Questions About Finiteness of Shafarevich-Tate Groups of Higher Rank Elliptic Curves

Wei Ho William Stein

August 25, 2011

Abstract

\section*{1 Introduction}

Conjecture 1.1. There are infinitely many pairs (E, p) with E an elliptic curve over \mathbb{Q} such that $E(\mathbb{Q})$ has rank ≥ 2, and the p-primary part $\amalg(E / \mathbb{Q})(p)$ of $Ш(E / \mathbb{Q})$ finite.

We will make use of the following two unproved conjectures, which are consequences of the Birch and Swinnerton-Dyer conjecture:

Conjecture 1.2 (Parity Conjecture). The parity of the rank of $E(\mathbb{Q})$ is even if and only if the sign in the functional equation for $L(E, s)$ is +1 .

Conjecture 1.3 (Squareness). For any prime p, the order of $\amalg(E / \mathbb{Q})[p]$ is a perfect square.

Remark 1.4. Conjecture 1.3 is implied by finiteness of $\amalg(E / \mathbb{Q})(p)$, because of the Cassels-Tate pairing. However, it is an a priori weaker statement, since we could have $\amalg(E / \mathbb{Q}) \approx\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{2}$, in which case $\# Ш(E / \mathbb{Q})[p]=p^{2}$, but $\amalg(E / \mathbb{Q})$ is not finite. Conjecture 1.3 is still very difficult; we only know it holds for curves with $\operatorname{ord}_{s=1} L(E, s) \leq 1$ and for specific examples of curves of rank ≥ 2.

We prove Conjecture 1.1, assuming either Conjecture 1.2 or Conjecture 1.3. More specifically, we can prove the following three statements:

Theorem 1.5.

1. Assuming Conjecture 1.2 or Conjecture 1.3 for $p=2$. Then there are infinitely many elliptic curves of rank exactly 2 with $\amalg(E / \mathbb{Q})(2)=0$.
2. Same as 2, with $p=2$ replaced by $p=3$ (in both the hypothesis and conclusion).
3. Same as 2, with rank exactly 2 replaced by rank exactly 3.

We may also relax the assumptions somewhat; we only need the assumptions for curves in the families we use for these average Selmer results (\mathcal{F}_{1}, elliptic curves with one marked point, and \mathcal{F}_{2}, elliptic curves with two marked points).

2 Proofs

Proof of part of Theorem 1.5. We prove 2. The arguments for the other two are identical, using the appropriate Selmer averages.

In the family \mathcal{F}_{1} of elliptic curves with one marked point, we use congruence conditions to construct a positive density family \mathcal{F} such that half have root number +1 and half have root number -1 . By [], the average cardinality of the 2 -Selmer group in this family is 6 . (This average cardinality result is a key new input that makes it possible to prove this theorem.)

Dokchitsers' result [DD09] states that the root number gives the parity of the p-Selmer rank, i.e., root number +1 means even p-Selmer rank. We can ensure that our curves satisfy the hypothesis of Dokchiters (explain how). So in this case, half of the family has even 2-Selmer rank and half has odd. (This is another key nontrivial new input that makes this result possible.)

Let p_{i} denote the proportion of curves in \mathcal{F} with 2-Selmer rank i. We know (shown elsewhere) that $p_{0}=0$ (this is a statement about specialization of rank for curves in a family). We also have

$$
1 / 2=p_{1}+p_{3}+p_{5}+\cdots
$$

and

$$
1 / 2=p_{2}+p_{4}+p_{6}+\cdots
$$

Thus

$$
6=2 p_{1}+4 p_{2}+8 p_{3}+16 p_{4}+\cdots .
$$

If $p_{2}=0$, then we would have

$$
6=2 p_{1}+8 p_{3}+16 p_{4}+\cdots \geq 2 \cdot 1 / 2+16 \cdot 1 / 2=9
$$

which is a contradiction. So $p_{2}>0$, i.e., a positive proportion of curves in \mathbb{F} have 2 -Selmer rank 2 and root number +1 . (In fact, we have that $p_{2} \geq 1 / 4$.)

Since 100% of curves in \mathbb{F} have rank ≥ 1 (as mentioned above), Conjecture 1.2 implies that 100% of curves with 2 -Selmer rank 2 and root number +1 (so p_{2} proportion of \mathbb{F}) must have algebraic rank 2 , hence for these curves $\amalg(E / \mathbb{Q})[2]=0$.

Alternatively, assuming instead that $\amalg(E / \mathbb{Q})[2]$ is a square also implies that 100% of curves with 2-Selmer rank 2 in \mathcal{F} must have algebraic rank 2 and trivial $\amalg(E / \mathbb{Q})[2]$.

Clearly (and this time it really is "clearly"!) trivial $\amalg(E / \mathbb{Q})[2]$ implies trivial $\amalg(E / \mathbb{Q})(2)$, and a group of order 1 is finite! So in fact, we have produced a fairly large proportion of curves (out of all curves of rank at least 1) with rank 2 and finite $\amalg(E / \mathbb{Q})(2)$.

3 Other related thoughts and questions

1. It seems unlikely that we could remove the conditional assumptions from Theorem 1.5, since then we would have produced a lot of rank 2 curves without knowing where the second point is coming from.
2. Can we vary p instead of the elliptic curve? Probably not, with these sorts of techniques.
3. Can we parametrize smaller families, e.g., the one $y(y+1)=x(x-1)(x+a)$, in order to get Selmer average results for them?
4. Can we parametrize families of elliptic curves where the root number is always +1 or -1 ?
5. Question: are we also (conditionally) showing that for a positive proportion of all elliptic curves with rank ≥ 2 that $\amalg(E / \mathbb{Q})(6)=0$? That would be extremely surprising (at least, to me), even conditionally.

References

[DD09] T. Dokchitser and V. Dokchitser, Root numbers and parity of ranks of elliptic curves, http://arxiv.org/abs/0906.1815.

