next up previous
Next: Bounding the number of Up: generating_hecke Previous: Introduction

Modular forms and Hecke operators

Let $ N$ and $ k$ be positive integers and let $ M_k(N)=M_k(\Gamma_0(N))$ be the $ \mathbb{C}$-vector space of weight $ k$ modular forms on $ X_0(N)$. This space can be viewed as the set of functions $ f(z)$, holomorphic on the upper half-plane, such that

$\displaystyle f(z)=f\vert[\gamma]_k(z):=(cz+d)^{-k}f\left(\frac{az+b}{cz+d}\right)$

for all $ \gamma\in\Gamma_0(N)$, and such that $ f$ satisfies a certain holomorphic condition at the cusps.

Any $ f\in M_k(N)$ has a Fourier expansion

$\displaystyle f = a_0(f) + a_1(f) q + a_2(f)q^2 + \cdots =\sum a_n q^n \in \mathbb{C}[[q]]$

where $ q=e^{2\pi i z}$. The map sending $ f$ to its $ q$-expansion is an injective map $ M_k(N)\hookrightarrow\mathbb{C}[[q]]$ called the $ q$-expansion map. Define $ M_k(N;\mathbb{Z})$ to be the inverse image of $ \mathbb{Z}[[q]]$ under this map. It is known (see §12.3, [DI]) that

$\displaystyle M_k(N)=M_k(N;\mathbb{Z})\otimes \mathbb{C}.$

For any ring $ R$, define $ M_k(N;R):=M_k(N;\mathbb{Z})\otimes _{\mathbb{Z}} R.$

Let $ p$ be a prime. Define two operators on $ \mathbb{C}[[q]]$:

$\displaystyle V_p(\sum a_n q^n) = \sum a_n q^{np}$

and

$\displaystyle U_p(\sum a_n q^n) = \sum a_{np} q^n.$

The Hecke operator $ T_p$ acts on $ q$-expansions by

$\displaystyle T_p = U_p + \varepsilon (p) p^{k-1} V_p$

where $ \varepsilon (p) = 1$, unless $ p\vert N$ in which case $ \varepsilon (p)=0$. If $ m$ and $ n$ are coprime, the Hecke operators satisfy $ T_{nm}=T_n T_m = T_m T_n$. If $ p$ is a prime and $ r\geq 2$,

$\displaystyle T_{p^r}=T_{p^{r-1}}T_p - \varepsilon (p) p^{k-1} T_{p^{r-2}}.$

The $ T_n$ are linear maps which preserves $ M_k(N;\mathbb{Z})$. The Hecke algebra $ \mathbb{T}=\mathbb{T}(N)=\mathbb{Z}[T_1,T_2,T_3,\ldots]$, which is viewed as a subring of the ring of linear endomorphisms of $ M_k(N)$, is a finite commutative $ \mathbb{Z}$-algebra.

Proposition 1.1   Let $ \sum a_n q^n$ be the $ q$-expansion of $ f\in M_k(N)$ and let $ \sum b_n q^n$ be the $ q$-expansion of $ T_m f$. Then the coefficients $ b_n$ are given by

$\displaystyle b_n = \sum_{d\vert(m,n)} \varepsilon (d) d^{k-1} a_{mn/d^2}.$

Note in particular that $ a_1(T_m f) = a_m(f)$.

Proof. Proposition 3.4.3, [DI]. $ \qedsymbol$

Proposition 1.2   For any ring $ R$, there is a perfect pairing

$\displaystyle \mathbb{T}_R\otimes _RM_k(N;R) \rightarrow R,\qquad (T,f)\mapsto a_1(Tf),$

where $ \mathbb{T}_R = \mathbb{T}\otimes _{\mathbb{Z}} R$.

Proof. Proposition 12.4.13, [DI]. $ \qedsymbol$


next up previous
Next: Bounding the number of Up: generating_hecke Previous: Introduction
William A Stein 2002-02-01