ',''), 'cf2': str(cf).replace(' ','')},ainv1=temp2[s][1]) /// }}} {{{id=124| db.N1k.find_one() /// {u'cond1': u'5*a-2', u'cond2': u'-5*a+3', u'ordD': u'1', u'rank': 0, u'sign': u'+,-', u'nh': 41.096588465662798, u'ordj': u'1', u'tor': 8, u'cf2': u'[a-32]', u'tama': u'1', u'kod': u'I1', u'rp1': 8.4380598878997297, u'rp0': 6.1043463067145165, u'ainv2': u'[1,-a-1,a,0,0]', u'ainv1': u'[1,a+1,a,a,0]', u'a_p': u"[-3,-2,2,-4,4,4,-4,-2,-2,'?','?',-6,-6,2,-4,12,-2,6,-8,0,16,0,10,-6]", u'L': 0.35992895949803944, u'N': 31, u'rhi': 0, u'fh': -1.1440120797665994, u'omega': 51.50883971253662, u'cf1': u'[a+31]', u'rlow': 0, u'eta': 63, u'found': u'J', u'mtrx': u'matrix(6,[0,2,0,0,0,0,2,0,2,2,0,0,0,2,0,0,2,2,0,2,0,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0])'} }}} {{{id=139| printer() /// }}} {{{id=186| db.N1k.columns() /// [u'cond1', u'ainv2', u'ainv1', u'cond2', u'ordD', u'N', u'rhi', u'sign', u'ordj', u'tor', u'tama', u'kod', u'rlow', u'eta', u'found', u'mtrx', u'fh', u'nh', u'rp1', u'rp0', u'omega', u'Lstar', u'L', u'a_p', u'rank', u'cf2', u'cf1'] }}} {{{id=188| temp=db2('select N,eta,cond1,cond2,weq1,weq2,rlow,rhi,T, s, ordD,ordj,c_p,K, adj,L, real1,real2, omega, found from N1k ORDER BY N,eta') /// }}} {{{id=189| len(temp) /// 864 }}} {{{id=190| def printer(): J=open('/home/psharaba/Testlist.txt','w') for y in temp: S=[] for entry in y: s=str(entry) s.replace(' ','') S.append(s) J.write(' '.join(S)+'\n') /// }}} {{{id=191| printer() /// }}} {{{id=195| db.N1k.delete() /// }}} {{{id=207| len(temp) /// 864 }}} {{{id=197| for r in range(len(temp)): A=temp[r] db.N1k.insert({'N': A[0],'eta': A[1], 'cond1': A[2], 'cond2': A[3], 'weq1': A[4], 'weq2': A[5], 'rlow': A[6], 'rhi': A[7], 'T': A[8], 's': A[9], 'ordD': A[10], 'ordj': A[11], 'c_p': A[12], 'K': A[13], 'adj': A[14], 'L': A[15], 'real1': A[16], 'real2': A[17], 'omega': A[18], 'found': A[19]}) /// }}} {{{id=196| IO=[] NH=[] embs=K.embeddings(RR)[1] temp=db('select weq1 from N1k ORDER BY N,eta') %time for r in range(len(temp)): A=temp[r][0] A1=eval(A) B=ap_comp(EllipticCurve(K,eval(A))) C=[embs(f) for f in A1] IO.append(B) NH.append(C) print r db.N1k.update({'a_p':str(B).replace(' ',''), 'remove': str(C).replace(' ','')},weq1=A) /// WARNING: Output truncated! full_output.txt 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 ... 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 CPU time: 511.79 s, Wall time: 636.48 s }}} {{{id=211| db.N1k.find_one()['remove'] /// u'[1.00000000000000,2.61803398874989,1.61803398874989,1.61803398874989,0.000000000000000]' }}} {{{id=213| db.N1k.find_one()['a_p'] /// u"[-3,-2,2,-4,4,4,-4,-2,-2,'?','?',-6,-6,2,-4,12,-2,6,-8,0,16,0,10,-6]" }}} {{{id=215| list(db.N1k.find(remove=str(NH[0]).replace(' ',''))) /// [{u'cond1': u'5*a-2', u'cond2': u'-5*a+3', u'ordD': u'1', u'ordj': u'1', u'adj': u'matrix(6,[0,2,0,0,0,0,2,0,2,2,0,0,0,2,0,0,2,2,0,2,0,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0])', u'a_p': u"[-3,-2,2,-4,4,4,-4,-2,-2,'?','?',-6,-6,2,-4,12,-2,6,-8,0,16,0,10,-6]", u'K': u'I1', u'L': 0.35992895949803944, u'N': 31, u'rhi': 0, u'c_p': u'1', u'T': 8, u'omega': 51.50883971253662, u'weq2': u'[1,-a-1,a,0,0]', u'weq1': u'[1,a+1,a,a,0]', u'remove': u'[1.00000000000000,2.61803398874989,1.61803398874989,1.61803398874989,0.000000000000000]', u'rlow': 0, u's': u'+,-', u'eta': 63, u'real1': 6.1043463067145165, u'found': u'J', u'real2': 8.4380598878997297}] }}} {{{id=198| IO=sorted(IO) /// }}} {{{id=199| NH=sorted(NH) /// }}} {{{id=209| str(IO[0]).replace(' ','') /// '[-4,-3,-2,-3,0,-7,2,-6,6,-4,-4,12,-3,5,0,3,-1,-10,-3,-12,-10,-10,12,0]' }}} {{{id=210| for r in range(len(IO)): db.N1k.update({'R': int(r)}, a_p=str(IO[r]).replace(' ','')) /// }}} {{{id=216| for s in range(len(NH)): db.N1k.update({'U': int(s)}, remove=str(NH[s]).replace(' ','')) /// }}} {{{id=217| db.N1k.columns() /// [u'cond1', u'cond2', u'K', u'ordD', u'L', u'N', u'rhi', u'c_p', u'T', u'omega', u'ordj', u'weq2', u'weq1', u'rlow', u's', u'eta', u'real1', u'found', u'real2', u'adj', u'remove', u'a_p', u'R', u'U'] }}} {{{id=218| db.N1k.find_one()['R'] /// 34 }}} {{{id=221| test=db('select weq1,omega from N1k order by N') for r in range(len(test)): O=1/float(test[r][1]) db.N1k.update({'V': float(O)},weq1=test[r][0]) /// }}} {{{id=219| temp=db('select N,cond1,cond2,weq1,weq2,rlow,rhi,T,s,ordD,ordj,c_p,K,L,real1,real2,omega, adj, found from N1k ORDER BY N,eta,R,V,U') /// }}} {{{id=223| temp=db('select N,eta,R,V,U, weq1 from N1k ORDER BY N,eta,R,V,U') /// }}} {{{id=222| N=0 lastchar1=ord('a') L=1 lastchar2=ord('a') test=[] for s in range(len(temp)): A=temp[s] if temp[s][0] != temp[s-1][0]: #this instance is a curve with a new norm than the previous entry N=int(temp[s][0]) lastchar1=ord('a') L=ord('a') lastchar2=1 else: if temp[s][1]==temp[s-1][1]: if temp[s][2]==temp[s-1][2]: lastchar2+=1 else: L+=1 lastchar2=1 else: lastchar1+=1 L=ord('a') lastchar2=1 i_lbl=str(N)+chr(lastchar1) l_lbl=chr(L)+str(lastchar2) print i_lbl, l_lbl, temp[s][5] #db.N1k.update({'i_lbl': i_lbl, 'l_lbl': l_lbl}, weq1=temp[s][5]) /// WARNING: Output truncated! full_output.txt 31a a1 [1,a+1,a,a,0] 31a a2 [a,-1,a+1,-17*a-11,39*a+24] 31a a3 [a+1,-a-1,a+1,-1788*a-1105,44001*a+27194] 31a a4 [1,a+1,a,41*a-70,170*a-276] 31a a5 [1,a+1,a,31*a-75,141*a-303] 31a a6 [a,a,a+1,32197*a-52096,3319586*a-5371204] 36a a1 [a+1,a,a,0,0] 36a a2 [a+1,a,a,-10*a-10,10*a+10] 36a a3 [a+1,a,a,-165*a-165,-1683*a-1221] 36a a4 [a+1,a,a,-5*a-5,-51*a-37] 41a a1 [0,-a,a,0,0] 41a a2 [0,-a,a,10*a-40,31*a-113] 45a a1 [1,1,1,-80,242] 45a a2 [1,1,1,-5,2] 45a a3 [1,1,1,0,0] 45a a4 [1,1,1,-10,-10] 45a a5 [1,1,1,-135,-660] 45a a6 [1,1,1,35,-28] 45a a7 [1,1,1,-2160,-39540] 45a a8 [1,1,1,-110,-880] 45a a9 [1,a,a+1,-4976733*a-3075797,-6393196918*a-3951212998] 45a a10 [a,a+1,1,-4364*a-7739,-255406*a-296465] 49a a1 [0,-a+1,1,1,0] 49a a2 [0,-a+1,1,-30*a-29,-102*a-84] 55a a1 [1,-a+1,1,-a,0] 55a a2 [1,-a+1,1,-6*a-5,10*a+6] 55a a3 [a,-a,1,-699*a-432,10856*a+6709] 55a a4 [a+1,0,a+1,94*a-156,-538*a+870] 55a a5 [1,-a+1,1,-21*a-25,-54*a-58] 55a a6 [1,-a+1,1,-26*a-15,-70*a-44] 55a a7 [1,-a+1,1,54*a,-374*a-198] 55a a8 [a+1,0,a+1,599*a-1006,8816*a-14217] 64a a1 [0,a-1,0,-a,0] 64a a2 [0,-a,0,11*a-16,-17*a+27] 64a a3 [0,a-1,0,-11*a-5,17*a+10] 64a a4 [0,a-1,0,-6*a-5,-11*a-7] 64a a5 [0,-a,0,106*a-171,647*a-1050] 64a a6 [0,a-1,0,-106*a-65,-647*a-403] 71a a1 [a,a+1,a,a,0] 71a a2 [a,a+1,a,6*a-5,-2*a+7] 71a a3 [a,a+1,a,-14*a-5,-42*a-27] 71a a4 [a,a+1,a,-4*a-20,-37*a-39] 76a a1 [a+1,0,1,-a-1,0] 76a a2 [a+1,0,1,4*a+4,8*a-2] 76a a3 [a+1,0,1,44*a-196,264*a-1122] 76a a4 [a,0,1,54685*a-90021,7490886*a-12144063] 76a b1 [1,0,a,a-2,-a+1] 76a b2 [a,0,a,-134*a-80,-903*a-561] 79a a1 [a+1,a-1,a,0,0] 79a a2 [a+1,a-1,a,5*a-10,5*a-10] 79a a3 [a,-a,a+1,687*a-1115,10565*a-17095] 79a a4 [a+1,a-1,a,-5*a-15,-19*a-29] 80a a1 [0,1,0,-1,0] 80a a2 [0,1,0,-5*a-11,17*a-1] 80a a3 [0,1,0,5*a-16,-17*a+16] 80a a4 [0,1,0,4,4] 80a a5 [0,1,0,-41,-116] 80a a6 [0,-a-1,0,2025*a-3281,52269*a-84572] 80a a7 [0,a+1,0,-2023*a-1257,-54293*a-33560] ... 899b a2 [a+1,a+1,1,-5*a-4,-8*a-3] 900a a1 [a+1,-a-1,1,-93*a-93,-525*a-394] 900a a2 [a+1,-a-1,1,7*a+7,-45*a-34] 900a a3 [a+1,-a-1,1,-1668*a-1668,47355*a+35516] 900a a4 [a+1,-a-1,1,-68*a-68,1275*a+956] 900a a5 [a+1,-a-1,1,-26668*a-26668,3007355*a+2255516] 900a a6 [a+1,-a-1,1,-343*a-343,3875*a+2906] 900a a7 [a+1,-a-1,1,-2268*a-2268,10875*a+8156] 900a a8 [a+1,-a-1,1,-1443*a-1443,-37245*a-27934] 900a b1 [1,0,0,-28,272] 900a b2 [1,0,0,-828,9072] 900a b3 [1,0,0,-53,-153] 900a b4 [1,0,0,-3,-3] 905a a1 [0,-a,a+1,-7*a-3,12*a+10] 905a a2 [0,-a,a+1,213*a-463,1401*a-4842] 905a b1 [0,-a+1,a+1,0,-a] 905a c1 [a+1,-a+1,0,-5*a-14,12*a+11] 905a c2 [a+1,-a+1,0,-4,a-6] 905a c3 [a+1,-a+1,0,1,0] 905a c4 [a+1,-a+1,0,5*a-74,34*a-287] 909a a1 [a,-a+1,1,0,0] 916a a1 [a+1,-a,a,1,0] 919a a1 [a,0,a+1,-a-1,-a] 919a a2 [a,0,a+1,-a+4,7*a-13] 919a b1 [a,a,0,a,0] 919a b2 [a,a,0,-4*a,-6*a-5] 931a a1 [0,-a-1,1,-4*a-2,10*a+6] 944a a1 [0,-a-1,0,-a+1,0] 944a a2 [0,-a-1,0,4*a-4,-4*a] 956a a1 [a+1,-a+1,a+1,3*a-8,-4*a+5] 956a b1 [a,1,1,-2*a-3,a+1] 956a c1 [1,-1,1,85*a-139,434*a-702] 956a c2 [a,-a-1,1,-a-2,-1] 961a a1 [0,a,1,2,a-2] 961b a1 [a+1,-a,0,7*a-23,-24*a+20] 961b a2 [1,0,0,-594*a-390,-8580*a-5345] 961b a3 [a+1,-a,0,1017*a-1853,21096*a-35088] 961b a4 [a,0,0,-66265*a-40952,-9832128*a-6076598] 961b a5 [a+1,-a,0,652*a-2048,27054*a-32629] 961b a6 [1,a,a+1,834227*a-1349799,438442396*a-709414712] 961b b1 [0,-a-1,1,-1,2*a+1] 961b c1 [0,-a,1,-42*a-53,-192*a-140] 964a a1 [a,a,a,-a-1,-2*a+1] 964a b1 [a+1,a-1,a,-4*a-1,a] 964a b2 [a+1,a-1,a,-9*a-16,-32*a-29] 964a b3 [a,-a,a+1,2682*a-4688,86629*a-142543] 964a c1 [a+1,-1,1,-2,-a+1] 971a a1 [a+1,0,a+1,9*a-17,-19*a+29] 971a a2 [1,-a+1,1,-84*a-52,-434*a-263] 979a a1 [a+1,-a+1,a,-2*a-2,a-1] 979a a2 [a+1,-a+1,a,3*a-7,6] 980a a1 [1,-1,1,-88,317] 980a a2 [1,-1,1,-18,-19] 980a a3 [1,-1,1,2,-3] 980a a4 [1,-1,1,-268,-1619] 991a a1 [a+1,1,1,0,0] 991a b1 [a,1,a,-3*a-3,2*a] 991a b2 [1,-a-1,a+1,69*a-112,327*a-530] 995a a1 [a,-1,1,-1,0] 995a a2 [a,-1,1,5*a-16,16*a-18] }}} {{{id=224| len(list(db.N1k.find(l_lbl='f1'))) /// 1 }}} {{{id=227| temp=db('select R,weq1,rlow,rhi from N1k WHERE l_lbl LIKE "_1" ORDER BY N') for r in range(len(temp)): if temp[r][2] == temp[r][3]: db.curves.insert({'rank':int(temp[r][2]), 'weq1':temp[r][1], 'value': int(temp[r][0])}) /// }}} {{{id=230| temp=db('select R,weq1 from N1k ORDER BY N') for r in range(len(temp)): A=temp[r][0] B=db.curves.find_one(value=A)['rank'] db.N1k.update({'rank': int(B)}, weq1=temp[r][1]) /// }}} {{{id=231| temp=db('select N,rank,weq1 from N1k ORDER BY N,eta,R,V,U') /// }}} {{{id=232| for r in range(len(temp)): print temp[r] /// WARNING: Output truncated! full_output.txt (31, 0, u'[1,a+1,a,a,0]') (31, 0, u'[a,-1,a+1,-17*a-11,39*a+24]') (31, 0, u'[a+1,-a-1,a+1,-1788*a-1105,44001*a+27194]') (31, 0, u'[1,a+1,a,41*a-70,170*a-276]') (31, 0, u'[1,a+1,a,31*a-75,141*a-303]') (31, 0, u'[a,a,a+1,32197*a-52096,3319586*a-5371204]') (36, 0, u'[a+1,a,a,0,0]') (36, 0, u'[a+1,a,a,-10*a-10,10*a+10]') (36, 0, u'[a+1,a,a,-165*a-165,-1683*a-1221]') (36, 0, u'[a+1,a,a,-5*a-5,-51*a-37]') (41, 0, u'[0,-a,a,0,0]') (41, 0, u'[0,-a,a,10*a-40,31*a-113]') (45, 0, u'[1,1,1,-80,242]') (45, 0, u'[1,1,1,-5,2]') (45, 0, u'[1,1,1,0,0]') (45, 0, u'[1,1,1,-10,-10]') (45, 0, u'[1,1,1,-135,-660]') (45, 0, u'[1,1,1,35,-28]') (45, 0, u'[1,1,1,-2160,-39540]') (45, 0, u'[1,1,1,-110,-880]') (45, 0, u'[1,a,a+1,-4976733*a-3075797,-6393196918*a-3951212998]') (45, 0, u'[a,a+1,1,-4364*a-7739,-255406*a-296465]') (49, 0, u'[0,-a+1,1,1,0]') (49, 0, u'[0,-a+1,1,-30*a-29,-102*a-84]') (55, 0, u'[1,-a+1,1,-a,0]') (55, 0, u'[1,-a+1,1,-6*a-5,10*a+6]') (55, 0, u'[a,-a,1,-699*a-432,10856*a+6709]') (55, 0, u'[a+1,0,a+1,94*a-156,-538*a+870]') (55, 0, u'[1,-a+1,1,-21*a-25,-54*a-58]') (55, 0, u'[1,-a+1,1,-26*a-15,-70*a-44]') (55, 0, u'[1,-a+1,1,54*a,-374*a-198]') (55, 0, u'[a+1,0,a+1,599*a-1006,8816*a-14217]') (64, 0, u'[0,a-1,0,-a,0]') (64, 0, u'[0,-a,0,11*a-16,-17*a+27]') (64, 0, u'[0,a-1,0,-11*a-5,17*a+10]') (64, 0, u'[0,a-1,0,-6*a-5,-11*a-7]') (64, 0, u'[0,-a,0,106*a-171,647*a-1050]') (64, 0, u'[0,a-1,0,-106*a-65,-647*a-403]') (71, 0, u'[a,a+1,a,a,0]') (71, 0, u'[a,a+1,a,6*a-5,-2*a+7]') (71, 0, u'[a,a+1,a,-14*a-5,-42*a-27]') (71, 0, u'[a,a+1,a,-4*a-20,-37*a-39]') (76, 0, u'[a+1,0,1,-a-1,0]') (76, 0, u'[a+1,0,1,4*a+4,8*a-2]') (76, 0, u'[a+1,0,1,44*a-196,264*a-1122]') (76, 0, u'[a,0,1,54685*a-90021,7490886*a-12144063]') (76, 0, u'[1,0,a,a-2,-a+1]') (76, 0, u'[a,0,a,-134*a-80,-903*a-561]') (79, 0, u'[a+1,a-1,a,0,0]') (79, 0, u'[a+1,a-1,a,5*a-10,5*a-10]') (79, 0, u'[a,-a,a+1,687*a-1115,10565*a-17095]') (79, 0, u'[a+1,a-1,a,-5*a-15,-19*a-29]') (80, 0, u'[0,1,0,-1,0]') (80, 0, u'[0,1,0,-5*a-11,17*a-1]') (80, 0, u'[0,1,0,5*a-16,-17*a+16]') (80, 0, u'[0,1,0,4,4]') (80, 0, u'[0,1,0,-41,-116]') (80, 0, u'[0,-a-1,0,2025*a-3281,52269*a-84572]') (80, 0, u'[0,a+1,0,-2023*a-1257,-54293*a-33560]') ... (899, 1, u'[a+1,a+1,1,-5*a-4,-8*a-3]') (900, 0, u'[a+1,-a-1,1,-93*a-93,-525*a-394]') (900, 0, u'[a+1,-a-1,1,7*a+7,-45*a-34]') (900, 0, u'[a+1,-a-1,1,-1668*a-1668,47355*a+35516]') (900, 0, u'[a+1,-a-1,1,-68*a-68,1275*a+956]') (900, 0, u'[a+1,-a-1,1,-26668*a-26668,3007355*a+2255516]') (900, 0, u'[a+1,-a-1,1,-343*a-343,3875*a+2906]') (900, 0, u'[a+1,-a-1,1,-2268*a-2268,10875*a+8156]') (900, 0, u'[a+1,-a-1,1,-1443*a-1443,-37245*a-27934]') (900, 0, u'[1,0,0,-28,272]') (900, 0, u'[1,0,0,-828,9072]') (900, 0, u'[1,0,0,-53,-153]') (900, 0, u'[1,0,0,-3,-3]') (905, 1, u'[0,-a,a+1,-7*a-3,12*a+10]') (905, 1, u'[0,-a,a+1,213*a-463,1401*a-4842]') (905, 1, u'[0,-a+1,a+1,0,-a]') (905, 0, u'[a+1,-a+1,0,-5*a-14,12*a+11]') (905, 0, u'[a+1,-a+1,0,-4,a-6]') (905, 0, u'[a+1,-a+1,0,1,0]') (905, 0, u'[a+1,-a+1,0,5*a-74,34*a-287]') (909, 1, u'[a,-a+1,1,0,0]') (916, 1, u'[a+1,-a,a,1,0]') (919, 1, u'[a,0,a+1,-a-1,-a]') (919, 1, u'[a,0,a+1,-a+4,7*a-13]') (919, 0, u'[a,a,0,a,0]') (919, 0, u'[a,a,0,-4*a,-6*a-5]') (931, 1, u'[0,-a-1,1,-4*a-2,10*a+6]') (944, 0, u'[0,-a-1,0,-a+1,0]') (944, 0, u'[0,-a-1,0,4*a-4,-4*a]') (956, 1, u'[a+1,-a+1,a+1,3*a-8,-4*a+5]') (956, 1, u'[a,1,1,-2*a-3,a+1]') (956, 0, u'[1,-1,1,85*a-139,434*a-702]') (956, 0, u'[a,-a-1,1,-a-2,-1]') (961, 1, u'[0,a,1,2,a-2]') (961, 1, u'[a+1,-a,0,7*a-23,-24*a+20]') (961, 1, u'[1,0,0,-594*a-390,-8580*a-5345]') (961, 1, u'[a+1,-a,0,1017*a-1853,21096*a-35088]') (961, 1, u'[a,0,0,-66265*a-40952,-9832128*a-6076598]') (961, 1, u'[a+1,-a,0,652*a-2048,27054*a-32629]') (961, 1, u'[1,a,a+1,834227*a-1349799,438442396*a-709414712]') (961, 1, u'[0,-a-1,1,-1,2*a+1]') (961, 0, u'[0,-a,1,-42*a-53,-192*a-140]') (964, 1, u'[a,a,a,-a-1,-2*a+1]') (964, 0, u'[a+1,a-1,a,-4*a-1,a]') (964, 0, u'[a+1,a-1,a,-9*a-16,-32*a-29]') (964, 0, u'[a,-a,a+1,2682*a-4688,86629*a-142543]') (964, 1, u'[a+1,-1,1,-2,-a+1]') (971, 0, u'[a+1,0,a+1,9*a-17,-19*a+29]') (971, 0, u'[1,-a+1,1,-84*a-52,-434*a-263]') (979, 1, u'[a+1,-a+1,a,-2*a-2,a-1]') (979, 1, u'[a+1,-a+1,a,3*a-7,6]') (980, 0, u'[1,-1,1,-88,317]') (980, 0, u'[1,-1,1,-18,-19]') (980, 0, u'[1,-1,1,2,-3]') (980, 0, u'[1,-1,1,-268,-1619]') (991, 1, u'[a+1,1,1,0,0]') (991, 0, u'[a,1,a,-3*a-3,2*a]') (991, 0, u'[1,-a-1,a+1,69*a-112,327*a-530]') (995, 1, u'[a,-1,1,-1,0]') (995, 1, u'[a,-1,1,5*a-16,16*a-18]') }}} {{{id=233| def regulator_new(E,rank,sat_bound): if rank == 0: Q= 0 else: v = E.simon_two_descent() Q = v[-1][0] for p in prime_range(sat_bound): if len(Q.division_points(p)) != 0: Q = Q.division_points(p)[0] print Q if Q== 0: return int(1), [] else: return Q.height()/2, [Q] def conjectural_sha(E, omega, reg=1, Lstar=1): M = E.tamagawa_product_bsd() sha = RR(sqrt(5))*Lstar*(E.torsion_order())^2/((omega)*reg*M) return sha def comp(weq,lstar,rank,omega): E=EllipticCurve(K,eval(weq)) R=regulator_new(E,rank,10) if R[0] <= 0: return R[0], 'error with regulator' else: Sha=conjectural_sha(E,omega,R[0],lstar) return R[0],Sha /// }}} {{{id=237| %time broken=[] temp=db('select weq1,L,rank,omega from N1k') for r in range(len(temp)): try: reg,S=comp(temp[r][0], temp[r][1], temp[r][2], temp[r][3]) if S>=.5: db.N1k.update({'Sha': float(S), 'Reg': float(reg)}, weq1=temp[r][0]) else: broken.append((temp[r][0], reg, S)) except IndexError: broken.append(temp[r][0]) print 'Error with code' except ValueError: broken.append(temp[r][0]) print 'Error with code' print r /// WARNING: Output truncated! full_output.txt 0 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 0 ... (1 : -2*a - 1 : 1) 836 (-3*a + 5 : -8*a + 12 : 1) 837 (a : 0 : 1) 838 (2*a + 1 : -4*a + 4 : 1) 839 (190*a + 115 : -3964*a - 2448 : 1) 840 (-401/4*a - 241/4 : 321/4*a + 401/8 : 1) Error with code 841 (296344/3481*a + 82216/3481 : -207490804/205379*a - 127038812/205379 : 1) 842 (-127/4*a + 259/4 : 1025/4*a - 3589/8 : 1) 843 (353*a - 2281/4 : -177*a + 2277/8 : 1) Error with code 844 0 845 0 846 0 847 0 848 (-a + 1 : 0 : 1) 849 (-2*a + 1 : 2*a - 1 : 1) 850 0 851 0 852 (1/2*a - 5/4 : -5/4*a + 1/8 : 1) 853 (-a : -1 : 1) 854 0 855 0 856 0 857 0 858 (0 : 0 : 1) 859 0 860 0 861 (0 : 0 : 1) 862 (7/4*a - 5/4 : -1/4*a - 11/8 : 1) Error with code 863 CPU time: 719.36 s, Wall time: 59854.40 s }}} {{{id=246| broken /// [u'[0,1,1,-131,-650]', u'[1,-1,1,-91,-310]', u'[1,-1,1,-1,-14]', u'[1,-a+1,a+1,-673*a-421,10173*a+6278]', u'[1,0,a,-11*a-11,26*a+12]', u'[a,-a+1,1,-38*a-21,126*a+79]', u'[0,a-1,0,-a-1,1]', u'[0,a-1,0,-6*a-1,-7*a-3]', (u'[a+1,-1,a+1,-a-2,-a]', 0.579570145115302, 0.250000000000000), u'[a,a,a,a-1,0]', u'[a,a,a,101*a-171,-638*a+1018]', u'[a,a,1,11*a-16,18*a-28]', u'[1,1,a+1,282*a-459,2862*a-4634]', u'[a+1,-1,1,-235*a-145,2010*a+1241]', u'[a+1,a,a+1,-53*a-32,162*a+100]', u'[a,-a-1,0,-1422*a-878,-29934*a-18511]', u'[a+1,1,a+1,1422*a-2301,31356*a-50746]', (u'[a+1,-a-1,a+1,-a-2,0]', 0.352201582942263, 0.250000000000000), u'[a,-a-1,a+1,-46*a-31,-159*a-88]', u'[1,-1,a+1,271*a-438,-2634*a+4258]', (u'[a+1,-1,a+1,2*a-8,-7*a+10]', 0.0568700936907514, 0.444444444444423), u'[a,a+1,a,-52*a-32,164*a+102]', u'[0,0,0,-1023*a-727,-19856*a-12626]', u'[0,0,0,-63*a-7,-480*a-306]', u'[a,-a-1,a,-32*a-17,-78*a-48]', u'[0,0,1,-270,-1708]', u'[1,0,a+1,4*a-5,7*a-15]', u'[1,-a+1,a+1,-43*a-22,150*a+97]', u'[1,-a+1,a,-12*a-5,-19*a-11]', u'[0,1,a,-3,a-1]', u'[1,0,a+1,-38*a-27,-143*a-91]', u'[1,a-1,0,-4*a+8,7*a-10]', u'[a,-a-1,a,5*a-6,4*a-7]', u'[1,0,0,4,1]', u'[a,a-1,a+1,-97*a-80,588*a+337]', u'[0,-a,a+1,213*a-463,1401*a-4842]', u'[a,0,0,-66265*a-40952,-9832128*a-6076598]', u'[1,a,a+1,834227*a-1349799,438442396*a-709414712]', (u'[a+1,-a+1,a,-2*a-2,a-1]', 0.895769426538203, 0.250000000000000), u'[a,-1,1,5*a-16,16*a-18]'] }}} {{{id=256| db.N1k.columns() /// [u'cond1', u'cond2', u'K', u'ordD', u'L', u'N', u'rhi', u'c_p', u'T', u'omega', u'ordj', u'weq2', u'weq1', u'rlow', u's', u'eta', u'real1', u'found', u'real2', u'adj', u'remove', u'a_p', u'R', u'U', u'V', u'l_lbl', u'i_lbl', u'rank', u'Sha', u'Reg'] }}} {{{id=257| temp=db('select N,cond1,cond2,weq1, weq2, rank,T,s,ordD,ordj,c_p, K, real1,real2,omega,L,Reg,Sha,adj,found,i_lbl,l_lbl, eta,R,V,U from N1k ORDER BY N,eta,R,V,U') /// }}} {{{id=259| len(temp) /// 864 }}} {{{id=264| db2.N1k.delete() /// }}} {{{id=261| db2=nosqlite.Client('/home/psharaba/ECdb').db for r in range(len(temp)): A=temp[r] db2.N1k.insert({'N':int(A[0]), 'cond1': A[1], 'cond2': A[2], 'weq1': A[3], 'weq2': A[4], 'rank': int(A[5]), 'T': int(A[6]), 's': A[7], 'ordD': A[8], 'ordj': A[9], 'c_p': A[10], 'K': A[11], 'real1': float(A[12]), 'real2': float(A[13]), 'omega': float(A[14]), 'L': float(A[15]), 'Reg': A[16], 'Sha': A[17], 'adj': A[18], 'found': A[19], 'a_lbl': A[20], 'b_lbl': A[21], 'eta': int(A[22]), 'R': int(A[23]), 'V': int(A[24]), 'U': int(A[25])}) /// }}} {{{id=262| db2.N1k.count() /// (864,) }}} {{{id=263| /// }}}