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Abstract

The goal (not yet done) of this paper is to show that the group J1(p)(Q)tor is
cuspidal for all p ≤ 157. Etc.

1 Introduction

Let J be the Jacobian of a modular curve. We give an approach to computing J(Q)tor

in certain cases.

Acknowledgement: Loic Merel. Michael Stoll. Barry Mazur. John Voight.

2 Annihilating Torsion

Let J be J1(N), J0(N), or JH(N) for any subgroup H of (Z/NZ)∗. For any prime
` - N , let J(F`) denote the group of points over F` on the special fiber of the Néron
model of J modulo `. Let S = J(Q)tor.

Lemma 2.1. For any prime ` - 2N , we have S ↪→ J(F`).

Proof. See [Kat81, Appendix].

Remark 2.2. The above lemma also extends to ` | N if we let J(F`) denote the group
of points on the special fiber of the Néron model.

For any prime ` - 2N , let η` = T` − (1 + 〈`〉`) ∈ End(J).

Lemma 2.3. For every ` - 2N , we have S ⊂ J(R)[η`].

Proof. The Eichler-Shimura relation (see, e.g., [RS01, Thm. 5.16]) asserts that on JF`

we have
T` ≡ F + 〈`〉F∨,

where F is Frobenius and F∨ is the dual of Frobenius, so F∨ ◦F = F ◦F∨ = [`]. If x ∈
J(F`), then F (x) = x, so `x = F∨ ◦F (x) = F∨(x). For any P ∈ S, the rational torsion
points T`(P ) and P + 〈`〉`P both reduce to the same element of J(F`), so Lemma 2.1
implies that T`(P ) = P + 〈`〉`P , so η`(P ) = 0. Finally note that S ⊂ J(Q) ⊂ J(R).
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2.1 The Real Eisenstein Ideal

Let I be the ideal generated by η` for ` - 2N , and let

J [I] =
⋂
`-2N

J [η`].

Lemma 2.3 implies that S ⊂ J [I](R). Let C be the cuspidal subgroup, which is the
subgroup of J(Q) generated by differences of cusps. When J [I](R) ⊂ C, we thus have
S = C(Q), which is useful in practice since C(Q) is computable (see [Ste82]).

Passing from J [I](C) to J [I](R) is crucial to our strategy, because often J [I] is
strictly larger than C. For example, consider J = J0(p), with p prime. Then C =
〈(0)−(∞)〉 is cyclic of order the numerator n of (p−1)/12. The η` = T`−(1+`) generate
the ideal I, which is contained in (see [?, pg. 95]) the Eisenstein ideal I = I + (1 + w),
where w is the Atkin-Lehner involution. By [?, Prop. 11.1 on pg. 98 and Prop. 11.7 on
pg. 100] J [I] contains both the cuspidal subgroup C, and the Shimura subgroup Σ (also
of order n), which is µ-type. We conclude that (usually) J [I] is not equal to C. More
concretely, when p = 11, we have J [I] = J [5] ∼= (Z/5Z)2, but C ∼= (Z/5Z). Continuing
our discussion with p = 11 in which J is an elliptic curve, any construction involving
Hecke operators (even including bad primes) or Atkin-Lehner operators cannot result
in an ideal I ′ such that J [I ′] = C, since EndC(J) = Z, so J [I ′] = (Z/mZ)2 (some m)
for all nonzero ideals I ′. However, by introducing the ∗-involution, we obtain a bigger
ring T∗ = T[∗], which is not a subring of End(J), but for which there is an ideal I∗ with
J(C)[I∗] = C in this case. The ring T∗ acts via endomorphisms of the abelian group
J(C), but not as a ring of endomorphisms of the abelian variety J .

Henceforth we let I∗ denote the ideal in T∗ ⊂ End(J(C)) generated by I and ∗ − 1.
We call I∗ the real Eisenstein ideal, and let

E = E(J) = J(C)[I∗] = J [I](R),

which is a finite group that contains S = J(Q)tor.

3 Computing C and Bounding E

Let Γ be a congruence subgroup such as Γ1(N), Γ0(N), or ΓH(N), let X = XΓ be the
corresponding modular curve, and J = Jac(X).

Modular symbols [] provide an explicit realization of H = H1(X,Z) in terms of paths
between cusps. Let V = H ⊗Z Q = H1(X,Q). We represent J(Q)tor as V/H. To any
ordered pair α, β ∈ P1(Q) of cusps, we associate the modular symbol {α, β} ∈ V , which

equals the rational homology class corresponding to the functional ω 7→
∫ β
α
ω on the

space H0(X,Ω1
X) of holomorphic 1-forms. Let π : V → V/H be the natural quotient

map.
We can compute the cuspidal subgroup C using modular symbols as follows. Let

r1, . . . , rn be right coset representatives for Γ in SL2(Z). Then (using Manin’s trick
as in [] or induction as in [MTT86]), the images in J(Q)tor = V/H of the n elements
{ri(0), ri(∞)} ∈ V generates C. We thus represent C explicitly by the lattice π−1(C) ⊂
V . We have that π−1(C)/H ∼= C.

The Hecke and diamond bracket operators can also be computed explicitly on mod-
ular symbols, hence on V (see []). We can explicitly compute endomorphisms e` of V
that induce η` on V/H. Viewing ker(η`) as a subgroup of V/H, we have

π−1(ker(η`)) = e−1
` (H) ⊂ V.
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Finally, using modular symbols, we can also compute the ∗-involution (see []) explic-
itly on V and hence on V/H. Just as above, we have

π−1(J(C)tor[∗ − 1]) = (∗ − 1)−1(H) ⊂ V.

Taken together the above observations yield an algorithm to compute a nonincreasing
sequence of groups that contains J(C)[I∗], using any finite number of η`.

Remark 3.1. The following is useful for carrying out some of the above computations.
Suppose A is an invertible n × n matrix with integer entries, which we view as an
endomorphism of Zn. Then the rows of A−1 form a basis for A−1(Zn) ⊂ Qn. This is
because A ·A−1 = In.

4 Examples

Recall that for a modular Jacobian J , we defined the cuspidal subgroup C ⊂ J and the
real Eisenstein subgroup E ⊂ J in Section 2.1 above.

4.1 J0(24)

The Jacobian associated to Γ = Γ0(24) is the elliptic curve y2 = x3 − x2 − 4x + 4 =
(x− 2)(x− 1)(x+ 2).

Proposition 4.1. We have C = J(Q)tor
∼= Z/2Z⊕ Z/4Z, but E ≈ Z/2Z⊕ Z/8Z.

Proof. The claim for J(Q)tor is a standard computation. To compute C, we compute
the Galois action on the full cuspidal subgroup, and find that C(Q) = C(Q) and that
C ∼= Z/2Z⊕ Z/4Z. Since C = C(Q) ⊂ J(Q)tor and both have order 8, they are equal.

sage: J0(24). rational_cuspidal_subgroup ()

Finite subgroup with invariants [2, 4] over QQ of Abelian

variety J0(24) of dimension 1

For any prime ` - 2N , we have

8 = #J(Q)tor | #J(F`) = a` − (`+ 1) = η`.

For ` = 5, we have η5 = T5 − (5 + 1) = −2− (5 + 1) = −8, so

I = (η` : ` - 2N) = (8) ⊂ T = Z.

Thus E = J(R)[8]. Since J has 2 real components, we have J(R) ≈ Z/2Z ⊕ (R/Z), so
E = J(R)[8] ≈ Z/2Z⊕ Z/8Z.

4.2 J0(30)

Let J = J0(30), which has dimension 3. We have C = C(Q) ≈ Z/2Z⊕ Z/4Z⊕ Z/24Z.
The subgroup E′ ⊂ J(R) computed using η` for ` = 7, 11, 13 is isomorphic to Z/2Z ⊕
Z/2Z⊕Z/8Z⊕Z/24Z, and it stabilizes at this group even if we include all η` for ` < 500.
Similarly, the gcd of #J(F`) for 7 ≤ ` < 500 is equal to 2 · 2 · 8 · 24. So there are 3
possibilities for the order of T = J(Q)tor.

The abelian variety J is “built” out of 3 elliptic curves (in the notation of [?]):
A = 15a?, B = 15a?, and C = 30a1, i.e., we have A,B,C ⊂ J , and A + B + C = J ,
and there is an isogeny A×B × C → J .

Challenge: Figure out what J(Q)tor actually is.
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5 Application: J1(p)

In [CES03, §6.2.3], the author conjectured that J1(p)(Q)tor is cuspidal for all primes p,
and computationally verified this for all p ≤ 157, except p = 29, 97, 101, 109, 113.

This is of interest because of [], which classifies the possible prime orders of torsion
points on elliptic curves over number fields of degree 4 (and 5?). Some parts of that
computation are dramatically simplified by knowing that J1(p)(Q)tor is cuspidal for
certain small p, e.g., p = 29.

The result of [CES03, §6.2.3] is that for the p ≤ 157, we know that J1(p)(Q)tor(`) is
cuspidal, except possibly for the following pairs (p, `):

{(29, 2), (97, 17), (101, 2), (109, 3), (113, 2), (113, 3)}.

In this section, we deal with the above cases. [[Not done yet!]]
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Everything after this is old and
to be deleted.

6 Application: J1(p)

Proposition 6.1. The group T is the group generated by (α) − (β), where α, β are
the rational cusps on X1(29), i.e., the cusps in the fiber over ∞ of the map X1(29) →
X0(29). In particular, T has order 26 · 3 · 7 · 43 · 17837.

This is wrong: really we have to take det on full homology and get square
of good bound. In particular, we obtain a multiple of the order of T :

#T | gcd({det(η`) : ` 6= 2, 29}),

where, e.g., we compute the determinant of η` acting on the +1 quotient of weight 2
cuspidal modular symbols for Γ1(p). Implementing this algorithm, we find that the gcd
appears to stabilize at 212 · 3 · 7 · 43 · 17837:

sage: M = ModularSymbols(Gamma1 (29), sign =1)

sage: S = M.cuspidal_subspace ()

sage: dbd = lambda d: S.diamond_bracket_operator(d). matrix ()

sage: eta = lambda ell: (S.hecke_matrix(ell) - (1 + dbd(ell)*ell))

sage: factor(gcd([ZZ(eta(ell).det ()) for ell in [3 ,5 ,7 ,11]]))

2^12 * 3 * 7 * 43 * 17837

sage: factor(gcd([ZZ(eta(ell).det ()) for ell in [3 ,5 ,7 ,11 ,13 ,17 ,19]]))

2^12 * 3 * 7 * 43 * 17837

We know from [CES03, §6.2.3] that #T = 2n · 3 · 7 · 43 · 17837, where 6 ≤ n ≤ 12,
where the lower bound of 6 comes because the rational cuspidal subgroup of J has order
26 · 3 · 7 · 43 · 17837, according to a formula of Kubert-Lang.

Proof of Proposition 6.1. Let HZ = H1(X1(29),Z) and HQ = H1(X1(29),Q) = HZ⊗Q.
Let M` = η−1

` (HZ) ⊂ HQ, so we have a canonical isomorphism J [η`] ∼= M`/HZ induced
by J(C)tor

∼= HQ/HZ. Let H+
Q be the +1 eigenspace for the ∗-involution, which is the

involution induced by complex conjugation. Let M = M3∩M5∩M7 and W = M+/HZ.
We have that W/HZ ∼= (M/HZ)+, because the real component group of J1(p) is trivial
(new theorem of XXX, plus use a snake lemma to see relevance of this...)

....

Question 6.2. Let C be the cuspidal subgroup of J1(p), and let I be the ideal generated
by all η` for primes ` 6= 2, p. Is C = J1(p)[I]? Do we need to throw in something for
` = 2, p? Is J1(p)(Q)tor = J1(p)(R)[I]?

7 Elkies Question

He is interested in rational torsion being cuspidal on J0(N). See https://mail.google.
com/mail/?shva=1#mbox/12fa91fc242e72f0 in my email.
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N = 30, 33, 35, 39, 40, 41, and 48 for genus 3; N = 47 for g=4; N = 46 and 59 for
g=5; and N = 71 for g=6.
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