{{{id=1| attach "/home/wstein/Dropbox/current/torbound/code.sage" /// }}} {{{id=33| A = EllipticCurve('15a') B = EllipticCurve('30a') /// }}} {{{id=43| A.torsion_subgroup().invariants() /// (2, 4) }}} {{{id=45| for E in A.isogeny_class()[0]: print E.torsion_subgroup().invariants() /// (2, 4) (2, 4) (8,) (2, 2) (4,) (4,) (2,) (2,) }}} {{{id=46| for E in B.isogeny_class()[0]: print E.torsion_subgroup().invariants() /// (6,) (2, 6) (2,) (6,) (6,) (2, 2) (2,) (2,) }}} {{{id=44| B.torsion_subgroup().invariants() /// (6,) }}} {{{id=42| /// }}} {{{id=41| A.isogeny_class()[1] /// [ 1 2 2 2 4 4 4 4] [ 2 1 4 4 2 2 8 8] [ 2 4 1 4 8 8 8 8] [ 2 4 4 1 8 8 2 2] [ 4 2 8 8 1 4 16 16] [ 4 2 8 8 4 1 16 16] [ 4 8 8 2 16 16 1 4] [ 4 8 8 2 16 16 4 1] }}} {{{id=34| B.modular_degree() /// 2 }}} {{{id=32| J = J0(30) D = J.decomposition(); D /// [ Simple abelian subvariety 15a(1,30) of dimension 1 of J0(30), Simple abelian subvariety 15a(2,30) of dimension 1 of J0(30), Simple abelian subvariety 30a(1,30) of dimension 1 of J0(30) ] }}} {{{id=31| D[2].intersection(D[0] + D[1]) /// (Finite subgroup with invariants [2, 2] over QQ of Simple abelian subvariety 30a(1,30) of dimension 1 of J0(30), Simple abelian subvariety of dimension 0 of J0(30)) }}} {{{id=30| D[0].intersection(D[1]) /// (Finite subgroup with invariants [4] over QQ of Simple abelian subvariety 15a(1,30) of dimension 1 of J0(30), Simple abelian subvariety of dimension 0 of J0(30)) }}} {{{id=39| T = ModTor(Gamma0(30)); T /// got M 0.0 got S 0.0 got S_Z 0.0 Torsion on the modular Jacobian associated to Congruence Subgroup Gamma0(30) }}} {{{id=38| E7 = T.E_lattice([7]); E7 /// Free module of degree 6 and rank 6 over Integer Ring Echelon basis matrix: [1/48 1/12 1/48 0 7/8 5/48] [ 0 1/8 0 3/8 1/8 0] [ 0 0 1 0 0 0] [ 0 0 0 1/2 0 0] [ 0 0 0 0 1 0] [ 0 0 0 0 0 1/2] }}} {{{id=40| E7 / ZZ^6 /// Finitely generated module V/W over Integer Ring with invariants (2, 2, 8, 48) }}} {{{id=37| /// }}} {{{id=36| /// }}} {{{id=29| /// }}} {{{id=2| M = ModTor(Gamma0(24)) /// got M 0.0 got S 0.0 got S_Z 0.0 }}} {{{id=3| C = M.C_lattice(); C /// Free module of degree 2 and rank 2 over Integer Ring Echelon basis matrix: [1/4 0] [ 0 1/2] }}} {{{id=35| /// }}} {{{id=5| C.basis_matrix().det()^(-1) /// 8 }}} {{{id=11| E0 = M.E_lattice(prime_range(5,200), False); E0 /// Free module of degree 2 and rank 2 over Integer Ring Echelon basis matrix: [1/8 0] [ 0 1/8] }}} {{{id=6| E = M.E_lattice(prime_range(5,200)); E /// Free module of degree 2 and rank 2 over Integer Ring Echelon basis matrix: [1/8 0] [ 0 1/2] }}} {{{id=7| M.M /// Modular Symbols space of dimension 9 for Gamma_0(24) of weight 2 with sign 0 over Rational Field }}} {{{id=8| M.S /// Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 9 for Gamma_0(24) of weight 2 with sign 0 over Rational Field }}} {{{id=9| J = EllipticCurve('24a') J.torsion_order() /// 8 }}} {{{id=22| J.ap(2) - (2+1) /// -3 }}} {{{id=23| J.ap(3) - (3+1) /// -5 }}} {{{id=24| J.discriminant().factor() /// 2^8 * 3^2 }}} {{{id=28| /// }}} {{{id=27| /// }}} {{{id=26| /// }}} {{{id=25| /// }}} {{{id=13| J.ap(5) /// -2 }}} {{{id=10| latex(EllipticCurve('24a')) /// y^2 = x^3 - x^2 - 4x + 4 }}} {{{id=12| J.plot() /// }}} {{{id=14| R. = RR[] (x^3 - x^2 - 4*x + 4).roots() /// [(-2.00000000000000, 1), (1.00000000000000, 1), (2.00000000000000, 1)] }}} {{{id=15| J.torsion_subgroup() /// Torsion Subgroup isomorphic to Z/2 + Z/4 associated to the Elliptic Curve defined by y^2 = x^3 - x^2 - 4*x + 4 over Rational Field }}} {{{id=16| J = J0(24) /// }}} {{{id=17| J.rational_cuspidal_subgroup() /// Finite subgroup with invariants [2, 4] over QQ of Abelian variety J0(24) of dimension 1 }}} {{{id=21| /// }}} {{{id=20| /// }}} {{{id=19| /// }}} {{{id=18| /// }}}