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ABSTRACT. The aim of the present paper is to give evidence, largely numerical, in
support of the non-commutative main conjecture of Iwasawa theory for the motive of
a primitive modular form of weight & > 2 over the Galois extension of Q obtained
by adjoining to Q all p-power roots of unity, and all p-power roots of a fixed integer
m > 1. The predictions of the main conjecture are rather intricate in this case because
there is more than one critical point, and also there is no canonical choice of periods.
Nevertheless, our numerical data agrees perfectly with all aspects of the main conjecture,
including Kato’s mysterious congruence between the cyclotomic Manin p-adic L-function,
and the cyclotomic p-adic L-function of a twist of the motive by a certain non-abelian
Artin character of the Galois group of this extension.

1. INTRODUCTION

Let z be a variable in the upper half complex plane, and put ¢ = e*™*. Let

(1) f(2) =) anq",
n=1

be a primitive cusp form of conductor N (in the sense of [18]), with trivial character,
and weight £ > 2. For simplicity, we shall always assume that the Fourier coefficients
a, (n > 1) of f are in Q. Let p be an odd prime number. The aim of the present paper
is to provide some evidence, largely numerical, for the validity of the non-commutative
main conjecture of Iwasawa theory for the motive M (f) attached to f over the p-adic Lie
extension

I = Q(,upoo,ml/pn,n =1,2,...),

which is obtained by adjoining to Q the group p,~ of all p-power roots of unity, and
all p-power roots of some fixed integer m > 1. In this case, the analytic continuation
and functional equation for the complex L-function L(f, ¢, s) of f twisted by any Artin
character ¢ of the Galois group of F,, over Q are well-known consequences of the theory
of automorphic base change. The points s = 1,...,k—1 are critical for all of the complex
L-functions L(f, ¢, s), and we show that essentially the same arguments as in [1] enable
one to prove the expected algebraicity statement at these points. Moreover, these values
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are all non-zero, except perhaps for the central value s = k/2; in particular, there is
always at least one non-zero critical value since k > 2.

In [2], a precise main conjecture was formulated for an elliptic curve over any p-adic
Lie extension of a number field F' containing the cyclotomic Z,-extension of F', and under
the assumption that the elliptic curve is ordinary at the prime p. This was generalized
to arbitrary ordinary motives in [8], and it is a special case of the main conjecture of
[8] which we consider here. Thus we assume that p is an odd prime number such that
(p,a,) = (p, N) = 1. One of the underlying ideas of the non-commutative main conjecture
is to prove the existence of a p-adic L-function, which interpolates a canonical normal-
ization of the critical values L(f, ¢,n), where n =1,...,k — 1, and ¢ runs over all Artin
representations of the Galois group

G = Gal(F/Q).

We denote these normalized L-values by L5™(f, ¢,n) (for the precise definition, see for-
mulae (68), (69) and (71) in §5). The definition of these normalized L-values requires
making a choice of canonical periods for the form f, and, until such a time as the main
conjectures of non-commutative Iwasawa theory are fully proven, we are only able to make
an educated guess at present as to what these canonical periods should be. However, as
we explain in §5, Manin’s work on the construction of the p-adic L-function for our mod-
ular form f over the field Q(gup~) gives some information about these canonical periods,
which is relevant for our numerical examples.

As we explain in more detail in §5, the existence of a p-adic L-function attached to f over
the non-abelian extension F, of Q, when combined with the work of Kato [14], implies the
existence of the following mysterious congruence between two p-adic L-functions attached
to f over certain abelian sub-extensions of F,/Q. We are very grateful to M. Kakde for
explaining to us how this congruence follows from Kato’s work. Let o denote the (p —1)-
dimensional representation of GG given by the direct sum of the irreducible representations
of Gal(Q(u,)/Q). Let p be the unique irreducible representation of dimension p — 1 of
the Galois group of the field

F= @(va ml/p)
over Q, where we now assume that m > 1 is p-power free. Write Q% for the cyclotomic
Z,-extension of Q, and = for the group of irreducible characters of finite order of I' =
Gal(Q¥°/Q). Further, let y, denote the character giving the action of Gal(Q/Q) on p,e.

We fix a topological generator «y of I', and put u = x,(7). The work of Manin [16] proves
that there exists a unique power series H (o, T) in the ring R = Z,[[T]] such that

(2) H(a,zﬂ(v)ur - 1) = ‘C;an(fa U¢>k/2+7n)>

for all ¢ in =, and all integers r with —k/2+ 1 < r < k/2 — 1. On the other hand, the
conjectural existence of a good p-adic L-function for f over the field F,, would imply, in
particular, the existence of a power series H(p,T) in the ring R such that

(3) H(p,p()u" = 1) = LZ(f, p0, k/2 + 1),
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for all ¢ in Z, and all integers r with —k/2+ 1 < r < k/2 — 1. Then Kato’s work [14]
implies the following conjectural congruence between formal power series

(4) H(p,T)= H(o,T) mod pR.

This conjectural congruence in R has the following consequences for our critical L-values.
Firstly, on evaluation of our power series at the relevant point in pZ,, we deduce from (2)
and (3) that the congruence

(5) L(f, p,n) = L(f, 0,n) mod pZ,
should hold for n =1,...,k — 1. Secondly, if we assume the additional property that

(6) L(f,0,k/2) = L(f,p,k/2) = 0,

then we would have that H(p,T) and H(o,T') both belong to the ideal TR. It is then
clear from (2), (3) and (4) that the stronger congruence

7) L5 (f.p.m) = £5°(f,0.n) mod p°Z,
should hold forn=1,...,k — 1.

Our numerical computations (see §6) verify the first congruence (5) for the prime p = 3
and a substantial range of cube free integers m > 1, for three forms f of weight 4 and
conductors 5, 7, 121, and one form f of weight 6 and conductor 5, all of which are ordinary
at 3. These computations require us to determine numerically the Fourier coefficients a,,
of these forms f for n in the range 1 < n < 108. In addition, for the two forms of
weight 4 and conductors 7 and 121, we prove that (6) holds for all integers m > 1,
and happily, our numerical results show that the sharper congruence (7) holds for these
two forms and the prime p = 3 for a good range of cube free integers m > 1. When
f is a complex mutliplication form, some cases of the congruence (4) have already been
established theoretically by Delbourgo and Ward [3] and Kim [15]. However, when f is
not a complex multiplication form, our numerical data seems to provide the first hard
evidence in support of the mysterious non-abelian congruence (4) between abelian p-adic
L-functions.

We warmly thank T. Bouganis, M. Kakde, and D. Kim for very helpful advice on the
writing of this paper.
2. ALGEBRAICITY OF L-VALUES

As in the Introduction, let f given by (1) be a primitive cusp form of conductor N > 1
with trivial character and weight £ > 2 (thus k is necessarily even). For simplicity, we
always assume that the Fourier coefficients a, (n > 1) of f belong to @. The complex
L-function attached to f is

(8) L(f,5) = an/n".
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This L-function has the following Euler product. For any prime p, let
(9) 7, + Gal(Q/Q) — Autg, (V})

be the p-adic Galois representation attached to f; here V,, is a two dimensional vector
space over the field Q, of p-adic numbers. If ¢ is any prime distinct from p, define the
polynomial

(10) Py(f,X) = det(1 — 7,(Frob, ") X | VJa),

where I, is the inertial subgroup of the decomposition group of any fixed prime of Q above
¢, and Frob, denote the Frobenius automorphism of q. Moreover, if (¢, N) = 1, we have

(11) Py(f, X) =1 —a,X +¢"' X2
Then
(12) L(f,s) =[] Pu(fr )™

when Re(s) > 1+ (k — 1)/2. Defining
(13) A(f.5) = N*/2(2m) T (s) L(f, 5),
we know, since Hecke, that A(f,s) is entire and satisfies the functional equation

(14) A(.fa 3) = w(f)A(f7k_ S)

where w(f) = £1 is the sign in the functional equation. The critical values of L(f,s) are
at the points s = 1,...,k — 1. Following Shimura [23], [24], we introduce the following
naive periods for f, which we have normalized in view of our later numerical calculations.

Define
(15) Q_(f) = iw(f)(2m) " L(f,1).

Since the Euler product for L(f,s) converges to a positive real number when s is real
and s > 1+ (k —1)/2, it is clear from the functional equation (14), that Q_(f) is
purely imaginary in the upper half plane. Motivated again by numerical calculations, we
assume throughout the following simplifying hypothesis (see [7] for examples in which this
hypothesis fails).

Hypothesis H1: L(f,2) # 0 when k = 4.
We then define
(16) QL (f) = w(f)(2m)* L(f.2).

Again, Q. (f) is always a positive real number when k > 4, and presumably (it would, of
course, be implied by the generalized Riemann Hypothesis) this remains true even when
k = 4, although this value is outside the region of convergence of the Euler product.
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Theorem 2.1. (See [23],[24]) (i) If n is an odd integer such that 1 < n <k — 1, then
(2mi) " L(f,n)/Q2-(f) € Q;

(i) If n is an even integer such that 1 <n <k —1, then

(2mi) " L(f,n) /021 (f) € Q@

In what follows, we shall mainly be interested in the L-functions of f twisted by Artin
characters. We rapidly recall the definitions of these L-functions. By an Artin represen-
tation, we mean a homomorphism

(17) ¢ : Gal(Q/Q) — Autg(W)

which factors through the Galois group of a finite extension of Q; here W is a vector space
of finite dimension over Q. Put

d(¢) = dimg(W).
For each prime p, let

Mp(f) = Vp XQ, @IH Mp<¢) =W ®Q @zr

Then

(18) L(f,¢,5) =TLR/(f. 9, ¢ ),

where

(19) Py(f, 6, X) = det (1 — Frob, ' X) | (M,(f) ®g, Mp(¢))") (4 # p)

is the Euler product attached to the tensor product Galois representation M,(f) R®g,
M,(¢). The Euler product (18) converges in the region Re(s) > 1+ (k —1)/2. It is one of
the fundamental problems of number theory to prove the analytic continuation and the
following conjectural functional equation for L(f, ®,s). Let N(f, ¢) be the conductor of
the family of p-adic representations M, (f) ®g, M,(¢), and define

(20) A(f. 6, 8) = N(f, )% (2m) T ()" L(f. ¢, 5).
Then conjecturally
(21) A(f. b, s) = w(f, Q)A(f, b, k — s),

where w(f, ¢) is an algebraic number of complex absolute value 1, and gg is the contra-
gredient representation of ¢. There is one important case in which this result is known.

Theorem 2.2. Let K be any finite Galois extension of Q with Galois group Gal(K/Q)
abelian. Let 1 be an abelian character of K and define ¢ to be the induced character of
Gal(Q/Q). Then A(f, ¢, s) is entire and satisfies the functional equation (21).
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Proof. Since K is an abelian extension of Q, the base change of f to K, which we denote
by mx(f), exists as a cuspidal automorphic representation of GLs/K. The results of
Jacquet-Langlands then establish the analytic continuation and functional equation for
the automorphic L-function of mx(f), twisted by the abelian character ¢ of K, which
we view as a Hecke character of GL;/K. We denote this automorphic L-function by
L(mk(f),1,s). On the other hand, by the theory of base change, and the local Langlands
correspondence for GLo, L(mg(f),,s) coincides with L(f, ¢,s) defined by the Euler
product (18). This completes the proof on noting that the functional equation (21)
coincides with the automorphic functional equation. U

The following conjectural generalisation of Theorem 2.1 is folklore. Given an Artin
representation ¢ as in (17), define d* (¢) (resp. d~(¢)) to be the dimension of the subspaces
of W on which complex conjugation acts like +1, (resp. as —1). If n is any integer, we
write

(22) di(¢) =d"V"(9), d,(¢) =d"V" (9).
Conjecture 2.3. For every Artin representation ¢ of Gal(Q/Q), and all integers n =
1,...,k—1, we have

L(fv¢>n) M

(23) ((27Ti)nd(¢>) X Q+(f)d¢(¢>) x Q_ (f)dﬁ(@) e

Of course, when ¢ has dimension 1, this conjecture is a well known consequence of
the theory of higher weight modular symbols. However, as in [1], we shall study special
cases of this conjecture by using the work of Shimura [23] on the special values of Rankin
products of Hilbert modular forms for totally real number fields. Let K be an arbitrary
totally real field, which is Galois over Q, with Gal(K/Q) abelian. Take g to be any Hilbert
modular form relative to K, which corresponds to an Artin representation # of dimension
2 of Gal(Q/K). The form g has parallel weight 1 and level equal to the conductor of 4.
We denote the Artin L-series of 6 by

L(9,s) =) c(a)(Na)™,
where a runs over all integral ideals of K. Further, let L(f/K,s) be the complex L-
function attached to the restriction of the Galois representation (13) to Gal(Q/K), and

write
L(f/K,s) =) b(a)(Na)™*,

for its corresponding Dirichlet series. Since we have assumed K to be an abelian extension
of Q, the base change to K of our modular form f also exists as a primitive cusp form for
the Hilbert modular group of K. We denote this base change by fx. It has parallel weight
k, trivial character, and level dividing NOg, where Oy is the ring of integers of K. In
what follows, we will be primarily interested in the complex L-series defined by the tensor
product of the Artin representation ¢ and the Galois representation (13) of f restricted
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to Gal(Q/K). We denote this L-series by L(jx,0,s), and recall that it is defined by the
Euler product

fKu 9 S H P va ) 17
where v runs over all finite places of K, and
(24) P (fi, 0, X) = det (1 = Frob "X | (My(f) @g, Wo)")

here Wy is a two dimensional @p—vector space realizing 6, and I, is the inertial subgroup
of a place of Q above v. Of course, by the inductive property of L-functions, we also have

(25) L(§k,0,5) = L(f, ¢o, 8),

where ¢ is the Artin representation of Gal(Q/Q) induced from the representation 6 of
Gal(Q/K).

On the other hand, the classical theory of Rankin products (see [25, §4]) considers
instead the complex L-series D(fk, g, s) defined by

(26) D(fx,8,5) = La(th,25 — k+1) x Y ¢(a)b(a)N(a)™*

with a running over all integral ideals of K; here n is the least common multiple of the
levels of fx and g, ¥ is the character of g, and L,(¢,s) is the imprimitive L-series of
1 where the Euler factors at the primes dividing n have been omitted. A well-known
classical argument shows that D(fx, g, s) has the Euler product expansion

(27) fK7g7 HD fKa ) S>_1
where
(28) D, (fx, 9, X) = det (1 — Frob, ' X | (M,(f)" ®g, Wy")) -

Thus the complex L-functions L(fx, 0, s) and D(fx, g, s) coincide, except for the possible
finite set of Euler factors at places v for which

I,
(29) (M,(f) @g, Wo) ™ # (My(f)" ®g, Wy") -
To avoid this technical difficulty, we impose an additional simplifying hypothesis.

Lemma 2.4. Assume that for each prime q such that ¢* | N, that q does not divide
the conductor of the representation of Gal(Q/Q) induced from 0. Then for every prime
number p, and every finite place v of IC which does not lie above p, we have

(30) (M,(f) @5, Wa))™ = (M, ()™ ®g, (Wa)™

where I, denotes the inertial subgroup at v. In particular, D(fk,9,s) = L(fx, 0, s).
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Proof. Suppose that v lies above a prime ¢, where ¢ # p. Assume first that (¢, N) = 1.
Then I,, and hence also I,, acts trivially on M,(f), and so (30) is plain. Suppose next that
q divides N but ¢* does not divide N. Then it is well known that the image of I, hence
also that of I,, in the automorphism group of M,(f) is infinite, and that M,(f)’ has
dimension one over Qp. Clearly the same assertions remain valid if we replace I, by any
open subgroup I of I,. Thus we must have M,(f)" = M,(f)"™ for every open subgroup
I! of I,. Since some open subgroup of I, acts trivially on Wy, (30) follows immediately.
Finally, if ¢* divides N, the hypothesis of the lemma shows that I, acts trivially on Wy,
whence (30) is again clearly true.

O

Our next result relates the automorphic period of fx to the periods Q7 (f) and Q~(f).
We normalize the Petersson inner product on the space of cusp forms of level dividing
NOg for the Hilbert modular group of K as in [25] (see formula (2.7) on p. 651).

Proposition 2.5. Let K be a real abelian field, and write fx for the base change of f to
K. Then

(2md) R TBR (§p ) i
(e (f) x ()

(31) €Q,

where = [K : Q).

We shall use the following notation in the proof of this proposition. If ¢ is any abelian
character of K, write L(f/K,,s) for the primitive L-function attached to the tensor
product of 1 with the restriction of (13) to Gal(Q/K). Also, for any abelian character
of Q, we write xx for the restriction of y to Gal(Q/K).

Lemma 2.6. Let K be any real abelian extension of Q and n any abelian character of Q.
Then there exists an abelian character x of Q as follows. For all o in Gal(Q/Q), we have
(1) L(f /K X%, k/2) # 0 and L(f /K, XFnx, k/2) # 0;
(2) L(f/K,x%,s) (resp. L(f/K, Xx%nk,s)) has Euler factor equal to 1 at all places of
K where x5 (resp. x%ni) is ramified.

Proof. Let X be any finite set of primes of Q containing the primes dividing NV, the primes
dividing the conductor of 7, and the primes which ramify in K. By an important theorem
of Rohrlich [22], there exists a finite abelian extension M of Q, unramified outside ¥, such
that L(f, A\, k/2) # 0 for every abelian character A of Q that is unramified outside %, and
which does not factor through Gal(M/Q). By enlarging M if necessary, we can assume
that M D K. Let Nk be the conductor of f/K, and A M/ the relative discriminant of
M over K. Also, if € is an abelian character of K, write N(&) for its conductor. Let yx
be any abelian character of Q such that, for every prime v of K above Y, we have

(32) ord, (N (xx)) > max{ord, (A k), ord, (N (n)), ord,(Nx) }.

Such a character can always be found by taking a character of Gal(Q(u.,)/Q) for suffi-
ciently large m. Let v be any place of K above ¥, and put

t, = max{ord,(Anyk), ord,(Nk) }.
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Thanks to (32), it is clear, that for each o in Gal(Q/Q), we have
(33) ord, (N (x%)) = ord, (N (x%n)) > .

In particular, none of these characters can factor through Gal(M/K). Moreover, it is also
easily seen from (33) that

(oa (on I'U
(Mp(f) ®qQ, XK) = (Mp(f) ®qQ, XK77) =0,
whence the final assertion of the lemma is clear. O

We now prove that the left hand side of (31) is an algebraic number. Take J = K (i),
and let n be any abelian character of Q such that J is the fixed field of the kernel of 7.
Now let x be an abelian character of Q having the properties specified in Lemma 2.6, and
write x s for the restriction of x to Gal(Q/J). Note that the representation of Gal(Q/K)
induced by x; is 0 = xx & xxnk. Write g for the Hilbert modular form relative to K
which corresponds to #. Thus g has parallel weight one, and character nxx%. Moreover,
by the second assertion of Lemma 2.5, we have the exact equality of L-functions

(34) D(fK,g,S) :L(f/K7978>'

On the other hand, since K is abelian over QQ, we also have the identity

Iy

B
(35) L(f/K,0,s) = [ [ L(f. X 5)L(f xnG, ),

where (1, ..., (; denote the characters of Gal(K/Q).

The desired algebraicity assertion follows by evaluating both sides of (35) at s = k/2,
noting that this common value is non-zero by Lemma 2.6, and then applying Shimura’s
algebraicity results to each L-function. Indeed, Theorem 4.2 of [25] shows that

(2ma) 278 (F e, Fic ) Tre (Mrc X )
where 7 (nxx%) denotes the Gauss sum for the character ngx% of Gal(Q/K) (see (3.9)
)

of [25] for the definition of this Gauss sum). On the other hand, recalling that x(;(—1) #
x¢n(=1) for j =1,..., 5, it follows from [24, Theorem 1] that

(36) €qQ,

8
l;[lL(ﬁ XGj» k/2) < L(f, xn¢;, k/2)

(i) x QD0 (D) x 1T ralxGma(xnGy)

J]=

(37) €Q;

here 7g(x) denotes the usual Gauss sum of an abelian character £ of Q. Combining
(36)and (37), it follows immediately that the left hand side of (31) is an algebraic number.
Moreover, a more detailed analysis, exactly as in the proof of [1, Theorem 3.4] shows that
this algebraic number is invariant under the action of Gal(Q/Q), completing the proof of
Proposition 2.5. U
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As a first application of Proposition 2.5, we establish the following case of Conjecture
2.3.

Theorem 2.7. Assume F is an_imaginary number field with Gal(F/Q) abelian. Let 1
be any abelian character of Gal(Q/F), and let ¢ be the induced character of Gal(Q/Q).

Assume that, for every prime q such that ¢* divides N, q does not divide the conductor
of . Then Conjecture 2.3 is valid for f and ¢.

Proof. Let K be the maximal real subfield of F, and let 6 be the representation of
Gal(Q/K) induced from 1. Thus 6 is a two dimensional Artin representation of Gal(Q/K),
and we let g be the associated Hilbert modular form as above. Then, by Lemma 30,
(38) D(fK7g7‘9) :LGK?e?S) :L<f7¢78)'
But, assuming n is an integer with 1 <n <k — 1, it is shown in [25, (4.10)] that

2mi) D) g
(2mi)P 0P mfk (e fu)e

Now making use of Lemma 2.6, and noting that

d(¢) =28, d,(¢) = d, (¢) = b,

the algebraicity statement (23) follows on putting s = n in (38). This completes the proof
of Theorem 2.7. UJ

(39)

Again following the ideas of [1], we now prove a refined version of Conjecture 2.3 for
Artin representations ¢ which factor through the Galois group over QQ of the field

(40) F. = @(Mpra ml/pr);

here p is an odd prime number, > 1 is an integer, p,- is the group of p"-th roots of unity,
and m is an integer > 1. For simplicity, we shall always assume that m is not divisible by
the p-th power of an integer > 1. In order to state the refinement of (23), we first recall
the epsilon-factors of the Artin representation ¢ (for a fuller discussion, see [5, §6.2]). Fix
the Haar measure p on Q, determined by 1(Z,) = 1, and the additive character o of Q,
given by
—t\ __ 2imz/pt
alzp™)=e , forz € Z,.

Write €,(¢) for the local epsilon-factor of ¢ at the prime p, which is uniquely determined
by this choice of u and «. For each integer n =1,...,k — 1, define

L(fa ¢> n)ep(¢)
(2@ x 0, (£ @ x [ (f)[#= ()

(41) Ly(f, é,n) =

Hypothesis H2: For all primes ¢ such that ¢* divides N, we have (¢, mp) = 1.

Theorem 2.8. Assume that the Artin representation ¢ factors through Gal(F,/Q) for
some integer r > 1, where F, is given by (40). Suppose in addition that Hypotheses H1
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and H2 are valid. Then A(f,¢,s) is entire, and satisfies the functional equation (21).
Moreover, for all integersn=1,...,k—1, L;(f, ¢,n) is an algebraic number satisfying

(42) Ly(f, ¢,n)7 = Ly (f, 67, n)
for all o in Gal(Q/Q).

Proof. As remarked above, the proof we now give follows closely that given in [1], where
f was assumed to have weight k& = 2, and therefore corresponded to an isogeny class of
elliptic curves defined over Q. For each integer r > 1, define K, = Q(p,) and write K, for
its maximal real subfield. Note that Gal(F, /K, ) is cyclic of order p", since m is assumed
to be p-power free. Put

(43) Fo=|JF, K =JK: G=Gal(F./Q).

r>1 r>1

For this proof, define p to be the representation of Gal(F,/Q) induced by any character
of exact order p” of Gal(F,/K,). It is then easy to see that p is irreducible, and that
every irreducible Artin representation ¢ of GG is of the form A\ or pA for some integer
r > 1,where A is a one dimensional character of Gal(K/Q). For the proof of Theorem
2.8, we may assume that ¢ is irreducible. Now it is clear from these remarks that every
irreducible Artin representation ¢ of GG is induced from an abelian character of IC, for
some integer r > 1. Thus Theorem 2.2 implies that A(f, ¢, s) is entire and satisfies the
functional equation (21). Also, noting that F,/Q is unramified outside of the primes
dividing mp, we conclude from Theorem 2.7 that L*(f,¢,n) is an algebraic number for
all Artin characters ¢ of G and all integers n = 1,...,k — 1. Thus it remains to establish
(42) for irreducible ¢.

If d(¢) = 1, one can easily deduce (42) from [23, Theorem 1]. Assuming d(¢) > 1, it
follows that for some integer r > 1, ¢ is induced by an abelian character of IC, of the form
Ak, , where 1 is a character of Gal(F,./K,) of exact order p”, and A, is the restriction
to Gal(Q/K,) of a one dimensional character A of Gal(K,/Q). We define @ to be the
two dimensional Artin representation of Gal(Q/K,) induced by Ak, , and take g to be
the corresponding Hilbert modular form relative to K, of parallel weight one. Let v be
the abelian character of K, defining the quadratic extension K,/K,, and let Ak, be the
restriction of A to Gal(Q/K,). Since the determinant of § is equal to vA% , g will have
character I/)\%(T. Moreover, noting that Hypothesis H2 is valid for f and ¢ because the
conductor of ¢ can only be divisible by primes dividing mp, we conclude from Lemma 2.4
that

(44) ’D(fKMg?S) :L(meeaS) :L<f7¢75)'

Taking s = n with 1 <n < k — 1, it then follows from [25, Theorem 4.2] that
L(f,¢,n)

4 =

( 5) A(ﬁ 0, ”) (zm)d(¢)(1+2n—k;)/2 w kd(¢)/2 % <fK7fK>KT % TKT(V/\%(T)

satisfies

A(f, ¢,n)7 = A(f,¢7,n)
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for all o in Gal(Q/Q); here 7k, (VA% ) is the Gauss sum of the abelian character vA% of
K,, as defined by [25, (3.9)]. Noting that
d(¢) =2[K, : Q], d"(¢) = d"(¢) = [K, : Q),

we conclude easily from (31) and [1, Proposition 4.5] that the last assertion of Theorem
2.8 will hold if and only if

(46) (H 5q(¢>> = H €q(07),

q#p,00 q#p,00

for all o in Gal(Q/Q). But (46) is an immediate consequence of the fact that p can be
realized over Q, and the equation

€q(0) = eg(N) ™™ sgn (det(p)(g”)) ,

which holds for all ¢ # p, since A is unramified at ¢; here e,(p) = ord, (N (p)), with N (p)
denoting the conductor of p. This completes the proof. 0

3. INTERLUDE ON ROOT NUMBERS

Recall that F' = @(up,ml/ P). From now on, write p for the unique irreducible repre-
sentation of Gal(F'/Q) of dimension p — 1; it is induced from any non-trivial character of
Gal(F/K). We now describe the local root numbers

eq(f,p)
leg(f,p)]

and the corresponding global root number w(f, p) under the hypothesis H2 above. This
global root number is the sign in the functional equation of the twisted L-function

L(f,p,s). A similar computation in weight 2, i.e., for elliptic curves, was carried out
by V. Dokchitser [6].

wq(ﬁ p) =

Theorem 3.1. Let f =" a,e*™ be a primitive cusp form of conductor N with trivial
character, and weight k > 2. Assume that for all primes q such that ¢*|N, we have
(g, mp) = 1. Then, for every finite prime q, the local root number wy(f, p) is given by

(2)orda™)4f (q,pm) =1,
we(f, p) =we(p)? x ¢ —sgna, if ¢=p, ord,(N)=1 andmP~' =1 mod p?,
1 otherwise.

Further, the global root number is given by
ordq(N
w(fr) = (05 [T ()
atpm

where § = —sgn a,, when both ord,(N) =1 and m?~' = 1mod p?, and 1 otherwise.
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Proof. Let | be any prime distinct from ¢, and as before, let V; be the l-adic Galois
representation attached to f. Put n(V) = ord,(N), and let n(p) be such that ¢"* is
the g-part of the conductor of p. We note that the determinant det p of p equals (;),
the non-trivial quadratic character of Gal(Q(u,)/Q). Recall that the inverse local Euler
factors of L(f,s) are

1—a,T+¢'T* if (¢,N)=1,
P,(f,T)=14 1—a,T if ord,(N) =1,
1 it ord,(N) > 2.

The local root numbers w,(f, p) can be computed as follows:-
Case 1 ((¢,N) = 1): In this case Vj is unramified, and we can use the unramified twist
formula [26, 3.4.6],

wy(f, p) = wy(p)™ ™ - sgn((det Vi) (¢"*)).
Here sgnz = é for z € C, and we evaluate the one-dimensional character detl” on

a number ¢*?) € Q; via the local reciprocity map. The second term is trivial since
detV; is a power of a cyclotomic character which takes positive values on Q. Thus
wy(f, p) = wy(p)?, as asserted.

Case 2 (ord,(N) = 1): Here a, # 0,dim qu = 1, the action of inertia I, is unipotent

((1) ”{), and the action of Frobenius is (%‘7 aq_f;k /2), where k is the weight of f; the top left

corner can be seen e.g. from the local factor. Write (V; ® p)** for the semi-simplification
of V; ® p. Writing 7 = Frob,, the semi-simplification formula for e-factors [26, 4.2.4] gives

ss\ sgndet(—71|((V s5) 1,
wq(f? P) = wQ((W ® /)) S) gsgnczit(—li(\(‘l/?g;)lg)q)

sgn det(—a,7|p')sgn det(—ag tp*/ 27| pla
wq(p@p) : ( qs;fld()etf—aq’r(\pqu) . -
= sgndet(—a,r|pl)~?
= wy(p)?*sgn(—a,)"sgndet(r]p") "
here d, denotes the dimension of p’e. It remains to determine p’s and the action of Frobe-
nius on it. Let J = Q(m!/?). There is an equality of L-functions

Ci(s) = C(s)L(p, s).
By considering the ramification of ¢ in J/Q and comparing the local factors at ¢, we find
that

L+ (TPt i gfpm,

_ )1 if glm,
FPy(p, T) = 1-T if p=qandm is a pth power in Z,
1 if p=gqandm is not a pth power in Z.

In particular, d, is even (and so sgn(—a,)% = 1) in all but the third case, and det(7|p’e) =
1 in all but the first case; in the first case,

det(r]o") = det(rlp) = (1) = (7

) ordg(N)
p

)
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as asserted by the formula. Finally, if p 4 m, then it is easy to see by Hensel’s lemma
that m is a pth power in Z) if and only if it is a pth power in (Z/p*Z)*, which is in turn
equivalent to the condition m?~! =1 mod p?.

Case 3 (ord,(N) > 2): By assumption, ¢ { mp, so p is unramified. Then w,(p) = 1, and
by the unramified twist formula

wy(F.p) = (- sgn((detp)(qV) = (E1P (2 = (20,

q
p p
as claimed.
Turning to the global root number, we have

w(f, p) = [Jw(f.p).

the product being taken over all places v of Q. As p is self-dual,
[Two(p)® =wip)* =1,

and the remaining contribution from the real place is (—1)"z (see e.g. [6]). This completes

the proof. 0

Example 3.2. We compute the global root numbers w(f, p) when p =3 and f is one of
the primitive cusp forms with (N, k) = (5,4),(5,6),(7,4) or (121,4) that we will use in
86 to illustrate the congruences. In these cases, the answer does not actually depend on
the weight.

o If f haslevel 5, then § =1 as (3, N) = 1, whence

3.1 5 if (5,m) =1 1 if (5,m)=1
Mﬁm:“ﬂ2'y{%)ﬁgm£m21:{—1ﬁém£mzL

e Similarly, if f has level 7, then (g) = —1 is replaced by (%) = +1 and we get
w(f,p) = —1 for every m. (cf. also [6, §7.1], first example).
e Finally, if f has level 121, then (3) is replaced by (%)Ordn(lﬂ) = +1, and we again
get w(f, p) = —1 for every m.
The congruence that we verify involves the twists of f by p and by the regular represen-
tation o of Gal(K/Q) = (Z/pZ)*. 1t easy to check that the root numbers w,(f, o) and
w(f, o) are given by the formula in Theorem 3.1 with m = 1. When p { N the formula

becomes
w(f,o)= (_1)% H(g)ordq(N) _ (_1)%_1 (ﬁ)

4N p p

In particular, for p = 3 the global root number w(f, o) is +1 for the form of level 5, and
—1 for the forms of level 7 and 121.
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4. AN ANALOGUE OF A RESULT OF HACHIMORI-MATSUNO

The aim of this section is to establish an analogue for our primitive cusp form f of
results of Hachimori-Matsuno [10] for elliptic curves, over the fields

(47) ’COO = Q(:up"o)? FY© = Q(/_,Lpoo7m1/p)7

where again m is an integer > 1 which is p-power free. Such a result has already been
established in [20], but we wish to give a slightly more explicit result in order to explain
its connexion with the congruence (5). Write y, for the character giving the action of
Gal(Q/Q) on pye. As usual, for each n € Z, write Z,(n) for the free Z,-module of rank one
on which Gal(Q/Q) acts via x7. If W is any Gal(Q/Q)-module, which is also a Z,-module,
define W(n) = W ®z, Z,(n), endowed with the natural diagonal action of Gal(Q/Q).
Let V, be the underlying Q,-vector space of the Galois representation 7, attached to f.
Fix once and for all a Z,-lattice T}, in V},, which is stable under the action of Gal(Q/Q).

We stress that we always view V,, as the cohomology group, not the homology group of
the motive M (f). We assume from now on that p and f satisfy:-

Hypothesis H3: The odd prime p is good ordinary for f, i.e., p is an odd prime such
that (p7 N) = (pa ap) - ]‘

As p is a good ordinary prime, it is shown in [17] that there exists a one dimensional
subspace V) of V, such that the inertial subgroup of Gal(Q,/Q,) acts on V,/V;? by x}~*.
Hence if we define

(48) Ape = Vp(k = 1)/ T, (k — 1),

and define A). to be the image of V)(k — 1) in Ay, then Ape /AD. is unramified at p.
For each finite extension F of Q, define F° to be the cyclotomic Z,-extension of F, i.e.,
the compositum of F with the cyclotomic Z,-extension of Q. We follow Greenberg and
define the Selmer group of Ay~ over F<¢ by

(49)

Sel(Apee /FY) = Ker Hl(}"cyC,Apoo) — HHl(fg)yC,Apoo) X HHl(}";yC,Apoo/Agm) ,
wip Ip

where w runs over all finite places of F%°, and F.'° denotes the union of the completions
at w of the finite extensions of Q contained in F<°. Write

(50) X (Apee /F) = Hom(Sel(Apee / FY°), Q,/Zy)

for the compact Pontryagin dual of Sel(A,e/F¥¢). Assuming F is Galois over Q, both
Sel(Apee /F¥°) and X (Ap~ /F¥°) are endowed with canonical left actions of Gal(F%°¢/Q),
and these extend by continuity to left module structures over the Iwasawa algebra

A(Gal(F** /) = lim Z,[Gal(M/ Q)]

where M runs over the finite Galois extensions of Q contained in F¢.
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We shall need the following fundamental result of Kato (see [13]). Note that for K =
Q(pp), we have KV = Q(fipee ).

Theorem 4.1. Assume Hypothesis H3. Then X (Aye /K%°) is a torsion A(Gal(Y/Q))-
module.

Theorem 4.1 implies that the quotient
(51) X (Apee /ICV) /(X (Apee /) ()

is a finitely generated Z,-module, where X (A, /KY¢)(p) denotes the p-primary submod-
ule. Define A(f/F%°) to be the Z,-rank of (51). We shall also need to consider the Euler
factors of the complex L-function L(f/IK,s) at places v with (v, Np) = 1. Let ¢, denote
the characteristic of the residue field of v, and write ¢, for the absolute norm of v. Then
these Euler factors are given explicitly by

(52) P,(f/K,X) = det(1 — Frob,' X | V) =1 — b, X + ¢** VX2,

where Frob, = Frob;”, and b, € Z. Since ¢,» = 1 mod p, it is clear that for all integers n,
we have

(53) P,(f/K,q,™") =2 — b, mod p,

v

when both sides are viewed as elements of Z,. In particular the question whether or not
the left hand side lies in pZ, is independent of n. Define P, to be the set of all places w
of K¢ such that, writing v = w | K, we have

(54) Py ={w: (¢,,Np) =1, ¢, | m, and ord,(2 — b,) > 0}.

Similarly, suppose v is a place of K, with residue characteristic ¢, # p and ord, N = 1.
Then the Euler factor P,(f/K, X) is given explicitly by

(55) P,(f/K,X) = det(1 — Frob, ' X | V") =1 - b,X,
where b, = a;”, with ¢;” again being the absolute norm of v. Note again that
P,(f/K,q,™")=1—b,modp

for all integers n. Also, since a2 = ¢i~? and ¢» = 1mod p, we always have b2 = 1mod p.
Define P; to be the set of all places w of K% such that, writing v = w | K, we have

(56) P ={w: ord, N =1, ¢, | m and b, =1 mod p}
To establish an analogue for f of the theorem of Hachimori-Matsuno, we shall need the
following additional hypothesis.
Hypothesis H4: X (Aj~/K) is a finitely generated Z,-module.
Recall that K¢ = Q(puy~) and FV¢ = Q(puy, m*/P).
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Theorem 4.2. Assume Hypotheses H2, H3 and Hj. Then X (A /F%°) is also a finitely
generated Z,-module and

(57) AF/FY) =pA(f/EY)+ Y 20—+ > (p—1).

wEPa weP

Proof. Put A = Gal(F/K) = Gal(F°/K%°). If B is any A-module, we recall that the
Herbrand quotient ha(B) is defined by
_ #H*(A, B)
T #H'(AB)
whenever the cohomology groups are both finite.

Entirely similar arguments to those given for elliptic curves in [10] show that, under
the hypotheses H2, H3 and H4, X (Ape/F%°) is indeed a finitely generated Z,-module,
and we have

(58) Mf/FY) = pA(f/KY) + (p — 1)ord, (ha(Sel(Ape / FYC))
where ha(Ape /FY°) is finite.

ha(B)

Let ¥ denote the set of primes of K¢ lying above the rational primes dividing Nmp.
As in [10, §4], well-known arguments from Galois cohomology show that

(59) ha(Sel(Aye /) = [ b | T 11 (Fo, Cu)

weEY ulw
where u runs over the places of F¥¢ above w, and
(60) Cw — Apoo, or Apoo/Azo)oo

according as w does not or does lie above p. Moreover, since a prime w of K¢ either splits
completely or has a unique prime above it in F'¥¢, it is clear that the right hand side of
(59) simplifies to a product of the ha(H(F2¢, C,)), where w now runs over the primes
in > which do not split completely in F¥°. Assume from now on that w is a prime of ¢
which does not split in F'¥¢. In particular, this means that the residue characteristic g,
of w must divide pm. Since F*° and K¢ contain pi,~, their absolute Galois groups have
p-cohomological dimension at most 1. As A is cyclic of order p, it then follows easily from
the Hochschild-Serre spectral sequence that

(61) HY(A, HY (P, Cy)) = HY(A, Cu(F)),
where C,,(F9¢) = HY(F®>¢, C,,).

Lemma 4.3. Assume there is a unique prime u of FY° above p, and put w = u | KV°.
Then we have

ha(HY(F%°,C)) = 1.
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Proof. Since C, is unramified, and F;’° is a totally ramified extension of Q,, we have
Cy(F,) = HO(Gal(Fp/Fp>a Cu)-

But Frob, acts on C,, by multiplication by the p-adic unit root of 1 — a,X + p*~1X2.
However, this unit root cannot be equal to 1 as it has complex absolute value p*~1/2,
Hence Cy,(F°) must be finite, and thus has Herbrand quotient equal to 1. U

Write ¢, for the residue characteristic of w.

Lemma 4.4. Assume that w is a prime of K¢ such that (q,, Np) = 1, and q,, divides m.
Then there is a unique prime u of F¥¢ above w, and ha(H'(F¥¢,Cy)) = p~2 if w € Po,
and ha(HY(F%¢,C,)) = 1 otherwise.

Proof. The first assertion of the lemma is clear since w must ramify in F'¢ because ¢,
divides m. As (qu, Np) = 1, we know that the inertial subgroup I,, of the absolute Galois
group of Q,, acts trivially on V,. We claim that I, also acts trivially on C,, = Ap.
Indeed, we have an exact sequence of Galois modules
0—=1,—-V,—=C,—0,
whence one obtains the long exact sequence
(62) 0—T,—V,— Ck — H'L,,T,) = H (I, V).
As the inertial action is trivial on 7}, and V},, and g, 7# p, we see that
H'(IL,,T,) = Hom(J,,T,), H'(IL,,V,) = Hom(J,,V,),

where J,, is the Galois group of the unique tamely ramified Z,-extension of Kg¢. Thus
the last map in (62) is injective, and so CI»v = C,, as claimed.

Let v be the restriction of w to K. We next show that C,(/C,) # 0 if and only if v € Ps.

Since C, is unramified, we have the commutative diagram with exact rows
0 > T > Vp » Cpy —— 0

6/Ul 6'UJ/ 6UJ/
0 > T > Vp >y Oy — 0
where ¢, is the map given by applying Frob, — 1. The characteristic polynomial of Frob,
acting on V, is X2P,(f/K, X~ !). The roots of this polynomial have complex absolute
value qZ“(k_l)/ 2, and thus are distinct from 1. Hence the middle vertical map in the above
diagram is an isomorphism. It follows from the snake lemma that C,,(K,) has order equal
to the cokernel of the left hand vertical map, which is equal to the exact power of p
dividing P,(f/K,1). But
P,(f/K,1) =1—b, +¢** Y = (2~ b,) modp,

showing that C\,(K,) # 0 if and only if w € Ps.

Our next claim is that Cy, = C,(K%¢) if and only if C,(K,) # 0. As Gal(K%¢/IC,) is
pro-p, Nakayama’s lemma shows that C,,(KC,) = 0 implies that C,,(K¢) = 0. Conversely,
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assume that Cy,(KC,) # 0. We then assert that the extension IC,(C),) is a pro-p extension
of IC,,. To prove this, let (Cy,), be the kernel of multiplication by p on C,,. It is easily seen
that the extension IC,(C,,)/K,((Cu)p) is pro-p. On the other hand, choosing an F,-basis
of (Cy), in which the first element belongs to C,(K,), and noting that the determinant
of (Cy), is trivial because it is equal to w™* =Y where w is the cyclotomic character mod
p, it follows that the extension K,((Cy),)/K, is a p-extension. Thus /C,(Cy,) is a pro-p
extension of IC,, and it is unramified as inertia acts trivially on C,. Hence we must have

Ko(Cy) = K&e.

It is now clear from (60) that ha (H'(E%¢,Cy)) = 0 if w &€ Py, and ha(H(F°, C,,)) =
p~2 if w € P,. This completes the proof of the lemma. O

Lemma 4.5. Assume that w is a prime of KV¢ such that ord,, N =1 and q,, divides m.
Then there is a unique prime u of F¥¢ above w, and ha(H*(F¥¢,C,)) = p~! if w € Py,
and ha(HY(F%¢,C,)) = 1 otherwise.

Proof. The first assertion is clear, since w must ramify in F“¢, because ¢, divides m.
Again, let v be the restriction of w to K. Since ord,, N = 1, we have

P,(f/K,X)=1—-b,X

where we recall that b2 = 1 mod p. Let W, be the subspace V;” of V,,, so that Gal(Q,, /F,)
acts on W), via the unramified character n with n(Frob,) = b,. Choosing a basis of V,, with
the first basis element being a basis of W, the representation of Gal(Q,, /F,) on V, must
be of the form (8 ;), where ) is a character of Gal(Qy, /F,). As the determinant of V,,
is the cyclotomic character to the power (k — 1), we conclude that A is also unramified.
Moreover, the image of the restriction of this representation to Gal(Q,,/K™) is infinite,
where K" is the maximal unramified extension of /C,. Since 7 takes values in Z, it is clear
that the restriction of 7 to Gal(Ch'/K3°) is the trivial character if and only if w € P;.
Similarly, writing v’ for the restriction of u to F', and recalling that F, /K, is totally
ramified, it follows that the restriction of n to Gal(F2'/F¥¢) is the trivial character if and
only if w € Py. One concludes easily that, if w & Py, then C,(F°) must be finite, and
if w € Py, then the divisible subgroup of C,,(F¥°) has Z,-corank 1. In view of (60), the
assertion of the lemma is now clear.

UJ
Combining (58), (59), and Lemmas 3.3, 3.4 and 3.5, the proof of Theorem 4.2 is now
complete. 0

5. THE CONGRUENCE FROM NON-COMMUTATIVE IWASAWA THEORY
As before, let
(63) F= @(/I’ZH ml/p)a K = Q(/’Lp)

where p is an odd prime, and m > 1 is an integer which is not divisible by the p-th power of
an integer > 1. Assume throughout this section that Hypotheses H1, H2, and H3 are valid.
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Let ¢ be an Artin representation of Gal(F,,/Q). For each integer n = 1,...,k — 1, we
recall that L3(f, ¢,n) is defined by (41). By Theorem 2.8, we know that L;(f,¢,n) is an
algebraic number. Very roughly speaking, the non-commutative p-adic L-function seeks to
interpolate the numbers L;;( f,o,n), as ¢, and n both vary. While there has been important
recent progress on the study of these non-commutative p-adic L-functions for the Tate
motive over totally real number fields (see [12],[21]), very little is still known about their
existence for other motives, including the motive attached to our modular form f. In
the present paper, we shall only discuss what is perhaps the simplest congruence between
abelian p-adic L-functions, which would follow from the existence of a non-commutative
p-adic L-function for the motive of f over the field F,. A specialization of this congruence
for elliptic curves has been studied in the earlier paper [5].

To state this congruence, we must first make a canonical modification of the values
f/;(f, ¢,n), given by (41) following [2], [8]. Recall that since (p,a,N) = 1, the Euler
actor

Pp<f7X) =1-ayX +Pk71X2
can be written as
(64) P(f, X) = (1-aX)(1 - BX),

where « is a unit in Z,, and ord, (/) = k — 1. We shall also need the Euler factors of the
complex L-series L(¢, s) of the Artin representation ¢, which are defined by

(65) Py(¢, X) = det (1 — Frob, ' X | M(¢)™)

where [ is any prime distinct from ¢. As before, let d(¢) be the dimension of ¢. Moreover,
writing A (¢) for the conductor of ¢, define

(66) ep(p) = ord, (N (9)).

Recall that P,(f, ¢, X) defined by (17) is the Euler factor at the prime ¢ of the complex
L-function L(f,®,s). Recall also that, forn=1,...k —1,

L(, 6, )6, ()
()@ x Q. (F)H @) x [0 ()] @)

(67) Ly(f, é.n) =

We then define

Pp((ﬁpnil/a)

n—1 o ep(9)
Py, afpr) PO

(68) M,(f,d,n) =T(n)" x L*(f,¢,n) x P,(f.¢,p") X
and
(69) Ly(f,¢.n) = My(f,0,n) [[ Fulf.6.07),

q#p, q|m

where ¢ runs over the prime factors of m distinct from p. It is these modified L-values,
defined using the naive periods Q, (f) and Q_(f), which we shall actually compute in a
number of numerical examples.
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Secondly, in order to obtain p-adic L-functions which will in the end satisfy the main
conjectures of Twasawa theory, we may also have to adjust the naive periods Q7 (f) and
Q7 (f) by certain non-zero rational numbers. Writing Q" (f) and Q" (f) for these canon-
ical periods, we will have

(70) QF(S) = e (N (S), QZS) = e (N)Q-(F)
for certain non-zero rational numbers ¢, (f) and c_(f). It is then natural to define
(71) L(f0m) = ex ()W O ()DL (f,6,m).

It is these modified values L£5*(f, #,n) which should satisfy the non-abelian congruences
for the p-adic L-functions arising in the main conjectures. However, in our present state
of knowledge, we do not know in general how to determine c,(f) and c_(f) precisely.
Nevertheless, as we shall now explain, the work of Manin on the p-adic L-function of f
for the extension K, /Q provides some partial information on this question.

Theorem 5.1. Let o be the sum of the irreducible characters of Gal(ICy/Q), where Ky =
Q(pp)- If L(f,0,k/2) = 0, then L*(f,0,n) belongs to pZ, forn =1,... .k —1.

Proof. Let X, be the character giving the action of Gal(Q/Q) on ji,~. Fix a topological
generator v of Gal(K%¢/K) and put u = x, (7). The work of Manin then shows [16] that
there exists a power series g(7") in Z,[[T]] such that

(72) g<uT - 1) = M;an(fv g, k/2+7’),
for all integers r with —k/2 +1 <r < k/2 — 1, and where

ME(f,0.m) = (i (f)e—(£))PP My(f.0,m).

Here it is understood that the canonical periods are those for which we expect g(T") to
be a characteristic power series for the dual Selmer group of f over K. Assuming that
L(f,0,k/2) =0, it follows that

9(0) =0,

and so g(u™ — 1) € pZ, for all integers n. The assertion of the theorem then follows on
noting that

H Pq(fa Ua q—n)
q#p, qlm

lies in Z,, for all n € Z. This completes the proof. 0J

Example 5.2. Take f to be the unique primitive eigenform of level 7 and weight 4, and
p = 3. Then L(f,0,2) = 0. Moreover, we see from Table II in §6 that L3(f,0,1) € 3Z3. In
view of Theorem 5.1, this strongly suggests that in this case, we must have ords(c, (f)) =

ordsz(c_(f)) = 0.
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Example 5.3. Take f to be the complex multiplication form of level 121 and weight 4,
which is attached to the cube of the Grossencharacter of the elliptic curve over E over
Q given by the equation (79), of conductor 121 and with complex multiplication by the
full ring of integers of the field L = Q(1/—11), and again take p = 3. Then L(f,o,2) = 0.
However, we see from Table III in §6 that £3(f, 0, 1) is a 3-adic unit when m = 3, 7 or 11.
Hence the naive periods Q7 (f) and Q7 (f) cannot be the good periods, and at least one
of ords(cy(f)) or ords(c—(f)) must be strictly less than zero. In fact, in this case we do
know the canonical periods for f, since, for all good ordinary primes p for f, we know the
periods for which the relevant cyclotomic main conjecture for f over K% is valid. This is
because this cyclotomic main conjecture can easily be deduced from the main conjecture
for £ over the field obtained by adjoining to L the coordinates of all p-power division
points on F; and this latter main conjecture is proven for all good ordinary primes p for
E by the work of Yager and Rubin. Invoking the Chowla-Selberg formula, we see easily
that the explicit values of these canonical periods can be taken as follows. Let

© = I'(1/11)0(3/11)T(4/11)0(5/11)T(9/11).

Then

(73) QR (f) = V11 x 0%/(21)°, Q**(f) = 0%/ (27)°.
Direct computations show that

(74) Q4 ()/Q50(f) = 1/22, (/0 (f) = 3,
whence

(75) ords(cy(f)) =0, ords(c—(f)) = —1,

precisely as required.

As in the Introduction, let o be the Artin representation of dimension (p — 1) given by
the direct sum of the one dimensional characters of Gal(K/Q). Define p to be the repre-
sentation of Gal(#/Q) induced from any non-trivial degree one character of Gal(F/KC).
Thus p also has dimension (p — 1), and is easily seen to be irreducible (cf. [5]). Moreover,
both ¢ and p are self-dual, can be realized over Z, and their reductions modulo p are iso-
morphic. Let R = Z,[[T]] be the ring of formal power series in an indeterminate 7" with
coeficients in Z,. As explained in the Introduction, the work of Manin [16] establishes
the existence of a power series H(o,T) in R satisfying the interpolation property (2) It
is conjectured that there exists a power series H(p,T) in R satisfying the interpolation
condition (3).

Conjecture 5.4. (Congruence Conjecture). Assume Hypotheses H1, H2, H3. Then there
exists a power series H(p,T) in R satisfying the interpolation property (3), and we have
the congruence of power series

(76) H(p,T) = H(o,T) mod pR.
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We are grateful to M. Kakde for pointing out to us that the congruence (76) is simply
a special case of the congruences predicted by Kato in [13], and we now briefly explain
why this is the case. Assume for simplicity that Hypothesis H4 is also valid. Recall that
G denotes the Galois group of F,, over Q, and write A(G) for the Iwasawa algebra of G,
S for the canonical Ore set in A(G), which is defined in [2], and A(G)g for its localization
at S. In addition, define &, = Gal(K.,/Q), and for each integer n > 1, let &,, be the
unique closed subgroup of index p"~! in Gal(Q%°/Q). Write S,, for the canonical Ore set
of [2] in the Iwasawa algebra A(®,,). In [13], Kato defines a canonical map

Oo.s : Ki(M@)s) = [ [Ki(A(8n)s,),
n>0
and characterizes its image by a remarkable set of congruences which we do not state in
detail here. In particular, writing 0¢ (o) = (ay,) for any element a of K;(A(G)s), we
always have

(77) N(ap) = a3 mod p,

where N denotes the norm map from K;(A(Sg)s,) to K1(A(B)s,). Now take a to be
the conjectural p-adic L-function for f over F,,, which we denote by ((f/Fs). Let us
also identify A(®;) with the formal power series ring R = Z,[[T']] by mapping the fixed
topological generator v of &, to 1 +T. Then it follows essentially from the construction
of the map 0 ¢ and the interpolation properties of these p-adic L-functions that we will
have

Thus the congruence (76) is indeed just a special case of the congruence (77) of Kato, as
claimed.

As was pointed out in the Introduction, if we evaluate both sides of the congruence
(76) at the appropriate points in pZ,, we deduce the following congruence of normalized
L-values from (2) and (3):-

Conjecture 5.5. Assume Hypotheses H1, H2 and H3. Then for all integersn =1,... k—
1, we have

(78) L(f, p,n) = L(f, 0,n) mod p.

We end this section by explaining how this latter congruence is intimately connected
with Theorem 4.2. Let P; and P be the set of places of Koo = Q(pp~) defined by (56)
and (54) respectively.

Lemma 5.6. Let q be any rational prime with q dividing m and (q, Np) = 1. Then all
primes of KUY above q belong to Py if and only if ord,(P,(f,0,¢™™)) > 0 for some integer
n.

Proof. Let g have exact order r, modulo p, and let v be a prime of K above ¢. Then one
sees immediately that

p—1
q

Pq(f7 O',X) = (]_ — bUXTq + q(k—l)TqX2rq) e
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where b, is defined by (52). Since ¢"¢ = 1 mod p, the assertion of the lemma is now plain
from the definition of Ps. O

Lemma 5.7. Let q be any rational prime not equal to p such that q divides m and
ord,(N) = 1.Then all primes of KKV above q belong to Py if and only if ord,(P,(f, 0, ™)) >
0 for some integer n.

Proof. Let g have exact order r, and let v be a prime of K above ¢. Since ¢ is unramified
at ¢, one sees easily that

P(f.0,X) = (1—b,X"") "% ,
where b, is defined by (55), and hence the assertion of the lemma is clear. 0

By the work of Manin, we always have Ms*(f,o,n) is in Z, forn = 1,...,k — 1.
Hence we conclude from Lemmas 5.6 and 5.7 that L;*(f,0,n) € pZ, if either P, or P,
is non-empty. On the other hand, assuming Hypotheses H1-H4, Theorem 4.2 shows that
X (Apee /F°) is infinite if either Py or P is non-empty. But X (A, /F%°) is infinite if
and only if its characteristic element as a A(Gal(F%°/F))-module is not a unit in the
Iwasawa algebra. But the main conjecture for X (A=) predicts that the L5*(f, p,n)
are all values of the characteristic power series of X (A, /F°). Thus it would follow
that E;an( f,p,n) € pZ, if either Py or P, is non-empty, in accord with the Congruence
Conjecture 5.5.

6. NUMERICAL DATA

We refer the reader to Section 6 of [5] for a detailed discussion of how the computations
are carried out in the case of a primitive form of weight 2. Entirely similar arguments
(see [4]) apply to the calculation of the numerical values £,(f, ¢, n), forn=1,...,k—1,

for our given primitive modular form f = > a,¢" of conductor N. We do not enter into

n=1
the details here, apart from listing the explicit Euler factors which occur for the primes
dividing pm. As before, let

K=Q(up), F=Q(up, ml/p)>

where m is a p-power free integer > 1. As earlier, we write ¢ for either the direct sum o
of the one dimensional characters of Gal(K/Q) or the unique irreducible representation
p of dimension p — 1 of Gal(F'/Q), and note that both of these Artin representations are
self-dual. We suppose that p is an odd prime number satistying (p,a,) = (p,N) = 1.
In addition, we assume that Hypothesis H2 holds. As earlier, let P,(¢, X) denote the
polynomial in X giving the inverse Euler factor at p of the complex L-series L(¢, s) of the
Artin representation ¢, and P,(f, ¢, X) the polynomial giving the inverse Euler factor at
a prime ¢ of the complex L-series L(f, ¢, s).

Lemma 6.1. We have that P,(0,X) = 1 — X,
+1mod p?, then P,(p, X) =1—X, and B,(f, p, X
and P,(f, p,X) are equal to 1.

and P,(f,0,X) = P(f,X). If m =
= B(7.%)

d
) = P,(f,X). Otherwise, both P,(p, X)
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Lemma 6.2. Let q be any prime factor of m distinct from p, and write rq for the order
of ¢ modulo p. Then we have:-

(1) P,(f,0,X) =P, (f/lC,X’”q)%l, where P,(f/K,X) is the Euler factor of f over
K at any prime v of K above q if (¢, N) = 1.

p—

(2) Py(f,0,X)=(1—ag"X"™) " if ordy(N) = 1.
(3) Py(fip, X) =1.

O

We remark that the computations require knowledge of the Fourier coefficients a, of
f for n ranging from 1 up to approximately the square root of the conductor of the
complex L-function L(f, ¢, s). Since these conductors are very large even for small N,
this explains why we need to know explicitly the a, for 1 < n < 108, and why we are
essentially restricted to the case of the prime p = 3. For our primitive cusp form f of small
conductor, we computed these Fourier coefficients a,, using [SAGE] as follows. We use
linear algebra to express f explicitly as a polynomial in terms of Eisenstein series (we only
used small conductor forms f where this was possible), then we evaluate this expression
using arithmetic with polynomials of large degree over the integers. This high precision
evaluation took about 1 day of CPU time in some cases, and relies on the fast FFT-based
polynomial arithmetic from http://flintlib.org, and optimized code for computing
coefficients of Eisenstein series due to Craig Citro, along with other optimizations specific
to this problem. For evaluation of the CM form of level 121 and weight 4, we computed
the Fourier coefficients d, for the corresponding elliptic curve of weight 2 (using [19]),
then obtained the coefficients a, of the weight 4 form as the sum of the cubes of the
roots of X? — d,X + p, and finally extended these multiplicatively to obtain all of the
coefficients a,,.

For even k > 2, let Ex(q) € Q[[g]] denote the weight & Eisenstein series of level 1,
normalized so that the coefficient of ¢ is 1. For integers ¢t > 1, define Fj(¢') = F(q) —
tFE5(q"), which is a holomorphic modular form of level ¢ and weight 2. We consider 4
explicit primitive forms; 3 have expressions in terms of Eisenstein series, and the fourth in
terms of an elliptic curve with complex multiplication. The first 3 are the unique primitive
forms on Iy(p) with given weight. The fourth form f is the complex multiplication form
of conductor 121 which is attached to the cube of the Grossencharacter of the elliptic
curve

(79) v+ y =2 —2? — Tz + 10.

This curve has complex multiplication by the full ring of integers of Q(y/—11), and has
conductor 121 when viewed as a curve over Q. The following table gives the first few
terms of the g-expansion of these four forms, and note that, in each case, 3 is an ordinary
prime because the coefficient of ¢* is not divisible by 3.
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Conductor | Weight | Primitive form
5 4 | =BE() — $Eu(q) +13E5(¢°)* = ¢ — 4¢*> + 2¢° + 8¢" —5¢° + - --
7 4 —YTEy(q") — 3E(q) +5E3(¢")? = q— ¢* — 2¢° — Tq* +16¢° + - --
5 6 | BEe(q”) — 55E0(q) + 248E5(¢°) Ea(a®) = g+ 2° — 4¢° — 28¢" + 25¢° + -+
121 4 q+8¢% — 8¢* +18¢° + 37¢° — 64¢'? + 144¢"® + 64416 + - -

The first two tables below provide numerical evidence in support of the congruences
(5), and the third and fourth table below provides evidence in support of the stronger
congruence (7). The notation used in these four tables is as follows. We have taken
p = 3, and assume that ¢ denotes either o or p, so that d(¢) = 2. For each integer
n=1,...,k—1, put

(80)
L3(f.¢,n) = L(f, ¢, n)es(¢) 2mi) (NI (AN, Ps(f.¢.n) = [[ Pulf. 007",
ql3m
and define

B . P3(¢7 3n—1/a)
Lalf, 6,0) = () X L3(f,0,m) x Pa(f,6,m) x —p=s

We also write N(f, ¢) for the conductor of the complex L-function L(f, ¢, s). it is easily
seen that ez(o) is equal to the positive square root of 3. Moreover, e3(p) = 3° when
ordzg(m) > 1. When (3,m) = 1, we have that e3(p) is equal to 3 when m = +1mod 3%,

and is equal to 3% otherwise. If r is any integer > 1, and w is an integer, the symbol
w + O(3") will denote a 3-adic integer which is congruent to w modulo 3".

X (3"71/04)63(‘;5).

The reader should also bear in mind the following comments about the signs of the
values L3(f, ¢,n) given in our tables below. Since ¢ can be realized over Q, it follows
from the convergence of the Euler product that L(f,¢,n) is strictly positive for n =
k/24+1,...,k—1;in addition, the generalized Riemann hypothesis would also imply that
the value at n = k/2 should either be zero or strictly positive (and this is the case in all of
our numerical examples) Thus, by Theorem (2.8), L(f, ¢,n) is a rational number,which
will have the sign (—1)"w(f,¢) for n = 1,...,k/2 — 1 by the functional equation (21);
and the sign of L3(f, ¢, k/2) should be (—1)*/2 if it is non-zero.

Finally, we recall (see Example 5.3 in section 5) that, for the form f of conductor 121
and weight 4, the periods in Table IV are the naive periods, and that they must be replaced
by the canonical periods defined in Example 5.3 to deduce the stronger congruence (7) in
this case.
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Table I: form f of conductor 5 and weight 4.
* _ * __ 13
LS(faav 1) = —100, L3(f,0',2) — 3
m Lg(f7p7n) PS(f7p7n) 7)3(f70'7n) N(fvp) £3(f,(7,n) £3(f,ﬂ7n)
n=1

2 —25.5%.7.13 252 1 24 .36 . 52 14 0(3) 14 0(3)

3 —2%4.5%.13-41 23 1 310.52 2+ 0(3) 2+ 0(3)

5 25.3.52.13-17 0 1 36 . 54 0 2.3 +0(3?)

6 —25.53.13.1801 2-52 1 24.310 .52 14+ 0(3) 14 0(3)
8.r3 3.5

7 _ 25 4173423.41 23752 1 36 . 52 . 74 2 + 0(3) 2 + 0(3)

10| 23.3.5%.13 0 23 24.32.54 0 1-314+0(3?)
10. 34 . 5A 3A

11| 257132311 2o 1 36.52.114 1+0(3) 1+0(3)

12 | —26.53.13-.839 % 1 24.310.52 14 0(3) 1+0(3)

13| —24.5%.11-13-43-53 % 1 36.52. 134 2+ 0(3) 2+ 0(3)

14 | —25.5%.132.251 2;-7526 1 24.36.52. 74 14+ 0(3) 14 0(3)

15| 29.3.52.13.281 0 1 310 . 54 0 2.3 +0(3?)
24.53.13.31.167 26.52.7.83 2.5 2 £2 . 174

17 - Eet T 5 32.52.17 1+0(3) 14+ 0(3)
2%.5%.13.43 27.53.7 25 2 . £2 . 104

19 | 251543 ] 5 32.52.19 2+ 0(3) 2+ 0(3)

20 | 23.3.52.13%2.97 0 1 24.36.54 0 1-314+0(3?%)
4 £3 3.£5

21 _2%5 413%3425341 23A7524 1 310 . 52 . 74 2 + 0(3) 2 + 0(3)

22 | 257134513841 25)‘5121;: 1 24.36.52.114 | 2+ 0(3) 24+0(3)
8 35 53 13, .32.52.7. 5

23 _2°.3 4‘)2313 1409 2.3 222 7-79 1 36 . 52 . 234 1. 33 + 0(34) 2.3%5 4+ 0(36)

26 | —25.53.13.887 25112 25 21.32.52.130 | 14 0(3) 14+0(3)
5 £3 3.6 .

28 7724-53-713603 72%7523 25 24.32.52. 74 14+0(3) 14 0(3)
24.53.11.13-1678031 29.53.23.41 6 .52 . 994

29 | _20:5°11-13-1678031 252341 1 36.52.29 1+0(3) 1+0(3)

30 | 23.3.52.72.13.61-97 0 1 24.310 .54 0 1-31 4+ 0(3?%)
24.5%.13.79.62351 25.55.112 6.52. 914

31 | —20:57:13-79-62351 e 1 36.52.31 2+ 0(3) 2+ 0(3)

33| —2%.5%.11-13-19-2879 2oh 1 310.52. 114 14 0(3) 1+0(3)

34 | —27.5%.13. 142427 25078 1 24.36.52.174 | 24 0(3) 24 0(3)

35 26~3»527»13<653 0 255 32.54.74 0 2.3+ 0(3%)
8.32.54.13.36 5.3.53.192 . :

37 | 2855018367 23519 25 32.52.374 2:-324+0(3%) | 2-32+0(3%)

39 | —210.53.71.17489 % 1 310.52. 134 2+ 0(3) 2+ 0(3)
24.53.13.17-31-211-941 27.53.17-109 6 .52 . 414

41| — B T 1 36.52.41 1+0(3) 1+0(3)
2°.53.13-19-859-1801 23.5 4 910 . £2 . 74

42 R a— T 1 24.310.52.7 1+0(3) 1+0(3)
2°-57.7-13-19-251-491 23.5%.29 6. r2, 4

43 | _22:5°.713-19:251:491 35)%32 1 36.52.43 2+ 0(3) 2+ 0(3)

44 | —25.53.13.421 22-‘511‘241 25 24.32.52.114 | 2+ 0(3) 2+ 0(3)

45 | 25.3.53.72.13.19 0 1 310. 54 0 2.31 +0(3%)

a6 | _ 25433453513-7283 23~322~§g’~7-79 % 24.32.52.234 | 2.334+0(3%) | 2-33+0(3%

47 28.5%.13.232.22567 1 23.5%.13.67.277 36 .52 . 474 1+0(3) 1+0(3)

47

3472
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Table I: form f of conductor 5 and weight 4.
m L;(f7p7n) Pd(f7p7n) pj(f,O',n) N(fvp) Ed(f70-7n) ‘Cd(fvp7n)
50 | 23.3.52.13%2.97 0 24.36.54 0 1-31 4+ 0(3?%)
8.rd 192, 6,52,
51 _2%5 1?17 278591 2 ;1772 83 1 310 .52 . 174 14+ 0(3) 14+ 0(3)
52 | —25.53.2513617 22501 1 24.36.52.13¢ | 1+4+0(3) 1+0(3)
4.54.13. 7.52.11.13-17 2-5 a2 2 4
53 _2%5 1533290161 275 3_1;3;3 179 25 32.52.53 14+ 0(3) 14+ 0(3)
55 25.3.52.13.12799 0 25 32.5%.114 0 1-31+0(3%)
11
6( 3A . . . 7. 34 2
57 _ 29 53 13 (il 503-4241 254514?27 1 310 . 52 . 194 2+ 0(3) 2+ 0(3)
27-57-13-9208039 2°-57-23-41 4 96  £2 4
58 g = 1 24.36.52.29 24 0(3) 2+ 0(3)
2%.57-13-23-397-853 27.57-19-101 6. x2, 4
59 | —2-5--13:23:507:853 20 doan 1 36.52.59 14+ 0(3) 1+0(3)
60 | 25.3.52.13.19-3499 0 24.310 .54 0 1-314+0(3?)
26.53.13-179702101 25.55.432 6.52 . a14
61 g 15 L 2543 36.52.61 24 0(3) 24+ 0(3)
5.53.13. . 2°.55. 2-5 4 2 2 4
62 _2 54 1335,07 2879 53?::1&1 z5 24.32.52.3] 1+0(3) 1+ 0(3)
84 . . . .
66 _2%5 1?{16458773 23A511241 1 24 . 310 . 52 . 114 2+ 0(3) 2+ 0(3)
6.53 133.192.475 3.53. 2
67 _2°5 136719 4759 26 353674243 1 36 . 52 . 674 2+ 0(3) 2+ 0(3)
54 3. 3. . e
68 _2%5 131;0484557 2335'21772283 1 24.36.52.174 24 0(3) 2+ 0(3)
26.33.53.13.857-15733 23.32.52.7.79 10 . £2 . 924 La3 4 .23 4
69 | — L3 -5 1 310.52.23 1-334+0(3% | 2-32+0(3%
70 | 2°-3:5%.13.80.131 0 1 24.36.54. 74 0 1-31+0(3%)
7
26.53.7.13.31.79.101 25.5%.47.1381 2.5 2 £2 . 714
1 — i g 3 32.52.71 14+0(3) 1+0(3)
2%.57-13-17-47-1831 2'.5°-157 25 2 .12, 4
73| —2-0dsdTdriss] 2045 . 32.52.73 24+ 0(3) 2+ 0(3)
74 _ 25.3%.5%.11.13.523.1031 25»:3<5>‘;-192 1 24 .36 .52 . 374 1-324+0(3%) 1-314+0(3%)
37
75| 25.3.53.72.13-19 0 1 310. 54 0 2.3 4+ 0(3?)
8.53.13. . 7.54.72 - <
76 | - 2-5T18-311.7207 257 1 24.36.52. 194 1+0(3) 1+0(3)
8.53.13. . 7.57.
77 | —22:57:13-2377:60913 5‘775;31% 1 36.52.74. 114 14+ 0(3) 1+0(3)
6.54.13.73. 5%.17. 2:5 4 2 2 4
82 _ 275 12173 4817 2 53‘41172 109 22 24 .32 .52 .41 2+ 0(3) 2+ 0(3)
84 | —25.53.13.431-10259 2;'7526 1 24.310 . 52. 74 14 0(3) 14+0(3)
26.35.53.13.71.293 28.3.53.17.131 25 2 =2 . god a2 3 . a5 6
89 | - 20:37.5°.1371:203 230 7131 3 32.52.89 1-324+0(3%) | 2-3°+0(3%
90 | 25.3.52.13.151-463 0 1 24.310 .54 0 1-31 4+ 0(3?%)
2%.54.4519393 27.57.112 2.5 2.52,74.134
91 A fars - 32.52.74.13 24+ 0(3) 24+ 0(3)
992 _2°3%5 41235;157431019 2%.3 24;24779 1 24 .36 .52, 934 2.3%3+0(3% 1-3240(3%)
n=2
. 2A 2
2 % 1 = 24.36.52 14+ 0(3) 14+ 0(3)
3 225215 1 22 310. 52 2+ 0(3) 2+ 0(3)
5 0 0 2 36 . 54 1314033 | 0
2 52 2
6 25718 1 2 24.310. 52 1+0(3) 1+0(@3)
7| 2ps 1 25 36.52.74 2+ 0(3) 2+ 0(3)
0] 0 0 % 24.32.54 2.314+0(32) | 0
GA 2. 5. 3.
11| s 1 Lol 36.52.114 1+0(3) 1+0(3)
12 | 225018 1 2 24.310. 52 1+0(3) 1+0(3)
2 52 5 53,112
13 | 25, 1 B s 36.52.134 2+ 0(3) 2+ 0(3)
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Table I: form f of conductor 5 and weight 4.

m L;(f7p7n) P3(f7p7n) ,P,j(f,(]}n) N(fvp) £3(f70-7n) L3(f7p7n)
14 2.5%.13 1 2.56 24 .36 .52 .74 1+ 0(3) 1+ 0(3)
33.73 32.74

5] 0 0 2 310 . 54 1-31403%) | 0
17 | 225018 25 2050188 32.52.174 1+ 0(3) 1+ 0(3)
19 225125%33 23725 2;5354712 32.52. 194 2+ 0(3) 2+ 0(3)
20| 0 0 22 24.36. 54 2.314+0(332) | 0

3
21| 2a3er? 1 25 31052 . 74 2+ 0(3) 2+ 0(3)
22 | 25213 1 2 stal 2¢.36.52.114 | 240(3) 2+ 0(3)
23 | B 1 2352779 36.52.234 1-33+0(3% | 1-324+0(3%)
26 | 2% 25 2plan? 24.32.52.13¢ | 140(3) 1+0(3)
28 | 25013 25 25 24.32.52. 74 14+0(3) 1+0(3)
29 | 257131007 1 B 36.52.294 1+0(3) 1+0(3)
30| 0 0 22 24 . 310 . 54 2.314+0(32) | 0

3
31 | 2252131512 1 2°:5°.112 36.52.314 24 0(3) 2+ 0(3)

32-31 3<-31
33 | BT 1 Lot 310.52. 114 14 0(3) 14 0(3)
34| 223 1 25078 24.36.52.17% | 240(3) 2+ 0(3)
35| 0 0 257 32.54.74 1-3140(3%) | 0
37 26495-;3;»13 25 25-37;192 32.52.374 2-324+0(3%) | 2-324+0(3%)
38 | 2521s41? 1 225072 24.36.52.19% | 14+0(3) 14+0(3)
R L
39 | 5 al 1 R 310.52.134 2+ 0(3) 2+0(3)
41 22~5§~11§~13 1 27‘52‘17;1109 36 .52 .414 1+ 0(3) 1+ 0(3)
33.41 32.41

42 | 28231497 1 25 24.310.52.74 | 140(3) 1+0(3)
43 | 25013 1 255297 36.52. 434 2+ 0(3) 2+ 0(3)
44 2-532'-17123-13 23725 2;?;11-%1 94 .32 52 114 2+ 0(3) 24 0(3)
45| 0 0 2t 310. 54 1-3'4+03%) | o

35
46 2-3;’;:3.13 ?3725 2-3»3:;;17 79 24 . 32 . 52 . 234 2. 33 + 0(34) 2. 32 + 0(33)
ar| 2ot | 2ot | g.pan | 110@) | 1+0@)
50 | 0 0 z 24.36 . 54 2.314+0(32) | 0
51 26.5,325AA1137~L%012 1 26:;251;183 310 . 52 . 174 14+ 0(3) 14 0(3)
52 | 222, 1 P 24.36.52.13% | 140(3) 1+0(3)
53 | Zonagel | gp 5 L1ste | 32,52 . 53¢ 1+0(3) 14+0(3)
55| 0 0 2541 32.51. 114 2.314+0(32) | 0
57 | 2airas 1 P 310.52. 194 2+ 0(3) 2+ 0(3)
58 | Z5s 1 B 24.36.52.20% | 240(3) 2+ 0(3)
5o | 2sriitas 1 2%:5019.101 36.52 . 594 14+ 0(3) 1+0(3)
60| 0 0 22 24 . 310 . 54 2-314+0(32) | 0

3
61 | 24s272dsar? | P 36.52.614 2+ 0(3) 2+ 0(3)
62 2~5;:37123.13 25 2225211432 24.32 . 52.314 14+0(3) 14+ 0(3)
66 | 25713 1 25kl 24.310.52.114 | 24 0(3) 24 0(3)

29
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Table I: form f of conductor 5 and weight 4.

m L;(f7p7n) Pd(f7p7n) Pd(fvo-vn) N(fmo) E,j(f,O',n) LS(fann)
T2 13, 2 33, 2
67 | 2-513-1037 j33;637§:3 1 724335645%3 36.52.674 2+ 0(3) 2+0@3)
681 2 1 i 213052174 | 240(3) 2+0(3)
69 2 §3;§331 1 2 'd~2534~7~79 310 . 52 . 234 1. 33 + 0(34) 1- 32 + 0(33)
70| 0 0 25! 24.36.54.74 | 2.3140(32%) | 0
4.52.13.292 2-5 5.53.47.
n| gt g Dogpe | @t | 140 | 1400
.52.13. 2.5 3,
73 | 201343 33'7?343 23 233247133: 32.52.734 2+0(3) 2+ 0(3)
2-3°-5°-13 2°-5%-19 4 96 52 4 .22 3 .26 7
74| 2513 1 X 24.36.52.37 1-3240(3%) | 1-3%4+0(37)
75 0 0 i 310. 54 1-314+0(3%) | 0
5.52 123 5.54.72
76 ﬁ ] 1 %179} 24.36.52.194 | 14+0(3) 14+ 0(3)
TS ST 35270110 | 1400) 1+0)
.52. . 2:5 5%.17-
82 726 03'4;113213 32 23 ;2.;4109 24.32.52.414 | 2+0(3) 2+ 0(3)
W ' gy | 0.5 8 1:3%4+0(3%) | 1-3%+0(37)
84 | 253499 1 25 24.310.52. 74 | 14+0(3) 1+ 0(3)
4.33.54. 2-5 8.53.17. 3
89 2 3892 13 57 2 589147 131 32 . 52 . 894 1- 32 + 0(33) 1- 34 + 0(35)
9 | 0 0 z 24 . 310 . 54 2.314+0(32) | 0
2 2 2.5 757,112
| grm i Sartae 32.52.74.13" | 24 0(3) 240(3)
92 | 28513 1 ZRELTTO 24.36.52.231 | 2.3340(3%) | 2-3'4+0(3%)
4 2 19.913. 2 5.59.112
93 | 25713-317-1797 j 13331 1279 1 PARIRLE R 32:.31141 310.52.314 2+ 0(3) 2+0@3)
| e | g | 2 art| 200 | 200
97 2 3753 .13 1 2 ;)574»19 36 . 52 . 974 2. 32 + 0(33) 2. 34 + 0(35)
Table II: form f of conductor 7 and weight 4.
* _ * _ * —
LS(f: g, 1) _ 497 L3(f7 g, 2) _ L3(f7 P, 2) =0.
m L;(f,p,n) PS(fvpzn) Pg(f,ﬂ,n) N(f:p) £3(f707n) £3(f,p,n)
2 23.3.5.74 1 52~_732 24.36.72 1-314+0(3%) | 1-31+0(3%
3 22.3.5.73.132 1 27 310.72 2-314+0(3%) | 2-31+0(3?)
5 | 27-3.73.71 1 2128 36.51.72 1-3'4+0(32) | 1-3'+0(3?)
6 24.3.5.74.113 1 5 24.310 .72 1-3140(3%) | 1-31+4+0(3?)
7 22.3.5.72.223 1 %7 36.74 2.314+0(3%) | 2-3'40(3%)
10 | 23.73.239 27 27023 24.32.54.72 | 2.3140(32) | 2-3'40(3?)
22.3.5.73.211-499 25.5.72.31 6.2 114 L al 2 Lal 2
11| 223577211499 1 AYE 36.72.11 1-3140(8%) | 1-3140(3?)
12| 23.3.5.74.241 1 % 24.310. 72 1-314+0(3%) | 1-31+0(3%
S. . 24 34 SA 3A 2
13 2°.3 5137 773 1 2 3.713é1 36 . 72 . 134 2. 31 + 0(32) 2. 31 + 0(32)
14| 23.3.5.72.41-59 1 257 24.36. 74 1-314+0(3%) | 1-31+0(3?%)
15| 22.3.5.73.13.43-179 | 1 233?522-23 310 . 54 . 72 1-314+0@32) | 1-31+0(32)
2 92 £ 53, . 6.33.5.72
17 2<.3 51"77 1223 L; 23 31;25 7 32.72. 174 2.35 4 0(36) 1.33 + 0(34)
11 3 . .52.75
19 | 257737 27 2o 32.72.19% 2-31+0(3%) | 2-314+0(3?)
20 | 27-.3-73.1213 1 27023 24.36.54.72 | 2.3140(32) | 2-3'40(3?)
21| 213.3.5.72.29 1 21 310 . 74 2.314+0(32) | 2-314+0(32)
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Table II: form f of conductor 7 and weight 4.
m L§(f7 P ’I’L) Pd(fv P ’I’L) Pd(f7 g, TL) N(fvp) ‘Cd(f7 g, n) E3(f7p7 ’I’L)
4.3.5.73.19. 3.52.73.
29 2%.3-5 71119 28277 2 211'172 31 24 . 36 . 72 . 114 2 31 + 0(32) 2 31 + 0(32)
2.33.5.73 47. 7.92.52 72
23 | 23057 AT:10463 1 23T 36.72.234 2:31+0(@3%) | 1-33+0(3%)
3.5.74. 2-7 5.74.112 4 92 =2 4 1 2 1 2
26 | 2L57s017 27 2571 24.32.72.134 | 1.3140(32) | 1-3'+0(3?)
28 | 24.5.72.13 27 2572 24.32. 74 1-314+0@32) | 1-31+0(3%)
2. q. 5.4, 6.52.73.
29 | 23571904647 1 79 36.72. 294 1-314+0(3%) | 1-31+0(3?)
30 | 23.3.73.19.266839 1 27023 24.310.54.72 | 9.3 1 0(32) | 2.314+0(3?)
28.3.5.73.307267 25.52.75 6 .72 214 Ll 2 1 2
31 SN 1 3512 36.72.31 2.314+0(3%) | 2-31+0(3?)
27.3.5.73.849221 25.5.72.31 10 .72 114 Ll 2 Lal 2
33 2y 1 S 310.72. 11 1-3140(3%) | 1-314+0(3?)
210.33.5.73.83.101 24.33.52.7 4 . 96 72 174 .25 6 3 4
34| 2305183101 1 =5 24.36.72.17 1-3°4+0(3%) | 1-3%2+0(3%
35 | 22.72.43.191 21 227 28 32.54. 74 1-3140(32) | 1-314+0(32)
7.5.73. 2.7 5,73 £g2
37 7{ 5 7%71?337 27 2 3;3729 32.72.374 2:314+0(3?) | 2-31+0(3?
38 2°.3.5 .179A864947 1 235192 24 . 36 . 72 . 194 1. 31 + 0(32) 1 31 + 0(32)
8 9.5.73 gr 3,73, 2
39 2°.3.5 7139.)7811 1 273?1331?1 310 . 72 . 134 2. 31 + 0(32) 2 31 + 0(32)
4.‘ . 2A '3A 3. 3. 395 5. . . 5
41 2%.3.5%.7 4115 173-1693 1 2 53"741;1 17 3() . 72 _414 1. 31 + 0(32) 1 31 4 0(32)
42 | 23.3.5.72.37-15601 | 1 % 24.310. 74 1-314+0(3%) | 1-314+0(3?)
211.33.5.73.20639 25.33.75 6 .72 . 424 a5 6 3 4
43 | 23757720639 1 2 36.72.43 2.3°4+0(3% | 2-33+0(3%
Table III: form f of conductor 5 and weight 6.
L;(f, o, 1) = —400,L§(f, o, 2) = 62/15,L§(f, o, 3) = —31/1125.
m Lg(f7p7n) P3(f7p7n) P3(f7g7n) N(fvp) £3(f707n) £3(f7p7n)
n=1
2 —212.52.31.661 1 L5 24.36.52 1+0(3) 14+0(3)
3 —210.53.13.31-2953 1 23311 310.52 2+ 0(3) 2+ 0(3)
5 28.3.5.31-193-211 1 —26.11 36. 54 2-314+0(32) | 1-3'+0(3?%)
6 —211.53.31.137-39323 1 s 24.310. 52 14 0(3) 14+0(3)
7 212.52 .31 - 14230919 1 % 36.52.74 2+ 0(3) 2+ 0(3)
10| 27-3.5-31-1097 23511 —210.5.11 24.32.54 1-3140(3%) | 2-314+0(3%)
213.53.31.971.592759 210.52.72.372 6.2 114
11| - 27:57-31:971:592759 1 28T 37 36.52.11 1+0(3) 1+0(3)
12 | —2'1.52.72.31-533063 1 Lgll 24.310.52 14+ 0(3) 14+ 0(3)
13 | _2'%5%.7.11.31.-211.6591061 1 2'7.11.172 36 .52.134 24+ 0(3) 24 0(3)
3
12 -4 13 = 11. 2
14 _225 4314;082124649 1 2 53}712277 24.36.52.74 14+ 0(3) 14+ 0(3)
15 | 2'0.3.5.31-13697-15101 | 1 —26.11 310 54 2-314+0(32) | 1-3'+0(3?%
210.55.7.31.65777 23.11 210.5.11.2663-4093 2 . £2 . 174
17 | 25073165777 5 2-5:11:2065-400 32.52.17 1+0(3) 1+0(3)
18 | —211.52.72.31.533063 s 24 . 310 . 52 1+0(3) 14+0(3)
210.52.11.31-14243891 23.11 219.52.11.1012 2 k2. 194
19 | —2°:57-11:31:14243891 < 2511101 32.52.19 24 0(3) 24+ 0(3)
20 | 27-.3-5-31-59-387077 1 —210.5.11 24.36.54 1-31 +0(@3%) | 2-3'+0(3?)
21 | _2'95%.29.31.104789-2583353 1 29411%772 310 .52 . 74 24+ 0(3) 24+ 0(3)
7 3.7
12 23 3 9
23 _2°7.37-5-31-32517200203 1 2 <3~5»11»é§’é~139»2357 36 . 52 . 234 1- 32 + 0(33) 1- 33 + 0(34)
2'1.52.31.699507967 23.11 221.5.11.172 4 .92 2 194
26 | 2 -5--31-699507967 < e 24.32.52.13 1+0(3) 1+0(3)
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Table III: form f of conductor 5 and weight 6.
m L;(f7p7n) P5(f7p7n) ,P,j(f70'7n) N(fvp) E'j(f7o—7n) £5(f7p,77/)
T3 53.99.31.41. 3. 35112772
28 _210 53 29731 41113 2 311 211 5%1712277 04 .32 .52 74 1+0(3) 1+0(3)
210.53.19.31.37.41633381443 211.53.11.2221.7039 6.52. 994
29 -2 5 1 2571122217030 36.52.29 1+0(3) 14+ 0(3)
20-3-5-13%-17 _ol0 .= . 4 910 =4 . al 2 .3l 2
30 | 41 3. 1051.9713 1 210.5.11 24.310.5 1-314+0(3%) 2.3 4+ 0(3%)
—210. 54 . 1597 - 25447 211 56.11.4632 6 =2 o014
31 54627 1 2 -5-11463° 36.52.31 2+0(3) 2+ 0(3)
210.52.31.79.5727093605801 210.52.72.372 10 .52 . 114
33| — wa——" 1 2057 78T 310.52. 11 14+0(3) 14 0(3)
—2'2.5%.7-23 214.52.11.2663-4093 4,96 52 174
34 4 007 130014857 1 2°.67:11-2663-4093 24.36.52.17 2+ 0(3) 2+ 0(3)
35 | 216.3.5.31-46049 21 — 22110772 32.5%. 74 2-31+0(3?) 1-31+0(3?%)
37 ~ 212.32.53.31.181-199-9743 23.11 213.39.121.2412 32 .52.374 9.310 + 0(311) 2.32 + 0(35)
3 37
14 £4 5. 91.61. . 23 3 .11.1012
38 | _2Ms5t731 611927077 185057 1 2 53.11912 101 24.36.52.194 14 0(3) 14+0(3)
39 | _2'3.5%.31.2957.86182236263 1 217.11.172 310 .52 . 134 24+ 0(3) 24 0(3)
13 3
41 _212 5 231 320431519970879679 1 2135 131;145 704101 36 .52 . 414 1+0(3) 1+0(3)
—2+2.5%.74.31-267139 213 .5.11.9772 4 210 =2 ~4
42 5707783 1 251077 24.310.52.7 14+0(3) 14 0(3)
213.52.19.638839-52230109 29.72.11-1572.3892 6 .52 . 494
43| — 13583 1 20721 157%:389° 36.52.43 2+ 0(3) 2+ 0(3)
n=2
2 | 2811750 1 2507 24.36. 52 1+0(3) 1+ 0(3)
8 . . 3.
3 2:5:331233 1 5 310. 52 24+ 0(3) 24+ 0(3)
5 B 2641332-'351-37 1 0 36 .54 0 2-3'+0(3?)
23.19.31.47-5531 2.52.7 4 910 g2
6 e 1 5 24.310.5 14+0(3) 14 0(3)
7 2-3147.53613 1 5 36.52. 74 2+ 0(3) 2+ 0(3)
10 _M 2;5 0 24.32 . 54 0 1.3 +0(3?%)
9 & 12 3
11 2 .3;32.8101(;)0071 1 2 32%')11163 36.52.114 1+ 0(3) 1+ 0(3)
12 2°.7 3:135145543 1 2 22 7 24 . 310 . 52 1+ 0(3) 1+ 0(3)
9.971. ” 13 =3
13 | 281312051757 1 =5 36.52.134 24+ 0(3) 24+ 0(3)
14 | 2257816578083 1 250 24.36.52.7¢ | 140(3) 1+0(3)
29.31-103-1559 10 | =4 Lal 2
15 — Sl 13 010 2 310. 5 0 2.3 +0(3?)
17 25.3?1):41125-971 232-5 2 2552'-14734881 32 . 52 . 174 1+ 0(3) 1+ 0(3)
18 | 2731045543 1 257 24.310. 52 1+0(3) 1+0(3)
7.5.31. 3, 11 3 2 112
19 | 2:5-31.418273 §§}13§8273 5 e 32.52.194 24+ 0(3) 24+ 0(3)
20| _ 234314?6457 1 0 24.36.54 0 1-31+0(3%)
21 29.192.3}5:2%7.11827 1 gzgz 310, 52 . 74 2+ 0(3) 2+ 0(3)
9.31.1117- : 9.34 52 g5:
23 23 31 1;§Z 156733 13 2113245)4 653 36 .52 .934 2.36 + 0(37) 92.33 + 0(34)
26 | Z-T-3L.6916561 5 Tl 24.32.52.134 | 14+0(3) 1+0(3)
28 | 227313958 25 250 21.32.52.74 | 140(3) 1+0(3)
29 28.31 22243;3%3 64067 1 2 532'1279%1 1091 36 .52 . 994 1+ 0(3) 1+0(3)
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Table III: form f of conductor 5 and weight 6.

m L;(f7p7n) Pd(f7p7n) PJ(f7U7n) N(f?/)) L3(f7o-7n) ‘Cd(f7p7n)
3. 72
30 | — 2572313320081 1 0 24 . 310, 54 0 1-3'4+0(3?)
8 .79, 3 11 5 gq2
31 728 02753%?1)2638621 1 721:3;2133 36.52.314 2+ 0(3) 24+0@3)
33 27A5 ~.313;)Lt51&29868293 1 283é21i}163 310 . 52 . 114 14+ 0(3) 1+ 0(3)
34 2 ~3£[1)~438g:11$§916679 13 2 -53;;3881 24.36.52.174 2+ 0(3) 2+0(3)
35 | —2-:31-10729 ~?g}+,130729 3 0 32.54. 74 0 2.3 +0(3?%)
10.3.5.13.31-59- 3 17 6 £3 ;
37 —23 8:5:13:31:59:829 5 729 324 i ] 32.52.374 2-384+0(3% | 2-32+0(3%)
38 —29~31'1gg?f§§829583 1 225 7117 ‘332;9;111 24.36.52.194 | 14+0(3) 1+0(3)
. . . . 1 .
39 | 2-3L10393011.62311 | 752;22 310.52.134 2+ 0(3) 24+ 0(3)
7. .53. . 12 55, . .
41 23 31 033393126628831 1 27 i32‘1ill3 107 36 .52 . 414 14+ 0(3) 1+0(3)
49 2 .3159;2;17190&)33 1 32153 24.310 .52 74 14+ 0(3) 14 0(3)
9 a1 EEon 9.5 72 g2
43 2°.31 43%2}:;2600567 1 2 ;223459 36 .52 .434 2+ 0(3) 2+ 0(3)
n=23
. 2.
2 ~231 1 57 24 .36 .52 1+ 0(3) 1+0(3)
8 3
3 -2l 1 22 310. 52 2+ 0(3) 2+0(3)
5 | 0 0 2 36 .54 1-3140(32%) | 0
.31.592 2.
6 _725110?; ] 1 3;3337, 24.310.52 1+0(3) 1+0(3)
7 o 1 2 36.52.74 2+ 0(3) 2+ 0(3)
0] 0 0 2 24.32.54 2.314+0(32) | 0
6 2 12 3,
1 -2t 1 2 i 3052114 14+0(3) 1+0(3)
7. 2.
12 7:2312«?; ] 1 ST;‘Z ) 24.310.52 14+ 0(3) 14+ 0(3)
15| - : Fo5st | 240@) | 2400)
.53.192. 5.6
14 -2 536‘1,345 2 1 :2”36% 2%.38.5%. 74 1+0() 1+06)
15| 0 0 5= 310 .54 1-3'+0(3%) | o
6.5. 3. 10,52 43.
17| — 233 554 25 722 43881 32.52.174 1+0(3) 1+0(3)
18 _glié 13 gﬁg o 24.310. 52 1+0(3) 1+0(3)
19| -2 25 722 T 32.52.194 24+ 0(3) 2+ 0(3)
20 0 0 e 24.36.54 2-314+0@3%) | 0
8.31.1912 9.55
21| —Zglior 1 &5 310.52.74 2+ 0(3) 24+ 0(3)
6 x4 9 .33 r2 grs
23 73435512 13 729 542356 653 36.52.234 2:36+0@37) | 1-32+0(3%)
26 | —Z3LAT L2 LA 24.32.52.134 | 1+0(3) 1+0(3)
.192. 3 5.6
2| - Ze s 21.32.52.70 | 140(3) 1400)
29 | AL 1 2 -5ire1001 36 .52 . 294 1+0(3) 1+0(3)
30| 0 0 2 24.310. 54 2.314+0(32) | 0
8. 2 11 5 ga2
31 _32(6)5963714; 1 ﬁ 30.5%.311 2+0(3) 2+0(3)
M| LT ! Sl | 20805t ar | 2406) 2+0(3)
35| 0 0 2 32.5%.74 1-314+0(3%) | 0
6. -4 - 3, 17 95 =3
il 5 2 #o s | 280 | 2.3+ 06
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Table III: form f of conductor 5 and weight 6.

m | L3(f,p,n) Ps(f,p,n) | Ps(f,o,n) N(f,p) L3(f,om) | L3(f,p:n)

8| -2 ! TR [ 2800t | 140 | 1+00)

39 | —27sLor 1 prd 31052134 240(3) | 240(0)

a1 | -2sLssi? 1 2252113107 | 3052 414 14+0(3) 14 0(3)

42 | 23149197 1 P 24.310.52. 74 | 140(3) 1+ 0(3)

43 | 20518731672 | 4 225012597 36.52.434 24+0(3) 2+0(3)

Table IV: form f of conductor 121 and weight 4.
Li(f,0,s)(n =1,2) = (176,0) and Ls(f,0,2) = L3(f,p,2) = 0.

m | Li(f.p,n) Ps(f,p,n) | Ps(f,oon) | N(f,p) L3(f,o,n) L3(f,p,n)
2 25.3.11-17-37 1 22.3 24.36.114 2:324+0(3%) | 1-314+0(3?)
3 25.5.11-4373 1 z 310114 24+ 0(3) 2+ 0(3)
5 25.33.11-2069 1 25723 36.5%.114 2.3240(33) | 1-3340(3%
6 23.32.11-83-2297 1 22.3 24.310. 114 2:324+0(3%) | 2-32+0(3%)
7 | 2511349863 1 2 36.74.114 24 0(3) 2+ 0(3)
10| 23.32.11-13-211 z 2y 24.32.54. 114 | 2.3240(3%) | 1-3240(3%)
11| 28.112 1 z 36.114 2+ 0(3) 2+ 0(3)
12| 25.3.11-13-31-367 | 1 22.3 24.310. 114 2-3240(3%) | 2-3'+0(3?)
13 | 2°:5:11.20.230281 1 227 36.114.134 2+ 0(3) 2+ 0(3)
14 | 208:5:11:439.1129 1 28.3 24.36.74. 114 | 2.324+0(3%) | 1-3'+0(3%)
15 | 2231123934851 23 1 310. 54,114 2:324+0(33) | 1-3'40(32)
17 | 22311208219 z 24 . 33 32.114. 174 2.34 1035 | 2-314+0(32)
19 | 22521122051 z 2052 32.114 . 19 24 0(3) 24+ 0(3)
20 | 28211156241 1 285‘233 24.36.5%. 114 | 2.314+0(3%) | 1-32+0(3%)

In the remaining four tables, we give some intriguing integrality and squareness asser-
tions for the L-values computed in the previous four tables. Although we do not enter into
any detailed discussion in the present paper, it seems highly likely that these phenomena
can be explained via the Bloch-Kato conjecture, and Flach’s motivic generalization of the
Cassels-Tate pairing. We define M to be the product of the distinct primes dividing m,
but excluding the prime 3. Let N denote the conductor of our primitive form f. For

n=1,...,k—1, we define

(81)

An(f) = |L5(f, pyn) [ M es(p) "1 /4

In Table V, for the form f of conductor 5 and weight 4, define

Ai(f)/ (22 x 5% x 13),
As(f) /(5 x 13).
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Table V: form f of conductor 5 and weight 4.

m B1(f) \/Bz(f)
2 22.7 2

3 541 1

6 22.1801 2.7

7 24.23.41 22

11 26.2311 22.11
12 23 .839 23

13 11-13-43-53 1
14 22.5.7-13-251 |2-5

17 31167 )

19 5 - 43 13

21 3425341 67

22 23 .43 - 13841 2211
23 24.35.1409 22.3-5
26 2213 - 887 2-13
28 22503 2

29 111678031 109

31 5-79-62351 151

33 5-112-19-2879 |5-7
34 2417 - 142427 22

37 24.3%.5.367 22.3
39 2071 - 17489 2211
41 17-31-211-941 |11

42 22.19-859 - 1801 |2-149
43 22.7-19-251-491| 2 - 52
44 22.11-421 2-7
46 22.33.7283 2-3
47 24.232 . 22567 24.13
o1 21.5.13-278591 | 2%-101

52 22. 2513617 2

93 5290161 29

57 22.61-503-4241 |2-7?
o8 26-9208039 20.5
99 24.5.23-397-853 2% 117
62 22307 - 2879 2-5-7

66 25 .5 - 6458773 2311
67 22.13%.19% 4759 | 2- 103

35
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Table V: form f of conductor 5 and weight 4.
m_ | Bi()) VBl

68 22 .10484557 2-7-13

69 22.33.857-15733 2-3-31

71 22.7-31-79-101 2-29

73 5-17-47-1831 43

74 22.3%.11-523-1031 |2-33

76 25311 - 7297 2313
7 24.7.11-2377 - 60913 22 - 101
82 23.5. 734817 22.11
83 ? 22.32.7

84 22.7-431-10259 2-199

89 22.3%.71-293 2-32.5
91 54519393 1

92 22.32.157- 31019 2-32

93 ? 2-313-179
94 ? 2-11-19
97 ? 22.32. 5

In Table VI, for the form f of conductor 7 and weight 4, define

Bi(f) = Ai(f)/(7° x 5).
Table VI: form f of conductor 7 and weight 4.
B(/)
22.3.7
3132
25.3.71
23.3.7-113
3-223
10 22239
11 3-211-499
12 22.3.7-241
13 20.3.5.773
14 22.3-41-59
15 3-5-13-43-179
17 3%.1223
19 29.37
20 26.3.1213
21 211.3.29
22 23.3.19- 28277

\1@@0&[\33
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Table VI: form f of conductor 7 and weight 4.
m_ | Bi(f)

23 3% - 47 - 10463

26 22.7-3917

28 23.13

29 371904647

30 22.3-19 - 266839

31 206.3.307267

33 25 .3 .849221

34 29.3%.83-101

35 43 - 191

37 25 . 15937

38 24.3.5.864947

39 20.3.957811

41 22.3-5-13-173 - 1693
42 2233715601

In Table VII, for the form f of conductor 5 and weight 6, define
Bi(f) = Ai(f)/(2°-31-57),
By(f) = Az(f)/(2" - 31),
Bs(f) = As(f) x 5/(2" - 31).

Table VII: form f of conductor 5 and weight 6.
B By(J) VB()
2 25 . 661 1759 1
3 22.5-13-2953 2251223 2
5 3-193-211 3-52-13-37 0
6 24.5.137- 39323 19 - 47 - 5531 59
7 21714230919 22 .47 - 53813 47
10 3-1097 3-52-31 0
11 25.5-971 - 592759 2328000571 181
12 24.7%. 533063 227145543 23
13 22.7.11-211-6591061 23 . 112051757 13- 31
14 25 . 5% . 1082124649 52 - 65780839 5219
15 22.3-13697 - 15101 23-3-5%.103 - 1559 0
17 22.53%. 765777 22491 - 971 5
18 21.72.533063 22 . 7145543 23
19 22. 1114243891 2-5-418273 22
20 3-59- 387077 3-5%.96457 0
21 2229104789 - 2583353 23197 . 647 - 11827 2-191
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Table VII: form f of conductor 5 and weight 6.
B By(J) VBs()
23 21. 33 . 532517200203 23.3%.1117 - 156733 3-5
26 21699507967 7-6916561 47
28 20.5.29-41-113 1739383 19
29 22.5.19- 37 - 41633381443 22 . 283 - 3323 - 64067 2757
30 3-132-17-53-1051 - 2713 3-5%- 7% 3320281 0
31 22 .52 . 1597 - 25447 - 254627 22.5- 73219638621 2967
33 22.79 - 5727093605801 22 .52 .43 - 109868293 5-31
34 2571723227 - 130914857 21 . 487 - 122916679 21867
35 28 .3 746049 24.3.5%.10729 0
37 24.32.5.181-199 - 9743 24.32.5.13-59 - 829 3.7
38 27.52.7-61-27077 - 185057 1657646829583 31-149
39 25 - 2957 - 86182236263 231039 - 3011 - 62311 7-97
41 22 - 3303519970879679 2-53-709 - 36628831 881
42 2573267139 - 5797783 59 - 59147190533 4919
43 25 .19 - 638839 - 52230109 23 - 482148655367 5-13-67

In Table VIII, for the CM form f of conductor 121 and weight 4, define

Bi(f) = Au(f)/(2°- 11).
Table VIII: form f of conductor 121 and weight 4.
Bi(f)
22.3.17-37
2-5-4373
2-3%.5-2069
32832297
2-5-349 - 863
10 32-5-13-211
11 24.112
12 22.3-13-31-367
14 24.3.5-439-1129
17 2-3-29-8219
19 2-.5%-11-29-31
20 24. 32 . 156241

\]CDOTOO[\DE
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