Rational Torsion Subgroups of the Modular Jacobians

William Stein

October 1, 2011

Abstract

The goal (not yet done) of this paper is to show that the group $J_{1}(p)(\mathbb{Q})_{\text {tor }}$ is cuspidal for all $p \leq 157$. Etc.

1 Introduction

Let J be the Jacobian of a modular curve. We give an approach to computing $J(\mathbb{Q})_{\text {tor }}$ in certain cases.

Acknowledgement: Loic Merel. Michael Stoll. Barry Mazur. John Voight.

2 Annihilating Torsion

Let J be $J_{1}(N), J_{0}(N)$, or $J_{H}(N)$ for any subgroup H of $(\mathbb{Z} / N \mathbb{Z})^{*}$. For any prime $\ell \nmid N$, let $J\left(\mathbb{F}_{\ell}\right)$ denote the group of points over \mathbb{F}_{ℓ} on the special fiber of the Néron model of J modulo ℓ. Let $S=J(\mathbb{Q})_{\text {tor }}$.

Lemma 2.1. For any prime $\ell \nmid 2 N$, we have $S \hookrightarrow J\left(\mathbb{F}_{\ell}\right)$.
Proof. See [Kat81, Appendix].
Remark 2.2. The above lemma also extends to $\ell \mid N$ if we let $J\left(\mathbb{F}_{\ell}\right)$ denote the group of points on the special fiber of the Néron model.

For any prime $\ell \nmid 2 N$, let $\eta_{\ell}=T_{\ell}-(1+\langle\ell\rangle \ell) \in \operatorname{End}(J)$.
Lemma 2.3. For every $\ell \nmid 2 N$, we have $S \subset J(\mathbb{R})\left[\eta_{\ell}\right]$.
Proof. The Eichler-Shimura relation (see, e.g., RS01, Thm. 5.16]) asserts that on $J_{\mathbb{F}_{\ell}}$ we have

$$
T_{\ell} \equiv F+\langle\ell\rangle F^{\vee}
$$

where F is Frobenius and F^{\vee} is the dual of Frobenius, so $F^{\vee} \circ F=F \circ F^{\vee}=[\ell]$. If $x \in$ $J\left(\mathbb{F}_{\ell}\right)$, then $F(x)=x$, so $\ell x=F^{\vee} \circ F(x)=F^{\vee}(x)$. For any $P \in S$, the rational torsion points $T_{\ell}(P)$ and $P+\langle\ell\rangle \ell P$ both reduce to the same element of $J\left(\mathbb{F}_{\ell}\right)$, so Lemma 2.1 implies that $T_{\ell}(P)=P+\langle\ell\rangle \ell P$, so $\eta_{\ell}(P)=0$. Finally note that $S \subset J(\mathbb{Q}) \subset J(\mathbb{R})$.

2.1 The Real Eisenstein Ideal

Let I be the ideal generated by η_{ℓ} for $\ell \nmid 2 N$, and let

$$
J[I]=\bigcap_{\ell \nmid 2 N} J\left[\eta_{\ell}\right] .
$$

Lemma 2.3 implies that $S \subset J[I](\mathbb{R})$. Let C be the cuspidal subgroup, which is the subgroup of $J(\overline{\mathbb{Q}})$ generated by differences of cusps. When $J[I](\mathbb{R}) \subset C$, we thus have $S=C(\mathbb{Q})$, which is useful in practice since $C(\mathbb{Q})$ is computable (see Ste82).

Passing from $J[I](\mathbb{C})$ to $J[I](\mathbb{R})$ is crucial to our strategy, because often $J[I]$ is strictly larger than C. For example, consider $J=J_{0}(p)$, with p prime. Then $C=$ $\langle(0)-(\infty)\rangle$ is cyclic of order the numerator n of $(p-1) / 12$. The $\eta_{\ell}=T_{\ell}-(1+\ell)$ generate the ideal I, which is contained in (see [?, pg. 95]) the Eisenstein ideal $\mathcal{I}=I+(1+w)$, where w is the Atkin-Lehner involution. By [?, Prop. 11.1 on pg. 98 and Prop. 11.7 on pg. 100] $J[\mathcal{I}]$ contains both the cuspidal subgroup C, and the Shimura subgroup Σ (also of order n), which is μ-type. We conclude that (usually) $J[I]$ is not equal to C. More concretely, when $p=11$, we have $J[I]=J[5] \cong(\mathbb{Z} / 5 \mathbb{Z})^{2}$, but $C \cong(\mathbb{Z} / 5 \mathbb{Z})$. Continuing our discussion with $p=11$ in which J is an elliptic curve, any construction involving Hecke operators (even including bad primes) or Atkin-Lehner operators cannot result in an ideal I^{\prime} such that $J\left[I^{\prime}\right]=C$, $\operatorname{since}^{E^{C}} \mathbb{C}_{\mathbb{C}}(J)=\mathbb{Z}$, so $J\left[I^{\prime}\right]=(\mathbb{Z} / m \mathbb{Z})^{2}$ (some $\left.m\right)$ for all nonzero ideals I^{\prime}. However, by introducing the $*$-involution, we obtain a bigger ring $\mathbb{T}^{*}=\mathbb{T}[*]$, which is not a subring of $\operatorname{End}(J)$, but for which there is an ideal I^{*} with $J(\mathbb{C})\left[I^{*}\right]=C$ in this case. The ring \mathbb{T}^{*} acts via endomorphisms of the abelian group $J(\mathbb{C})$, but not as a ring of endomorphisms of the abelian variety J.

Henceforth we let I^{*} denote the ideal in $\mathbb{T}^{*} \subset \operatorname{End}(J(\mathbb{C}))$ generated by I and $*-1$. We call I^{*} the real Eisenstein ideal, and let

$$
E=E(J)=J(\mathbb{C})\left[I^{*}\right]=J[I](\mathbb{R})
$$

which is a finite group that contains $S=J(\mathbb{Q})_{\text {tor }}$.

3 Computing C and Bounding E

Let Γ be a congruence subgroup such as $\Gamma_{1}(N), \Gamma_{0}(N)$, or $\Gamma_{H}(N)$, let $X=X_{\Gamma}$ be the corresponding modular curve, and $J=\operatorname{Jac}(X)$.

Modular symbols [] provide an explicit realization of $H=\mathrm{H}_{1}(X, \mathbb{Z})$ in terms of paths between cusps. Let $V=H \otimes_{\mathbb{Z}} \mathbb{Q}=\mathrm{H}_{1}(X, \mathbb{Q})$. We represent $J(\overline{\mathbb{Q}})_{\text {tor }}$ as V / H. To any ordered pair $\alpha, \beta \in \mathbb{P}^{1}(\mathbb{Q})$ of cusps, we associate the modular symbol $\{\alpha, \beta\} \in V$, which equals the rational homology class corresponding to the functional $\omega \mapsto \int_{\alpha}^{\beta} \omega$ on the space $\mathrm{H}^{0}\left(X, \Omega_{X}^{1}\right)$ of holomorphic 1-forms. Let $\pi: V \rightarrow V / H$ be the natural quotient map.

We can compute the cuspidal subgroup C using modular symbols as follows. Let r_{1}, \ldots, r_{n} be right coset representatives for Γ in $\mathrm{SL}_{2}(\mathbb{Z})$. Then (using Manin's trick as in [] or induction as in [MTT86]), the images in $J(\overline{\mathbb{Q}})_{\text {tor }}=V / H$ of the n elements $\left\{r_{i}(0), r_{i}(\infty)\right\} \in V$ generates C. We thus represent C explicitly by the lattice $\pi^{-1}(C) \subset$ V. We have that $\pi^{-1}(C) / H \cong C$.

The Hecke and diamond bracket operators can also be computed explicitly on modular symbols, hence on V (see []). We can explicitly compute endomorphisms e_{ℓ} of V that induce η_{ℓ} on V / H. Viewing $\operatorname{ker}\left(\eta_{\ell}\right)$ as a subgroup of V / H, we have

$$
\pi^{-1}\left(\operatorname{ker}\left(\eta_{\ell}\right)\right)=e_{\ell}^{-1}(H) \subset V
$$

Finally, using modular symbols, we can also compute the *-involution (see []) explicitly on V and hence on V / H. Just as above, we have

$$
\pi^{-1}\left(J(\mathbb{C})_{\operatorname{tor}}[*-1]\right)=(*-1)^{-1}(H) \subset V
$$

Taken together the above observations yield an algorithm to compute a nonincreasing sequence of groups that contains $J(\mathbb{C})\left[I^{*}\right]$, using any finite number of η_{ℓ}.
Remark 3.1. The following is useful for carrying out some of the above computations. Suppose A is an invertible $n \times n$ matrix with integer entries, which we view as an endomorphism of \mathbb{Z}^{n}. Then the rows of A^{-1} form a basis for $A^{-1}\left(\mathbb{Z}^{n}\right) \subset \mathbb{Q}^{n}$. This is because $A \cdot A^{-1}=I_{n}$.

4 Examples

Recall that for a modular Jacobian J, we defined the cuspidal subgroup $C \subset J$ and the real Eisenstein subgroup $E \subset J$ in Section 2.1 above.

$4.1 \quad J_{0}(24)$

The Jacobian associated to $\Gamma=\Gamma_{0}(24)$ is the elliptic curve $y^{2}=x^{3}-x^{2}-4 x+4=$ $(x-2)(x-1)(x+2)$.
Proposition 4.1. We have $C=J(\mathbb{Q})_{\text {tor }} \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$, but $E \approx \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$.
Proof. The claim for $J(\mathbb{Q})_{\text {tor }}$ is a standard computation. To compute C, we compute the Galois action on the full cuspidal subgroup, and find that $C(\overline{\mathbb{Q}})=C(\mathbb{Q})$ and that $C \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$. Since $C=C(\mathbb{Q}) \subset J(\mathbb{Q})_{\text {tor }}$ and both have order 8 , they are equal.

```
sage: J0(24).rational_cuspidal_subgroup()
Finite subgroup with invariants [2, 4] over QQ of Abelian
variety JO(24) of dimension 1
```

For any prime $\ell \nmid 2 N$, we have

$$
8=\# J(\mathbb{Q})_{\text {tor }} \mid \# J\left(\mathbb{F}_{\ell}\right)=a_{\ell}-(\ell+1)=\eta_{\ell}
$$

For $\ell=5$, we have $\eta_{5}=T_{5}-(5+1)=-2-(5+1)=-8$, so

$$
I=\left(\eta_{\ell}: \ell \nmid 2 N\right)=(8) \subset \mathbb{T}=\mathbb{Z}
$$

Thus $E=J(\mathbb{R})[8]$. Since J has 2 real components, we have $J(\mathbb{R}) \approx \mathbb{Z} / 2 \mathbb{Z} \oplus(\mathbb{R} / \mathbb{Z})$, so $E=J(\mathbb{R})[8] \approx \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$.

$4.2 \quad J_{0}(30)$

Let $J=J_{0}(30)$, which has dimension 3 . We have $C=C(\mathbb{Q}) \approx \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 24 \mathbb{Z}$. The subgroup $E^{\prime} \subset J(\mathbb{R})$ computed using η_{ℓ} for $\ell=7,11,13$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \oplus$ $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 24 \mathbb{Z}$, and it stabilizes at this group even if we include all η_{ℓ} for $\ell<500$. Similarly, the gcd of $\# J\left(\mathbb{F}_{\ell}\right)$ for $7 \leq \ell<500$ is equal to $2 \cdot 2 \cdot 8 \cdot 24$. So there are 3 possibilities for the order of $T=J(\mathbb{Q})_{\text {tor }}$.

The abelian variety J is "built" out of 3 elliptic curves (in the notation of [?]): $A=15 \mathbf{a}$?, $B=15 \mathbf{a}$?, and $C=30 \mathbf{a} 1$, i.e., we have $A, B, C \subset J$, and $A+B+C=J$, and there is an isogeny $A \times B \times C \rightarrow J$.

Challenge: Figure out what $J(\mathbb{Q})_{\text {tor }}$ actually is.

5 Application: $J_{1}(p)$

In [CES03, §6.2.3], the author conjectured that $J_{1}(p)(\mathbb{Q})_{\text {tor }}$ is cuspidal for all primes p, and computationally verified this for all $p \leq 157$, except $p=29,97,101,109,113$.

This is of interest because of [], which classifies the possible prime orders of torsion points on elliptic curves over number fields of degree 4 (and 5?). Some parts of that computation are dramatically simplified by knowing that $J_{1}(p)(\mathbb{Q})_{\text {tor }}$ is cuspidal for certain small p, e.g., $p=29$.

The result of [CES03, §6.2.3] is that for the $p \leq 157$, we know that $J_{1}(p)(\mathbb{Q})_{\text {tor }}(\ell)$ is cuspidal, except possibly for the following pairs (p, ℓ):

$$
\{(29,2),(97,17),(101,2),(109,3),(113,2),(113,3)\} .
$$

In this section, we deal with the above cases. [[Not done yet!]]

Everything after this is old and to be deleted.

6 Application: $J_{1}(p)$

Proposition 6.1. The group T is the group generated by $(\alpha)-(\beta)$, where α, β are the rational cusps on $X_{1}(29)$, i.e., the cusps in the fiber over ∞ of the map $X_{1}(29) \rightarrow$ $X_{0}(29)$. In particular, T has order $2^{6} \cdot 3 \cdot 7 \cdot 43 \cdot 17837$.

This is wrong: really we have to take det on full homology and get square of good bound. In particular, we obtain a multiple of the order of T :

$$
\# T \mid \operatorname{gcd}\left(\left\{\operatorname{det}\left(\eta_{\ell}\right): \ell \neq 2,29\right\}\right)
$$

where, e.g., we compute the determinant of η_{ℓ} acting on the +1 quotient of weight 2 cuspidal modular symbols for $\Gamma_{1}(p)$. Implementing this algorithm, we find that the gcd appears to stabilize at $2^{12} \cdot 3 \cdot 7 \cdot 43 \cdot 17837$:

```
sage: M = ModularSymbols(Gamma1(29), sign=1)
sage: S = M.cuspidal_subspace()
sage: dbd = lambda d: S.diamond_bracket_operator(d).matrix()
sage: eta = lambda ell: (S.hecke_matrix(ell) - (1 + dbd(ell)*ell))
sage: factor(gcd([ZZ(eta(ell).det()) for ell in [3,5,7,11]]))
2^12 * 3 * 7 * 43 * 17837
sage: factor(gcd([ZZ(eta(ell).det()) for ell in [3,5,7,11,13,17,19]]))
2^12 * 3 * 7 * 43 * 17837
```

We know from [CES03, §6.2.3] that $\# T=2^{n} \cdot 3 \cdot 7 \cdot 43 \cdot 17837$, where $6 \leq n \leq 12$, where the lower bound of 6 comes because the rational cuspidal subgroup of J has order $2^{6} \cdot 3 \cdot 7 \cdot 43 \cdot 17837$, according to a formula of Kubert-Lang.

Proof of Proposition 6.1. Let $H_{\mathbb{Z}}=\mathrm{H}_{1}\left(X_{1}(29), \mathbb{Z}\right)$ and $H_{\mathbb{Q}}=\mathrm{H}_{1}\left(X_{1}(29), \mathbb{Q}\right)=H_{\mathbb{Z}} \otimes \mathbb{Q}$. Let $M_{\ell}=\eta_{\ell}^{-1}\left(H_{\mathbb{Z}}\right) \subset H_{\mathbb{Q}}$, so we have a canonical isomorphism $J\left[\eta_{\ell}\right] \cong M_{\ell} / H_{\mathbb{Z}}$ induced by $J(\mathbb{C})_{\text {tor }} \cong H_{\mathbb{Q}} / H_{\mathbb{Z}}$. Let $H_{\mathbb{Q}}^{+}$be the +1 eigenspace for the $*$-involution, which is the involution induced by complex conjugation. Let $M=M_{3} \cap M_{5} \cap M_{7}$ and $W=M^{+} / H_{\mathbb{Z}}$. We have that $W / H_{\mathbb{Z}} \cong\left(M / H_{\mathbb{Z}}\right)^{+}$, because the real component group of $J_{1}(p)$ is trivial (new theorem of XXX, plus use a snake lemma to see relevance of this...)

Question 6.2. Let C be the cuspidal subgroup of $J_{1}(p)$, and let I be the ideal generated by all η_{ℓ} for primes $\ell \neq 2, p$. Is $C=J_{1}(p)[I]$? Do we need to throw in something for $\ell=2, p$? Is $J_{1}(p)(\mathbb{Q})_{\text {tor }}=J_{1}(p)(\mathbb{R})[I] ?$

7 Elkies Question

He is interested in rational torsion being cuspidal on $J_{0}(N)$. Seehttps://mail.google. com/mail/?shva=1\#mbox/12fa91fc242e72f0 in my email.
$\mathrm{N}=30,33,35,39,40,41$, and 48 for genus $3 ; \mathrm{N}=47$ for $\mathrm{g}=4 ; \mathrm{N}=46$ and 59 for $\mathrm{g}=5$; and $\mathrm{N}=71$ for $\mathrm{g}=6$.

References

[CES03] B. Conrad, S. Edixhoven, and W. A. Stein, $J_{1}(p)$ Has Connected Fibers, Documenta Mathematica 8 (2003), 331-408, http://www.wstein.org/papers/ j1p/.
[Kat81] N. M. Katz, Galois properties of torsion points on abelian varieties, Invent. Math. 62 (1981), no. 3, 481-502. MR 82d:14025
[MTT86] B. Mazur, J. Tate, and J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1-48. MR MR830037 (87e:11076)
[RS01] K. A. Ribet and W.A. Stein, Lectures on Serre's conjectures, Arithmetic algebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser., vol. 9, Amer. Math. Soc., Providence, RI, 2001, http://wstein.org/papers/ serre/, pp. 143-232. MR 2002h:11047
[Ste82] G. Stevens, Arithmetic on modular curves, Birkhäuser Boston Inc., Boston, Mass., 1982. MR 87b:11050

