Questions About Finiteness of Shafarevich-Tate Groups of Higher Rank Elliptic Curves

Wei Ho William Stein

August 25, 2011

Abstract

1 Introduction

Conjecture 1.1. There are infinitely many pairs (E, p) with E an elliptic curve over \mathbb{Q} such that $E(\mathbb{Q})$ has rank ≥ 2 , and the p-primary part $\operatorname{III}(E/\mathbb{Q})(p)$ of $\operatorname{III}(E/\mathbb{Q})$ finite.

We will make use of the following two unproved conjectures, which are consequences of the Birch and Swinnerton-Dyer conjecture:

Conjecture 1.2 (Parity Conjecture). The parity of the rank of $E(\mathbb{Q})$ is even if and only if the sign in the functional equation for L(E, s) is +1.

Conjecture 1.3 (Squareness). For any prime p, the order of $\operatorname{III}(E/\mathbb{Q})[p]$ is a perfect square.

Remark 1.4. Conjecture 1.3 is implied by finiteness of $\operatorname{III}(E/\mathbb{Q})(p)$, because of the Cassels-Tate pairing. However, it is an a priori weaker statement, since we could have $\operatorname{III}(E/\mathbb{Q}) \approx (\mathbb{Q}_p/\mathbb{Z}_p)^2$, in which case $\#\operatorname{III}(E/\mathbb{Q})[p] = p^2$, but $\operatorname{III}(E/\mathbb{Q})$ is not finite. Conjecture 1.3 is still very difficult; we only know it holds for curves with $\operatorname{ord}_{s=1} L(E, s) \leq 1$ and for specific examples of curves of rank ≥ 2 .

We prove Conjecture 1.1, assuming either Conjecture 1.2 or Conjecture 1.3. More specifically, we can prove the following three statements:

Theorem 1.5.

- 1. Assuming Conjecture 1.2 or Conjecture 1.3 for p = 2. Then there are infinitely many elliptic curves of rank exactly 2 with $\operatorname{III}(E/\mathbb{Q})(2) = 0$.
- 2. Same as 2, with p = 2 replaced by p = 3 (in both the hypothesis and conclusion).

3. Same as 2, with rank exactly 2 replaced by rank exactly 3.

We may also relax the assumptions somewhat; we only need the assumptions for curves in the families we use for these average Selmer results (\mathcal{F}_1 , elliptic curves with one marked point, and \mathcal{F}_2 , elliptic curves with two marked points).

2 Proofs

Proof of part of Theorem 1.5. We prove 2. The arguments for the other two are identical, using the appropriate Selmer averages.

In the family \mathcal{F}_1 of elliptic curves with one marked point, we use congruence conditions to construct a positive density family \mathcal{F} such that half have root number +1 and half have root number -1. By [], the average cardinality of the 2-Selmer group in this family is 6. (This average cardinality result is a key new input that makes it possible to prove this theorem.)

Dokchitsers' result [DD09] states that the root number gives the parity of the *p*-Selmer rank, i.e., root number +1 means even *p*-Selmer rank. We can ensure that our curves satisfy the hypothesis of Dokchiters (explain how). So in this case, half of the family has even 2-Selmer rank and half has odd. (This is another key nontrivial new input that makes this result possible.)

Let p_i denote the proportion of curves in \mathcal{F} with 2-Selmer rank *i*. We know (shown elsewhere) that $p_0 = 0$ (this is a statement about specialization of rank for curves in a family). We also have

$$1/2 = p_1 + p_3 + p_5 + \cdots$$

and

$$1/2 = p_2 + p_4 + p_6 + \cdots$$

Thus

$$6 = 2p_1 + 4p_2 + 8p_3 + 16p_4 + \cdots$$

If $p_2 = 0$, then we would have

$$6 = 2p_1 + 8p_3 + 16p_4 + \dots \ge 2 \cdot 1/2 + 16 \cdot 1/2 = 9,$$

which is a contradiction. So $p_2 > 0$, i.e., a positive proportion of curves in \mathbb{F} have 2-Selmer rank 2 and root number +1. (In fact, we have that $p_2 \ge 1/4$.)

Since 100% of curves in \mathbb{F} have rank ≥ 1 (as mentioned above), Conjecture 1.2 implies that 100% of curves with 2-Selmer rank 2 and root number +1 (so p_2 proportion of \mathbb{F}) must have algebraic rank 2, hence for these curves $\operatorname{III}(E/\mathbb{Q})[2] = 0$.

Alternatively, assuming instead that $\operatorname{III}(E/\mathbb{Q})[2]$ is a square also implies that 100% of curves with 2-Selmer rank 2 in \mathcal{F} must have algebraic rank 2 and trivial $\operatorname{III}(E/\mathbb{Q})[2]$.

Clearly (and this time it really is "clearly"!) trivial $\operatorname{III}(E/\mathbb{Q})[2]$ implies trivial $\operatorname{III}(E/\mathbb{Q})(2)$, and a group of order 1 is finite! So in fact, we have produced a fairly large proportion of curves (out of all curves of rank at least 1) with rank 2 and finite $\operatorname{III}(E/\mathbb{Q})(2)$.

3 Other related thoughts and questions

- 1. It seems unlikely that we could remove the conditional assumptions from Theorem 1.5, since then we would have produced a lot of rank 2 curves without knowing where the second point is coming from.
- 2. Can we vary p instead of the elliptic curve? Probably not, with these sorts of techniques.
- 3. Can we parametrize smaller families, e.g., the one y(y+1) = x(x-1)(x+a), in order to get Selmer average results for them?
- 4. Can we parametrize families of elliptic curves where the root number is always +1 or -1?
- 5. Question: are we also (conditionally) showing that for a positive proportion of all elliptic curves with rank ≥ 2 that $\operatorname{III}(E/\mathbb{Q})(6) = 0$? That would be **extremely surprising** (at least, to me), even conditionally.

References

[DD09] T. Dokchitser and V. Dokchitser, Root numbers and parity of ranks of elliptic curves, http://arxiv.org/abs/0906.1815.